Nonuniform Reductions and NP-Completeness

John M. Hitchcock and Hadi Shafei
Department of Computer Science
University of Wyoming

Abstract

Nonuniformity is a central concept in computational complexity with powerful connections to circuit complexity and randomness. Nonuniform reductions have been used to study the isomorphism conjecture for NP and completeness for larger complexity classes. We study the power of nonuniform reductions for NP-completeness, obtaining both separations and upper bounds for nonuniform completeness vs uniform completeness in NP.

Under various hypotheses, we obtain the following separations:

1. There is a set complete for NP under nonuniform many-one reductions, but not under uniform many-one reductions. This is true even with a single bit of nonuniform advice.
2. There is a set complete for NP under nonuniform many-one reductions with polynomial-size advice, but not under uniform Turing reductions. That is, polynomial nonuniformity is stronger than a polynomial number of queries.
3. For any fixed polynomial $p(n)$, there is a set complete for NP under uniform 2-truth-table reductions, but not under nonuniform many-one reductions that use $p(n)$ advice. That is, giving a uniform reduction a second query makes it more powerful than a nonuniform reduction with fixed polynomial advice.
4. There is a set complete for NP under nonuniform many-one reductions with polynomial advice, but not under nonuniform many-one reductions with logarithmic advice. This hierarchy theorem also holds for other reducibilities, such as truth-table and Turing.

We also consider uniform upper bounds on nonuniform completeness. Hirahara (2015) showed that unconditionally every set that is complete for NP under nonuniform truth-table reductions that use logarithmic advice is also uniformly Turing-complete. We show that under a derandomization hypothesis, the same statement for truth-table reductions and truth-table completeness also holds.

1 Introduction

Nonuniformity is a powerful concept in computational complexity. In a nonuniform computation a different algorithm or circuit may be used for each input size [31], as opposed to a uniform computation in which a single algorithm must be used for all inputs. Alternatively, nonuniform advice may be provided to a uniform algorithm – information that may not be computable by the algorithm but is computationally useful [21]. For example, nonuniformity can be used as a substitute for randomness [1]: every randomized algorithm can be replaced by a nonuniform one ($\text{BPP} \subseteq \text{P/poly}$). It is unknown whether the same is true for NP, but the Karp-Lipton Theorem [21] states that if the polynomial-time hierarchy does not collapse, then NP-complete problems have superpolynomial nonuniform complexity (PH is infinite implies $\text{NP} \not\subseteq \text{P/poly}$). Hardness versus
randomness tradeoffs show that such nonuniform complexity lower bounds imply derandomization (for example, EXP $\nsubseteq P/poly$ implies $\text{BPP} \subseteq \text{i.o.} \text{SUBEXP}$ [9]).

Nonuniform computation can also be used to give reductions between decision problems, when uniform reductions are lacking. The Berman-Hartmanis Isomorphism Conjecture [11] for NP asserts that all NP-complete sets are isomorphic under polynomial-time reductions. Progress towards relaxations of the Isomorphism Conjecture with nonuniform reductions has been made [2, 3, 16] under various hypotheses.

Allender et al. [5] used nonuniform reductions to investigate the complexity of sets of Kolmogorov-random strings. They showed that the sets R_{KS} and R_{Kt} are complete for PSPACE and EXP, respectively, under $P/poly$-truth-table reductions. R_{Kt} is not complete under polynomial-time truth-table reductions – in fact, the full polynomial-size advice is required [30].

The Minimum Circuit Size Problem (MCSP) [20] is an intriguing NP problem. It is not known to be NP-complete. Proving it is NP-complete would imply consequences we don’t yet know how to prove, yet there is really no strong evidence that it isn’t NP-complete. Recently Allender [4] has asked if the Minimum Circuit Size Problem [20] is NP-complete under $P/poly$-Turing reductions.

Buhrman et al. [12] began a systematic study of nonuniform completeness. They proved, under a strong hypothesis on NP, that every 1-tt-complete set for NP is many-one complete with 1 bit of advice. This result has been known for larger classes like EXP and NEXP without using any advice. They also proved a separation between uniform and nonuniform reductions in EXP by showing that there exists a language that is complete in EXP under many-one reductions that use one bit of advice, but is not 2-tt-complete [12]. They also proved that a nonuniform reduction can be turned into a uniform one by increasing the number of queries.

While Buhrman et al. [12] have some results about nonuniform reductions in NP, most of their results are focused on larger complexity classes like EXP. Inspired by their results on EXP, we work toward a similarly solid understanding of NP-completeness under nonuniform reductions. We give both separation and upper bound results for a variety of nonuniform and uniform completeness notions. We consider the standard polynomial-time reducibilities including many-one (\leq_P^m), truth-table (\leq_{PT}), and Turing (\leq_{PT}). We will consider nonuniform reductions such as $\leq_{P/h(n)}^m$ where the algorithm computing the reduction is allowed $h(n)$ bits of advice for inputs of size n.

Separating Nonuniform Completeness from Uniform Completeness. We show in Section 3 that nonuniform reductions can be strictly more powerful than uniform reductions for NP-completeness. This is necessarily done under a hypothesis, for if $P = NP$, all completeness notions for NP trivially collapse. We use the Measure Hypothesis and the NP-Machine Hypothesis – two hypotheses on NP that have been used in previous work to separate NP-completeness notions [26, 28, 17]. The Measure Hypothesis asserts that NP does not have p-measure 0 [23, 25], or equivalently, that NP contains a p-random set [8, 7]. The NP-Machine Hypothesis [17] has many equivalent formulations and implies that there is an NP search problem that requires exponential time to solve almost everywhere.

We show under the Measure Hypothesis that there is a $\leq_{m/1}^P$-complete set for NP that is not \leq_P^m-complete. In other words, nonuniform many-one reductions are stronger than many-one reductions for NP-completeness, and this holds with even a single nonuniform advice bit.

We also show that if the nonuniform reductions are allowed more advice, we have a separation even from Turing reductions. Under the NP-Machine Hypothesis, there is a $\leq_{m/poly}^P$-complete set that is not \leq_{PT}^P-complete. That is, polynomial-size advice makes a many-one reduction stronger for
NP-completeness than a reduction that makes a polynomial number of adaptive queries.

Separating Uniform Completeness from Nonuniform Completeness Next, in Section 4, we give evidence that uniform reductions may be strictly stronger than nonuniform reductions for NP-completeness.

We show under a hypothesis on $\mu_p(NP \cap \text{coNP}) \neq 0$ that adding just one more query makes a reduction more powerful than a nonuniform one for completeness: if $\mu_p(NP \cap \text{coNP}) \neq 0$, then for any $c \geq 1$, there is a $\leq_p^{2-\text{tt}}$-complete set that is not \leq_m^{P/tt^c}-complete. This is an interesting contrast to our separation of $\leq_m^{P/\text{poly}}$-completeness from \leq^p_{tt}-completeness (which includes $\leq^p_{2-\text{tt}}$-completeness). Limiting the advice on the many-one reduction to a fixed polynomial flips the separation the other way – and in fact, only two queries are needed. The $\mu_p(NP \cap \text{coNP}) \neq 0$ hypothesis is admittedly strong. However, we note that strong hypotheses on $NP \cap \text{coNP}$ have been used in some prior investigations [29, 18, 12].

Uniform Completeness Upper Bounds for Nonuniform Completeness Despite the above separations, it is possible to replace a limited amount of nonuniformity by a uniform reduction for NP-completeness. Up to logarithmic advice may be made uniform at the expense of a polynomial number of queries:

1. A result of Hirahara [14] implies every $\leq^p_{\text{tt}}^{\text{log}}$-complete set for NP is also \leq^p_{tt}-complete.

2. Under a derandomization hypothesis (E has a problem with high NP-oracle circuit complexity), we show that every $\leq^p_{\text{tt}}^{\text{log}}$-complete set for NP is also \leq^p_{tt}-complete. The Valiant-Vazirani lemma [32] gives a randomized algorithm to reduce the satisfiability problem to the unique satisfiability problem. Being able to derandomize this algorithm [22] yields a nonadaptive reduction.

These upper bound results are presented in Section 5.

Hierarchy Theorems for Nonuniform Completeness In Section 6, we give hierarchy theorems for nonuniform NP-completeness. We separate polynomial advice from logarithmic advice: if the NP-machine hypothesis is true, then there is a $\leq_m^{P/\text{poly}}$-complete set that is not $\leq_m^{P/\text{log}}$-complete. This also holds for other reducibilities such as truth-table and Turing.

2 Preliminaries

All languages in this paper are subsets of $\{0,1\}^*$. We use the standard enumeration of binary strings, i.e. $s_0 = \lambda, s_1 = 0, s_2 = 1, s_3 = 00, ...$ as an order on binary strings. For any language $A \subseteq \{0,1\}^*$ the characteristic sequence of A is defined as $\chi_A = A[s_0] A[s_1] A[s_2] ...$ where $A[x] = 1$ or 0 depending on whether the string x belongs to A or not respectively. We identify every language with its characteristic sequence. For any binary sequence X and any string $x \in \{0,1\}^*$, $X \upharpoonright x$ is the initial segment of X for all strings before x.

We use the standard definitions of complexity classes and well-known reductions that can be found in [10, 27]. For any two languages A and B and a function $l : \mathbb{N} \to \mathbb{N}$, we say A is *nonuniform polynomial-time reducible to B with advice $l(n)$*, and we write $A \leq^p_{m/l(n)} B$, if there exists $f \in \text{PF}$...
Let D.

Proof. It follows from the closure properties of NP that $A \leq_{m}^{P/H}$ B if $A \leq_{m}^{P/l}$ B for some $l \in \mathcal{H}$. The class poly denotes all advice functions with length bounded by a polynomial, and log is all advice functions with length $O(\log n)$. We also use $\leq_{m}^{P/1}$ for a nonuniform reduction when $|h(x)| = 1$. Nonuniform reductions can similarly be defined with respect to other kinds of reductions like Turing, truth-table, etc.

In most of our proofs we use resource-bounded measure [23] to state our hypotheses. In the following we provide a brief description of this concept. For more details, see [23, 25, 7]. A martingale is a function $d : \{0, 1\}^{*} \rightarrow [0, \infty)$ where $d(\lambda) > 0$ and $\forall x \in \{0, 1\}^{*}$, $2d(x) = d(x0) + d(x1)$.

We say a martingale d fails on a set $A \subseteq \{0, 1\}^{*}$ if $\limsup_{n \rightarrow \infty} d(A \upharpoonright n) = \infty$, where $A \upharpoonright n$ is the length n prefix of A.

In our proofs we use resource-bounded measure [23] to state our hypotheses. In the following we provide a brief description of this concept. For more details, see [23, 25, 7].

A martingale is a function $d : \{0, 1\}^{*} \rightarrow [0, \infty)$ where $d(\lambda) > 0$ and $\forall x \in \{0, 1\}^{*}$, $2d(x) = d(x0) + d(x1)$.

We say a martingale d fails on a set $A \subseteq \{0, 1\}^{*}$ if $\limsup_{n \rightarrow \infty} d(A \upharpoonright n) = \infty$, where $A \upharpoonright n$ is the length n prefix of A.

In our proofs we use resource-bounded measure [23] to state our hypotheses. In the following we provide a brief description of this concept. For more details, see [23, 25, 7].

3 Separating Nonuniform Completeness from Uniform Completeness

Our first theorem separates nonuniform many-one completeness with one bit of advice from uniform many-one completeness for NP, under the measure hypothesis. Buhrman et al. [12] proved the same result for EXP unconditionally.

Theorem 3.1. If $\mu_{p}(NP) \neq 0$ then there exists a set $D \in \text{NP}$ that is NP-complete with respect to $\leq_{m}^{P/1}$-reductions but is not \leq_{m}^{P}-complete.

Proof. Let $R \in \text{NP}$ be p-random. We use R and SAT to construct the following set:

$$D = \langle \phi, 0 \rangle : \phi \in \text{SAT} \lor 0^{0^{0}} \in R \cup \langle \phi, 1 \rangle : \phi \in \text{SAT} \land 0^{0^{0}} \in R$$

It follows from closure properties of NP that $D \in \text{NP}$. It is also easy to see that SAT $\leq_{m}^{P/1}$ D via $\phi \rightarrow \langle \phi, R[0^{0^{0}}] \rangle$. Note that $R[0^{0^{0}}]$ is one bit of advice, and it is 1 or 0 depending on whether or not
0^{\phi} \in R$. We will prove that D is not \leqPm-complet for NP. To get a contradiction, assume that D is \leqPm-complet. Therefore SAT \leqPm D via some polynomial-time computable function f. Then $(\forall \phi) \phi \in SAT \iff f(\phi) \in D$. Based on the value of SAT[\phi] and the second component of $f(\phi)$ we consider four cases:

1. $\phi \in SAT \land f(\phi) = \langle \psi, 0 \rangle$, for some formula ψ.
2. $\phi \notin SAT \land f(\phi) = \langle \psi, 0 \rangle$, for some formula ψ.
3. $\phi \in SAT \land f(\phi) = \langle \psi, 1 \rangle$, for some formula ψ.
4. $\phi \notin SAT \land f(\phi) = \langle \psi, 1 \rangle$, for some formula ψ.

In the second case above we have SAT[\phi] = SAT[\psi] \lor R[0^{\psi}] and $\phi \notin SAT$. Therefore SAT[\psi] \lor R[0^{\psi}] = 0 which implies $R[0^{\psi}] = 0$. Consider the situation where the second case happens and $|\psi| \geq |\phi|/2$. The following argument shows that $R[0^{\psi}]$ is computable in $2^{5|\psi|}$ time in this situation. We apply f to every string of length at most $2|\psi|$, looking for a formula ϕ of length at most $2|\psi|$ such that $f(\phi) = \langle \psi, 0 \rangle$ and $\phi \notin SAT$. We are applying f which is computable in polynomial time to at most $2^{2|\psi|+1}$ strings. This can be done in $2^{5|\psi|}$ steps. Checking if $\phi \notin SAT$ can be done in at most $2^{2|\psi|}$ steps for each ϕ. Therefore the whole algorithm takes at most $2^{5|\psi|}$ steps to terminate. If this case happens for infinitely many ψ's we will have a polynomial-time martingale that succeeds on R which contradicts the p-randomness of R. As a result, there cannot be infinitely many ϕ's that $\phi \notin SAT, f(\phi) = \langle \psi, 0 \rangle$, and $|\psi| \geq |\phi|/2$. This is because if there are infinitely many such ϕ's, then there must be infinitely many n's such that for each n there exists a ϕ satisfying the above properties. Since we assumed $|\psi| \geq |\phi|/2$ it follows that there must be infinitely many such ψ's, but we proved that this cannot happen.

An analagous argument for the third case there cannot be infinitely many ϕ's that $\phi \notin SAT, f(\phi) = \langle \psi, 0 \rangle$, and $|\psi| \geq |\phi|/2$. Therefore we have:

1. For almost every ϕ, if $\phi \notin SAT \land f(\phi) = \langle \psi, 0 \rangle$, then $|\psi| < |\phi|/2$.
2. For almost every ϕ, if $\phi \in SAT \land f(\phi) = \langle \psi, 1 \rangle$, then $|\psi| < |\phi|/2$.

It follows from these two facts that for almost every ϕ, if $|\psi| \geq |\phi|/2$, then SAT[\phi] can be computed in polynomial time:

1. If $f(\phi) = \langle \psi, 0 \rangle$ and $|\psi| \geq |\phi|/2$, then $\phi \in SAT$.
2. If $f(\phi) = \langle \psi, 1 \rangle$ and $|\psi| \geq |\phi|/2$, then $\phi \notin SAT$.

Note that the only computation required in the algorithm above is computing f on ϕ which can be done in polynomial time. To summarize, for every formula ϕ it is either the case that when we apply f to ϕ the new formula ψ satisfies $|\psi| < |\phi|/2$ or SAT[\phi] is computable in polynomial time. In the following we use this fact and the many-one reduction from SAT to D to introduce a $(\log n)$-tt-reduction from SAT to R.

The many-one reduction from SAT to D implies that $(\forall \phi) \phi \in SAT \iff f(\phi) \in D$. In other words:

$$ (\forall \phi) f(\phi) = \langle \psi_1, i \rangle \land SAT[\phi] = SAT[\psi_1] \circ_1 R[0^{\psi_1}] $$ (3.1)
where \odot_1 is \lor or \land when $i = 0$ or 1 respectively.

Fix two strings a and b such that $a \in R$ and $b \notin R$. If $|\psi_1| \geq |\phi|/2$ then SAT[ϕ] is computable in polynomial time, and our reduction maps ϕ to either a or b depending on SAT[ϕ] being 1 or 0 respectively. To put it differently, the right hand side of (3.1) will be substituted by $R[a]$ or $R[b]$ respectively.

On the other hand, if $|\psi_1| < |\phi|/2$ then we repeat the same process for ψ_1. We apply f to ψ_1 to get

$$\text{SAT}[\psi_1] = \text{SAT}[\psi_2] \odot_2 R[0^{|\psi_2|}]$$

(3.2)

By substituting this in (3.1) we will have:

$$\text{SAT}[\phi] = (\text{SAT}[\psi_2] \odot_2 R[0^{|\psi_2|}]) \odot_1 R[0^{|\psi_1|}]$$

(3.3)

Again, if $|\psi_2| \geq |\psi_1|/2$ then SAT[ψ_1] is computable in polynomial time, and its value can be substituted in (3.2) to get a reduction from SAT to R. On the other hand, if $|\psi_2| < |\psi_1|/2$ then we use f again to find ψ_3 such that:

$$\text{SAT}[\psi_2] = \text{SAT}[\psi_3] \odot_3 R[0^{|\psi_3|}]$$

(3.4)

By substituting this in (3.3) we will have:

$$\text{SAT}[\phi] = ((\text{SAT}[\psi_3] \odot_3 R[0^{|\psi_3|}]) \odot_2 R[0^{|\psi_2|}]) \odot_1 R[0^{|\psi_1|}]$$

(3.5)

We repeat this process up to $(\log n)$ times where $n = |\phi|$. If there exists some $i \leq (\log n)$ such that $|\psi_{i+1}| \geq |\psi_i|/2$, then we can compute SAT[ψ_i] in polynomial time and substitute its value in the following equation:

$$\text{SAT}[\phi] = ((\text{SAT}[\psi_i] \odot_k R[0^{|\psi_i|}]) \odot_{i-1} R[0^{|\psi_{i-1}|}]\ldots \odot_1 R[0^{|\psi_1|}]$$

(3.6)

This gives us an i-tt-reduction from SAT to R for some $i < (\log n)$.

On the other hand, if $|\psi_{i+1}| < |\psi_i|/2$ for every $i \leq (\log n)$ then we will have:

$$\text{SAT}[\phi] = ((\text{SAT}[\psi_{(\log n)}] \odot_{(\log n)} R[0^{|\psi_{(\log n)}|}]) \odot_{(\log n)-1} R[0^{|\psi_{(\log n)-1}|}]\ldots \odot_1 R[0^{|\psi_1|}]$$

(3.7)

It follows from the construction that the length of ψ_i’s is halved on each step. Therefore $|\psi_{(\log n)}|$ must be constant in n. As a result SAT[$\psi_{(\log n)}$] is computable in constant time. If we compute the value of SAT[$\psi_{(\log n)}$], and substitute it in (3.7) we will have a $(\log n)$-tt-reduction from SAT to R. In any case, we have shown that if SAT is many-one reducible to D, we can use this reduction to define a polynomial time computable $(\log n)$-tt-reduction from SAT to R. This means that R is $(\log n)$-tt-complete for NP. Buhrman and van Melkebeek [13] showed that complete sets for NP under \leq_m^{tt}-reductions have p_2-measure 0. Since this complete degree is closed under \leq_m^{tt}-reductions, it also has p-measure 0 [19]. Therefore the $(\log n)$-tt-completeness of R contradicts its p-randomness, which completes the proof.

This next theorem is based on a result of Hitchcock and Pavan [16] that separated strong nondeterministic completeness from Turing completeness for NP. We separate nonuniform many-one completeness with polynomial advice from Turing completeness.

Theorem 3.2. If the NP-machine hypothesis holds, then there exists a $\leq_m^{\text{P/poly}}$-complete set in NP that is not \leq_T^{P}-complete.
Proof. We follow the setup in [16]. Assume the NP-machine hypothesis holds. Then it can be shown there exists an NP-machine M that accepts 0^* such that no 2^{n^3}-time bounded Turing machine can compute infinitely many of its computations. Consider the following NP set:

$$A = \{\langle \phi, a \rangle \mid \phi \in \text{SAT} \text{ and } a \text{ is an accepting computation of } M(0|\phi)\} \quad (3.8)$$

The mapping $\phi \rightarrow \langle \phi, a \rangle$ where a is the first accepting computation of $M(0|\phi)$ is a $\leq_{\text{m}}^{P/\text{poly}}$-reduction from SAT to A. Note that a only depends on the length of ϕ and $|a|$ is polynomial in the $|\phi|$. Therefore A is $\leq_{\text{m}}^{P/\text{poly}}$-complete for NP. It is proved in [16] that A is not \leq^P_T-complete.

Because the measure hypothesis implies the NP-machine hypothesis, we have the following corollary.

Corollary 3.3. If $\mu_p(\text{NP}) \neq 0$, then there exists a $\leq_{\text{m}}^{P/\text{poly}}$-complete set in NP that is not \leq^P_T-complete.

4 Separating Uniform Completeness from Nonuniform Completeness

Buhrman et al. [12] showed there is a $\leq_{2\text{-tt}}^P$-complete set for EXP that is not $\leq_{\text{m}}^{P/1}$-complete. We show the same for NP-completeness under a strong hypothesis on NP \cap coNP; in fact, the set is not even complete with many-one reductions that use a fixed polynomial amount of advice. In the proof, we use the construction of a $\leq_{2\text{-tt}}^P$-complete set that was previously used to separate $\leq_{2\text{-tt}}^P$-completeness from $\leq_{1\text{-tt}}^P$-completeness [29] and $\leq_{2\text{-tt}}^P$-autoreducibility from $\leq_{1\text{-tt}}^P$-autoreducibility [18].

Theorem 4.1. If $\mu_p(\text{NP} \cap \text{coNP}) \neq 0$ then for every $c \geq 1$, there exists a set $A \in \text{NP}$ that is $\leq_{2\text{-tt}}^P$-complete but is not \leq_{m}^{P/n^c}-complete.

Proof. We know that $\mu_p(\text{NP} \cap \text{coNP}) \neq 0$ implies $\mu_{p^2}(\text{NP} \cap \text{coNP}) \neq 0$ [19]. Therefore we can assume there exists $R \in \text{NP} \cap \text{coNP}$ that is p_n-random. We fix $c \geq 1$, and define $A = 0((R \cap \text{SAT}) \cup \{1\}(\bar{R} \cap \text{SAT}))$, where \bar{R} is R’s complement. It follows from closure properties of NP that $A \in \text{NP}$. We can define a polynomial-time computable 2-tt-reduction from SAT to A as follows: on input x we make two queries $0x$ and $1x$ from A, and we have $x \in \text{SAT} \iff (0x \in A \lor 1x \in A)$). Therefore A is $\leq_{2\text{-tt}}^P$-complete in NP. We will show that A is not \leq_{m}^{P/n^c}-complete. To get a contradiction, assume A is \leq_{m}^{P/n^c}-complete in NP. This implies that $R \leq_{\text{m}}^{P/n^c} A$ via functions $f \in \text{PF}$ and $h : \mathbb{N} \rightarrow \{0,1\}^*$ where $(\forall n) |h(n)| = n^c$. In other words:

$$(\forall x) R[x] = A[f(x, h(|x|))] \text{ where } |h(n)| = n^c \quad (4.1)$$

For each length n the advice a_n has length n^c. As a result, there are 2^{n^c} possibilities for a_n. For each length n we define 2^{n^c} martingales such that each martingale assumes one of these possible strings is the actual advice for length n, and uses (4.1) to bet on R. We divide the capital into 2^{n^c} equal shares between these martingales. In the worst case, the martingales that do not use the right advice lose their share of the capital. We define these martingales such that the martingale that uses the right advice multiplies its share by 2^{n^c+1}. We will also show that this happens for
in infinitely many lengths \(n \), which gives us a \(p_2 \)-strategy to succeed on \(R \). Note that based on the argument above, we can only focus on the martingale that uses the right advice for each length. To say it differently, in the rest of the proof we assume that we know the right advice for each length, but the price that we have to pay is to show that our martingale can multiply its capital by \(2^{n^c+1} \).

For each length \(n \) we first compute \(\text{SAT}[z] \) for every string \(z \) of length \(n \). In particular, we are interested in the following set:

\[
A_n = \{ z \mid |z| = n \text{ and } z \notin \text{SAT} \}
\]

If \(|A_n| < n^{2^c} \) we do not bet on any string of length \(n \). It follows from paddability of \(\text{SAT} \) that there must be infinitely many \(n \)’s such that \(|A_n| \geq n^{2^c} \). Assume \(n \) is a length where \(|A_n| \geq n^{2^c} \), and let \(a_n \) be the right advice for length \(n \). For any string \(x \), let \(v(0x) = v(1x) = x \). Consider the following set:

\[
C_n = \{ z \mid |z| = n, z \notin \text{SAT}, \text{ and } v(f(z,a_n)) > z \}
\]

Claim. There must be infinitely many \(n \)’s where \(|A_n| \geq n^{2^c} \) and \(|C_n| \geq n^{2^c} - n^c \).

Proof. Assume the claim does not hold. Then we have: \((\forall \infty n) \ |A_n| \geq n^{2^c} \rightarrow |C_n| < n^{2^c} - n^c \). This means for almost every \(n \) if \(|A_n| \geq n^{2^c} \) then there are \(n^c + 1 \) strings of length \(n \), \(z_1, z_2, ..., z_{n^c+1} \), satisfying the following property:

\[
(\forall 1 \leq i \leq n^c + 1) \ R[z_i] = A[f(z_i,a_n)] \wedge v(f(z_i,a_n)) \leq z_i
\]

(4.2)

It follows from the definition of \(A \) that \(A[y] = \bar{R} \cap \text{SAT}[v(y)] \) where \(\bar{R} \) is \(R \) or \(\bar{R} \) depending on whether \(y \) starts with a 0 or 1 respectively. Therefore (4.2) turns into:

\[
(\forall 1 \leq i \leq n^c + 1) \ R[z_i] = (\bar{R} \cap \text{SAT})[v(f(z_i,a_n))] \wedge v(f(z_i,a_n)) \leq z_i
\]

(4.3)

We use (4.3) to define a martingale that predicts \(R[z_i] \) for every \(1 \leq i \leq n^c + 1 \). Since we know \(R[z_i] = \bar{R}[v(f(z_i,a_n))] \wedge \text{SAT}[v(f(z_i,a_n))] \) our martingale computes \(\bar{R}[v(f(z_i,a_n))] \wedge \text{SAT}[v(f(z_i,a_n))] \) and bets on \(R[z_i] \) having the same value as \(\bar{R}[v(f(z_i,a_n))] \wedge \text{SAT}[v(f(z_i,a_n))] \). Now we need to show why a polynomial time martingale has enough time to compute \(\bar{R}[v(f(z_i,a_n))] \wedge \text{SAT}[v(f(z_i,a_n))] \). Note that we know \(v(f(z_i,a_n)) \leq z_i \) so it is either the case that \(v(f(z_i,a_n)) < z_i \) or \(v(f(z_i,a_n)) = z_i \).

In the first case, the martingale has access to \(\bar{R}[v(f(z_i,a_n))] \), and has enough time to compute \(\text{SAT}[v(f(z_i,a_n))] \). In the second case we know that \(\text{SAT}[v(f(z_i,a_n))] = 0 \) therefore \(R[z_i] = 0 \). This implies that we can double the capital for each \(z_i \). As a result, the capital can be multiplied by \(2^{n^c+1} \). If this happens for infinitely many \(n \)’s we have a martingale that succeeds on \(R \) which is a contradiction. This completes the proof of Claim 4.

The following claim states that when applying \(f \) to elements of \(C_n \) there cannot be many collisions. Define:

\[
D_n = \{ z \in C_n \mid (\exists y \in C_n) \ y < z \wedge f(y,a_n) = f(z,a_n) \}
\]

Claim. There cannot be infinitely many \(n \)’s such that \(|D_n| \geq n^c + 1 \).

Proof. To get a contradiction, assume there are infinitely many \(n \)’s such that \(|D_n| \geq n^c + 1 \). Let \(t_1, t_2, ..., t_{n^c+1} \) be the first such strings. Then we have:

\[
(\forall 1 \leq i \leq n^c + 1) \ (\exists r_i) \ r_i \in C_n \wedge r_i < t_i \wedge f(r_i,a_n) = f(t_i,a_n)
\]
It follows that:
\[(\forall 1 \leq i \leq n^c + 1) \left(\exists r_i \right) r_i \in D_n \land r_i < t_i \land R[r_i] = R[t_i] \]

We can define a martingale that looks up the value of \(R[r_i]\), and bets on \(R[t_i]\) based on the equation above. This means that we can double the capital by betting on \(R[t_i]\) for every \(1 \leq i \leq n^c + 1\). As a result, the capital will be multiplied by \(2^{n^c+1}\). If this happens for infinitely many \(n\)’s we will have a martingale that succeeds on \(R\) which is a contradiction. This completes the proof of Claim 4.

Assume \(n\) is a length where \(|C_n| \geq n^{2c} - n^c\). We have shown that there are infinitely many such \(n\)’s. We claim that for infinitely many of these \(n\)’s, since \(R\) is \(p_x\)-random, there must be at least \((n^{2c} - n^c)/4\) strings in \(C_n\) that also belong to \(R\).

Claim. \((\forall n) \; |C_n| \geq (n^{2c} - n^c) \rightarrow |C_n \cap R| \geq (n^{2c} - n^c)/4.

Proof. Assume this claim does not hold. Then we have:
\[(\exists n) \; |C_n| \geq n^{2c} - n^c \land |C_n \cap R| < (n^{2c} - n^c)/4 \]

We use this assumption to define a polynomial time martingale that succeeds on \(R\). We divide the original capital such that the martingale has \(1/2n^2\) of the original capital for each length. Note that finding \(n\)’s where \(|C_n| \geq n^{2c} - n^c\) consists of computing \(\text{SAT}\) for every string of length \(n\), and counting the number of negative answers, which can be done in at most \(2^3n\) steps, followed by applying \(f\) to these strings and comparing \(v(f(z,a_n))\) and \(z\), which can be done in time at most \(2^{2n}\).

This means a polynomial-time martingale has enough time to detect \(C_n\)’s where \(|C_n| \geq n^{2c} - n^c\). After detecting these \(C_n\)’s we use a simple martingale that for every string \(z\) in \(C_n\) bets \(2/3\) of the capital on \(R[z] = 0\) and the rest on \(R[z] = 1\). It is easy to verify that in the cases where \(|C_n \cap R| < (n^{2c} - n^c)/4\) we win enough so the martingale succeeds on \(R\). This completes the proof of Claim 4.

Let \(n\) be a length where \(|C_n \cap R| \geq (n^{2c} - n^c)/4\), and consider the image of \(C_n \cap R\) under \(f(\cdot, a_n)\):
\[I_n = \{f(z, a_n) \mid z \in C_n \cap R\}\]

It follows from Claim 4 that \(|I_n| \geq [(n^{2c} - n^c)/4] - n^c\). If we consider the image of \(I_n\) under \(v(\cdot)\) we have:
\[V_n = \{v(f(z, a_n)) \mid z \in C_n \cap R\}\]

It is easy to see that \(|V_n| \geq |I_n|/2\). Therefore for large enough \(n\) we have \(|V_n| \geq n^c + 1\). Now if we use (4.1) we have \(R[z] = R \cap \text{SAT}[v(f(z, a_n))]\). We know that \(z \in R\). This implies that \(\tilde{R}[v(f(z, a_n))] = 1\). Therefore a martingale that bets on \(\tilde{R}[v(f(z, a_n))] = 1\) can double the capital each time. Since \(|V_n| \geq n^c + 1\) this martingale multiplies the capital by \(2^{n^c+1}\). As a result, we have a martingale that succeeds on \(R\), which completes the proof.

5 Uniform Upper Bounds on Nonuniform Completeness

In this section, we consider whether nonuniformity can be removed in NP-completeness, at the expense of more queries.

Buhrman et al. [12] proved that every \(\leq^{P/\log}_T\)-complete set for \(\text{EXP}\) is also \(\leq^P_T\)-complete using a tableaux method. Hirahara [14] proved a more general result that implies the same for \(\text{NP}\).
Theorem 5.1. (Hirahara [14]) Every $\leq_{T}^{P/\log}$-complete set in NP is \leq_{T}^{P}-complete.

Valiant and Vazirani [32] proved that there exists a randomized polynomial-time algorithm such that given any formula ϕ, outputs a list of formulas l such that:

1. Every assignment that satisfies a formula in l also satisfies ϕ.
2. If ϕ is satisfiable, then with high probability at least one of the formulas in l is uniquely satisfiable.

Klivans and van Melkebeek [22] showed that Valiant-Vazirani lemma can be derandomized if E^{NP} contains a problem with exponential NP-oracle circuit complexity. This yields a deterministic polynomial-time algorithm that given any formula ϕ, outputs a list of formulas l such that:

1. Every assignment that satisfies a formula in l also satisfies ϕ.
2. If ϕ is satisfiable, then one of the formulas in l is uniquely satisfiable.

Theorem 5.2. If E^{NP} contains a problem with NP-oracle circuit complexity $2^{\Omega(n)}$, then every $\leq_{tt}^{P/\log}$-complete set in NP is \leq_{tt}^{P}-complete.

Proof. Let A be an arbitrary $\leq_{m}^{P/1}$-complete set in NP. This case includes most of the important details and makes describing the proof simpler. We will extend to $\leq_{tt}^{P/\log}$ case later. We will define a \leq_{tt}^{P}-reduction from SAT to A.

We define a padded version of SAT as follows:

$$\widehat{\text{SAT}} = \{\phi^{10^{n}} \mid n \in \mathbb{N} \text{ and } \phi \in \text{SAT}\}$$

Then $\widehat{\text{SAT}} \in \text{NP}$, so $\widehat{\text{SAT}} \leq_{m}^{P/1} A$ via some $f \in \text{PF}$ and some $h : \mathbb{N} \to \{0, 1\}$ where $(\forall \phi) \widehat{\text{SAT}}[\phi] = A[f(\phi, h(|\phi|))]$.

We will use $\widehat{\text{SAT}}$ to pad formulas that have different lengths, and make them of the same length. Fix an input formula ϕ over n Boolean variables x_{1}, \ldots, x_{n}, and let $m \in \mathbb{N}$ be large enough such that all formulas $\phi \land x_{1}$, $\phi \land \neg x_{1}$, $\phi \land x_{1} \land x_{2}$, \ldots, and $\phi \land \neg x_{1} \land \neg x_{2} \land \cdots \land \neg x_{n}$ can be padded into formulas of length m. We denote the padded version of these formulas by putting a bar on them. For example, the padded version of $\phi \land x_{1}$ is denoted by $\overline{\phi \land x_{1}}$.

Before describing the rest of the algorithm, observe that the process of reducing search to decision for a Boolean formula can be done using independent queries in the case that the formula is uniquely satisfiable. This is due to the fact that if a formula $\psi(y_{1}, \ldots, y_{m})$ is uniquely satisfiable, then for each $1 \leq j \leq m$ exactly one of the formulas $\psi \land x_{j}$ and $\psi \land \neg x_{j}$ is satisfiable. Therefore the unique satisfying assignment can be found by making m independent queries to SAT, i.e. $\psi \land x_{1}, \ldots, \psi \land x_{m}$.

Using the hypothesis to derandomize the Valiant-Vazirani algorithm [22], we have a deterministic algorithm that on input $\phi(x_{1}, \ldots, x_{n})$ outputs a list containing polynomially many formulas $\psi_{1}, \ldots, \psi_{m}$ satisfying properties described above. For each formula $\psi_{j}(y_{j}^{1}, \ldots, y_{j}^{n_{j}})$ consider $\psi_{j} \land y_{k}^{j}$s for every $1 \leq k \leq n_{j}$, and use padding in $\widehat{\text{SAT}}$ to turn these formulas into formulas of the same length. We denote the padded version of $\psi_{j} \land y_{k}^{j}$ by ψ_{j}^{k} for simplicity. For each ψ_{j} we make n_{j} independent queries to A: $q_{1}^{j} = f(\psi_{j}^{1}, 0), \ldots, q_{n_{j}}^{j} = f(\psi_{j}^{n_{j}}, 0)$. For each one of these queries if the
answer is positive we set the respective variable to 1 and 0 otherwise. We repeat this process using 1 as advice, and we will have $2m$ assignments. We argue that ϕ is satisfiable if and only if at least one of these assignments satisfies it. If ϕ is not satisfiable then obviously none of these assignments will satisfy it. On the other hand, if $\phi \in \text{SAT}$ then at least one of the ψ_j's must be uniquely satisfiable. In this case the process described above will find this unique satisfying assignment. Again, by the Valiant-Vazirani lemma we know that every assignment that satisfies at least one of the ψ_j's must also satisfy ϕ, which means one of the $2m$ assignments produced by the algorithm above will satisfy ϕ in the case that ϕ is satisfiable. It is evident from the algorithm that the queries are independent. It is also easy to see that the reduction runs in polynomial time in $|\phi|$ since we are applying a polynomial-time computable function f to arguments about the same length as ϕ, and we are doing this $2m$ times which is polynomial in $|\phi|$. Therefore this algorithm defines a polynomial-time truth-table reduction from SAT to A.

If the nonuniform reduction in the theorem above uses k bits of advice instead of considering two cases in the proof there are 2^k cases to be considered. If $k \in O(\log n)$ then this can be done in polynomial time. Also note that the nonuniform reduction can be a truth-table reduction instead of a many-one reduction, and the same proof still works.

The measure hypothesis on NP implies that E^{NP} has high NP-oracle circuit complexity [6, 24, 15]. Therefore we have the following.

Corollary 5.3. If $\mu_p(NP) \neq 0$, then every $\leq_{tt}^{P/\log}$-complete set in NP is \leq_{tt}^P-complete.

6 Hierarchy Theorems for Nonuniform Completeness

We proved unconditionally that every $\leq_{m}^{P/\log}$-complete set in NP is \leq_{T}^P-complete. On the other hand, we showed that under the NP-machine hypothesis there exists a $\leq_{m}^{P/poly}$-complete set in NP that is not \leq_{T}^P-complete. This results in a separation of $\leq_{m}^{P/poly}$-completeness from $\leq_{m}^{P/\log}$-completeness under the NP-machine hypothesis.

Theorem 6.1. If the NP-machine hypothesis is true, then there exists a set in NP that is $\leq_{m}^{P/poly}$-complete, but is not $\leq_{T}^{P/\log}$-complete.

Proof. Assume the NP-machine hypothesis. From Theorem 3.2, we obtain a set that is $\leq_{m}^{P/poly}$-complete but not \leq_{T}^P-complete. By Theorem 5.1, this set cannot be $\leq_{T}^{P/\log}$-complete. □

We have the following corollary because the measure hypothesis implies the NP-machine hypothesis.

Corollary 6.2. If $\mu_p(NP) \neq 0$, then there exists a set in NP that is $\leq_{m}^{P/poly}$-complete, but is not $\leq_{T}^{P/\log}$-complete.

We note that while Theorem 6.1 is stated for many-one vs. Turing, it applies to any reducibility in between.

Corollary 6.3. If the NP-machine hypothesis is true, then for any reducibility \mathcal{R} where \leq_{m}^{P}-reducibility implies \mathcal{R}-reducibility and \mathcal{R}-reducibility implies \leq_{T}^{P}-reducibility, there is a set in NP that is $\leq_{\mathcal{R}}^{P/poly}$-complete, but is not $\leq_{\mathcal{R}}^{P/\log}$-complete.
It is natural to ask if we can separate completeness notions above P/poly many-one. We observe that for this, we will need stronger hypotheses than we have considered in this paper.

Proposition 6.4. If there is a $\leq_{\text{T/poly}}$-complete set that is not $\leq_{\text{m/poly}}$-complete in NP, then $\text{NP} \not\subseteq \text{P/poly}$.

Proof. If $\text{NP} \subseteq \text{P/poly}$, then every set in NP is $\leq_{\text{m/poly}}$-complete.

The measure hypothesis and the NP-machine hypothesis are not known to imply $\text{NP} \not\subseteq \text{P/poly}$. If it is possible to separate completeness notions above $\leq_{\text{m/poly}}$, it appears an additional hypothesis at least as strong as $\text{NP} \not\subseteq \text{P/poly}$ – such as PH is infinite – would be needed.

References

References

