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Abstract

We show how the classical Nisan-Wigderson (NW) generator [NW94] yields a nontrivial
pseudorandom generator (PRG) for circuits with sublinearly many polynomial threshold func-
tion (PTF) gates. For the special case of a single PTF of degree d on n inputs, our PRG for
error ε has the seed size

exp
(
O
(√

d · log n · log log(n/ε)
))

;

this can give a super-polynomial stretch even for a sub-exponentially small error parameter
ε = exp(−nγ), for any γ = o(1). In contrast, the best known PRGs for PTFs of [MZ13, Kan12]
cannot achieve such a small error, although they do have a much shorter seed size for any
constant error ε.

For the case of circuits with degree-d PTF gates on n inputs, our PRG can fool circuits with

at most nα/d gates with error exp(−nα/d) and seed length nO(
√
α), for any α > 1.

While a similar NW PRG construction was observed by Lovett and Srinivasan [LS11] to work
for the case of constant-depth (AC0) circuits with few PTF gates, the application of the NW
generator to the case of general (unbounded depth) circuits consisting of a sublinear number of
PTF gates does not seem to have been explicitly stated before. We do so in this note.
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1 Introduction

Constructing pseudorandom generators (PRGs) for various computationally bounded classes of
boolean functions is an important task in complexity theory. A PRG for a class C of boolean
functions f is an efficiently deterministically computable function G mapping short binary strings
(seeds) to longer binary strings so that every f ∈ C accepts G’s output on a uniformly random seed
with about the same probability as an actual uniformly random string. More precisely, we say that
a generator G : {0, 1}r → {0, 1}n is ε-fooling for a class C of boolean functions f : {0, 1}n → {0, 1}
if

|Pr[f(G(x)) = 1]−Pr[f(y) = 1]| ≤ ε,

for uniformly random x ∈ {0, 1}r and y ∈ {0, 1}n.
The holy grail in derandomization is to construct an explicit PRG fooling the class of all

boolean functions computable by polynomial-size circuits (a PRG for the class P/poly). Cur-
rently, only conditional constructions of such PRGs are known, assuming that boolean func-
tions of superpolynomial circuit complexity are computable in deterministic exponential time
[NW94, BFNW93, IW97, STV01, Uma03]; moreover, constructing such PRGs is known to be
equivalent to proving circuit lower bounds for boolean functions computable in exponential time
(see, e.g., [ISW99]).

Unconditional constructions of PRGs (of varying strength) are known for certain sub-classes of
P/poly, e.g., for

• constant-depth circuits of polynomially many AND, OR, and NOT gates of unbounded fan-in
(AC0) [AW85, Nis91, Bra10, TX13, Tal14, HS16],

• read-once oblivious branching programs [AKS87, BNS92, Nis92, NZ96, INW94],

• small de Morgan formulas [IMZ12],

• polynomials over the binary finite field F2 [NN93, LVW93, BV10, Lov09, Vio09],

• polynomial threshold functions (PTFs) [MZ13, Kan12].

The focus of the present paper is on circuits whose gates are polynomial threshold functions.
Recall that an n-variate polynomial threshold function of degree d is defined as the sign1 sgn(p) of
a degree d polynomial p : {0, 1}n → R. Our main result is a construction of the PRG for the class
of circuits with few PTF gates.

Theorem 1.1. For any α > 1, there exists a PRG G : {0, 1}r → {0, 1}n, computable in determin-
istic time poly(n), that exp(−nα/d)-fools n-input circuits with at most nα/d degree-d PTF gates,
with the seed length

r = nO(
√
α).

For the special case of a single PTF gate, we get the following PRG.

Theorem 1.2 (PRG for PTFs). There exists a PRG G : {0, 1}r → {0, 1}n, computable in deter-
ministic time poly(n), that ε-fools degree-d PTFs on n variables with the seed length

r = exp
(
O
(√

d · log n · log log(n/ε)
))

.

1Here we define the sign function sgn(ρ) to be 1 on ρ > 0, and 0 on ρ < 0.
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1.1 Our construction

Our PRG is based on the celebrated Nisan-Wigderson “hardness-based” generator (NW PRG)
[NW94]. To fool a class C of boolean functions f , the NW PRG construction requires a “hard
function” h that cannot be computed correctly on significantly more than a half of all possible
inputs by any boolean function g in a related class C̃ of “slightly more powerful” functions than
those in C. Thus, sufficiently strong average-case lower bounds against the class C̃ can be used to
build a PRG fooling the class C.

In our case, the class C contains all those n-variate boolean functions that are computable by
constant depth D circuits with at most s� n PTF gates of degree d. Our main observation is that
the corresponding class C̃ (for which we require average-case lower bounds) is the class of boolean
functions computable by constant depth D circuits with at most s PTF gates of degree d′ = d · a,
for some parameter a ≥ 1 that we can control (and which will determine the seed size of our PRG).
That is, the class C̃ is the same as C, except for a somewhat higher degree d′ of the allowed PTF
gates.

To illustrate the idea of our analysis of the NW PRG for PTF circuits, we consider the special
case of a single n-variate PTF f of degree d. That is, f = sgn(p(x1, . . . , xn)) for some degree-d
multilinear polynomial p : {0, 1}n → R. Suppose that the NW generator based on some “hard”
boolean function h failed to ε-fool this PTF f .

First, the standard NW analysis shows that the function h(z) can be computed, with probability
at least 1/2 + ε/n, by (possibly the negation of) the function

g(z) = f(h1(z), h2(z), . . . , hi(z), bi+1, . . . , bn), (1)

for some 1 ≤ i ≤ n, fixed bits bi+1, . . . , bn, and boolean functions h1, . . . , hi, where each hj(z)
depends on at most some a bits in z, for a parameter a ≥ 1 coming from the NW construction (the
maximum overlap between pairs of sets in the NW design; see the next section for details).

It is well known that every boolean function on a inputs can be written as a multilinear polyno-
mial of degree a over the reals. Plugging in these polynomials for the function hj ’s in Equation (1),
we get that g(z) is a PTF of degree at most d′ = d · a.

Hence, to ensure that this NW generator based on h is indeed ε-fooling for degree d PTFs, we
just need h to be such that no PTF of degree d · a can compute h(z) on more than 1/2 + ε/n of
inputs z. Such hard functions h turn out to be easy to construct and analyze.

For example, we show that the generalized multiplexer function A(x, i) outputting the ith bit of
the encoding of x with an appropriate binary (list-decodable) error-correcting code is such a hard
function for PTFs. A slightly more complicated function (generalized Andreev function) A′(x, i),
outputting the jth bit of the codeword encoding x for j obtained from i using a certain (seedless)
extractor, is a hard function for constant-depth PTF circuits with a sublinear number of PTF gates.

The parameters of our PRG G : {0, 1}r → {0, 1}n (its error ε and seed length r) depend on the
strength of the average-case lower bound for the hard function h. To get a short seed r, one needs
to maximize the aforementioned parameter a, ideally setting a = log n (as is the case for a standard
application of the NW construction). However, we also need to prove (average-case) lower bounds
against PTFs of degree d · a, where virtually nothing is known for the degree log n. Thus we are
forced to set a � log n, which limits the stretch of our PRG to be at most only superpolynomial.
On the other hand, for such small a, our hard function h has exponentially small correlation with
degree (da) PTFs, thereby allowing our PRG to have an exponentially small error ε.
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1.2 Comparison with the related work

Among the known PRG constructions for various circuit models mentioned earlier, some are NW-
style “hardness-based” generators, while others are ad hoc constructions (often using such standard
pseudorandomness tools as hashing, limited-wise independence, expander graphs, etc.) The previ-
ous PRGs for PTFs due to [MZ13, Kan12] are of the latter kind. The construction uses hashing
and limited-wise independence. The analysis is quite involved, and depends on a number of ana-
lytic tools for polynomials (concentration and anti-concentration results, the invariance principle,
hypercontractivity, regularization, etc.).

In contrast, our PRG for PTFs (of Theorem 1.2) is the NW-style construction, whose analysis
is simple, assuming an average-case lower bound for an appropriate class of functions. It turns
out that for PTFs, it is very easy to prove a required correlation bound (and we give a full proof
below). Using the similar method, we can also obtain a correlation bound for PTF circuits with
few gates.

For constant degree d PTFs and constant error ε, the PRG of [MZ13, Kan12] has exponential
stretch (mapping a seed of length O(log n) to an n-bit string fooling n-input PTFs). Our PRG
cannot achieve such exponentially long stretch. However, it can achieve even exponentially small
error ε with a non-trivial (sublinear) seed size, which is impossible for the PRGs of [MZ13, Kan12].

In their work studying correlation bounds for AC0 circuits with few symmetric gates [LS11],
Lovett and Srinivasan obtained an average-case hard function for constant depth poly-size AC0

circuits with few LTF gates and used it to construct a PRG fooling such circuits with polynomial
stretch and exponentially small error, also based on the generic construction of Nisan and Wigder-
son. Since a PTF can be viewed as a depth-2 circuit computing an LTF of ANDs, such a PRG
also fools small PTF circuits. While the PRG in [LS11] can fool a more general model, which is
constant depth AC0 circuits augmented with LTF gates, our work here focuses on circuits with only
PTF gates and our PRG can fool PTF circuits regardless of the depth as long as the number of
gates is small.

Remainder of the paper. We prove our Theorem 1.2 in Section 2, and Theorem 1.1 in Section 3.
We give some concluding remarks in Section 4.

2 PRG for PTFs

We first give a PRG construction for a single polynomial threshold function. We start with the
definition of a generalized multiplexer function, which we will show to be average-case hard for
low-degree PTFs. Then we use this hard function in the NW PRG construction.2

2.1 Hard function for PTFs

Recall that a (ζ, L)-list-decodable binary code is a function Enc: {0, 1}k → {0, 1}n that maps k-bit
messages to n-bit codewords so that, for each codeword y ∈ {0, 1}n, there are at most L codewords
in the range of Enc that have relative hamming distance at most ζ from y. We will use the following
list-decodable code (see, e.g., [CKK+15] for its construction).

2The parity function is also known to be average-case for PTFs; however, the correlation bound between the n-bit
parity and degree d PTFs is only O(d/

√
n), and this is tight [ABFR94]. For our purposes, we require hard functions

for PTFs with the correlation 1/nω(1).
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Theorem 2.1 ([CKK+15]). For any given 0 < γ < 1, there exists a binary code Enc mapping 3n-bit
message to a codeword of length 2n

γ
, such that Enc is (ζ, L)-list-decodable for ζ = 1/2−O

(
2−n

γ/4
)

and L ≤ O
(
2n

γ/2
)
. Furthermore, there is a polynomial-time algorithm for computing Enc(x) in

position i, for any inputs x ∈ {0, 1}3n and i ∈ [2n
γ
].

Recall that a multiplexer is a function that on inputs x and i ∈ [|x|] outputs the ith bit xi of
x. Our generalized multiplexer will output the ith bit of the encoding of the input string x with
the error-correcting code of Theorem 2.1.

Definition 2.2 (Generalized Multiplexer). Let 0 < γ < 0. Define An,γ : {0, 1}3n+nγ → {0, 1} as
follows:

An,γ(x1, . . . , x3n, y1, . . . , ynγ ) = Enc(x1, . . . , x3n)index(y1,...,ynγ ),

where Enc is the code from Theorem 2.1 that maps 3n bits to 2n
γ

bits, and index(y1, . . . , ynγ ) gives
an integer in [2n

γ
] whose binary representation is y1, . . . , ynγ .

Note that the function A defined above is polynomial-time computable since we can compute
Enc(x) in position i in polynomial time. We will show that this function A is average-case for low-
degree PTFs. We will need the following fact about PTFs that easily follows from the generalization
of Chow’s theorem [Cho61] from LTFs to PTFs, which says that a degree-d PTF on n variables is
completely determined by its Fourier coefficients of degree at most d.

Theorem 2.3 ([Cho61]). The number of distinct degree-d n-variate PTFs is at most 2n
d+1+O(n).

Corollary 2.4. The number of distinct n-variate circuits with at most s degree-d PTF gates is at
most

O
(

(n+ s)d+2
)

Proof. To specify a gate g in such a circuit, we first need at most (n+s) bits to specify the variables
and gates which g reads from. Then by Theorem 2.3 we need at most (n+ s)d+1 +O (n+ s) bits to
describe g. Therefore, we need at most O

(
(n+ s)d+1

)
bits to specify one gate in the circuit, and

we have s such gates.

We also need the following simple fact saying that most n-bit strings are incompressible. Let
K(·) denote the Kolmogorov complexity of a binary string.

Claim 2.5. For any 0 < α < 1, Prx∼{0,1}n [K(x) < αn] ≤ 2−(1−α)n.

We are now ready to show that the generalized multiplexer function A from Definition 2.2 is
very hard on average for degree d PTFs.

Lemma 2.6 (Hard function for PTFs). For any d ≥ 1, let γ = 1/(d+ 1). Then, for any degree-d
PTF f : {0, 1}3n+nγ → {0, 1}, we have that

Prx∼{0,1}3n+nγ [f(x) = An,γ(x)] ≤ 1

2
+ exp (−Ω(nγ)) .
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Proof. We have

Pry∼{0,1}3n

z∼{0,1}nγ
[f(y, z) = An,γ(y, z)]

= Pry,z[f(y, z) = An,γ(y, z) | K(y) ≥ 2n] ·Pry[K(y) ≥ 2n]

+ Pry,z[f(y, z) = An,γ(y, z) | K(y) < 2n] ·Pry[K(y) < 2n]

≤ Pry,z[f(y, z) = An,γ(y, z) | K(y) ≥ 2n] + 2−n/3. (Claim 2.5)

Consider any fixed string a with K(a) ≥ 2n. Towards a contradiction, suppose that the re-
stricted function A′(z) = An,γ(a, z) is computed by the restricted PTF f ′(z) = f(a, z) with proba-
bility at least 1/2 + ν, for some ν = exp(nγ). Then the truth table of f ′ agrees with the codeword
Enc(a) in at least 1/2+ν fraction of positions. By the list-decodability of Enc (Theorem 2.1), there
are at most L ≤ exp(nγ) codewords that have such agreement with the truth table of f ′. Thus, we
can uniquely specify the codeword Enc(a), and hence also a, by the description of f ′ plus at most
logL < o(n) bits to specify a particular element on the list. By Theorem 2.3, the degree d PTF
f ′ on nγ variables can be described using nγ(d+1) + O (nγ) < (1.1) · n bits. We conclude that the
string a can be described using fewer than 2n bits, contradicting the fact that K(a) ≥ 2n.

2.2 NW PRG for PTFs

Next we apply the Nisan-Wigderson construction to the hard function A of Lemma 2.6. We will
use the following (standard) combinatorial designs.

Claim 2.7 (NW Designs [NW94]). For any integers a, n > 0, there exists an efficiently computable
family of sets S1, . . . , Sn such that

1. Si ⊂ [r], ∀i ∈ [n], where r = n2/(a+1),

2. |Si| = ` = n1/(a+1), ∀i ∈ [n], and

3. |Si ∩ Sj | ≤ a, ∀i, j ∈ [n] such that i 6= j.

Proof. We view the set [r] as the set of pairs F(`)×F(`), for a finite field F` of size `. Let e1, . . . , e`
be the elements in F(`), and p1, . . . , pn all univariate degree-a polynomials over F(`). For each
i ∈ [n], define Si = {(e1, pi(a1)), . . . , (e`, pi(e`))}. The third condition follows from the fact that a
non-zero univariate polynomial of degree a has at most a roots.

We will prove the following result that implies Theorem 1.2 (once we express a in terms of the
stated error ε).

Theorem 2.8. There exists a constant B > 0 such that for any integers a, d > 0, there exists a
polynomial-time computable PRG G : {0, 1}r → {0, 1}n ε-fooling n-variate degree d PTFs, with the
seed length r = n2/(a+1) and the error

ε ≤ n · exp

(
− 1

B
· n

1
(ad+1)(a+1)

)
.
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Proof. Let C = sgn(p) be an arbitrary degree-d PTF on n variables. For ` = n1/(a+1), let
A : {0, 1}` → {0, 1} be the generalized multiplexer function from Definition 2.2, with γ = 1/(ad+1).
By Lemma 2.6, we have, for any degree-(ad) PTF g, that

Prz∼{0,1}` [g(z) = A(z)] ≤ 1

2
+ exp

(
−Ω

(
n

1
(ad+1)(a+1)

))
. (2)

Let S1, . . . , Sn be the sets from Claim 2.7. Define the generator Ga,d : {0, 1}r → {0, 1}n as
follows:

Ga,d(y) = A(y|S1), . . . , A(y|Sn),

where, for i ∈ [n], y|Si denotes the substring of y indexed by the set Si.
Toward a contradiction, suppose

|Prx∼{0,1}n [C(x) = 1]−Pry∼{0,1}r [C(Ga,d(y)) = 1]| > ε. (3)

By a standard argument via “reduction from distinguishing to predicting” as in [NW94], Equa-
tion (3) implies that there exist an i ∈ [n], and bits bi+1, . . . , bn ∈ {0, 1}, such that

Prz∼{0,1}` [C
′(h1(z), . . . , hi(z), bi+1, . . . , bn) = A(z)] > 1/2 + ε/n, (4)

where

1. C ′ = C or C ′ = ¬C, and

2. h1, . . . , hi are boolean functions such that each depends on at most a bits of its input z.

First, note that C ′ is always a PTF of degree at most d, since for C = sgn(p), we have
¬C = sgn(−p). Let C ′ = sgn(p′) for a degree d multilinear polynomial p′ (where p′ = p or
p′ = −p).

Next, observe that every boolean function that depends on at most a variables can be computed
by a multilinear polynomial of degree at most a over the reals. Replacing our functions h1, . . . , hi
with such degree a polynomials p1, . . . , pi inside C ′, we get

C ′(p1(z), . . . , pi(z), bi+1, . . . , bn) = sgn(p′(p1(z), . . . , pi(z), bi+1, . . . , bn)),

which is a new PTF C ′′ on ` variables of degree at most d · a. By Equation (4), this PTF C ′′

computes the function A(z) with probability greater than 1/2 + ε/n. Applying Equation (2) yields
the required bound on ε.

3 PRG for PTF circuits

In this section, we describe our PRGs for circuits with few low-degree PTF gates. We prove the
following result that implies Theorem 1.1.

Theorem 3.1. There exist constants B,E > 0 such that for any integers a, d > 0 and any circuit

C on n variables with at most s = n
1

(ad+2)(a+1) /B degree-d PTF gates, there exists a polynomial-time
computable PRG G : {0, 1}r → {0, 1}n ε-fooling C, with the seed length r = n2/(a+1) and the error

ε ≤ n · exp

(
− 1

E
· n

1
(ad+2)(a+1)

)
.
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Our PRG will be an NW PRG with the following hard function.

Lemma 3.2 (Hard function for PTF Circuits). There exists a constant B > 0 such that the
following holds. For any d ≥ 1, let γ be such that nγ = 1

B · n
1/(d+2). Then for any circuit C on n

inputs with at most s = nγ degree-d PTF gates, we have that

Prx∼{0,1}2n+nγ [f(x) = An,γ(x)] ≤ 1

2
+ exp (−Ω(nγ)) .

Proof. We have

Pry∼{0,1}2n

z∼{0,1}nγ
[C(y, z) = An,γ(y, z)]

= Pry,z[C(y, z) = An,γ(y, z) | K(y) ≥ n] ·Pry[K(y) ≥ n]

+ Pry,z[C(y, z) = An,γ(y, z) | K(y) < n] ·Pry[K(y) < n]

≤ Pry,z[C(y, z) = An,γ(y, z) | K(y) ≥ 2n] + 2−n/2. (Claim 2.5)

Consider any fixed string a with K(a) ≥ n. Towards a contradiction, suppose that the restricted
function A′(z) = An,γ(a, z) is computed by the restricted PTF circuit C ′(z) = f(a, z) with proba-
bility at least 1/2 + ν, for some ν = exp(nγ). Then the truth table of C ′ agrees with the codeword
Enc(a) in at least 1/2+ν fraction of positions. By the list-decodability of Enc (Theorem 2.1), there
are at most L ≤ exp(nγ) codewords that have such agreement with the truth table of C ′. Thus, we
can uniquely specify the codeword Enc(a), and hence also a, by the description of f ′ plus at most
logL < o(n) bits to specify a particular element on the list. By Corollary 2.4, the circuit C ′ on nγ

variables with at most s = nγ gates can be described using O
(

(2nγ)d+2
)
< 0.5n bits, when B is a

sufficiently large constant. We conclude that the string a can be described using fewer than n bits,
contradicting the fact that K(a) ≥ n.

Proof of Theorem 3.1. We use the function in Lemma 3.2 as the hard function in the Nisan-
Wigderson construction, to obtain a PRG that ε-fools the circuits described in Theorem 3.1. The
analysis is similar to that in the single PTF case in the previous section, except that in the step of
“reducing from distinguishing to predicting”, instead of merging the hi’s, which are polynomials of
degree a over reals, into a single PTF, here we merge them into every PTF gate in the circuit that
reads from them. This yields a new circuit with exactly the same number of gates, and of degree
at most (ad), that computes the hard function with probability at least 1/2 + ε/n, which leads to
the required upper bound on ε.

4 Concluding remarks

We showed that the NW construction can be applied to the case of PTF circuits, yielding PRGs
with nontrivial parameters. For the case of a single PTF gate, our PRG can ε-fool PTFs even for
a sub-exponentially small error ε, with super-polynomial seed stretch.

An obvious open question is to get PRGs for PTFs and for PTF circuits with better relationship
between the error ε and the seed size. In particular, since our PRG for PTFs turns out to be so
simple to analyze, perhaps it is possible to get better parameters by combining the ideas of our
construction with those from the previous constructions of [MZ13, Kan12].
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LOGSPACE. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Sym-
posium on Theory of Computing, 1987, New York, New York, USA, pages 132–140.
ACM, 1987. 1

[AW85] Miklós Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant
depth circuits (preliminary version). In 26th Annual Symposium on Foundations of
Computer Science, Portland, Oregon, USA, 21-23 October 1985, pages 11–19. IEEE
Computer Society, 1985. 1
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