# Nondeterminisic Sublinear Time Has Measure 0 in $\mathbf{P}$ 

John M. Hitchcock and Adewale Sekoni<br>Department of Computer Science University of Wyoming


#### Abstract

The measure hypothesis is a quantitative strengthening of the $\mathrm{P} \neq \mathrm{NP}$ conjecture which asserts that NP is a nonnegligible subset of EXP. Cai, Sivakumar, and Strauss (1997) showed that the analogue of this hypothesis in P is false. In particular, they showed that NTIME $\left[n^{1 / 11}\right]$ has measure 0 in P. We improve on their result to show that the class of all languages decidable in nondeterministic sublinear time has measure 0 in P. Our result is based on DNF width and holds for all four major notions of measure on P .


## 1 Introduction

A central hypothesis of resource-bounded measure [7,9] is that NP does not have measure 0 in EXP [11,12]. Cai, Sivakumar, and Strauss [5] proved the surprising result that NTIME[ $n^{1 / 11}$ ] has measure 0 in P . This implies the analogue of the measure hypothesis in P fails, because NTIME $[\log n]$ has nmeasure 0 in P .

We improve the result of Cai et al. by showing that the class of all languages that can be decided in nondeterministic time at most

$$
n\left(1-\frac{2 \lg \lg n}{\lg n}\right)
$$

has measure 0 in P . In particular, the nondeterministic sublinear time class

$$
\operatorname{NTIME}[o(n)]
$$

has measure 0 in P .
Resource-bounded measure was initially defined for exponential-time and larger classes [8]. Defining measure within subexponential- and polynomial-time complexity classes has been challenging [2] and there are several notions [13,15] The result of Cai et al. holds for
a notion of measure on P we will refer to as $\Gamma_{d}(\mathrm{P})$-measure. Moser [13] developed a new notion of measure called $F$-measure. It is the only notion of measure that allows for defining resource-bounded dimension [10] at P . It was unknown whether or not the result of Cai et al. also holds for $F$-measure. Our result holds for $\Gamma(\mathrm{P})$ measure (defined in [2]) and therefore for $F$-measure and all the notions of measure at P considered in $[13,15]$.

Our stronger result also has a much easier proof than the proof in [5]. Cai et al. use Håstad's switching lemma and pseudorandom generators to show that the set of languages with nearly exponential size circuits has $\Gamma_{d}(\mathrm{P})$-measure 0 [5]. We use DNF width rather than the circuit size to improve their result. It is well known that a random Boolean function has DNF width close to $n$ (see [6]). In Section 3, we show that the class of languages with sublinear DNF width has measure 0 in P . This is then applied in Section 4 to show that nondeterministic sublinear time also has measure 0 in P .

## 2 Preliminaries

### 2.1 Languages and Boolean functions

The set of all binary strings is $\{0,1\}^{*}$. The length of a string $x \in\{0,1\}^{*}$ is denoted by $|x|$. The empty string is denoted by $\lambda$. For $n \in \mathbb{N},\{0,1\}^{n}$ is the set of strings of length $n$. $s_{0}=$ $\lambda, s_{1}=0, s_{2}=1, s_{3}=00, \ldots$ is the standard lexicographic enumeration of $\{0,1\}^{*}$. A language $L$ is a subset of $\{0,1\}^{*}$. The set of length $n$ strings of a language $L$ is $L^{=n}=L \cap\{0,1\}^{n}$. Associated with every language $L$ is its characteristic sequence $\chi_{L} \in\{0,1\}^{\infty}$. It is defined as

$$
\chi_{L}[i]=1 \Longleftrightarrow s_{i} \in L \text { for } i \in \mathbb{N},
$$

where $\chi_{L}[i]$ is the $i^{\text {th }}$ bit of $\chi_{L}$. We also index $\chi_{L}$ with strings i.e. for $i \in \mathbb{N}, \chi_{L}\left[s_{i}\right]=\chi_{L}[i]$. $\chi_{L}[i, j]$ denotes the $i^{\text {th }}$ through $j^{\text {th }}$ bits of $\chi_{L}$, while $\chi_{L}[$ length $n]$ denotes $\chi_{L}\left[2^{n}-1,2^{n+1}-2\right]$, i.e. the substring of the characteristic string of $L$ corresponding to the strings in $L^{=n}$.

A Boolean function is any $f:\{0,1\}^{n} \longrightarrow\{0,1\}$. A DNF (disjunctive normal form) formula of $f$ over the variables $x_{1}, x_{2}, \cdots, x_{n}$ is the logical OR of terms. A term is a logical AND of literals, where a literal is either a variable $x_{i}$ or its logical negation $\bar{x}_{i}$. We require that no term contains a variable and its negation [14]. Also the logical OR of the empty term computes the constant 1 function while the the empty DNF computes the constant 0 function. A term's width is the number of literals in it. The size of a DNF computing $f$ is the number of terms in it, while its width is the length of its longest term. The DNF width of $f$ is the shortest width of any DNF computing $f$. We note that the width of the constant $\mathbf{0}$ and $\mathbf{1}$ functions is 0 . For any term $T$ we say that $T$ fixes a bit position $i$ if either $x_{i}$ or its negation appear in $T$. The bit positions that aren't fixed by $T$ are called free bit positions. For example the term $x_{1} x_{3} \bar{x}_{4}:\{0,1\}^{4} \longrightarrow\{0,1\}$, fixes the first, third and fourth bit positions, while the second bit position is free. We say that $T$ covers a subset of $\{0,1\}^{n}$ if it evaluates to true on only the elements of the subset. The subset covered by $T$ is the set of all strings that agree with $T$ on all its fixed bit positions. A string $x \in\{0,1\}^{n}$ agrees with $T$ if, for any fixed bit position $i$ of $T$, the $i$ th bit of $x$ is 1 if and only if $x_{i}$ appears in
$T$. We call the subset covered by $T$ a subcube of dimension $n-k$, where $k$ is the number of literals in $T$. It is called a subcube because it is a dimension $n-k$ hamming cube contained in the dimension $n$ hamming cube.

Associated with any Boolean function is its characteristic string $\chi_{f} \in\{0,1\}^{2^{n}}$ defined as

$$
f(w)=1 \Longleftrightarrow \chi_{f}[w]=1 \text { for } w \in\{0,1\}^{n} .
$$

For any language $L$ we view $L^{=n}$ as the Boolean function $\chi_{L=n}$ defined as

$$
\chi_{L^{=n}}(w)=1 \Longleftrightarrow L[w]=1 \text { for all } w \in\{0,1\}^{n}
$$

We can then define $\operatorname{DNF}_{\text {width }}\left(L^{=n}\right)$ to be the DNF width of $\chi_{L^{=n}}$.

### 2.2 Resource-bounded Measure at P

Resource-bounded measure was introduced by Lutz [8]. He used martingales and a resource bound $\Delta \supseteq \mathrm{p}$ to characterize classes of languages as either "big" or "small". Here p is the class of functions computable in polynomial time. Resource-bounded measure is a generalization of classical Lebesgue measure. For a given resource bound $\Delta \supseteq$ p we get a "nice" characterization of sets of languages as having measure 0 , measure 1 or being immeasurable with respect to $\Delta$. Associated with each resource bound $\Delta$ is a class $R(\Delta)$ that does not have $\Delta$-measure 0 . We can then use $\Delta$-measure to define a measure on classes within $R(\Delta)$. For example, p-measure yields a measure on the exponential-time class $R(\mathrm{p})=\mathrm{E}=\mathrm{DTIME}\left[2^{O(n)}\right]$. For the class $\mathrm{p}_{2}$ of quasipolynomial-time computable functions, $\mathrm{p}_{2}$-measure yields a measure on $R\left(\mathrm{p}_{2}\right)=\mathrm{EXP}=\operatorname{DTIME}\left[2^{n^{\circ(1)}}\right]$. See $[4,9]$ for a survey of resource-bounded measure in $\Delta \supseteq \mathrm{p}$.

An apparently more difficult task is developing a notion of resource-bounded measure on subexponential classes, in particular developing a measure on P [2]. There are at least four notions of measure defined on P. Three of these are due to Strauss [15] and one is due to Moser [13]. None of them are quite as "nice" as measures on $R(\Delta) \supseteq \mathrm{E}$, each one of them having some limitations. See $[3,13,15]$ for a more detailed discussion of the limitations of these notions of measure. In this paper we only consider one notion of measure on P we call $\Gamma(\mathrm{P})$-measure. $\Gamma(\mathrm{P})$-measure was introduced in $[2]$. We use $\Gamma(\mathrm{P})$-measure for two reasons. First, it is the simplest of the four notions of measure on $P$. Second, the martingales considered in $\Gamma(\mathrm{P})$-measure can be easily shown to be martingales in the other notions of measure at $\mathrm{P}[13,15]$.

## $2.3 \Gamma(\mathrm{P})$-measure

A martingale is a function $d:\{0,1\}^{*} \longrightarrow[0, \infty)$ that satisfies the the following averaging condition:

$$
d(w)=\frac{d(w 1)+d(w 0)}{2}, \forall w \in\{0,1\}^{*} .
$$

Intuitively, the input $w \in\{0,1\}^{*}$ to the martingale $d$ is a prefix of the characteristic sequence of a language. The martingale starts with initial capital $d(\lambda)$. More generally, $d(w)$ is the
martingale's current capital after betting on the strings $s_{0}, s_{1}, \cdots, s_{|w|-1}$ in the standard ordering. The martingale $d$ tries to predict the membership of string $s_{|w|}$ when given input $w$. If $d$ chooses to bet on $s_{|w|}$ and is successful in predicting its membership, then its current capital increases, otherwise it decreases. The martingale $d$ can also choose to not risk its current capital $d(w)$ by not betting on $s_{|w|}$. The goal is to make $d$ grow without bound on some subset of $\{0,1\}^{\infty}$. We say a martingale $d$ succeeds on a language $L$ if

$$
\limsup _{n \rightarrow \infty} d\left(\chi_{L}[0, n-1]\right)=\infty
$$

We say $d$ succeeds on a class $C \subseteq\{0,1\}^{\infty}$ if it succeeds on every language in $C$. It is easy to see that the probability a martingale $d$ succeeds on a randomly selected language is 0 . A language $L$ is randomly selected by adding each string to $L$ with probability $1 / 2$. It can be shown that any class $C \subseteq\{0,1\}^{\infty}$ has measure 0 under the probability measure if and only if some martingale $d$ succeeds on $C$. If $d$ can be computed in some resource bound $\Delta$ then we say that $C$ has $\Delta$-measure 0 if $d$ succeeds on $C$.

A $\Gamma(\mathrm{P})$-martingale is a martingale $d$ such that:

- $d(w)$ can be computed by a Turing machine $M$ with oracle access to $w$ and input $s_{|w|}$. We denote this computation as $M^{w}\left(s_{|w|}\right)$.
- $M^{w}\left(s_{|w|}\right)$ is computed in time polynomial in $\lg (|w|)$. In other words, the computation is polynomial in the length of $s_{|w|}$.
- $d$ only bets on strings in a P-printable set denoted $G_{d}$.

The input string $s_{|w|}$ to $M^{w}\left(s_{|w|}\right)$ allows the Turing machine to compute the length of $w$ without reading all of $w$ whose length is exponential in the length of $s_{|w|}$. A set $S \subseteq\{0,1\}^{*}$ is P-printable [1] if $S \cap\{0,1\}^{n}$ can be printed in time polynomial in $n$. A class $C \subseteq\{0,1\}^{\infty}$ has $\Gamma(\mathrm{P})$-measure 0 zero if there is some $\Gamma(\mathrm{P})$-martingale that succeeds on it [15].

## 3 Measure and DNF Width

In this section we show that the class of languages with sublinear DNF width has measure 0 in P. Recall that for a language $L, \mathrm{DNF}_{\text {width }}\left(L^{=n}\right)$ denotes the DNF width of the characteristic string of $L$ at length $n$.

Theorem 3.1. The class

$$
X=\left\{L \in\{0,1\}^{\infty} \left\lvert\, \operatorname{DNF}_{\text {width }}\left(L^{=n}\right) \leq n\left(1-\frac{2 \lg \lg n}{\lg n}\right)\right. \text { i.o. }\right\}
$$

has $\Gamma(\mathrm{P})$-measure 0.
Proof. For clarity we omit floor and ceiling functions.

## The Martingale

Consider the following martingale $d$ that starts with initial capital 4 . Let $L$ be the language $d$ is betting on. $d$ splits its initial capital capital into portions $C_{i, 1}, C_{i, 2}, i \in \mathbb{N}$, where $C_{i, 1}=C_{i, 2}=1 / n^{2} . C_{n, 1}$ and $C_{n, 2}$ are reserved for betting on strings in $\{0,1\}^{n}$. For each length $n, d$ only risks $C_{n, 1}$ and $C_{n, 2}$. Thus, $d$ never runs out of capital to bet on $\{0,1\}^{n}$ for all $n \in \mathbb{N}$.

Now we describe how $d$ bets on $\{0,1\}^{n}$ with $C_{n, 1}$. $d$ uses $C_{n, 1}$ to bet that the first $n$ strings of $\{0,1\}^{n}$ don't belong to $L$. If $d$ makes no mistake then the capital $C_{n, 1}$ grows from $1 / n^{2}$ to $2^{n} / n^{2}$. But once $d$ makes a mistake it loses all of $C_{n, 1}$, i.e. $C_{n, 1}$ becomes 0 .

Next we describe how $d$ bets on $\{0,1\}^{n}$ with $C_{n, 2}$. The martingale $d$ only bets with capital $C_{n, 2}$ if it loses $C_{n, 1}$, i.e. the martingale $d$ makes a mistake on the first string of length $n$ that belongs to $L$. Let us call this string $w$. Let $w_{1}, w_{2}, \cdots, w_{n / \lg n}$ be a partition of $w$ into $n / \lg n$ substrings, such that $w=w_{1} w_{2} \cdots w_{n / \lg n}$ and each $w_{i}$ has length $\lg n$. Furthermore $d$ splits $C_{n, 2}$ into $\binom{\lg n}{2 \lg \lg n} \frac{n}{\lg n}$ equal parts, i.e. $n^{1+o(1)}$ many parts. We refer to each of them as $C_{n, 2, i}$, for $i \in\left[1,2, \cdots,\binom{\lg n}{2 \lg \lg n}\right]$. Each one is reserved for betting according to the prediction of some dimension $2 \lg \lg n$ subcube that contains $w$. We only consider subcubes containing $w$ whose free bits lie completely in one of the $w_{i}$ 's. Let us call these subcubes the boundary subcubes of $w$. It is easy to see that there are $\binom{\lg n}{2 \lg \lg n} \frac{n}{\lg n}$ boundary subcubes of $w$.

Finally, to completely specify $d$, we describe how it bets with each $C_{n, 2, i}$ on any string $x \in\{0,1\}^{n}$ that comes after $w$, the string $d$ lost all of $C_{n, 1}$ on. $d$ bets as follows:

```
for each boundary subcube Bi of w do
        C
        if }x\in\mp@subsup{B}{i}{}\mathrm{ then
            verify that if }y<x\mathrm{ and }y\in\mp@subsup{B}{i}{\prime}\mathrm{ , then }y\inL\mathrm{ ;
            proceed to next B}\mp@subsup{B}{i}{}\mathrm{ if the verification fails;
            bet all of }\mp@subsup{C}{n,2,i}{}\mathrm{ on }x\mathrm{ being in L;
        end
end
```

Algorithm 1: How $d$ bests on $x \in\{0,1\}^{n}$ that comes after $w$.
Intuitively, each $C_{n, 2, i}$ is reserved for betting on a boundary subcube of $w$. The martingale predicts that each subcube is contained in $L^{=n}$. If the subcube $B_{i}$ which contains $w$ is really contained in $L^{=n}$, then the capital reserved for betting on this subcube grows from $C_{n, 2, i}$ to $2^{2^{2 \lg \lg n}-1} C_{n, 2, i}$. This follows because we don't make any mistakes while betting on the $2^{2 \lg \lg n}-1$ strings in $B_{i} \backslash\{w\}$, and each of these bets doubles $C_{n, 2, i}$.

## The Martingale's Winnings on $X$

We now show that $d$ succeeds on any $L \in X$ by examining its winnings on $L^{=n}$. In the first case, suppose the first $n$ strings of $\{0,1\}^{n}$ are all not contained in $L$. In this case we bet with $C_{n, 1}$ and raise this capital from $1 / n^{2}$ to $2^{n} / n^{2}$. In the second case, suppose $\operatorname{DNF}_{\text {width }}\left(L^{=n}\right) \leq n\left(1-\frac{2 \lg \lg n}{\lg n}\right)$ and one of the first $n$ strings of $\{0,1\}^{n}$ is in $L$. Let us denote
the first such string by $w$. In this case $d$ will lose all of $C_{n, 1}$ and have to bet with $C_{n, 2}$. Since $\operatorname{DNF}_{\text {width }}\left(L^{=n}\right) \leq n\left(1-\frac{2 \lg \lg n}{\lg n}\right), w$ must be contained in a subcube of dimension at least $\left(\frac{2 \lg \lg n}{\lg n}\right) n$. By a simple averaging argument it can be seen that there must be at least one boundary subcube of $w$ that has dimension at least $2 \lg \lg n$. Since $d$ must bet on such a subcube, its capital reserved for this subcube rises from $C_{n, 2, i}$ to $2^{2^{2 \lg \lg n}-1} C_{n, 2, i}=\Theta\left(n^{\lg n}\right)$. Since any $L \in X$ satisfies the above two cases infinitely often, $d$ 's capital rises by $\Omega\left(n^{\lg n}\right)$ infinitely often. Thus, $d$ succeeds on $X$.

## The Martingale is a $\Gamma(\mathrm{P})$-Martingale

Now we need to show $d$ is a $\Gamma(\mathrm{P})$-martingale. It is easy to see that $d$ is computable in time polynomial in $n$. Since for each $x \in\{0,1\}^{n}$ we bet on, we iterate though $n^{1+o(1)}$ sububes of dimension $2 \lg \lg n$, and each subcube contains $O\left(\lg ^{2} n\right)$ points. Also the set of strings that $d$ bets on in $\{0,1\}^{n}$ is P-printable since it only bets on the $n^{2+o(1)}$ points in the boundary subcubes of the first $n$ strings of length $n$.

## 4 Measure and Nondeterministic Time

The following lemma is a generalization of an observation made in [5].
Lemma 4.1. If $L$ can be decided by a nondeterministic Turing machine in time $f(n) \leq n$, then $L$ has DNF width at most $f(n)$.

Proof. We will show that for all $n, L^{=n}$ is covered by a DNF of width at most $f(n)$. If $L^{=n}=\emptyset$, then it is covered by the empty DNF which has width 0 . All that's left is to show that $L^{=n}$ is covered by subcubes of dimension at least $n-f(n)$ whenever $L^{=n} \neq \emptyset$. This is sufficient because every subcube of dimension at least $n-f(n)$ is covered by a width $f(n)$ term, so $L$ can be covered by a width $f(n)$ DNF. Let $M$ be a nondeterministic Turing machine that decides $L$ in time at most $f(n)$ and $x \in L^{=n}$. Thus, there is a nondeterministic computation of $M$ on input $x$ that accepts. Since $M$ uses at most $f(n)$ time it can only examine at most $f(n)$ bits of $x$. So there are at least $n-f(n)$ bits of $x$ that aren't examined by $M$ on some accepting computation of $M$ on $x$. Therefore the set of all strings $y \in\{0,1\}^{n}$ that agree with $x$ in all the bit positions examined by an accepting computation must also be accepted by the same computation. This set of strings is precisely a subcube of dimension at least $n-f(n)$; therefore, it is covered by a DNF term of width at most $f(n)$. Since $x \in L^{=n}$ was arbitrary, it follow that $L^{=n}$ can be covered by DNF term(s) of width at most $f(n)$; therefore, $L^{=n}$ has DNF width at most $f(n)$.

Theorem 4.2. The class of all languages decidable in nondeterministic time at most $n(1-$ $\frac{2 \lg \lg n}{\lg n}$ ) infinitely often has $\Gamma(\mathrm{P})$-measure 0 .
Proof. By lemma 4.1, any language decidable in nondeterministic time at most $n\left(1-\frac{2 \lg \lg n}{\lg n}\right)$ has DNF width at most $n\left(1-\frac{2 \lg \lg n}{\lg n}\right)$ for all but finitely many $n$. Therefore it follows by theorem 3.1 that the set of all such languages have $\Gamma(\mathrm{P})$-measure 0 .

We now have the main result of the paper:
Corollary 4.3. NTIME $\left[n\left(1-\frac{2 \lg \lg n}{\lg n}\right)\right]$ has $\Gamma(\mathrm{P})$-measure 0 .
Corollary 4.4. NTIME $[o(n)]$ has $\Gamma(\mathrm{P})$-measure 0 .
Because $\Gamma(\mathrm{P})$ measure 0 implies measure 0 in the other notions of measure on $\mathrm{P}[13,15]$, Theorem 4.2 and its corollaries extend to these measures as well.

Corollary 4.5. The class of all languages decidable in nondeterministic time at most $n(1-$ $\frac{2 \lg \lg n}{\lg n}$ ) infinitely often has $F$-measure $0, \Gamma_{d}(\mathrm{P})$-measure 0 , and $\Gamma /(\mathrm{P})$-measure 0.

A language $L$ has decision tree depth $f(n): \mathbb{N} \longrightarrow \mathbb{N}$ infinitely often if $\chi_{L=n}$ has decision tree depth at most $f(n)$ for infinitely many $n$. It is easy to show and well known that a function with decision tree depth $k$ has DNF width at most $k$. See [14] for the definition of decision tree depth and a proof of the previous statement. Therefore Theorem 4.2 immediately implies the following corollary.

Corollary 4.6. The set of all languages with decision tree depth at most $n\left(1-\frac{2 \lg \lg n}{\lg n}\right)$ infinitely often has $\Gamma(\mathrm{P})$-measure 0 .

## References

[1] E. Allender and R. Rubinstein. P-printable sets. SIAM Journal on Computing, 17:11931202, 1988.
[2] E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP. In Proceedings of the 35th Symposium on Foundations of Computer Science, pages 807-818. IEEE Computer Society, 1994.
[3] Eric Allender and Martin Strauss. Measure on p: Robustness of the notion. In International Symposium on Mathematical Foundations of Computer Science, pages 129-138. Springer, 1995.
[4] K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In A. Sorbi, editor, Complexity, Logic and Recursion Theory, Lecture Notes in Pure and Applied Mathematics, pages 1-47. Marcel Dekker, New York, N.Y., 1997.
[5] J. Cai, D. Sivakumar, and M. Strauss. Constant-depth circuits and the Lutz hypothesis. In Proceedings of the 38th Symposium on Foundations of Computer Science, pages 595604. IEEE Computer Society, 1997.
[6] Y. Crama and P. L. Hammer. Boolean Functions - Theory, Algorithms, and Applications, volume 142 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, 2011.
[7] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44(2):220-258, 1992.
[8] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences, 44(2):220-258, 1992.
[9] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L. Selman, editors, Complexity Theory Retrospective II, pages 225-254. SpringerVerlag, 1997.
[10] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32(5):12361259, 2003.
[11] J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions if NP is not small. Theoretical Computer Science, 164(1-2):141-163, 1996.
[12] J. H. Lutz and E. Mayordomo. Twelve problems in resource-bounded measure. Bulletin of the European Association for Theoretical Computer Science, 68:64-80, 1999. Also in Current Trends in Theoretical Computer Science: Entering the 21st Century, pages 83-101, World Scientific Publishing, 2001.
[13] Philippe Moser. Martingale families and dimension in p. Theoretical Computer Science, 400(1-3):46-61, 2008.
[14] Ryan O'Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
[15] M. Strauss. Measure on P: Strength of the notion. Information and Computation, 136(1):1-23, 1997.

