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Abstract

The measure hypothesis is a quantitative strengthening of the P 6= NP conjecture
which asserts that NP is a nonnegligible subset of EXP. Cai, Sivakumar, and Strauss
(1997) showed that the analogue of this hypothesis in P is false. In particular, they
showed that NTIME[n1/11] has measure 0 in P. We improve on their result to show that
the class of all languages decidable in nondeterministic sublinear time has measure 0 in
P. Our result is based on DNF width and holds for all four major notions of measure
on P.

1 Introduction

A central hypothesis of resource-bounded measure [7,9] is that NP does not have measure 0 in
EXP [11,12]. Cai, Sivakumar, and Strauss [5] proved the surprising result that NTIME[n1/11]
has measure 0 in P. This implies the analogue of the measure hypothesis in P fails, because
NTIME[log n] has nmeasure 0 in P.

We improve the result of Cai et al. by showing that the class of all languages that can
be decided in nondeterministic time at most

n

(
1− 2 lg lg n

lg n

)
has measure 0 in P. In particular, the nondeterministic sublinear time class

NTIME[o(n)]

has measure 0 in P.
Resource-bounded measure was initially defined for exponential-time and larger classes

[8]. Defining measure within subexponential- and polynomial-time complexity classes has
been challenging [2] and there are several notions [13, 15] The result of Cai et al. holds for
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a notion of measure on P we will refer to as Γd(P)-measure. Moser [13] developed a new
notion of measure called F -measure. It is the only notion of measure that allows for defining
resource-bounded dimension [10] at P. It was unknown whether or not the result of Cai et
al. also holds for F -measure. Our result holds for Γ(P) measure (defined in [2]) and therefore
for F -measure and all the notions of measure at P considered in [13,15].

Our stronger result also has a much easier proof than the proof in [5]. Cai et al. use
H̊astad’s switching lemma and pseudorandom generators to show that the set of languages
with nearly exponential size circuits has Γd(P)-measure 0 [5]. We use DNF width rather than
the circuit size to improve their result. It is well known that a random Boolean function
has DNF width close to n (see [6]). In Section 3, we show that the class of languages with
sublinear DNF width has measure 0 in P. This is then applied in Section 4 to show that
nondeterministic sublinear time also has measure 0 in P.

2 Preliminaries

2.1 Languages and Boolean functions

The set of all binary strings is {0, 1}∗. The length of a string x ∈ {0, 1}∗ is denoted by |x|.
The empty string is denoted by λ. For n ∈ N, {0, 1}n is the set of strings of length n. s0 =
λ, s1 = 0, s2 = 1, s3 = 00, ... is the standard lexicographic enumeration of {0, 1}∗. A language
L is a subset of {0, 1}∗. The set of length n strings of a language L is L=n = L ∩ {0, 1}n.
Associated with every language L is its characteristic sequence χL ∈ {0, 1}∞. It is defined
as

χL[i] = 1 ⇐⇒ si ∈ L for i ∈ N,

where χL[i] is the ith bit of χL. We also index χL with strings i.e. for i ∈ N, χL[si] = χL[i].
χL[i, j] denotes the ith through jth bits of χL, while χL[length n] denotes χL[2n−1, 2n+1−2],
i.e. the substring of the characteristic string of L corresponding to the strings in L=n.

A Boolean function is any f : {0, 1}n −→ {0, 1}. A DNF (disjunctive normal form)
formula of f over the variables x1, x2, · · · , xn is the logical OR of terms. A term is a logical
AND of literals, where a literal is either a variable xi or its logical negation xi. We require
that no term contains a variable and its negation [14]. Also the logical OR of the empty
term computes the constant 1 function while the the empty DNF computes the constant
0 function. A term’s width is the number of literals in it. The size of a DNF computing
f is the number of terms in it, while its width is the length of its longest term. The DNF
width of f is the shortest width of any DNF computing f . We note that the width of the
constant 0 and 1 functions is 0. For any term T we say that T fixes a bit position i if either
xi or its negation appear in T . The bit positions that aren’t fixed by T are called free bit
positions. For example the term x1x3x̄4 : {0, 1}4 −→ {0, 1}, fixes the first, third and fourth
bit positions, while the second bit position is free. We say that T covers a subset of {0, 1}n
if it evaluates to true on only the elements of the subset. The subset covered by T is the
set of all strings that agree with T on all its fixed bit positions. A string x ∈ {0, 1}n agrees
with T if, for any fixed bit position i of T , the ith bit of x is 1 if and only if xi appears in
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T . We call the subset covered by T a subcube of dimension n− k, where k is the number of
literals in T . It is called a subcube because it is a dimension n− k hamming cube contained
in the dimension n hamming cube.

Associated with any Boolean function is its characteristic string χf ∈ {0, 1}2
n

defined as

f(w) = 1 ⇐⇒ χf [w] = 1 for w ∈ {0, 1}n.

For any language L we view L=n as the Boolean function χL=n defined as

χL=n(w) = 1 ⇐⇒ L[w] = 1 for all w ∈ {0, 1}n.

We can then define DNFwidth(L=n) to be the DNF width of χL=n .

2.2 Resource-bounded Measure at P

Resource-bounded measure was introduced by Lutz [8]. He used martingales and a resource
bound ∆ ⊇ p to characterize classes of languages as either “big” or “small”. Here p is
the class of functions computable in polynomial time. Resource-bounded measure is a gen-
eralization of classical Lebesgue measure. For a given resource bound ∆ ⊇ p we get a
“nice” characterization of sets of languages as having measure 0, measure 1 or being im-
measurable with respect to ∆. Associated with each resource bound ∆ is a class R(∆)
that does not have ∆-measure 0. We can then use ∆-measure to define a measure on
classes within R(∆). For example, p-measure yields a measure on the exponential-time class
R(p) = E = DTIME[2O(n)]. For the class p2 of quasipolynomial-time computable functions,

p2-measure yields a measure on R(p2) = EXP = DTIME[2nO(1)
]. See [4, 9] for a survey of

resource-bounded measure in ∆ ⊇ p.
An apparently more difficult task is developing a notion of resource-bounded measure

on subexponential classes, in particular developing a measure on P [2]. There are at least
four notions of measure defined on P. Three of these are due to Strauss [15] and one is due
to Moser [13]. None of them are quite as “nice” as measures on R(∆) ⊇ E, each one of
them having some limitations. See [3,13,15] for a more detailed discussion of the limitations
of these notions of measure. In this paper we only consider one notion of measure on P
we call Γ(P)-measure. Γ(P)-measure was introduced in [2]. We use Γ(P)-measure for two
reasons. First, it is the simplest of the four notions of measure on P. Second, the martingales
considered in Γ(P)-measure can be easily shown to be martingales in the other notions of
measure at P [13,15].

2.3 Γ(P)-measure

A martingale is a function d : {0, 1}∗ −→ [0,∞) that satisfies the the following averaging
condition:

d(w) =
d(w1) + d(w0)

2
,∀w ∈ {0, 1}∗.

Intuitively, the input w ∈ {0, 1}∗ to the martingale d is a prefix of the characteristic sequence
of a language. The martingale starts with initial capital d(λ). More generally, d(w) is the
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martingale’s current capital after betting on the strings s0, s1, · · · , s|w|−1 in the standard
ordering. The martingale d tries to predict the membership of string s|w| when given input
w. If d chooses to bet on s|w| and is successful in predicting its membership, then its current
capital increases, otherwise it decreases. The martingale d can also choose to not risk its
current capital d(w) by not betting on s|w|. The goal is to make d grow without bound on
some subset of {0, 1}∞. We say a martingale d succeeds on a language L if

lim sup
n→∞

d(χL[0, n− 1]) =∞.

We say d succeeds on a class C ⊆ {0, 1}∞ if it succeeds on every language in C. It is easy
to see that the probability a martingale d succeeds on a randomly selected language is 0. A
language L is randomly selected by adding each string to L with probability 1/2. It can be
shown that any class C ⊆ {0, 1}∞ has measure 0 under the probability measure if and only
if some martingale d succeeds on C. If d can be computed in some resource bound ∆ then
we say that C has ∆-measure 0 if d succeeds on C.

A Γ(P)-martingale is a martingale d such that:

• d(w) can be computed by a Turing machine M with oracle access to w and input s|w|.
We denote this computation as Mw(s|w|).

• Mw(s|w|) is computed in time polynomial in lg(|w|). In other words, the computation
is polynomial in the length of s|w|.

• d only bets on strings in a P-printable set denoted Gd.

The input string s|w| to Mw(s|w|) allows the Turing machine to compute the length of w
without reading all of w whose length is exponential in the length of s|w|. A set S ⊆ {0, 1}∗
is P-printable [1] if S ∩ {0, 1}n can be printed in time polynomial in n. A class C ⊆ {0, 1}∞
has Γ(P)-measure 0 zero if there is some Γ(P)-martingale that succeeds on it [15].

3 Measure and DNF Width

In this section we show that the class of languages with sublinear DNF width has measure 0 in
P. Recall that for a language L, DNFwidth(L=n) denotes the DNF width of the characteristic
string of L at length n.

Theorem 3.1. The class

X =

{
L ∈ {0, 1}∞

∣∣∣∣ DNFwidth(L=n) ≤ n

(
1− 2 lg lg n

lg n

)
i.o.

}
has Γ(P)-measure 0.

Proof. For clarity we omit floor and ceiling functions.
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The Martingale

Consider the following martingale d that starts with initial capital 4. Let L be the language
d is betting on. d splits its initial capital capital into portions Ci,1, Ci,2, i ∈ N, where
Ci,1 = Ci,2 = 1/n2. Cn,1 and Cn,2 are reserved for betting on strings in {0, 1}n. For each
length n, d only risks Cn,1 and Cn,2. Thus, d never runs out of capital to bet on {0, 1}n for
all n ∈ N.

Now we describe how d bets on {0, 1}n with Cn,1. d uses Cn,1 to bet that the first n
strings of {0, 1}n don’t belong to L. If d makes no mistake then the capital Cn,1 grows from
1/n2 to 2n/n2. But once d makes a mistake it loses all of Cn,1, i.e. Cn,1 becomes 0.

Next we describe how d bets on {0, 1}n with Cn,2. The martingale d only bets with
capital Cn,2 if it loses Cn,1, i.e. the martingale d makes a mistake on the first string of length
n that belongs to L. Let us call this string w. Let w1, w2, · · · , wn/ lgn be a partition of w into
n/ lg n substrings, such that w = w1w2 · · ·wn/ lgn and each wi has length lg n. Furthermore

d splits Cn,2 into
(

lgn
2 lg lgn

)
n

lgn
equal parts, i.e. n1+o(1) many parts. We refer to each of them as

Cn,2,i, for i ∈ [1, 2, · · · ,
(

lgn
2 lg lgn

)
]. Each one is reserved for betting according to the prediction

of some dimension 2 lg lg n subcube that contains w. We only consider subcubes containing
w whose free bits lie completely in one of the wi’s. Let us call these subcubes the boundary
subcubes of w. It is easy to see that there are

(
lgn

2 lg lgn

)
n

lgn
boundary subcubes of w.

Finally, to completely specify d, we describe how it bets with each Cn,2,i on any string
x ∈ {0, 1}n that comes after w, the string d lost all of Cn,1 on. d bets as follows:

for each boundary subcube Bi of w do
Cn,2,i ← capital reserved for betting on Bi;
if x ∈ Bi then

verify that if y < x and y ∈ Bi, then y ∈ L;
proceed to next Bi if the verification fails;
bet all of Cn,2,i on x being in L;

end

end
Algorithm 1: How d bests on x ∈ {0, 1}n that comes after w.

Intuitively, each Cn,2,i is reserved for betting on a boundary subcube of w. The martingale
predicts that each subcube is contained in L=n. If the subcube Bi which contains w is really
contained in L=n, then the capital reserved for betting on this subcube grows from Cn,2,i

to 222 lg lgn−1Cn,2,i. This follows because we don’t make any mistakes while betting on the
22 lg lgn − 1 strings in Bi \ {w}, and each of these bets doubles Cn,2,i.

The Martingale’s Winnings on X

We now show that d succeeds on any L ∈ X by examining its winnings on L=n. In the
first case, suppose the first n strings of {0, 1}n are all not contained in L. In this case
we bet with Cn,1 and raise this capital from 1/n2 to 2n/n2. In the second case, suppose
DNFwidth(L=n) ≤ n(1− 2 lg lgn

lgn
) and one of the first n strings of {0, 1}n is in L. Let us denote
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the first such string by w. In this case d will lose all of Cn,1 and have to bet with Cn,2.
Since DNFwidth(L=n) ≤ n(1 − 2 lg lgn

lgn
), w must be contained in a subcube of dimension at

least (2 lg lgn
lgn

)n. By a simple averaging argument it can be seen that there must be at least
one boundary subcube of w that has dimension at least 2 lg lg n. Since d must bet on such a
subcube, its capital reserved for this subcube rises from Cn,2,i to 222 lg lgn−1Cn,2,i = Θ(nlgn).
Since any L ∈ X satisfies the above two cases infinitely often, d’s capital rises by Ω(nlgn)
infinitely often. Thus, d succeeds on X.

The Martingale is a Γ(P)-Martingale

Now we need to show d is a Γ(P)-martingale. It is easy to see that d is computable in time
polynomial in n. Since for each x ∈ {0, 1}n we bet on, we iterate though n1+o(1) sububes of
dimension 2 lg lg n, and each subcube contains O(lg2 n) points. Also the set of strings that
d bets on in {0, 1}n is P-printable since it only bets on the n2+o(1) points in the boundary
subcubes of the first n strings of length n.

4 Measure and Nondeterministic Time

The following lemma is a generalization of an observation made in [5].

Lemma 4.1. If L can be decided by a nondeterministic Turing machine in time f(n) ≤ n,
then L has DNF width at most f(n).

Proof. We will show that for all n, L=n is covered by a DNF of width at most f(n). If
L=n = ∅, then it is covered by the empty DNF which has width 0. All that’s left is to show
that L=n is covered by subcubes of dimension at least n − f(n) whenever L=n 6= ∅. This
is sufficient because every subcube of dimension at least n − f(n) is covered by a width
f(n) term, so L can be covered by a width f(n) DNF. Let M be a nondeterministic Turing
machine that decides L in time at most f(n) and x ∈ L=n. Thus, there is a nondeterministic
computation of M on input x that accepts. Since M uses at most f(n) time it can only
examine at most f(n) bits of x. So there are at least n− f(n) bits of x that aren’t examined
by M on some accepting computation of M on x. Therefore the set of all strings y ∈ {0, 1}n
that agree with x in all the bit positions examined by an accepting computation must also be
accepted by the same computation. This set of strings is precisely a subcube of dimension at
least n− f(n); therefore, it is covered by a DNF term of width at most f(n). Since x ∈ L=n

was arbitrary, it follow that L=n can be covered by DNF term(s) of width at most f(n);
therefore, L=n has DNF width at most f(n).

Theorem 4.2. The class of all languages decidable in nondeterministic time at most n(1−
2 lg lgn
lgn

) infinitely often has Γ(P)-measure 0.

Proof. By lemma 4.1, any language decidable in nondeterministic time at most n(1− 2 lg lgn
lgn

)

has DNF width at most n(1 − 2 lg lgn
lgn

) for all but finitely many n. Therefore it follows by

theorem 3.1 that the set of all such languages have Γ(P)-measure 0.
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We now have the main result of the paper:

Corollary 4.3. NTIME
[
n(1− 2 lg lgn

lgn
)
]

has Γ(P)-measure 0.

Corollary 4.4. NTIME[o(n)] has Γ(P)-measure 0.

Because Γ(P) measure 0 implies measure 0 in the other notions of measure on P [13,15],
Theorem 4.2 and its corollaries extend to these measures as well.

Corollary 4.5. The class of all languages decidable in nondeterministic time at most n(1−
2 lg lgn
lgn

) infinitely often has F -measure 0, Γd(P)-measure 0, and Γ/(P)-measure 0.

A language L has decision tree depth f(n) : N −→ N infinitely often if χL=n has deci-
sion tree depth at most f(n) for infinitely many n. It is easy to show and well known that
a function with decision tree depth k has DNF width at most k. See [14] for the defini-
tion of decision tree depth and a proof of the previous statement. Therefore Theorem 4.2
immediately implies the following corollary.

Corollary 4.6. The set of all languages with decision tree depth at most n(1 − 2 lg lgn
lgn

)

infinitely often has Γ(P)-measure 0.
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