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Abstract

Let R(·) stand for the bounded-error randomized query complexity. We show that for any
relation f ⊆ {0, 1}n×S and partial Boolean function g ⊆ {0, 1}n×{0, 1}, R1/3(f ◦gn) = Ω(R4/9(f)·√

R1/3(g)). Independently of us, Gavinsky, Lee and Santha [3] proved this result. By an example
demonstrated in their work, this bound is optimal. We prove our result by introducing a novel
complexity measure called the conflict complexity of a partial Boolean function g, denoted by
χ(g), which may be of independent interest. We show that χ(g) = Ω(

√
R(g)) and R(f ◦ gn) =

Ω(R(f) · χ(g)).

1 Introduction

Let f ⊆ {0, 1}n×S be a relation and g ⊆ {0, 1}m×{0, 1} be a partial Boolean function. In this work,
we bound the bounded-error randomized query complexity of the composed relation f ◦ gn from below
in terms of the bounded-error query complexitites of f and g. Our main theorem is as follows.

Theorem 1 (Main Theorem). For any relation f ⊆ {0, 1}n × S and partial Boolean function g ⊆
{0, 1}n × {0, 1},

R1/3(f ◦ gn) = Ω
(
R4/9(f) ·

√
R1/3(g)

)
.

Prior to this work, Anshu et. al. [1] proved that R1/3(f ◦ gn) = Ω(R4/9(f) · R1/2−1/n4(g)). Although
in the statement of their result g is stated to be a Boolean function, their result holds even when g is
a partial Boolean function.

In the special case of g being a total Boolean function, ben-David and Kothari [2] showed that R(f ◦
gn) = Ω

(
R(f) ·

√
R(g)

log R(g)

)
.

Gavinsky, Lee and Santha [3] independently proved Theorem 1 (possibly with different values for the
error parameters). They also prove this bound to be tight by exhibiting an example that matches this
bound. We believe that our proof is sufficiently different and significantly shorter and simpler than
theirs. We draw on and refine the ideas developed in the works of Anshu et. al. and ben-David and
Kothari to prove our result.

We define a novel measure of complexity of a partial Boolean function g that we refer to as the conflict
complexity of g, denoted by χ(g) (see Section 3 for a definition). This quantity is inspired by the
Sabotage complexity introduced by ben-David and Kothari. However, the two measures also have
important differences. For example, we could show that for any partial function g, χ(g) and R(g) are
related as follows.
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Theorem 2. For any partial Boolean function g ⊆ {0, 1}n × {0, 1},

χ(g) = Ω
(√

R1/3(g)
)
.

See Section 3 for a proof of Throrem 2. Sabotage complexity is known to be similarly related to the
bounded-error randomized query complexity (up to a logarithmic factor) when g is a total Boolean
function. For partial Boolean functions, unbounded separation is possible between sabotage complexity
and R(·).

We next prove the following composition theorem.

Theorem 3. Let S be an arbitrary set, f ⊆ {0, 1}n × S be a relation and g ⊆ {0, 1}m × {0, 1} be a
partial Boolean function. Then,

R1/3(f ◦ gn) = Ω(R4/9(f) · χ(g)).

To prove Theorem 3 we draw on the techniques developed by Anshu et. al. and ben-David and
Kothari. See Section 5 for a proof of Theorem 3. Theorem 1 follows from Theorems 2 and 3.

2 Preliminaries

A partial Boolean function g is a relation in {0, 1}m × {0, 1}. For b ∈ {0, 1}, g−1(b) is defined to tbe
the set of strings x in {0, 1}n for which (x, b) ∈ g and (x, b) /∈ g. g−1(0) ∪ g−1(0) is referred to as the
set of valid inputs to g. We assume that for all strings y /∈ g−1(0) ∪ g−1(1), both (y, 0) and (y, 1) are
in g. For a string x ∈ g−1(0) ∪ g−1(1), g(x) refers to the unique bit b such that (x, b) ∈ g. All the
probability distributions µ over the domain of a partial Boolean function g in this paper are assumed
to be supported entirely on g−1(0) ∪ g−1(1). Thus g(x) is well-defined for any x in the support of µ.

Definition 1 (Bounded-error Randomized Query Complexity). Let S be any set. Let h ⊆ {0, 1}k×S
be any relation and ε ∈ [0, 1/2). The 2-sided error randomized query complexity Rε(h) is the minimum
number of queries made in the worst case by a randomized query algorithm A (the worst case is over
inputs and the internal randomness of A) that on each input x ∈ {0, 1}k satisfies Pr[(x,A(x)) ∈ h] ≥
1− ε (where the probability is over the internal randomness of A).

Definition 2 (Distributional Query Complexity). Let h ⊆ {0, 1}k×S be any relation, µ a distribution
on the input space {0, 1}k of h, and ε ∈ [0, 1/2). The distributional query complexity Dµε (h) is the
minimum number of queries made in the worst case (over inputs) by a deterministic query algorithm
A for which Prx∼µ[(x,A(x)) ∈ h] ≥ 1− ε.

In particular, if h is a function and A is a randomized or distributional query algorithm computing
h with error ε, then Pr[h(x) = A(x)] ≥ 1 − ε, where the probability is over the respective sources of
randomness.

The following theorem is von Neumann’s minimax principle stated for decision trees.

Fact 1 (minimax principle). For any integer k, set S, and relation h ⊆ {0, 1}k × S,

Rε(h) = max
µ

Dµε (h).

Let µ be a probabilty distribution over {0, 1}k. x ∼ µ implies that x is a random string drawn from
µ. Let C ⊆ {0, 1}k be arbitrary. Then µ | C is defined tobe the probability distribution obtained by
conditioning µ on the event that the sampled string belongs to C, i.e.,

µ | C(x) =

{
0 if x /∈ C

µ(x)∑
y∈C µ(y)

if x ∈ C
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For a partial Boolean function g : {0, 1}m → {0, 1}, probability distribution µ and bit b,

µb := µ | g−1(b).

Notice that µ0 and µ1 are defined with respect to some Boolean function g, which will always be clear
from the context.

Definition 3 (Subcube, Co-dimension). A subset C of {0, 1}m is called a subcube if there exists a set
S ⊆ {1, . . . ,m} of indices and an assignment function A : S → {0, 1} such that C = {x ∈ {0, 1}m :
∀i ∈ S, xi = A(i)}. The co-dimension codim(C) of C is defined to be |S|.

Now we define composition of two relations.

Definition 4 (Composition of relations). We now reproduce from the Section 1 the definition of
composed relations. Let f ⊆ {0, 1}n × S and g ⊆ {0, 1}m × {0, 1} be two relations. The composed
relation f ◦ gn ⊆ ({0, 1}m)

n × S is defined as follows: For x = (x(1), . . . , x(n)) ∈ ({0, 1}m)
n

and s ∈ S,
(x, s) ∈ f ◦ gn if and only if there exists b = (b(1), . . . , b(n)) ∈ {0, 1}n such that for each i = 1, . . . , n,
(x(i), b(i)) ∈ g and (b, s) ∈ f .

We will often view a deterministic query algorithm as a binary decision tree. In each vertex v of the
tree, an input variable is queried. Depending on the outcome of the query, the computation goes to a
child of v. The child of v corresponding to outcome b to the query made is denoted by vb.

It is well known that the set of inputs that lead the computation of a decision tree to a certain vertex
forms a subcube. We will denote use the same symbol (e.g. v) to refer to a vertex as well as the
subcube associated with it.

The depth of a vertex v in a tree is the number of vertices on the unique path from the root of the
tree to v in the tree. Thus, the depth of the root is 1.

Definition 5. Let A be a decision tree on m bits. Let η0 and η1 be two probability distributions with
disjoint supports. Let v be a vertex in A. Let variable xi be queried at v. Then,

∆(v) :=

{
|Prx∼η0 [xi = 0]− Prx∼η1 [xi = 0]| if v 6= ⊥.
1 if v = ⊥.

Note that ∆(v) is defined with respect to distributions η0 and η1. In our application, we will often
consider a decision treeA, a partial Boolean function g and a probability distributions µ over the inputs.
∆(v), for a vertex v of A, will then be assumed to be with respect to the distributions (µb | v)b∈{0,1}.

Claim 2. Let A be a decision tree on m bits. Let g be a partial Boolean function. Let x ∼ {0, 1}n be
sampled from a distribution µ. Let v be a vertex in A. Let variable xi be queried at v. Then,

Iµ(g(x) : xi | x ∈ v) = Iµ|v(g(x) : xi) ≥ 32

(
Pr

x∼µ|v
[g(x) = 0] · Pr

x∼µ|v
[g(x) = 1] ·∆(v)

)2

,

where ∆(v) is with respect to the distributions (µb | v)b∈{0,1}.

Proof of Claim 2. Define b := g(x). Condition on the event x ∈ v. Let (b⊗xi) be the distribution over
pairs of bits, where the bits are distributed independently according to the distributions of b and xi
respectively. We use the equivalence: I(b : xi) = D((b, xi)||(b⊗ xi)). Now, an application of Pinsker’s
inequality implies that

D((b, xi)||(b⊗ xi)) ≥ 2||(b, xi)− (b⊗ xi)||21. (1)

3



Next, we bound |(b, xi) − (b ⊗ xi)||1. To this end, we fix bits z1, z2 ∈ {0, 1}, and bound |Pr[(b, xi) =
(z1, z2)]− Pr[(b⊗ xi) = (z1, z2)]|. We have that,

Pr[(b, xi) = (z1, z2)] = Pr[b = z1] Pr[xi = z2 | b = z1]. (2)

Now,

Pr[(b⊗ xi) = (z1, z2)] = Pr[b = z1] Pr[xi = z2]

= Pr[b = z1](Pr[b = z1] Pr[xi = z2 | b = z1]+

Pr[b = z1] Pr[xi = z2 | b = z1]). (3)

Taking the absolute difference of (3) and (2) we have that,

|Pr[(b, xi) = (z1, z2)]− Pr[(b⊗ xi) = (z1, z2)]|
= Pr[b = z1] · Pr[b = z1] ·∆(v) = Pr[b = 0] · Pr[b = 1] ·∆(v) (4)

The Claim follows by adding (4) over z1, z2 and using (1).

3 Conflict Complexity

In this section, we introduce a randomized process P (formally given in Algorithm 1). This process is
going to play a central role in the proof of our composition theorem (Theorem 3). Later in the section,
we use P to define the conflict complexity of a Boolean function g.

Let n > 0 be any integer and B be any deterministic query algorithm that runs on inputs in ({0, 1}m)n.
B can be though of as just a query procedure that queries various input variables, and then terminates

without producing any output. Let x = (x
(j)
i ) i=1,...,n

j=1,...,m
be a generic input to B, and xi stand for

(x
(j)
i )j=1,...,m. For a vertex v of B, v(i) denotes the subcube in v corresponding to xi, i.e., v = ×ni=1v

(i).
Recall from Section 2 that for b ∈ {0, 1}, vb stands for the child of v corresponding to the query
outcome being b. Let µ0 and µ1 be any two probability distributions supported on g−1(0) and g−1(1)
respectively. Let z = (z1, . . . , zn) ∈ {0, 1}n be arbitrary. Now consider the probabilistic process P
given by Algorithm 1. Note that P can be thought of as a randomized query algorithm on input
z ∈ {0, 1}n, where a query to zi corresponds to an assignment of 0 to NOQUERYi in line 14. This view
of P will be adopted in Section 5.

We now prove an important structural result about P which will be used many times in our proofs.
Consider the following distribution γz on ({0, 1}m)n: For each i, sample xi independently from µzi .

Let v be a vertex of B. Let AB(v) be the event that process P reaches node v, and BB(v) be the event
that for a random input x sampled from γz, the computation of B reaches node v.

Claim 3. For each vertex v of B,
Pr[AB(v)] = Pr[BB(v)].

Proof. We will prove by induction on the depth t of v, i.e., the number of vertices on the unique path
from the root to v in B.

Base case: t = 1. v is the root of B. Thus Pr[AB(v)] = Pr[BB(v)] = 1.

Inductive step: Assume that t ≥ 2, and that the statement is true for all vertices at depth at most

t− 1. Since t ≥ 2, v is not the root of B. Let u be the ancestor of v, and variable x
(j)
i be queried

at u. without loss of generality assume that v is the child of u corresponding to x
(j)
i = 0. We

split the proof into the following two cases.
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Algorithm 1: P on B, µ0, µ1, z

1 for 1 ≤ k ≤ n do
2 NOQUERYk ← 1.
3 Nk ← 0.

4 v ←Root of B // Corresponds to {0, 1}m
5 while v is not a leaf of B do

6 Let B query x
(j)
i at v.

7 if NOQUERYi = 1 then
8 Sample a fresh real number r ∼ [0, 1] uniformly at random.

9 if r ≤ minb Prxi∼µb [x
(j)
i = 0 | xi ∈ vi] then

10 v ← v0.

11 else if r ≥ maxb Prxi∼µb [x
(j)
i = 0 | xi ∈ v(i)] then

12 v ← v1.

13 else
14 NOQUERYi ← 0.

15 if r ≤ Prxi∼µzi [x
(j)
i = 0 | xi ∈ v(i)] then

16 v ← v0.

17 else
18 v ← v1.

19 Ni ← Ni + 1.

20 else
21 Sample b from the distribution µzi conditioned on the event xi ∈ v(i).
22 v ← vb.

• Case 1: Prxi∼µzi [x
(j)
i = 0 | xi ∈ ui] ≤ Prxi∼µzi [x

(j)
i = 0 | xi ∈ ui].

Condition onAB(u) and NOQUERYi = 0. The probability that P reaches v is Prxi∼µzi [x
(j)
i =

0 | xi ∈ ui]. Now, condition on AB(u) and NOQUERYi = 1. The probability that P
reaches v is exactly equal to the probability that the real number r sampled at v lies in

[0,Prxi∼µzi [x
(j)
i = 0 | xi ∈ ui]], which is equal to Prxi∼µzi [x

(j)
i = 0 | xi ∈ ui]. Thus,

Pr[AB(v] = Pr[AB(u)].Pr[AB(v) | AB(u)]

= Pr[AB(u)] · Pr
xi∼µzi

[x
(j)
i = 0 | xi ∈ ui]. (5)

Now condition on BB(u). The probability that B reaches v is exactly equal to the probability

that x
(j)
i = 0 when x is sampled according to the distribution γz conditioned on the event

that x ∈ u. Note that in the distribution γz, the xk’s are independently distributed. Thus,

Pr[BB(v)] = Pr[BB(u)].Pr[BB(v) | BB(u)]

= Pr[BB(u)] · Pr
xi∼µzi

[x
(j)
i = 0 | xi ∈ ui]. (6)

By the inductive hypothesis, Pr[AB(u)] = Pr[BB(u)]. The claim follows from (5) and (6).

• Case 2: Prxi∼µzi [x
(j)
i = 0 | xi ∈ ui] > Prxi∼µzi [x

(j)
i = 0 | xi ∈ ui]. Let v′ be the child of u

corresponding to x
(j)
i = 1. By an argument similar to Case 1, we have that

Pr[AB(v′)] = Pr[BB(v′)]. (7)
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Now,

Pr[AB(v)] = Pr[AB(u)]− Pr[AB(v′)]

= Pr[BB(u)]− Pr[AB(v′)] (By inductive hypothesis)

= Pr[BB(u)]− Pr[BB(v′)] (By (7))

= Pr[BB(v].

Let n = 1, z ∈ {0, 1}, and B be a decision tree that computes g. Consider process P on B, µ0, µ1, z. Note
that NOQUERY1 is set to 0 with probability 1. To see this observe that as long as NOQUERY1 = 1,
the current subcube v contains strings from the supports of both µ0 and µ1, and hence from both
g−1(0) and g−1(1). If NOQUERY1 is not set to 0 for the entire run of P, then there exist inputs
x ∈ g−1(0), x′ ∈ g−1(1) which belong to the same leaf of B, contradicting the hypothesis that B
computes g. Let the random variable N stand for the value of the variable N1 after the termination
of P. Note that N is equal to the the index of the iteration of the while loop in which NOQUERY1 is
set to 0. The distribution of N depends on µ0, µ1 and B, which in our applications will either be clear
from the context, or clearly specified. Note that the distribution of N is independent of the value of z.

Definition 6. The conflict complexity of a partial function g with respect to distributions µ0 and µ1

supported on g−1(0) and g−1(1) respectively, and decision tree B computing g, is defined as:

χ(µ0, µ1,B) = E[N ].1

The conflict complexity of g is defined as:

χ(g) = max
µ0,µ1

min
B
χ(µ0, µ1,B).

Where the maximum is over distributions µ0 and µ1 supported on g−1(0) and g−1(1) respectively, and
the minimum is over decision trees B computing g.

For a pair (µ0, µ1) of distributions, let B be the decision tree computing g such that E[N ] is minimized.
We call such a decision tree an optimal decision tree for µ0, µ1. We conclude this section by making
an important observation about the structure of optimal decision trees. Let v be any node of B. Let
µ′0 := µ0 | v and µ′1 := µ1 | v. Let Bv denote the subtree of B rooted at v. We observe that Bv is an
optimal tree for µ′0 and µ′1; if it is not then we could replace it by an optimal tree for µ′0 and µ′1, and
for the resultant tree, the expected value of N with respect to µ0 and µ1 will be smaller than that in
B. This will contradict the optimality of B. This recursive sub-structure property of optimal trees will
be helpful to us.

4 Conflict Complexity and Randomized Query Complexity

In this section, we will prove Theorem 2 (restated below).

Theorem 2. For any partial Boolean function g ⊆ {0, 1}n × {0, 1},

χ(g) = Ω
(√

R1/3(g)
)
.

1As observed before, the choices of µ0, µ1 and B are built into the definition of N .
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Proof. We will bound the distributional query complexity of g for each input distribution µ with rspect
to error 47/95 < 1/2, Dµ47/95(g), from above by O(χ(g)2). Theorem 2 will follow from the minimax

principle (Fact 1), and the observation that the error can be brought down to 1/3 by constantly many
independent repetitions followed by a selection of the majority of the answers. It is enough to consider
distributions µ supported on valid inputs of g. To this end, fix a distribution µ supported only on
g−1(0) ∪ g−1(1).

Let χ(g) = d. Let µb be the distribution obtained by conditioning µ on the event g(x) = b. Let B be
an optimal decision tree for distributions µ0 and µ1. Clearly E[N ] ≤ χ(g) = d.

We first prove some structural results about B. Let B be run on a random input x sampled according
to µ. Let vt be the random vertex at which the t-th query is made; If B terminates before making t
queries, define vt := ⊥. Let E be any event which is a collection of possible transcripts of B, such that
Pr[E ] ≥ 3

4 . Recall from Section 2 that for any vertex v of B, ∆(v) is assumed to be with respect to the
probability distribution µ | v.

Claim 4.
10d∑
t=1

E[∆(vt) | E ] ≥ 13

20
.

Proof. Let us sample vertices ut of B as follows:

1. Set z =

{
1 with probability Prx∼µ[g(x) = 1],
0 with probability Prx∼µ[g(x) = 0]

2. Run process P for B, µ0, µ1, z.

3. Let ut be the vertex v in the beginning of the t-th iteration of the while loop of Algorithm 1.
Return (ut)t=1,.... If the simulation stops after i iterations, set ut := ⊥ for all t > i.

By Claim 3, and since z has the same distribution as that of g(x) where x is sampled from µ, the
vertices ut and vt have the same distribution. In the above sampling process for each t = 1, . . . , 10d,
let Et be the event that NOQUERY1 = 1 in the beginning of the t-th iteration of the while loop of
Algorithm 1. Conditioned on E , the probability that NOQUERY1 is set to 0 in the t-th iteration is
Pr[Et | E ] · E[∆(ut) | Et, E ]2. By union bound we have that,

10d∑
t=1

E[∆(vt) | E ] =

10d∑
t=1

E[∆(ut) | E ]

≥
10d∑
t=1

Pr[Et | E ] · E[∆(ut) | Et, E ]

≥ Pr

10d⋂
t=1

Et | E


≥ Pr

10d⋂
t=1

Et

− Pr[E ]. (8)

Now, since E[N ] ≤ χ(g) = d, we have by Markov’s inequality that the probability that the process P,
when run for B, µ0, µ1 and the random bit z generated as above3, sets NOQUERY1 to 0 within first

2Note that conditioned on Et, ut 6= ⊥.
3Recall that the distribution of N is independent of z.
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10d iterations of the while loop, is at least 9/10. Thus we have that,

Pr

[
10d⋂
t=1

Et

]c
≥ 9

10
. (9)

The claim follows from (8), (9) and the hypothesis Pr[E ] ≥ 3
4 .

The next Lemma follows from Claim 4 and the recursive sub-structure property of optimal trees
discussed in the last paragraph of Section 3.

Lemma 5. Let i be any positive integer. Then,

10di∑
t=1

E[∆(vt) | E ] ≥ 13i

20
.

Notice that if B terminates before making t queries, vt = ⊥ and ∆(vt) = 1.

Proof of Lemma 5. For j = 1, . . . , i, let w be any vertex at depth 10jd + 1. Consider the subtree T
of B rooted at w. By the recursive sub-structure property of B, T is an optimal tree for distributions
µ′0 := µ0 | w, µ′1 := µ1 | w. Let wt be the random vertex at depth t of T, when T is run on a random
input from µ | w. By Claim 4, we have that,

10d∑
t=1

E[∆(wt) | E ] ≥ 13

20
. (10)

In (10), ∆(wt) is with respect to distributions µ′0 | wt = µ0 | wt, µ′1 | wt = µ1 | wt. Now, when w is the
random vertex v10jd+1, wt is the random vertex v10jd+t. Thus from (10) we have that,

10(j+1)d∑
t=10jd+1

E[∆(vt) | E ] ≥ 13

20
. (11)

The claim follows by adding (11) over j = 0, . . . , i− 1.

We now finish the proof of Theorem 2 by showing that Dµ(g) = O(d2). Let x be distributed according
to µ, and B be run on x. Let BIASED denote the event that in at most 10d2 queries, the computation
of B reaches a vertex v for which Prx∼µ[g(x) = 0 | x ∈ v] · Prx∼µ[g(x) = 1 | x ∈ v] ≤ 1

9 . Let STOP

denote the event that B terminates after making at most 10d2 queries. Let E := BIASED ∨ STOP.

Consider the following decision tree B′: Start simulating B. Terminate the simulation if one of the
following events occurs. The outputs in each case is specified below.

1. (Event STOP) If B terminates, terminate and output what B outputs.

2. If 10d2 queries have been made and the computation is at a vertex v, terminate and output
arg maxb Pr[g(x) = b | x ∈ v].

By construction, B′ makes at most 10d2 queries in the worst case. We shall show that Prx∼µ[B′(x) 6=
g(x)] ≤ 47

95 <
1
2 . This will prove Theorem 2.

We split the proof into the following two cases.
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Case 1: Pr[E ] ≥ 1
4 .

First, condition on the event that the computation reaches a vertex v for which Prx∼µ[g(x) = 0 |
x ∈ v] ·Prx∼µ[g(x) = 1 | x ∈ v] ≤ 1

9 holds. Thus one of Prx∼µ[g(x) = 0 | x ∈ v] and Prx∼µ[g(x) =
1 | x ∈ v] is at most 1/3. Hence, |Prx∼µ[g(x) = 0 | x ∈ v] − Prx∼µ[g(x) = 1 | x ∈ v]| ≥ 2/3.
Let m be the random leaf of the subtree of B′ rooted at v at which the computation ends. The
probability that B′ errs is at most

Ex∼µ|v

[
1

2
− 1

2

∣∣∣∣ Pr
x∼µ

[g(x) = 0 | x ∈ m]− Pr
x∼µ

[g(x) = 1 | x ∈ m]

∣∣∣∣] .
≤ 1

2
− 1

2

∣∣∣∣Ex∼µ|v Pr
x∼µ

[g(x) = 0 | x ∈ m]− Ex∼µ|v Pr
x∼µ

[g(x) = 1 | x ∈ m]

∣∣∣∣
(By Jensen’s inequality)

=
1

2
− 1

2

∣∣∣∣ Pr
x∼µ

[g(x) = 0 | x ∈ v]− Pr
x∼µ

[g(x) = 1 | x ∈ v]

∣∣∣∣ ≤ 1

3
.

Then, condition on the event STOP. The probability that B′ errs is 0 ≤ 1
3 .

Thus we have shown that conditioned on E the probability that B′ errs is at most 1
3 . Thus the

probability that B′ errs is at most 1
4 ·

1
3 + 3

4 ·
1
2 = 11

24 <
47
95 .

Case 2: Pr[E ] < 1
4 .

By Claim 5 we have that

10d2∑
t=1

E[∆v(t) | E ] ≥ 13d

20
. (12)

Let ai := (xi, bi) be the tuple formed by the random input variable xi queried at the i-th step
by B′, and the outcome bi of the query; if B′ terminates before i-th step, ai := ⊥. Notice that
the vertex vi at which the i-th query is made is determined by (a1, . . . , ai−1) and vice versa. We
have,

I(a1, . . . , a10d2 : g(x))

=

10d2∑
i=1

I(ai : g(x) | a1, . . . , ai−1) (Chain rule of mutual information)

=

10d2∑
i=1

I(bi : g(x) | vi)

≥ 32

10d2∑
i=1

E

[
1vi 6=⊥ ·

[
Pr[g(x) = 0 | x ∈ vi] · Pr[g(x) = 1 | x ∈ vi] ·∆(vi)

]2]
(From Claim 2)

≥ 32

10d2∑
i=1

Pr[E ] · E
[[

Pr[g(x) = 0 | x ∈ vi−1] · Pr[g(x) = 1 | x ∈ vi−1] ·∆(vi)
]2
| E
]

(Conditioned on E , vi 6= ⊥)

≥ 32

10d2∑
i=1

3

4
· 1

9
· E[∆(vi)

2
| E ]

=
8

3

10d2∑
i=1

E[∆(vi)
2
| E ] (By the assumption Pr[E ] ≤ 1

4 )
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≥ 8

3
· 1

10d2

10d2∑
i=1

E[∆(vi) | E ]

2

(By Cauchy-Schwarz inequality)

≥ 1

10
. (From (12)) (13)

Hence, from (13) we have

H(g(x) | a1, . . . av10d2 ) ≤ 1− 1

10
=

9

10
. (14)

Let L be the set of leaves ` of B′ such that H(g(x) | `) ≤ 19
20 . For each ` ∈ L, minb Prx∼µ[g(x) =

b | x ∈ `] ≤ 2
5 . Conditioned on (a1, . . . , a10d2) ∈ L, the probability that B′ errs is at most 2

5 .
By Markov’s inequality and (14), it follows that Pr[(a1, . . . , a10d2) ∈ L] ≥ 1

19 . Thus B′ errs with
probability at most 1

19 ·
2
5 + 18

19 ·
1
2 = 47

95 .

5 The Composition Theorem

In this section we prove Theorem 3 (restated below).

Theorem 3. Let S be an arbitrary set, f ⊆ {0, 1}n × S be a relation and g ⊆ {0, 1}m × {0, 1} be a
partial Boolean function. Then,

R1/3(f ◦ gn) = Ω(R4/9(f) · χ(g)).

Proof. We shall prove that for each distribution η on the inputs to f , there is a query algorithm A
making O(R(f ◦ gn)/χ(g)) queries in the worst case, for which Prz∈ν [(z,A(z)) ∈ f ] ≥ 5

9 holds. This
will imply the theorem by Yao’s minimax principle. To this end let us fix a distribution η over {0, 1}n.

Let χ(g) = d. Thus, there is a hard pair of distributions µ0, µ1, supported on g−1(0) and g−1(1)
respectively, such that for every decision tree B that computes g, χ(µ0, µ1, g) ≥ d. We will use
distributions η, µ0 and µ1 to set up a distribution γη over the input space of f ◦ gn. For a fixed
z = (z1, . . . , zn) ∈ {0, 1}n, We recall the distribution γz over ({0, 1}m)

n
from Section 3. γz is given by

the following sampling procedure:

1. For i = 1, . . . , n, sample xi = (x
(j)
i )j=1,...,m from µzi independently for each i.

2. return x = (xi)i=1,...,n.

Now, let γη be the distribution over ({0, 1}m)
n

that is given by the following sampling procedure:

1. Sample z = (z1, . . . , zn) from η.

2. Sample x = (xi)i=1,...,n from γz. Return x.

Observe that for each z, x sampled as above, for each s ∈ S, (z, s) ∈ f if and only if (x, s) ∈ f ◦ gn.

Assume that R1/3(f ◦ gn) = t. Yao’s mimimax principle implies that there is a deterministic query
algorithm A′ for inputs from ({0, 1}m)

n
, that makes at most t queries in the wors case, such that

Prx∈γν [(x,A′(x)) ∈ f ◦ gn] ≥ 2
3 . We will first use A′ to construct a randomized algorithm T for f ,

whose accuracy is as desired, and for which the expected number of queries made is small.
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Algorithm 2: T on z

1 for 1 ≤ k ≤ n do
2 NOQUERYk ← 1.
3 Nk ← 0.

4 v ←Root of A′ // Corresponds to {0, 1}m
5 while v is not a leaf of A′ do

6 Let A′ query x
(j)
i at v.

7 if NOQUERYi = 1 then
8 Sample a fresh real number r ∼ [0, 1] uniformly at random.

9 if r ≤ minb Prxi∼µb [x
(j)
i = 0 | xi ∈ vi] then

10 v ← v0.

11 else if r ≥ maxb Prxi∼µb [x
(j)
i = 0 | xi ∈ v(i)] then

12 v ← v1.

13 else
14 NOQUERYi ← 0.
15 Query zi.

16 if r ≤ Prxi∼µzi [x
(j)
i = 0 | xi ∈ v(i)] then

17 v ← v0.

18 else
19 v ← v1.

20 Ni ← Ni + 1.
21 else
22 Sample b from the distribution µzi conditioned on the event xi ∈ v(i).
23 v ← vb.

T , described formally in Algorithm 2, is essentially viewing the process P for z, µ0, µ1, A
′ as a query

algorithm runnng on input z; an assignment of 0 to NOQUERYi corresponds to a query to zi. By
Claim 3, we have that for each z ∈ {0, 1}n, Pr[(z, T (z)) ∈ f ] = Prx∼γz [(x,A

′(x)) ∈ f ◦ gn]. Thus,
Prz∼η[(z, T (z)) ∈ f ] = Prx∼γη [(x,A′(x)) ∈ f ◦ gn] ≥ 2

3 .

We now bound the expected number of queries made by T on each z. For doing that we consider the
following randomized process Q that acts on z. Let B be an optimal tree for distributions µ0, µ1. Q
is described formally in Algorithm 3. Since B computes g, process Q is guaranteed to set NOQUERYi

Algorithm 3: Q on z

1 Run T on z.
2 for 1 ≤ i ≤ n do
3 if NOQUERYi = 1 then
4 Run process P on B, µ0, µ1, xi until NOQUERYi is set to 0.

to 0 for each i. In steps 1 and 4, the process P is run with trees A′ and B, and the trees make
queries inside the for loop of P. These queries can be thought of as being made to an mn bit string

(x
(j)
i ) i=1,...,n

j=1,...,m
. Let the random variable Xi stand for the total number of queries made by these trees

in xi. X =
∑n
i=1Xi is the total number of queries in Q, i.e., the total number of iterations of the for

loop of P in all the runs of P in Q. The next claim bounds EX from below.

11



Claim 6.
EX ≥ nd.

Proof. Towards a contradiction assume that EX < nd. Thus there exists an i such that EXi < d.
Notice that this expectation is over the random real numbers sampled in the for loop of P. Thus, there
exists a fixing of those real numbers r that are sampled in those iterations of the for loop of P that
correspond to queries into xj for j 6= i, such that conditioned on that fixing, EXi < d. However, under
that fixing, process Q is equivalent to process P for some deterministic decision tree T ′ that computes
g(xi) (since NOQUERYi is set to 0 with probability 1), µ0, µ1 and zi. Thus EXi < d conditioned on the
above-mentioned fixing of randomness contradicts the assumption that minB χ(B, µ0, µ1) = χ(g) = d,
where the minimum is taken over all deterministic decision tree β that computes g.

Now, let Y denote the size of the random set {i | NOQUERYi is set to 0 in step 1 in Q}. Now, condi-
toned on the event Y = b, the expected number of queries made in step 4 of Q is (n− b)d = nd− bd.
So under this conditioning the total number of queries X made by Q is at most t + nd − bd. Taking
expectation over b, and using Claim 6 we have that

t+ nd− d · EY ≥ nd =⇒ EY ≤ t

d
.

Observing that for each z, Y has the same distribution as the number of queries made by T when
run on z, we conclude that for each z, T makes at most t/d queries on expectation. By Markov’s
inequality, the probability that T makes more than 9t/d queries is at most 1/9. Thus the probabilistic
algorithm A′′ obtained by terminating T after 10t/d queries computes f with probability at least
2/3 − 1/9 = 5/9 > 1/2 on a random input from η. By fixing the randomness of A′ appropriately we
get a deterministic algorithm A of complexity O(t/d) = O(R(f ◦ g)/χ(g)) such that Prz∼η[(z,A(z)) ∈
f ] ≥ 5

9 .
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