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Abstract

We propose a new framework for constructing pseudorandom generators for n-variate Boolean func-
tions. It is based on two new notions. First, we introduce fractional pseudorandom generators, which are
pseudorandom distributions taking values in [—1,1]™. Next, we use a fractional pseudorandom generator
as steps of a random walk in [—1,1]" that converges to {—1,1}". We prove that this random walk con-
verges fast (in time logarithmic in n) due to polarization. As an application, we construct pseudorandom
generators for Boolean functions with bounded Fourier tails. We use this to obtain a pseudorandom
generator for functions with sensitivity s, whose seed length is polynomial in s. Other examples include
functions computed by branching programs of various sorts or by bounded depth circuits.

1 Introduction

Pseudorandom generators (PRG) are widely studied in complexity theory. There are several general
frameworks used to construct PRGs. One is based on basic building blocks, such as small bias genera-
tors [NN93, AGHP92|, k-wise independence, or expander graphs [HLWO06]. Another approach is based on
hardness vs randomness paradigm, which was introduced by Nisan and Wigderson [NW88] and has been
very influential. Many of the hardness results used in the latter framework are based on random restrictions,
and the analysis of how they simplify the target class of functions. The number of papers in these lines of
work is on the order of hundreds, so we do not even attempt to give a comprehensive survey of them all.

The purpose of this paper is to introduce a new framework for constructing PRGs based on polarizing
random walks. We develop the theory in this paper and give a number of applications; perhaps the most
notable one is a PRG for functions of sensitivity s whose seed length is polynomial in s. But, as this is a
new framework, there are many questions that arise, both technical and conceptual, and we view this paper
as mostly preliminary, with the hope that many more applications would follow.

1.1 PRGs and fractional PRGs

Let f: {-1,1}" — {—1,1} be a Boolean function. The standard definition of a PRG for f with error & > 0,
is a random variable X € {—1,1}" such that

Ex[f(X)] - Ey[f(U)]| <,
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where U denotes a random variable with the uniform distribution in {—1,1}". We relax this definition by
introducing a new object called a fractional PRG, defined in the next paragraph.

To prepare the notation for the definition, identify f with a real multi-linear polynomial, namely its
Fourier expansion. This extends f to f : R®™ — R, although, we would only be interested in inputs from
[-1,1]™. Observe that if x € [—1,1]" then f(z) = Ex[f(X)] where X € {—1,1}" is a random variable
sampled as follows: for every i € [n] sample X; € {—1,1} independently with E[X;] = x;. In particular, f on
[—1,1]" is bounded, namely f: [-1,1]" — [-1,1]. Also, f(0) = Ey[f(U)]. The following is a key definition.

Definition 1.1 (Fractional PRG). Let f : [-1,1]" — [=1,1] be multilinear. A fractional PRG for f is a
random variable X € [—1,1]" such that

Ex[f(X)] - f0) <e

One trivial construction of a fractional PRG is X = 0 but this is not going to be useful for our purpose
of constructing PRGs. To disallow such examples, we require each coordinate of X to be far from zero with
some noticeable probability. Formally, X € [—1,1]" is called p-noticeable if E[X?] > p for all i =1,...,n.

A good example to keep in mind is the following. Let G : {—1,1}" — {—1,1}" be a (Boolean valued)
function, and set X = pG(U), where U € {—1,1}" is uniform. Notice that X is p?-noticeable. In this case
we say X has seed length r. More generally, X has seed length r if X = G(U) where G : {—1,1}" — [-1,1]".

Fractional PRGs are easier to construct than standard PRGs, as they can take values in [—1,1]™. For
example, assume that f has Fourier tails bounded in L;. That is, there exist parameters a,b > 1 for which

S i) <a-bt Vk=1,....n.

SCln):|S|=k

We show (in Lemma 4.4) that if X € {—1,1}" is small-biased, then pX is a fractional PRG for f with
p =~ 1/b. The reason is that this choice of p controls all the Fourier coefficients of f with large Hamming
weight, while X controls the ones with small weight. (In fact, to optimize parameters one can choose X to
be almost k-wise independent; see Lemma 4.4 for details). In any case, note that pX is p?>-noticeable as pX
takes values in {—p,p}".

1.2 Fractional PRG as steps in a random walk

Let X € [—1,1]" be a fractional PRG for f with error e. That is,

[Ex[f(X)] - f0) <e.

The goal is to construct a random variable Y € {—1,1}" such that Ey [f(Y)] = f(0), where the fractional
PRG X provides a “small step” towards this approximation. If we can combine these small steps in a way
that they converge fast to {—1,1}", then we would be done. To be a bit more precise, consider a random
walk starting at 0 with the following properties:

1. The value of f at each step typically does not change by too much.
2. The random walk converges fast to {—1,1}".

Observe that if we take X as the first step, then property 1 is satisfied for the first step. Considering later
steps leads to the following question: Given a point v € [—1,1]™, can we find a random variable A = A(«, X)
such that

[E[f(A)] = f(a)| <&,

and such that A takes values closer to Boolean values? We show that this is indeed the case if we assume
that X not only fools f, but also fools any possible restriction of f.

To formalize this, let F be a family of n-variate Boolean functions f : {—1,1}" — {-1,1}. We say
that F is closed under restrictions if for any f € F, if we fix some inputs of f to constants {—1,1}, then



the new restricted function is still in F. Most natural families of Boolean functions studied satisfy this
condition. Some examples are functions computed by small-depth circuits, functions computed by bounded
width branching programs, and functions of low sensitivity.

We show that if X is a fractional PRG for such F, then it can be used to approximate f(«) for any

€ [-1,1]". Define 6, € [0,1]" by (04)i = 1 — |a;|. For z,y € [—1,1]" define z oy € [—1,1]™ to be their

coordinate-wise product, (z o y); = z;y;. Note that under this definition, the sub-cube {a + d, 0y : y €
[—1,1]™} is the largest symmetric sub-cube of [—1,1]™ centered at c.

We show (Claim 3.3) that if X € [—1,1]™ is a fractional PRG for F which is closed under restrictions,
then for any f € F and any « € [—1,1]™ it holds that

[E[f(a+da0X)] - fla)] <e.

Technically, we need to also assume that X is symmetric, which means that Pr[X = z] = Pr[X = —z] for all
2. This is easy to achieve from any X which is not symmetric, for example by multiplying X with a uniform
bit (thus, increasing its seed length by 1 bit).

1.3 Polarization and fast convergence

Our next goal is to show fast convergence of the random walk to {—1,1}". To that end, we need to analyze
the following martingale:

Y1 =X,
Yi=Y,1+dy,_,0X;

where X7, Xs, ... are independent copies of a fractional PRG. We show that for some ¢ not too large, Y; is
close to a point in {—1,1}". But why would that be true? This turns out to be the result of polarization in
the random walk. It suffices to show this for every coordinate individually.

So, let Z1, Zs, ... € [—1,1] be independent random variables (which are the i-th coordinate of X7, X5, ...
for some fixed i), and define the following one-dimensional martingale:

Wi =27,
W; =W;_1+ (]. — |WZ,1|)Z1

Claim 3.5 shows that if (i) Z; is symmetric, and (ii) E[Z2] > p (which follows from our assumption that the
fractional PRG is p-noticeable), then it holds that

Pr[W|>1-06]>1-6

for t = O(log(1/8)/p). Setting § = ¢/n guarantees that with probability 1 — € all the coordinates of Y; are
g/n close to {—1,1}. Then a simple argument shows that rounding the coordinates gives a PRG with error
O(e), as desired.

We now state our main theorem.

Theorem 1.2 (Main theorem, informal version of Theorem 2.5). Let F be a family of n-variate Boolean
functions that is closed under restrictions. Let X € [—1,1]" be a symmetric p-noticeable fractional PRG for
F with error e. Set t = O(log(n/e)/p) and let Xy,..., Xy be i.i.d. copies of X. Define the following random
variables taking values in [—1,1]™:

YOZG; K:E,1+5)@_IOXi Z:].,,t

Let G = sign(Yy) € {—1,1}" obtained by taking the sign of the coordinates in Yy. Then G is a PRG for F
with error (t + 1)e.



1.4 PRG for functions with bounded Fourier tails

As mentioned above, the families of Boolean functions that are fooled by our PRG include ones that satisfy the
following two properties: (i) being closed under restrictions; (ii) having bounded L; Fourier tails. Tal [Tall7]
showed that the latter condition follows from a widely studied condition, that of bounded Lo Fourier tails.
Thus, using existing bounds for Lo Fourier tails, we get that our PRG fools several classes of Boolean
functions. Below we list the results for error ¢ = O(1), and refer the reader to the corresponding claims for
the details of the full range of parameters:

1. Functions of sensitivity s: seed length O(s®loglogn). The best previous construction [HT18] re-
quired seed length sub-exponential in s (concretely, their dependence on s is exp(y/s)).See Corollary 4.6
for details.

2. Unordered read-once branching programs of width w: seed length O(log2w+1n - loglogn).

This is quadratically worse than the best known PRG [CHRT18]. However, our PRG construction
does not utilize the branching program structure at all, except to obtain the Fourier tail bounds. See
Corollary 4.7 for details.

3. Permutation unordered read-once branching programs of width w: seed length O(w*logn -
loglogn). This improves the dependence on n quadratically compared to the previous best
PRG [RSV13]. See Corollary 4.8 for details.

4. Bounded depth circuits: if f is computed by AC circuits of depth d and size poly(n), our PRG
has seed length O(log?*~ n - loglogn). This is quadratically worse than the best known PRG [Tal17].
See Corollary 4.9 for details.

Other than the PRG for functions of low sensitivity, all the other PRGs are comparable to the best known
tailored PRG. However, the main message is that they are all the same PRG. Our general theorem is
the following.

Theorem 1.3 (PRG for functions of bounded L; Fourier tail, informal version of Theorem 4.5). Let F be
a family of n-variate Boolean functions closed under restrictions. Assume that there exist a,b > 1 such that
for every f € F,

> ) <a-vh

SC[n]:|S|=k

Then, for any € > 0 there exists an explicit PRG X € {—1,1}" which fools F with error € > 0, whose seed
length is O(log(n/e)(loglogn + log(a/c))b?).

We note again that by [Tall7], Theorem 1.3 holds also if we instead assume a bound on the Ly Fourier
tails (which are more common), namely if we assume that for every f € F it holds that

Yoo (9P <a27M

SCn]:|S|>k

1.5 PRG for functions which simplify under random restriction

A major component in prior constructions of PRGs that are based on random restrictions is finding a much
smaller set of ‘pseudorandom retrictions’. Ajtai and Wigderson [AW85] proposed such a PRG for low depth
circuits based on Hastad’s switching lemma [Has86]. Many follow-up works are based on this framework to
build PRGs for various classes of functions including low depth circuits, branching programs, low-sensitivity
functions [TX13, GMRT12, RSV13, CHRT18, HT'18], and a major component of the analysis is proving that
the derandomized random restrictions work.

Our framework for constructing PRGs directly applies to function families that simplify under random
restrictions without the need to derandomize the restrictions. Let F be a family of functions f: {—1,1}" —



{—1,1} which are extended multilinearly to [—1,1]". Fix a parameter 0 < p < 1 and define the p-averaged
function of f, denoted f, : {—1,1}" — [—1, 1], as follows: sample A C [n] where Pr[i € A] = p independently
for i € [n], and define

fo(@) =Eaulf(za,Uac)

where 24 € {—1,1}# is the restriction of the input = to the coordinates in A, and U € {—1,1}" is inde-
pendently and uniformly chosen. The crucial observation (Claim 5.1) is that for every x € {—1,1}" it holds
that

flpz) = fp(x).

Suppose now we have a standard PRG X for the class of p-averaged functions F, = {f, : f € F}. Note
a PRG for the p-random restriction of functions in F would do, as f, is a convex combination of p-random
restrictions of f (namely, averaging over U). Then, using our observation above, this implies that X’ = pX
is a fractional PRG for the class F. Now by using our framework of viewing this fractional PRG as a random
walk step, one can derive a standard PRG for F using O(log(1/¢)/p?) independent copies of X.

1.6 Fourier tails of low degree [, polynomials

Viola [Vio09] gave a construction of a pseudorandom generator which fools n-variate polynomials over Fs.
The construction is the XOR of d independent small-bias generators. We wonder whether our framework can
be used to achieve similar bounds. In particular, we raise the following problem: does the class of low-degree
polynomials over Fy have bounded L; Fourier tails? It’s trivially true for d = 1 and it can be shown to hold
for d = 2. However, to the best of our knowledge nothing was known for d > 3.

We show (see Theorem 6.1 for more details) that for any Boolean function f : {-1,1}" — {-1,1}
computed by a Fy-polynomial of degree at most d, the following L, Fourier tail bound holds:

SRS <K vk=1,...n.
|S|=k

This bound however falls short of implying a PRG using our techniques, and we conjecture that the
correct bound is c’j, for some constant ¢z = 29(4).

1.7 PRGs with respect to arbitrary product distributions

We note the following interesting generalization of our results that is almost direct from our techniques.
Consider the problem of ‘fooling’ a family of functions with respect to an arbitrary product distribution
D on {—1,1}" (the uniform distribution being a special case). More formally, given a distribution D on
{—=1,1}" and a family of functions F, we say that a random variable X is a PRG for F (with respect to D)
if [E[f(D)] - E[f(X)]| < e

We show a way to fool functions with respect to arbitrary product distributions.

Corollary 1.4. Let F be a family of n-variate Boolean functions which is closed under restrictions and let
D be any product distribution on {—1,1}". Let X € [—1,1]" be a symmetric p-noticeable fractional PRG
for F with error € and seed length €. Let t = O(log(n/€)/p). Then there exists an explicit PRG for F with
respect to D with error te and seed length t¢.

Proof sketch. If D is a product distribution on {—1,1}", then E[f(D)] = f(«), where o = E[D] € [-1,1]™.
Thus, we now start our random walk (defined by the fractional PRG) from the point « instead of from 0,
and the convergence follows from polarization in exactly the same way. O

Thus all our PRG results in fact generalize to PRGs with respect to arbitrary product distributions. To
the best of our knowledge, we are not aware of any non-trivial PRGs against arbitrary product distributions
for the classes of functions we study. We wonder if this notion of fooling arbitrary product distributions has
interesting applications.



1.8 Related works

The line of research closest in spirit to our work, and which motivated our work, is that of using random
and pseudo-random restrictions to construct PRGs. A good example is [GMRT12] which uses pseudo-
random restrictions to construct PRGs. Our framework can be seen as extending this, as we do not need
to analyze pseudo-random restrictions; instead, we analyze fractional PRGs, where the restriction happens
automatically from the fractional PRG structure, and no derandomization is necessary.

Another line of work is the use of random walks in combinatorial optimization, for example in the
algorithmic versions of Spencer’s theorem [Banl10, LM12] and follow up works. It would be interesting to
see if polarization can be used to speed up random walks in combinatorial optimization as well.

1.9 Open problems

As we give a new framework for constructing PRGs, there are many open problems that arise, both conceptual
and technical.

1.9.1 Early termination.

Our analysis requires a random walk with t = O(log(n/e)/p) steps, each coming from a p-noticeable fractional
PRG. We believe that for some natural families of functions shorter random walks might also suffice, but we
do not know how to show this. We discuss this further in Section 7.

Open problem 1.5. Find conditions on classes of Boolean functions so that short random walks can be
used to construct PRGs. In particular, are there nontrivial classes where the number of steps is independent
of n?

1.9.2 Less independence.

Our analysis of Theorem 2.5 currently requires to assume ¢ independent copies of a fractional PRG X. It
might be possible that they copies can be chosen in a less independent form, where the analysis still holds.

Open problem 1.6. Can the fractional PRGs X1,..., Xy in Theorem 2.5 be chosen not independently,
such that the conclusion still holds? Concrete examples to consider are k-wise independence for k < t, or
using an expander random walk.

1.9.3 More applications.

Our current applications follow from the construction of a fractional PRG for functions with bounded Fourier
tails. The fractional PRG itself follows from standard constructions in pseudo-randomness (almost k-wise
independent) adapted to our scenario. It will be interesting to try and find other classes of Boolean functions
for which different constructions of fractional PRG work.

1.9.4 Gadgets.

We can view the random walk as a “gadget construction”. Given independent p-noticeable fractional PRGs
X1,...,X; € [—1,1]", view them as the rows of a t x n matrix, and then apply a gadget g : [—1,1]* — {—1,1}
to each column to obtain the outcome in {—1,1}". We show that the random walk gives such a gadget which
converges for t = O(log(n/e)/p). Many constructions of PRGs can be viewed in this framework, where
typically X; € {—1,1}". Ours is the first construction which allows X; to take non-Boolean values. It is
interesting whether other gadgets can be used instead of the random walk gadget, and whether there are
general properties of gadgets that would suffice.



1.9.5 Low degree polynomials.

As discussed above, we wonder if our techniques can be used to construct a PRG for low degree Fs polyno-
mials. In particular, we ask if one could improve the bounds we obtain (see Theorem 6.1) on the L; Fourier
tails of low degree Fo polynomials.

Open problem 1.7. Let f = (—1)? where p : FY — Fy is a polynomial of degree d. Is there a constant
ca such that 3 g g - [f(S)] < ck which is independent of n? In particular, we conjecture that cq = 2°@
should work.

Note that the exponential dependence on k is needed, as witnessed from the following example: consider
the quadratic Fy polynomial ¢(z) = ZZ? X9;—1%2;. Then (—1)? has Fourier L; weight (n%) .27n/2 = 982(n)
on the (n/2)-th level.

1.10 Paper organization

We describe the general framework in detail in Section 2. We prove Theorem 2.5 in Section 3. We describe
applications in Section 4. Our framework also applies to function families that simplify under random
restrictions. We describe this in Section 5. We prove L; Fourier tail bounds for low degree Fy polynomials
in Section 6. We try to partially answer the question related to early termination of the random walk in
Section 7.

2 General framework

2.1 Boolean functions.

Let f:{—1,1}" — [-1,1] be an n-variate Boolean function, identified with its multilinear extension, also
known as its Fourier expansion. For z € [~1,1]" define f(z) = > gy £(9) [licg®i- As f is multilinear,
a convenient viewpoint is to view f(z) as computing the expected value of f on a product distribution on
{—1,1}". That is, let W = W(x) € {—1,1}" be a random variable, where W1, ..., W,, are independently
chosen so that E[W;] = z;. Then f(z) = Ef(W). In particular, f(0) = Ef(U), where U € {—1,1}" is
uniformly chosen.

A family F of n-variate Boolean functions is said to be closed under restrictions if for any f € F and
any function f': {—1,1}" — {—1,1} obtained from f by fixing some of its inputs to {—1,1} it holds that
also f' € F.

2.2 Pseudorandom generators.

Let F be a family of n-variate Boolean functions. The following is the standard definition of a pseudorandom
generator (PRG) for F, adapted to our notation.

Definition 2.1 (PRG). A random variable X € {—1,1}" is a PRG for F with error e, if for any f € F it
holds that | f(0) — Ef(X)| <e.

We introduce the notion of a fractional PRG. 1t is the same as a PRG, except that the random variable
is allowed to take values in [—1, 1]™, instead of only Boolean values.

Definition 2.2 (Fractional PRG). A random variable X € [—1,1]" is a fractional PRG for F with error ¢,
if for any f € F it holds that | f(0) — Ef(X)| <e.

Our main goal will be to “amplify” fractional PRGs for F in order to obtain PRGs for F. To that end,
we need to enforce some non-triviality conditions on the fractional PRG. For example, X = 0 is a fractional
PRG for any function. We require that for any coordinate i € [n], the value of X; is far from zero with
noticeable probability. Formally, we require a noticeable second moment.



Definition 2.3 (p-noticeable random variable). A random variable X € [—1,1]™ is p-noticeable if for every
i € [n], E[X?] > p.

For technical reasons, we would also need X to be symmetric, which means that the distribution of —X
is the same as the distribution of X. This is easy to achieve, for example by multiplying all elements of X
with a uniformly chosen sign.

2.3 Polarizing random walks.

The main idea is to view a fractional PRG as steps in a random walk in [—1,1]" that converges to {—1,1}".
To that end, we define a gadget that implements the random walk; and moreover, that allows for fast
convergence. As we will see later, the fast convergence is an effect of polarization.

Definition 2.4 (Random walk gadget). For anyt > 1 define the random walk gadget g; : [—1,1]" — [—1,1]
as follows. Let ay,...,a; € [—1,1]. Define g1(a1) := a1 and fort > 1,

gi(at,...,a) == g—1(ar,...,ae—1) + (1 — |ge—1(a1, ..., a¢—1)|)as.

We extend the definition to act on bit-vectors. Define gi* : ([—1,1]")" — [—1,1]" as follows. For z1,...,x; €
[—1,1]" define

gi (@1, we) = (9T, 01)s 5 Gt (@105 Tan) -
Equivalently, we can view gi* as follows: construct a t X n matriz whose rows are x1,...,x:; and then apply

gt to each column of the matriz to obtain a resulting vector in [—1,1]™.

The following theorem shows how to “amplify” fractional PRGs using the random walk gadget to obtain
a PRG. Below, for z € [—1,1]™ we denote by sign(x) € {—1,1}"™ the Boolean vector obtained by taking the
sign of each coordinate (the sign of 0 can be chosen arbitrarily).

Theorem 2.5 (Amplification Theorem). Let F be a family of n-variate Boolean functions which is closed
under restrictions. Let X € [—1,1]" be a symmetric p-noticeable fractional PRG for F with error . Set
t = O(log(n/e)/p) and let X1,...,X; be iid copies of X. Define a random variable G € {—1,1}" as follows:

G:=G(Xy,...,Xt) = sign(gy (X1, ..., X4)).
Then G is a PRG for F with error (t + 1)e.

3 Proof of Amplification Theorem

We prove Theorem 2.5 in this section. From here onwards, we fix a family F of n-variate Boolean functions
which is closed under restrictions. The proof is based on the following two lemmas. The first lemma amplifies
a p-noticeable fractional PRG to a (1 — ¢)-noticeable fractional PRG. The second lemma shows that setting
q = ¢/n, the latter fractional PRG can be rounded to a Boolean-valued PRG without incurring too much
€rror.

Lemma 3.1 (Amplification lemma). Let Xi,...,X; € [=1,1]™ be independent symmetric p-noticeable frac-
tional PRGs for F with error €. Define a random variable Y € [—1,1]™ as

Y =g (Xq,..., Xy).
Then'Y is a (1 — q)-noticeable fractional PRG for F with error te, where ¢ = 2—%2pt)

Lemma 3.2 (Rounding lemma). Let Y € [—1,1]" be a (1 — q)-noticeable fractional PRG for F with error
e. Then sign(Y') € {—=1,1}" is a PRG for F with error € + qn.

Theorem 2.5 follows directly by applying Lemma 3.1 with ¢ = O(log(n/c)/p) to obtain ¢ = ¢/n and then
applying Lemma 3.2.



3.1 Proof of Lemma 3.1

We prove Lemma 3.1 in this section. We need to prove two claims: that ¢gi*(X7,..., X}) is a fractional PRG
for F with error et, and that it is (1 — ¢)-noticeable. This is achieved in the following sequence of claims.

First we need some notations. For y € [—1,1]" define ¢, € [—1,1]" by (Jy); := 1 — |y;|. For two vectors
x,y € [—1,1]™ define z oy € [—1,1]" to be their pointwise product, namely (z o y); := z;y;. Observe that
{y+0y0x:a €[—1,1]"} is the largest symmetric sub-cube in [—1,1]" centered at y.

Claim 3.3. Let X € [-1,1]" be a fractional PRG for F with error e. Then for any f € F and any
Y € [_17 1]71!
[f(y) —Ef(y+dy 0 X)[ <e.

Proof. Consider a distribution over F' € F obtained from f by fixing the i-th input to sign(y;) with probability
ly;|, independently for each i. That is,

F(z) := f(R(x)),
where R(z) € {—1,1}" is a random variable obtained by sampling Ry, ..., R, independently where Pr[R; =
sign(y;)] = |yi| and Pr[R; = z;] = 1 — |y;|. By the multi-linearity of f, and as R(x) is a product distribution,
Ep[F(z)] = Erlf(R(x))] = f(Er[R(z)]) = f(y + 0y o z).
Setting = X and averaging over X gives
7w) ~ Ex[(y + 8,0 X)]| = [ErF[0)] - Er x [F(X)]| < Er [F(0) ~ Ex[F(X)]| <<,
since F' € F with probability one and X is a fractional PRG for F with error ¢. O

Claim 3.4. Let Xy,...,X; € [-1,1]" be independent fractional PRGs for F with error . Then for any
fer, )
‘f(o) - EX17~~7Xt [f(g?(Xla s 7Xt)>” < te.

Proof. The proof is by induction on t. The base case t = 1 follows by definition as g} (X;) = X;. For ¢ > 1
we will show that

’E[f(gtnfl(xh s ’thl))} - E[f(gll(Xh RR) Xt))” <S¢,

from which the claim follows by the triangle inequality. In fact, we will show a stronger inequality: for any
fixing of x1,...,2¢—1 € [-1,1]", it holds that

’f(g?—l(xh e '7‘%‘75*1)) —Ex, [f(gt"(m, s ’xt—hXt))H <e.

The first inequality then follows by averaging over 1 = Xi,...,2;_-1 = X;_1. To see why this latter
inequality holds, set y = g;* 1(1,...,2¢—1). Then by definition,

g?(xlu B 7xt713Xt) =Y+ 6y OXt'
The claim now follows from Claim 3.3. O

We have so far proved that g7'(Xi,...,X;) is a fractional PRG for F with slightly worse error. Al-
though we do not need it, it is worth noting that it is symmetric since Xi,...,X; are symmetric and
—gM(X1,...,Xt) = gP(—X1,...,—X4). To conclude, we show that it converges fast to a value close to
{=1,1}". This is the effect of polarization. It will be enough to analyze this for one-dimensional random
variables.

Claim 3.5. Let Ay,...,A; € [—1,1] be independent symmetric random variables with E[A?] > p. For
i=1,...,t define
B :==gi(A1,...,A;) = Bi—1 + (1 — |Bi_1]) As.

Then E[B?] > 1 — q where ¢ = 3exp(—tp/8).



Proof. Let C; :=1—|B;]| be the distance to {—1,1} at step 7. We show that C; converges to 0 exponentially
fast. Observe that C; satisfies the following recursive definition:

C- . Ci,1(1 — Az) if Ci,1(1 — Az) S 1
¢ Q—Ci_l(l—Ai) ifC’i_l(l—Ai)>1 .

In either case one can verify that C; € [0, 1] and that
Ci <Cii(1-4).
As C;_1 and A; are independent we obtain that
E{M@}:E{JCFJE[¢1—A4.

We now use the assumption that the A; are symmetric. The Taylor expansion of /1 — z in [—1,1] is

In particular, all the coefficients except for the constant term are negative. As A; is symmetric, E[A¥] = 0
for any odd k, so

AT <122 < exp(op)

E{17A4§17—§—_17

Thus
t

E[VG] < [[E[VI—A] < exp(—tn/3).

i=1
By Markov’s inequality, Pr[C; > exp(—tp/2)] < exp(—tp/8). If C; < exp(—tp/2) then 1—B? < 2exp(—tp/2).
If not, then we can trivially bound 1 — B? < 1. Putting these together gives
E[1 — Bf] < 2exp(—tp/2) + exp(—tp/8) < 3exp(—tp/8).
O

To provide a piece of intuition explaining the fast convergence of this random walk, notice that once C;
becomes sufficiently small, it gets more and more difficult to inrease the value of C; again. This could be
best explained with an example. Suppose all A;’s take value in {—0.5,0.5}. We start at By = 0 and take
a step, say A; = 0.5, and therefore B; = 0.5. Now observe that the length of the next step would be only
(1 = |B1])|Az2| = 0.25. So even if Ay = —0.5, we get By = 0.25, which means we still need to take one more
step to become less than 0. In other words, once we get close to the boundary {—1,1}, the random walk
converges faster as it gets more difficult to move away from the boundary.

Corollary 3.6. Let X1,...,X; € [—1,1]" be independent symmetric p-noticeable random variables. Define
Y =g¢7(X1,...,Xt). ThenY is (1 — q)-noticeable for ¢ = 3exp(—tp/8).

Proof. Apply Claim 3.5 to each coordinate of Y. O

Lemma 3.1 follows by combining Claim 3.4 and Corollary 3.6.
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3.2 Proof of Lemma 3.2

We prove Lemma 3.2 in this section. Let 2 € [—1,1]™ be a potential value obtained by X. Let W := W (x) €
{—1,1}" be a random variable, where W1, ..., W are independent and E[W;] = z;. Then Ew [f(W)] = f(x).
As f takes values in [—1, 1], we can upper bound |f(z) — f(sign(x))| by

|f(z) — f(sign(x))| = [Ew [f(W)] — f(sign(x))| < Pr[W # sign(z)].

The last term can be bounded by the union bound,

Pr[W # sign(z <ZPrW # sign(z;)] = Zl—|x1|

=1

Setting z = X and averaging over X gives
[Ex[f(X)] = Ex[f(sign(X))]| < Ex|f(X) — f(sign(X))| < 5 ZE — | Xill.

As X is (1 — g)-noticeable it satisfies E[X?] > 1 — ¢ for all i. As 1 — 2z <1 — 22 for all z € [0, 1] we have
E[l - [X] <E[l - X?] <q
This concludes the proof as

1£(0) = Ex[f (sign(X)]| < [£(0) = Ex[f (X)) + [Ex [f(X)] - Ex[f(sign(X))]| < & + gqn,

where the first inequality follows as X is a fractional PRG with error €, and the second by the discussion
above.

4 PRGs for functions with bounded Fourier tails

Several natural families of Boolean functions have bounded Fourier tails, such as: AC circuits [LMN93,
Man95]; functions with bounded sensitivity [GSW16, LTZ18]; and functions computed by branching pro-
grams of various forms [RSV13, CHRT18]. Our goal is to construct a universal PRG which fools any such
function. We consider two variants: L; bounds and L, bounds.

Definition 4.1 (L; bounds). For a,b > 1, we denote by L} (a,b) the family of n-variate Boolean functions
f{-1,1}" = {—1,1} which satisfy

SIS <a-bt vk=1,....n

SC[n]

|S]=k
Definition 4.2 (Ls bounds). For a,b > 1, we denote by L3 (a,b) the family of n-variate Boolean functions
f{-1,1}" = {—1,1} which satisfy

Zf(S)an'ka/b Vk=1,...,n
SCl[n]
[S|>k
Tal [Tall7] showed that Lo bounds imply Ly bounds: if f € L3(a,b) then f € Ly(a,b’) for b’ = O(b).
The reverse direction is false, as can be witnessed by the PARITY function. So, the class of functions with
L1 bounded Fourier tails is richer, and we focus on it.
In the following lemma, we construct a fractional PRG for this class, which we will then amplify to a PRG.
We note that this lemma holds also for bounded functions, not just Boolean functions. The construction is
based on a scaling of almost d-wise independent random variables, whose definition we now recall.
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Definition 4.3 (Almost d-wise independence). A random variable Z € {—1,1}™ is e-almost d-wise indepen-
dent if, for any restriction of Z to d coordinates, the marginal distribution has statistical distance at most €
from the uniform distribution on {—1,1}%.

Naor and Naor [NN93] gave an explicit construction of an e-almost d-wise random variable Z € {—1,1}"
with seed length O(loglogn + logd + log(1/¢)). We note that this seed length is optimal, up to the hidden
constants.

Lemma 4.4. Fizn,a,b>1 and e > 0. There exists a fractional PRG X € [—1,1]" that fools L} (a,b) with
error €, such that

(i) X is p-noticeable for p = 5.
(i) The seed length of X is O(loglogn + log(a/e)).

Proof. Fix f € L(a,b). Set d = [log2a/e],d = ¢/2a,5 = 1/2b. Let Z € {—1,1}" be an d-almost d-wise
independent random variable, and set X = $Z which takes values in {—f, }". We claim that X satisfies
the requirements of the lemma. Claim (i) clearly holds, and claim (ii) holds by the Naor-Naor construction.
We thus focus on proving that X fools F with error e.

Fix f € F and consider its Fourier expansion:

fa) = 3 f(S)es,
SC[n]

We need to show that E[f(X)] is close to f(0). Averaging over X gives
ELFCO] = FO) < 7 1FS)] - BXS] = > |F(S)] - 819 [E[2%]].
|S|>0 |S|>0

We next bound [E[Z%]|. If |S| < d then by the definition of Z we have |E[Z°]| < 6. If |S| > d we bound
trivially |E[Z°]| < 1. Let W}, = > s:s)=k |f(S)], where by assumption W < a- b*. Thus

d d
E[f(X)] = fO)] <8) Wi+ Wi <da) (80)" +a) (80)" < da+2 %
k=1 k=1

= k>d k>d
where we used the choice of 3 = 1/2b. The claim follows as we set § = £/2a and 27¢ < ¢/2a. O

Applying Theorem 2.5 using the fractional PRG constructed in Lemma 4.4 gives the following PRG
construction. Note that we still need to require that F is closed under restrictions.

Theorem 4.5. Let F be a family of n-variate Boolean functions closed under restrictions. Assume that
F C LY(a,b) or that F C L5 (a,b). Then, for any € > 0 there exists an explicit PRG X € {—1,1}" which
fools F with error € > 0, whose seed length is O(log(n/c)(loglogn + log(a/c))b?).

4.1 Applications

We apply our PRG from Theorem 4.5 to several well studied classes of Boolean functions that are known to
satisfy a Fourier tail bound.

4.1.1 Functions of bounded sensitivity.

Let f:{-1,1}" — {—1,1} be a Boolean function. Its sensitivity at an input z € {—1,1}" is the number
of neighbors &’ of x (that is, 2’ and « differ at exactly one coordinate) such that f(z') # f(x). The (max)
sensitivity of f is s(f) = max, s(f,x). The sensitivity conjecture speculates that functions of sensitivity
s can be computed by decision trees of depth poly(s). A corollary would be that almost poly(s)-wise
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distributions fool functions of low sensitivity. So, one may ask to construct comparable PRGs for functions
of low sensitivity.

This question was first considered by Hatami and Tal [HT18]. They constructed a PRG with sub-
exponential seed length exp(O(+/s)). Theorem 4.5 gives an improved construction that essentially matches
the consequence of the sensitivity conjecture. Our PRG uses the recent bounds of Gopalan et al. [GSW16] on
the Fourier tail of functions of low sensitivity. Concretely, Gopalan et al. [GSW16] show that if s(f) = s then
f € Li(1,t) for t = O(s). Tt is straightforward to verify that a restriction can only decrease the sensitivity
of the function, so that the class of functions of sensitivity at most s is closed under restrictions. A direct
application of Theorem 4.5 gives a PRG with seed length O(s? log(n/¢)(loglog(n) + log(1/¢))).

To get a somewhat improved bound, one can apply a result of Simon [Sim83] that shows that if s(f) = s
then f depends on at most m = 4® many inputs. In this case, the analysis of Theorem 2.5 can be applied
with m variables instead of n variables , so that we only need O(log m/¢) iterations. Note that the fractional
PRG still requires a seed length which depends on the original n. We obtain:

Corollary 4.6. For any n,s > 1 and ¢ > 0, there exists an explicit PRG which fools n-variate Boolean
functions with sensitivity s with error €, whose seed length is O(s®log(1/¢)(loglogn + log(1/¢))).

We note that the loglogn term cannot be removed. Indeed, even if we restrict attention to functions
which are XOR of at most 2 bits (for which s = 2) the seed length required is 2(loglogn + log(1/¢)).

4.1.2 Unordered branching programs.

An oblivious read-once branching program (abbrv ROBP) B of width w is a non-uniform model of compu-
tation, that captures randomized algorithms with space logw. A branching program B maintains a state in
the set {1,...,w} and reads the input bits in a known fixed order. At time step i = 1,...,n, B reads a bit
and based on the time step, the read bit and the current state it transitions to a new state. Thus, B can be
thought of as a layered directed graph, with w nodes in each layer, and two edges going out of each node to
the immediately next layer, one labeled with a 1 and the other labeled with a —1.

Let B™(w) be the class of n-variate Boolean functions computed by read-once oblivious branching pro-
grams of width w, where the order of the inputs is arbitrary. A recent work of Chattopadhyay et al. [CHRT18]
showed that these functions have L; bounded Fourier tails. Concretely, B"(w) C L}(t) for t = (logn)™.
They used this to construct a PRG with seed length O(logn)“~!log®(n/e)loglogn. Using our PRG from
Theorem 4.5 we get a comparable (although slightly worse) seed length. Note that B™(w) is closed under
restrictions.

Corollary 4.7. Fiz n,w > 1 and € > 0. There is an explicit PRG which fools B"(w) with error € > 0,
whose seed length is O(log(n/e)(loglogn + log 1/¢)(log n)?¥).

4.1.3 Permutation branching programs.

A special case of read-once branching programs are permutation branching programs, where the transition
function from level i to level ¢ + 1 in the graph is a permutation for every choice of the input bit. We
denote it by B[, (w) C B"(w). Reingold et al. [RSV13] showed that if a Boolean function is computed by
a permutation branching program of width w, then it has L, bounded Fourier tails with parameter 2w?.
Note that permutation branching programs are also closed under restrictions. Thus we obtain the following

result:

Corollary 4.8. Fizn,w > 1 and ¢ > 0. There is an explicit PRG which fools B},,,,(w) with error e > 0,
whose seed length is O(log(n/c)(loglogn + log 1/e)w?).

The dependence on n in our PRG is better than in the previous work of [RSV13], as they obtained seed
length O(w? log(w) log(n) log(nw/e) + w* log?(w/¢)).

The work of [RSV13] actually shows the Fourier tail bounds for a more general class of branching pro-
grams, called regular branching programs. However, these are not closed under restriction, and hence our
PRG construction fails to work (the same problem occurs also in the construction of [RSV13]).
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4.1.4 Bounded depth circuits.

The class of bounded-depth Boolean circuits ACY has been widely studied. In particular, Linial, Mansour
and Nisan [LMN93] showed that it has bounded Ly Fourier tails. Tal [Tall7] obtained improved bounds. If
f is an n-variate Boolean function computed by an AC? circuit of depth d and size s, then f € Lo(n,t) for
t = 20 1og?1 5. Theorem 4.5 provides a new PRG for AC® which is comparable with the existing PRGs
of Nisan [Nis91] and Braverman [Bral0].

Corollary 4.9. Fizn,s > 1 ande > 0. There is an explicit PRG which fools n-variate functions which can be
computed by AC® circuits of size s and depth d, with error € > 0, whose seed length is O(log(n/e)(loglog n +
log1/¢)log??™? s).

5 PRG for functions which simplify under random restriction

Another generic application of our framework is constructing PRGs for classes that simplify under random
restriction. Let F be a family of functions f : {—1,1}" — {—1,1} which are extended multilinearly to
[-1,1]™. Fix a parameter 0 < p < 1 and define the p-averaged function of f, denoted f, : {—1,1}" — [-1,1]
as follows: sample A C [n] where Pr[i € A] = p independently for i € [n], and define

fo(x) = EaRy[f(za,Uac)]

where 24 € {—1,1}4 is the restriction of the input = to the coordinates in A, and U € {—1,1}" is indepen-
dently and uniformly chosen.

Claim 5.1. fy(z) = f(px).

Proof. Let A,U be random variables as defined above. Define a random variable Y € {—1,1}" as follows:
Ui ifA;=0

Note that Y is a product distribution. By definition of f,, f,(z) = E[f(Y)]. By multilinearity of f,

E[f(Y)] = f(E[Y]) = f(pz). 0

Suppose that we have a standard PRG X for the class of p-averaged functions F, = {f, : f € F}.
Claim 5.1 implies that X’ = pX is a fractional PRG for the class F. Theorem 2.5 then constructs a PRG
for F using O(log(1/€)/p?) independent copies of X.

6 Spectral tail bounds for low degree Fo-polynomials

In this section, we prove L, Fourier tail bounds for functions computed by low degree polynomials on Fs.
However, our bounds fall short of implying PRGs for the class of low-degree Fo polynomials in our framework.

Theorem 6.1. Let p: F§ — Fy be a polynomial of degree d, and let f(x) = (—1)P®). Then
ST < (k23 vE=1,...n.
SCln]

|S|=k

We note that Lo bounds do not hold for low-degree polynomials, as can be witnessed by taking a high-rank
quadratic polynomial. We prove Theorem 6.1 in the remainder of this section.
We first introduce some notation to simplify the presentation. Define

Wi(f) = > [f(9)

|S|=k
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denote the weight of the level-k Fourier coefficients of a Boolean function f, and let
W(d, k) == max{Wy(f) : f = (-1)", deg(p) < d}

be the maximum of Wy, over degree d polynomials. Note that we do not make any assumption on the number
of variables n. We prove the following lemma from which Theorem 6.1 follows relatively easily.

Lemma 6.2. For any d,k > 1,

k
W(d, k)* < 2°"W(d — 1,2k) + W(d, k) - > <l;) W(d, k—0).
=

=

We first show that Theorem 6.1 follows easily from Lemma 6.2.

Proof of Theorem 6.1 given Lemma 6.2. The proof of Theorem 6.1 is by induction, first on d and then on
k. The base case of d = 1 is straightforward, so assume d > 2. By Lemma 6.2 we have

2k ko /k
i <2 (a0 iy () @ 0

=1

d—1\ 2k Ny N
< (k23071 +W(d,k)z<€>((k—1)23)

=1
= (k-2 4w w(d k) (0= 02 +1)" = (= 1)2%)").

Assume towards a contradiction that W(d, k) > (k23%)*. Dividing by W (d, k) on both sides gives
W(d, k) < (k- 250" 4 (k= 1287+ 1)° = ((k — 1)239)"

If k = 1 then we reach a contradiction as 2391 +1 < 234, If k > 1 then as (k — 1)23d > k2341 the first
term gets canceled by the third term, and the second term is at most (k23?)*. In either case, we reached a
contradiction. O

From now on we focus on proving Lemma 6.2. To that end, fix f computed by a polynomial of degree
d which maximizes Wy (f). We shorthand ¢(S) = |f(S)|. The following claims are used in the proof of
Lemma 6.2.

Claim 6.3. For any 0 <a <b<n and A C [n] of size |A| = a,
> g(B)<W(d,b-a).
B:|B|=b,ACB

Claim 6.4.

> 9(S)g(T) < 2°"W(d — 1,2k).
S,T:|S|=|T|=k,SNT=0

Claim 6.5. For any 1 </?¢ <k,

> asm < () wanwar-o,

S,T:|S|=|T|=k,|SOT|=¢

We first show how to prove Lemma 6.2 using the above claims.
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Proof of Lemma 6.2. We have,
W(d.k?= > g(8)g(D)

S,1:|S|=|T|=k
k

=S ) 9(8)9(T)

£=0 §,T:|S|=|T|=k,|SNT|=¢

k
= > )+ 3 9(8)g(T)

S,T:|S|=|T|=k,SNT= 0) (=1 8,T:|S|=|T|=k,|SNT|=¢
k
k
< 22kW(d — 1,2k) + W (d, k) W(d, k— 1),
< 22hyp( )+ 2(5)

(=1

where the last inequality follows by using the bounds from Claim 6.4 and Claim 6.5. O
We now proceed to prove the missing claims.

Proof of Claim 6.3. We use induction on a and b. The claim is direct for a = 0 and any b > a. Thus suppose
b>a>0andletiec A Let A’ = A\ {i}. We have

S B - ) g(B' U{i})
B:|B|=k,ACB B'C[n|\{i}:|B'|=b—1,A’CB’

= > F(B"u{i})].

B/ Cln]\{i}:|B'|=b—1,A’C B’

Let f;—1 and f;_, 1 be the functions obtained from f by setting the ¢’th bit to 1 and —1, respectively. It is
easy to verify that |f(BU{i})| < 3(fis1(B) + fi»—1(B)). Thus, continuing with our estimate, we have

> B <y > (Fa (B + Fo(B))

B:|B|=b,ACB B':|B'|=b—1,A’C B'U{i}
<W(d,(b—1)—(a—1)) =W(d,b—a),
where the last inequality follows from induction hypothesis. O

Proof of Claim 6.4. For any S C [n], let eg € {—1,1} be the sign of f(S), so that g(S) = eg - f(S) Let
X, Y, Z be independent uniform distributions on {—1,1}". We have

> 9(5)g(T) = > eserBy [f(Y)Y®] - Ez[f(2)Z7)]
S,T:|S|=|T|=k,SNT=0 S,T:|S|=|T|=k,SNT=0
= > eserBy z[f(Y)YS £(2)27)
S,T:|S|=|T|=k,SNT=0
— > eserExy z[f(X oY) f(X 0 Z2)X5VTYS Z7].

S,T:|S|=|T|=k,SNT=0

This follows as (Y, Z) and (X oY, X o Z) are identically distributed. Now consider any fixing of ¥ = y and
Z = z. Define the function hy .(x) = f(z oy)f(x o z). Recall that f = (—1)” where p is a Fy-polynomial
of degree d. Thus h = (—1)? where ¢ is the derivative of f in direction y o z. In particular, its degree is at
most d — 1. Thus we have

> esen TR xonx < () ¥ [sheox

S,T:|S|=|T|=k,SNT=0 R:|R|=2k
< 22kW (d — 1, 2k).
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The proof follows now by noting that the above bound holds for any choice of y and z, and then averaging
overy =Y, z= 2. O

Proof of Claim 6.5. We have,

wem< Y (X a9)

S,T:|S|=|T|=k,|SNT|=¢ L:|L|=¢ S:|S|=k,LCS
<(max > 9®)( X e9)
L:|L|=¢
L1 S:|S|=k,LCS L,S:|L|=¢,|S|=k,LCS

<W(d,k—0)- ( DY g(S)> (using Claim 6.3)

S:|S|=k L:LCS,|L|=¢

<W(d,k—1)- (E) W (d, k).

7 Smoothness

In this section we provide a partial answer for Open Problem 1.5, regarding early termination of the random
walk. Let Y; € [—1,1]™ be the location of the random walk at time ¢. We would like to guarantee that if Y;
is close enough to sign(Y;) then we can round Y; to sign(Y;) without changing the value of f by too much.
Therefore, given f : [—1,1]" — [—1, 1], it would be desirable to show f is “smooth” enough: there is a bound
W such that

Va, f e [=11]", [f(e) = fF(B)] < Wl = Bl|oo-

Observe that should such W exists, then if at some step ¢ we have ||Y; — sign(Y;)||co < &/W , then we can
terminate the random walk immediately and guarantee that || f(Y;) — f(sign(¥1))]|eo < . We show that such
smoothness property holds for functions with bounded sensitivity.

7.1 Bounded sensitivity functions.
We show that smoothness follows from a bound on the (maximum) sensitivity of a boolean function.

Lemma 7.1. Let f : {=1,1}" — [=1,1] be a boolean function with maximum sensitivity s. Then, for any
a, B € [-1,1]"™ it holds that
|f(a) = f(B)] < sl — Bl o

We first consider the case that ||a — ]| is very small.

Claim 7.2. Let f: {—1,1}" — [—1,1] be a boolean function with mazimum sensitivity s. Let o, 8 € [—1,1]"
such that || — Blles < 1/n*. Then

|f(a) = f(B)] < 4slla = Blls-

To prove the result for arbitrary «, 8 € [—1,1]™ using Claim 7.2, consider the line segment from « to
and integrate f along that line segment. Thus, Lemma 7.1 follows directly from Claim 7.2.

Proof of Claim 7.2. Let § = || — B||oo- We first consider the easier case of o € {—1,1}". Pick b € {-1,1}"
randomly by flipping each coordinate of & independently with probability |a; — £;]/2 so that Ef(b) = f(8).
Note that f(b) # f(«) if either exactly one sensitive coordinate of « is flipped, which occurs with probability
at most sd, or if at least two coordinates get flipped, which occurs with probability at most (nd)?. Therefore

|f(a) —Ef(b)| < 504+ n?0* < 2s6
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given our assumption on 4.
Next, consider the general case of a € [—1,1]™. This case requires introducing an extra point y € [—1,1]"
in a way that allows us to prove

(@) = fF(V)] <25+ la = 7[lo (1)
and

[FB) = FI <2518 = 7lloo (2)

separately. We choose 7 in a way that Vi € [n],7; = a; or 7; = B;. These equations altogether give the
claim. To choose v, let S C [n] be the set of coordinates that |«;| < |8;| and pick v; = «; if ¢ € S, and
~v; = B; otherwise.

We next prove Equation (1). The proof of Equation (2) is analogous. Consider a joint random variable
(a, ) that satisfies the following properties:

1. ae {-1,1}",c € [-1,1]", Ea = o, and Ec = 4.
2. The marginal distributions of @ and ¢ are product distributions.
3. |la — Ecfc|a]]loc < |l — 7v]loo holds with probability one.

Observe that given such (a, c),

|f (@) = F(V)| = [EBa.c[f(a) = f()] < Ealf(a) = Ec[f(c)lal] <25 [l = 7l|oo,

where the last inequality uses the first case in the proof, as a € {—1,1}"™.
Now let us construct the joint random variable (a,c¢). Fix i € [n] and suppose without loss of generality
that «; > 0. Note that by construction —a; < 7; < «;. First sample a; so that E[a;] = ;. If a; = —1 then
_ 2vitl-oy

set ¢; = —1, otherwise set ¢; = =T —*. It’s easy to check that this choice of (a,c) satisfies the required

conditions, finishing the proof. O
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