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Abstract

For a vector space Fn over a field F, an (η, β)-dimension expander of degree d is a collection
of d linear maps Γj : Fn → Fn such that for every subspace U of Fn of dimension at most ηn,
the image of U under all the maps,

∑d
j=1 Γj(U), has dimension at least β dim(U). Over a finite

field, a random collection of d = O(1) maps Γj offers excellent “lossless” expansion whp: β ≈ d
for η ≥ Ω(1/d). When it comes to a family of explicit constructions (for growing n), however,
achieving even modest expansion factor β = 1 + ε with constant degree is a non-trivial goal.

We present an explicit construction of dimension expanders over finite fields based on lin-
earized polynomials and subspace designs, drawing inspiration from recent progress on list de-
coding in the rank-metric. Our approach yields the following:
• Lossless expansion over large fields; more precisely β ≥ (1 − ε)d and η ≥ 1−ε

d with d =
Oε(1), when |F| ≥ Ω(n).

• Optimal up to constant factors expansion over fields of arbitrarily small polynomial size;
more precisely β ≥ Ω(δd) and η ≥ Ω(1/(δd)) with d = Oδ(1), when |F| ≥ nδ.

Previously, an approach reducing to monotone expanders (a form of vertex expansion that
is highly non-trivial to establish) gave (Ω(1), 1 + Ω(1))-dimension expanders of constant degree
over all fields. An approach based on “rank condensing via subspace designs” led to dimension
expanders with β &

√
d over large finite fields. Ours is the first construction to achieve lossless

dimension expansion, or even expansion proportional to the degree.
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1 Introduction
The field of pseudorandomness is concerned with efficiently constructing objects that share desirable
properties with random objects while using no or little randomness. The ideas developed in pseu-
dorandomness have found broad applications in areas such as complexity theory, derandomizaton,
coding theory, cryptography, high-dimensional geometry, graph theory, and additive combinatorics.
Due to much effort on the part of many researchers, nontrivial constructions of expander graphs,
randomness extractors and condensers, Ramsey graphs, list-decodable codes, compressed sensing
matrices, Euclidean sections, and pseudorandom generators and functions have been presented. In-
terestingly, while these problems may appear superficially to be unrelated, many of the techniques
developed in one context have been useful in others, and the deep connections uncovered between
these pseudorandom objects have led to a unified theory of “Boolean pseudoranomness”. (See for
instance this survey by Vadhan [Vad12] for more discussion of this phenomenon.)

More recently, there is a developing theory of “algebraic pseudorandomness,” wherein the pseu-
dorandom objects of interest now have “algebraic structure” rather than a purely combinatorial
structure. In these scenarios, instead of studying the size of subsets or min-entropy, we consider
the dimension of subspaces. Many analogs of classical pseudorandom objects have been defined,
such as dimension expanders, subspace-evasive sets, subspace designs, rank-preserving condensers,
and list-decodable rank-metric codes. Beyond being interesting in their own rights, these algebraic
pseudorandom objects have found many applications: for example, subspace-evasive sets have
been used in the construction of Ramsey graphs [PR04] and list-decodable codes [GX12, GW14];
subspace designs have been used to list-decode codes over the Hamming metric and the rank-
metric [GX13, GW14]; and rank-preserving condensers have been used in affine extractors [Gab11]
and polynomial identity testing [KS11, FS12].

In this work, we focus upon providing explicit constructions of dimension expanders over finite
fields. A dimension expander is a collection of d linear maps Γj : Fn → Fn such that, for any
subspace U ⊆ Fn of sufficiently small small dimension, the sum of the images of U under all the
maps Γ1(U)+ · · ·+Γd(U) has dimension which is a constant factor larger than dimU . As suggested
by their name, dimension expanders may be viewed as a linear-algebraic analog of expander graphs.
Indeed, one can imagine creating a graph with vertex set Fn, and then we add an edge from a vertex
u ∈ Fn to the vertices Γj(u).1. Alternatively, one may consider the bipartite graph with left and
right partition given by Fn, and we attach a vertex u ∈ Fn in the left partition to Γj(u) in the right
partition for each j. For this reason, d is referred to as the degree of the dimension expander. The
property of being a dimension expander then says that, given any (sufficiently small) subspace, the
span of the neighborhood will have appreciably larger dimension. Indeed, we use the notation Γj
for the linear maps in analogy with the “neighborhood function” of a graph. Just as with expander
graphs, we seek dimension expanders with constant degree, and moreover we would like to be able
expand subspaces of dimension at most ηn by a multiplicative factor of β, where η = Ω(1) and
β = 1+Ω(1). We refer to such an object as an (η, β)-dimension expander. If β = Ω(d), we deem the
dimension expander degree-proportional. If moreover β = (1−ε)d, we deem the dimension expander
lossless. Via a probabilistic argument, it is a simple exercise to show that constant-degree lossless
dimension expanders exist over every field.

Finally, we indicate that unbalanced bipartite expander graphs play a key role in construc-
tions of extractors and other Boolean pseudorandom objects. In this scenario, the left partition
is significantly larger than the right partition, but we still have that sufficiently small subsets U

1In general, this yields a directed graph. However, we may assume the maps Γj are invertible and then add the
maps Γ−1

j to the collection, which makes the graph undirected.
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of the left partition expand significantly, with (1 − ε)d|U | neighbors in the right partition in the
lossless case. Such unbalanced expanders are closely related to randomness condensers, which
preserve all or most of the min-entropy of a source while compressing its length. The improved
min-entropy rate at the output makes subsequent extraction of near-uniformly random bits eas-
ier. Indeed, the extractors in [GUV09] were obtained via this paradigm, once lossless expanders
based on list-decodable codes were constructed. Inspired by this, we consider the challenge of
constructing unbalanced dimension expanders: for N and n not necessarily equal, we would like
a collection of maps Γ1, . . . ,Γd : FN → Fn that expand sufficiently small subspaces by a factor of
≈ d. We quantify the “unbalancedness” of the dimension expander by b = N

n , and we refer to it
as a b-unbalanced dimension expander in Fn. Again, if the expansion factor is Ω(d) we deem the
unbalanced dimension expander degree-proportional, while if the expansion factor is (1 − ε)d we
deem it lossless.

1.1 Our results

We provide various explicit constructions of dimension expanders. More precisely, we have a family
of sets of matrices {{Γ(nk)

1 , . . . ,Γ(nk)
d }}k∈N for an infinite sequence of integers n1 < n2 < · · · , where

each Γ(nk)
j is an nk × nk matrix (or nk × bnk matrix in the case of b-unbalanced expanders). The

family is explicit if there is an algorithm outputting the list of matrices Γ(nk)
1 , . . . ,Γ(nk)

d in poly(nk)
field operations.

First of all, we provide the first explicit construction of a lossless dimension expander. Moreover
we emphasize that the η parameter is optimal as well, as one cannot hope to expand subspaces of
dimension more than n

d by a factor of ≈ d.

Theorem 1.1 (Informal Statement; cf. Theorem 5.2). For all ε > 0 constant, there exists an
integer d = d(ε) sufficiently large such that there is an explicit family of (1−ε

d , (1− ε)d)-dimension
expanders of degree d over Fn when |F| ≥ Ω(n).

The main drawback of the above result is the constraint on the field size. Our next result allows
for smaller field sizes, but we are only able to guarantee degree-proportional expansion. We remark
that prior to this work, no explicit constructions of degree-proportional dimension expanders were
known.

Theorem 1.2 (Informal Statement; cf. Theorem 5.1). For all δ > 0 constant, there exists an
integer d = d(δ) sufficiently large such that there is an explicit family of

(
Ω
(

1
δd

)
,Ω(δd)

)
-dimension

expanders of degree d over Fn when |F| ≥ nδ.

Moreover, our paradigm is flexible enough to allow for the construction of unbalanced dimension
expanders. We remark that while the results of Forbes and Guruswami [FG15] could be adapted
to obtain nontrivial constructions of unbalanced expanders, our work is the first to explicitly state
this. Furthermore, our work is the first to achieve lossless expansion, or even degree-proportionality.
Recall that we view unbalanced dimension expanders as mapping FN → Fn and we call it b-
unbalanced dimension expander over Fn where b = N

n .
First, we provide a construction of a lossless unbalanced dimension expander, again over fields

of linear size.

Theorem 1.3 (Informal Statement; cf. Theorem 6.7). For all ε > 0 and integer b ≥ 1, there
exists an integer d = d(ε, b) sufficiently large such that there is an explicit family of b-unbalanced
(1−ε
db , (1− ε)d)-dimension expanders of degree d over Fn when |F| ≥ Ω(n).
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This result is again complemented by a construction of degree-proportional unbalanced dimen-
sion expanders over fields of arbitrarily small polynomial size.

Theorem 1.4 (Informal Statement; cf Theorem 6.6). For all δ > 0 and integer b ≥ 1, there
exists an integer d = d(δ, b) sufficiently large such that there is an explicit family of b-unbalanced(
Ω
(

1
δbd

)
,Ω(δd)

)
-dimension expanders of degree d over Fn when |F| ≥ nδ.

Our final contribution is to define subspace evasive subspaces, and observe that they yield degree-
proportional dimension expanders. Informally, a subspace evasive subspace H is an Fq-subspace
that has small intersection with any subspace of bounded dimension defined over an extension field.
(To properly define this notion, it is best to identify Fnq with Fqn , and then consider Fqd-subspaces
of Fqn for d|n.)

Theorem 1.5 (Informal Statement; cf. Proposition A.4). Suppose there exists an explicit construc-
tion of a subspace evasive subspace H with parameters approximately matching those achievable by
a random subspace. Then, there is an explicit construction of a degree-proportional dimension
expander.

1.2 Our approach

Our approach for constructing dimension expanders uses ideas recently developed in the context of
list-decoding rank-metric codes. A rank-metric code is a set of matrices C ⊆ Fm×n with m ≥ n, and
we define the rank-distance between matrices A,B to be dR(A,B) = rank(A−B). A code C is said
to be (ρ, L)-list-decodable if, for any Y ∈ Fm×n, the number of matrices in C at rank-distance at most
ρn from Y is at most L. A line of work [GWX16] succeeded in constructing high-rate rank-metric
codes which are list-decodable up to the Singleton bound.2 The code may also readily be seen to be
list-recoverable in the following sense: given vector spaces V1, . . . , Vn ⊆ Fm of bounded dimension,
the number of matrices in A ∈ C with Ai ∈ Vi for all i ∈ [n] is bounded, where Ai denotes the ith
column of A. The code constructed in [GWX16] is a carefully selected subcode of the Gabidulin
code [Gab85], which is based on the evaluation of low degree linearized polynomials and is the
analog of Reed-Solomon codes for the rank metric. Briefly, the Gabidulin code G[n,m, k, q] is
obtained by evaluating linearized polynomials f(X) =

∑k−1
i=0 fiX

qi ∈ Fqm [X] at the Fq-linearly
independent points α1, . . . , αn ∈ Fqm , and then identifying the vector (f(α1), . . . , f(αn)) with the
matrix in Fm×nq obtained by expressing f(αj) ∈ Fqm as an element of Fmq by fixing a basis for Fqm
over Fq. The q-degree of f =

∑k−1
i=0 fiX

qi is the maximal i such that fi 6= 0.
In the case of Boolean pseudorandomness, not long after the construction of Parvaresh-Vardy

codes and folded Reed-Solomon codes [PV05, GR08], the techniques used to prove list-decodability
of these codes were adapted to show lossless expansion properties of unbalanced expanders built
from these codes [GUV09]. Our approach is strongly inspired by the connection between list
recovery and expansion that drives [GUV09] and its instantiation with algebraic codes shown to
achieve optimal redundancy for list decoding. Indeed, our methodology can be viewed as an
adaption of the GUV approach to the “linearized world”. Various challenges arise in attempting
to adapt the approach of the GUV framework to the setting of Gabidulin-like codes. For instance,
we are no longer able to “append the seed” (in our context, the field element αj) to the output
of the neighborhood functions as is done in [GUV09], as that will prevent the maps from being
linear.3 More significantly, we also need to perform a careful “pruning” of subspaces which arise

2The Singleton bound from coding theory over the Hamming metric possesses a natural analog in the rank-metric
case.

3One could instead try tensoring the output with the seed, but it is unclear to us how to make this approach work
without suffering a significant hit in the expansion factor.
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in the analysis by exploiting the extra structure possessed by these subspaces. In turn this calls
for better “subspace designs” which we construct. Broadly speaking, our approach necessitates the
use of more sophisticated ideas from linear-algebraic list-decoding than were present in [GUV09].

We now describe our approach in more detail. Let Fqn [X; (·)q]<k denote the space of all lin-
earized polynomials of q-degree less than k. We fix a subspace F ⊆ Fqn [X; (·)q]<k of dimension n
over Fq, and then each Γj is simply the evaluation of f ∈ F at a point αj ∈ Fqn , i.e., Γj(f) = f(αj).
We will in fact choose α1, . . . , αd to span a degree d field extension Fh over Fq.

The analysis of this construction mirrors the proof of the list-decodability of the codes from
[GWX16] and we sketch it here. In contrapositive, the dimension expander property amounts to
showing that for every subspace V ⊆ Fqn of bounded dimension, the space of f ∈ F such that
f(αj) ∈ V ∀j ∈ [d] has dimension about a factor d smaller. So we study the structure of the space
of polynomials f ∈ Fqn [X, (·)q]<k which, for some fixed subspace V , have f(αj) ∈ V for all j ∈ [d],
and show that it forms a periodic subspace (cf. Definition 2.7). Thus, the challenge at this point is
to find an appropriate subspace F ⊆ Fqn [X; (·)q]<k that has small intersection with every periodic
subspace.

We accomplish this by using an appropriate construction of a subspace design (cf. Definition 2.6).
Subspace designs were originally formulated for applications to algebraic list-decoding, where they
led to optimal redundancy list-decodable codes over small alphabets [GX13] and over the rank-
metric [GWX16]. Briefly, subspace designs are collections of subspaces {Hi}ki=1 such that, for any
subspace W of bounded dimension, the total intersection dimension

∑k
i=1 dim(Hi ∩W ) is small.

In fact, we will be interested in a slightly more general object: we are only required to have small
intersection with Fh-subspaces W , where we recall that Fh is an extension field of Fq. Once we
have a good subspace design, it will suffice to define F =

{
f(X) =

∑k−1
i=0 fiX

qi : fi ∈ Hi+1
}
.

Thus, we have reduced the task of constructing dimension expanders to the task of constructing
subspace designs. We provide two constructions, yielding our two claimed constructions of dimen-
sion expanders. Both use an explicit subspace design given in [GK16] as a black box (cf. Lemma 4.1).
We remark that in this work the authors only considered the d = 1 case, i.e., the Hi’s were required
to have small intersection with all Fq-subspaces, and not just Fh-subspaces. Thus, our task is
easier in the sense that we only require intersection with Fh-subspaces to be small. However, for
our purposes, we will require a better bound on the total intersection dimension than that which
is guaranteed by [GK16]. We also remark that this construction requires linear-sized fields which
prevents us from obtaining dimension expanders over fields of subpolynomial size.

The subspace design which yields our degree-proportional expander is more elementary so we
describe it first. Essentially, we take the subspace design of [GK16] and define it over an “interme-
diate field” F`, i.e., Fq ⊆ F` ⊆ Fh. By appropriately choosing the degree of the extension we are
able to guarantee smaller intersections with Fh-subspaces and also allow q to be smaller (as it is
now only ` that must be linear in n, and we can take ` ≈ q1/δ).

Our construction which yields lossless dimension expanders is more involved. We take the
construction of [GK16] and now view it as lying in Fq[Y ]<δn (for an appropriately chosen constant
δ > 0), where Fq[Y ]<δn denotes the Fq-vector space of polynomials of degree < δn. We then map
each of the subspaces into Fn/dh by evaluating the polynomials at a tuple of correlated degree d
places (recall that h = qd). Identifying Fn/dh with Fqn completes the construction. Ideas similar to
the linear algebraic list-decoding of folded Reed-Solomon codes [Gur11, GW13] are used to prove
the final bound on intersection dimension, which with a careful choice of parameters is good enough
to guarantee lossless expansion. For technical reasons, in order to explicitly construct the degree d
place we require n = q − 1.
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Lastly, while we are able to use explicit constructions of subspace designs to obtain degree-
proportional dimension expanders, we observe that with high probability a random Fq-subspace
H of dimension n/k will have small intersection with every Fh-subspace W of bounded dimension.
We refer to such an H as a subspace evasive subspace (cf. Definition A.1). Then, instantiating our
approach with F =

{
f(X) =

∑k−1
i=0 fiX

qi : fi ∈ H
}

will provide a degree-proportional dimension
expander. Thus, an explicit construction of a subspace evasive subspace with parameters matching
the probabilistic construction would yield an explicit degree-proportional dimension expander. We
leave the construction of such an H, which seems like an interesting object in its own right, for
future work.

1.3 Previous work

We now survey previous work on dimension expanders. Previous constructions have followed one
of three main approaches: the first uses Cayley graphs of groups satisfying Kazhdan’s property T ,
the second uses monotone expanders, and the third uses rank condensers.

Property T . The problem of constructing dimension expanders was originally proposed by
Wigderson [Wig04, BISW04]. Along with the definition, he conjectured that dimension expanders
could be constructed with Cayley graphs. This is in analogy with expander graphs, where such
approaches have been very successful. To construct an expanding Cayley graph, one uses a group
G with generating set S satisfying Kazhdan’s property T . Wigderson conjectured (see Dvir and
Wigderson [DW10], Conjecture 7.1) that an expanding Cayley graph would automatically yield a
dimension expander. More precisely, if one takes any irreducible representation ρ : G→ GLn(F) of
the group G, then ρ(S) would provide a dimension expander.

In characteristic zero, Lubotzky and Zelmanov [LZ08] succeeded in proving Wigderson’s conjec-
ture. Unfortunately, their approach intrinsically uses the notion of unitarity which does not possess
a meaningful definition over positive characteristic. They also provided an example of an expanding
group whose linear representation over a finite field does not yield a dimension expander, although
in the example the characteristic of the field divides the order of the group. In an independent
work, Harrow [Har08] proved the same result in the context of quantum expanders, which imply
dimension expanders in characteristic zero. The following theorem summarizes this discussion.

Theorem 1.6 ([LZ08, Har08]). Let F be a field of characteristic zero, n ≥ 1 an integer. There
exists an explicit (1/2, 1 + Ω(1))-dimension expander over Fn of constant degree.

Unfortunately, this approach is inherently unable to construct unbalanced dimension expanders.
Moreover, it is unclear to us if it is possible to obtain expansion proportional to the degree via this
strategy.

Monotone expanders. Consider a bipartite graph G with left and right partition given by [n],
and let Γ1, . . . ,Γd : [n] → [n] denote the neighbor (partial)4 functions of the graph, i.e., each left
vertex i ∈ [n] is connected to Γj(i) whenever it’s defined. One can then define the linear maps
Γ′1, . . . ,Γ′d which map ei 7→ eΓj(i) whenever Γj(i) is defined and then extending linearly, where the
ei are the standard basis vectors. It is easily seen that if G is an expander, the corresponding
collection {Γ′j}dj=1 will expand subspaces of the form span{ei : i ∈ S} for S ⊆ [n]. To expand all
subspaces (and hence obtain dimension expanders), Dvir and Shpilka [DS11] implicitly observed
that it is sufficient for the maps Γj to be monotone (this observation is made explicit in [DW10]).

4That is, Γj need only be defined on a subset of [n].
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Note that the matrices Γ′j have entires in {0, 1}, and they form a dimension expander over every
field.

Thus, in order to construct dimension expanders, it suffices to construct monotone expander
graphs. Unfortunately, constructing monotone expander graphs is a highly non-trivial task: in-
deed, the standard probabilistic arguments seem insufficient to even prove the existence of mono-
tone expanders (see [DW10, BY13]). Nonetheless, Dvir and Shpilka [DS07] succeeded in con-
structing monotone expanders with logarithmic degree, as well as constant-degree expanders with
inverse-logarithmic expansion. Later, using the zig-zag product of Reingold, Vadhan and Wigder-
son [RVW02], Dvir and Wigderson [DW10] constructed monotone expanders of degree log(c) n (the
c-th iterated logarithm) for any constant c. Moreover, given any constant-degree monotone ex-
pander as a starting point (which is not known to exist via the probabilistic method), their method
is capable of constructing a constant degree monotone expander graph. Lastly, by a sophisticated
analysis of expansion in the group SL2(R), Bourgain and Yehudayoff [BY13] were able to construct
explicit monotone expanders of constant degree. Thus, we have the following theorem.

Theorem 1.7 ([BY13]). Let n ≥ 1 be an integer. There exists an explicit (1/2, 1+Ω(1))-dimension
expander of degree O(1) over Fn, for every field F.

Unfortunately, just as with the previous approach, it is unclear to us if this argument could be
adapted to yield degree-proportional dimension expanders.

Rank condensers. This final approach to constructing dimension expanders, developed by
Forbes and the first author [FG15], uses rank condensers. Unlike the constructions of the previous
sections, it inherently uses properties of finite fields and ideas from algebraic pseudorandomness
more broadly, and thus is most in the spirit of our work. The construction proceeds in two steps.
First, one “trivially” expands the subspaces by a factor of d by defining Tj : Fn → Fn ⊗ Fd map-
ping v 7→ v ⊗ ej . The challenge is then to map Fn ⊗ Fd ∼= Fnd back to Fn such that subspaces
do not decrease in dimension too much. This is precisely the problem of lossy rank condensing,
namely, of constructing a small collection of linear maps Sk : Fnd → Fn such that, for any subspace
U of bounded degree, there exists some Sk such that dimSk(U) ≥ (1 − ε) dimU . To complete
the construction, one takes the set of all SkTj for all k, j. We remark that the construction of
the rank condenser from this work used the subspace designs of [GK16], providing more evidence
for the interrelatedness of the objects studied in algebraic pseudorandomness. Unfortunately, the
construction of subspace designs used in this work require polynomially large fields. The authors
are able to decrease the field size using techniques reminiscent of code-concatenation at the cost of
certain logarithmic penalties.

The following theorem was obtained.

Theorem 1.8 ([FG15]).

1. Let n, d ≥ 1. Assume |F| ≥ Ω(n2). There exists an explicit (Ω(1/
√
d),Ω(

√
d))-dimension

expander in Fn of degree d.

2. Let Fq be a finite field, n, d ≥ 1. There exists an explicit (Ω(1/d logq(dn)),Ω(d))-dimension
expander in Fnq of degree O(d2 logq(dn)).

In order to improve the dependence on the field size, improved subspace designs over small
fields were constructed by Guruswami, Xing and Yuan [GXY17]. These subspace designs yield a
family of explicit (Ω(1/ logq logq n), 1 + Ω(1))-dimension expander of degree O(logq n) over Fnq .
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1.4 Organization

In Section 2 we set notation and define the various pseudorandom objects that we use in our
construction. We also provide probabilistic arguments ascertaining the existence of good dimension
expanders in order to set expectations. In Section 3 we prove that the problem of constructing
dimension expanders can be reduced to that of constructing appropriate subspace designs, which
is the task we address in Section 4. In Section 5, we put all of the pieces together to deduce our
main theorems for balanced dimension expanders. In Section 6 we show that all our results readily
adapt to the case of unbalanced expanders. Finally we summarize our work and list open problems
in Section 7, while Appendix A contains a discussion of subspace evasive subspaces. On a first
reading, we recommend the reader skim the definitions in Section 2, and then focus on the core of
the paper, which is contained in Sections 3 and 4.

2 Background
Notation. First, we briefly summarize the notation that we will use regularly (other notation
will be introduced as needed). F will always refer to an arbitrary field, q always denotes a prime
power, and Fq denotes the finite field with q elements. We denote [n] := {1, . . . , n}. We write a|b
to assert that the integer a divides the integer b without remainder.

Given a subspace U ⊆ Fn and a linear map T : Fn → Fm, T (U) = {Tu : u ∈ U} denotes the
image of the subspace U under the map T . Given two subspaces U, V ⊆ Fn, U + V = {u+ v : u ∈
U, v ∈ V } denotes their sum, which is also a subspace.

The finite field with qn elements, i.e., Fqn , has the structure of a vector space over Fq of dimension
n. Thus, we often identify Fqn with Fnq . Moreover, if h = qd is a power of q and d|n, so Fh ⊆ Fqn ,
the field Fqn also has the structure of a vector space over Fh of dimension n/d. Throughout this
work, we will always assume d|n and write n = md.

We will sometimes have subspaces of W ⊆ Fqn that are linear over Fh, i.e., for all w ∈ W
and α ∈ Fh we have αw ∈ W . When we wish to emphasize this, we will say that W is an Fh-
subspace. Moreover, we will write dimFq W or dimFhW if we need to emphasize that the dimension
is computed when viewing W as an Fq-subspace or as an Fh-subspace, respectively.

A q-linearized polynomial f is a polynomial of the form f(X) =
∑k−1
i=0 fiX

qi . We denote the
space of q-linearized polynomials with coefficients in Fqn as Fqn [X; (·)q]. The q-degree of a linearized
polynomial f(X) =

∑k−1
i=0 fiX

qi is the maximum i such that fi 6= 0, and is denoted degq f . We
denote Fqn [X; (·)q]<k =

{
f ∈ Fqn [X; (·)q] : degq f < k

}
, which we remark is a k-dimensional vector

space over Fqn .
Note that if α, β ∈ Fqn and a, b ∈ Fq then for any f ∈ Fqn [X; (·)q], f(aα+ bβ) = af(α) + bf(β),

i.e., f gives an Fq-linear map from Fqn → Fqn . Moreover, the space of roots of such an f is an
Fq-subspace of dimension at most degq f (assuming f 6= 0).

2.1 Dimension expanders

We now formally define dimension expanders and provide an alternate characterization that we
find easier to reason about.

Definition 2.1 (Dimension expander). Let n, d ≥ 1 be an integer, η > 0 and β > 1. Let Γ1, . . . ,Γd :
Fn → Fn be linear maps. The collection {Γj}dj=1 forms a (η, β)-dimension expander if for all
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Figure 1: Regularly used parameters and notations

Parameter Meaning Comments
n the dimension of the expander growing
q a prime power expanders will be Fq-linear
d the degree of the expander d|n
h a power of q evaluation points span Fh/Fq; h = qd

k q-degree bound for linearized polynomials 1 ≤ k ≤ d, k|d
Fqn [X, (·)q]<k q-linearized polynomials of q-degree < k domain of expanders is a subspace

Fqn degree n extension of Fq image space of expander
m degree of Fqn/Fh m = n

d
N dimension of domain for unbalanced expanders k|N
b the “unbalancedness”; assume ∈ Z b = N

n

subspaces U ⊆ Fn of dimension at most ηn,

dim

 d∑
j=1

Γj(U)

 ≥ β dimU .

The degree of the dimension expander is d.

When clear from context we refer to a dimension expander just as an expander. The following
proposition follows easily from the definitions.

Proposition 2.2 (Contrapositive characterization). Let n ≥ 1 be an integer, η > 0 and β > 1.
Let Γ1, . . . ,Γd : Fn → Fn be linear maps. Suppose that for all V ⊆ Fn of dimension at most ηn,

dim {u ∈ Fn : Γj(u) ∈ V ∀j ∈ [d]} ≤ 1
β

dimV .

Then {Γj}dj=1 forms an ( ηβ , β)-dimension expander.

Proof. Let U ⊆ Fn be a subspace of dimension at most (η/β)n and put V =
∑d
j=1 Γj(U). If

dim(V ) > ηn then we are done, so assume dim(V ) ≤ ηn. By the assumption of the proposition,
this tells us that

dim {u ∈ Fn : Γj(u) ∈ V ∀j ∈ [d]} ≤ 1
β

dimV .

Since U ⊆ {u ∈ Fn : Γj(u) ∈ V ∀j ∈ [d]}, we have dimU ≤ 1
β dimV . Rearranging this yields

dimV ≥ β dimU , as was to be shown.

Next, we define a slight generalization of dimension expanders, wherein the domain and codomain
may no longer have the same dimension. That is, the linear maps Γj now map FN → Fn, where
N,n may not be equal. We parametrize the “unbalancedness” of the dimension expander by b = N

n .
In our construction we will assume for simplicity that b ∈ Z, although we note that this is not a
fundamental restriction. The formal definition is as follows.
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Definition 2.3 (Unbalanced dimension expanders). Let N,n, d ≥ 1 be integers, η > 0 and β > 1.
Let Γ1, . . . ,Γd : FN → Fn be linear maps. Set b = N

n . The collection {Γj}dj=1 forms a b-unbalanced
(η, β)-dimension expander if for all subspaces U ⊆ FN of dimension at most ηN ,

dim

 d∑
j=1

Γj(U)

 ≥ β dimU .

The degree of the unbalanced dimension expander is d.

The appropriate generalization of Proposition 2.2 is as follows. As the proof is a very simple
adaptation of the proof of Proposition 2.2 we omit it.

Proposition 2.4 (Contrapositive characterization). Let N,n ≥ 1 be integers, η > 0 and β > 1.
Put b = N

n . Let Γ1, . . . ,Γd : FN → Fn be linear maps. Suppose that for all V ⊆ Fn of dimension at
most ηN ,

dim
{
u ∈ FN : Γj(u) ∈ V ∀j ∈ [d]

}
≤ 1
β

dimV .

Then {Γj}dj=1 forms a b-unbalanced ( ηβ , β)-dimension expander.

We now quote the parameters achievable by a random construction of unbalanced dimension
expanders. This sets the stage and ultimate target to aim for with explicit constructions. We prove
this proposition in Appendix D, and we remark that our argument is completely analogous to that
given in Section C.3 of [FG15].

Proposition 2.5 (Simple generalization of Proposition C.10 of [FG15]). Let Fq be a finite field,
N,n positive integers and put b := N

n . Let β > 1 and η ∈ (0, 1
bβ ). Then, assuming

d ≥ β + b

1− bβη + logq 16 ,

there exists a collection of linear maps Γ1, . . . ,Γd : FNq → Fnq forming a (η, β)-unbalanced dimension
expander.

Thus, for b = 1, if we wish to have β = (1 − ε)d and η = 1−ε
d we may take d = O(1/ε2). We

remark that in Theorem 5.2, we obtain d = O(1/ε3). Similarly, for the b-unbalanced case, if we
would like β = (1 − ε)d and η = 1−ε

bd we may take d = O(b/ε2), while in Theorem 6.7 we obtain
d = O(b/ε3).

2.2 Subspace design

A crucial ingredient in our construction of dimension expanders are subspace designs. They were
originally introduced by two of the authors [GX13] in order to obtain algebraic codes list-decodable
up to the Singleton bound. As in [GWX16], we will be concerned with a slight weakening of this
notion, where we are only concerned with having small intersection with subspaces which are linear
over an extension of the base field, although we will also require the intersection dimension to be
smaller.

Definition 2.6. Let V be a Fqd-vector space. A collection H1, . . . ,Hk ⊆ V of Fq-subspaces is
called a (s,A, d)-subspace design in V if for every Fqd-subspace W ⊆ V of Fqd-dimension s,

k∑
i=1

dimFq(Hi ∩W ) ≤ As .
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We call a subspace design explicit if there is an algorithm outputting Fq-bases for each subspace
Hi in poly(n) field operations.

Remark. In previous works, what we have termed a (s,A, d)-subspace design would have been called
a (s,As, d)-subspace design. We find it more convenient in this work to remove the multiplicative
factor of s from the parameter in the definition.

2.3 Periodic subspaces

We now abstract the kind of structure that will be found in the subspace of Fnq which is mapped
entirely into a low-dimensional subspace of Fnq by the d linear transformations in our dimension
expander construction. We note that our definition here is slightly different in form and notation
than earlier ones in [GX13, GWX16].

Definition 2.7 (Periodic subspaces). For positive integers n, k, s, d with d|n, an Fq-subspace T of
Fkqn is said to be (s, d)-periodic if there exists an Fqd-subspace W ⊆ Fqn of dimension at most s
such that for all j, 1 ≤ j ≤ k, and all ξ1, ξ2, . . . , ξj−1 ∈ Fqn , the Fq-affine subspace

{ξj : ∃v ∈ T with vι = ξι for 1 ≤ ι ≤ j} ⊆ Fqn

belongs to a coset of W . In other words, for every prefix (ξ1, . . . , ξj−1), the possible extensions ξj
to the j’th symbol that can belong to a vector in T are contained in a coset of W .

An important property of periodic subspaces is that they have small intersection with subspace
designs. This is captured by the following proposition.

Proposition 2.8 ([GWX16], Proposition 3.9). Let T be a (s, d)-periodic Fq-subspace of Fkqn, and
H1, . . . ,Hk ⊆ Fqn be Fq-subspaces forming a (s,A, d) subspace design in Fqn. Then T ∩ (H1× · · ·×
Hk) is an Fq-subspace of dimension at most As.

For completeness, we provide the proof in Appendix B.

3 Dimension expander construction
As discussed in the introduction (Section 1), the construction of our dimension expander is inspired
by recent constructions of variants of Gabidulin codes for list decoding in the rank metric. Indeed,
the analysis of our dimension expander proceeds similarly to the analysis of list-decodability of the
rank-metric codes presented in [GWX16]. The presentation here is self-contained algebraically, and
does not refer to any coding-theoretic context or language.

Construction. Our dimension expanders map Fnq → Fnq . We view the domain as

F :=
{
f(X) =

k−1∑
i=0

fiX
qi : fi ∈ Hi, i = 0, . . . , k − 1

}

where H0, . . . ,Hk−1 give a collection of Fq-subspaces of Fqn , each of Fq-dimension n
k (thus, we

assume k|n). We will choose H1, H2, . . . ,Hk forming a subspace design. We view the image space
as Fqn . Let h = qd, and let α1, . . . , αd give a basis for Fh over Fq. We assume d|n and write md = n.
For j = 1, . . . , d, we define

Γj : F → Fqn by f 7→ f(αj) . (1)
That is, each Γj(f) is just the evaluation of f at the basis element αj . These maps are clearly
linear over Fq.
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Analysis. We now prove that the collection {Γj}dj=1 forms a dimension expander.
For a positive integers D, s with s ≤ m, we define LD,s to be the space of polynomials

Q ∈ Fqn [Z0, . . . , Zs−1] of the form Q(Z0, . . . , Zs−1) = A0(Z0) + · · · + As−1(Zs−1) with each Ai ∈
Fqn [X; (·)q]<D, i.e., each Ai is a q-linearized polynomial of q-degree at most D − 1.

Lemma 3.1. Let V ⊆ Fqn be an Fq-subspace of dimension B. If Ds > B, there exists a nonzero
polynomial Q ∈ LD,s such that

∀v ∈ V, Q(v, vh, . . . , vhs−1) = 0 . (2)

Proof. Let v1, . . . , vB give a basis for V over Fq. Then, since γ 7→ γh = γq
d is a linear operation

over Fq, so long as Q(vi, vhi , . . . , vh
s−1
i ) = 0 for all i ∈ [B] we have Q(v, vh, . . . , vhs−1) = 0 for all

v ∈ V . Thus, finding such a Q amounts to solving a homogeneous linear system over Fqn with B
constraints. Since the Fqn-dimension of LD,s is Ds > B, a nonzero Q ∈ LD,s meeting Condition (2)
must exist.

Given a polynomial g(X) = g0 + g1X + · · · + grX
r and an automorphism τ of Fqn , we write

gτ for the polynomial gτ (X) = τ(g0) + τ(g1)X + · · · + τ(gr)Xr, and let gτ i = (gτ i−1)τ . We let
σ : γ 7→ γh, i.e., σ is the Frobenius automorphism of Fhm = Fqn over Fh.

Lemma 3.2. Let f ∈ Fqn [X] be a q-linearized polynomial with q-degree at most k−1. Let V ⊆ Fqn
be an Fq-subspace, and Q ∈ LD,s a polynomial satisfying (2). Suppose that f(α) ∈ V for all
α ∈ Fh = Fqd and that D ≤ d− k + 1. Then

A0(f(X)) +A1(fσ(X)) + · · ·+As−1(fσs−1(X)) = Q(f(X), fσ(X), . . . , fσs−1(X)) = 0 . (3)

Proof. Let α ∈ Fh. Since f(α) ∈ V by assumption, we have

Q(f(α), f(α)h, . . . , f(α)hs−1) = 0

as we have assumed Q satisfies Equation (2). Now, since α ∈ Fh, we have αh = α, so

f(α)h =
(
k−1∑
i=0

fiα
qi
)h

=
k−1∑
i=0

fhi (αqi)h =
k−1∑
i=1

fhi α
qi = fσ(α) ,

and by iterating we have f(α)hi = fσ
i(α) for all i = 0, . . . , s− 1. Thus, we find that for all α ∈ Fh,

Q(f(α), fσ(α), . . . , fσs−1(α)) = 0 .

Now, the univariate polynomial Rf (X) := Q(f(X), fσ(X), . . . , fσs−1(X)) ∈ Fqn [X] has q-degree at
most (D − 1) + (k − 1) = D + k − 2. Thus, if D ≤ d − k + 1, the q-degree of Rf (X) is at most
d − 1. Since it vanishes on Fh, an Fq-subspace of dimension d, we conclude that Rf (X) must be
the 0 polynomial.

Lemma 3.3. The set of solutions to Equation (3), for any nonzero Q ∈ LD,s (for arbitrary D), is
an (s− 1, d)-periodic subspace.

Proof. First, by replacing A0, . . . , As−1 with Aq
j

0 , . . . , A
qj

s−1 for an appropriate j and identifying Xqn

with X (which is valid since we only ever evaluate the polynomials on elements of Fqn), we may
assume that there exists an i∗ ∈ {0, . . . , s − 1} such that Ai∗ has a nonzero coefficient on X. (Of
course, this might increase the q-degree of the Ai.)
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Write Aι(X) = aι,0X + aι,1X
q + aι,2X

q2 + · · · for ι = 0, . . . , s− 1. Then, for ` = 0, 1, . . . , k− 1,
we define

B`(X) := a0,`X + a1,`X
h + · · ·+ as−1,`X

hs−1
.

Since ai∗,0 6= 0, we see that B0 6= 0. Since s − 1 ≤ m − 1, if W = ker(B0), we find that W is an
Fh-subspace of Fqn = Fhm of dimension at most s− 1.

The condition (3) informs us that

A0(f(X)) +A1(fσ(X)) + · · ·+As−1(fσs−1(X)) = 0 . (4)

The coefficient of X in the left hand size of (4) is B0(f0); upon equating it to 0, we see f0 ∈W .
Now, fix an i ∈ {1, . . . , k − 1}. The coefficient of Xqi in the left hand side of (4) is

Bi(f q
i

0 ) +Bi−1(f q
i−1

1 ) + · · ·+B1(f qi−1) +B0(fi) .

Upon equating this coefficient to 0, we see that fi ∈ W + θi, where θi ∈ Fqn is determined by
f0, f1, . . . , fi−1. Explicitly, we can take θi = −Bi(f q

i

0 ) − Bi−1(f q
i−1

1 ) − · · · − B1(f qi−1). Therefore,
for each choice of (f0, f1, . . . , fi−1), fi must belong to a coset of the subspace W . This shows that
the solutions lie in a (s− 1, d)-periodic subspace.

Equipped with these lemmas, we are in position to deduce our main theorem for this section.

Theorem 3.4. Let {Hi}k−1
i=0 give a (s,A, d)-subspace design for all s ≤ µn for some 0 < µ < 1/d.

Then {Γj}dj=1 is a (µA, d−k+1
A )-dimension expander. Moreover if the subspace design is explicit

then the dimension expander is explicit.

Proof. We will appeal to Proposition 2.2. Let V ⊆ Fqn be an Fq-subspace of dimension B ≤
(d− k + 1)µn. Let

U := {f ∈ F : Γj(f) ∈ V ∀j ∈ [d]}.

By the Fq-linearity of the polynomials f and the fact that α1, . . . , αd gives a basis for Fh over Fq,
we may rewrite this as

U = {f ∈ F : f(α) ∈ V ∀α ∈ Fh} .

Let D = d − k + 1 and choose the integer s such that B
D < s ≤ B

D + 1 ≤ µn + 1. As µ < 1/d, we
have s ≤ n/d = m. By Lemma 3.1, we have a nonzero Q ∈ LD,s such that Q(v, vh, . . . , vhs−1) = 0
for all v ∈ V . We then have that every f ∈ F satisfies (3), so we conclude that U is contained
in a (s − 1, d)-periodic subspace. Since s − 1 ≤ µn, our assumption on {Hi}k−1

i=0 combined with
Proposition 2.8 tells us that U is contained in an affine subspace over Fq of dimension at most
A(s− 1). In particular, dimFq U ≤ A(s− 1). Recalling s− 1 ≤ B

D ,

dimFq U ≤ A
B

D
= A

D
dimFq V .

Applying Proposition 2.2 with η = Dµ and β = D
A , we conclude that {Γj}dj=1 gives a (µA, DA )-

dimension expander, as was to be shown.
Finally, as for the explicitness, suppose that H1, . . . ,Hk are explicit. Thus, in poly(n) field

operations we may output Fq-bases B1, . . . ,Bk for H1, . . . ,Hk. Then, the we construct the basis
B = {f =

∑k−1
i=0 fiX

qi : fi ∈ Bi, i ∈ [k]}, and enumerate B = {g1, . . . , gn}. Finally, for j ∈ [d] we
output the matrix Γj obtained by evaluating g1(αj), . . . , gn(αj), writing each gi(αj) in an Fq-basis
for Fqn , and then putting gi(αj) as the i-th column of Γj .
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Intuitively, we have that subspaces of dimension As are expanded to subspaces of dimension
(d − k + 1)s/A. This informs what we should hope for from our subspace designs. In particular,
obtaining A = O(1) is enough to obtain a degree proportional expander (by setting k = Θ(d)),
while if A ≈ 1 + ε and k ≈ εd we can obtain a lossless expander. With these goals in mind, we
turn our attention to constructing subspace designs.

4 Constructions of subspace designs
For the case of d = 1, explicit constructions of subspace designs have been given in previous
works. The first explicit construction was given in [GK16], using ideas which had been developed
in constructions of list-decodable codes. This construction was subsequently improved over fields
of small size in [GXY17].

A previous construction of a subspace design for d > 1 was given in [GWX16]. In this work,
a subspace design over the base field (i.e., for d = 1) was intersected with a subspace evasive set
from [DL12]. However, for our purposes, the size of the intersection dimension (i.e., the product
As) of this construction is too large. In that work, the authors were more concerned with ensuring
that the Hi’s had large dimension; however, we only require that the Hi’s have dimension n/k.

We provide two constructions of subspace designs in this work, yielding our two constructions of
dimension expanders. The first construction yields a degree-proportional dimension expander over
fields of size nδ (for arbitrarily small constant δ). The next yields a lossless dimension expander.
The only drawback is that it requires a field of size linear in n (for technical reasons, we take
q − 1 = n). We present our first construction in Section 4.1 and our second construction in
Section 4.2.

Both of our constructions use as a black box a subspace design provided in [GK16]. Specifically,
by taking r = 2 in Theorem 7 of [GK16], we obtain a subspace design with the following parameters.

Lemma 4.1. For all positive integers s, t,m and prime powers ` satisfying s ≤ t ≤ m < `, there
is an explicit collection of M ≥ `2

4t F`-spaces V1, V2, . . . , VM ⊆ Fm` , each of codimension 2t, which
forms an (s, m−1

2(t−s+1) , 1) subspace design in Fm` .

4.1 Subspace designs via an intermediate field

This first construction takes the subspace design of Lemma 4.1 defined over an intermediate field
F`. That is, we fix an integer 1 < c < d such that c|d so that, for ` = qc, Fq ⊆ F` ⊆ Fh. Then, if
ω1, . . . , ωm gives a basis for Fhm/Fh, define

L =
{

m∑
i=1

aiωi : ai ∈ F`

}
.

This is an F`-subspace of Fhm = Fqn of F`-dimension m, as ω1, . . . , ωm are linearly independent
over Fh and so a fortiori are linearly independent over the subfield F`. Thus, L ' Fm` , and we fix
an F`-linear isomorphism ψ : Fm` → L. Note that an F`-linear map is automatically Fq-linear, so,
in particular, the dimension of Fq-subspaces in Fm` are preserved by ψ. Then, if V1, . . . , Vk give the
subspace design from Lemma 4.1, we define Hi := ψ(Vi) for i = 1, . . . , k.

Our analysis of the subspace design makes use of the following lemma, whose proof is provided
in Appendix C.

Lemma 4.2. Let W be an Fh-subspace of Fqn and let U := W ∩ L. Then U is an F`-subspace of
L and dimF` U ≤ dimFhW .
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With this lemma we are in a position to prove our main proposition for this section.

Proposition 4.3. Let ` = qc with c = d
k ·

m
m−2t , where 1 ≤ k < d. For all 1 ≤ s < t < ` and

1 ≤ k < d such that `2 ≥ 4kt, k|d, m|k(m− 2t) and k(m− 2t)|n, there is an explicit construction
of {Hi}ki=1 that forms a (s, dk ·

m−1
m−2t ·

m
2(t−s) , d)-subspace design in Fqn. Furthermore dimFq Hi = n

k
for all i = 1, . . . , k.

Proof. The condition that k|d implies k|n, so n
k ∈ Z. The condition that k(m− 2t)|n implies that

c ∈ Z. Finally, the condition that m|k(m− 2t) implies c|d and so F` ⊆ Fh ⊆ Fqn . We take the first
k subspaces {Vi}ki=1 given in Lemma 4.1 (which is valid since `2/(4t) ≥ k) and define Hi = ψ(Vi)
for i = 1, . . . , k. For any F`-subspace U ⊆ L of F`-dimension u < t, we have

k∑
i=1

dimF`(U ∩Hi) =
k∑
i=1

dimF`(ψ
−1(U) ∩ Vi) ≤

(m− 1)u
2(t− u+ 1) .

Now for any Fh-subspace W ⊆ Fqn , Lemma 4.2 tells us that the intersection U := W ∩ L is an
F`-subspace in L of dimension at most s. Let u ≤ s be the F`-dimension of U . As W ∩Hi = U ∩Hi

(since Hi ⊆ L), we have

k∑
i=1

dimFq(W ∩Hi) = c
k∑
i=1

dimF`(U ∩Hi) ≤
d

k
· m− 1
m− 2t ·

m

2(t− u)u ≤
d

k
· m− 1
m− 2t ·

m

2(t− s)s .

Note that each Hi has F` dimension m − 2t, i.e, it has Fq-dimension c(m − 2t) = n
k by our choice

of parameters.
As for the explicitness, we compute the bases B1, . . . ,Bk for V1, . . . , Vk and then we obtain

bases for H1, . . . ,Hk by applying ψ to each element of the corresponding basis. Thus, assuming
the basis for Vi can be computed in poly(m) field operations we may also compute a basis for Hi is
poly(m) = poly(n) field operations.

We now fix parameters in such a way to show that we can obtain a subspace design over fields
of size nδ for any constant δ > 0.

Corollary 4.4. Let δ > 0 be given and choose an integer r such that 1
2δ < r ≤ 1

δ . Let k, d be integers
such that d = 2k and r|k. Assume moreover that 2r|m. Then, assuming q ≥ nδ, there exists an
explicit construction of {Hi}ki=1 that forms a (s, 8

δ , d)-subspace design in Fqn for all s ≤ 1−2δ
4d n.

Moreover dimFq Hi = n
k for all i = 1, . . . , k.

Proof. Put t = 1
2(1 − 1

r )m, so m − 2t = m
r . Our assumptions on m imply that t ∈ Z. Moreover,

k(m − 2t) = km/r, and so m|k(m − 2t) as we assumed r|k. We also have k(m − 2t) = km/r|md
as k|d and (m/r)|m. Thus, all the divisibility conditions of Proposition 4.3 are satisfied, so let
H1, . . . ,Hk ⊆ Fqn denote the explicit subspace design promised by the proposition, each satisfying
dimFq Hi = n

k .
Defining c as in Proposition 4.3, we have

c = d

k
· m

m− 2t = 2 · m

m/r
= 2r .

Next, assuming s ≤ t/2 = 1
4(1− 1

r )m, we have the bound

d

k
· m− 1
m− 2t ·

m

2(t− s) ≤ 2r · m
1
2(1− 1

r )m
= 4r

1− 1
r

≤ 8r ≤ 8
δ
,
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where the second to last inequality is valid assuming r ≥ 2 (which is valid assuming δ is sufficiently
small). Note further that 1

4(1 − 1
r ) ≥ 1

4(1 − 2δ). Thus, we conclude that H1, . . . ,Hk forms a
(s, 8

δ , d)-subspace design in Fqn for all s ≤ 1−2δ
4d n, as was to be shown.

Lastly, note that c = 2r > 1/δ. To satisfy the conditions of Proposition 4.3 we require ` = qc >
t = 1

2(1 − 1
r )m and `2 ≥ 4kt = 2k(1 − 1

r )m; note that the first condition implies the second for m
large. Thus, we just require q > t1/c, which is implied by q ≥ nδ as t1/c < nδ.

4.2 Construction via correlated high-degree places

This next construction utilizes techniques developed in the context of linear algebraic list-decoding
of folded Reed-Solomon codes [Gur11, GW13]. Briefly, we take a subspace design in the space of
polynomials of bounded degree, and then map it into Fmh in a manner reminiscent of the encod-
ing map of the folded Reed-Solomon code. As we are concerned with bounding the intersection
dimension with Fh-linear spaces, we in fact evaluate the polynomial at degree d places. The details
follow.

Let ζ be a primitive root of the finite field Fq. Choose a real δ ∈ (0, 1) such that δ > 1
k and

δn < q− 1, where we recall 0 < k < d and n = md. Denote by σ the automorphism of the function
field Fq(Y ) sending Y to ζY . The order of σ is q − 1 ≥ m. Given g ∈ Fq(Y ), we abbreviate
gσ := σ(g(Y )) = g(ζY ).5

Denote by Fq[Y ]<δn the set of polynomials of degree less than δn. By Lemma 4.1, there exist
V1, V2, . . . , Vk of Fq[Y ]<δn, each of codimension δn − n

k , which forms a (r, δn−1
δn−n

k
−2r+2 , 1) subspace

design.
Let P (Y ) be an irreducible polynomial of degree d such that P, P σ, . . . , P σm−1 are pairwise

coprime. Consider the map

π : Fq[Y ]<δn → Fmqd , f 7→ (f(P ), f(P σ), . . . , f(P σm−1)) ,

where f(P σj ) is viewed as the residue of f in the residue field Fq[Y ]/(P σj ) ∼= Fqd = Fh. The
Chinese Remainder Theorem guarantees that π is injective. We define

H̃i = π(Vi) =
{

(f(P ), f(P σ), . . . , f(P σm−1)) : f ∈ Vi
}
⊆ Fmh (5)

for i = 1, 2, . . . , k.
We remark that this π is reminiscent the encoding map of the folded Reed-Solomon code (recall

that P σ = P (ζY )), although in this case we evaluate f at the high-degree place P .

Proposition 4.5. If s < (1− δ)m = (1− δ)nd , then the subspaces H̃1, H̃2, . . . , H̃k defined above is
an (s, δ

1−δ ·
m

(δ− 1
k

)m− 2s
d(1−δ)

, d)-subspace design in Fmh . Moreover dimFq H̃i = n
k for all i = 1, . . . , k.

Lastly, when n = q − 1, the subspace design can be constructed explicitly.

Proof. The claim about the Fq-dimension of the H̃i’s follows from the fact that each Vi has Fq-
dimension n

k and the injectivity of π.
Let W be an Fh-subspace of Fmh of dimension s and let {wi = (wi1, . . . , wim)}si=1 be an Fh-basis

of W . Put r = b s
1−δ c and D = b sd(m−r+1)

r c. Then one can verify that

D + δdm < d(m− r + 1) . (6)
5Note that in Section 3 we wrote gσ to denote the polynomial obtained by applying σ to the coefficients of g. We

hope that this notation does not cause any confusion.
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Consider the interpolation polynomial

R(X,Z1, . . . , Zr) := A0(X)Z1 +A1(X)Z2 + · · ·+Ar−1(X)Zr ,

where each Ai(X) ∈ Fq[X] has degree at most D. Consider the homogeneous equation system with
coefficients of Ai(X) as variables

A0(P σj )wi,j+1 +A1(P σj )wi,j+2 + · · ·+Ar−1(P σj )wi,j+r = 0 (7)

for i = 1, 2, . . . , s and j = 0, 1, . . . ,m − r. There are s(m − r + 1) equations in Fh = Fqd and
r(D + 1) coefficients of Ai(X) in Fq in total. Since r(D + 1) > sd(m − r + 1), we can find
polynomials A0, A1, . . . , Ar−1 ∈ Fq[X] of degree at most D that are not all zero such that the
identities (7) hold.

For any w = (w1, w2, . . . , wm) ∈W , we write w =
∑s
i=1 aiwi for some ai ∈ Fh. By (7) we have

A0(P σj )wj+1 +A1(P σj )wj+2 + · · ·+Ar−1(P σj )wj+r

=
s∑
i=1

ai(A0(P σj )wi,j+1 +A1(P σj )wi,j+2 + · · ·+Ar−1(P σj )wi,j+r) = 0
(8)

for j = 0, 1, . . . ,m− r.
Now for any element (w1, w2, . . . , wm) ∈ W ∩ H̃i, there exists a function f ∈ Vi such that

(f(P ), f(P σ), . . . , f(P σm−1)) = (w1, w2, . . . , wm). By the identities (8), we have

A0(P σj )f(P σj ) +A1(P σj )f(P σj+1) + · · ·+Ar−1(P σj )f(P σj+r−1) = 0

for j = 0, 1, . . . ,m− r. This gives

(A0f +A1f
σ−1 + · · ·+Ar−1f

σ−r+1)(P σj ) = 0

for j = 0, 1, . . . ,m − r. As the polynomial A0f + A1f
σ−1 + · · · + Ar−1f

σ−r−1 has degree at most
D + δdm and it has m− r + 1 zeros at irreducible polynomials of degree d, by (6) we must have

A0f +A1f
σ−1 + · · ·+Ar−1f

σ−r+1 = 0 .

Recalling the definition of σ, we have

A0(Y )f(Y ) +A1(Y )f(ζY ) + · · ·+Ar−1(Y )f(ζr−1Y ) = 0 . (9)

Observe that the solutions f ∈ Fq[Y ]<δn to (9) form an Fq-linear space; denote it by U . Our
task now is to bound the dimension of U . This is essentially the content of Lemma 6 in [GW13],
although we include the argument for completeness’ sake. Write f(Y ) = f0 +f1Y + · · ·+fk−1Y

k−1.
By factoring out common powers of Y we may assume that there exists i∗ ∈ {0, 1, . . . , r−1} such

that Ai∗ has a nonzero constant term. Write Ai(Y ) = ai,0+ai,1Y +· · ·+ai,DY D for i = 0, 1, . . . , r−1,
and define the polynomials

Bj(Y ) := a0,j + a1,jY + · · ·+ ar−1,jY
r−1

for j = 0, 1, . . . , k − 1. Note that our assumption on Ai∗ states that ai∗,0 6= 0, so B0 is a nonzero
polynomial of degree ≤ r − 1. Let Λ(Y ) := A0(Y )f(Y ) + A1(Y )f(ζY ) + · · · + Ar−1(Y )f(ζr−1Y ),
which is the 0 polynomial by the identity 9.
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Note that the constant term of Λ is a0,0f0 + a1,0f0 + · · · + ar−1f0 = B0(1)f0. Thus, assuming
B0(1) 6= 0 we find that f0 = 0; otherwise f0 can take an arbitrary value in Fq.

Now fix an ` ∈ {1, 2, . . . , k− 1}. The coefficient on Y ` in Λ(Y ) may be expressed as f`B0(ζ`) +
f`−1B1(ζ`−1) + · · · + f1B`−1(ζ) + f0B`(1). As Λ ≡ 0, this linear form must equal 0. The crucial
observation is that, assuming B0(ζ`) 6= 0, once f0, . . . , f`−1 are fixed there is a unique choice for
f` ∈ Fq such that this linear form is 0 (otherwise f` ∈ Fq is unconstrained). We therefore obtain that
the dimension of U is at most the number of 0 ≤ ` ≤ k− 1 for which B0(ζ`) = 0. As ζ is primitive
and k ≤ q, the elements ζ` for ` = 0, 1, . . . , k − 1 are distinct. As B0 is a nonzero polynomial of
degree ≤ r − 1 we find that there can be at most r − 1 values of ` such that B0(ζ`) = 0. This
implies that dimFq U ≤ r − 1.

Finally it is clear that π−1(W ∩ H̃i) ⊆ U ∩ Vi for i = 1, 2, . . . , k. Thus, we have

k∑
i=1

dimFq(H̃i ∩W ) ≤
k∑
i=1

dimFq(Vi ∩ U) ≤ r(δdm− 1)
δdm− dm

k − 2r + 2
≤ δ

1− δ ·
m

(δ − 1
k )m− 2s

d(1−δ)
· s .

This demonstrates that H̃1, . . . , H̃k form a subspace design as claimed.
Establishing the explicitness of this construction is a bit nontrivial, as there is no known de-

terministic algorithm to find irreducible polynomials of a given input degree. However, a simple
approach is to assume n = q − 1 and take the polynomial P (Y ) = Y d − ζ−1, where we recall that
ζ−1 is a primitive root of Fq. Note that finding such a primitive root can be done in poly(q) time
by brute force. That P (Y ) is irreducible follows from the following proposition.

Proposition 4.6 ([LN94], Chapter 3). Let d ≥ 2 be an integer and α ∈ Fq \{0}. Then the binomial
Xd − α is irreducible in Fq[X] iff the following conditions hold:

1. Each prime factor of d divides ordFq(α) and gcd(d, q−1
ordFq (α)) = 1;

2. q ≡ 1 (mod 4) if d ≡ 0 (mod 4).

Moreover the polynomials P (Y σj ) = P (ζjY ) = ζjY −ζ−1 = ζj(Y −ζ−(j+1)) are also irreducible
and pairwise coprime (as j < m < n = q − 1). Finally evaluating a polynomial f at the place
P σ

j , which amounts to reducing the polynomial modulo Y d − ζ−(j+1), can be done in poly(n) field
operations. Thus, given bases B1, . . . ,Bk for V1, . . . , Vk, we obtain the bases for H̃i by evaluating π
on each element of Bi, respectively.

Setting parameters. By choosing k, d and appropriately we obtain the following corollary.

Corollary 4.7. Let δ > 0 be such that 1/δ ∈ Z and put k = 1/δ2, d = 1/δ3. Assume that
q− 1 = n. There exist H1, . . . ,Hk which form an explicit (s, 1

1−2δ−δ2+2δ3 , d)-subspace design in Fqn
for all s ≤ 1−2δ

d n. Moreover dimFq Hi = n
k for all i = 1, . . . , k.

Proof. Fix an Fh-linear isomorphism ϕ : Fmh → Fqn and define Hi = ϕ(H̃i) for i = 1, 2, . . . , k,
where H̃1, H̃2, . . . , H̃k ⊆ Fmh form the subspace design promised in Proposition 4.5. Since ϕ is
also Fq-linear, the dimensions of Fq-subspaces are also preserved by ϕ. Then, if W ⊆ Fqn is an
Fh-subspace,

k∑
i=1

dimFq(Hi ∩W ) =
k∑
i=1

dimFq(H̃i ∩ ϕ−1(W ))

so H1, . . . ,Hk forms a subspace design in Fqn with the same parameters as H̃1, . . . , H̃k. That
H1, . . . ,Hk are explicit follows easily from the explicitness of H̃1, . . . , H̃k.
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Assuming s ≤ 1−2δ
d n < (1− δ)m, we find

δ

1− δ ·
m

(δ − 1
k )m− 2s

d(1−δ)
≤ δ

1− δ ·
m

δ(1− δ)m− 2(1−δ)δ3m
1−δ

= 1
(1− δ)2 ·

1
1− 2δ2

1−δ
= 1

(1− δ)2 − 2δ2(1− δ) = 1
1− 2δ − δ2 + 2δ3 .

The result now follows from Proposition 4.5.

5 Explicit instantiations of dimension expanders
As outlined in Section 3, our approach for obtaining explicit constructions of dimension expanders
is by reducing to the construction of subspace designs. Specifically, we will will apply Theorem 3.4
with the constructions of Section 4. These results yield Theorems 1.2 and 1.1, respectively.

First, using the subspace design constructed in Corollary 4.4, we obtain a degree-proportional
dimension expander over fields of arbitrarily small polynomial size.

Theorem 5.1. Let δ > 0 be given and assume |Fq| ≥ nδ. Let r be an integer satisfying 1
2δ ≤ r <

1
δ ,

let k be a multiple of r, and let d = 2k. There exists an explicit construction of a (η, β)-dimension
expander of degree d over Fnq whenever 2dr|n, where η = Ω

(
1
δd

)
and β = Ω(δd).

Proof. Using Corollary 4.4, we have an explicit (s,A, d)-subspace design {Hi}ki=1 for all s ≤ µn,
where µ = 1−2δ

4d and A = 8
δ . Moreover dimFq Hi = n

k for all i = 1, . . . , k. Recall that d = 2k, so
d− k+ 1 ≥ d/2. Thus, Theorem 3.4 implies that we have an explicit (η, β)-dimension expander for

η = µA = 1− 2δ
4d · 8

δ
= 2(1− 2δ) · 1

δd
= Ω

(
1
δd

)
and

β = d− k + 1
A

≥ d/2
8/δ = 1

16 · δd = Ω(δd) .

Next, we use the subspace design constructed in Corollary 4.7 to obtain an explicit construction
of a lossless dimension expander.

Theorem 5.2. Fix ε > 0, and choose δ = Θ(ε) sufficiently small and such that 1/δ ∈ Z. Let
d = 1/δ3 and k = 1/δ2 and assume that q−1 = n and d|n. Then there exists an explicit construction
of a (1−ε

d , (1− ε)d)-dimension expander with degree d over Fnq .

Proof. Using Corollary 4.7, there exists a collection {Hi}ki=1 forming a (s,A, d) subspace design for
all s ≤ (1− 2δ)m = 1−2δ

d n, where

A = 1
1− 2δ − δ2 + 2δ3 .

Hence, by Theorem 3.4, using the fact that d− k ≥ d(1− δ) we obtain the expansion factor

β = d− k + 1
A

≥ d(1− δ)(1− 2δ − δ2 + 2δ3) .

By assuming δ ≤ ε/4, this is ≥ (1− ε)d, as desired. The lower bound on η is obtained by plugging
in (1− 2δ)/d for µ in Theorem 3.4:

η = µA ≥ µ = 1− 2δ
d
≥ 1− ε

d
.
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We remark that this construction has degree d = O(1/ε3). Recalling Proposition 2.5, we know
that one could hope for d = O(1/ε2) when η = 1−ε

d and β = (1 − ε)d. Hence, the dependence of
the degree on ε is just a factor of ε away from the probabilistic construction.

6 Unbalanced expanders
For clarity’s sake, we have presented all our results in the context of balanced dimension expanders.
However, as remarked earlier, our techniques are flexible enough to produce unbalanced dimension
expanders. In this section, we state the appropriate generalizations of our results that are required
to construct unbalanced dimension expanders. As the proofs are extremely similar to those given
before, we do not provide full proofs, but merely indicate the details that need to be changed.

We recall Definition 2.3: a b-unbalanced (η, β)-dimension expander of degree d is a collec-
tion Γ1, . . . ,Γd : FN → Fn of linear maps such that for any V ⊆ FN of dimension at most ηN ,
dim

∑
j Γj(V ) ≥ β dimV . We also recall that b = N

n , which we assume to be an integer.

6.1 Unbalanced dimension expander construction

In this subsection, we provide the appropriate generalizations of the results of Section 3.

Construction. Recall that the dimension expanders map FNq → Fnq . We view the domain as

F =
{
f(X) =

k−1∑
i=0

fiX
qi : fi ∈ Hi, i = 0, . . . , k − 1

}

where H0, . . . ,Hk−1 give a collection of Fq-subspaces of Fqn , each of Fq-dimension N
k . Thus, we

now require k|N . As before, H0, . . . ,Hk−1 will form a subspace design. We view the image space
as Fqn . Again h = qd and α1, . . . , αd gives a basis for Fh/Fq. The definition of Γj is just as before:

Γj : F → Fqn ; f 7→ f(αj) .

Analysis. We remark that the statements of Lemmas 3.1, 3.2 and 3.3 remain valid as stated. We
are then able to conclude the following theorem:

Theorem 6.1. Let {Hi}k−1
i=0 give a (s,A, d)-subspace design in Fqn for all s ≤ µN for some µ ∈

(0, 1
bd). Then {Γj}dj=1 is a b-unbalanced (µA, d−k+1

A )-dimension expander.

The only detail which has changed from Theorem 3.4 is that now µ < 1
bd , rather than just

µ < 1
d . Asides from this, the proof proceeds identically to before, appealing now to Proposition 2.4

instead of Proposition 2.2.

6.2 Higher-dimensional subspace designs

In this section we construct subspace designs H1, . . . ,Hk ⊆ Fqn , where the Hi’s now have Fq-
dimension N

k .
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6.2.1 Subspace designs via an intermediate field

First, we note that the proof of Proposition 4.3 still applies in this scenario. Essentially, we just
need to redefine the t parameter in order to ensure that the subspaces have dimension N

k .

Proposition 6.2. Let ` = qc with c = d
k ·

bm
m−2t , where 1 ≤ k < d. For all 1 ≤ s < t < ` such

that `2 ≥ 4kt, k|d, mb|(m− 2t)k and k(m− 2t)|N , there is an explicit construction of {Hi}ki=1 that
forms a (s, dk ·

bm
m−2t ·

m−1
2(t−s) , d)-subspace design in Fqn. Moreover dimFq Hi = N

k for all i = 1, . . . , k.

We now fix the parameters to obtain our subspace designs over fields of arbitrarily small poly-
nomial size.

Corollary 6.3. Let δ > 0 be given and choose an integer r such that 1
2δ ≤ r <

1
δ . We assume δ > 0

is sufficiently small so that r ≥ max{b, 2}. Let k, d be integers such that d = 2k and r|k. Assume
moreover that 2r|mb. Then, assuming q ≥ nδ, there exists an explicit construction of {Hi}ki=1
that forms a (s, 8

δ , d)-subspace design in Fqn for all s ≤ 1−2δb
4bd N . Moreover dimFq Hi = N

k for all
i = 1, . . . , k.

The proof proceeds very similarly to the proof of Corollary 4.4; we just define the appropriate
parameters. Set t = 1

2(1− b
r )m = 1

2db(1−
b
r )N and assume s ≤ t/2. Thus we may take µ = 1−2δb

4db ≤
1−b/r

4db and A is bounded by

d

k
· bm

m− 2t ·
m

2(t− s) ≤ 2r 2
1− 1

r

≤ 8
δ
.

6.2.2 Subspace designs via correlated high-degree places

The results in this section follow from the same arguments as those provided in Section 4.2, except
now we will set δ =

√
b
k and insist that the V1, . . . , Vk ⊆ Fq[X]<δn are chosen to have codimension

δn− N
k .

Proposition 6.4. Fix δ > 0 such that δ > 1
bk and δn < q − 1. If s < (1− δ)m = (1− δ)Nbd , there

exists a collection {H̃i}ki=1 forming an (s, δ
1−δ ·

m
(δ− 1

bk
)m− 2s

d(1−δ)
, d)-subspace design in Fmh . Moreover

dimFq H̃i = N
k for all i = 1, . . . , k.

Lastly, when n = q − 1, the subspace design can be constructed explicitly.

Corollary 6.5. Let δ > 0 be such that 1/δ ∈ Z and put k = b/δ2, d = b/δ3. Assume that n = q− 1
and d|n. There exist H1, . . . ,Hk which form an explicit (s, 1

1−2δ−δ2+δ3 , d)-subspace design in Fqn
for all s ≤ 1−2δ

db N . Moreover dimFq Hi = N
k for all i = 1, . . . , k.

6.3 Explicit instantiations

Finally, we provide the analogous results to those obtained in Section 5. These yield Theo-
rems 1.4 and 1.3, respectively.

First, instantiating Theorem 6.1 with Corollary 6.3 yields

Theorem 6.6. Let δ > 0 (sufficiently small) be given and assume q ≥ nδ. Let r be an integer
in the range ( 1

2δ ,
1
δ ), choose a multiple k of r, and let d = 2k. Let b be an integer. There exists

an explicit construction of a b-unbalanced (η, β)-dimension expander of degree d over Fnq whenever
2dr|nb, where η = Ω

(
1
δbd

)
and β = Ω(δd).
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Then, appealing to Corollary 6.5 instead, we obtain the following.

Theorem 6.7. Fix ε > 0 sufficiently small, and choose δ = Θ(ε) sufficiently small and such that
1/δ ∈ Z. Let k = b/δ2 and d = b/δ3. Suppose that n = q− 1 and d|n. Then there exists an explicit
construction of a (1−ε

bd , (1− ε)d)-dimension expander of degree d over Fq.

As before, we remark that d = O(b/ε3), whereas the existential argument yields d = O(b/ε2).
Moreover we once again emphasize that η is optimal: one cannot expand subspaces of dimension
greater than N

bd = n
d by a factor of ≈ d.

7 Conclusion
In this work we provide the first explicit construction of a lossless dimension expander. Our
construction uses ideas from recent constructions of list-recoverable rank-metric codes, which is in
analogy with the approach taken by [GUV09] in the “Boolean” world. Our approach is sufficiently
general to achieve lossless expansion even in the case that the expander is “unbalanced”, i.e., when
the codomain has dimension smaller than the domain.

The main open problem that remains is to achieve similar constructions over fields of smaller
size. Our construction of lossless expanders requires fields of size q > n, whereas our construc-
tion of degree-proportional expanders requires fields of size nδ for arbitrarily small (constant) δ.
The constraints on the field size arise largely from the constructions of subspace designs that we
employed. Thus, we believe that a fruitful avenue of attack on this problem would be to obtain
constructions of subspace designs over smaller fields.6

The authors of [GXY17] addressed precisely this challenge. In this work the authors do manage
to construct subspace designs over all fields, but the intersection size now grows with logq n. If
q = O(1), then instantiating our approach with these subspace designs only guarantees expansion
if the degree is logarithmic. One could also have q grow polynomially with n and achieve degree-
proportional expanders, but as this does not improve over the intermediate fields approach of
Section 4.1 we have not included it.

Lastly, we recall that our construction of a (1−ε
d , (1 − ε)d)-dimension expander had degree

d = Θ(1/ε3), while the probabilistic argument shows d = O(1/ε2) is sufficient. Moreover if one
is satisfied with a ( 1

2d , (1 − ε)d)-dimension expander then it is sufficient to have d = O(1/ε).
Thus, constructing lossless expanders whose degree has even better dependence on ε would also be
interesting.
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A Subspace evasive subspaces
Recall the discussion from Section 1.2: we wish to find a subspaces H1, . . . ,Hk which have small
total intersection with subspaces W which are linear over Fqd =: Fh. While we have the freedom of
choosing the Hi’s to be distinct subspaces, we observe that there exists a single subspace that has
small intersection with all such subspaces W ! That is, it is possible to take H1 = · · · = Hk =: H,
and still obtain a good subspace design. We call such an H a subspace evasive subspace.

Moreover, we show that by taking a subspace evasive subspace with parameters matching those
achievable by a random subspace, we may obtain degree-proportional dimension expanders. We
find this observation rather surprising, and also demonstrative of the efficiency of our reduction
from dimension expanders to subspace designs.

We begin with the definition germane to this section.

Definition A.1 (Subspace evasive subspace). An Fq-subspace H ⊆ Fqn is called a (s,A, d)-
subspace evasive subspace if for every Fqd-linear subspace W ⊆ Fqn of dimension s,

dimFq(H ∩W ) ≤ As .

We first observe that subspace evasive subspaces naturally yield subspace designs, although the
A parameter degrades by a factor of k.

Observation A.2. Suppose H is (s,A, d)-evasive. The tuple (H,H, . . . ,H), repeated k times,
forms a (s, kA, d)-subspace design.

The following proposition demonstrates that good subspace evasive subspaces exist.

Proposition A.3. Let k, d, n > 2 be positive integers such that qn/4 ≥ m = n/d and k < d. Let H
be a random Fq-subspace of Fqn ∼= Fnq of dimension n/k. Then, with probability at least 1− q−Ω(n),
for every Fh-subspace W of Fqn with dimFh(W ) ≤ m

4 = n
4d ,

dimFq(W ∩H) ≤ dimFh(W )
1− 2/k .

That is, H is (s, 1
1−2/k , d)-evasive for all s ≤ m

4 = n
4d .

Proof. The probability that a fixed set of L vectors that are linearly independent over Fq belong
to H is at most (

qn/k

qn

)L
= q−n(1−1/k)L .

By a union bound, the probability that some Fh-subspace of dimension s has at least L such vectors
belong to H is at most

hms · hsL · q−n(1−1/k)L = qsn · q−L(n(1−1/k)−sd) . (10)

Assuming s ≤ n
4d and taking L ≥ s/(1− 2/k), recalling that k ≥ 3, we have

q−L(n(1−1/k)−sd) ≤ q−
s

1−2/k (n(1−1/k)−n/4) ≤ q−3s(2n/3−n/4) = q−
5
4ns .

Thus, (10) is at most qnsq−
5
4ns = q−

1
4ns. Summing up over all s, 1 ≤ s ≤ m/4, we get that the

desired claim holds for all subspaces W ⊆ Fhm with dimFh(W ) ≤ m/4 except with probability at
most m · q−n/4 ≤ q−n/8 ≤ q−Ω(n).
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We now set k = 3 and apply Theorem 3.4 with this H to obtain a degree-proportional dimension
expander. We remark that we may even have η ≥ 1/d.
Proposition A.4. Let n, d be integers with 3|n, d|n and 3 < d. Let H be the subspace evasive
subspace promised by Proposition A.3, and let {Γj}dj=1 denote the dimension expander constructed
in Section 3 with each Hi = H. Then {Γj}dj=1 forms a degree-proportional dimension expander.
Proof. By combining Proposition A.3 and Observation A.2, we have that (H,H,H) forms a (s, 3A, d)-
subspace design for all s ≤ µn, for A = 3 and µ = 1

4d . Applying Theorem 3.4, this im-
plies that Γ1, . . . ,Γd form an (η, β)-dimension expander for η = µ · 3 · A = 1

4d · 3 · 3 = 9
4d and

β = d−k+1
3A = d−2

9 .

B Proof of Proposition 2.8
In this section we provide a proof of Proposition 2.8, which we restate for convenience.
Proposition B.1 ([GWX16], Proposition 3.9). Let T be a (s, d)-periodic Fq-subspace of Fkqn, and
H1, . . . ,Hk ⊆ Fqn be Fq-subspaces forming a (s,A, d) subspace design in Fqn. Then T ∩ (H1× · · ·×
Hk) is an Fq-subspace of dimension at most As.
Proof. Let h = qd and letW be the Fh-subspace associated to T as in Definition 2.7. For 1 ≤ j ≤ k,
let Tj ⊆ Fjqn denote the projection of T onto the first j coordinates. We will show by induction on
j that

|Tj ∩ (H1 × · · · ×Hj)| ≤ q
∑j

ι=1 dimFq (W∩Hι) . (11)

Once we’ve shown this, since T and H1×· · ·×Hk are both Fq-subspaces, we will be able to conclude

dimFq(T ∩ (H1 × · · · ×Hk)) ≤
k∑
ι=1

dimFq(W ∩Hι) ≤ As ,

where the last inequality follows from the fact that H1, . . . ,Hk form a subspace design.
Hence, we turn our attention to establishing (11) by induction. For the base case of j = 1,

we observe that T1 ⊆ W , as T1 is contained in an affine shift of W and T1 contains the 0 vector.
Hence, we have T1 ∩H1 ⊆W ∩H1, so a fortiori |T1 ∩H1| ≤ |W ∩H1|.

For the induction step, we fix an element (ξ1, . . . , ξj−1) ∈ Tj−1 ∩ (H1 × · · · × Hj−1). As T is
periodic, the set of choices of ξj ∈ Fqn for which (ξ1, . . . , ξj) ∈ Tj is contained in a coset of W ,
say, θj + W for θj ∈ Fqn . Thus, the choices of ξj ∈ Hj for which (ξ1, . . . , ξj) ∈ Tj is contained in
Hj ∩ (θj +W ): since Hj is a subspace, this set is contained in a coset of Hj ∩W . Hence, there are
at most |Hj ∩W | choices for ξj . By induction, |Tj−1 ∩ (H1 × · · · ×Hj−1)| ≤ q

∑j−1
ι=1 dimFq (W∩Hι), so

there are at most this many choices for the prefix (ξ1, . . . , ξj−1) ∈ Tj−1 ∩ (H1 × · · · × Hj−1). We
thus find that there are at most

(
q
∑j−1

ι=1 dimFq (W∩Hι)
)
· qdimFq (W∩Hj) = q

∑j

ι=1 dimFq (W∩Hι) choices for
(ξ1, . . . , ξj) ∈ Tj ∩ (H1 × · · · ×Hj), as desired.

C Proof of Lemma 4.2
In this section we provide a proof of Lemma 4.2, which we restate for convenience. Recall that
` = qc and c|d, so Fq ⊆ F` ⊆ Fh. Also, ω1, . . . , ωm denotes a basis for Fhm/Fh and we define

L :=
{

m∑
i=1

aiωi : a1, . . . , am ∈ F`

}
.
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Lemma C.1. Let W be an Fh-subspace of Fqn and let U := W ∩ L. Then U is an F`-subspace of
L and dimF` U ≤ dimFhW .

Proof. It is clear that U is an F` subspace as Fh ⊇ F`. Suppose u1, . . . , ut ∈ U are linearly
independent over F`; we will show that they are also linearly independent over Fh. Once we have
shown this, the lemma follows.

Put r = d/c and let γ1, . . . , γr denote a basis for Fh/F`. Suppose that
∑t
k=1 akuk = 0 with

a1, . . . , at ∈ Fh; we want to show a1 = · · · = at = 0. Using our bases, we may write ak =
∑r
j=1 bjkγj

and uk =
∑m
i=1 ckiωi for bjk, cki ∈ F`. Thus, we have

t∑
k=1

 r∑
j=1

bjkγj

( m∑
i=1

ckiωi

)
= 0

which, upon rearranging, becomes

m∑
i=1

 r∑
j=1

(
t∑

k=1
bjkcki

)
γj

ωi = 0 .

Since ω1, . . . , ωm form a basis for Fqn/Fh and
∑r
j=1

(∑t
k=1 bjkcki

)
γj ∈ Fh for all i ∈ [m], we deduce

r∑
j=1

(
t∑

k=1
bjkcki

)
γj = 0 ∀i ∈ [m] .

Next, since γ1, . . . , γr form a basis for Fh/F` and
∑t
k=1 bjkcki ∈ F` for all j ∈ [r], we deduce

t∑
k=1

bjkcki = 0 ∀i ∈ [m], j ∈ [r] .

Thus, defining the matrices B = (bjk) ∈ Fr×t` and C = (cki) ∈ Ft×m` , we find BC = 0 (where 0
denotes the r ×m matrix of all zeroes). Moreover, since u1, . . . , ut are assumed to be F`-linearly
independent it follows that the matrix C has full-rank, i.e., rank(C) = t. We therefore have 0 =
rank(BC) = rank(B), i.e., B must be the r× t matrix of zeroes. This shows that a1 = · · · = at = 0,
as desired.

D Random construction of unbalanced dimension expander
In this section, we show that good unbalanced lossless dimension expanders exist. Our argument
is modeled after Section C.2 in [FG15], wherein it is shown that good (balanced) dimension ex-
panders exist. As is standard in the theory of pseudorandomness, our existential argument uses
the probabilistic method.

First, we state a lemma that bounds the probability that a random n×N matrix has low rank.

Lemma D.1. Let M be a uniformly random matrix in Fn×Nq . The probability that rank(M) ≤ r is
at most

4q−(N−r)(n−r) .

Next, we quote a bound on the number of subspaces of a given dimension.
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Lemma D.2. The number of subspaces V ⊆ Fnq of dimension k is at most

4qk(n−k) .

A proof of these lemmas can be found in [GY08].

Lemma D.3. Let q be a prime power and assume N,n ≥ t ≥ r ≥ 1. Let Γ1, . . . ,Γd be independent
random matrices, uniformly distributed over Fn×Nq . Then with probability at least 1 − qr, for any
subspace V ⊆ FNq of dimension r we have

dim
d∑
j=1

Γj(V ) ≥ t ,

assuming

d ≥ t− 1
r

+ N − r + 1
n− t+ 1 +

logq 16
r(n− t+ 1) .

Proof. Fix a subspace V ⊆ FNq of dimension r, and let M ∈ FN×rq be a matrix whose columns give
a basis for V . Thus, rank(M) = r and the column span of M is V . In particular, dim

∑
j Γj(V ) ≥ t

iff the Fn×rdq block matrix
A(V ) := [Γ1M | · · · |ΓdM ]

has rank at least t. As M is nonsingular and the Γj are uniformly random, the matrix A(V ) is a
uniformly random matrix in Fn×rdq . Thus, the probability it has rank at most t− 1 is at most

4q−(rd−t+1)(n−t+1) .

Then, taking a union bound over the choice of V , we see that the probability of failure is at most

16qr(N−r)−(rd−t+1)(n−t+1) .

This is at most q−r assuming

(n− t+ 1)(rd− t+ 1) ≥ r(N − r + 1) + logq 16 .

Dividing both sides by r(n− t+ 1) and rearranging, the previous inequality is equivalent to

d ≥ t− 1
r

+ N − r + 1
n− t+ 1 +

logq 16
r(n− t+ 1) .

The existential proof will be complete upon taking a union bound over the choice of r; the
following proposition does exactly this.

Proposition D.4. Let Fq be a finite field and assume N,n ≥ 1 and put b = N
n . Let β > 1

and η ∈ (0, 1
bβ ). Then there exists a collection of matrices {Γ1, . . . ,Γd} ⊆ Fn×Nq forming a (η, β)-

dimension expander of degree d, assuming

d ≥ β + b

1− bβη + logq 16 .
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Proof. Fix any r ≤ ηN ; we wish to show dim
∑
j Γj(V ) ≥ β dimV for any V ⊆ FNq of dimension r;

i.e., we wish to show dim
∑
j Γj(V ) ≥ dβre. For any fixed r, Lemma D.3 promises that this occurs

with probability ≥ 1− q−r assuming

d ≥ dβre − 1
r

+ N − r + 1
n− dβre+ 1 +

logq 16
r(n− r + 1) .

As dβre − 1 ≤ βr and r(n− r + 1) ≥ 1, it actually suffices for

d ≥ β + N

n− βr
+ logq 16 .

Recalling r ≤ ηN = ηbn and b = N
n , we see that it suffices to have

d ≥ β + b

1− bβη + logq 16 ,

as stated. Now, as
∑dηNe
r=1 q−r ≤

∑∞
r=1 q

−r < 1, we can take a union bound over the choice of r to
conclude that {Γj}dj=1 indeed forms a (η, β)-dimension expander.

E Random subspace design
We prove via the probabilistic method that good subspace designs exist. However, we note that the
µ parameter is actually not as large as the µ parameter achieved constructively in Corollary 4.7!

Proposition E.1. Let n, k, d be integers with k|d and d|n. Let δ ∈ (0, 1), and assume k ≥ 4/δ.
There exists a collection H1, H2, . . . ,Hk ⊆ Fqn of Fq-subspaces, each of Fq-dimension n

k , which
forms a (s, 1 + δ, d)-subspace design for all s ≤ δ

4dn.

Proof. We choose H1, . . . ,Hk independently and uniformly at random among all subspaces of di-
mension n

k in Fqn . LetW ⊆ Fqn be a Fqd-subspace of Fqd-dimension s (so it satisfies dimFq W = ds).
For an integer a, the probability that dimFq(Hi ∩W ) ≥ a is at most

qads · q−(1−1/k)an = qa(ds−n+n/k) ≤ qan(1−δ/2)

where the inequality follows from the assumptions s ≤ δ
4dn and k ≥ 4/δ. Then, for any tuple

(a1, . . . , ak) of integers summing to ` := d(1 + δ)se, since the Hi are selected independently the
probability that each dimFq(Hi ∩W ) ≥ ai is at most

q−`n(1−δ/2) ≤ q−ns(1+δ)(1−δ/2) ≤ q−ns(1+δ/4)

where the last inequality holds as δ < 1. Taking a union bound over all at most qsn choices for W
and

(`+k
`

)
≤ k2` choices for the tuple (a1, . . . , ak), the probability of failure is at most

qsnk2`q−ns(1+δ/4) = k2`q−nsδ/4 ≤ q4(1+δ)s logq k−nsδ/4 = q−s(nδ/4−4(1+δ) logq k) .

This probability is exponentially small in n. Thus, for n sufficiently large we can take a union
bound over all 1 ≤ s ≤ δ

4dn to conclude that the probability of failure is strictly less than 1.

We now instantiate Theorem 3.4 with the subspace design from Proposition E.1 and observe
that we obtain lossless dimension expanders. Of course, we have already demonstrated this con-
structively over fields of large size, but we still include the proof as it shows that our approach can
work over smaller fields. However, we are only able to guarantee η ≥ Ω

(
ε
d

)
, although we know that

we can have η ≥ 1−ε
d .
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Theorem E.2. Let ε ∈ (0, 1) be given. Let n, k, d be integers with k|d and d|n. Let δ = Θ(ε) be
sufficiently small and assume k ≥ 4/δ. Let H1, H2, . . . ,Hk be the subspace design from Proposi-
tion E.1. Finally, assumed d ≥ k/δ. Then, when Theorem 3.4 is instantiated with this subspace
design, we obtain a (η, (1− ε)d)-dimension expander, where η = Ω(ε/d).

Proof. The expansion factor that we can achieve is

d− k + 1
1 + δ

≥ 1− δ
1 + δ

d ≥ (1− ε)d

by choosing δ = Θ(ε) sufficiently small (take, say, δ ≈ ε/2). The lower bound on η is obtained by
observing

δ

4d(1 + δ) = Ω(ε/d) .
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