
Polynomial-Time Random Oracles and Separating

Complexity Classes

John M. Hitchcock
Department of Computer Science

University of Wyoming
jhitchco@cs.uwyo.edu

Adewale Sekoni
Department of Computer Science

University of Wyoming
asekoni@uwyo.edu

Hadi Shafei
Department of Mathematics and Computer Science

Northern Michigan University
hshafei@nmu.edu

Abstract

Bennett and Gill (1981) showed that PA 6= NPA 6= coNPA for a random oracle A, with
probability 1. We investigate whether this result extends to individual polynomial-time random
oracles. We consider two notions of random oracles: p-random oracles in the sense of martingales
and resource-bounded measure (Lutz, 1992; Ambos-Spies et al., 1997), and p-betting-game
random oracles using the betting games generalization of resource-bounded measure (Buhrman
et al., 2000). Every p-betting-game random oracle is also p-random; whether the two notions
are equivalent is an open problem.

(1) We first show that PA 6= NPA for every oracle A that is p-betting-game random.

Ideally, we would extend (1) to p-random oracles. We show that answering this either way
would imply an unrelativized complexity class separation:

(2) If PA 6= NPA relative to every p-random oracle A, then BPP 6= EXP.

(3) If PA = NPA relative to some p-random oracle A, then P 6= PSPACE.

Rossman, Servedio, and Tan (2015) showed that the polynomial-time hierarchy is infinite
relative to a random oracle, solving a longstanding open problem. We consider whether we can
extend (1) to show that PHA is infinite relative to oracles A that are p-betting-game random.
Showing that PHA separates at even its first level would also imply an unrelativized complexity
class separation:

(4) If NPA 6= coNPA for a p-betting-game measure 1 class of oracles A, then NP 6= EXP.

(5) If PHA is infinite relative to every p-random oracle A, then PH 6= EXP.

1 Introduction

Bennett and Gill [3] initiated the study of random oracles in computational complexity, proving
that PA 6= NPA for a random oracle A, with probability 1. Subsequent work showed that this holds
for individual random oracles. Book, Lutz, and Wagner [4] showed that PA 6= NPA for every oracle

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 18 (2018)

A that is algorithmically random in the sense of Martin-Löf [14]. Lutz and Schmidt [13] improved
this further to show PA 6= NPA for every oracle A that is pspace-random [11].

We investigate whether this extends to individual polynomial-time random oracles [11, 2]. To
show that PA 6= NPA for p-random oracles A, we need to show that if PA = NPA, then there is a
polynomial-time martingale that succeeds on A. This means that if A makes PA = NPA, then A
is somehow predictable or simple.

Allender and Strauss [1] proved that {A | PA 6= BPPA} has p-measure 0, which implies that
PA = BPPA for every p-random oracle A. This strengthens another result of Bennett and Gill [3]
that PA = BPPA holds for a random oracle A, with probability 1. Allender and Strauss’s proof
relies on derandomization [17] and is a different approach than Bennett and Gill. For P vs NP
oracles, the best known is the pspace-randomness result of Lutz and Schmidt [13]. In related work,
Kautz and Miltersen [10] showed that if A is an algorithmically random oracle, then NPA does not
have p-measure 0. Because the class {A | PA = NPA} has Hausdorff dimension 1 [8], there is a
fundamental limit to how strongly a martingale can succeed on the class.

Each oracle A is associated with a test language LA. This language is tally and 0n ∈ LA if and
only if in the 2n tribes of n strings following 0n, there is at least one tribe contained in A. (See
Section 3 for a precise definition of LA. Bennett and Gill used a slightly different, but equivalent
formulation of the test language.) It is clear that LA ∈ NPA. From [3], we know that {A | LA ∈ PA}
has Lebesgue measure 0. Since PA = NPA implies LA ∈ PA, it follows that {A | PA = NPA} has
measure 0. We would like to show {A | LA ∈ PA} has p-measure 0.

Intuitively, if LA ∈ PA, we would like to predict membership of strings in A. This would be
relatively simple if the PA algorithm asked only nonadaptive queries. However, since the queries
may be adaptive, there are potentially exponentially many queries – too many to be considered by
a polynomial-time martingale.

The difficulty is martingales are forced to bet on strings in lexicographic order. Buhrman et
al. [5] introduced an extension of resource-bounded measure using betting games. Betting games
are similar to martingales but they may adaptively choose the order in which they bet on strings.
Whether betting games are equivalent to martingales is an open question [5]. The adaptiveness in
betting games allows us to simulate PA algorithms. We show in Section 3 that there is a p-betting
game succeeding on {A | LA ∈ PA}. Therefore PA 6= NPA for every p-betting-game random oracle
A.

In Section 4, we consider whether there are limitations to extending the betting games result.
We show that determining whether or not {A | PA = NPA} has polynomial-time measure 0 (with
respect to martingales) would imply a separation of complexity classes:

• If {A | PA = NPA} has p-measure 0, then BPP 6= EXP.

• If {A | PA = NPA} does not have p-measure 0, then P 6= PSPACE.

This shows that determining the p-measure of {A | PA = NPA}, or resolving whether PA 6= NPA

for all p-random A, is likely beyond current techniques.
Bennett and Gill [3] also showed that NPA 6= coNPA for a random oracle A, with probability 1.

Rossman, Servedio, and Tan [18] answered a longtime open question [7] by extending Bennett and
Gill’s result to separate every level of the polynomial-time hierarchy. They proved an average case
depth hierarchy theorem for Boolean circuits which implies that the polynomial-time hierarchy is
infinite relative to a random oracle. Can we show that PH is infinite relative to polynomial-time

2

random oracles as well? We show that extending our main result to separate PHA at even the first
level would separate NP from EXP:

• If {A | NPA = coNPA} has p-betting-game measure 0, then NP 6= EXP.

• If PHA is infinite relative to every p-random oracle A, then PH 6= EXP.

2 Preliminaries

We use standard notation. The binary alphabet is Σ = {0, 1}, the set of all binary strings is Σ∗,
the set of all binary strings of length n is Σn, and the set of all infinite binary sequences is Σ∞.
The empty string is denoted by λ. We use the standard enumeration of strings, s0 = λ, s1 =
0, s2 = 1, s3 = 00, s4 = 01, . . ., and the standard lexicographic ordering of strings corresponds to
this enumeration. The characteristic sequence of a language A is the sequence χA ∈ Σ∞, where
χA[n] = 1 ⇐⇒ sn ∈ A. We refer to χA[sn] = χA[n] as the characteristic bit of sn in A. A
language A can alternatively be seen as a subset of Σ∗, or as an element of Σ∞ via identification
with its characteristic sequence χA. Given strings x, y we denote by [x, y] the set of all strings z
such that x ≤ z ≤ y. For any string sn and number k, sn + k is the string sn+k; e.g. λ + 4 = 01.
Similarly we denote by A[x, y] the substring of the characteristic sequence χA that corresponds to
the characteristic bits of the strings in [x, y].

2.1 Martingales and Betting Games

We now give a brief overview of martingales and betting games, and how they are applied in com-
putational complexity to define resource-bounded measures and randomness notions. For further
details, we refer to [11, 12, 2, 5, 6].

Betting games, which are also called nonmonotonic martingales, originated in the field of al-
gorithmic information theory. In that setting they yield the notion of Kolmogorov-Loveland ran-
domness (generalizing Kolmogorov-Loveland stochasticity) [16, 15]. The concept was introduced
to computational complexity by Buhrman et al. [5]. First, we recall the definition of a martingale:

Definition. A martingale is a function d : Σ∗ → [0,∞) such that for all w ∈ Σ∗, we have the
following averaging condition:

d(w) =
d(w0) + d(w1)

2
.

Intuitively, a martingale is betting in order on the characteristic sequence of an unknown lan-
guage. The martingale starts with finite initial capital d(λ). The quantity d(w) represents the
current capital the martingale has after betting on the first |w| bits of a sequence that begins with
w. The quantities π(w, 0) = d(w0)/2d(w) and π(w, 1) = d(w1)/2d(w) represent the fraction of its
current capital that the martingale is wagering on 0 and 1, respectively, being the next bit of the
sequence. This next bit is revealed and the martingale has d(w0) = 2π(w, 0)d(w) in the case of a
0 and d(w1) = 2π(w, 1)d(w) in the case of a 1.

Betting games are a generalization of martingales and have the additional capability of selecting
which position in a sequence, or equivalently, which string in a language, to bet upon next. A betting
game is permitted to select strings in a nonmonotone order, that is, it may bet on longer strings,
then shorter strings, then longer strings again (with the important restriction that it may not bet

3

on the same string twice). Like martingales, betting games must also satisfy the averaging law, i.e.
the average of the betting game’s capital after betting on a string s when s belongs and when s
doesn’t belong to the language is the same as its capital before betting on s. We use the following
definition of a betting game from [5].

Definition. A betting game G is an oracle Turing machine that maintains a “capital tape” and
a “bet tape,” in addition to its standard query tape and worktapes. The game works in rounds
i = 1, 2, 3, . . . as follows. At the beginning of each round i, the capital tape holds a nonnegative
rational number Ci−1. The initial capital C0 is some positive rational number. G computes a
query string xi to bet on, a bet amount Bi, 0 ≤ Bi ≤ Ci−1, and a bet sign bi ∈ {−1,+1}. The
computation is legal so long as xi does not belong to the set {x1, · · · , xi−1} of strings queried in
earlier rounds. G ends round i by entering a special query state. For a given oracle language A, if
xi ∈ A and bi = +1, or if xi 6∈ A and bi = −1, then the new capital is given by Ci := Ci−1 +Bi, else
by Ci := Ci−1 − Bi. We charge M for the time required to write the numerator and denominator
of the new capital Ci down. The query and bet tapes are blanked, and G proceeds to round i+ 1.

It is easy to see from the above definition that bi and Bi can easily be computed from the
current capital Ci := Ci−1 + biBi of the betting game. Therefore, we can equivalently define a
betting game by describing the computation of the current capital Ci without explicitly specifying
the computation of bi and Bi. We do this because it is clearer and more intuitive to describe the
computation of the current capital of the betting game presented in the next section.

Definition. If a betting game G earns unbounded capital on a language A (in the sense that for
every constant c there is a point at which the capital exceeds c when betting on A), we say that G
succeeds on A. The success set of a betting game G, denoted S∞[G], is the set of all languages on
which G succeeds. A betting game G succeeds on a class X of languages if X ⊆ S∞[G].

By adding a resource bound ∆ on the computation of a betting game or martingale, we get
notions of resource-bounded measure on Σ∞. For this paper the resource bounds we use are
p = DTIMEF(nO(1)), p2 = DTIMEF(2(lgn)

O(1)
), and pspace = DSPACEF(nO(1)). We say a class

X ⊆ Σ∞ has ∆-betting-game measure 0, if there is a ∆-computable betting game that succeeds on
every language in it. It has ∆-measure 0 if the betting game is also a martingale [11]. A class X
has ∆-betting-game measure 1 if Xc has ∆-betting-game measure 0. Similarly, X has ∆-measure
1 if Xc has ∆-measure 0. A language A is ∆-betting-game random if there is no ∆-computable
betting game that succeeds on A. Similarly, A is ∆-random if there is no ∆-computable martingale
that succeeds on A.

The ability of the betting game to examine a sequence nonmonotonically makes determining
its running time complicated, since each language can induce a unique computation of the betting
game. In other words, the betting game may choose to examine strings in different orders depending
upon the language it is wagering against. Buhrman et al. looked at a betting game as an infinite
process on a language, rather than a finite process on a string. They used the following definition:

Definition. A betting game G runs in time t(2n) if for all languages A, every query of length n
made by G occurs in the first t(2n) steps of the computation.

Specifically, once a t(2n)-time-bounded betting game uses t(2n) computational steps, it cannot
go back and select any string of length n. Most importantly, no polynomial-time betting game can
succeed on the class EXP = DTIME(2n

O(1)
).

4

2.2 Martingales and Betting Games: Intuitive view

Intuitively, a betting game can be viewed as the strategy of a gambler who bets on infinite sequence
of strings. The gambler starts with initial capital C, then begins to query strings to bet on. The
gambler’s goal is to grow the capital C without bound. The same view holds for martingales with
the restriction that the gambler must bet on the strings in the standard ordering.

3 Betting Game Random Oracles

In this section we show that PA 6= NPA for every p-betting-game random oracle.

Theorem 3.1. The class {A | PA 6= NPA} has p-betting-game measure 1. In particular, PA 6= NPA

for every p-betting-game random oracle A.

Proof. Given a language A we define the test language

LA = {0n | Tribes2n,n(A[0n + 1, 0n + n2n]) = 1},

where Tribes2n,n : {0, 1}n2n −→ {0, 1} is defined as follows. Given w ∈ {0, 1}n2n , first we view w
as concatenation of 2n length n strings w1, w2, · · · , w2n ; i.e. w = w1w2 · · ·w2n . Tribes2n,n(w) is 1
if and only if wi = 1n for some i. Secondly, we view w as the substring A[0n + 1, 0n + n2n] of the
characteristic sequence of some language A. With both views in mind, we define a tribe to be the
set of strings whose characteristic bits are encoded by some wi. For example, given any i ∈ [1, 2n],
the set of strings [0n + (i − 1)n + 1, 0n + in] is a tribe because its characteristic bits are encoded
by wi. Since the n strings in any tribe have length O(n), an NP oracle machine can easily verify
the membership of any 0n, therefore LA ∈ NPA. Now we define a betting game G that succeeds
on the set X = {A | PA = NPA}, thereby proving the theorem. Our betting game G is going to
simulate oracle Turing machines on some strings in the set {0n | n ∈ N}. Let M1,M2, · · · be an
enumeration of all oracle TMs, where Mi runs in time at most nlg i + i on inputs of length n. The
initial capital of G is 2 and we view it as composed of infinite “shares” ai = bi = 2−i, i ∈ N that
are used by G to bet on some of the strings it queries.

Before we go into the details of the implementation of G, we give a high level view. The strategy
of G to succeed on X is quite simple. For any language A, the cardinality of {0n | 0n /∈ LA} is
either finite or infinite. When it is finite, after seeing a finite number of strings all following strings
will belong to LA. G uses “shares” ai reserved at its initialization to bet in this situation. On the
other hand when it is infinite and A ∈ X we can find an oracle TM Mi that decides LA. Most
importantly this TM rejects its input infinitely often and it is only in this situation that we bet
with the bi “shares”. Details follow.

First we specify the order in which G queries strings followed by which strings it bets on. G
operates sequentially in stages 1, 2, · · · . In stage j, G queries 0nj , where nj is the smallest integer
such that all the strings queried in stage j − 1 have length less than nj . G then runs the oracle
TM Mi+1 on 0nj , where i is the number of TMs simulated in the previous stages whose output was
inconsistent with LA in one of the previous stages. During the simulation of Mi+1, G answers any
queries made by the TM either by looking up the string from its history, or if the string isn’t in its
history, then G queries it. After the simulation, G queries in the standard lexicographic order all
the strings in the 2nj tribes that follow 0nj that haven’t already been queried. Finally, to complete

5

stage j, G queries all the remaining strings of length at most the length of the longest string queried
by G so far.

Now we specify which strings G bets on and how it bets with the ai’s and bi’s. In stage j, let i
and nj be such that Mi is the Turing machine simulated in this stage and 0nj is the input it will
be simulated on. The only strings G bets on will be the nj2

nj strings following 0nj ; i.e. the tribes.
We use al and bi, two of the infinite “shares” of our initial capital reserved by G for betting, where
l is the smallest positive integer such that al 6= 0. As will be shown later we do this because G loses
all of al whenever 0n 6∈ LA. The “shares” al and bi are dynamic and may have their values updated
as we bet with them. Therefore, the current capital of G after each bet is

∑∞
i=1(ai + bi). Though

we describe separately how G bets with al and bi, we may bet with both simultaneously. We bet
with some al for every stage, but with the bi’s we bet only when the output of the simulated TM
is 0. Therefore every time we bet with bi we also simultaneously bet with al. First let us see how
G bets in stage j using the al and then with bi.

Betting with al: Our choice of l ensures that al 6= 0. In fact, al will either increase, or reduce
to 0 after betting. If we lose al in the current stage, then we use al+1 = 2−(l+1) to bet in the next
stage. G uses al to bet that at least one of the 2nj tribes that follow 0nj is completely contained in
A; i.e. 0nj ∈ LA. Call this event Bnj . It is easy to see that for sufficiently large nj , when strings
are included independently in A with probability 1/2, the probability of event Bnj is

Pr(Bnj) = 1− (1− 2−nj)2
nj ≈ 1− 1/e.

G bets in such a way that whenever the sequence of strings seen satisfies the event Bnj , al increases
by a factor of approximately 1/(1− 1/e). If the sequence of strings does not satisfy event Bnj then
G loses all of al and will bet with al+1 in the next stage.

We now elaborate on how al increases by a factor of approximately 1/(1− 1/e) when event Bnj

occurs. Let ω ∈ {0, 1, ?}nj2
nj

represent the current status of strings in [0nj + 1, 0nj + nj2
nj], ω[i]

indicates the status of string 0nj + i, ? indicates the string has not been queried by G yet, and bits
0 and 1 have their usual meaning. Define

Gal(ω) =
al

Pr(Bnj)
Pr(Bnj |ω),

where Pr(Bnj) is the probability a random language satisfies event Bnj , and Pr(Bnj |ω) is the
conditional probability of the event Bnj given the current status of the strings as encoded by ω,
i.e. given the strings in [0nj + 1, 0nj + nj2

nj] whose membership in A has already been revealed,
what is the probability that randomly assigning membership to other strings causes event Bnj to
occur. This probability is rational and easy to compute in O(22n) time by examining the status of
the strings in each of the 2n tribes in [0n + 1, 0n + n2n]. Gal is essentially a martingale. Whenever
the membership of any string in [0nj + 1, 0nj + nj2

nj] is revealed, al is then updated to Gal(ω).

Given ω ∈ {0, 1, ?}nj2
nj

and b ∈ {0, 1, ?}, let ωi→b denote ω with its ith symbol set to b. It is easy
to see that

Gal(ω
i→?) =

Gal(ω
i→0) +Gal(ω

i→1)

2
.

For all sufficiently large nj ,

Gal(ω) =
al

Pr(Bnj)
≈ al/(1− 1/e)

6

for any string ω ∈ {0, 1}nj2
nj

that satisfies event Bnj and 0 for those that do not satisfy Bnj . It
is important to note that G can always bet with al no matter the order in which it requests the
strings in [0nj + 1, 0nj + nj2

nj] that it bets on. But as will be shown next the ordering of these
strings is important when betting with bi.

Betting with bi: Finally, we specify how G bets with “share” bi which is reserved for betting
with Mi. G only bets with bi when the simulation of Mi on 0nj returns 0. In this situation G
bets that at least 2nj − (nlg ij + i) tribes of the 2nj tribes that follow 0nj are not contained in A.
For simplicity, G does not bet on the tribes that Mi queried. We denote by Cnj the event that all
the tribes not queried by Mi are not contained in A. Event Cnj occurs with probability at most

(1− 2−nj)2
nj−(nlg i

j +i) ≈ 1/e, and is almost the complement of Bnj . In this case G bets similarly to
how it bets with al and increases bi by a factor of 1/Pr(Cnj) ≈ e whenever the sequence of strings
that follow 0nj satisfies Cnj . If the sequence does not satisfy Cnj then G loses all of bi.

We now argue that G succeeds on X. Suppose A ∈ X and S ⊆ 0∗ is the set of input strings G
simulates on some TMs in stages 1, 2, Then there are two possibilities:

1. Finitely many strings in S do not belong to LA,

2. Infinitely many strings in S do not belong to LA.

Denote by sk the kth string in S. In the first case, there must be a k such that for every stage
j ≥ k, sj ∈ LA. Once we reach stage k, G uses a “share” of its capital ai 6= 0 to bet on sj belonging
to LA for all j ≥ k. Therefore G will increase ai by a factor of approximately 1/(1 − 1/e) for all
but finitely many stages j ≥ k. Therefore the capital of G will grow without bound in this case.

In the second case, we must reach some stage k at which we use the correct oracle TM Mi that
decides LA on inputs in S. From this stage onward G will never change the TM it simulates on
the strings in S we have not seen yet. In this case we are guaranteed this simulation will output
0 infinitely often. It follows by the correctness of Mi and the definition of G that whenever the
output of Mi is 0 the “share” of the capital bi reserved for betting on Mi will be increased by a
factor of approximately e. Since this condition is met infinitely often, it follows that the capital of
G increases without bound in this case also.

Finally we show that G can be implemented as a O(22n)-betting game; i.e. after O(22n) time, G
will have queried all strings of length n. First, we bound the runtime of each round of the betting
game; i.e. the time required to bet on a string. This should not be confused with the stages of G
which include several rounds of querying. In each round, we have to compute

∑∞
i=1(ai + bi) the

current capital of G. This sum can easily be computed in O(2n) time. This is because for each
round we change at most two “shares” al and bi to some rational numbers that can be computed in
O(2n) time. The remaining a and b “shares” with indices less than i and l respectively have values
0 and those with indices grater than i and l respectively retain their initial values. We may also
simulate a TM in each round. Since each simulated TM Mi has i ≤ n it takes O(nlgn) time for the
simulation of Mi on 0n. Therefore, each round is completed in O(2n) time. After the simulation G
requests all the remaining strings in [0n + 1, 0n +n2n] that were not queried during the simulation.
Therefore, it takes O(22n) time for G to have requested all strings of length n.

7

4 Limitations

In this section we examine the possibility of extending Theorem 3.1. We show that it cannot
be improved to p-random oracles or improved to separate the polynomial-time hierarchy without
separating BPP or NP from EXP, respectively. On the other hand, showing that Theorem 3.1
cannot be improved to p-random oracles would separate PSPACE from P.

4.1 Does PA 6= NPA for every p-random oracle A?

We showed in Theorem 3.1 that PA 6= NPA for a p-betting-game random oracle. It is unknown
whether p-betting games and p-martingales are equivalent. If they are, then BPP 6= EXP [5].
This is based on the following theorem and the result that ≤P

T-complete languages for EXP have
p-betting-game measure 0 [5].

Theorem 4.1 (Buhrman et al. [5]). If the class of ≤P
T-complete languages for EXP has p2-measure

zero then BPP 6= EXP.

We show improving Theorem 3.1 to p-random oracles would also imply BPP 6= EXP. First, we
prove the following for p2-measure.

Theorem 4.2. If {A | PA 6= NPA} has p2-measure 1, then BPP 6= EXP.

Proof. If L is any ≤P
T-complete language for EXP, then

NPL ⊆ EXP ⊆ PL ⊆ NPL.

Therefore the class of ≤P
T-complete languages for EXP is a subset of {A | PA = NPA}. If {A |

PA = NPA} has p2-measure 0 then so does the class of ≤P
T-complete languages of EXP. Theorem

4.1 implies that BPP 6= EXP.

We have the following for p-random oracles by the universality of p2-measure for p-measure [11].

Corollary 4.3. If PA 6= NPA for every p-random oracle A, then BPP 6= EXP.

Proof. The hypothesis implies that every A with PA = NPA is not p-random, i.e. there is a p-
martingale that succeeds on A. Let d′ be a p2-martingale d′ that is universal for all p-martingales
[11]: S∞[d] ⊆ S∞[d′] for every p-martingale d. Then d′ succeeds on {A | PA = NPA}.

4.2 Is it possible that PA = NPA for some p-random oracle A?

Given Theorem 4.2, we consider the possibility of whether {A | PA = NPA} does not have p-
measure 0. Because Lutz and Schmidt [13] showed that this class has pspace-measure 0, it turns
out that if it does not have p-measure 0, then we have a separation of PSPACE from P.

Theorem 4.4 (Lutz and Schmidt [13]). The class {A | PA = NPA} has pspace-measure 0.

We note that because every p-betting game may be simulated by a pspace-martingale [5], Theorem
4.4 follows as a corollary to Theorem 3.1.

Lemma 4.5. If P = PSPACE, then for every pspace-martingale d, there is a p-martingale d′ with
S∞[d] ⊆ S∞[d′].

8

Proof. Let d : {0, 1}∗ −→ [0,∞) be a pspace-martingale. Without loss of generality also assume
that d is exactly computable [9] and its output is in {0, 1}≤p(n), for some polynomial p. Consider
the language Ld = {〈w, i, b〉 | the ith bit of d(w) is b}. Clearly Ld ∈ PSPACE and hence also in P
by our hypothesis. We can therefore compute d(w) is polynomial time using Ld.

Theorem 4.6. If {A | PA = NPA} does not have p-measure 0, then P 6= PSPACE.

Proof. Assume P = PSPACE. Theorem 4.4 and Lemma 4.5 imply that {A | PA = NPA} has
p-measure 0.

Corollary 4.7. If there is a p-random oracle A such that PA = NPA, then P 6= PSPACE.

4.3 Is PH infinite relative to p-betting-game random oracles?

Bennett and Gill [3] showed that NPA 6= coNPA for a random oracle A, with probability 1. Thus
PHA does not collapse to its first level. Rossman, Servedio, and Tan [18] showed that PHA is
infinite relative to a random oracle, with probability 1.

Can we improve Theorem 3.1 to show that PHA does not collapse for a p-betting-game random
oracle? This also has complexity class separation consequences:

Theorem 4.8. For k > 0, let Xk = {A |
∑P,A

k =
∏P,A

k }. If Xk has p2-betting-game measure zero,

then
∑P

k 6= EXP.

Proof. We prove the contrapositive. Suppose
∑P

k = EXP, then
∏P

k = EXP. Given A ∈ EXP, then
the following containments hold:

ΣP
k ⊆ ΣP,A

k ⊆ EXP = ΠP
k ⊆ ΠP,A

k ⊆ EXP = ΣP
k .

turn implies that EXP ⊆ Xk. Since EXP does not have p2-betting-game measure zero [5] then
neither does Xk. Hence, the Theorem follows.

In particular, we have the following for the first level of PH:

Corollary 4.9. If {A | NPA 6= coNPA} has p-betting-game measure 1, then NP 6= EXP.

Because it is open whether betting games have a union lemma [5], it is not clear whether
Corollary 4.9 may be extended to show that if NPA 6= coNPA for every p-betting-game random
oracle A, then NP 6= EXP. This extension would hold if there is a p2-betting game that is universal
for all p-betting games. However, we do have the following for p-random oracles.

Corollary 4.10. If NPA 6= coNPA for every p-random oracle A, then NP 6= EXP.

Corollary 4.11. If PHA is infinite for every p-random oracle A, then PH 6= EXP.

5 Conclusion

We have shown that PA 6= NPA for every p-betting-game random oracle A (Theorem 3.1). Estab-
lishing whether this also holds for p-random oracles would imply either BPP 6= EXP (Corollary
4.3) or P 6= PSPACE (Corollary 4.7). These results, together with Theorems 4.4 and 4.8, motivate
investigating the status of PH relative to pspace-random oracles. In particular:

1. Does {A | NPA = coNPA} have pspace-measure 0?

2. More generally, does {A | PHA collapses} have pspace-measure 0?

9

References

[1] E. Allender and M. Strauss. Measure on small complexity classes with applications for BPP.
In Proceedings of the 35th Symposium on Foundations of Computer Science, pages 807–818.
IEEE Computer Society, 1994.

[2] K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness. In A. Sorbi,
editor, Complexity, Logic and Recursion Theory, Lecture Notes in Pure and Applied Mathe-
matics, pages 1–47. Marcel Dekker, New York, N.Y., 1997.

[3] C. H. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= co-NPA with
probability 1. SIAM Journal on Computing, 10:96–113, 1981.

[4] R. V. Book, J. H. Lutz, and K. W. Wagner. An observation on probability versus randomness
with applications to complexity classes. Mathematical Systems Theory, 27:201–209, 1994.

[5] H. Buhrman, D. van Melkebeek, K. W. Regan, D. Sivakumar, and M. Strauss. A generalization
of resource-bounded measure, with application to the BPP vs. EXP problem. SIAM Journal
on Computing, 30(2):576–601, 2001.

[6] R. C. Harkins and J. M. Hitchcock. Exact learning algorithms, betting games, and circuit
lower bounds. ACM Transactions on Computation Theory, 5(4):article 18, 2013.

[7] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

[8] J. M. Hitchcock. Hausdorff dimension and oracle constructions. Theoretical Computer Science,
355(3):382–388, 2006.

[9] D. W. Juedes and J. H. Lutz. Weak completeness in E and E2. Theoretical Computer Science,
143(1):149–158, 1995.

[10] S. M. Kautz and P. B. Miltersen. Relative to a random oracle, NP is not small. Journal of
Computer and System Sciences, 53(2):235–250, 1996.

[11] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and System
Sciences, 44(2):220–258, 1992.

[12] J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra and A. L.
Selman, editors, Complexity Theory Retrospective II, pages 225–254. Springer-Verlag, 1997.

[13] J. H. Lutz and W. J. Schmidt. Circuit size relative to pseudorandom oracles. Theoretical
Computer Science, 107(1):95–120, March 1993.

[14] P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619, 1966.

[15] W. Merkle, J. S. Miller, A. Nies, J. Reimann, and F. Stephan. Kolmogorov-Loveland random-
ness and stochasticity. Annals of Pure and Applied Logic, 138(1–3):183–210, 2006.

[16] A. A. Muchnik, A. L. Semenov, and V. A. Uspensky. Mathematical metaphysics of randomness.
Theoretical Computer Science, 207(2):263 – 317, 1998.

10

[17] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994.

[18] B. Rossman, R. A. Servedio, and L.-Y. Tan. An average-case depth hierarchy theorem for
boolean circuits. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Sym-
posium on, pages 1030–1048. IEEE, 2015.

11

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

