Electronic Colloquium on Computational Complexity, Comment 1 on Report No. 20 (2018)

(Min, Plus) is Not stronger than (Or, And)

S. Jukna

ABSTRACT. We observe that a known structural property of (min, +) circuits (and formu-
las) implies that lower bounds on the monotone circuit/formula size remain valid also for
(min, +) circuits/formulas, even when only nonnegative integer weights are allowed. So,
the lower bound proved in ECCC TR18-020 can be alternatively derived from known lower
bounds on the monotone formula complexity of the threshold-2 function.

Let N={0,1,2,...}. Tropical (min,+) circuits and formulas solve minimization problems
f:N" = N of the form f(x) = mingeca(a, z) +c,, where A C N is a finite set of vectors, each
¢qo € N is a constant, and (a,z) = ayx1 + - -+ + apxy; values of variables x; are referred to as
input weights. Such a problem is a 0-1 minimization problem if A C {0,1}", A is an antichain
(no two vectors are comparable under <), and ¢, = 0 holds for all a € A. The boolean version

~

of the problem f is a monotone boolean function f(z) =V ,ca Ai. 4,20 Ti-

Let Min(f) denote the minimum size of a (min,+) circuit solving the problem f, and
Bool(f) the minimum size of monotone boolean circuit computing the boolean version fof
f- Let also Min*(f) denote the version of Min(f) restricted to constant-free (min, +) circuits
(those without input gates holding constants ¢ € N).

If the infinite weight oo is also allowed, then Min(f) > Bool(f) holds for any 0-1 min-
imization problem (see, e.g., [2, Lemma 11]). If the infinite weight is not allowed, then
Min*(f) > Bool(f) still holds for any such problem f (see |3, Appendix A]).

In ECCC TR18-020, the authors are interested in the case when: (i) oo is not allowed as
a weight, and (ii) (min, +) circuits can use constant inputs. In this comment, we show that
(after a slight modification) a structural property of constant-free (min,+) circuits given in

[3, Appendix A] yields the lower bound Min(f) > Bool(f) also under conditions (i) and (ii).

Lemma 1. If f is a 0-1 minimization problem on an antichain {0} # A C {0,1}", then

-~

(1) Min*(f) = Min(f) > Bool(f).
The same also holds for (min,+) boolean formulas.
Remark 1. Together with known lower bounds on the monotone boolean formula size of

threshold functions, Lemma 1 yields the Theorem 14 of [6] giving a matching lower bound
Min( f,,») > n[logn] for the minimization problem

Jar = MinSum;, := {Zl‘z S Cn],|S| = 7‘}
€S
when r = n — 1. Indeed, these problems f,, are 0-1 minimization problems whose sets A

of feasible solutions are slices of the binary n-cube and, hence, are antichains. The boolean
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versions of these problems are the boolean threshold-r functions Thy'. For r = n — 1, a
(matching) lower bound Bool(Th]'_;) = Bool(Th3) > n[logn| is known [8, 5]; lower bounds
Q(nlogn) were earlier shown in [1, 4, 7]. So, Lemma 1 gives the same lower bound for
(min, +) formulas.

Remark 2. It is also proved in [6, Theorem 10] that the function max{z,y} cannot be com-
puted by a (min,+) circuit. The proof is by an application of a carefully chosen restriction
to the variables, and showing that the (min, +) formula does not output the correct value of
max on this restriction. Note, however, that this fact follows also from a general property
of (min, +) circuits: functions f : N — N computable by (min,+) circuits are superaddi-
tive: f(u+v) > f(u) + f(v) holds for all u,v € N", but max is not superadditive. In-
deed, any (min, +) circuit computes some tropical polynomial p(x) = minyep (b, x) + ¢, and
any such polynomial computes a superadditive function, since minye g (b, z) + minye (b, y) <
mingep(b,z + y). On the other hand, the function f(x1,z2) = max{z;,x2} is not super-
additive: say, for v = (1,0) and v = (0,1), we have f(u + v) = max{1,1} = 1 but
f(u) + f(v) = max{1,0} + max{0,1} =1+ 1= 2.

Remark 3. On page 11 of [6], the authors wrote “For functions computable in a constant-
free manner, it is hard to see how constants can help.” The equality in Eq. (1) confirms
this intuition: at least for (min, +) circuits and formulas solving 0-1 minimization problems,
constant inputs cannot help. Note that, in the case of (max,+) circuits (and mazimization
problems f), the equality Max*(f) = Max(f) is trivial: the circuit must correctly compute
the value f(x) = 0 also on the all-0 weighting z := 0.

1. PrROOF OF LEMMA 1

A circuit (or formula) over any commutative semiring (R, ®,®) not only computes some
polynomial over this semiring, but also produces (purely syntactically) a unique subset B C N
of vectors in a natural way. At an input gate holding a semiring element ¢ € R, the singleton
{0} is produced (regardless of what this element ¢ actually is). At an input gate holding a
variable x;, the singleton {€;} is produced, where €; € {0,1}" is the i-th unit vector. Let now
u be a gate at two inputs of which sets A and B are produced. Then the set produced at u is
AU B, if u is a ®-gate, and is the Minkowski sum (or sumset) A+ B ={a+b: a € A,b € B},
if v is a ®-gate. The set produced by the entire circuit is the set produced at its output gate.

Remark 4. Note that, unlike for the function computed, the set produced by a circuit depends
only on the structure of this circuit, not on the underlying semiring. Note also that the set B
produced by a (min, +) circuit (or formula) F' is just the projection onto the first n coordinates
of the set S(F') defined in [6, Definition 1].

Now we turn to the actual proof of Lemma 1. Let f be a 0-1 minimization problem on an
antichain {0} # A C {0,1}"™. Take a (min, +) circuit F solving this problem, and let B C N"
be the set of vectors produced by F. Then F' solves some minimization problem of the form
F(x) = minge g (b, x) + ¢ for some (not necessarily zero) scalars ¢, € N; this can be shown by
an easy induction of the size of F. Say that B lies above A if every vector b € B contains
some vector a € A, that is, if b; > a; holds for all positions .

Claim 1 ([3, Appendix A]). A C B, and B lies above A.

Proof. The proof is almost the same as the proof of this claim in the case of constant-free
circuits, given in [3, Appendix A]: just replace (on line 7 of the proof) the weights z; = 1 for
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i & S by the weights z; = 1 + max{c,: b € B} (“F” stands for the set “B” in this proof). The
rest is then the same. O

Our next goal is to construct (without increasing the size) a constant-free version F, of our
circuit F' such that F, produces the same set B. We can clearly assume that F' has no gates
whose both inputs are constants. Now, if v = uoc is a gate in F', where o € {min, +} and c is
a constant input gate, then contract the edge (u,v), that is, replace every edge (v, w) leaving
v by the edge (u,w), and remove the gate v. Finally, remove all constant input gates together
with edges leaving them.

Claim 2. The constant-free version Fy of F' produces the same set B.

Proof. Recall that at every input gate holding a constant ¢, the same set {6} is produced,
regardless of what this constant ¢ actually is. So, the constant-free version F, of F' must
produce either the same set B (produced by F) or the set B\ {0}. But vector 0 cannot
belong to B because otherwise we would have that f(z) < F(x) < 0+ ¢z must hold for all

input weightings = € N”, a contradiction with our assumption that A # {0} (this assumption
implies that f can take arbitrarily large values f(x)). So, the circuit F, must produce the
same set B as F. O

Starting from the constant-free (min, +) circuit Fi, we now construct its boolean version by
simply replacing min-gates by OR gates, and +-gates by AND gates. The resulting monotone
boolean circuit F produces the same set B of vectors as Fj: sets produced by circuits do not
depend on the underlying semiring (Remark 4). So, the boolean function computed by the
circuit F is of the form g(z) = Vien Ni: ;20 Ti, and it remains to verify that g(z) = fl2)

~

holds for all x € {0,1}". This directly follows from Claim 1: if f(z) = 1, then g(z) =1

~

because A C B, and if g(x) = 1, then f(z) = 1 because B lies above A.

This proves the inequality Min(f) > Bool(f) in Eq. (1). The equality Min*(f) = Min(f)
follows from the following claim.

Claim 3. The constant-free version F, solves the same problem f.

Proof. We know that the circuit F' solves a problem F'(x) = minyep(b, ) + ¢, where B is
the set of vectors produced by F, and ¢, € N are some (not necessarily zero) scalars. We
know that the circuit F' solves the problem f(x) = mingea(a,z). So, F(x) = f(z) must hold
for all input weightings 2 € N™. Let B’ = {b € B: ¢;, = 0}. Then, for every input z € N",
we have that the minimum in F(z) must be achieved on some vector b € B’. To show this,
assume contrariwise there is an input * € N” on which F(z) = (b,z) + ¢ holds for some
b € B with ¢, > 0. By Claim 1, we know that a < b must hold for some vector a € A.
But then f(z) < (a,z) < (b,z) < (b,x) + ¢, = F(x), a contradiction with f(z) = F(x).
So, for all inputs z € N", we have F(z) = minyep/ (b, z) = f(z). By Claim 2, we know that
the constant-free version F of F' produces all the vectors of the set B and, in particular, all
vectors of B’ C B. So, the circuit F also solves our problem f. O
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