
(Min, Plus) is Not stronger than (Or, And)
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Abstra
t. We observe that a known stru
tural property of (min,+) 
ir
uits (and formu-

las) implies that lower bounds on the monotone 
ir
uit/formula size remain valid also for

(min,+) 
ir
uits/formulas, even when only nonnegative integer weights are allowed. So,

the lower bound proved in ECCC TR18-020 
an be alternatively derived from known lower

bounds on the monotone formula 
omplexity of the threshold-2 fun
tion.

Let N = {0, 1, 2, . . .}. Tropi
al (min,+) 
ir
uits and formulas solve minimization problems

f : Nn → N of the form f(x) = mina∈A〈a, x〉+ ca, where A ⊂ N
n
is a �nite set of ve
tors, ea
h

ca ∈ N is a 
onstant, and 〈a, x〉 = a1x1 + · · · + anxn; values of variables xi are referred to as

input weights. Su
h a problem is a 0-1 minimization problem if A ⊆ {0, 1}n, A is an anti
hain

(no two ve
tors are 
omparable under ≤), and ca = 0 holds for all a ∈ A. The boolean version

of the problem f is a monotone boolean fun
tion f̂(x) =
∨

a∈A

∧
i : ai 6=0

xi.

Let Min(f) denote the minimum size of a (min,+) 
ir
uit solving the problem f , and

Bool(f̂) the minimum size of monotone boolean 
ir
uit 
omputing the boolean version f̂ of

f . Let also Min∗(f) denote the version of Min(f) restri
ted to 
onstant-free (min,+) 
ir
uits
(those without input gates holding 
onstants c ∈ N).

If the in�nite weight ∞ is also allowed, then Min(f) ≥ Bool(f̂) holds for any 0-1 min-

imization problem (see, e.g., [2, Lemma 11℄). If the in�nite weight is not allowed, then

Min∗(f) ≥ Bool(f̂) still holds for any su
h problem f (see [3, Appendix A℄).

In ECCC TR18-020, the authors are interested in the 
ase when: (i) ∞ is not allowed as

a weight, and (ii) (min,+) 
ir
uits 
an use 
onstant inputs. In this 
omment, we show that

(after a slight modi�
ation) a stru
tural property of 
onstant-free (min,+) 
ir
uits given in

[3, Appendix A℄ yields the lower bound Min(f) ≥ Bool(f̂) also under 
onditions (i) and (ii).

Lemma 1. If f is a 0-1 minimization problem on an anti
hain {~0} 6= A ⊂ {0, 1}n, then

(1) Min∗(f) = Min(f) ≥ Bool(f̂) .

The same also holds for (min,+) boolean formulas.

Remark 1. Together with known lower bounds on the monotone boolean formula size of

threshold fun
tions, Lemma 1 yields the Theorem 14 of [6℄ giving a mat
hing lower bound

Min(fn,r) ≥ n⌈log n⌉ for the minimization problem

fn,r = MinSum
r
n :=

{∑

i∈S

xi : S ⊆ [n], |S| = r
}

when r = n − 1. Indeed, these problems fn,r are 0-1 minimization problems whose sets A

of feasible solutions are sli
es of the binary n-
ube and, hen
e, are anti
hains. The boolean
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versions of these problems are the boolean threshold-r fun
tions Thnr . For r = n − 1, a

(mat
hing) lower bound Bool(Thnn−1) = Bool(Thn2 ) ≥ n⌈log n⌉ is known [8, 5℄; lower bounds

Ω(n log n) were earlier shown in [1, 4, 7℄. So, Lemma 1 gives the same lower bound for

(min,+) formulas.

Remark 2. It is also proved in [6, Theorem 10℄ that the fun
tion max{x, y} 
annot be 
om-

puted by a (min,+) 
ir
uit. The proof is by an appli
ation of a 
arefully 
hosen restri
tion

to the variables, and showing that the (min,+) formula does not output the 
orre
t value of

max on this restri
tion. Note, however, that this fa
t follows also from a general property

of (min,+) 
ir
uits: fun
tions f : Nn → N 
omputable by (min,+) 
ir
uits are superaddi-

tive: f(u + v) ≥ f(u) + f(v) holds for all u, v ∈ N
n
, but max is not superadditive. In-

deed, any (min,+) 
ir
uit 
omputes some tropi
al polynomial p(x) = minb∈B〈b, x〉 + cb, and

any su
h polynomial 
omputes a superadditive fun
tion, sin
e minb∈B〈b, x〉 +minb∈B〈b, y〉 ≤
minb∈B〈b, x + y〉. On the other hand, the fun
tion f(x1, x2) = max{x1, x2} is not super-

additive: say, for u = (1, 0) and v = (0, 1), we have f(u + v) = max{1, 1} = 1 but

f(u) + f(v) = max{1, 0} +max{0, 1} = 1 + 1 = 2.

Remark 3. On page 11 of [6℄, the authors wrote �For fun
tions 
omputable in a 
onstant-

free manner, it is hard to see how 
onstants 
an help.� The equality in Eq. (1) 
on�rms

this intuition: at least for (min,+) 
ir
uits and formulas solving 0-1 minimization problems,


onstant inputs 
annot help. Note that, in the 
ase of (max,+) 
ir
uits (and maximization

problems f ), the equality Max∗(f) = Max(f) is trivial: the 
ir
uit must 
orre
tly 
ompute

the value f(x) = 0 also on the all-0 weighting x := ~0.

1. Proof of Lemma 1

A 
ir
uit (or formula) over any 
ommutative semiring (R,⊕,⊗) not only 
omputes some

polynomial over this semiring, but also produ
es (purely synta
ti
ally) a unique subset B ⊂ N
n

of ve
tors in a natural way. At an input gate holding a semiring element c ∈ R, the singleton

{~0} is produ
ed (regardless of what this element c a
tually is). At an input gate holding a

variable xi, the singleton {~ei} is produ
ed, where ~ei ∈ {0, 1}n is the i-th unit ve
tor. Let now

u be a gate at two inputs of whi
h sets A and B are produ
ed. Then the set produ
ed at u is

A∪B, if u is a ⊕-gate, and is the Minkowski sum (or sumset) A+B = {a+ b : a ∈ A, b ∈ B},
if u is a ⊗-gate. The set produ
ed by the entire 
ir
uit is the set produ
ed at its output gate.

Remark 4. Note that, unlike for the fun
tion 
omputed, the set produ
ed by a 
ir
uit depends

only on the stru
ture of this 
ir
uit, not on the underlying semiring. Note also that the set B

produ
ed by a (min,+) 
ir
uit (or formula) F is just the proje
tion onto the �rst n 
oordinates

of the set S(F ) de�ned in [6, De�nition 1℄.

Now we turn to the a
tual proof of Lemma 1. Let f be a 0-1 minimization problem on an

anti
hain {~0} 6= A ⊂ {0, 1}n. Take a (min,+) 
ir
uit F solving this problem, and let B ⊂ N
n

be the set of ve
tors produ
ed by F . Then F solves some minimization problem of the form

F (x) = minb∈B〈b, x〉+ cb for some (not ne
essarily zero) s
alars cb ∈ N; this 
an be shown by

an easy indu
tion of the size of F . Say that B lies above A if every ve
tor b ∈ B 
ontains

some ve
tor a ∈ A, that is, if bi ≥ ai holds for all positions i.

Claim 1 ([3, Appendix A℄). A ⊆ B, and B lies above A.

Proof. The proof is almost the same as the proof of this 
laim in the 
ase of 
onstant-free


ir
uits, given in [3, Appendix A℄: just repla
e (on line 7 of the proof) the weights xi = 1 for
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i 6∈ Sb by the weights xi = 1+max{cb : b ∈ B} (�F � stands for the set �B� in this proof). The

rest is then the same. �

Our next goal is to 
onstru
t (without in
reasing the size) a 
onstant-free version F∗ of our


ir
uit F su
h that F∗ produ
es the same set B. We 
an 
learly assume that F has no gates

whose both inputs are 
onstants. Now, if v = u ◦ c is a gate in F , where ◦ ∈ {min,+} and c is

a 
onstant input gate, then 
ontra
t the edge (u, v), that is, repla
e every edge (v,w) leaving
v by the edge (u,w), and remove the gate v. Finally, remove all 
onstant input gates together

with edges leaving them.

Claim 2. The 
onstant-free version F∗ of F produ
es the same set B.

Proof. Re
all that at every input gate holding a 
onstant c, the same set {~0} is produ
ed,

regardless of what this 
onstant c a
tually is. So, the 
onstant-free version F∗ of F must

produ
e either the same set B (produ
ed by F ) or the set B \ {~0}. But ve
tor

~0 
annot

belong to B be
ause otherwise we would have that f(x) ≤ F (x) ≤ 0 + c~0 must hold for all

input weightings x ∈ N
n
, a 
ontradi
tion with our assumption that A 6= {~0} (this assumption

implies that f 
an take arbitrarily large values f(x)). So, the 
ir
uit F∗ must produ
e the

same set B as F . �

Starting from the 
onstant-free (min,+) 
ir
uit F∗, we now 
onstru
t its boolean version by

simply repla
ing min-gates by OR gates, and +-gates by AND gates. The resulting monotone

boolean 
ir
uit F̂ produ
es the same set B of ve
tors as F∗: sets produ
ed by 
ir
uits do not

depend on the underlying semiring (Remark 4). So, the boolean fun
tion 
omputed by the


ir
uit F̂ is of the form g(x) =
∨

b∈B

∧
i : bi 6=0

xi, and it remains to verify that g(x) = f̂(x)

holds for all x ∈ {0, 1}n. This dire
tly follows from Claim 1: if f̂(x) = 1, then g(x) = 1

be
ause A ⊆ B, and if g(x) = 1, then f̂(x) = 1 be
ause B lies above A.

This proves the inequality Min(f) ≥ Bool(f̂) in Eq. (1). The equality Min∗(f) = Min(f)
follows from the following 
laim.

Claim 3. The 
onstant-free version F∗ solves the same problem f .

Proof. We know that the 
ir
uit F solves a problem F (x) = minb∈B〈b, x〉 + cb, where B is

the set of ve
tors produ
ed by F , and cb ∈ N are some (not ne
essarily zero) s
alars. We

know that the 
ir
uit F solves the problem f(x) = mina∈A〈a, x〉. So, F (x) = f(x) must hold

for all input weightings x ∈ N
n
. Let B′ = {b ∈ B : cb = 0}. Then, for every input x ∈ N

n
,

we have that the minimum in F (x) must be a
hieved on some ve
tor b ∈ B′
. To show this,

assume 
ontrariwise there is an input x ∈ N
n
on whi
h F (x) = 〈b, x〉 + cb holds for some

b ∈ B with cb > 0. By Claim 1, we know that a ≤ b must hold for some ve
tor a ∈ A.

But then f(x) ≤ 〈a, x〉 ≤ 〈b, x〉 < 〈b, x〉 + cb = F (x) , a 
ontradi
tion with f(x) = F (x).
So, for all inputs x ∈ N

n
, we have F (x) = minb∈B′〈b, x〉 = f(x). By Claim 2, we know that

the 
onstant-free version F∗ of F produ
es all the ve
tors of the set B and, in parti
ular, all

ve
tors of B′ ⊆ B. So, the 
ir
uit F∗ also solves our problem f . �
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