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Abstrat. We observe that a known strutural property of (min,+) iruits (and formu-

las) implies that lower bounds on the monotone iruit/formula size remain valid also for

(min,+) iruits/formulas, even when only nonnegative integer weights are allowed. So,

the lower bound proved in ECCC TR18-020 an be alternatively derived from known lower

bounds on the monotone formula omplexity of the threshold-2 funtion.

Let N = {0, 1, 2, . . .}. Tropial (min,+) iruits and formulas solve minimization problems

f : Nn → N of the form f(x) = mina∈A〈a, x〉+ ca, where A ⊂ N
n
is a �nite set of vetors, eah

ca ∈ N is a onstant, and 〈a, x〉 = a1x1 + · · · + anxn; values of variables xi are referred to as

input weights. Suh a problem is a 0-1 minimization problem if A ⊆ {0, 1}n, A is an antihain

(no two vetors are omparable under ≤), and ca = 0 holds for all a ∈ A. The boolean version

of the problem f is a monotone boolean funtion f̂(x) =
∨

a∈A

∧
i : ai 6=0

xi.

Let Min(f) denote the minimum size of a (min,+) iruit solving the problem f , and

Bool(f̂) the minimum size of monotone boolean iruit omputing the boolean version f̂ of

f . Let also Min∗(f) denote the version of Min(f) restrited to onstant-free (min,+) iruits
(those without input gates holding onstants c ∈ N).

If the in�nite weight ∞ is also allowed, then Min(f) ≥ Bool(f̂) holds for any 0-1 min-

imization problem (see, e.g., [2, Lemma 11℄). If the in�nite weight is not allowed, then

Min∗(f) ≥ Bool(f̂) still holds for any suh problem f (see [3, Appendix A℄).

In ECCC TR18-020, the authors are interested in the ase when: (i) ∞ is not allowed as

a weight, and (ii) (min,+) iruits an use onstant inputs. In this omment, we show that

(after a slight modi�ation) a strutural property of onstant-free (min,+) iruits given in

[3, Appendix A℄ yields the lower bound Min(f) ≥ Bool(f̂) also under onditions (i) and (ii).

Lemma 1. If f is a 0-1 minimization problem on an antihain {~0} 6= A ⊂ {0, 1}n, then

(1) Min∗(f) = Min(f) ≥ Bool(f̂) .

The same also holds for (min,+) boolean formulas.

Remark 1. Together with known lower bounds on the monotone boolean formula size of

threshold funtions, Lemma 1 yields the Theorem 14 of [6℄ giving a mathing lower bound

Min(fn,r) ≥ n⌈log n⌉ for the minimization problem

fn,r = MinSum
r
n :=

{∑

i∈S

xi : S ⊆ [n], |S| = r
}

when r = n − 1. Indeed, these problems fn,r are 0-1 minimization problems whose sets A

of feasible solutions are slies of the binary n-ube and, hene, are antihains. The boolean
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versions of these problems are the boolean threshold-r funtions Thnr . For r = n − 1, a

(mathing) lower bound Bool(Thnn−1) = Bool(Thn2 ) ≥ n⌈log n⌉ is known [8, 5℄; lower bounds

Ω(n log n) were earlier shown in [1, 4, 7℄. So, Lemma 1 gives the same lower bound for

(min,+) formulas.

Remark 2. It is also proved in [6, Theorem 10℄ that the funtion max{x, y} annot be om-

puted by a (min,+) iruit. The proof is by an appliation of a arefully hosen restrition

to the variables, and showing that the (min,+) formula does not output the orret value of

max on this restrition. Note, however, that this fat follows also from a general property

of (min,+) iruits: funtions f : Nn → N omputable by (min,+) iruits are superaddi-

tive: f(u + v) ≥ f(u) + f(v) holds for all u, v ∈ N
n
, but max is not superadditive. In-

deed, any (min,+) iruit omputes some tropial polynomial p(x) = minb∈B〈b, x〉 + cb, and

any suh polynomial omputes a superadditive funtion, sine minb∈B〈b, x〉 +minb∈B〈b, y〉 ≤
minb∈B〈b, x + y〉. On the other hand, the funtion f(x1, x2) = max{x1, x2} is not super-

additive: say, for u = (1, 0) and v = (0, 1), we have f(u + v) = max{1, 1} = 1 but

f(u) + f(v) = max{1, 0} +max{0, 1} = 1 + 1 = 2.

Remark 3. On page 11 of [6℄, the authors wrote �For funtions omputable in a onstant-

free manner, it is hard to see how onstants an help.� The equality in Eq. (1) on�rms

this intuition: at least for (min,+) iruits and formulas solving 0-1 minimization problems,

onstant inputs annot help. Note that, in the ase of (max,+) iruits (and maximization

problems f ), the equality Max∗(f) = Max(f) is trivial: the iruit must orretly ompute

the value f(x) = 0 also on the all-0 weighting x := ~0.

1. Proof of Lemma 1

A iruit (or formula) over any ommutative semiring (R,⊕,⊗) not only omputes some

polynomial over this semiring, but also produes (purely syntatially) a unique subset B ⊂ N
n

of vetors in a natural way. At an input gate holding a semiring element c ∈ R, the singleton

{~0} is produed (regardless of what this element c atually is). At an input gate holding a

variable xi, the singleton {~ei} is produed, where ~ei ∈ {0, 1}n is the i-th unit vetor. Let now

u be a gate at two inputs of whih sets A and B are produed. Then the set produed at u is

A∪B, if u is a ⊕-gate, and is the Minkowski sum (or sumset) A+B = {a+ b : a ∈ A, b ∈ B},
if u is a ⊗-gate. The set produed by the entire iruit is the set produed at its output gate.

Remark 4. Note that, unlike for the funtion omputed, the set produed by a iruit depends

only on the struture of this iruit, not on the underlying semiring. Note also that the set B

produed by a (min,+) iruit (or formula) F is just the projetion onto the �rst n oordinates

of the set S(F ) de�ned in [6, De�nition 1℄.

Now we turn to the atual proof of Lemma 1. Let f be a 0-1 minimization problem on an

antihain {~0} 6= A ⊂ {0, 1}n. Take a (min,+) iruit F solving this problem, and let B ⊂ N
n

be the set of vetors produed by F . Then F solves some minimization problem of the form

F (x) = minb∈B〈b, x〉+ cb for some (not neessarily zero) salars cb ∈ N; this an be shown by

an easy indution of the size of F . Say that B lies above A if every vetor b ∈ B ontains

some vetor a ∈ A, that is, if bi ≥ ai holds for all positions i.

Claim 1 ([3, Appendix A℄). A ⊆ B, and B lies above A.

Proof. The proof is almost the same as the proof of this laim in the ase of onstant-free

iruits, given in [3, Appendix A℄: just replae (on line 7 of the proof) the weights xi = 1 for
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i 6∈ Sb by the weights xi = 1+max{cb : b ∈ B} (�F � stands for the set �B� in this proof). The

rest is then the same. �

Our next goal is to onstrut (without inreasing the size) a onstant-free version F∗ of our

iruit F suh that F∗ produes the same set B. We an learly assume that F has no gates

whose both inputs are onstants. Now, if v = u ◦ c is a gate in F , where ◦ ∈ {min,+} and c is

a onstant input gate, then ontrat the edge (u, v), that is, replae every edge (v,w) leaving
v by the edge (u,w), and remove the gate v. Finally, remove all onstant input gates together

with edges leaving them.

Claim 2. The onstant-free version F∗ of F produes the same set B.

Proof. Reall that at every input gate holding a onstant c, the same set {~0} is produed,

regardless of what this onstant c atually is. So, the onstant-free version F∗ of F must

produe either the same set B (produed by F ) or the set B \ {~0}. But vetor

~0 annot

belong to B beause otherwise we would have that f(x) ≤ F (x) ≤ 0 + c~0 must hold for all

input weightings x ∈ N
n
, a ontradition with our assumption that A 6= {~0} (this assumption

implies that f an take arbitrarily large values f(x)). So, the iruit F∗ must produe the

same set B as F . �

Starting from the onstant-free (min,+) iruit F∗, we now onstrut its boolean version by

simply replaing min-gates by OR gates, and +-gates by AND gates. The resulting monotone

boolean iruit F̂ produes the same set B of vetors as F∗: sets produed by iruits do not

depend on the underlying semiring (Remark 4). So, the boolean funtion omputed by the

iruit F̂ is of the form g(x) =
∨

b∈B

∧
i : bi 6=0

xi, and it remains to verify that g(x) = f̂(x)

holds for all x ∈ {0, 1}n. This diretly follows from Claim 1: if f̂(x) = 1, then g(x) = 1

beause A ⊆ B, and if g(x) = 1, then f̂(x) = 1 beause B lies above A.

This proves the inequality Min(f) ≥ Bool(f̂) in Eq. (1). The equality Min∗(f) = Min(f)
follows from the following laim.

Claim 3. The onstant-free version F∗ solves the same problem f .

Proof. We know that the iruit F solves a problem F (x) = minb∈B〈b, x〉 + cb, where B is

the set of vetors produed by F , and cb ∈ N are some (not neessarily zero) salars. We

know that the iruit F solves the problem f(x) = mina∈A〈a, x〉. So, F (x) = f(x) must hold

for all input weightings x ∈ N
n
. Let B′ = {b ∈ B : cb = 0}. Then, for every input x ∈ N

n
,

we have that the minimum in F (x) must be ahieved on some vetor b ∈ B′
. To show this,

assume ontrariwise there is an input x ∈ N
n
on whih F (x) = 〈b, x〉 + cb holds for some

b ∈ B with cb > 0. By Claim 1, we know that a ≤ b must hold for some vetor a ∈ A.

But then f(x) ≤ 〈a, x〉 ≤ 〈b, x〉 < 〈b, x〉 + cb = F (x) , a ontradition with f(x) = F (x).
So, for all inputs x ∈ N

n
, we have F (x) = minb∈B′〈b, x〉 = f(x). By Claim 2, we know that

the onstant-free version F∗ of F produes all the vetors of the set B and, in partiular, all

vetors of B′ ⊆ B. So, the iruit F∗ also solves our problem f . �
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