(Min, Plus) is Not stronger than (Or, And)

S. Jukna

Abstract

We observe that a known structural property of (min, +) circuits (and formulas) implies that lower bounds on the monotone circuit/formula size remain valid also for $(\min ,+$) circuits/formulas, even when only nonnegative integer weights are allowed. So, the lower bound proved in ECCC TR18-020 can be alternatively derived from known lower bounds on the monotone formula complexity of the threshold-2 function.

Let $\mathbb{N}=\{0,1,2, \ldots\}$. Tropical (min, +) circuits and formulas solve minimization problems $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ of the form $f(x)=\min _{a \in A}\langle a, x\rangle+c_{a}$, where $A \subset \mathbb{N}^{n}$ is a finite set of vectors, each $c_{a} \in \mathbb{N}$ is a constant, and $\langle a, x\rangle=a_{1} x_{1}+\cdots+a_{n} x_{n}$; values of variables x_{i} are referred to as input weights. Such a problem is a $0-1$ minimization problem if $A \subseteq\{0,1\}^{n}, A$ is an antichain (no two vectors are comparable under \leq), and $c_{a}=0$ holds for all $a \in A$. The boolean version of the problem f is a monotone boolean function $\widehat{f}(x)=\bigvee_{a \in A} \bigwedge_{i: a_{i} \neq 0} x_{i}$.

Let $\operatorname{Min}(f)$ denote the minimum size of a $(\min ,+$) circuit solving the problem f, and $\operatorname{Bool}(\widehat{f})$ the minimum size of monotone boolean circuit computing the boolean version \widehat{f} of f. Let also $\operatorname{Min}^{*}(f)$ denote the version of $\operatorname{Min}(f)$ restricted to constant-free (min, +) circuits (those without input gates holding constants $c \in \mathbb{N}$).

If the infinite weight ∞ is also allowed, then $\operatorname{Min}(f) \geq \operatorname{Bool}(\widehat{f})$ holds for any $0-1$ minimization problem (see, e.g., [2, Lemma 11]). If the infinite weight is not allowed, then $\operatorname{Min}^{*}(f) \geq \operatorname{Bool}(\widehat{f})$ still holds for any such problem f (see [3, Appendix A]).

In ECCC TR18-020, the authors are interested in the case when: (i) ∞ is not allowed as a weight, and (ii) (min,+) circuits can use constant inputs. In this comment, we show that (after a slight modification) a structural property of constant-free (min, +) circuits given in [3, Appendix A] yields the lower bound $\operatorname{Min}(f) \geq \operatorname{Bool}(\widehat{f})$ also under conditions (i) and (ii).

Lemma 1. If f is a 0-1 minimization problem on an antichain $\{\overrightarrow{0}\} \neq A \subset\{0,1\}^{n}$, then

$$
\begin{equation*}
\operatorname{Min}^{*}(f)=\operatorname{Min}(f) \geq \operatorname{Bool}(\widehat{f}) \tag{1}
\end{equation*}
$$

The same also holds for $(\min ,+$) boolean formulas.
Remark 1. Together with known lower bounds on the monotone boolean formula size of threshold functions, Lemma 1 yields the Theorem 14 of [6] giving a matching lower bound $\operatorname{Min}\left(f_{n, r}\right) \geq n\lceil\log n\rceil$ for the minimization problem

$$
f_{n, r}=\text { MinSum }_{n}^{r}:=\left\{\sum_{i \in S} x_{i}: S \subseteq[n],|S|=r\right\}
$$

when $r=n-1$. Indeed, these problems $f_{n, r}$ are $0-1$ minimization problems whose sets A of feasible solutions are slices of the binary n-cube and, hence, are antichains. The boolean

[^0]versions of these problems are the boolean threshold $-r$ functions $\operatorname{Th}_{r}^{n}$. For $r=n-1$, a (matching) lower bound $\operatorname{Bool}\left(\mathrm{Th}_{n-1}^{n}\right)=\operatorname{Bool}\left(\mathrm{Th}_{2}^{n}\right) \geq n\lceil\log n\rceil$ is known $[8,5]$; lower bounds $\Omega(n \log n)$ were earlier shown in $[1,4,7]$. So, Lemma 1 gives the same lower bound for ($\mathrm{min},+$) formulas.
Remark 2. It is also proved in [6, Theorem 10] that the function $\max \{x, y\}$ cannot be computed by a ($\mathrm{min},+$) circuit. The proof is by an application of a carefully chosen restriction to the variables, and showing that the ($\mathrm{min},+$) formula does not output the correct value of max on this restriction. Note, however, that this fact follows also from a general property of (min, +) circuits: functions $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ computable by (min, +) circuits are superadditive: $f(u+v) \geq f(u)+f(v)$ holds for all $u, v \in \mathbb{N}^{n}$, but max is not superadditive. Indeed, any (min,+) circuit computes some tropical polynomial $p(x)=\min _{b \in B}\langle b, x\rangle+c_{b}$, and any such polynomial computes a superadditive function, since $\min _{b \in B}\langle b, x\rangle+\min _{b \in B}\langle b, y\rangle \leq$ $\min _{b \in B}\langle b, x+y\rangle$. On the other hand, the function $f\left(x_{1}, x_{2}\right)=\max \left\{x_{1}, x_{2}\right\}$ is not superadditive: say, for $u=(1,0)$ and $v=(0,1)$, we have $f(u+v)=\max \{1,1\}=1$ but $f(u)+f(v)=\max \{1,0\}+\max \{0,1\}=1+1=2$.
Remark 3. On page 11 of [6], the authors wrote "For functions computable in a constantfree manner, it is hard to see how constants can help." The equality in Eq. (1) confirms this intuition: at least for ($\mathrm{min},+$) circuits and formulas solving 0-1 minimization problems, constant inputs cannot help. Note that, in the case of (max, +) circuits (and maximization problems f), the equality $\operatorname{Max}^{*}(f)=\operatorname{Max}(f)$ is trivial: the circuit must correctly compute the value $f(x)=0$ also on the all- 0 weighting $x:=\overrightarrow{0}$.

1. Proof of Lemma 1

A circuit (or formula) over any commutative semiring (R, \oplus, \otimes) not only computes some polynomial over this semiring, but also produces (purely syntactically) a unique subset $B \subset \mathbb{N}^{n}$ of vectors in a natural way. At an input gate holding a semiring element $c \in R$, the singleton $\{\overrightarrow{0}\}$ is produced (regardless of what this element c actually is). At an input gate holding a variable x_{i}, the singleton $\left\{\vec{e}_{i}\right\}$ is produced, where $\vec{e}_{i} \in\{0,1\}^{n}$ is the i-th unit vector. Let now u be a gate at two inputs of which sets A and B are produced. Then the set produced at u is $A \cup B$, if u is a \oplus-gate, and is the Minkowski sum (or sumset) $A+B=\{a+b: a \in A, b \in B\}$, if u is a \otimes-gate. The set produced by the entire circuit is the set produced at its output gate.

Remark 4. Note that, unlike for the function computed, the set produced by a circuit depends only on the structure of this circuit, not on the underlying semiring. Note also that the set B produced by a (min,+) circuit (or formula) F is just the projection onto the first n coordinates of the set $S(F)$ defined in [6, Definition 1].

Now we turn to the actual proof of Lemma 1 . Let f be a $0-1$ minimization problem on an antichain $\{\overrightarrow{0}\} \neq A \subset\{0,1\}^{n}$. Take a ($\mathrm{min},+$) circuit F solving this problem, and let $B \subset \mathbb{N}^{n}$ be the set of vectors produced by F. Then F solves some minimization problem of the form $F(x)=\min _{b \in B}\langle b, x\rangle+c_{b}$ for some (not necessarily zero) scalars $c_{b} \in \mathbb{N}$; this can be shown by an easy induction of the size of F. Say that B lies above A if every vector $b \in B$ contains some vector $a \in A$, that is, if $b_{i} \geq a_{i}$ holds for all positions i.
Claim 1 ($[3$, Appendix A]). $A \subseteq B$, and B lies above A.
Proof. The proof is almost the same as the proof of this claim in the case of constant-free circuits, given in [3, Appendix A]: just replace (on line 7 of the proof) the weights $x_{i}=1$ for
$i \notin S_{b}$ by the weights $x_{i}=1+\max \left\{c_{b}: b \in B\right\}$ (" F " stands for the set " B " in this proof). The rest is then the same.

Our next goal is to construct (without increasing the size) a constant-free version F_{*} of our circuit F such that F_{*} produces the same set B. We can clearly assume that F has no gates whose both inputs are constants. Now, if $v=u \circ c$ is a gate in F, where $\circ \in\{\min ,+\}$ and c is a constant input gate, then contract the edge (u, v), that is, replace every edge (v, w) leaving v by the edge (u, w), and remove the gate v. Finally, remove all constant input gates together with edges leaving them.

Claim 2. The constant-free version F_{*} of F produces the same set B.
Proof. Recall that at every input gate holding a constant c, the same set $\{\overrightarrow{0}\}$ is produced, regardless of what this constant c actually is. So, the constant-free version F_{*} of F must produce either the same set B (produced by F) or the set $B \backslash\{\overrightarrow{0}\}$. But vector $\overrightarrow{0}$ cannot belong to B because otherwise we would have that $f(x) \leq F(x) \leq 0+c_{\overrightarrow{0}}$ must hold for all input weightings $x \in \mathbb{N}^{n}$, a contradiction with our assumption that $A \neq\{\overrightarrow{0}\}$ (this assumption implies that f can take arbitrarily large values $f(x)$). So, the circuit F_{*} must produce the same set B as F.

Starting from the constant-free $(\min ,+)$ circuit F_{*}, we now construct its boolean version by simply replacing min-gates by OR gates, and +-gates by AND gates. The resulting monotone boolean circuit \widehat{F} produces the same set B of vectors as F_{*} : sets produced by circuits do not depend on the underlying semiring (Remark 4). So, the boolean function computed by the circuit \widehat{F} is of the form $g(x)=\bigvee_{b \in B} \bigwedge_{i: b_{i} \neq 0} x_{i}$, and it remains to verify that $g(x)=\widehat{f}(x)$ holds for all $x \in\{0,1\}^{n}$. This directly follows from Claim 1: if $\widehat{f}(x)=1$, then $g(x)=1$ because $A \subseteq B$, and if $g(x)=1$, then $\hat{f}(x)=1$ because B lies above A.

This proves the inequality $\operatorname{Min}(f) \geq \operatorname{Bool}(\widehat{f})$ in Eq. (1). The equality $\operatorname{Min}^{*}(f)=\operatorname{Min}(f)$ follows from the following claim.

Claim 3. The constant-free version F_{*} solves the same problem f.
Proof. We know that the circuit F solves a problem $F(x)=\min _{b \in B}\langle b, x\rangle+c_{b}$, where B is the set of vectors produced by F, and $c_{b} \in \mathbb{N}$ are some (not necessarily zero) scalars. We know that the circuit F solves the problem $f(x)=\min _{a \in A}\langle a, x\rangle$. So, $F(x)=f(x)$ must hold for all input weightings $x \in \mathbb{N}^{n}$. Let $B^{\prime}=\left\{b \in B: c_{b}=0\right\}$. Then, for every input $x \in \mathbb{N}^{n}$, we have that the minimum in $F(x)$ must be achieved on some vector $b \in B^{\prime}$. To show this, assume contrariwise there is an input $x \in \mathbb{N}^{n}$ on which $F(x)=\langle b, x\rangle+c_{b}$ holds for some $b \in B$ with $c_{b}>0$. By Claim 1, we know that $a \leq b$ must hold for some vector $a \in A$. But then $f(x) \leq\langle a, x\rangle \leq\langle b, x\rangle<\langle b, x\rangle+c_{b}=F(x)$, a contradiction with $f(x)=F(x)$. So, for all inputs $x \in \mathbb{N}^{n}$, we have $F(x)=\min _{b \in B^{\prime}}\langle b, x\rangle=f(x)$. By Claim 2, we know that the constant-free version F_{*} of F produces all the vectors of the set B and, in particular, all vectors of $B^{\prime} \subseteq B$. So, the circuit F_{*} also solves our problem f.

Acknowledgement. I am thankful to Meena Mahajan for interesting discussions.

References

[1] G. Hansel. Nombre minimal de contacts de fermeture necessaires pour realiser une function booleenne symetrique de n variables. C. R. Acad. Sci., 258(25):6037-6040, 1964. (in French).
[2] S. Jukna. Lower bounds for tropical circuits and dynamic programs. Theory of Comput. Syst., 57(1):160194, 2015.
[3] S. Jukna. Tropical complexity, Sidon sets and dynamic programming. SIAM J. Discrete Math., 30(4):20642085, 2016. ECCC TR16-123.
[4] R.E. Krichevski. Complexity of contact circuits realizing a function of logical algebra. Soviet Physiscs Doklady, 8:770-772, 1964.
[5] S.A. Lozhkin. On minimal π-circuits of closing contacts for symmetric functions with threshold 2. Discrete Math. and Appl., 15(5):475-477, 2005.
[6] M. Mahajan, P. Nimbhorkar, and A. Tawari. Computing the maximum using (min, +) formulas. El. Colloq. on Comput. Compl. (ECCC), 25:20, 2018. ECCC TR10-020.
[7] I. Newman and A. Wigderson. Lower bounds on formula size of boolean functions using hypergraph-entropy. SIAM J. on Discrete Math., 1995.
[8] J. Radhakrishnan. Better lower bounds for monotone threshold formulas. J. Comput. Syst. Sci., 54(2):221226, 1997.

[^0]: *Authors current research is supported by the DFG grant JU 3105/1-1 (German Research Foundation)

