# Computing the maximum using (min,+) formulas* 

Meena Mahajan ${ }^{1}$, Prajakta Nimbhorkar ${ }^{2}$, and Anuj Tawari ${ }^{1}$<br>${ }^{1}$ The Institute of Mathematical Sciences, HBNI, Chennai, India, \{meena,anujvt\} @imsc.res.in<br>${ }^{2}$ Chennai Mathematical Institute, India, prajakta@cmi.ac.in

January 23, 2018


#### Abstract

We study computation by formulas over ( $\min ,+$ ). We consider the computation of $\max \left\{x_{1}, \ldots, x_{n}\right\}$ over $\mathbb{N}$ as a difference of (min, + ) formulas, and show that size $n+n \log n$ is sufficient and necessary. Our proof also shows that any ( $\mathrm{min},+$ ) formula computing the minimum of all sums of $n-1$ out of $n$ variables must have $n \log n$ leaves; this too is tight. Our proofs use a complexity measure for $(\min ,+$ ) functions based on minterm-like behaviour and on the entropy of an associated graph.


## 1 Introduction

A ( $\mathrm{min},+$ ) circuit is a directed acyclic graph (DAG) in which the leaves are labeled by variables or constants. The internal nodes are gates labeled by either min or + . A min gate computes the minimum value among its inputs while a + gate simply adds the values computed by its inputs. If the underlying DAG is a tree, then the circuit is a ( $\mathrm{min},+$ ) formula. Such formulas can compute any function expressible as the minimum over several linear polynomials with nonnegative integer coefficients. That is, they can compute any polynomial over the the tropical semirings $\operatorname{Min}=(\mathbb{N}, \min ,+, \infty, 0)$ and $\operatorname{Min}^{-}=(\mathbb{Z}, \min ,+, \infty, 0)$.

In this work, we consider the following setting. Suppose we are given $n$ input variables $x_{1}, x_{2}, \ldots, x_{n}$ and we want to find a formula which computes the maximum value taken by these variables, $\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$. If variables are restricted to take non-negative integer values, it is easy to show that no ( $\mathrm{min},+$ ) formula can compute max. (See Theorem 10 in Section 3 for details.) Hence to compute the maximum, we must strengthen this model - an obvious way is by allowing minus gates as well. Now we have a very small linear sized formula: $\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $0-\min \left(0-x_{1}, 0-x_{2}, \ldots, 0-x_{n}\right)$. However, this solution is not satisfactory for two reasons: firstly, it uses many minus gates, and secondly, intermediate gates in this formula can compute negative integer values even though we are working over natural numbers. Is this necessary? Addressing the first question, it turns out that just a single minus gate, appearing at the top, suffices. That is, we can compute the maximum as the difference of two ( $\min ,+$ ) expressions. Here is one such computation:

[^0]$$
\text { (Sum of all variables) }-\min _{i} \text { (Sum of all variables except } x_{i} \text { ). }
$$

The second expression can be computed by a linear-size (min, + ) circuit or by a (min, + ) formula of size $n \log n$ (see Lemma 12 in Section 3). And this computation addresses the second question as well; all intermediate values are non-negative. Can we do any better? We show that this simple difference formula is indeed the best we can achieve in this model.

## Motivation

The main motivation behind studying this question is the following question: Does there exist a naturally occurring function $f$ for which (min,+ ) circuits are super-polynomially weaker than $(\max ,+)$ circuits? There are two possibilities:

1. Show that max can be implemented using a small (min,+ ) circuit.
2. Come up with an explicit function $f$ which has small (max, + ) circuits but requires large $(\min ,+)$ circuits.

Since we show that no (min, + ) formula (or circuit) can compute max, option 1 is ruled out. In the weaker model of formulas instead of circuits, we show that any difference of (min,+ ) formulas computing max should have size at least $n \log n$. This yields us a slight, super-linear, separation between ( $\max ,+$ ) formulas and difference of $(\min ,+$ ) formulas. Note that a similar question was also asked in [11]: Does there exist a naturally occurring polynomial for which the (min, + ) semiring is super-polynomially weaker than the $(\max ,+)$ semiring? Note that the same polynomial can have different interpretations over different semirings. For instance, consider the polynomial $f\left(x_{1}, x_{2}\right)=$ $x_{1}^{2}+x_{1} x_{2}+x_{2}^{3}$. Over the (min, + ) semiring, it is interpreted as $\min \left\{2 x_{1}, x_{1}+x_{2}, 3 x_{2}\right\}$ while over the $(\max ,+)$ semiring, it is interpreted as $\max \left\{2 x_{1}, x_{1}+x_{2}, 3 x_{2}\right\}$.

## Background

Many dynamic programming algorithms correspond to (min, + ) circuits over an appropriate semiring. Notable examples include the Bellman-Ford-Moore (BFM) algorithm for the single-source-shortest-path problem (SSSP) [2, 5, 18], the Floyd-Warshall (FW) algorithm for the All-Pairs-Shortest-Path (APSP) problem [4, 22], and the Held-Karp (HK) algorithm for the Travelling Salesman Problem (TSP) [7]. All these algorithms are just recursively constructed (min, +) circuits. For example, both the BFM and the FW algorithms give $\mathrm{O}\left(n^{3}\right)$ sized (min, + ) circuits while the HK algorithm gives a $\mathrm{O}\left(n^{2} \cdot 2^{n}\right)$ sized (min, + ) circuit. Matching lower bounds were proved for TSP in [10], for APSP in [11], and for SSSP in [13]. So, proving tight lower bounds for circuits over (min,+ ) can help us understand the power and limitations of dynamic programming. We refer the reader to $[11,12]$ for more results on $(\mathrm{min},+$ ) circuit lower bounds.

Apart from the many natural settings where the tropical semiring $\operatorname{Min}=(\min ,+, \mathbb{N} \cup\{\infty\}, 0, \infty)$ crops up, it is also interesting because it can simulate the Boolean semiring for monotone computation. The mapping is straightforward: $0,1, \vee, \wedge$ in the Boolean semiring are replaced by $\infty, 0$, min,+ respectively in the tropical semiring. Proving lower bounds for (min, + ) formulas could be easier than for monotone Boolean formulas because the ( $\mathrm{min},+$ ) formula has to compute a function correctly at all values, not just at $0, \infty$. In particular, we draw attention to the following observation in [11]: "The power of tropical circuits lies somewhere between that of monotone Boolean circuits and monotone arithmetic circuits, and the gaps may even be exponential." Thus, over the tropical
semiring Min, lower bounds can be inherited from the monotone Boolean setting, and upper bounds from the monotone arithmetic setting.

Note that algorithms for problems like computing the diameter of a graph are naturally expressed using (min, max,+ ) circuits. This makes the cost of converting a max gate to a (min, + ) circuit or formula an interesting measure.

A related question arises in the setting of counting classes defined by arithmetic circuits and formulas. Circuits over $\mathbb{N}$, with specific resource bounds, count accepting computation paths or proof-trees in a related resource-bounded Turing machine model defining a class $\mathcal{C}$. The counting function class is denoted $\# \mathcal{C}$. The difference of two such functions in a class $\# \mathcal{C}$ is a function in the class DiffC. On the other hand, circuits with the same resource bounds, but over $\mathbb{Z}$, or equivalently, with subtraction gates, describe the function class GapC. For most complexity classes $\mathcal{C}$, a straightforward argument shows that that DiffC and GapC coincide upto polynomial factors. See [1] for further discussion on this. In this framework, we restrict attention to computation over $\mathbb{N}$ and see that as a member of a Gap class over (min, + ), max has linear-size formulas, whereas as a member of a Diff class, it requires $\Omega(n \log n)$ size.

## Our results and techniques:

We now formally state our results and briefly comment on the techniques used to prove them.

1. For $n \geq 2$, no ( $\min ,+$ ) formula over $\mathbb{N}$ can compute $\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$. (Theorem 10)

The proof is simple: apply a carefully chosen restriction to the variables and show that the $(\min ,+$ ) formula does not output the correct value of max on this restriction.
2. $\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$ can be computed by a difference of two (min, + ) formulas with total size $n+n\lceil\log n\rceil$. (Theorem 11)

One of the formulas computes just the sum of all $n$ variables and is clearly of linear size. The other formula computes the minimum sum of $n-1$ distinct variables; using recursion, we obtain the claimed size bound.
3. Let $F_{1}, F_{2}$ be (min, + ) formulas over $\mathbb{N}$ such that $F_{1}-F_{2}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Then $F_{1}$ must have at least $n$ leaves and $F_{2}$ at least $n \log n$ leaves. (Theorem 14)

A major ingredient in our proof is the definition of a measure for functions computable by constant-free ( $\mathrm{min},+$ ) formulas, and relating this measure to formula size. The measure involves terms analogous to minterms of a monotone Boolean function, and uses the entropy of an associated graph under the uniform distribution on its vertices. In the setting of monotone Boolean functions, this technique was used in [19] to give formula size lower bounds. We adapt that technique to the $(\min ,+)$ setting.
The same technique also yields the following lower bound: Any (min, +) formula computing the minimum over the sums of $n-1$ variables must have at least $n \log n$ leaves. This is tight. (Lemma 12 and Corollary 19) Note that for the corresponding Boolean function $\mathrm{Th}_{n}^{n-1}$, a lower bound of $n \log n$ is known for monotone Boolean formulas [9], and hence by [11], this lower bound automatically carries over to the (min, + ) semiring. However, transferring the lower bound seems to require the use of $\infty$. Our argument shows that the lower bound holds even if we are interested in computation over $\mathbb{N}$ without the element $\infty$.
4. Arguably, over totally ordered monoids that are not groups, a monus operation is a more appropriate version of the inverse than minus. In Section 5 , we briefly discuss augmenting $(\min ,+$ ) formulas with gates computing monus as opposed to minus. The monus operation has been considered in the literature in the context of whether function classes like \#P are closed under monus; see e.g. [8] (there monus is referred to as proper subtraction).

## 2 Preliminaries

### 2.1 Notation

Let $X$ denote the set of variables $\left\{x_{1}, \ldots, x_{n}\right\}$. We use $\tilde{x}$ to denote $\left(x_{1}, x_{2}, \ldots, x_{n}, 1\right)$.
We use $e_{i}$ to denote the $(n+1)$-dimensional vector with a 1 in the $i$ th coordinate and zeroes elsewhere. For $i \in[n]$, we also use $e_{i}$ to denote an assignment to the variables $x_{1}, x_{2}, \ldots, x_{n}$ where $x_{i}$ is set to 1 and all other variables are set to 0 .
Definition 1 For $0 \leq r \leq n$, the $n$-variate functions $\operatorname{Sum}_{n}, \mathrm{MinSum}_{n}^{r}$ and $\mathrm{MaxSum}_{n}^{r}$ are as defined below.

$$
\begin{aligned}
\text { Sum }_{n} & =\sum_{i=1}^{n} x_{i} \\
\text { MinSum }_{n}^{r} & =\min \left\{\sum_{i \in S} x_{i}|S \subseteq n,|S|=r\}\right. \\
\operatorname{MaxSum}_{n}^{r} & =\max \left\{\sum_{i \in S} x_{i}|S \subseteq n,|S|=r\}\right.
\end{aligned}
$$

Note that $\operatorname{MinSum}_{n}^{0}$ and $\operatorname{MaxSum}_{n}^{0}$ are the constant function 0 , and MinSum $_{n}^{1}$ and MaxSum $_{n}^{1}$ are just the min and max functions respectively.
Observation 2 For $1 \leq r<n$, $\operatorname{MinSum}_{n}^{n}=\operatorname{MaxSum}_{n}^{n}=\operatorname{Sum}_{n}=\operatorname{MinSum}_{n}^{r}+\operatorname{MaxSum}_{n}^{n-r}$.

### 2.2 Formulas and Circuits

A ( $\min ,+$ ) formula is a directed tree. Each leaf of a formula has a label from $X \cup \mathbb{N}$; that is, it is labeled by a variable $x_{i}$ or a constant $\alpha \in \mathbb{N}$. Each internal node has exactly two children and is labeled by one of the two operations min or + . The output node of the formula computes a function of the input variables in the natural way. The input nodes of a formula are also referred to as gates.

If all leaves of a formula are labeled from $X$, we say that the formula is constant-free.
A (min,,+- ) formula is similarly defined; the operation at an internal node may also be - , in which case the children are ordered and the node computes the difference of their values.

We define the size of a formula as the number of leaves in the formula. For a formula $F$, we denote by $L(F)$ its size, the number of leaves in it. For a function $f$, we denote by $L(f)$ the smallest size of a formula computing $f$. By $L_{c f}(f)$ we denote the smallest size of a constant-free formula computing $f$.

Circuits are similarly defined; the underlying directed graph now need not be a tree but must be acyclic. The size of a circuit can be defined as the number of nodes in it, or as the number of edges in it.

### 2.3 Graph Entropy

The notion of the entropy of a graph or hypergraph, with respect to a probability distribution on its vertices, was first defined by Körner in [14]. In that and subsequent works (e.g. [15, 16, 3, 19]), equivalent characterizations of graph entropy were established and are often used now as the definition itself, see for instance [20,21]. In this paper, we use graph entropy only with respect to the uniform distribution, and simply call it graph entropy. We use the following definition, which is exactly the definition from [21] specialised to the uniform distribution.

Definition 3 Let $G$ be a graph with vertex set $V(G)=\{1, \ldots, n\}$.
The vertex packing polytope $V P(G)$ of the graph $G$ is the convex hull of the characteristic vectors of independent sets of $G$.

The entropy of $G$ is defined as

$$
H(G)=\min _{\vec{a} \in V P(G)} \sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{a_{i}} .
$$

It can easily be seen that $H(G)$ is a non-negative real number, and moreover, $H(G)=0$ if and only if $G$ has no edges. We list non-trivial properties of graph entropy that we use.

Lemma $4([\mathbf{1 5}, \mathbf{1 6}])$ Let $F=(V, E(F))$ and $G=(V, E(G))$ be two graphs on the same vertex set. The following hold:

1. Monotonocity. If $E(F) \subseteq E(G)$, then $H(F) \leq H(G)$
2. Subadditivity. Let $Q$ be the graph with vertex set $V$ and edge set $E(F) \cup E(G)$. Then $H(Q) \leq H(F)+H(G)$.

Lemma 5 (see for instance [20, 21]) The following hold:

1. Let $K_{n}$ be the complete graph on $n$ vertices. Then $H\left(K_{n}\right)=\log n$.
2. Let $G$ be a graph on $n$ vertices, whose edges induce a bipartite graph on $m$ (out of $n$ ) vertices. Then $H(G) \leq \frac{m}{n}$.

## 3 Transformations and Upper bounds

We consider the computation of $\max \left\{x_{1}, \ldots, x_{n}\right\}$ over $\mathbb{N}$ using ( $\min ,+$ ) formulas.
To start with, we describe some properties of $(\min ,+$ ) formulas that we use repeatedly. The first property, Proposition 7 below, is expressing the function computed by a formula as a depth- 2 polynomial where + plays the role of multiplication and min plays the role of addition. The next properties, Proposition 8 and 9 below, deal with removing redundant sub-expressions created by the constant zero or moving common parts aside.

Definition 6 Let $F$ be a (min, +) formula with leaves labeled from $X \cup \mathbb{N}$. For each gate $v \in F$, we construct a set $S_{v} \subseteq \mathbb{N}^{n+1}$ as described below.

We construct the sets inductively based on the depth of $v$.

1. Case 1. $v$ is a leaf labeled $\alpha$ for some $\alpha \in \mathbb{N}$. Then $S_{v}=\left\{\alpha \cdot e_{n+1}\right\}$. (Recall, $e_{i}$ is the unit vector with 1 at the ith coordinate and zero elsewhere).
2. Case 2: $v$ is a leaf labeled $x_{i}$ for some $i \in[n]$. Then $S_{v}=\left\{e_{i}\right\}$.
3. Case 3: $v=\min \{u, w\}$. Then $S_{v}=S_{u} \cup S_{w}$.
4. Case 4: $v=u+w$. Then $S_{v}=\left\{\tilde{a}+\tilde{b} \mid \tilde{a} \in S_{u}, \tilde{b} \in S_{w}\right\}$ (coordinate-wise addition).

Let $r$ be the output gate of $F$. We denote by $S(F)$ the set $S_{r}$ so constructed.
It is straightforward to see that if $F$ has no constants (so Case 1 is never invoked), then $a_{n+1}$ remains 0 throughout the construction of the sets $S_{v}$. Hence if $F$ is constant-free, then for each $\tilde{a} \in S(F), a_{n+1}=0$.

By construction, the set $S(F)$ describes the function computed by $F$. (In the language of [11], it represents the unique polynomial "produced" by the formula.) Thus we have the following:

Proposition 7 Let $F$ be a formula with min and + gates, with leaves labeled by elements of $\left\{x_{1}, \ldots, x_{n}\right\} \cup \mathbb{N}$. For each gate $v \in F$, let $f_{v}$ denote the function computed at $v$.

Then $f_{v}=\min \left\{\langle\tilde{a} \cdot \tilde{x}\rangle \mid \tilde{a} \in S_{v}\right\}$.
The following proposition is an easy consequence of the construction in Definition 6.
Proposition 8 Let $F$ be a (min, +) formula over $\mathbb{N}$. Let $G$ be the formula obtained from $F$ by replacing all constants by the constant 0 . Let $H$ be the constant-free formula obtained from $G$ by eliminating 0 s from $G$ through repeated replacements of $0+A$ by $A, \min \{0, A\}$ by 0 . Then

1. $L(H) \leq L(G)=L(F)$,
2. $S(G)=\left\{\tilde{b} \mid b_{n+1}=0, \exists \tilde{a} \in S(F), \forall i \in[n], a_{i}=b_{i}\right\}$, and
3. $G$ and $H$ compute the same function $\min \{\langle\tilde{b} \cdot \tilde{x}\rangle \mid \tilde{b} \in S(G)\}$.
(Note: It is not the claim that $S(G)=S(H)$. Indeed, this may not be the case. For instance, let $F=x+\min \{1, x+y\}$. Then $S(F)=\{101,210\}, S(G)=\{100,210\}, S(H)=\{100\}$, However, the functions computed are the same.)

The next proposition shows how to remove "common" contributors to $S(F)$ without increasing the formula size.

Proposition 9 Let $F$ be a (min, + ) formula computing a function $f$.
If, for some $i \in[n+1]$, $a_{i}>0$ for every $\tilde{a} \in S(F)$, then $f-\left\langle e_{i} \cdot \tilde{x}\right\rangle$ can be computed by $a$ $(\min ,+)$ formula $F^{\prime}$ of size at most size $(F)$. Furthermore, $S\left(F^{\prime}\right)=\left\{\tilde{b} \mid \exists \tilde{a} \in S(F), \tilde{b}=\tilde{a}-e_{i}\right\}$.

Proof: First consider $i \in[n]$. Let $X$ be the subset of nodes in $F$ defined as follows:

$$
X=\left\{v \in F \mid \forall \tilde{a} \in S_{v}: a_{i}>0\right\}
$$

Clearly, the output gate $r$ of $F$ belongs to $X$. By the construction of the sets $S_{v}$, whenever a min node $v$ belongs to $X$, both its children belong to $X$, and whenever a + node belongs to $X$, at least one of its children belongs to $X$. We pick a set $T \subseteq X$ as follows. Include $r$ in $T$. For each min node in $T$, include both its children in $T$. For each + node in $T$, include in $T$ one child that belongs
to $X$ (if both children are in $X$, choose any one arbitrarily). This gives a sub-formula of $F$ where all leaves are labeled $x_{i}$. Replace these occurrences of $x_{i}$ in $F$ by 0 to get formula $F^{\prime}$. It is easy to see that $S\left(F^{\prime}\right)=\left\{\tilde{a}-e_{i} \mid \tilde{a} \in S\right\}$. Hence $F^{\prime}$ computes $f-x_{i}$.

For $i=a_{n+1}$, the same process as above yields a subformula where each leaf is labeled by a positive constant. Subtracting 1 from the constant at each leaf in $T$ gives the formula computing $f-1$.

It is intuitively clear that no ( $\min ,+$ ) formula can compute max. A formal proof using Proposition 7 appears below.
Theorem 10 For $n \geq 2$, no (min, + ) formula over $\mathbb{N}$ can compute $\max \left\{x_{1}, \ldots, x_{n}\right\}$.
Proof: Suppose, to the contrary, some formula $C$ computes max. Then its restriction $D$ to $x_{1}=X$, $x_{2}=Y, x_{3}=x_{4}=\ldots=x_{n}=0$, correctly computes $\max \{X, Y\}$. Since all leaves of $D$ are labeled from $\left\{x_{1}, x_{2}\right\} \cup \mathbb{N}$, the set $S(D)$ is a set of triples. Let $S \subseteq \mathbb{N}^{3}$ be this set. For all $X, Y \in \mathbb{N}$, $\max \{X, Y\}$ equals $E(X, Y)=\min \{A X+B Y+C \mid(A, B, C) \in S\}$.

Let $K$ denote the maximum value taken by $C$ in any triple in $S$. If for some $B, C \in \mathbb{N}$, the triple $(0, B, C)$ belongs to $S$, then $E(K+1,0) \leq C \leq K<K+1=\max \{0, K+1\}$. So for all $(A, B, C) \in S, A \neq 0$, so $A \geq 1$. Similarly, for all $(A, B, C) \in S, B \geq 1$. Hence for all $(A, B, C) \in S$, $A+B \geq 2$.

Now $E(1,1)=\min \{A+B+C \mid(A, B, C) \in S\} \geq 2>1=\max \{1,1\}$. So $E(X, Y)$ does not compute $\max (X, Y)$ correctly.

However, if we also allow the subtraction operation at internal nodes, it is very easy to compute the maximum in linear size; $\max \left(x_{1}, \ldots, x_{n}\right)=-\min \left\{-x_{1},-x_{2}, \ldots,-x_{n}\right\}$. Here $-a$ is implemented as $0-a$, and if we allow only variables, not constants, at leaves, we can compute $-a$ as $\left(x_{1}-x_{1}\right)-a$.

Thus the subtraction operation adds significant power. How much? Can we compute the maximum with very few subtraction gates? It turns out that the max function can be computed as the difference of two (min,+ ) formulas. Equivalently, there is a ( $\mathrm{min},+,-$ ) formula with a single - gate at the root, that computes the max function. This formula is not linear in size, but it is not too big either; we show that it has size $\mathrm{O}(n \log n)$.

Theorem 11 The function $\max \left\{x_{1}, \ldots, x_{n}\right\}$ can be computed by a difference of two (min, +) formulas with total size $n+n\lceil\log n\rceil$.

Proof: Note that $\max \left\{x_{1}, \ldots, x_{n}\right\}=\operatorname{Sum}_{n}-\operatorname{MinSum}_{n}^{n-1}$. Lemma 12 below shows that $\operatorname{MinSum}_{n}^{n-1}$ can be computed by a formula of size $n(\lceil\log n\rceil)$. Since Sum $_{n}$ can be computed by a formula of size $n$, the claimed upper bound for max follows.

Lemma 12 The function MinSum $_{n}^{n-1}$ can be computed by a (min, +) formula of size $n(\lceil\log n\rceil)$.
Proof: Let $m^{\prime}=\lfloor n / 2\rfloor, m^{\prime \prime}=\lceil n / 2\rceil$, Let $X, X_{l}, X_{r}$ denote the sets of variables $\left\{x_{1}, \ldots, x_{n}\right\}$, $\left\{x_{1}, \ldots, x_{m^{\prime}}\right\},\left\{x_{m^{\prime}+1}, \ldots, x_{n}\right\}$. Note that $\left|X_{l}\right|=m^{\prime},\left|X_{r}\right|=m^{\prime \prime}, m^{\prime}+m^{\prime \prime}=n$. Let $p$ denote $\lceil\log n\rceil$. Note that $\left\lceil\log m^{\prime}\right\rceil=\left\lceil\log m^{\prime \prime}\right\rceil=p-1$.

To compute $\mathrm{MinSum}_{n}^{n-1}$ on $X$, we recursively compute $\mathrm{Sum}_{m^{\prime}}$ and $\mathrm{MinSum}_{m^{\prime}}^{m^{\prime}-1}$ on $X_{l}$ and Sum $_{m^{\prime \prime}}$ and MinSum $m_{m^{\prime \prime}}^{m^{\prime \prime}-1}$ on $X_{r}$. Now $\operatorname{MinSum}_{n}^{n-1}(X)$ can be computed as

$$
\min \left\{\operatorname{Sum}_{m^{\prime}}\left(X_{l}\right)+\operatorname{MinSum}_{m^{\prime \prime}}^{m^{\prime \prime}-1}\left(X_{r}\right), \quad \operatorname{MinSum}_{m^{\prime}}^{m^{\prime}-1}\left(X_{l}\right)+\operatorname{Sum}_{m^{\prime \prime}}\left(X_{r}\right)\right\}
$$

For the sub-expressions appearing above, the sizes are as claimed by induction. Thus the number of leaves in the resulting formula is given by $m^{\prime}+m^{\prime \prime}(p-1)+m^{\prime}(p-1)+m^{\prime \prime}=n p$ as claimed.

Remark 13 A straightforward generalisation of this approach allows us to compute MinSum $n n$ by formulas of size $n(\lceil\log n\rceil)^{k}$ for $1 \leq k<n$, and MinSum $n_{n}^{k}$ by formulas of size $n(\lceil\log n\rceil)^{k-1}$ for $1 \leq k<n$. But these are not the right bounds in general. For instance, for $k \in O(1)$, it is known from constructions in [6] that MinSum $n_{n}^{k}$ has (min, +) formulas of size $O(n \log n)$. (The constructions there are for monotone boolean formulas but hold for (min, + ) and monotone arithmetic computations too because all they use are set schemes.) For $k=2$, our formula above has the same size as that of [6], and is essentially the same formula, presented differently.

Similarly, for $k=n / 2$, the recursive construction described above seems to need exponential size $\left((\log n)^{n / 2}\right)$. But this is because we count inefficiently. If we instead consider the depth of the constructed formula, we see that it is $O\left(\log ^{2} n\right)$, and hence the formula has at most quasi-polynomial $2^{O\left(\log ^{2} n\right)}$ size.

In the rest of this paper, our goal is to prove a matching lower bound for the max function. Note that the constructions in Theorem 11 and Lemma 12 yield formulas that do not use constants at any leaves. Intuitively, it is clear that if a formula computes the maximum correctly for all natural numbers, then constants cannot help. So the lower bound should hold even in the presence of constants, and indeed our lower bound does hold even if constants are allowed.

## 4 The main lower bound

In this section, we prove the following theorem:

Theorem 14 Let $F_{1}, F_{2}$ be (min, + ) formulas over $\mathbb{N}$ such that $F_{1}-F_{2}=\max \left(x_{1}, \ldots, x_{n}\right)$. Then $L\left(F_{1}\right) \geq n$, and $L\left(F_{2}\right) \geq n \log n$.

If $F_{1}$ and $F_{2}$ actually compute $\mathrm{Sum}_{n}$ and $\mathrm{MinSum}_{n}^{n-1}$, then the lower bound on $L\left(F_{1}\right)$ is obvious, and the lower bound on $L\left(F_{2}\right)$ too seems "morally" clear since it holds for monotone Boolean formulas computing the threshold function $\mathrm{Th}_{n}^{n-1}$ (see [9]). One problem is that, as far as we know, transferring lower bounds from the monotone Boolean setting to the (min, + ) setting seems to need $\infty$. The other problem is that the given $F_{1}, F_{2}$ may not be of this form at all. And finally, a third problem is that if constants are allowed at leaves of the formula, reasoning becomes a bit messy.

Our proof proceeds as follows: we first transform $F_{1}$ and $F_{2}$ over a series of steps to formulas $G_{1}$ and $G_{2}$ no larger than $F_{1}$ and $F_{2}$, such that $G_{1}-G_{2}$ equals $F_{1}-F_{2}$ and hence still computes max, and $G_{1}$ and $G_{2}$ have some nice properties. These properties immediately imply that $L\left(F_{1}\right) \geq L\left(G_{1}\right) \geq n$. We further transform $G_{2}$ to a constant-free formula $H$ no larger than $G_{2}$. We then define a measure for functions computable by constant-free ( $\mathrm{min},+$ ) formulas, relate this measure to formula size, and use the properties of $G_{2}$ and $H$ to show that the function $h$ computed by $H$ has large measure and large formula size.
Transformation 1: For $b \in\{1,2\}$, let $S_{b}$ denote the set $S\left(F_{b}\right)$. For $i \in[n+1]$, let $A_{i}$ be the minimum value appearing in the $i$ th coordinate in any tuple in $S_{1} \cup S_{2}$. Let $\tilde{A}$ denote the
tuple $\left(A_{1}, \ldots, A_{n}, A_{n+1}\right)$. By repeatedly invoking Proposition 9, we obtain formulas $G_{b}$ computing $F_{b}-\langle\tilde{A} \cdot \tilde{x}\rangle$, with $L\left(G_{b}\right) \leq L\left(F_{b}\right)$. For $b \in\{1,2\}$, let $T_{b}$ denote the set $S\left(G_{b}\right)$.

We now establish the following properties of $G_{1}$ and $G_{2}$.
Lemma 15 Let $F_{1}, F_{2}$ be (min, +) formulas such that $F_{1}-F_{2}$ computes max over $\mathbb{N}$. Let $G_{1}, G_{2}$ be obtained as described above. Then

1. $L\left(G_{1}\right) \leq L\left(F_{1}\right), L\left(G_{2}\right) \leq L\left(F_{2}\right)$,
2. $\max (X)=F_{1}-F_{2}=G_{1}-G_{2}$,
3. For every $i \in[n]$, for every $\tilde{a} \in T_{1}, a_{i}>0$. Hence $L\left(G_{1}\right) \geq n$.
4. For every $i \in[n]$, there exists $\tilde{a} \in T_{2}, a_{i}=0$.
5. There exist $\tilde{a} \in T_{1}, \tilde{b} \in T_{2}, a_{n+1}=b_{n+1}=0$.
6. For every $i, j \in[n]$ with $i \neq j$, for every $\tilde{a} \in T_{2}, a_{i}+a_{j}>0$.

## Proof:

1. This follows from Proposition 9.
2. Obvious; we decrease $F_{1}$ and $F_{2}$ by the same amount to get $G_{1}$ and $G_{2}$ respectively, so the difference remains the same.
3. Suppose for some $\tilde{a} \in T_{1}$ and for some $i \in[n], a_{i}=0$. Consider the input assignment $\tilde{d}$ where $d_{i}=1+a_{n+1}$ and $d_{j}=0$ for $j \in[n] \backslash\{i\}$. Then $\max \left\{d_{1}, \ldots, d_{n}\right\}=1+a_{n+1}$. However, $\langle\tilde{a} \cdot \tilde{d}\rangle=a_{n+1}$. Therefore on input $\tilde{d}, G_{1}(\tilde{d}) \leq a_{n+1}$. Since $G_{2} \geq 0$ on all assignments, we get $G_{1}(\tilde{d})-G_{2}(\tilde{d}) \leq a_{n+1}<\max (\tilde{d})$, contradicting the assumption that $G_{1}-G_{2}$ computes max.
4. This follows from the previous point and the choice of $A_{i}$ for each $i$.
5. From the choice of $A_{n+1}$, we know that there is an $\tilde{a}$ in $T_{1} \cup T_{2}$ with $a_{n+1}=0$. Suppose there is such a tuple in exactly one of the sets $T_{1}, T_{2}$. Then exactly one of $G_{1}(\tilde{0}), G_{2}(\tilde{0})$ equals 0 , and so $G_{1}-G_{2}$ does not compute $\max (\tilde{0})$.
6. Suppose to the contrary, some $\tilde{a} \in T_{2}$ has $a_{i}=a_{j}=0$. Consider the input assignment $\tilde{d}$ where $d_{i}=d_{j}=1+a_{n+1}$ and $d_{k}=0$ for $k \in[n] \backslash\{i, j\}$. Then $\max \left\{d_{1}, \ldots, d_{n}\right\}=1+a_{n+1}$. Since every $x_{k}$ figures in every tuple of $T_{1}, G_{1}(\tilde{d}) \geq d_{i}+d_{j}=2 a_{n+1}+2$. But $G_{2}(\tilde{d}) \leq a_{n+1}$. Hence $G_{1}(\tilde{d})-G_{2}(\tilde{d})$ does not compute $\max (\tilde{d})$.

We have already shown above that $L\left(F_{1}\right) \geq L\left(G_{1}\right) \geq n$. Now the more tricky part: we need to lower bound $L\left(G_{2}\right)$. Note that property 3 shows that $F_{1}$ and $G_{1}$ must be computing something of the form $\operatorname{Sum}_{n}+F_{1}^{\prime}$, or $\operatorname{Sum}_{n}+G_{1}^{\prime}$, respectively. If $G_{1}^{\prime}$ were to be 0 , we know that $G_{2}$ must be MinSum $n=$. However, $G_{1}^{\prime}$ may have been carefully chosen to make the computation of MinSum $n=G_{1}^{\prime-1}$ easy. We need to rule out this possibility.
Transformation 2: Let $H^{\prime}$ be the formula obtained by simply replacing every constant in $G_{2}$ by 0 . Let $H$ be the constant-free formula obtained from $H^{\prime}$ by eliminating the zeroes, repeatedly
replacing $0+A$ by $A, \min \{0, A\}$ by 0 . Let $h$ be the function computed by $H$. Then, $L_{c f}(h) \leq$ $L(H) \leq L\left(H^{\prime}\right)=L\left(G_{2}\right) \leq L\left(F_{2}\right)$. It thus suffices to show that $L_{c f}(h) \geq n \log n$. To this end, we define a complexity measure $\mu$, relate it to constant-free formula size, and show that it is large for the function $h$.

Definition 16 For an n-variate function $f$ computable by a constant-free (min, + ) formula, we define

$$
\begin{aligned}
& (f)_{1}=\left\{i \mid f\left(e_{i}\right) \geq 1, f(0)=0\right\} . \\
& (f)_{2}=\left\{(i, j) \mid f\left(e_{i}+e_{j}\right) \geq 1, f\left(e_{i}\right)=0, f\left(e_{j}\right)=0\right\} .
\end{aligned}
$$

We define $G(f)$ to be the graph whose vertex set is $[n]$ and edge set is $(f)_{2}$.
The measure $\mu$ for function $f$ is defined as follows:

$$
\mu=\frac{\left|(f)_{1}\right|}{n}+H(G(f))
$$

The following lemma relates $\mu(f)$ with $L(f)$. This relation has been used before, see for instance [19] for applications to monotone Boolean circuits. Since we have not seen an application in the setting of ( $\min ,+$ ) formulas, we (re-)prove this in detail here; however, it is really the same proof.

Lemma 17 Let $f$ be an n-variate function computable by a constant-free (min, +) formula. Then $L_{c f}(f) \geq n \cdot \mu(f)$.

Proof: The proof is by induction on the depth of a witnessing formula $F$ that computes $f$ and has $L_{c f}(F)=L_{c f}(f)$.

Base case: $F$ is an input variable, say $x_{i}$. Then $(f)_{1}=\left\{x_{i}\right\}$, and $G(f)$ is the empty graph, so $\mu(f)=\frac{1}{n}$. Hence $1=L_{c f}(f)=n \mu(f)$.

Inductive step: $F$ is either $F^{\prime}+F^{\prime \prime}$ or $\min \left\{F^{\prime}, F^{\prime \prime}\right\}$ for some formulas $F^{\prime}, F^{\prime \prime}$ computing functions $f^{\prime}, f^{\prime \prime}$ respectively. Since $F$ is an optimal-size formula for $f, F^{\prime}$ and $F^{\prime \prime}$ are optimal-size formulas for $f^{\prime}$ and $f^{\prime \prime}$ as well. So $L_{c f}(f)=L(F)=L\left(F^{\prime}\right)+L\left(F^{\prime \prime}\right)=L_{c f}\left(f^{\prime}\right)+L_{c f}\left(f^{\prime \prime}\right)$.

Case a. $F=F^{\prime}+F^{\prime \prime}$. Then $(f)_{1}=\left(f^{\prime}\right)_{1} \cup\left(f^{\prime \prime}\right)_{1}$ and $G(f) \subseteq G\left(f^{\prime}\right) \cup G\left(f^{\prime \prime}\right)$. Hence,

$$
\begin{align*}
\mu(f) & \leq \frac{\left|\left(f^{\prime}\right)_{1} \cup\left(f^{\prime \prime}\right)_{1}\right|}{n}+H\left(G\left(f^{\prime}\right) \cup G\left(f^{\prime \prime}\right)\right) & & (\text { Lemma 4) }  \tag{Lemma4}\\
& \leq \frac{\left|\left(f^{\prime}\right)_{1}\right|}{n}+\frac{\left|\left(f^{\prime \prime}\right)_{1}\right|}{n}+H\left(G\left(f^{\prime}\right)\right)+H\left(G\left(f^{\prime \prime}\right)\right) & & (\text { Lemma 4) }  \tag{Lemma4}\\
& =\mu\left(f^{\prime}\right)+\mu\left(f^{\prime \prime}\right) & & \\
& \leq \frac{1}{n} \cdot L_{c f}\left(f^{\prime}\right)+\frac{1}{n} \cdot L_{c f}\left(f^{\prime \prime}\right) & & (\text { Induction }) \\
& =\frac{1}{n} \cdot L_{c f}(f) & & \left(L_{c f}(f)=L_{c f}\left(f^{\prime}\right)+L_{c f}\left(f^{\prime \prime}\right)\right)
\end{align*}
$$

Case b. $F=\min \left(F^{\prime}, F^{\prime \prime}\right)$. Let $\left(f^{\prime}\right)_{1}=A$ and $\left(f^{\prime \prime}\right)_{1}=B$. Then $(f)_{1}=A \cap B$ and $G(f) \subseteq$ $G\left(f^{\prime}\right) \cup G\left(f^{\prime \prime}\right) \cup G(A \backslash B, B \backslash A)$. Here, $G(P, Q)$ denotes the bipartite graph $G$ with parts $P$ and
Q. Hence,

$$
\begin{align*}
& \mu(f) \leq \frac{1}{n}(|A \cap B|)+H\left(G\left(f^{\prime}\right) \cup G\left(f^{\prime \prime}\right) \cup G(A \backslash B, B \backslash A)\right)  \tag{Lemma4}\\
& \leq \frac{1}{n}(|A \cap B|)+H\left(G\left(f^{\prime}\right)\right)+H\left(G\left(f^{\prime \prime}\right)\right)+H(G(A \backslash B, B \backslash A)) \quad(\text { Lemma 4) }  \tag{Lemma4}\\
& \leq \frac{1}{n}(|A \cap B|)+H\left(G\left(f^{\prime}\right)\right)+H\left(G\left(f^{\prime \prime}\right)\right)+\frac{1}{n}(|A \backslash B|+|B \backslash A|) \quad(\text { Lemma 5) }  \tag{Lemma5}\\
& \leq \frac{1}{n}(|A|+|B|)+H\left(G\left(f^{\prime}\right)\right)+H\left(G\left(f^{\prime \prime}\right)\right) \\
&=\mu\left(f^{\prime}\right)+\mu\left(f^{\prime \prime}\right) \\
& \leq \frac{1}{n} \cdot L_{c f}\left(f^{\prime}\right)+\frac{1}{n} \cdot L_{c f}\left(f^{\prime \prime}\right) \\
&=\frac{1}{n} \cdot L_{c f}(f) \quad \quad \text { (Induction) } \\
& \quad\left(L_{c f}(f)=L_{c f}\left(f^{\prime}\right)+L_{c f}\left(f^{\prime \prime}\right)\right)
\end{align*}
$$

Hence, $\mu(f) \leq \frac{1}{n} \cdot L_{c f}(f)$.
Using this measure, we can now show the required lower bound.
Lemma 18 For the function $h$ obtained after Transformation 2, $\mu(h) \geq \log n$.
Proof: Recall that we replaced constants in $G_{2}$ by 0 to get $H^{\prime}$, then eliminated the 0 s to get constant-free $H$ computing $h$. By Proposition 8 , we know that $S\left(H^{\prime}\right)=\left\{\tilde{b} \mid b_{n+1}=0, \exists \tilde{a} \in T_{2}, a_{i}=\right.$ $\left.b_{i} \forall i \in[n]\right\}$ and that $h=\min \left\{\tilde{x} \cdot \tilde{b} \mid \tilde{b} \in S\left(H^{\prime}\right)\right\}$.

From item 4 in Lemma 15, it follows that $(h)_{1}=\emptyset$. (For every $i$, there is a $\tilde{b} \in S\left(H^{\prime}\right)$ with $b_{i}=0$. So $h\left(e_{i}\right) \leq\left\langle e_{i} \cdot \tilde{b}\right\rangle=0$.)

Since $(h)_{1}$ is empty, $(i, j) \in G(h)$ exactly when $h\left(e_{i}+e_{j}\right) \geq 1$. From item 6 in Lemma 15 , it follows that every pair $(i, j)$ is in $G(h)$. Thus $G(h)$ is the complete graph $K_{n}$.

From Lemma 5 we conclude that $\mu(h)=\log n$.
Lemmas 17 and 18 imply that $L_{c f}(h) \geq n \log n$. Since $L_{c f}(h) \leq L(H) \leq L\left(H^{\prime}\right)=L\left(G_{2}\right) \leq$ $L\left(F_{2}\right)$, we conclude that $L\left(F_{2}\right) \geq n \log n$.

This completes the proof of Theorem 14.

A major ingredient in this proof is using the measure $\mu$. This yields lower bounds for constantfree formulas. For functions computable in a constant-free manner, it is hard to see how constants can help. However, to transfer a lower bound on $L_{c f}(f)$ to a lower bound on $L(f)$, this idea of "constants cannot help" needs to be formalized. The transformations described before we define $\mu$ do precisely this.

For the MinSum $n=$ function, applying the measure technique immediately yields the lower bound $L_{c f}\left(\operatorname{MinSum}_{n}^{n-1}\right) \geq n \log n$. Transferring this lower bound to formulas with constants is a corollary of our main result, and with it we see that the upper bound from Lemma 12 is tight for MinSum $_{n}^{n-1}$.

Corollary 19 Any (min, +) formula computing $\operatorname{MinSum}_{n}^{n-1}$ over $\mathbb{N}$ must have size at least $n \log n$.
Proof: Let $F$ be any formula computing MinSum $_{n}^{n-1}$. Applying Theorem 14 to $F_{1}=x_{1}+\ldots+x_{n}$ and $F_{2}=F$, we obtain $L(F) \geq n \log n$.

It is worth noting that this lower bound for $(\min ,+)$ formulas computing MinSum $n_{n}^{n-1}$ holds in the presence of $\infty$, and also holds over integers, that is over the semiring Min ${ }^{-}$.

Corollary 20 Any (min, +) formula computing $\operatorname{MinSum}_{n}^{n-1}$ over $\mathbb{Z} \cup\{\infty\}$ must have size at least $n \log n$.

Proof: Consider any formula $F$ computing $\mathrm{MinSum}_{n}^{n-1}$. If all constants appearing at any of the leaves are finite and non-negative, then Corollary 19 already tells us that $F$ must have size at least $n \log n$, otherwise it will err on some inputs with no negative values or $\infty$. If some leaf is labeled by the constant $\infty$, we can remove such constants through repeated applications of the rules $\min (\infty, A)=A, \infty+A=\infty$. It remains to show that negative constants cannot help.

Consider the set $S(F)$ as in Definition 6. Here is an easy-to-see property: For any $\tilde{a} \in S(F)$, $a_{n+1} \geq 0$. This is because $F(\tilde{0})=\operatorname{MinSum}_{n}^{n-1}(0,0, \ldots, 0)=0$. But $F(\tilde{0})=\min \left\{a_{n+1} \mid \tilde{a} \in S(F)\right\}$, so this minimum is 0 . This also shows that for at least one $\tilde{a} \in S(F), a_{n+1}=0$.

Apply Proposition 8 to get formulas $G$ and $H$. (Replace all constants at leaves of $F$ by 0 to get $G$, then eliminate the 0 s to get $H$.) Let $g, h$ be the function computed by $G, H$ respectively. Then $g=h$. Also $L_{c f}(h) \leq L(H) \leq L(G)=L(F)$. So it suffices to lower-bound $L_{c f}(h)$.

By the property of $S(F)$ described above, for every $\tilde{x} \in \mathbb{N}^{n}, 0 \leq G(\tilde{x}) \leq F(\tilde{x})$.
Now note that for all $i \in[n], F\left(e_{i}\right)=0$, and hence $G\left(e_{i}\right)=0$. For all $i, j \in[n]$ with $i \neq j$, $F\left(e_{i}+e_{j}\right)=1$, and hence $0 \leq G\left(e_{i}+e_{j}\right) \leq 1$. We can rule out 0 as follows. Suppose $G\left(e_{i}+e_{j}\right)=0$. Then there exists an $\tilde{a} \in S(F)$ with $a_{i}=a_{j}=0$; let this $a_{n+1}$ be $c \geq 0$. Now $F\left((c+1)\left(e_{i}+e_{j}\right)\right) \leq$ $(c+1)\left(e_{i}+e_{j}\right) \cdot \tilde{a}=c$, but $\operatorname{MinSum}_{n}^{n-1}\left((c+1)\left(e_{i}+e_{j}\right)\right)=c+1$, a contradiction. So for all $i \neq j$, $G\left(e_{i}+e_{j}\right)=1$.

It now follows from Lemma 5 that $\mu(g)=\log n$. Since $h=g$, Lemma 17 implies that $L_{c f}(h) \geq$ $n \log n$.

## 5 The Monus operation

In general, over a monoid $(S,+)$, the operation of minus is not defined. If the set of monoid elements is totally ordered, as in the case of the Min semiring, the minus operation can be defined, but the set may not be closed under this operation. This is why we considered the setting above where it is "required" that whenever the minus operation is used, it indeed yields a non-negative value. This is a semantic condition on a formula with minus gates. However, there is also a syntactic way of defining subtraction in totally ordered monoids, via the monus operation, denoted $\ominus$. For all $a, b, a \ominus b$ is simply the smallest $c$ such that $a \leq b+c$. Over the Min semiring, it amounts to this: for all $a, b \in \mathbb{N}, a \ominus b$ equals $a-b$ if $a \geq b$, otherwise it equals 0 . That is, $a \ominus b=\max \{0, a-b\}$. As another example, over the monoid $\left(\mathbb{N}^{+}, \times\right)$, the above definition of the monus operation as an inverse of $\times$ gives $a \ominus b=\left\lceil\frac{a}{b}\right\rceil$.

Since max cannot be computed within the Min semiring, we augmented it with minus. We could also have augmented it with monus instead of minus. Notice that both min and max are easily expressible using monus:

$$
\min (a, b)=a \ominus(a \ominus b) ; \quad \max (a, b)=(a \ominus b)+b
$$

Thus any circuit with min, max and + gates can be transformed to a $(\ominus,+)$ circuit with just a doubling of size. However, for formulas, the cost of replacing min and max by $\ominus$ could be more.

Let us consider just the maximum of $n$ variables, as before. Again, with no restriction on monus gates, max can be computed by a linear-sized formula using the identity $\max (a, b)=(a \ominus b)+b$ recursively: $\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\max \left(x_{1}, x_{2}, \ldots, x_{n-1}\right) \ominus x_{n}\right)+x_{n}$. Unfolding this recursive construction yields a formula of size $2 n-1$. But it uses many monus gates. If we allow only one monus gate, at the top, then there is no difference between monus and minus; thus we have linear-sized circuits, $n+n \log n$ size formulas, and our lower bound for the difference of $(\min ,+)$ formulas (Theorem 14) continues to hold.

We show that in general, one $\ominus$ gate suffices; any (min,,$+ \ominus$ ) formula can be equivalently computed by a $(\min ,+, \ominus)$ formula with a single $\ominus$ gate at the top. However, this transformation comes at some expense in size. The blow-up is linear for circuits but can be substantial for formulas.

Proposition 21 Let $F$ be any (min,,$+ \ominus$ ) formula, computing a function $f$. Then there are $(\mathrm{min},+)$ formulas $F_{1}, F_{2}$ such that $f=F_{1} \ominus F_{2}$.

Proof: We prove this by induction on the depth of $F$.
For the base case at depth 0 , we just set $F_{1}=F$ and $F_{2}=0$.
Let $F=G_{1} \circ G_{2}$ where $\circ \in\{\min ,+, \ominus\}$. Inductively, assume that $G_{1}$ and $G_{2}$ are already in the desired form; i.e. each of them has a single $\ominus$ gate at the top. Let $G_{1}=x \ominus y$ and $G_{2}=z \ominus w$, where $x, y, z, w$ are all (min, + ) formulae. The expression $F_{1} \ominus F_{2}$ in each of the three cases below can be verified to be equivalent to $F$.

| $F$ | $F_{1}$ | $F_{2}$ |
| :---: | :---: | :---: |
| $G_{1}+G_{2}$ | $x+z$ | $\min (x, y)+\min (z, w)$ |
| $\min \left(G_{1}, G_{2}\right)$ | $\min (y+z, x+\min (z, w))$ | $y+\min (z, w)$ |
| $G_{1} \ominus G_{2}$ | $x+\min (z, w)$ | $y+z$ |

Note that in the last case, although $F$ already has a $\ominus$ gate at the top in this case, a transformation is still needed since $G_{1}$ and $G_{2}$ also have $\ominus$ gates at the top and we want a single $\ominus$ gate.

## 6 Discussion

Our results hold when variables take values from $\mathbb{N}$. In the standard (min, +) semi-ring, the value $\infty$ is also allowed, since it serves as the identity for the min operation. The proof of our main result Theorem 14 does not carry over to this setting. The main stumbling block is the removal of the "common" part of $S(F)$. However, if we allow $\infty$ as a value that a variable can take, but not as a constant appearing at a leaf, then the lower bound proof goes through. However, the upper bound no longer works; while taking a difference, what is $\infty-\infty$ ? So the question remains: how can we compute max over $\mathbb{N} \cup\{\infty\}$ as the difference of (min, + ) formulas? Note that the monus formulation for max still works, since $\infty \ominus a=\infty$ for any $a<\infty$.

The lower bound method uses graph entropy which is always bounded above by $\log n$. Thus this method cannot give a lower bound larger than $n \log n$. It would be interesting to obtain a modified technique that can show that all the upper bounds in Theorem 11 and Lemma 12 and Remark 13 are tight. It would also be interesting to find a direct combinatorial proof of our lower bound result, without using graph entropy.

## References

[1] Eric Allender. Arithmetic circuits and counting complexity classes. In Jan Krajicek, editor, Complexity of Computations and Proofs, Quaderni di Matematica Vol. 13, pages 33-72. Seconda Universita di Napoli, 2004. An earlier version appeared in the Complexity Theory Column, SIGACT News 28, 4 (Dec. 1997) pp. 2-15.
[2] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87-90, 1956.
[3] Imre Csiszár, János Körner, László Lovász, Katalin Marton, and Gábor Simonyi. Entropy splitting for antiblocking corners and perfect graphs. Combinatorica, 10(1):27-40, 1990.
[4] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.
[5] Lester R Ford Jr. Network flow theory. Technical Report P-923, Rand Corporation, 1956.
[6] J. Friedman. Constructing $o(n \log n)$ size monotone formulae for the $k$-th elementary symmetric polynomial of $n$ boolean variables. In Proceedings, 25th Annual Symposium on Foundations of Computer Science (FOCS), pages 506-515. IEEE, 1984.
[7] Michael Held and Richard M Karp. A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied Mathematics, 10(1):196-210, 1962.
[8] Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity Theory Companion. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2002.
[9] Radhakrishnan J. Better lower bounds for monotone threshold formulas. Journal of Computer and System Sciences, 54:221-226, 1997.
[10] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations over semirings. Journal of the ACM (JACM), 29(3):874-897, 1982.
[11] Stasys Jukna. Lower bounds for tropical circuits and dynamic programs. Theory of Computing Systems, 57(1):160-194, 2015.
[12] Stasys Jukna. Tropical complexity, Sidon sets, and dynamic programming. SIAM Journal on Discrete Mathematics, 30(4):2064-2085, 2016.
[13] Stasys Jukna and Georg Schnitger. On the optimality of Bellman-Ford-Moore shortest path algorithm. Theoretical Computer Science, 628:101-109, 2016.
[14] János Körner. Coding of an information source having ambiguous alphabet and the entropy of graphs. In Transactions of 6th Prague Conference on Information Theory, pages 411-425. Academia, Prague, 1973.
[15] János Körner. Fredman-Komlós bounds and information theory. SIAM. J. on Algebraic and Discrete Methods, 7(4):560-570, 1986.
[16] János Körner and Katalin Marton. New bounds for perfect hashing via information theory. European Journal of Combinatorics, 9(6):523-530, 1988.
[17] Meena Mahajan, Prajakta Nimbhorkar, and Anuj Tawari. Computing the maximum using (min, +) formulas. In $42 n$ International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 74:1-74:11, 2017.
[18] Edward F Moore. The shortest path through a maze. Bell Telephone System., 1959.
[19] Ilan Newman and Avi Wigderson. Lower bounds on formula size of boolean functions using hypergraph entropy. SIAM Journal on Discrete Mathematics, 8(4):536-542, 1995.
[20] Gábor Simonyi. Graph entropy: A survey. Combinatorial Optimization, 20:399-441, 1995.
[21] Gábor Simonyi. Perfect graphs and graph entropy: An updated survey. In Perfect Graphs, pages 293-328. John Wiley and Sons, 2001.
[22] Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM (JACM), 9(1):11-12, 1962.


[^0]:    *A preliminary version of this paper appeared in MFCS 2017, [17].

