
Computing the maximum using (min,+) formulas∗

Meena Mahajan1, Prajakta Nimbhorkar2, and Anuj Tawari1

1The Institute of Mathematical Sciences, HBNI, Chennai, India , {meena,anujvt}@imsc.res.in
2Chennai Mathematical Institute, India , prajakta@cmi.ac.in

January 23, 2018

Abstract

We study computation by formulas over (min,+). We consider the computation of max{x1, . . . , xn}
over N as a difference of (min,+) formulas, and show that size n+ n log n is sufficient and nec-
essary. Our proof also shows that any (min,+) formula computing the minimum of all sums of
n − 1 out of n variables must have n log n leaves; this too is tight. Our proofs use a complex-
ity measure for (min,+) functions based on minterm-like behaviour and on the entropy of an
associated graph.

1 Introduction

A (min,+) circuit is a directed acyclic graph (DAG) in which the leaves are labeled by variables
or constants. The internal nodes are gates labeled by either min or +. A min gate computes
the minimum value among its inputs while a + gate simply adds the values computed by its
inputs. If the underlying DAG is a tree, then the circuit is a (min,+) formula. Such formulas
can compute any function expressible as the minimum over several linear polynomials with non-
negative integer coefficients. That is, they can compute any polynomial over the the tropical
semirings Min = (N,min,+,∞, 0) and Min− = (Z,min,+,∞, 0).

In this work, we consider the following setting. Suppose we are given n input variables
x1, x2, . . . , xn and we want to find a formula which computes the maximum value taken by these
variables, max(x1, x2, . . . , xn). If variables are restricted to take non-negative integer values, it
is easy to show that no (min,+) formula can compute max. (See Theorem 10 in Section 3 for
details.) Hence to compute the maximum, we must strengthen this model – an obvious way is by
allowing minus gates as well. Now we have a very small linear sized formula: max(x1, x2, . . . , xn) =
0−min(0−x1, 0−x2, . . . , 0−xn). However, this solution is not satisfactory for two reasons: firstly,
it uses many minus gates, and secondly, intermediate gates in this formula can compute negative
integer values even though we are working over natural numbers. Is this necessary? Addressing
the first question, it turns out that just a single minus gate, appearing at the top, suffices. That
is, we can compute the maximum as the difference of two (min,+) expressions. Here is one such
computation:

∗A preliminary version of this paper appeared in MFCS 2017, [17].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 20 (2018)

(Sum of all variables) −mini (Sum of all variables except xi).

The second expression can be computed by a linear-size (min,+) circuit or by a (min,+) formula
of size n log n (see Lemma 12 in Section 3). And this computation addresses the second question
as well; all intermediate values are non-negative. Can we do any better? We show that this simple
difference formula is indeed the best we can achieve in this model.

Motivation

The main motivation behind studying this question is the following question: Does there exist
a naturally occurring function f for which (min,+) circuits are super-polynomially weaker than
(max,+) circuits? There are two possibilities:

1. Show that max can be implemented using a small (min,+) circuit.

2. Come up with an explicit function f which has small (max,+) circuits but requires large
(min,+) circuits.

Since we show that no (min,+) formula (or circuit) can compute max, option 1 is ruled out. In
the weaker model of formulas instead of circuits, we show that any difference of (min,+) formulas
computing max should have size at least n log n. This yields us a slight, super-linear, separation
between (max,+) formulas and difference of (min,+) formulas. Note that a similar question was
also asked in [11]: Does there exist a naturally occurring polynomial for which the (min,+) semiring
is super-polynomially weaker than the (max,+) semiring? Note that the same polynomial can have
different interpretations over different semirings. For instance, consider the polynomial f(x1, x2) =
x21 + x1x2 + x32. Over the (min,+) semiring, it is interpreted as min{2x1, x1 + x2, 3x2} while over
the (max,+) semiring, it is interpreted as max{2x1, x1 + x2, 3x2}.

Background

Many dynamic programming algorithms correspond to (min,+) circuits over an appropriate semir-
ing. Notable examples include the Bellman-Ford-Moore (BFM) algorithm for the single-source-
shortest-path problem (SSSP) [2, 5, 18], the Floyd-Warshall (FW) algorithm for the All-Pairs-
Shortest-Path (APSP) problem [4, 22], and the Held-Karp (HK) algorithm for the Travelling Sales-
man Problem (TSP) [7]. All these algorithms are just recursively constructed (min,+) circuits. For
example, both the BFM and the FW algorithms give O(n3) sized (min,+) circuits while the HK
algorithm gives a O(n2 · 2n) sized (min,+) circuit. Matching lower bounds were proved for TSP
in [10], for APSP in [11], and for SSSP in [13]. So, proving tight lower bounds for circuits over
(min,+) can help us understand the power and limitations of dynamic programming. We refer the
reader to [11, 12] for more results on (min,+) circuit lower bounds.

Apart from the many natural settings where the tropical semiring Min= (min,+,N∪{∞}, 0,∞)
crops up, it is also interesting because it can simulate the Boolean semiring for monotone computa-
tion. The mapping is straightforward: 0, 1,∨,∧ in the Boolean semiring are replaced by∞, 0,min,+
respectively in the tropical semiring. Proving lower bounds for (min,+) formulas could be easier
than for monotone Boolean formulas because the (min,+) formula has to compute a function cor-
rectly at all values, not just at 0,∞. In particular, we draw attention to the following observation
in [11]: “The power of tropical circuits lies somewhere between that of monotone Boolean circuits
and monotone arithmetic circuits, and the gaps may even be exponential.” Thus, over the tropical

2

semiring Min, lower bounds can be inherited from the monotone Boolean setting, and upper bounds
from the monotone arithmetic setting.

Note that algorithms for problems like computing the diameter of a graph are naturally ex-
pressed using (min,max,+) circuits. This makes the cost of converting a max gate to a (min,+)
circuit or formula an interesting measure.

A related question arises in the setting of counting classes defined by arithmetic circuits and
formulas. Circuits over N, with specific resource bounds, count accepting computation paths or
proof-trees in a related resource-bounded Turing machine model defining a class C. The counting
function class is denoted #C. The difference of two such functions in a class #C is a function
in the class DiffC. On the other hand, circuits with the same resource bounds, but over Z, or
equivalently, with subtraction gates, describe the function class GapC. For most complexity classes
C, a straightforward argument shows that that DiffC and GapC coincide upto polynomial factors.
See [1] for further discussion on this. In this framework, we restrict attention to computation over
N and see that as a member of a Gap class over (min,+), max has linear-size formulas, whereas as
a member of a Diff class, it requires Ω(n log n) size.

Our results and techniques:

We now formally state our results and briefly comment on the techniques used to prove them.

1. For n ≥ 2, no (min,+) formula over N can compute max(x1, x2, . . . , xn). (Theorem 10)

The proof is simple: apply a carefully chosen restriction to the variables and show that the
(min,+) formula does not output the correct value of max on this restriction.

2. max(x1, x2, . . . , xn) can be computed by a difference of two (min,+) formulas with total size
n+ ndlog ne. (Theorem 11)

One of the formulas computes just the sum of all n variables and is clearly of linear size. The
other formula computes the minimum sum of n − 1 distinct variables; using recursion, we
obtain the claimed size bound.

3. Let F1, F2 be (min,+) formulas over N such that F1 − F2 = max(x1, x2, . . . , xn). Then F1

must have at least n leaves and F2 at least n log n leaves. (Theorem 14)

A major ingredient in our proof is the definition of a measure for functions computable
by constant-free (min,+) formulas, and relating this measure to formula size. The measure
involves terms analogous to minterms of a monotone Boolean function, and uses the entropy of
an associated graph under the uniform distribution on its vertices. In the setting of monotone
Boolean functions, this technique was used in [19] to give formula size lower bounds. We adapt
that technique to the (min,+) setting.

The same technique also yields the following lower bound: Any (min,+) formula computing
the minimum over the sums of n− 1 variables must have at least n log n leaves. This is tight.
(Lemma 12 and Corollary 19) Note that for the corresponding Boolean function Thn−1

n , a
lower bound of n log n is known for monotone Boolean formulas [9], and hence by [11], this
lower bound automatically carries over to the (min,+) semiring. However, transferring the
lower bound seems to require the use of ∞. Our argument shows that the lower bound holds
even if we are interested in computation over N without the element ∞.

3

4. Arguably, over totally ordered monoids that are not groups, a monus operation is a more
appropriate version of the inverse than minus. In Section 5, we briefly discuss augmenting
(min,+) formulas with gates computing monus as opposed to minus. The monus operation
has been considered in the literature in the context of whether function classes like #P are
closed under monus; see e.g. [8] (there monus is referred to as proper subtraction).

2 Preliminaries

2.1 Notation

Let X denote the set of variables {x1, . . . , xn}. We use x̃ to denote (x1, x2, . . . , xn, 1).
We use ei to denote the (n + 1)-dimensional vector with a 1 in the ith coordinate and zeroes

elsewhere. For i ∈ [n], we also use ei to denote an assignment to the variables x1, x2, . . . , xn where
xi is set to 1 and all other variables are set to 0.

Definition 1 For 0 ≤ r ≤ n, the n-variate functions Sumn, MinSumr
n and MaxSumr

n are as defined
below.

Sumn =

n∑
i=1

xi

MinSumr
n = min

{∑
i∈S

xi | S ⊆ n, |S| = r

}

MaxSumr
n = max

{∑
i∈S

xi | S ⊆ n, |S| = r

}
Note that MinSum0

n and MaxSum0
n are the constant function 0, and MinSum1

n and MaxSum1
n are

just the min and max functions respectively.

Observation 2 For 1 ≤ r < n, MinSumn
n = MaxSumn

n = Sumn = MinSumr
n + MaxSumn−r

n .

2.2 Formulas and Circuits

A (min,+) formula is a directed tree. Each leaf of a formula has a label from X ∪ N; that is, it
is labeled by a variable xi or a constant α ∈ N. Each internal node has exactly two children and
is labeled by one of the two operations min or +. The output node of the formula computes a
function of the input variables in the natural way. The input nodes of a formula are also referred
to as gates.

If all leaves of a formula are labeled from X, we say that the formula is constant-free.
A (min,+,−) formula is similarly defined; the operation at an internal node may also be −, in

which case the children are ordered and the node computes the difference of their values.
We define the size of a formula as the number of leaves in the formula. For a formula F , we

denote by L(F) its size, the number of leaves in it. For a function f , we denote by L(f) the smallest
size of a formula computing f . By Lcf (f) we denote the smallest size of a constant-free formula
computing f .

Circuits are similarly defined; the underlying directed graph now need not be a tree but must
be acyclic. The size of a circuit can be defined as the number of nodes in it, or as the number of
edges in it.

4

2.3 Graph Entropy

The notion of the entropy of a graph or hypergraph, with respect to a probability distribution on
its vertices, was first defined by Körner in [14]. In that and subsequent works (e.g. [15, 16, 3,
19]), equivalent characterizations of graph entropy were established and are often used now as the
definition itself, see for instance [20, 21]. In this paper, we use graph entropy only with respect to
the uniform distribution, and simply call it graph entropy. We use the following definition, which
is exactly the definition from [21] specialised to the uniform distribution.

Definition 3 Let G be a graph with vertex set V (G) = {1, . . . , n}.
The vertex packing polytope V P (G) of the graph G is the convex hull of the characteristic

vectors of independent sets of G.
The entropy of G is defined as

H(G) = min
~a∈V P (G)

n∑
i=1

1

n
log

1

ai
.

It can easily be seen that H(G) is a non-negative real number, and moreover, H(G) = 0 if and only
if G has no edges. We list non-trivial properties of graph entropy that we use.

Lemma 4 ([15, 16]) Let F = (V,E(F)) and G = (V,E(G)) be two graphs on the same vertex set.
The following hold:

1. Monotonocity. If E(F) ⊆ E(G), then H(F) ≤ H(G)

2. Subadditivity. Let Q be the graph with vertex set V and edge set E(F) ∪ E(G). Then
H(Q) ≤ H(F) +H(G).

Lemma 5 (see for instance [20, 21]) The following hold:

1. Let Kn be the complete graph on n vertices. Then H(Kn) = log n.

2. Let G be a graph on n vertices, whose edges induce a bipartite graph on m (out of n) vertices.
Then H(G) ≤ m

n .

3 Transformations and Upper bounds

We consider the computation of max{x1, . . . , xn} over N using (min,+) formulas.
To start with, we describe some properties of (min,+) formulas that we use repeatedly. The

first property, Proposition 7 below, is expressing the function computed by a formula as a depth-2
polynomial where + plays the role of multiplication and min plays the role of addition. The next
properties, Proposition 8 and 9 below, deal with removing redundant sub-expressions created by
the constant zero or moving common parts aside.

Definition 6 Let F be a (min,+) formula with leaves labeled from X ∪ N. For each gate v ∈ F ,
we construct a set Sv ⊆ Nn+1 as described below.

We construct the sets inductively based on the depth of v.

5

1. Case 1. v is a leaf labeled α for some α ∈ N. Then Sv = {α · en+1}. (Recall, ei is the unit
vector with 1 at the ith coordinate and zero elsewhere).

2. Case 2: v is a leaf labeled xi for some i ∈ [n]. Then Sv = {ei}.

3. Case 3: v = min{u,w}. Then Sv = Su ∪ Sw.

4. Case 4: v = u+ w. Then Sv = {ã+ b̃ | ã ∈ Su, b̃ ∈ Sw} (coordinate-wise addition).

Let r be the output gate of F . We denote by S(F) the set Sr so constructed.

It is straightforward to see that if F has no constants (so Case 1 is never invoked), then an+1

remains 0 throughout the construction of the sets Sv. Hence if F is constant-free, then for each
ã ∈ S(F), an+1 = 0.

By construction, the set S(F) describes the function computed by F . (In the language of [11],
it represents the unique polynomial “produced” by the formula.) Thus we have the following:

Proposition 7 Let F be a formula with min and + gates, with leaves labeled by elements of
{x1, . . . , xn} ∪ N. For each gate v ∈ F , let fv denote the function computed at v.

Then fv = min{〈ã · x̃〉 | ã ∈ Sv}.

The following proposition is an easy consequence of the construction in Definition 6.

Proposition 8 Let F be a (min,+) formula over N. Let G be the formula obtained from F by
replacing all constants by the constant 0. Let H be the constant-free formula obtained from G by
eliminating 0s from G through repeated replacements of 0 +A by A, min{0, A} by 0. Then

1. L(H) ≤ L(G) = L(F),

2. S(G) = {b̃ | bn+1 = 0, ∃ã ∈ S(F), ∀i ∈ [n], ai = bi}, and

3. G and H compute the same function min{〈b̃ · x̃〉 | b̃ ∈ S(G)}.

(Note: It is not the claim that S(G) = S(H). Indeed, this may not be the case. For instance, let
F = x+ min{1, x+ y}. Then S(F) = {101, 210}, S(G) = {100, 210}, S(H) = {100}, However, the
functions computed are the same.)

The next proposition shows how to remove “common” contributors to S(F) without increasing
the formula size.

Proposition 9 Let F be a (min,+) formula computing a function f .
If, for some i ∈ [n + 1], ai > 0 for every ã ∈ S(F), then f − 〈ei · x̃〉 can be computed by a

(min,+) formula F ′ of size at most size(F). Furthermore, S(F ′) = {b̃ | ∃ã ∈ S(F), b̃ = ã− ei}.

Proof: First consider i ∈ [n]. Let X be the subset of nodes in F defined as follows:

X = {v ∈ F | ∀ã ∈ Sv : ai > 0}

Clearly, the output gate r of F belongs to X. By the construction of the sets Sv, whenever a min
node v belongs to X, both its children belong to X, and whenever a + node belongs to X, at least
one of its children belongs to X. We pick a set T ⊆ X as follows. Include r in T . For each min
node in T , include both its children in T . For each + node in T , include in T one child that belongs

6

to X (if both children are in X, choose any one arbitrarily). This gives a sub-formula of F where
all leaves are labeled xi. Replace these occurrences of xi in F by 0 to get formula F ′. It is easy to
see that S(F ′) = {ã− ei | ã ∈ S}. Hence F ′ computes f − xi.

For i = an+1, the same process as above yields a subformula where each leaf is labeled by a
positive constant. Subtracting 1 from the constant at each leaf in T gives the formula computing
f − 1. �

It is intuitively clear that no (min,+) formula can compute max. A formal proof using Propo-
sition 7 appears below.

Theorem 10 For n ≥ 2, no (min,+) formula over N can compute max{x1, . . . , xn}.

Proof: Suppose, to the contrary, some formula C computes max. Then its restriction D to x1 = X,
x2 = Y , x3 = x4 = . . . = xn = 0, correctly computes max{X,Y }. Since all leaves of D are labeled
from {x1, x2} ∪ N, the set S(D) is a set of triples. Let S ⊆ N3 be this set. For all X,Y ∈ N,
max{X,Y } equals E(X,Y) = min{AX +BY + C | (A,B,C) ∈ S}.

Let K denote the maximum value taken by C in any triple in S. If for some B,C ∈ N, the
triple (0, B,C) belongs to S, then E(K + 1, 0) ≤ C ≤ K < K + 1 = max{0,K + 1}. So for all
(A,B,C) ∈ S, A 6= 0, so A ≥ 1. Similarly, for all (A,B,C) ∈ S, B ≥ 1. Hence for all (A,B,C) ∈ S,
A+B ≥ 2.

Now E(1, 1) = min{A + B + C | (A,B,C) ∈ S} ≥ 2 > 1 = max{1, 1}. So E(X,Y) does not
compute max(X,Y) correctly. �

However, if we also allow the subtraction operation at internal nodes, it is very easy to compute
the maximum in linear size; max(x1, . . . , xn) = −min{−x1,−x2, . . . ,−xn}. Here −a is imple-
mented as 0 − a, and if we allow only variables, not constants, at leaves, we can compute −a as
(x1 − x1)− a.

Thus the subtraction operation adds significant power. How much? Can we compute the
maximum with very few subtraction gates? It turns out that the max function can be computed as
the difference of two (min,+) formulas. Equivalently, there is a (min,+,−) formula with a single
− gate at the root, that computes the max function. This formula is not linear in size, but it is
not too big either; we show that it has size O(n log n).

Theorem 11 The function max{x1, . . . , xn} can be computed by a difference of two (min,+) for-
mulas with total size n+ ndlog ne.

Proof: Note that max{x1, . . . , xn} = Sumn−MinSumn−1
n . Lemma 12 below shows that MinSumn−1

n

can be computed by a formula of size n(dlog ne). Since Sumn can be computed by a formula of size
n, the claimed upper bound for max follows. �

Lemma 12 The function MinSumn−1
n can be computed by a (min,+) formula of size n(dlog ne).

Proof: Let m′ = bn/2c, m′′ = dn/2e, Let X, Xl, Xr denote the sets of variables {x1, . . . , xn},
{x1, . . . , xm′}, {xm′+1, . . . , xn}. Note that |Xl| = m′, |Xr| = m′′, m′ + m′′ = n. Let p denote
dlog ne. Note that dlogm′e = dlogm′′e = p− 1.

To compute MinSumn−1
n on X, we recursively compute Summ′ and MinSumm′−1

m′ on Xl and

Summ′′ and MinSumm′′−1
m′′ on Xr. Now MinSumn−1

n (X) can be computed as

min
{
Summ′(Xl) + MinSumm′′−1

m′′ (Xr), MinSumm′−1
m′ (Xl) + Summ′′(Xr)

}
7

For the sub-expressions appearing above, the sizes are as claimed by induction. Thus the number
of leaves in the resulting formula is given by m′ +m′′(p− 1) +m′(p− 1) +m′′ = np as claimed.

�

Remark 13 A straightforward generalisation of this approach allows us to compute MinSumn−k
n

by formulas of size n(dlog ne)k for 1 ≤ k < n, and MinSumk
n by formulas of size n(dlog ne)k−1

for 1 ≤ k < n. But these are not the right bounds in general. For instance, for k ∈ O(1), it is
known from constructions in [6] that MinSumk

n has (min,+) formulas of size O(n log n). (The con-
structions there are for monotone boolean formulas but hold for (min,+) and monotone arithmetic
computations too because all they use are set schemes.) For k = 2, our formula above has the same
size as that of [6], and is essentially the same formula, presented differently.

Similarly, for k = n/2, the recursive construction described above seems to need exponential
size ((log n)n/2). But this is because we count inefficiently. If we instead consider the depth of the
constructed formula, we see that it is O(log2 n), and hence the formula has at most quasi-polynomial

2O(log2 n) size.

In the rest of this paper, our goal is to prove a matching lower bound for the max function.
Note that the constructions in Theorem 11 and Lemma 12 yield formulas that do not use constants
at any leaves. Intuitively, it is clear that if a formula computes the maximum correctly for all
natural numbers, then constants cannot help. So the lower bound should hold even in the presence
of constants, and indeed our lower bound does hold even if constants are allowed.

4 The main lower bound

In this section, we prove the following theorem:

Theorem 14 Let F1, F2 be (min,+) formulas over N such that F1−F2 = max(x1, . . . , xn). Then
L(F1) ≥ n, and L(F2) ≥ n log n.

If F1 and F2 actually compute Sumn and MinSumn−1
n , then the lower bound on L(F1) is obvious,

and the lower bound on L(F2) too seems “morally” clear since it holds for monotone Boolean
formulas computing the threshold function Thn−1

n (see [9]). One problem is that, as far as we
know, transferring lower bounds from the monotone Boolean setting to the (min,+) setting seems
to need ∞. The other problem is that the given F1, F2 may not be of this form at all. And finally,
a third problem is that if constants are allowed at leaves of the formula, reasoning becomes a bit
messy.

Our proof proceeds as follows: we first transform F1 and F2 over a series of steps to formulas G1

and G2 no larger than F1 and F2, such that G1−G2 equals F1−F2 and hence still computes max, and
G1 and G2 have some nice properties. These properties immediately imply that L(F1) ≥ L(G1) ≥ n.
We further transform G2 to a constant-free formula H no larger than G2. We then define a measure
for functions computable by constant-free (min,+) formulas, relate this measure to formula size,
and use the properties of G2 and H to show that the function h computed by H has large measure
and large formula size.
Transformation 1: For b ∈ {1, 2}, let Sb denote the set S(Fb). For i ∈ [n + 1], let Ai be
the minimum value appearing in the ith coordinate in any tuple in S1 ∪ S2. Let Ã denote the

8

tuple (A1, . . . , An, An+1). By repeatedly invoking Proposition 9, we obtain formulas Gb computing
Fb − 〈Ã · x̃〉, with L(Gb) ≤ L(Fb). For b ∈ {1, 2}, let Tb denote the set S(Gb).

We now establish the following properties of G1 and G2.

Lemma 15 Let F1, F2 be (min,+) formulas such that F1 −F2 computes max over N. Let G1, G2

be obtained as described above. Then

1. L(G1) ≤ L(F1), L(G2) ≤ L(F2),

2. max(X) = F1 − F2 = G1 −G2,

3. For every i ∈ [n], for every ã ∈ T1, ai > 0. Hence L(G1) ≥ n.

4. For every i ∈ [n], there exists ã ∈ T2, ai = 0.

5. There exist ã ∈ T1, b̃ ∈ T2, an+1 = bn+1 = 0.

6. For every i, j ∈ [n] with i 6= j, for every ã ∈ T2, ai + aj > 0.

Proof:

1. This follows from Proposition 9.

2. Obvious; we decrease F1 and F2 by the same amount to get G1 and G2 respectively, so the
difference remains the same.

3. Suppose for some ã ∈ T1 and for some i ∈ [n], ai = 0. Consider the input assignment d̃ where
di = 1 + an+1 and dj = 0 for j ∈ [n] \ {i}. Then max{d1, . . . , dn} = 1 + an+1. However,
〈ã · d̃〉 = an+1. Therefore on input d̃, G1(d̃) ≤ an+1. Since G2 ≥ 0 on all assignments, we get
G1(d̃)−G2(d̃) ≤ an+1 < max(d̃), contradicting the assumption that G1 −G2 computes max.

4. This follows from the previous point and the choice of Ai for each i.

5. From the choice of An+1, we know that there is an ã in T1 ∪T2 with an+1 = 0. Suppose there
is such a tuple in exactly one of the sets T1, T2. Then exactly one of G1(0̃), G2(0̃) equals 0,
and so G1 −G2 does not compute max(0̃).

6. Suppose to the contrary, some ã ∈ T2 has ai = aj = 0. Consider the input assignment d̃
where di = dj = 1 + an+1 and dk = 0 for k ∈ [n] \ {i, j}. Then max{d1, . . . , dn} = 1 + an+1.
Since every xk figures in every tuple of T1, G1(d̃) ≥ di + dj = 2an+1 + 2. But G2(d̃) ≤ an+1.
Hence G1(d̃)−G2(d̃) does not compute max(d̃).

�

We have already shown above that L(F1) ≥ L(G1) ≥ n. Now the more tricky part: we
need to lower bound L(G2). Note that property 3 shows that F1 and G1 must be computing
something of the form Sumn + F ′1, or Sumn + G′1, respectively. If G′1 were to be 0, we know that
G2 must be MinSumn−1

n . However, G′1 may have been carefully chosen to make the computation of
MinSumn−1

n +G′1 easy. We need to rule out this possibility.
Transformation 2: Let H ′ be the formula obtained by simply replacing every constant in G2

by 0. Let H be the constant-free formula obtained from H ′ by eliminating the zeroes, repeatedly

9

replacing 0 + A by A, min{0, A} by 0. Let h be the function computed by H. Then, Lcf (h) ≤
L(H) ≤ L(H ′) = L(G2) ≤ L(F2). It thus suffices to show that Lcf (h) ≥ n log n. To this end, we
define a complexity measure µ, relate it to constant-free formula size, and show that it is large for
the function h.

Definition 16 For an n-variate function f computable by a constant-free (min,+) formula, we
define

(f)1 = {i | f(ei) ≥ 1, f(0) = 0}.
(f)2 = {(i, j) | f(ei + ej) ≥ 1, f(ei) = 0, f(ej) = 0}.

We define G(f) to be the graph whose vertex set is [n] and edge set is (f)2.
The measure µ for function f is defined as follows:

µ =
|(f)1|
n

+H(G(f))

The following lemma relates µ(f) with L(f). This relation has been used before, see for instance
[19] for applications to monotone Boolean circuits. Since we have not seen an application in the
setting of (min,+) formulas, we (re-)prove this in detail here; however, it is really the same proof.

Lemma 17 Let f be an n-variate function computable by a constant-free (min,+) formula. Then
Lcf (f) ≥ n · µ(f).

Proof: The proof is by induction on the depth of a witnessing formula F that computes f and has
Lcf (F) = Lcf (f).

Base case: F is an input variable, say xi. Then (f)1 = {xi}, and G(f) is the empty graph, so
µ(f) = 1

n . Hence 1 = Lcf (f) = nµ(f).
Inductive step: F is either F ′ + F ′′ or min{F ′, F ′′} for some formulas F ′, F ′′ computing

functions f ′, f ′′ respectively. Since F is an optimal-size formula for f , F ′ and F ′′ are optimal-size
formulas for f ′ and f ′′ as well. So Lcf (f) = L(F) = L(F ′) + L(F ′′) = Lcf (f ′) + Lcf (f ′′).

Case a. F = F ′ + F ′′. Then (f)1 = (f ′)1 ∪ (f ′′)1 and G(f) ⊆ G(f ′) ∪G(f ′′). Hence,

µ(f) ≤ |(f
′)1 ∪ (f ′′)1|

n
+H(G(f ′) ∪G(f ′′)) (Lemma 4)

≤ |(f
′)1|
n

+
|(f ′′)1|
n

+H(G(f ′)) +H(G(f ′′)) (Lemma 4)

= µ(f ′) + µ(f ′′)

≤ 1

n
· Lcf (f ′) +

1

n
· Lcf (f ′′) (Induction)

=
1

n
· Lcf (f) (Lcf (f) = Lcf (f ′) + Lcf (f ′′))

Case b. F = min(F ′, F ′′). Let (f ′)1 = A and (f ′′)1 = B. Then (f)1 = A ∩ B and G(f) ⊆
G(f ′) ∪ G(f ′′) ∪ G(A \ B,B \ A). Here, G(P,Q) denotes the bipartite graph G with parts P and

10

Q. Hence,

µ(f) ≤ 1

n
(|A ∩B|) +H(G(f ′) ∪G(f ′′) ∪G(A \B,B \A)) (Lemma 4)

≤ 1

n
(|A ∩B|) +H(G(f ′)) +H(G(f ′′)) +H(G(A \B,B \A)) (Lemma 4)

≤ 1

n
(|A ∩B|) +H(G(f ′)) +H(G(f ′′)) +

1

n
(|A \B|+ |B \A|) (Lemma 5)

≤ 1

n
(|A|+ |B|) +H(G(f ′)) +H(G(f ′′))

= µ(f ′) + µ(f ′′)

≤ 1

n
· Lcf (f ′) +

1

n
· Lcf (f ′′) (Induction)

=
1

n
· Lcf (f) (Lcf (f) = Lcf (f ′) + Lcf (f ′′))

Hence, µ(f) ≤ 1
n · Lcf (f). �

Using this measure, we can now show the required lower bound.

Lemma 18 For the function h obtained after Transformation 2, µ(h) ≥ log n.

Proof: Recall that we replaced constants in G2 by 0 to get H ′, then eliminated the 0s to get
constant-free H computing h. By Proposition 8, we know that S(H ′) = {b̃ | bn+1 = 0,∃ã ∈ T2, ai =
bi∀i ∈ [n]} and that h = min{x̃ · b̃ | b̃ ∈ S(H ′)}.

From item 4 in Lemma 15, it follows that (h)1 = ∅. (For every i, there is a b̃ ∈ S(H ′) with
bi = 0. So h(ei) ≤ 〈ei · b̃〉 = 0.)

Since (h)1 is empty, (i, j) ∈ G(h) exactly when h(ei + ej) ≥ 1. From item 6 in Lemma 15, it
follows that every pair (i, j) is in G(h). Thus G(h) is the complete graph Kn.

From Lemma 5 we conclude that µ(h) = logn. �

Lemmas 17 and 18 imply that Lcf (h) ≥ n log n. Since Lcf (h) ≤ L(H) ≤ L(H ′) = L(G2) ≤
L(F2), we conclude that L(F2) ≥ n log n.

This completes the proof of Theorem 14.

A major ingredient in this proof is using the measure µ. This yields lower bounds for constant-
free formulas. For functions computable in a constant-free manner, it is hard to see how constants
can help. However, to transfer a lower bound on Lcf (f) to a lower bound on L(f), this idea of
“constants cannot help” needs to be formalized. The transformations described before we define µ
do precisely this.

For the MinSumn−1
n function, applying the measure technique immediately yields the lower

bound Lcf (MinSumn−1
n) ≥ n log n. Transferring this lower bound to formulas with constants is a

corollary of our main result, and with it we see that the upper bound from Lemma 12 is tight for
MinSumn−1

n .

Corollary 19 Any (min,+) formula computing MinSumn−1
n over N must have size at least n log n.

Proof: Let F be any formula computing MinSumn−1
n . Applying Theorem 14 to F1 = x1 + . . .+ xn

and F2 = F , we obtain L(F) ≥ n log n. �

11

It is worth noting that this lower bound for (min,+) formulas computing MinSumn−1
n holds in

the presence of ∞, and also holds over integers, that is over the semiring Min−.

Corollary 20 Any (min,+) formula computing MinSumn−1
n over Z ∪ {∞} must have size at least

n log n.

Proof: Consider any formula F computing MinSumn−1
n . If all constants appearing at any of the

leaves are finite and non-negative, then Corollary 19 already tells us that F must have size at
least n log n, otherwise it will err on some inputs with no negative values or ∞. If some leaf is
labeled by the constant ∞, we can remove such constants through repeated applications of the
rules min(∞, A) = A, ∞+A =∞. It remains to show that negative constants cannot help.

Consider the set S(F) as in Definition 6. Here is an easy-to-see property: For any ã ∈ S(F),
an+1 ≥ 0. This is because F (0̃) = MinSumn−1

n (0, 0, . . . , 0) = 0. But F (0̃) = min{an+1 | ã ∈ S(F)},
so this minimum is 0. This also shows that for at least one ã ∈ S(F), an+1 = 0.

Apply Proposition 8 to get formulas G and H. (Replace all constants at leaves of F by 0 to get
G, then eliminate the 0s to get H.) Let g, h be the function computed by G,H respectively. Then
g = h. Also Lcf (h) ≤ L(H) ≤ L(G) = L(F). So it suffices to lower-bound Lcf (h).

By the property of S(F) described above, for every x̃ ∈ Nn, 0 ≤ G(x̃) ≤ F (x̃).
Now note that for all i ∈ [n], F (ei) = 0, and hence G(ei) = 0. For all i, j ∈ [n] with i 6= j,

F (ei +ej) = 1, and hence 0 ≤ G(ei +ej) ≤ 1. We can rule out 0 as follows. Suppose G(ei +ej) = 0.
Then there exists an ã ∈ S(F) with ai = aj = 0; let this an+1 be c ≥ 0. Now F ((c+ 1)(ei + ej)) ≤
(c+ 1)(ei + ej) · ã = c, but MinSumn−1

n ((c+ 1)(ei + ej)) = c+ 1, a contradiction. So for all i 6= j,
G(ei + ej) = 1.

It now follows from Lemma 5 that µ(g) = log n. Since h = g, Lemma 17 implies that Lcf (h) ≥
n log n. �

5 The Monus operation

In general, over a monoid (S,+), the operation of minus is not defined. If the set of monoid elements
is totally ordered, as in the case of the Min semiring, the minus operation can be defined, but the
set may not be closed under this operation. This is why we considered the setting above where
it is “required” that whenever the minus operation is used, it indeed yields a non-negative value.
This is a semantic condition on a formula with minus gates. However, there is also a syntactic way
of defining subtraction in totally ordered monoids, via the monus operation, denoted 	. For all
a, b, a	 b is simply the smallest c such that a ≤ b+ c. Over the Min semiring, it amounts to this:
for all a, b ∈ N, a 	 b equals a − b if a ≥ b, otherwise it equals 0. That is, a 	 b = max{0, a − b}.
As another example, over the monoid (N+,×), the above definition of the monus operation as an
inverse of × gives a	 b = dab e.

Since max cannot be computed within the Min semiring, we augmented it with minus. We
could also have augmented it with monus instead of minus. Notice that both min and max are
easily expressible using monus:

min(a, b) = a	 (a	 b); max(a, b) = (a	 b) + b

Thus any circuit with min, max and + gates can be transformed to a (,+) circuit with just a
doubling of size. However, for formulas, the cost of replacing min and max by 	 could be more.

12

Let us consider just the maximum of n variables, as before. Again, with no restriction on monus
gates, max can be computed by a linear-sized formula using the identity max(a, b) = (a 	 b) + b
recursively: max(x1, x2, . . . , xn) = (max(x1, x2, . . . , xn−1) 	 xn) + xn. Unfolding this recursive
construction yields a formula of size 2n − 1. But it uses many monus gates. If we allow only
one monus gate, at the top, then there is no difference between monus and minus; thus we have
linear-sized circuits, n + n log n size formulas, and our lower bound for the difference of (min,+)
formulas (Theorem 14) continues to hold.

We show that in general, one 	 gate suffices; any (min,+,) formula can be equivalently
computed by a (min,+,) formula with a single 	 gate at the top. However, this transformation
comes at some expense in size. The blow-up is linear for circuits but can be substantial for formulas.

Proposition 21 Let F be any (min,+,) formula, computing a function f . Then there are
(min,+) formulas F1, F2 such that f = F1 	 F2.

Proof: We prove this by induction on the depth of F .
For the base case at depth 0, we just set F1 = F and F2 = 0.
Let F = G1 ◦ G2 where ◦ ∈ {min,+,	}. Inductively, assume that G1 and G2 are already in

the desired form; i.e. each of them has a single 	 gate at the top. Let G1 = x	 y and G2 = z	w,
where x, y, z, w are all (min,+) formulae. The expression F1 	 F2 in each of the three cases below
can be verified to be equivalent to F .

F F1 F2

G1 +G2 x+ z min(x, y) + min(z, w)

min(G1, G2) min(y + z, x+ min(z, w)) y + min(z, w)

G1 	G2 x+ min(z, w) y + z

Note that in the last case, although F already has a 	 gate at the top in this case, a transformation
is still needed since G1 and G2 also have 	 gates at the top and we want a single 	 gate. �

6 Discussion

Our results hold when variables take values from N. In the standard (min,+) semi-ring, the value
∞ is also allowed, since it serves as the identity for the min operation. The proof of our main
result Theorem 14 does not carry over to this setting. The main stumbling block is the removal of
the “common” part of S(F). However, if we allow ∞ as a value that a variable can take, but not
as a constant appearing at a leaf, then the lower bound proof goes through. However, the upper
bound no longer works; while taking a difference, what is ∞−∞? So the question remains: how
can we compute max over N ∪ {∞} as the difference of (min,+) formulas? Note that the monus
formulation for max still works, since ∞	 a =∞ for any a <∞.

The lower bound method uses graph entropy which is always bounded above by log n. Thus
this method cannot give a lower bound larger than n log n. It would be interesting to obtain a
modified technique that can show that all the upper bounds in Theorem 11 and Lemma 12 and
Remark 13 are tight. It would also be interesting to find a direct combinatorial proof of our lower
bound result, without using graph entropy.

13

References

[1] Eric Allender. Arithmetic circuits and counting complexity classes. In Jan Krajicek, edi-
tor, Complexity of Computations and Proofs, Quaderni di Matematica Vol. 13, pages 33–72.
Seconda Universita di Napoli, 2004. An earlier version appeared in the Complexity Theory
Column, SIGACT News 28, 4 (Dec. 1997) pp. 2-15.

[2] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1956.

[3] Imre Csiszár, János Körner, László Lovász, Katalin Marton, and Gábor Simonyi. Entropy
splitting for antiblocking corners and perfect graphs. Combinatorica, 10(1):27–40, 1990.

[4] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345, 1962.

[5] Lester R Ford Jr. Network flow theory. Technical Report P-923, Rand Corporation, 1956.

[6] J. Friedman. Constructing o(n log n) size monotone formulae for the k-th elementary symmetric
polynomial of n boolean variables. In Proceedings, 25th Annual Symposium on Foundations
of Computer Science (FOCS), pages 506–515. IEEE, 1984.

[7] Michael Held and Richard M Karp. A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.

[8] Lane A. Hemaspaandra and Mitsunori Ogihara. The Complexity Theory Companion. Texts
in Theoretical Computer Science. An EATCS Series. Springer, 2002.

[9] Radhakrishnan J. Better lower bounds for monotone threshold formulas. Journal of Computer
and System Sciences, 54:221–226, 1997.

[10] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computations
over semirings. Journal of the ACM (JACM), 29(3):874–897, 1982.

[11] Stasys Jukna. Lower bounds for tropical circuits and dynamic programs. Theory of Computing
Systems, 57(1):160–194, 2015.

[12] Stasys Jukna. Tropical complexity, Sidon sets, and dynamic programming. SIAM Journal on
Discrete Mathematics, 30(4):2064–2085, 2016.

[13] Stasys Jukna and Georg Schnitger. On the optimality of Bellman–Ford–Moore shortest path
algorithm. Theoretical Computer Science, 628:101–109, 2016.

[14] János Körner. Coding of an information source having ambiguous alphabet and the entropy
of graphs. In Transactions of 6th Prague Conference on Information Theory, pages 411–425.
Academia, Prague, 1973.

[15] János Körner. Fredman-Komlós bounds and information theory. SIAM. J. on Algebraic and
Discrete Methods, 7(4):560–570, 1986.

[16] János Körner and Katalin Marton. New bounds for perfect hashing via information theory.
European Journal of Combinatorics, 9(6):523–530, 1988.

14

[17] Meena Mahajan, Prajakta Nimbhorkar, and Anuj Tawari. Computing the maximum using
(min, +) formulas. In 42nd International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 74:1–74:11, 2017.

[18] Edward F Moore. The shortest path through a maze. Bell Telephone System., 1959.

[19] Ilan Newman and Avi Wigderson. Lower bounds on formula size of boolean functions using
hypergraph entropy. SIAM Journal on Discrete Mathematics, 8(4):536–542, 1995.

[20] Gábor Simonyi. Graph entropy: A survey. Combinatorial Optimization, 20:399–441, 1995.

[21] Gábor Simonyi. Perfect graphs and graph entropy: An updated survey. In Perfect Graphs,
pages 293–328. John Wiley and Sons, 2001.

[22] Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM (JACM), 9(1):11–12,
1962.

15

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

