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Abstract

Consider a setting in which a prover wants to convince a verifier of the correctness of k
NP statements. For example, the prover wants to convince the verifier that k given integers
N1, . . . , Nk are all RSA moduli (i.e., products of equal length primes). Clearly this problem
can be solved by simply having the prover send the k NP witnesses, but this involves a lot
of communication. Can interaction help? In particular, is it possible to construct interactive
proofs for this task whose communication grows sub-linearly with k?

Our main result is such an interactive proof for verifying the correctness of any k UP state-
ments (i.e., NP statements that have a unique witness). The proof-system uses only a constant
number of rounds and the communication complexity is kδ · poly(m), where δ > 0 is an arbi-
trarily small constant, m is the length of a single witness, and the poly term refers to a fixed
polynomial that only depends on the language and not on δ. The (honest) prover strategy can
be implemented in polynomial-time given access to the k (unique) witnesses.

Our proof leverages “interactive witness verification” (IWV), a new type of proof-system that
may be of independent interest. An IWV is a proof-system in which the verifier needs to verify
the correctness of an NP statement using: (i) a sublinear number of queries to an alleged NP
witness, and (ii) a short interaction with a powerful but untrusted prover. In contrast to the
setting of PCPs and Interactive PCPs, here the verifier only has access to the raw NP witness,
rather than some encoding thereof.
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1 Introduction

The power of efficiently verifiable proof-systems is a central question in the study of computation.
Interactive proofs, introduced in the seminal work of Goldwasser, Micali and Rackoff [GMR89], are
interactive protocols between a randomized verifier and an untrusted prover. The prover convinces
the verifier of the validity of a computational statement, usually framed as membership of an
input x in a language L. Soundness is unconditional. Namely, if the input is not in the language,
then no matter what (unbounded and adaptive) strategy a cheating prover might employ, the
verifier should reject with high probability over its own coin tosses. Interactive proofs have had a
dramatic impact on complexity theory and on cryptography. Opening the door to randomized and
interactive verification led to revolutionary notions of proof verification, such as zero knowledge
interactive proofs [GMR89, GMW91] and probabilistically checkable proofs (PCPs) [BGKW88,
FRS94, BFL91, BFLS91, FGL+96, AS92, ALM+98a]. Interactive proof-systems also allow for
more efficient verification of larger classes of computations (compared with NP proof systems), as
demonstrated in the celebrated IP = PSPACE Theorem [LFKN92, Sha92].

This work studies whether interactive proofs can allow for more efficient batch verification of
NP statements. Namely:

Can an untrusted prover convince a verifier of the correctness of k NP statements with
communication complexity that is sublinear in k?

Note that the naive solution is sending the k witnesses in their entirety. Looking ahead, our
main result answers this question in the affirmative for a rich subclass of NP (the class UP of NP
statements that have at most one witness). Along the way, we also introduce and study a new
notion of proof-system: Interactive Witness Verification (IWV), which allow for the verification of
NP statements using a sublinear number of queries to a “raw” (unencoded) NP witness and a short
interaction with an untrusted prover. We construct IWVs for a rich subclass of NP, and these are
a primary ingredient in our efficient batch verification protocol for UP.

Before proceeding to detail these contributions, we observe that the membership of k inputs
in an NP language can be solved in space O(log k +m · poly(n)), where n is the length of a single
input and m is the length of a single NP witness. Thus, by the IP = PSPACE Theorem, there is an
interactive proof for batch verification with communication complexity poly(log k, n,m). A major
caveat, however, is that the complexity of proving correctness (the running time of the honest
prover) is exponential in poly(n,m). We, on the other hand, focus on batch verification where the
honest prover runs in polynomial time given the k NP witnesses. We refer to such an interactive
proof as having an efficient prover.1

1.1 Our Results

Our main result is an interactive proof-system, with an efficient prover, for verifying the correctness
of k UP statements. Recall that UP refers to the subclass of NP statements for which correct

1 Efficiency of the honest prover (given an NP witness) has been central in the study of zero-knowledge interactive
proofs [GMR89, GMW91]. Our emphasis on an efficient honest prover is also inspired by the recent line of work on
doubly-efficient interactive proofs [GKR08]. That line of work focuses on proofs for deterministic polynomial-time
computations and the prover is required to run in polynomial-time without any auxiliary input. We remark that
doubly efficient interactive proofs for deterministic computations do not seem to imply protocols for non-deterministic
computations such as those we consider here.
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statements have a unique witness. The canonical example (of a promise problem) in this class is
unique-SAT in which one needs to distinguish unsatisfiable formulas from those having a unique
satisfying assignment. Multiple other examples arise from cryptography, where problems related
to factoring, discrete-log or lattices all have unique solutions.

Our protocol for UP batch verification uses a constant number of rounds and has communication
complexity (kδ · poly(m)), for any arbitrarily small constant δ > 0. For UP relations that are
checkable in polynomial-time and bounded polynomial space, we can reduce the communication
complexity to (kδ ·m1+δ). When the number of instances k is large, this is a significant improvement
over the trivial solution in which the prover sends over all k witnesses.

Theorem 1 (Informally Stated, see Theorem 4.1). Let L be a language in UP with witnesses
of length m. For every δ > 0, there exists a constant-round interactive proof for verifying that k
instances x1, . . . , xk, each of length n, all belong to L. The communication complexity is kδ ·poly(m).
The verifier runs in time Õ(k ·n) +kδ ·poly(m), where n is the length of each of the instances. The
honest prover runs in time poly(k, n,m) given the k unique witnesses.

Comparison to prior work. Theorem 1 improves over the aforementioned protocol derived from
IP = PSPACE theorem in two ways: (1) it has an efficient prover strategy (given the witnesses),
and (2) it uses only a constant number of rounds of interaction (whereas the IP = PSPACE theorem
uses poly(log k, n,m) rounds).

Theorem 1 also improves over a prior result for batch verification of UP statements [RRR16].
The communication complexity of that protocol has an additional additive k · polylog(m) term. In
particular, even when k is larger than m, the [RRR16] protocol gives at most a quadratic saving over
just naively sending all k witnesses. In contrast, our protocol yields an arbitrarily large polynomial
saving in the parameter k.2 A comparison of our techniques with those of [RRR16] is provided in
Section 1.2.1.

A new type of proof-system. The protocol of Theorem 1 makes extensive use of a new type of
proof-system that we introduce and construct. In a nutshell, these are proof-systems in which the
verifier needs to check the correctness of an NP statement given oracle access to the NP witness.
In contrast to PCPs, the verifier is only given access to the raw (i.e., original) NP witness, rather
than to an encoding thereof. We allow the verifier to have a short interaction with an all powerful,
but untrusted prover (this part of the interaction is similar to the interactive PCPs of Kalai and
Raz [KR09]). We use the name “interactive witness verification” (IWV) for these proof-systems.

Jumping ahead, we remark that IWVs are closely related to interactive proofs of proximity
(IPPs) [EKR04, RVW13]. Indeed, we show that IPPs for a class of deterministic polynomial-time
computations directly imply IWVs for a related class of NP relations. The IWV protocol used in
the proof of Theorem 1 is derived from known results on IPPs [RVW13]. We proceed to elaborate
on the notion of IWVs.

2We remark that a linear dependence of the communication complexity on m is inherent. Indeed, by results of
Goldreich et al. [GH98, GVW02], under complexity theoretic assumptions, even verification of a single instance (i.e.,
k = 1) requires Ω(m) communication.
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1.1.1 Interactive Witness Verification

Motivation: sublinear witness verification. Suppose Alice wants to test whether a given
graph G is 3-colorable. The validity of an alleged 3-coloring χ can be verified in polynomial time,
but this requires reading every bit of the coloring. Can Alice verify χ’s validity while reading a
sublinear number of bits from χ?

At first glance, it may seem that PCPs give a direct solution to this problem. Recall that a PCP
is an encoding of an NP witness that can be verified by reading only a very small number of bits.
The celebrated PCP theorem [ALM+98b] shows that every NP language has a PCP proof-system.
However, the reason that PCPs do not solve Alice’s problem is that she only has oracle access to
the original 3-coloring χ of the graph. In contrast, in the PCP setting, the verifier is given oracle
access to an encoding of the witness (e.g., via an error correcting code).

Indeed, sublinear witness verification for general NP relations is not possible (assuming that
P 6= NP). Consider an NP relation for satisfiability where the witness is an encoding of the m-
bit satisfying assignment w on a polynomial of high degree (say degree 10m). The polynomial is
given by a list of valuations on field elements and the satisfying assignment can be recovered by
interpolating the polynomial. There are many possible polynomials that encode a given satisfying
assignment. In particular, if Alice is given a random polynomial encoding the assignment, she must
read Ω(m) valuations before she learns anything about the alleged satisfying assignment.

Adding interaction. While sublinear witness verification for general NP relations is not possible,
this situation changes when we also allow interaction. Namely, we allow Alice to interact with an
untrusted prover Bob who knows the entire 3-coloring of the graph. The communication should
also be sublinear in the witness size (in particular, Bob cannot simply send χ to Alice). Given the
3-coloring, an honest Bob should run in polynomial time.

More generally, an interactive witness verification for a given NP relation R for a language L
is a protocol between a prover P and verifier V, who both get as input an instance x. In addition,
the verifier has query access to an alleged witness w for x and the prover is given full explicit
access to w. The prover wants to convince the verifier that indeed (x,w) ∈ R. Towards this
end, the prover and verifier run an interactive protocol. The verifier V, on examination of the
communication transcript with P and the queried points in w, accepts or rejects the prover’s claim.
For completeness, if (x,w) ∈ R then the verifier V, when interacting with the honest prover P,
should accept. For soundness, we emphasize that the witness w is fixed before the protocol begins.
I.e., the soundness property is that if x /∈ L, then for any fixed false witness w∗, and for any
(unbounded) cheating prover strategy P∗, if we run the interactive protocol between V and P∗,
where V’s witness-queries are answered using the fixed (false) witness w∗, then V will reject w.h.p.
over its coins tosses. In terms of complexity, our goal is to have both the number of witness-queries
and the communication be significantly smaller than m = |w|.

Note that an IWV refers to a specific NP relation, and not only to the underlying NP language
(which can have many possible NP relations). Indeed, every NP language has some witness relation
with an extremely efficient IWV.3 The point, however, is that we would like to construct IWVs for
arbitrary NP relations, not just highly structured ones.

In particular, an IWV can be particularly useful in situations where the NP witness is outside
the prover’s control. For example, the witness could arise from nature in the form of a physical or

3Consider the relation in which witnesses are PCP proof strings. For such relations even the interaction with the
prover is unnecessary.
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biological observation, in which case it is not reasonable to assume that it is given in an encoded
format. Thus, we find IWVs to be natural objects worthy of further study (beyond their importance
as a technical tool in our protocol for UP batch verification).

Constructions. We construct IWVs for a large class of NP relations. Namely, any NP relation R
that is checkable by bounded-space Turing machines or bounded-depth (logspace uniform) circuits.
This includes, for example, the natural NP relations for 3-coloring, satisfiability, k-clique, etc. In
the protocol the verifier only reads

√
m bits of the witness and the communication complexity is

also roughly
√
m (recall that m denotes the witness length). Thus, the verifier only observes

√
m

bits of information about the witness. More precisely, we obtain the following result, which allows
for a tradeoff between the query and communication complexities:

Theorem 2 (Informally Stated, see Theorem 3.3). Let q be a parameter. Let R be an NP relation
with witness length m that is checkable either by a bounded space Turing Machine or by a bounded
depth (logspace uniform) circuit. For every constant δ > 0, and q ∈ [m], there exists an IWV for R
in which the verifier reads q bits of the witness and the communication complexity is O(m1+δ/q).
Furthermore, the prover, given the NP witness, can be implemented efficiently (i.e., in polynomial
time). The verifier runs in time Õ(n+ q + (m1+δ/q)). For bounded space relations the number of
rounds is constant, and for bounded depth relations it is polylog(n).

The proof of Theorem 2 relies on known constructions of interactive proofs of proximity (IPPs).
Loosely speaking, IPPs are interactive proofs in which the verifier runs in time that is sub-linear
in the input length and is convinced that the input is close to the language (see Section 1.3
for additional details and related works on IPPs). Specifically, Theorem 2 follows from an IPP
construction of Rothblum, Vadhan and Wigderson [RVW13] (together with an extension due to
[RRR16]).

In particular, IWVs are closely related to IPPs. To see this, observe that an IWV for a relation
R may be thought of as an IPP, where the IPP input is the IWV witness w, and the goal is to check
whether the witness is “close” to the language Lx = {w′ : (x,w′) ∈ R}. Even though IWVs do not
refer to the proximity of the witness to Lx, observe that if x is not in the language, then Lx = ∅,
and so any fixed w will have “infinite” distance from Lx. In general, IWVs seem to be a more
relaxed object than IPPs (in particular, the above reduction gives instances with infinite distance).

Lower Bound for IWVs. We also give a lower bound for IWVs that shows that Theorem 2
is quantitatively almost tight. Moreover, the specific NP relation for which we demonstrate this
lower bound is in the class of relations for which we assume an IWV in the proof of Theorem 1.
For our lower bound to hold we assume the existence of an exponentially strong cryptographic
pseudorandom generator. The proof of the lower bound follows from a similar lower bound of Kalai
and Rothblum [KR15] for IPPs, but is somewhat simpler.

1.2 Technical Overview

Let L be a UP language and let R be the corresponding UP relation. By the proof of the Cook-Levin
theorem we may assume without loss of generality that R is computable in NC1 (more specifically,
by a CNF formula).4 Recall that our goal is to design a protocol, between a prover Pbatch and

4This step incurs a polynomial blowup in the witness size, which is the source of the poly(m) dependence in
Theorem 1. This blowup can be avoided for many natural UP relations which are natively checkable in NC1 and more
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verifier Vbatch that both get as input k instances x1, . . . , xk. The prover, in addition, also gets
witnesses w1, . . . , wk, each of length m, and needs to convince V that x1, . . . , xk ∈ L.

For sake of simplicity, we will focus on constructing a protocol with small communication
O(kδ ·m1+δ) for some small constant δ > 0, and ignore the running time of the verifier. Obtaining
a verifier that runs in time that is sub-linear in k amounts to maintaining concise descriptions of
all the objects involved in the interaction. We ignore the verification time for this overview.5

A Warmup: Batch Verification with
√
k ·m1+δ Communication. As a warmup, we first

consider a quantitatively easier task: batch verification with communication complexity
√
k ·m1+δ

(rather then our eventual goal of kδ ·m1+δ). This task is already non-trivial and demonstrates most
of our key ideas.

Consider an augmented UP relation R⊗k defined as:

R⊗k =
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R
}
.

Note that R⊗k is computable in NC1. By Theorem 2, R⊗k has an efficient IWV protocol. Setting
the parameter q of Theorem 2 to

√
k, we obtain an IWV protocol for R⊗k in which the verifier reads√

k bits of the witness w = (w1, . . . , wk) and with communication roughly
√
k ·m1+δ (where recall

that m = |w1| = ... = |wk| is the length of a single witness).
We would like for Pbatch and Vbatch to run this IWV. An immediate objection that should arise

is that in contrast to the IWV setting, we are now trying to construct a standard interactive proof
and so the verifier does not have access to the witness string w = (w1, . . . , wk). To get around
this, we will leverage a property of the IWV of Theorem 2. Specifically, that IWV operates in two
phases: an online phase followed by an offline phase. First, in the online phase, the verifier does
not have oracle access to the witness w, but is allowed to communicate with the prover. The result
of this interaction is a set of coordinates Q of w that the verifier would like to read and a predicate
φ to be applied to wQ. In the second (offline) phase, the verifier is given oracle access to w but is
no longer allowed to interact with the prover. Rather, the verifier just reads wQ and accepts if and
only if φ(wQ) = 1. The soundness condition remains unchanged. Namely, for any alleged witness
w for a false statement, which is fixed prior to the interaction, with high probability over the coins
tossed in the online phase, either the verifier rejects or it generates Q and φ such that φ(wQ) = 0.

The batch verification prover Pbatch and verifier Vbatch start by running the online phase of the
IWV for R⊗k on input (x1, . . . , xk). The prover Pbatch also uses w = (w1, . . . , wk) as its witness
string. Observe that for this online phase the verifier Vbatch does not need oracle access to w
(indeed, as discussed above, Vbatch has no such oracle access).

At the end of the this phase, Vbatch obtains a set Q ⊆ [k]× [m], of size |Q| ≤
√
k, of points that

it would like to read from w = (w1, . . . , wk) together with a predicate φ : {0, 1}|Q| → {0, 1} to be
evaluated on wQ. However, since Vbatch does not have oracle access to w, it is not immediately
clear how we can leverage the soundness condition of IWVs in our current setting. Jumping ahead,
we shall do so by using the uniqueness of the witnesses in a crucial way.

generally, for relations that are checkable by bounded space Turing machines or bounded depth (logspace uniform)
circuits.

5One way getting an efficient verifier is to first construct a protocol with small communication but large verification
time (as will be described in this overview), and then further delegate the verification task (which is a deterministic
computation applied to the transcript of the interaction and the input) to the prover using a doubly-efficient interactive
proof such as those of [GKR08] or [RRR16]. However, in our actual construction we show that the verifier can be
implemented efficiently directly, without this additional trick.
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Specifically, consider the fixed witness string ŵ = (ŵ1, . . . , ŵ1), where for every j ∈ [k]: if
xj ∈ L, then we set ŵj to be the corresponding unique witness, and otherwise (in case xj 6∈ L) we
set ŵj as an arbitrary fixed string (e.g., 0m). Since ŵ is an a priori fixed string, by the soundness
of the IWV, if there exists some j∗ such that xj∗ 6∈ L, then, no matter what a cheating prover does,
with high probability the IWV verifier generates φ and Q such that φ(ŵQ) = 0 (or it rejects, which
case Vbatch also rejects).

Suppose that indeed φ(ŵQ) = 0. While our verifier Vbatch does not have oracle access to ŵ, since
|Q| ≤

√
k, we can ask the prover Pbatch to send all of the witnesses belonging to the subset S ⊆ [k]

of witnesses that are “touched” by Q (i.e., S is the projection of the set Q ⊆ [k] × [m] to its first
coordinate). Denote the set of alleged witnesses that the prover sends by w̃ = (w̃j)j∈S . Sending
w̃ only costs us an additional |S| ·m = O(

√
k ·m) communication. The verifier Vbatch checks that

(xj , w̃j) ∈ R, for all j ∈ S, and that φ(w̃) = 1. To argue that soundness holds, observe that if for
some j ∈ S it holds that xj 6∈ L, then for any w̃j that a potential cheating prover P∗batch might send,
it holds that (xj , w̃j) 6∈ R and so Vbatch rejects. On the other hand, since L ∈ UP, if xj ∈ L for all
j ∈ S (which can certainly happen), the prover P∗batch has to send the unique witnesses w̃ = ŵS

(in order for these witnesses to satisfy the relation R) in which case Vbatch rejects when checking
that φ(w̃) = φ(ŵS) = 1. Thus, in any case Vbatch rejects and soundness follows.

Taking a step back, our proof of soundness strongly leverages the uniqueness of the witnesses
to emulate query access to an a priori fixed witness by having the prover send the relevant parts of
the witness a posteriori (i.e., after the interactive phase of the IWV).

Observe that by our setting of parameters, the IWV part of the protocol uses
√
k ·m1+δ commu-

nication, and actually sending the witnesses (ŵj)j∈S adds only an additional
√
k ·m communication.

Overall we obtain communication complexity
√
k ·m1+δ.

Batch Verification with kδ ·m Communication. The main idea for obtaining smaller com-
munication kδ ·m1+δ, where δ > 0 is an arbitrary small constant, is to recursively apply the solution
for the warmup case (with slightly different parameters). We describe our approach in detail next.

First, in contrast to the warmup case, we use the IWV of Theorem 2 with respect to parameter
q = k1−δ (rather than q =

√
k). Thus, we have an IWV for the relation Rk with communication

kδ ·m1+δ and query complexity k1−δ.
The prover Pbatch and Vbatch run the IWV as in the warmup. The main difference is that now

the set S of instances that are queried in the IWV is of size k1−δ and we cannot afford for Pbatch to
send (wj)j∈S explicitly to Vbatch. Rather, we observe that after running the (online part of the) IWV
what remains to be checked is that for every j ∈ S it holds that xj ∈ L and that the corresponding
(unique) witnesses (wj)j∈S satisfy φ((wj)j∈S).

Our approach is to check that these conditions hold by a recursive application of our batch
verification protocol on (xj)j∈S . Observe that the number of instances has shrunk from k to k1−δ

so we have made significant progress. Actually, batch verification per se does not suffice since it
only guarantees that xj ∈ L for every j ∈ S but does not guarantee that φ((wj)j∈S). Still, we can
obtain also the latter condition by using the fact that φ is computable in NC1 and therefore can be
incorporated into the augmented relation which is defined for the next round.

Thus, in each iteration of the recursion we shrink the number of instances by a kδ factor. After
` = O(1/δ) iterations we will be left with a constant number of instances and the prover Pbatch

can send the corresponding witnesses explicitly. As in the warmup case, the verifier checks that all
these witnesses satisfy the base relation R individually and that they jointly satisfy the predicate

8



φ` generated by the last iteration of the recursion.
By our setting of parameter for the IWV, the communication complexity in each one of the

iterations is kδ · m1+δ. At the final step the verifier sends O(1) witnesses in the clear so that
also adds at most O(m) communication. The prover can be implemented efficiently (given the
UP witnesses) since the underlying IWV has an efficient prover strategy. As described above,
the verifier’s running time might be as high as Ω(k · m) (naively, that will be complexity of the
first iteration) but in the technical sections we provide a more refined analysis that shows how to
implement the verifier more efficiently.

1.2.1 Technical Comparison with [RRR16]

As noted above, a less efficient UP batch verification protocol was presented in [RRR16]. We briefly
review that approach and the differences from the current work. We refer the reader to [RRR16]
and to Goldreich’s recent survey [Gol17] for more details on the [RRR16] protocol.

The high level idea in the [RRR16] batch verification protocol is for the prover to generate PCP
proof strings for all the k instances and send a short “checksum” of these PCPs. The verifier in
turn, generates PCP queries and asks the prover to reveal the answer to these queries for all k PCPs.
The checksum is designed to guarantee that a cheating prover must either answer these queries in
a way that is consistent with predetermined PCPs, or alternatively, it can send answers that are
inconsistent with the correct PCPs of many of the statements. For UP the correct PCPs are unique,
and so the latter situation can be checked directly by having the verifier specify a random subset
of the PCP proofs for the prover to fully reveal (also here, similarly to our protocol, recursion can
be used to obtain improved parameters).

The current work completely avoids the use of checksums and PCPs. Instead, we use IWVs
to force a cheating prover to make false claim about a subset of the witnesses. IWVs, together
with the uniqueness of the witnesses, let us accomplish this without requiring the verifier to make
explicit queries to the witnesses. In terms of complexity, the key difference is that in the [RRR16]
protocol, the prover must reveal the PCP answers for all the k instances. This step adds Ω(k) to
the communication complexity, which we avoid.

1.3 Additional Related Works

Doubly Efficient Interactive Proofs. Goldwasser, Kalai and Rothblum [GKR08] introduced a
variant of interactive proofs, called doubly-efficient interactive proofs, in which both the prover and
the verifier are highly efficient. Namely, the honest prover must run in time that is proportional to
the complexity of the statement being proved, whereas the verifier should be much faster than the
complexity of the computation. Soundness is required to hold against computationally unbounded
provers.

Goldwasser et al. [GKR08] construct such doubly efficient interactive proofs for every language
in (logspace-uniform) NC. The aforementioned recent work of Reingold et al. [RRR16] gives such
proof-systems for languages computable in polynomial-time and some bounded polynomial space.
This includes in particular the complexity class SC. Moreover the latter protocol only requires
a constant number of rounds of interaction. We note that batch verification of certain types of
interactive proofs (that generalize UP batch verification) was a key ingredient in the [RRR16]
result.
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We remark that [GKR08] and [RRR16] doubly-efficient interactive proof-systems are for deter-
ministic computations and do not seem to immediately imply a protocol for batch NP, or even UP,
verification.

Batch Verification with Computational Soundness. A recent work of Brakerski, Holm-
gren and Kalai [BHK17] shows an argument-system for batch verification of NP statements. We
emphasize that they only obtain soundness against polynomial-time cheating provers whereas we
achieve statistical soundness against computationally unbounded provers. In addition, the result of
[BHK17] relies on an unproven cryptographic assumption (specifically a computational private in-
formation retrieval scheme) whereas our result is unconditional. On the other hand, the protocol of
[BHK17] also offers significant advantages (some of which are likely to be infeasible in the context of
interactive proofs with statistical soundness). First, their result holds for any NP language (rather
than just UP). Second, their protocol requires only 2 messages whereas our protocol requires a
larger (but still constant) number of rounds. Lastly, under strong enough assumptions, [BHK17]
achieve communication that depends only poly-logarithmically on k, whereas our dependence is
any arbitrarily small polynomial.

Interactive PCPs and PCIPs. Interactive PCPs, introduced by Kalai and Raz [KR09] are a
generalization of PCPs in which the PCP verifier can, in addition to reading bits of the PCP, also
interact with a prover. Our notion of IWV can be thought of as a restriction of Interactive PCPs
in which the PCP proof string is exactly the NP witness and cannot be further encoded.

A generalization of interactive PCPs, called probabilistically checkable interactive proofs (PCIPs)
was recently introduced by Reingold et al. [RRR16] and Ben Sasson et al. [BCS16].6 Loosely
speaking, these are interactive proofs in which the verifier only reads few bits of each message.
Again, and in contrast to IWVs, the prover is allowed to send long messages of its choice (e.g., a
PCP encoding of the NP witness).

Interactive Proofs of Proximity (IPPs). As mentioned above, interactive proofs of proximity
(IPPs) form an important component in our UP batch verification protocol. IPPs were introduced in
[EKR04, RVW13] and have seen a considerable amount of progress in recent years. The latter work
gives a general purpose sub-linear IPP protocol for general bounded depth computations (which
was extended to bounded space computations in [RRR16]). A non-interactive variant of IPPs was
studied in [GR15, FGL14]. Highly efficient protocols for restricted classes of computations (i.e.,
context free languages and small read-once branching programs) were given in [GGR15]. A study
of a computational variant of IPPs was initiated in [KR15]. The latter work also shows a lower
bound for IPPs. As mentioned above, we use their proof technique to derive a similar lower bound
for IWVs. Gur and Rothblum [GR17] show a round hierarchy for IPPs. Most recently, IPPs were
considered in the context of zero-knowledge [BRV18] and distribution testing [CG18].

1.4 Open Questions

We conclude the introduction by mentioning two open questions on batch verification:

1. Do there exist interactive proofs for batch verification of arbitrary NP statements (rather
than just UP statements)? Ideally such a proof-system would be both constant-round and

6Ben Sasson et al. refer to these as Interactive Oracle Proofs.
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have an efficient prover strategy, but even getting a result satisfying only one of these two
requirements would be very interesting. We mention that we do not know a way to extend
our UP batch verification to NP via the Valiant-Vazirani randomized reduction from NP to
UP [VV86].

2. The communication complexity in our protocol is proportional to kδ. Is it possible to obtain
a similar result with communication that grows only poly logarithmically with k? (Such a
result would likely require a super constant number of rounds.) In particular, a quantitative
improvement to the interactive proof of proximity of [RVW13] could yield such a result.7

1.5 Organization

Section 2 contains definitions and notations. In Section 3 we formally define our notion of interactive
witness verification IWV, show that they exist for bounded NP relations and demonstrate a lower
bound on their complexity. In Section 4 we present our protocol for batch verification of UP
statements.

2 Preliminaries

Throughout this work we use NC1 to refer to the class of logspace uniform Boolean circuits of
logarithmic depth and constant fan-in. Namely, L ∈ NC1 if there exists a logspace Turing machine
M that on input 1n outputs a full description of a logarithmic depth circuit C : {0, 1}n → {0, 1}
such that for every x ∈ {0, 1}n it holds that C(x) = 1 if and only if x ∈ L. We recall that
the class SC refers to languages decidable by Turing machines that run in polynomial-time and
poly-logarithmic space.

We next define a notion of succinct representation of circuits. Loosely speaking, a function
f : {0, 1}n → {0, 1} has a succinct representation if there is a short string 〈f〉, of poly-logarithmic
length, that describes f . That is, 〈f〉 can be expanded to a full description of f . The actual
technical definition is slightly more involved and in particular requires that the full description of
f be an NC1 (i.e., logarithmic depth) circuit:

Definition 2.1 (Succinct Description of Functions). We say that a function f : {0, 1}n → {0, 1} of
size s has a succinct description if there exists a string 〈f〉 of length polylog(n) and a logspace Turing
machine M (of constant size, independent of n) such that on input 1n, the machine M outputs a
full description of an NC1 circuit C such that for every x ∈ {0, 1}n it holds that C(〈f〉 , x) = f(x).
We refer to 〈f〉 as the succinct description of f .

We also define succinct representation for sets S ⊆ [k]. Roughly speaking this means that the
set can be described by a string of length polylog(k). The formal definition is somewhat more
involved:

Definition 2.2 (Succinct Description of Sets). We say that a set S ⊆ [k] of size s has a succinct
description if there exists a string 〈S〉 of length polylog(k) and a logspace Turing machine M
such that on input 1k, the machine M outputs a full description of a depth polylog(k) and size

7By slightly adjusting our parameters we could obtain a batch verification protocol with communication complexity
ko(1) ·m1+o(1) (and a super constant number of rounds of interaction). Still, achieving communication polylog(k) ·m
seems beyond our current techniques.
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poly(s, log k) circuit (of constant fan-in) that on input 〈S〉 outputs all the elements of S as a list
(of length s · log(k)).

We emphasize that the size of the circuit that M outputs is proportional to the actual size of
the set S, rather than the universe size k.

2.1 Interactive Proofs

An interactive proof-system, as defined by Goldwasser, Micali and Rackoff [GMR89], is a protocol
between a polynomial-time verifier V and a computationally unbounded prover P. The two parties
interact and at the end of the interaction the verifier accepts if and only if the given computational
statement is correct (with high probability).

We denote by (P,V)(x) the output of V after interacting with P on common input x. If either
V or P are given additional explicit inputs than we shall denote this by (P(y),V(z))(x) which refers
to the output of V after interacting with P where V gets as input (x, z) and P gets as input (x, y).
We extend the foregoing notation to implicit access to the input by placing the implicit input as a
superscript. Thus, by (P,Vz)(x) we refer to the output of V after interacting with P, where V has
oracle access to z and both parties have explicit access to x.

Definition 2.3. An interactive proof for a language L is an interactive protocol between a polynomial-
time verifier V and a computationally unbounded prover P. Both parties are given as input a string
x and must satisfy the following two properties:

• Completeness: If x ∈ L, then

Pr[(P,V)(x) = 1] = 1.

• Soundness: If x 6∈ L, then for every possible cheating strategy P∗,

Pr[(P∗,V)(x) = 1] ≤ 1/2.

If L ∈ NP, we say that an interactive proof for L has an efficient prover if the honest prover
strategy P can be implemented an polynomial-time given access to an NP witness.

Remark 2.4 (On Completeness and Soundness Errors). We note that Definition 2.3 can be gen-
eralized to allow for an error in the completeness condition. For simplicity however, and since our
protocols achieve perfect completeness, we avoid doing so.8 We also remark that the soundness
error (and completeness error, if ones allows for such) can be reduced at an exponential rate by
either sequential or parallel repetition (see, e.g., [Gol99, Lemma C.1]).

2.1.1 Doubly Efficient Interactive Proofs

Doubly-efficient interactive proofs, introduced by Goldwasser et al. [GKR08] are interactive proofs
in which the prover is relatively efficient (i.e., runs in time proportional to the complexity of the
computation), whereas the verifier is extremely efficient (i.e., running in almost linear time). We
shall use a recent result of Reingold et al. [RRR16] giving such doubly efficient interactive proofs for
bounded space computations. The reason that we use the more recent protocol of [RRR16] rather
than that of [GKR08], is mainly because the former only requires a constant number of rounds.

8Fürer et al. [FGM+89] show how to transform any interactive proof to one having perfect completeness. Their
transformation however does not preserve the efficiency of the prover.
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Theorem 2.5 (Interactive Proofs for Bounded Space ([RRR16])). Let T = T (n) and S = S(n)
such that n ≤ T ≤ exp(n) and log(T ) ≤ S ≤ poly(n).

Let L ∈ DTISP(T, S) and let τ = τ(n) ∈ (0, 1/2) such that poly(1/τ) ≤ log(T ). Then, L has
a public-coin interactive proof with perfect completeness and soundness error 1

2 . The number of

rounds is (1/τ)O(1/τ). The communication complexity is TO(τ) · poly(S). The (prescribed) prover
runs in time T 1+O(τ) ·poly(S) time, and the verifier runs in time

(
n · polylog(T ) + TO(τ) · poly(S)

)
.

3 Interactive Witness Verification

For an NP relation R, we denote by R(x) the set of witnesses for x, namely R(x) = {w : R(x,w) =
1}.

Definition 3.1 (Interactive Witness Verification IWV). An Interactive Witness Verification Pro-
tocol (IWV) for an NP relation R, is an interactive protocol between a computationally unbounded
prover P and a verifier V on a given input x. The verifier also has oracle access to an alleged
witness w. The protocol must satisfy the following two requirements:

• Completeness: If (x,w) ∈ R then

Pr
[(
P,Vw

)
(x, |w|) = 1

]
= 1.

• Soundness: If R(x) = ∅ (i.e., x is not in the underlying NP language), then for every a
priori fixed w∗ and every prover strategy P∗:

Pr
[(
P∗,Vw∗

)
(x, |w∗|) = 1

]
≤ 1/2.

The query complexity q = q(|x|, |w|) is the number of bits that V reads from w and the com-
munication complexity cc = cc(|x|, |w|) is the number of bits exchanged between V and P in the
protocol.

We say that the IWV has an efficient prover, if the honest prover strategy P can be implemented
in polynomial time, if the prover is given explicit access to w (i.e., the same witness to which the
verifier has oracle access to).

Loosely speaking, we say that an IWV is oblivious if the verifier makes all its queries non-
adaptively at the end of the interaction. Put differently, at the end of the interaction the verifier
specifies some query set Q of bits from the witness, and a predicate φ and accepts if and only if
φ(wQ) = 1. For technical considerations in our proof, we actually require that the verifier generate
succinct descriptions of Q and φ (see Definitions 2.1 and 2.2 for the precise technical definition of
succinct descriptions of functions and sets). This allows the verifier to run in time that is sublinear
in the sizes of Q and φ. We proceed to the formal definition:

Definition 3.2 (Oblivious IWV). An Oblivious IWV for an NP relation R with witness length m,
is an interactive protocol between a computationally unbounded prover P and a verifier V on a given
input x. At the end of the interaction either the verifier rejects or it outputs a succinct description
〈Q〉 of a set Q ⊆ [m] of size q and succinct description 〈φ〉 of a predicate φ : {0, 1}q → {0, 1} such
that
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• Completeness: If (x,w) ∈ R then

Pr
[
V does not reject and φ(wQ) = 1

]
= 1.

• Soundness: If R(x) = ∅ (i.e., x is not in the underlying NP language), then for every a
priori fixed w∗ and every prover strategy P∗:

Pr
[
V does not reject and φ(w∗Q) = 1

]
≤ 1/2.

The query complexity of an oblivious IWV is q, the size of the set Q, and the communication
complexity cc is the number of bits exchanged between V and P in the protocol.

We say that the IWV has an efficient prover strategy, if the honest prover strategy P can be
implemented in polynomial time, if the prover is given explicit access to w (i.e., the same witness
to which the verifier has oracle access to).

We will rely on the following theorem, which is established in Section 3.1. Loosely speaking,
this result shows that any NP relation verifiable by small depth circuits has an IWV in which we
can trade off the query and communication complexities, such that their product is roughly equal
to the witness length. In particular, it yields IWV protocols for all such NP relations in which the
complexity scales with the square root of the witness length.

Theorem 3.3. [IWVs for Bounded Space Relations] Let R be an NP relation with witness length
m = m(n), which can be verified in poly(n) time and space S = S(n). Then, for every parameter
q = q(n,m) and constant δ > 0, there exists a constant-round oblivious IWV for R. The query
complexity is q and the communication complexity is cc = cc(n,m) =

(
(m/q) ·mδ · poly(S)

)
. The

verifier runs in time
(
n · polylog(n,m) + Õ(cc)

)
. The prover runs in time poly(n,m), given as

input the NP witness.

We remark that a similar result holds for any language computable in (log-space uniform) NC,
where in the case of NC the number of rounds is polylog(n,m) rather than constant, and the mδ

terms in the communication complexity and the verifier runtime are replaced by mo(1).

3.1 Constructing IWVs for NP

The main technical tool that we use to prove Theorem 3.3 is the interactive proofs of proximity
(IPPs) protocol of Rothblum, Vadhan and Wigderson [RVW13]. First, in Section 3.1.1 we introduce
the model of IPPs and state the [RVW13] result. Then, in Section 3.1.2, we prove Theorem 3.3.

3.1.1 Background on IPPs

Loosely speaking, IPPs are interactive proofs in which the verifier runs in sub-linear time in the
input length and is assured that the input is close to the language. Actually, we will think of the
input of the verifier as being composed of two parts: a short input x ∈ {0, 1}n to which the verifier
has direct access and a long input y ∈ {0, 1}m to which the verifier has oracle access. The goal is
for the verifier to run in time that is sub-linear in m and to verify that y is far from any y′ such
that the pair (x, y′) are in the language. Since such languages are composed of input pairs, we refer
to them as pair languages.
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Definition 3.4 (Interactive Proof of Proximity (IPP) [EKR04, RVW13]). An interactive proof of
proximity (IPP) for the pair language L is an interactive protocol with two parties: a (computa-
tionally unbounded) prover P and a computationally bounded verifier V. Both parties get as input
x ∈ {0, 1}n and a proximity parameter ε > 0. The verifier also gets oracle access to y ∈ {0, 1}m
whereas the prover has full access to y. At the end of the interaction, the following two conditions
are satisfied:

1. Completeness: For every pair (x, y) ∈ L, and proximity parameter ε > 0 it holds that

Pr
[(
P(y),Vy

)
(x, |y|, ε) = 1

]
= 1.

2. Soundness: For every ε > 0, x ∈ {0, 1}n and y that is ε-far from the set {y′ : (x, y′) ∈ L},
and for every computationally unbounded (cheating) prover P∗ it holds that

Pr
[(
P∗(y),Vy

)
(x, |y|, ε) = 1

]
≤ 1/2.

An IPP for L is said to have query complexity q = q(n,m, ε) if, for every ε > 0 and (x, y) ∈ L,
the verifier V makes at most q(|x|, |y|, ε) queries to y when interacting with P. The IPP is said
to have communication complexity cc = cc(n,m, ε) if, for every ε > 0 and pair (x, y) ∈ L, the
communication between V and P consists of at most cc(|x|, |y|, ε) bits.

We are now ready to state the main result of [RVW13]. Actually we will use an extension, due
to [RRR16], of the [RVW13] IPP.9

Theorem 3.5 (IPPs for Bounded Space Computations, [RVW13, RRR16]). Let L be a pair language
that is computable in poly(n,m) time and space S = S(n,m). For every constant δ > 0, there is an
IPP for L with the following parameters. For every input pair (x, y) ∈ {0, 1}n × {0, 1}m, the query
complexity is q = q(n,m, ε) = (1/ε) ·mO(δ), the communication complexity is cc = cc(n,m, ε) =
(ε · m1+O(δ) · poly(S)), and the number of rounds is constant. The honest prover runs in time
poly(n,m, 1/ε) and the verifier runs in time n · polylog(n,m) + Õ(q + cc).

Furthermore, the verification can be implemented in two phases. In the communication phase
the verifier interacts with the prover without querying y. The verifier’s running time in this phase
is n · polylog(n,m) + Õ(cc). At the end of the communication phase, the verifier either rejects or
it outputs a succinct description 〈Q〉 of a set Q ⊆ [m] of size q and succinct description 〈φ〉 of a
predicate φ : {0, 1}q → {0, 1} which can be computed by a (logspace uniform) NC1 circuit of size
Õ(q). In the query phase, the verifier only queries yQ and accepts if and only if φ(yQ) = 1.

3.1.2 Proof of Theorem 3.3

Let R be an NP relation with witness length m = m(n), which can be verified in poly(n) time and
space S = S(n). Let δ > 0 be a constant and let q = q(n,m) ∈ [m] be a parameter.

View R as a pair language. Namely each input-witness pair (x,w) is viewed as a an input pair
(x,w) for the pair language. Let (P,V) by the IPP for R guaranteed by Theorem 3.5 with respect

9The [RRR16] IPP extends the [RVW13] result from bounded depth computations to also hold for bounded space
computations. Also, and more importantly for our purposes, the [RRR16] IPP only requires a constant number of
rounds (for languages computable in bounded space).
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to proximity parameter ε = mO(δ)

q . We claim that (P,V) is an IWV for R, where queries to the IPP
input oracle y are emulated by querying the IWV witness oracle.

Completeness follows immediately from the completeness of the IPP. For soundness, let x ∈
{0, 1}n such that R(x) = ∅. Fix an alleged witness string ỹ and an IWV prover strategy P∗. We
view P∗ as a cheating prover strategy for the IPP (P,V) with respect to the input pair (x, ỹ). Since
R(x) = ∅, it holds that (x, ỹ) is at infinite distance from the set {y′ : (x, y′) ∈ R} (in particular the
distance is more than ε). Thus, by the IPP soundness, the verifier rejects with probability at least
1/2.

The fact that the foregoing IWV is oblivious, as well as its complexity, follows from the further-
more part of Theorem 3.5.

3.2 Lower Bound for IWVs

In this section we show a lower bound on the efficiency of IWVs that, loosely speaking, shows
that Theorem 3.3 is tight. This lower bound relies on the existence of an exponentially strong
cryptographic pseudorandom generator (PRG). By exponentially strong, we mean that the output
of the generators, when evaluated of a random string of length m, computationally indistinguishable
from a uniformly random string even for adversaries running in time 2m/100 · poly(m). We remark
that by assuming only sub-exponential hardness (i.e., hardness against 2m

ε
time adversaries) we

can still obtain a meaningful (albeit weaker) lower bound.
For an NP relation R, we denote by R⊗k the relation

R⊗k
def
=
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R and |x1| = . . . = |xk|
}
.

Theorem 3.6. Assume the existence of an exponentially hard cryptographic PRG. Then, there
exists an NP relation R with witnesses of size m, such that for every k ≤ poly(m), every IWV
for R⊗k must have either query complexity q = Ω(k) or communication complexity cc = Ω(m).
Furthermore, if the PRG is injective, then R is a UP relation.

The proof of Theorem 3.6 follows in a straightforward way from the IPP lower bound of Kalai
and Rothblum [KR15]. We provide a proof sketch below.

Proof Sketch. Let G : {0, 1}m → {0, 1}n be an exponentially strong PRG. Let RG = {(y, s) : y =
G(s)}. Clearly RG ∈ NP and if G is injective, then RG ∈ UP. Suppose toward a contradiction

that there exists an IWV (P,V) for R⊗kG =
{(

(y1, . . . , yk), (s1, . . . , sk) : ∀j ∈ [k], yj = G(sj)
}

with

query complexity k/100 and communication complexity m/100.
The proof is composed of two steps. First, we use (P,V) to construct a relatively efficient

interactive proof for RG (i.e., with communication m/100). The second step is to show that such
an interactive proof violates the exponential hardness of G.

We start with the first step: constructing an interactive proof (P ′,V ′) for RG - i.e., deciding
whether a given string is in the image of G. Actually, we only achieve a relaxed notion of interactive
proof. Specifically we have the following two relaxations:

• (Average-case Completeness:) Completeness holds for most inputs in the language but not
necessarily for all inputs. Namely, for most s, the verifier V ′ accepts with high probability
after interacting with the prover P ′ on common input G(s).
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• (Common Random String:) Both the prover and verifier have access to a (relatively long)
common random string. We do not count this random string as part of the communication
complexity of the protocol.

We proceed to describe the interactive proof (P ′,V ′) for R⊗kG . The common random string
consists of

(
(s1, . . . , sk), i

)
∈R ({0, 1}m)k × [k]. We define yj = G(sj), for all j ∈ [k]. In addition

to the common random string, the verifier V ′ and prover P ′ are given as input y ∈ {0, 1}n, and V ′
needs to decide whether there exists s ∈ {0, 1}m such that G(s) = y (i.e., whether RG(y) =6= ∅).

The interactive proof proceeds as follows. The prover P ′ and verifier V ′ run the IWV (P,V)
where the input is (y1, . . . , yi−1, y, yi+1, . . . , yk) and the witness, to which V only gets oracle access,
is (s1, . . . , si−1, 0

m, si+1, . . . , sk).
To show that average-case completeness holds, let s ∈R {0, 1}m and consider the execution of

(P ′,V ′) on input y = G(s). Consider a mental experiment in which we run the IWV with the witness
(s1, . . . , si−1, s, si+1, . . . , sk) (rather than (s1, . . . , si−1, 0

m, si+1, . . . , sk) as in the real execution). By
the completeness of the IWV, in this mental experiment, V accepts.

Observe that, conditioned on not querying s, the view of V is identical in the real execution and
in the mental experiment, and so it will accept also in the real execution. Moreover, since i and
y are random, and V makes at most k/100 queries, with constant probability, V does not query s
and average-case completeness follows.

Soundness of (P ′,V) is easier to show. Specifically, ifRG(y) = ∅ thenR⊗kG
(
y1, . . . , yi−1, y, yi+1, . . . , y`

)
=

∅ and so by the soundness of the IWV, the verifier V rejects with high probability given oracle access
to any fixed witness (in particular, (s1, . . . , si−1, 0

m, si+1, . . . , sk)) and no matter what the cheating
prover does.

Thus, (P ′,V ′) is an interactive proof for RG. Observe that (P ′,V ′) has the same communication
as (P,V) - namely, m/100.

The second step of the proof is to observe that the foregoing interactive proof can be emulated by
an algorithm A running in time 2m/100 · poly(m, k). This is similar to the proof that IP ⊆ PSPACE
(i.e., interactive proofs can be emulated by bounded space machines).10 Thus, using the fact
that k = poly(m), the PRG can be broken in time 2m/100 · poly(m) time, in contradiction to our
assumption.

4 Batch Verification for UP

For an NP relation R, we denote by R⊗k the relation

R⊗k
def
=
{(

(x1, . . . , xk), (w1, . . . , wk)
)

: ∀j ∈ [k], (xj , wj) ∈ R and |x1| = . . . = |xk|
}
.

Theorem 4.1 (Batch Verification for UP). Let R be a UP relation that is verifiable in NC1, with
witnesses of length m = m(n) such that m and n are polynomially related. Let k = k(n) ≥ 1 and
let δ > 0 be a constant. There exists a constant-round interactive proof system for R⊗k such that

the verifier runs in time
(
Õ(n · k) + kδ ·m1+δ

)
, the (honest) prover runs in time poly(n,m, k) and

the communication complexity is
(
kδ ·m1+δ

)
.

10We cannot afford to count the CRS as part of the communication of the interactive proof, since it is of length
m · k+ log(k)� m/100. Rather, observe that A can simply sample the CRS directly, in time poly(m, k) (rather than
enumerating over all possible CRS strings).
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By the proof of the Cook-Levin theorem every UP language has a UP relation that is verifiable
in NC1 (albeit with a polynomial blowup in the witness size). Thus, Theorem 4.1 is applicable to
any UP language.

As described in the technical overview (see Section 1.2), our batch verification protocol works
in iterations, where the goal of each iteration is to significantly reduce the number of instances that
are still “alive”. In Section 4.1 we describe the iterative step and then in Section 4.2 we describe
the UP batch verification protocol.

4.1 The Iterative Step

We first describe the main step in our proof, corresponding to a single iteration of the protocol that
was described in Section 1.2. Loosely speaking, this step shows an interactive protocol, where if
we start with a false claim about a subset of the k UP statements, then at the end of the protocol,
with high probability, we will have a false claim about a smaller subset of the statements.

This step, which appears next in Lemma 4.1.1, is where we rely on the existence of IWVs for
general NC1 relations. Lemma 4.1.1 can be instantiated with any such IWV. Later, in Section 4.2,
we will use Lemma 4.1.1 instantiated with the IWVs that were shown to exist (unconditionally) in
Theorem 3.3.

Lemma 4.1.1. Suppose that for every parameter q, every NP relation computable in NC1 has an
oblivious IWV with an efficient prover such that with respect to inputs of size n and witness of size
m, the proof-system has soundness error ε = ε(n,m, q), verifier complexity Vtime = Vtime(n,m, q),
prover complexity Ptime(n,m, q) (assuming the prover is given access to the NP witness), round
complexity r(n,m, q), query complexity q and communication complexity cc = cc(n,m, q).

Let R be a UP relation computable in NC1, with witnesses of length m = m(n), and let δ > 0
be a constant. There exists an interactive protocol between a prover P and verifier V such that the
following holds. Both parties get as input x = (x1, . . . , xk) ∈ ({0, 1}n)k and succinct descriptions
〈S〉 and 〈φ〉, of a set S ⊆ [k] of size s and circuit φ, respectively. The prover P also gets witnesses
w = (w1, . . . , wk) ∈ ({0, 1}m)k as an additional input. The two parties interact and at the end of
the interaction V either rejects or outputs succinct descriptions 〈S′〉 and 〈φ′〉 of a subset S′ ⊆ S,
of size s1−δ, and circuit φ′, respectively, such that:

• (Completeness:) If (xj , wj) ∈ R for all j ∈ S, and φ(w|S) = 1, then, with probability 1,
after interacting with P, the verifier V outputs 〈S′〉 and 〈φ′〉 such that φ′(w|S′) = 1.

• (Soundness:) If either (1) there exists j ∈ S such that R(xj) = ∅, or (2) (xj , wj) ∈ R for
all j ∈ S but φ(w|S) = 0, then, for every prover strategy P∗, with probability 1 − ε, after
interacting with P∗, the verifier V either rejects or outputs 〈S′〉 and 〈φ′〉 such that one of the
following holds:

1. ∃j ∈ S′ such that R(xj) = ∅; or

2. φ′(w|S′) = 0.

• (Complexity:) The protocol (P,V) has verifier complexity Vtime
(
n ·k+poly(log n, log k), s ·

m, q
)
, prover complexity Ptime

(
n ·k+poly(log n, log k), s ·m, q

)
(assuming the prover is given

access to the k UP witnesses), round complexity r = r
(
n · k + poly(log n, log k), s ·m, q

)
and

communication complexity cc = cc
(
n · k + poly(log n, log k), s ·m, q

)
, where q = s1−δ.
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Proof. Let R be a UP relation computable in NC1. We consider a related NP relation Rk defined
as follows. The input to Rk is (x1, . . . , xk, 〈S〉 , 〈φ〉) and the witness is a sequence w|S = (wj)j∈S .
The relation checks that (1) for every j ∈ S it holds that (xj , wj) ∈ R, and (2) that φ(w|S) = 1.
Observe that membership in Rk can be decided in (logspace uniform) NC1, and therefore, by the
lemma’s hypothesis there exists an oblivious IWV (P,V) for Rk where we use parameter q = s1−δ,
where s is the size of the set S.

We use (P,V) to construct a protocol (Pk,Vk) as required in the theorem’s statement. Given
as common input (x1, . . . , xk, 〈S〉 , 〈φ〉), the verifier Vk and prover Pk run (P,V) with respect to
the common input (x1, . . . , xk, 〈S〉 , 〈φ〉), where Pk gets as an auxiliary input also w|S = (wj)|j∈S .

If V rejects then Vk immediately rejects. Otherwise, V outputs succinct NC1 descriptions 〈Q′〉
and 〈φ′〉 where Q′ ⊆ [k] × [m], of size k1−δ specifies which locations to read from w|S and φ′ is
a predicate specifying whether V would have accepted had it read those bits. For simplicity, and
without loss of generality, we assume that Q specifies k1−δ of the witnesses w1, . . . , wk entirely and
ignores the rest. Let S′ ⊆ [k] denote the witnesses that the Q refers to. The verifier Vk outputs
〈S′〉 and 〈φ′〉.

Completeness. Let x1, . . . , xk be a sequence of inputs, S ⊆ [k] a set and φ a circuit such that
there exist unique w|S = (wj)|j∈S such that (xj , wj) ∈ R for all j ∈ [k] and φ(w|S) = 1. The
IWV protocol is run with respect to an input

(
(x1, . . . , xk, 〈S〉 , 〈φ〉),wS

)
∈ Rk. Thus, by the

completeness of the IWV, with probability 1, it holds that φ′(wS′) = 1.

Soundness. Suppose that either there exists j ∈ S such that R(xj) = ∅, or w|S = (wj)j∈S
consists of the corresponding unique witnesses and 〈φ〉 is such that φ(w|S) = 0. Let P∗ be a
cheating prover strategy. To show that the soundness condition holds, it suffices to prove the
following claim:

Claim 4.1.1.
Pr
[(
∀j ∈ S′, R(xj) 6= ∅

)
and

(
φ′(w|S′) = 0

)]
≤ ε

Proof. For every j ∈ S, if R(xj) 6= ∅ then define ŵj = wj (i.e., the unique witness for xj), whereas
if R(xj) = ∅, then define ŵj as some arbitrary fixed string (e.g., 0m).

We view P∗ as an adversary for the oblivious IWV protocol, with respect to the a priori fixed
witness string ŵ|S = (ŵj)|j∈S . By the soundness condition of the oblivious IWV (see Definition 3.2),
it holds that:

Pr[φ′(ŵS′) = 1] ≤ ε.

For all j ∈ S we have that, if R(xj) 6= ∅ then wj = ŵj . Thus,

Pr
[(
∀j ∈ S′, R(xj) 6= ∅

)
and

(
φ′(w|S′) = 0

)]
≤ Pr

[
φ′(ŵ|S′) = 0

)]
≤ ε,

and the claim follows.
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The UP Batching Protocol (Pbatch,Vbatch)

Common Input: x = (x1, . . . , xk) ∈ ({0, 1}n)k.
Prover’s Auxiliary Input: witnesses w = (w1, . . . , wk) ∈ ({0, 1}m)k.

1. Set 〈S1〉 to be a concise description of the set S1 = [k], and 〈φ1〉 to be a concise description of a
circuit φ1 : ({0, 1}m)k → {0, 1} that always outputs 1.

2. For i = 1, . . . , `− 1, where ` = O(1/δ):

(a) Run (Preduction,Vreduction) on common input (x, 〈Si〉 , 〈φi〉), and with respect to parameter qi =
s1−δi , where si is the size of the set Si, and with soundness error ε = 1/(10`).a More specifically,
Vbatch emulates Vreduction and Pbatch emulates Preduction, using w|Si

as the auxiliary input.

(b) If Vreduction rejects then Vbatch immediately rejects. Otherwise Vreduction outputs 〈Si+1〉 and
〈φi+1〉.

3. Pbatch sends to Vbatch the witnesses w|S`
= (wj)j∈S`

.

4. The verifier Vbatch expands 〈S`〉 to a full description of the set S`. The prover and verifier then
run the doubly efficient interactive proof of Theorem 2.5 on input

(
(xj)j∈S`

, (wj)j∈S`
, 〈φ`〉

)
checking

that for every j ∈ S` it holds that (xj , wj) ∈ R and that φ`(w|S`
) = 1 (the protocol of Theorem 2.5

is used with a sufficiently small parameter τ > 0 to be determined in the analysis). If all checks pass
then Vbatch accepts and otherwise it rejects.b

aSuch soundness amplification can be achieved by repeating the base protocol O(log(`)) times in parallel.
bThis step could be replaced by having the verifier directly check by itself that (xj , wj) ∈ R for every j ∈ S`.

However, doing so introduces an additive overhead of poly(n,m) to the verifier’s running time (arising from the
complexity of the relation R) which we can reduce to Õ(n + m) by using the interactive proof of Theorem 2.5.

Figure 1: UP Batching

Complexity. The stated complexity follows from the complexity of the IWV, which is run on an
input of size n ·k+poly(log n, log k) (the concatenation of the k inputs and succinct representations
〈S〉 and 〈φ〉), witness size s · m (i.e., the length of (wi)|i∈S - the concatenation of the relevant
witnesses) and with respect to the parameter q = s1−δ.

4.2 The Batch Verification Protocol: Proof of Theorem 4.1

Let (Preduction, Vreduction) be the protocol guaranteed by Lemma 4.1.1, with respect to UP relation
R and the IWV protocol of Theorem 3.3. We construct a protocol (Pbatch,Vbatch) satisfying the
requirement of Theorem 4.1. The protocol is described in Fig. 1.

To complete the proof of Theorem 4.1 we need to show that completeness and soundness hold,
as well as analyze the complexity of the protocol.

Completeness. Let x1, . . . , xk such that there exist (unique) witnesses w = (w1, . . . , wk) such
that (xj , wj) ∈ R, for every j ∈ [k]. Let S1, . . . , S` and φ1, . . . , φ` be the sets and formulas,
respectively, generated in the interaction between Pbatch and Vbatch.

Claim 4.1.2. For every i ∈ [`], with probability 1, it holds that Vbatch does not reject prior to the
ith iteration and φi(wSi) = 1.
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Proof. We prove by induction on i. In the case base φ1 always outputs 1 and so the claim holds
trivially. Suppose that the claim holds for some value i. Thus, φi(wSi) = 1.

Since (xj , wj) ∈ R for all j ∈ Si, and φi(wSi) = 1, by the completeness of (Preduction,Vreduction))
it holds that Vreduction does not reject and outputs 〈Si+1〉 and 〈φi+1〉 such that φi+1(wSi+1) = 1.
The claim follows.

Thus, at the end of the loop φ`(wS`) = 1. Since Pbatch sends the correct (unique) witnesses wS`

in Step 3, by the completeness of the interactive proof-system of Theorem 2.5, the verifier Vbatch
accepts.

Soundness. Let x1, . . . , xk ∈ {0, 1}n such that ∃j∗ ∈ [k] with R(xj∗) = ∅. Let P∗ be a cheating
prover strategy. For every j ∈ [k], if R(xj) 6= ∅, let wj be the corresponding unique witness. Purely
for notational convenience, we also define wj to be an arbitrary string, for every j ∈ [k] such that
R(xj) = ∅. Let w = (w1, . . . , wk).

For every i ∈ [`], let Ei denote the conjunction of the following three events:

• The verifier Vbatch has not rejected prior to the start of the ith iteration; and

• For every j ∈ Si it holds that R(xj) 6= ∅; and

• φi(w|Si) = 1

Setting ε = 1/(10`), we have the following central claim:

Claim 4.1.3. For every i ∈ [`]:
Pr[Ei] ≤ (i− 1) · ε

Proof. We prove the claim by induction on i. For the base case i = 1, since R(xj∗) = ∅ and
j∗ ∈ [k] = S1, it holds that

Pr[E1] ≤ Pr
[
∀j ∈ S1, R(xj) 6= ∅

]
≤ Pr[R(xj∗) 6= ∅] = 0.

Assume that the claim holds for some i ∈ [`− 1]. By elementary probability theory,

Pr[Ei+1] ≤ Pr[Ei] + Pr
[
Ei+1|¬Ei

]
.

By the induction hypothesis the first term is bounded by (i−1) · ε and so to complete the proof
we need to bound the second term by ε. This holds since:

Pr[Ei+1 | ¬Ei] ≤ Pr
[
Ei+1 | Vbatch rejects prior to iteration i

]
+ Pr

Ei+1

∣∣∣∣∣
(
∃j ∈ Si s.t. R(xj) = ∅

)
or(

φi(w|Si) = 0
)


= Pr

Ei+1

∣∣∣∣∣
(
∃j ∈ Si s.t. R(xj) = ∅

)
or(

φi(w|Si) = 0
)


≤ ε,

where the equality is since if Vbatch rejects prior to iteration i then clearly it also rejects prior
to iteration i + 1 (and so Ei+1 does not occur), and the last inequality follows directly from the
soundness condition of Lemma 4.1.1 (where recall that we used that protocol with soundness error
ε = 1/(10`)).
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Thus, with probability at least 1− ` · ε ≥ 0.9, one of the following events occurs at the end of
the loop:

1. Vbatch has already rejected; or

2. There exists j ∈ [S`] such that R(xj) = ∅; or

3. φ`(w|S`) = 0.

We show that in each of these cases, the verifier rejects with high probability. For the first case
this is immediate. In the second case, the cheating prover must send some incorrect witness w∗j .
Thus, the verifier and prover run the doubly efficient interactive proof-system of Theorem 2.5 on
a false input, and by the soundness condition of that protocol, the verifier rejects with probability
0.9.

Lastly, if φ`(wS`) = 0, then either P∗ sends witnesses that are not the unique witnesses, in
which case again the protocol of Theorem 2.5 is run on a false statement or P∗ sends the unique
witnesses but in this case the statement is still false since φ`(w|S`) = 1. Thus, in both cases, by
the soundness of Theorem 2.5, the verifier rejects with probability 0.9.

Thus, in all cases the verifier rejects with probability at least 0.92 ≥ 1/2.

Complexity. For every i ∈ [`], let si denote the size of the set Si generated in the interaction.
By Lemma 4.1.1 it holds that si ≤ k1−(i−1)·δ.

Consider the ith iteration of the loop, for some i ∈ [` − 1]. Let ni = n · k + polylog(n, k) and
mi = si ·m ≤ k1−(i−1)·δ ·m and recall that we set qi = s1−δi ≤ k1−i·δ. By Theorem 3.3, together
with Lemma 4.1.1, the ith iteration takes a constant number of rounds and has:

• Communication complexity:

cci = (mi/qi) ·mδ
i · polylog(n,m)

≤
(

(k1−(i−1)·δ ·m)/k1−i·δ
)
· (k ·m)δ · polylog(n,m)

= k2δ ·m1+δ · polylog(n,m)

• Verifier running time:

Vtimei = ni · polylog(ni,mi) + Õ(cci)

≤ n · k · polylog(n, k,m) + k2δ ·m1+δ · polylog(n,m, k)

• And prover running time (given the UP witnesses):

Ptimei = poly(ni,mi)

= poly(n,m, k)

To analyze the last two steps of the protocol, first observe that s` (i.e., the size of the final

set S`) has size s` ≤ k1−(`−1)δ̇ = O(1). Thus, Step 3 only adds an additional s` · m = O(m)
communication.
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As for the verification time, generating the set S` takes time poly(s`, log k) = polylog(k) (by the
definition of concise description of sets, see Definition 2.2). The protocol of Theorem 2.5, is run on
a logspace computation and with its parameter τ set to be a sufficiently small constant so that the
communication is O(m). This protocol takes an additional O(1) rounds, the verifier runs in time
Õ(n+m), the prover runs in time poly(n,m) and the communication complexity is O(m).

The parameters stated in the theorem’s statement now follows by taking resetting δ to be
sufficiently small (e.g., take δ′ = δ/4) and the fact that m and n are polynomially related.
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