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Abstract

We suggest a new approach to obtain bounds on locally correctable and some locally
testable binary linear codes, by arguing that their coset leader graphs have high discrete
Ricci curvature.

The bounds we obtain for locally correctable codes are worse than the best known
bounds obtained using quantum information theory, but are better than those obtained
using other methods, such as the ”usual” information theory. (We remark that our methods
are completely elementary.)

The bounds we obtain for a family of locally testable codes improve the best known
bounds.

1 Introduction

We are interested in upper bounds on the cardinality of locally structured linear subspaces of
the Hamming space {0, 1}n.

To fix notions and some notation, let C be a linear subspace of {0, 1}n, and let C⊥ ={
y : 〈x, y〉 = 0, ∀x ∈ C

}
be the dual space. We will assume that C⊥ contains a rich

family of vectors of constant length, and try to deduce that it is large (alternatively, that C is
small).

Specifically, we consider two families of locally constrained linear binary codes. Such codes
have numerous applications in theoretical computer science (see [DSW14] and the references
therein). With that, essentially in all the cases, there is a significant gap between the best
known examples of such codes and upper bounds on their cardinality.

Let F be the family of local constraints on C (that is, constant length vectors in C⊥). We will
consider:

• Locally correctable codes

These codes come with two parameters, an integer q ≥ 1 and a density parameter 0 <
δ < 1/q. For each 1 ≤ i ≤ n, the family F contains either a unit vector supported at i,
or at least δn vectors of length q+ 1 whose supports contain i and are disjoint otherwise.
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• Locally testable codes with high 3-density

Here we have one integer parameter σ which tends to infinity with n, and we assume that
F contains, for each 1 ≤ i ≤ n, at least σ vectors of length 3 whose supports contain i.

1.1 Known bounds

1.1.1 Locally correctable codes

• For q = 1, there are no locally correctable codes when n is bigger than a constant [KT00].

• For q = 2, the answer is Θ(log n) [GKST06]. 1

• For a constant q > 2, there is a significant gap between upper and lower bounds. The best
known locally correctable codes are the Reed-Muller codes of dimension Θ

(
(log n)q−1

)
[MS77]. The best upper bound on the dimension is O

(
n
dq/2e−1
dq/2e

)
, up to a polylogarithmic

factor [KdW04, Woo07, Woo12].

Remark 1.1:

In fact, all these bounds hold also for locally decodable codes, which is yet another version
of locally constrained codes. For a locally decodable code C of (unknown) dimension D, we
assume that the first D coordinates of a vector in C determine the vector (in other words the
projection of a non-zero vector in C on the first D coordinates is non-zero). The parameters of
C are q and δ, and the family of local constraints F contains, for each 1 ≤ i ≤ D, at least δn
vectors of length q + 1 whose supports contain i and are disjoint otherwise.

Clearly, any locally correctable code is also locally decodable. The reverse implication does not
hold [KV10], but we are not aware of any upper bounds separating these two families of binary
codes.

1.1.2 Locally testable codes

Locally testable codes with high 3-density were considered in [BSV12]. Let us call a linear code
C regular if each column in its generating matrix appears with the same multiplicity. Then the
following claim holds.

• The dimension of a regular locally testable code with 3-density σ is at most O
(
log σ√
σ
· n
)

[BSV12].

1The constant hidden in the asymptotic notation here and below is allowed to depend on δ.
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1.2 Our results

We follow the idea of Friedman and Tillich [FT05] and consider the coset leader graph of a binary
linear code (see Definition 1.7). At this point it suffices to say that this is a Cayley graph whose
cardinality is that of the corresponding code. Following a line of thought in [FT05] we view this
graph as a homogeneous space and apply suitably modified tools from Riemannian geometry to
upperbound its cardinality. Specifically, we will show this graph to have positive discrete Ricci
curvature in the sense of [Oll09]. This will provide an upper bound on its diameter and hence
on its size.

Bounds for locally correctable codes: In the statement of the next claim, and from now
on, we will refer to a locally correctable code with parameters q and δ as q-locally correctable
(this in particular emphasizes the fact that q is the more important parameter for the purpose
of this discussion). Recall that we allow constants hidden in the asymptotic notation to depend
on δ.

Theorem 1.2: Let C be a q-locally correctable code with q ≥ 2. Then the covering radius of

C⊥ is O
(
n
q−2
q−1

)
, and dim(C) ≤ O

(
n
q−2
q−1 (log n)

1
q−1

)
.

While this is weaker than the best known bounds, we observe that for q > 3 the exponent
of n in our bound on dim(C) lies strictly between that in [KT00] obtained via Shannon’s
entropy, and the best known bound [KdW04, Woo07], which uses highly non-trivial facts, such
as subadditivity of quantum entropy.

For q = 3 we do somewhat better. Theorem 1.2 bounds the dimension of a 3-locally correctable
code by

√
n log n, which is only logarithmically weaker than the best known bound of

√
n

[Woo12] (but stronger than n2/3 of [KT00]). In fact, we can recover the
√
n bound in one

special case.

Definition 1.3: We say that a q-locally correctable code is perfect if δ = n−1
qn for every i ∈ [n]

(that is, the density parameter is as large as possible).

Theorem 1.4: Let C be a perfect 3-locally correctable code. Then dim(C) ≤ O (
√
n).

Bounds for locally testable codes with high 3-density: We improve on the bounds for
locally testable codes with high 3-density.

Theorem 1.5: The dimension of a regular locally testable code with 3-density σ is at most
2√
σ
· n.

This bound is tight, up to a constant factor [DK11].

We also consider a more general case in which the multiplicity of the columns is allowed to vary.
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Theorem 1.6: Let v1, v2, . . . , vn be the columns of a generating matrix G of a code C. Let p
be the maximal multiplicity of a column in G. Assume that each coordinate participates in at
least σ linear dependencies of length three, and that σ > p. Then

dim(C) ≤ O
(

log (dσ/pe)
dσ/pe

· n
)

This is tight, up to the log (dσ/pe)-factor, see Example 4.2.

1.3 Our approach in more detail

Our starting point is the elegant proof of [FT05] for the first linear programming bound for
binary linear codes. We start with the definition of coset leader graphs.

Definition 1.7: The coset leader graph T of a linear code C ⊆ {0, 1}n is the Cayley graph of
the quotient group Fn2/C⊥ with respect to the set of generators given by the standard basis
e1 + C⊥, . . . , en + C⊥.

Note that T has |C| vertices. Note also that T may have loops or parallel edges (if C⊥ contains
non-zero vectors of Hamming weight less than 3).

[FT05] employs discrete versions of comparison theorems in Riemannian geometry comparing,
on one hand, the growth of neighborhoods in T with the growth of neighborhoods in {0, 1}n
and, on the other hand, the spectral behaviour of the Laplacian of T with the Laplacian of
{0, 1}n.

Following [FT05], we view T as a ”discrete manifold”, and try to estimate the cardinality of
T by employing insights and tools borrowed from Riemannian geometry. The main technical
notion we use is that of discrete Ricci curvature, due to Ollivier [Oll09]. We show that in the
cases we consider, T has ’positive curvature’ which is bounded away from zero (as opposed, say,
to the Hamming cube whose curvature is 2

n+1 and hence goes to zero with dimension).

This allows us to upper bound the diameter of T (equivalently, the covering radius of C⊥), using
a discrete version of the Bonnet-Myers theorem from Riemannian geometry [Oll09]. Since T is
a regular graph of degree n, an upper bound on its diameter implies a bound on |T|, and hence
on |C|.

Remark 1.8: While our approach is ”curvature based”, most of the bounds on local codes
in the literature are based on isoperimetric inequalities or their information theoretic versions
[KT00, KdW04, Woo07]. In Riemannian geometry the notions of curvature and isoperimetry are
closely related. Better isoperimetric inequalities for graphs with ”positive discrete curvature”
are known in the discrete setting as well [LY10, BHL+15, KKRT15]. It seems natural to ask
whether this connection might be exploited in order to improve coding bounds.
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2 The Main Technical Lemma

Our bounds are based on the following key lemma.

Lemma 2.1 Let u1, ..., um and v1, ..., vn be correspondingly the rows and the columns of an
m× n matrix over F2. Let V = span(u1, ..., um). Suppose that for each i = 1, ..., n with vi 6= 0
there are at least K > 0 disjoint pairs of indices {j, l} such that i 6∈ {j, l} and vi = vj + vl.
Then, for the coset leader graph T = {0, 1}n/V ⊥ of V holds

diam(T) ≤ n

K + 1
.

We observe that this implies a bound on the dimension of V .

Corollary 2.2:

dimV ≤ log2

diam(T)∑
i=0

(
n

i

) ≤ n log(K + 1) + n/ ln 2

K + 1

.

Proof: (of Corollary 2.2)

Recall that T is an n-regular Cayley graph of an Abelian group. Hence

|V | = |T| ≤
diam(T)∑
i=0

(
n

i

)
≤ 2nH( 1

K+1) ≤ 2
n log(K+1)+n/ ln 2

K+1 .

Here H(x) = x log2
1
x+(1−x) log2

1
1−x is the binary entropy function. For the second inequality

recall that for any 0 ≤ k ≤ r holds
∑k

i=0

(
r
i

)
≤ 2rH( kr ) (Theorem 1.4.5. in [vL99]). For the

third inequality, note that (1− x) ln 1
1−x ≤ x, for 0 ≤ x < 1.

Corollary 2.3: The case q = 2 of Theorem 1.2 holds.

Proof: (of Corollary 2.3)

Let T be the coset leader graph of a locally correctable code C with parameters 2 and δ. By
definition, a generating matrix of C satisfies the assumptions of Lemma 2.1 with K = δn, and

hence diam(T) ≤ 1/δ and dim(C) ≤ O
(
logn
δ

)
. Since it is easy to see that the diameter of T is

precisely the covering radius of C⊥, this proves the case q = 2 of Theorem 1.2.
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2.1 Examples

Example 2.4: Let m be a positive integer and let n = 2m − 1. The generating matrix of the
Hadamard code C of length n [MS77] is the m× n matrix whose columns are all the non-zero
vectors in Fm2 . Let T be the coset leader graph of C. Since the columns of the generating matrix
are non-zero and distinct, T is a simple n-regular graph with 2m = n + 1 vertices, namely it
is the complete graph on n+ 1 vertices. In this case the assumptions of Lemma 2.1 hold with
K = (n− 1)/2, and it gives the tight bounds diam(T) ≤ b 2n

n+1c = 1 and |T| ≤ n+ 1.

Example 2.5: Let C be the direct product of two Hadamard codes. That is, assume n =
2 · (2m − 1), and let the generating matrix of C be a 2m × n block-diagonal matrix with two
m × (n/2) blocks whose columns are all the non-zero vectors in Fm2 . In this case T is the

Cartesian product of two complete graphs on n/2 + 1 vertices. That is, |T| = (n+2)2

4 and
diam(T) = 2. The conditions of the lemma hold with K = (n − 2)/4, leading to an upper
bound of 3 on the diameter and of

(
n
3

)
+
(
n
2

)
+ n+ 1 on the cardinality of T.

In the remainder of this section we proceed as follows. We start with comparing Lemma 2.1
to related results in the literature. Next, we describe the key notion of discrete curvature on
graphs. Finally, we prove the lemma in Section 2.4.

2.2 Lemma 2.1 and related results

In this subsection we expand on Remark 1.8. Upper bounds on locally correctable codes
in the literature follow from bounds on locally decodable codes. (Our approach applies di-
rectly to locally correctable codes, which might explain its relative simplicity.) A typical ap-
proach uses isoperimetric inequalities. [GKST06, Woo07, Woo12] use a weighted version of
the edge-isoperimetric inequality on the boolean cube ([GKST06]). Another version of the
edge-isoperimetric inequality is proved and used in [BSV12]. We compare Lemma 2.1 and
Corollary 2.2 with these two results, which we restate in our language.

Lemma 2.6 ([GKST06, Lemma 3.3]): Let u1, ..., um and v1, ..., vn be, correspondingly, the
rows and the columns of an m × n matrix over F2. Let V = span(u1, ..., um) and assume that
v1, ..., vdimV span the column space. Suppose that for each i = 1, ...,dimV there are Ki > 0

disjoint pairs of indices {j, l} such that i 6∈ {j, l} and vi = vj+vl. Let K =
(∑dimV

i=1 Ki

)
/ dimV .

Then

dimV ≤ n log n

2K
.

Lemma 2.7 ([BSV12, Lemma 3.15]): Let u1, ..., um and v1, ..., vn be, correspondingly, the rows
and the columns of an m × n matrix over F2. Let V = span(u1, ..., um) and assume that
v1, ..., vdimV span the column space. Suppose that for each i = 1, ...,dimV there are K > 0
disjoint pairs of indices {j, l} such that i 6∈ {j, l} and vi = vj + vl. Then

dimV ≤ n logK + n

K
.
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We collect the assumptions and the conclusions of the three claims in the following table (omit-
ting constants for readability):

Lemma 2.1 + Cor. 2.2 Lemma 2.6 Lemma 2.7

Disjoint rep’s for: all columns basis basis
At least K rep’s for: all columns average basis column all basis columns

Dimension at most n logK
K

n logn
K

n logK
K

Diameter at most n
K

n logn
K

n logK
K

This table requires some reading help, which we provide here. The first two rows present the
assumptions, and the last two the bounds. In this context, a family of disjoint representations
of a column i is a collection of disjoint pairs of indices {j, l} such that i 6∈ {j, l} and vi = vj +vl.

The first row specifies whether such family is assumed to exist for all column vectors v1, . . . , vn
or only for the basis v1, . . . , vdimV . The second row indicates whether the lower bound K is on
the minimal or the average size of a family (over the relevant coordinates).

The third row bounds the dimension of V . The fourth row bounds the diameter of the coset
leader graph T = {0, 1}n/V ⊥, which is the same as the covering radius of V . Since lemmas 2.6
and 2.7 do not consider the covering radius, we have filled out the corresponding entries using
the fact that the covering radius of a linear code is upper bounded by its dimension [CHLL97,
Theorem 2.1.9].

The next example shows that in Lemma 2.1 the assumption on minimal family size cannot be
replaced by that on average family size, without affecting the bounds.

Example 2.8: For an integer m, let n = 2m − 1, and let A be the generating matrix of the
Hadamard code (Example 2.4) with m rows and n columns. Let Im be the m × m identity
matrix. Consider a linear code defined by the following (2m)× (n+m) generating matrix:(

A 0

0 Im

)

In this case, the average family size is linear in n (but the minimal family size is zero). The
coset leader graph is the Cartesian product of the complete graph on n + 1 vertices with the
m-dimensional discrete cube. Hence its diameter is logarithmic in n (as opposed to constant).

2.3 Discrete Curvature on Graphs

There are several possible ways to extend the notion of Ricci curvature from Riemannian ge-
ometry to the general setting of metric spaces and, in particular, graphs [Cha96, Oll09, Pet11,
BJL12]. We use the approach of Ollivier [Oll09, OV12]. In the following discussion G is a finite
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multigraph with a probability measure mx on its vertex set V = V (G) assigned to each vertex
x. We denote by d the graph (shortest path) metric defined by G on V .

Recall that the transportation distance between two probability measures µ and ν on V is
defined as

W1 (µ, ν) = min
q

∑
(x′,y′)∈G×G

q(x′, y′)d(x′, y′) (1)

where the minimum is taken over all probability measures q on the product space V ×V whose
marginals are µ and ν.

Definition 2.9: Let x 6= y ∈ V . The coarse Ricci curvature κ(x, y) along (x, y) is

κ(x, y) = 1− W1 (mx,my)

d(x, y)
(2)

A canonical choice for the measure mx is the uniform probability measure on the metric ball
of radius 1 around x. In this case the coarse Ricci curvature κ(x, y) along (x, y) is positive
if and only if the mean distance between the metric balls around x and y (as measured by
W1(mx,my)) is smaller than the distance between x and y. This conforms to the intuition that
in spaces with positive curvature metric balls are closer on average than their centers (and vice
versa for spaces with negative curvature).

The curvature κ(G) of the graph G is defined as the minimum of κ(x, y) over all pairs of vertices.
This minimum is attained on a pair of adjacent vertices [Oll09, Proposition 19].2 In particular,
curvature is a local property.

The key claim we need is the following discrete version of the Bonnet-Myers theorem for Rie-
mannian manifolds3 [Oll09, Proposition 23]. For x ∈ V , let δx be the probability measure
concentrated on x, and let J(x) = W1(δx,mx). (E.g., if G is a simple n-regular graph, and mx

is the uniform measure on the metric ball of radius 1 around x, then J(x) = n
n+1 .)

Proposition 2.10 : ([Oll09, Proposition 23]) For any graph G and a family of probability
measures {µx}x∈V (G) holds

diam(G) ≤ 2 ·maxx∈G J(x)

κ(G)
.

Remark 2.11: Many of these ideas appear also in the theory of random walks on graphs, see
[LPW09], especially chapter 14.

2This, and Proposition 2.10 below are simple consequences of the triangle inequality for the transportation
distance.

3The classical Bonnet-Myers theorem for Riemannian manifolds states that if the Ricci curvature of an n-
dimensional complete Riemannian manifold M is at least (n − 1)κ > 0, then the manifold is compact and its
diameter is at most π/

√
κ.

8



2.4 Proof of Lemma 2.1

In this section we prove Lemma 2.1. We choose a family of probability measures {µx}x∈U on
the vertex set U of T which enables us to bound the coarse Ricci curvature on T from below,
and then apply Proposition 2.10.

Recall that T is an n-regular multigraph. For x ∈ U , we define mx to be the measure induced
by the uniform measure on the edges incident to x. That is, for y adjacent to x we set mx(y)
to be the number of edges between x and y, divided by n+ 1; and we let mx(x) be the number
of loops at x plus one, divided by n + 1. The measure mx is supported on the metric ball of
radius 1 around x and, if T is a simple graph, then mx is uniform on this set.

We observe that the local structure of T at (any) vertex x, and hence the measure mx, can be
described in terms of the column vectors v1, . . . , vn. In fact, the number of loops at any vertex
of T equals to the number of zero vectors among v1, . . . , vn. Similarly, the number of edges
between two distinct vertices x and x + ei (the addition is in the factor group Fn2/V ⊥) is the
number of times vi appears as a column vector.

Next, we upper bound the transportation distance between measures mx and my, for distinct
adjacent vertices x and y. Let y = x + ei for some 1 ≤ i ≤ n. By the assumption of the
lemma, there are some M ≥ K disjoint pairs of indices {j, l} ⊆ [n] \ {i} such that vj + vl = vi.
Equivalently, ei + ej + el ∈ V ⊥ and hence

x+ ej = y + el and x+ el = y + ej

This means that the points x+ ej and x+ el belong to the supports of both mx and my, and
we have identified an overlap between the two measures, of weight 2

n+1 in each measure. Going

over all the M representations vj + vl = vi produces an overlap of weight 2M
n+1 in each of the

measures.

The identity y = x+ ei gives an additional overlap of at least 2
n+1 between the measures. This

brings the total overlap to at least 2M+2
n+1 .

We now transport mx to my as follows. The points in the joint support stay in place. All the
remaining mass in mx is moved by a unit distance in parallel. That is, we move a point z in
the unit ball around x to the point z + ei in the unit ball around y.

Computing the total amount of work gives

W1(mx,my) ≤
(n+ 1)− (2M + 2)

n+ 1
≤ (n+ 1)− (2K + 2)

n+ 1
.

Hence, by (2), the coarse Ricci curvature along (x, y) is at least 2(K+1)
n+1 . Since this holds for

any adjacent pair of vertices, we have κ(T) ≥ 2(K+1)
n+1 .

Applying Proposition 2.10 (note that J(x) ≤ n
n+1 for all x ∈ U) gives

diam (T) ≤
2n
n+1

κ(T)
≤ n

K + 1
,

concluding the proof of the lemma.
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3 Bounds on Locally Correctable Codes

3.1 Proof of Theorem 1.2

The case q = 2 of the theorem is treated in Corollary 2.3. In this section we deal with larger
values of q.

Let C be a locally correctable code with parameters q > 2 and δ. Fix a generating matrix of
C and let its columns be v1, . . . , vn. Let N = {i | vi 6= 0}. By definition, for each coordinate
i ∈ N , there is a family Mi of at least δn disjoint q-subsets of [n] \ {i} such that the vectors
indexed by each subset sum to vi.

Our argument works (essentially) by reduction to the base case q = 2. Let us start with a
quick overview. We will show that there is a subset B of [n] such that for any i ∈ N \B there
are many q-tuples α ∈ Mi with |α \ B| ≤ 2. Dividing out by the vector space spanned by the
columns in B will produce a code whose generating matrix satisfies the conditions of Lemma 2.1,
with a parameter K related to the parameters of the original code. Applying Lemma 2.1 and
Corollary 2.2 will complete the proof. Let us mention that this approach is similar to that in
[Woo07] and [DK11].

Lemma 3.1: Let q > 2. For each 1 ≤ a ≤ (log n)1/(q−1) there exists a subset B ⊆ [n], such
that:

• |B| ≤
(
a+ 4

δaq−2

)
· n

q−2
q−1

• For every i ∈ N \B holds

∣∣∣∣{α ∈Mi : |α \B| ≤ 2
}∣∣∣∣ ≥ δ

2a
q−2 · n

1
q−1

Proof:

Set θ = a ·n−
1
q−1 and observe that 0 < θ < 1. We construct a random subset B ⊆ [n] satisfying

the assertions of the lemma in two steps. In the first step we add to B elements in [n] chosen
independently at random with probability θ. With high probability, this will produce a set of

cardinality about nθ = a · n
q−2
q−1 , satisfying the second claim of the lemma for all but a small

number of indices i ∈ N . In the second step we will add to B all these exceptional indices and
in this way ensure that both claims of the lemma hold.

Let X1, . . . , Xn be i.i.d. Bernoulli random variables, Xj =

{
1, w.p. θ;
0, w.p. 1− θ.

Let B0 = {j : Xj = 1}. For a q-subset α ⊆ [n], let Wα be indicator of the event |B0∩α| ≥ q−2.

For i ∈ N , let Yi =
∑

α∈Mi
Wα. Since the q-tuples in Mi are disjoint, the random variables

{Wα}α∈Mi are independent, and hence Yi is a binomial random variable with parameters |Mi|
and η = Pr (Wα = 1) > θq−2. In particular, E(Yi) = |Mi| · η > δnθq−2 = δaq−2 · n

1
q−1 .

Hence, by Chebyshev’s inequality,

Pr

(
Yi <

δ

2
aq−2 · n

1
q−1

)
≤ Pr

(
Yi <

E(Yi)

2

)
≤ var(Yi)

(E(Yi)/2)2
≤ 4

E(Yi)
≤ 4

δaq−2 · n
1
q−1
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Let B = B0
⋃{

i ∈ N : Yi <
δ
2a

q−2 · n
1
q−1

}
.

By the definition of B, for all i ∈ N \B holds∣∣∣∣{α ∈Mi : |α \B| ≤ 2
}∣∣∣∣ ≥ ∣∣∣∣{α ∈Mi : |α \B0| ≤ 2

}∣∣∣∣ = Yi ≥
δ

2
aq−2 · n

1
q−1

Therefore, B satisfies the second claim of the lemma. To verify that for some choice of B the
first claim holds as well, we upperbound the expectation of |B| appropriately.

E(|B|) = E(|B0|) + E(|B \B0|) ≤ nθ+
∑
i∈N

Pr

(
Yi <

δ

2
aq−2 · n

1
q−1

)
≤
(
a+

4

δaq−2

)
· n

q−2
q−1

We proceed with the proof of Theorem 1.2. Let a be a parameter in the interval
[
1, (log n)1/(q−1)

]
(we will optimize over the value of a later on). Let B = B(a) ⊆ [n] be the subset of indices
given by Lemma 3.1. Let U = U(B) = Span({vi : i ∈ B}). Let CB be the subcode of C
containing the vectors in C which vanish on B. Let T = Fn2/C⊥ and TB = Fn2/C⊥B be the coset
leader graphs of C and CB respectively. Then the following holds.

Lemma 3.2:

• Any generating matrix of CB satisfies the conditions of Lemma 2.1 with K = δ
2a

q−2 ·n
1
q−1 .

• dimC = dimCB + dimU .

• diam(T) ≤ diam(TB) + dimU .

Proof: We start with the first claim. Let GB be a generating matrix of CB. Note that the
preceding discussion, and in particular the choice of the set B, has been independent of the
generating matrix of C we have chosen, and hence we may assume that GB is a row submatrix
of this generating matrix, which we will denote by G. Let u1, ..., un be the columns of GB.
Then ui is a restriction of vi to a (fixed) subset of coordinates for all 1 ≤ i ≤ n.

Let ui be a non-zero column of GB. We need to show that there are at least K disjoint pairs
of indices {j, l} with ui = uj + ul. First, note that i ∈ N \ B. Indeed, ui is zero for i ∈ B, by
the definition of CB, and vi (and hence ui) is zero for i 6∈ N , by the definition of N .

Since i ∈ N \B, there are at least K disjoint q-tuples α ∈Mi with |α \B| ≤ 2. We will find a
coordinate pair {j, l} with ui = uj +ul contained in each of these tuples, and this will complete
the argument. Fix α. By definition,

∑
k∈α vk = vi, implying

∑
k∈α uk = ui. Since us = 0 for

s ∈ B, this means
∑

k∈α\B uk = ui. Since ui 6= 0, the set α \ B is not empty. If |α \ B| = 2,
take {j, l} = α \B. If |α \B| = 1, take j to be the unique element of α \B, and l any element
of α ∩B.

The second claim is a well-known fact in linear algebra. We provide a brief argument for
completeness. Right multiplication by G defines an isomorphism between FdimC

2 and C. The
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claim is implied by the observation that the pre-image of CB under this isomorphism is precisely
U⊥.

We pass to the third claim. Since the diameter of the coset graph of a code equals to the
covering radius of the dual code, the claim is that the covering radius of C⊥ is upper bounded
by the covering radius of C⊥B plus the dimension of U . We will show this by finding, for each

vector x ∈ C⊥B , a vector y ∈ C⊥ such that |x − y| ≤ dimU . Observe that C⊥B =
{
x ∈

{0, 1}n,
∑n

i=1 xivi ∈ U
}

. Let x ∈ C⊥B , and let
∑n

i=1 xivi = u ∈ U . The vector u can be

written as a linear combination of columns in B, of length at most dimU . Let z ∈ {0, 1}n be
the characteristic vector of this linear combination. Then |z| ≤ dimU and y = x + z ∈ C⊥,
completing the proof.

Now we are ready to complete the proof of Theorem 1.2. To bound the covering radius of

C⊥, which is the same as the diameter of T, take a = 1. This gives |B| =
(
1 + 4

δ

)
· n

q−2
q−1 in

Lemma 3.1 and K = δ
2 · n

1
q−1 in Lemma 3.2. By Lemma 2.1, diam(TB) ≤ n

K+1 , and hence

diam(T) ≤ diamTB + dimU ≤ n

K + 1
+ |B| ≤ O

(
n
q−2
q−1

)
.

To bound the dimension of C, take a = (log n)
1
q−1 . This gives |B| ≈ n

q−2
q−1 (log n)

1
q−1 and

K = δ
2n

1
q−1 (log n)

q−2
q−1 . By Corollary 2.2, dimCB ≤ O

(
n
q−2
q−1 (log n)

1
q−1

)
, and hence,

dimC ≤ dimCB + dimU ≤ dimCB + |B| ≤ O
(
n
q−2
q−1 (log n)

1
q−1

)
.

3.2 Proof of Theorem 1.4

Let T = {0, 1}n/C⊥ be the coset leader graph of C. We will show that the neighborhoods of
(any) vertex in T grow rather slowly, which will imply that T, and hence C, are not too large.
For r ≥ 0, let ST

r be the sphere of radius r around C⊥ in T. The key observation is that there
are many edges in T between the consecutive spheres ST

r−1 and ST
r .

Lemma 3.3: Let r ≥ 2. Assume that ST
r is not empty. Then there are at least (br/2c)2 edges

between any vertex x+ C⊥ ∈ ST
r and ST

r−1.

Remark 3.4: This should be compared to the situation in the discrete cube {0, 1}n, also an
n-regular graph, in which a vertex at distance r from zero is connected to the sphere of radius
r − 1 around zero by exactly r edges.

Before proving the lemma, let us show that it implies the claim of the theorem. By the lemma,
there are at least (br/2c)2·|ST

r | edges between ST
r−1 and ST

r . On the other hand, T is an n-regular

graph, which means that there are at most n·|ST
r−1| such edges. Hence (br/2c)2 ·|ST

r | ≤ n·|ST
r−1|,

and this holds for any r ≥ 2.
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The sphere of radius 1 is of cardinality at most n. Multiplying consecutive inequalities provides
an upper bound on the cardinality of a sphere of radius r ≥ 2:∣∣∣ST

r

∣∣∣ ≤ n ·
r∏
t=2

n

(bt/2c)2
≤

(cn
r2

)r
for an appropriate constant c > 0. The second inequality can be deduced e.g., from Stirling’s

formula. It is easy to see that this implies |T| =
∑

r

∣∣∣ST
r

∣∣∣ ≤ c
√
n, for a (possibly different)

constant c, completing the proof of the theorem.

Proof: (of Lemma 3.3).

By assumption, C is a perfect 3-locally correctable code. This means that n is 1 modulo 3,
and that for all 1 ≤ i ≤ n there is a family Mi of n−1

3 disjoint 3-tuples partitioning [n] \ {i}, so
that for any such 3-tuple α holds ei +

∑
j∈α ej ∈ C⊥. That is, for any two indices i < j there

is a unique pair of indices k 6= l such that (j, k, l) ∈ Mi. In particular, {i, j} ∩ {k, l} = ∅, and
ei + ej + ek + el ∈ C⊥.

Let now x+ C⊥ ∈ ST
r . We may assume that x is of minimal weight in its coset, meaning that

the Hamming weight of x is r. We will also assume, for simplicity, that xi = 1 for 1 ≤ i ≤ r
(and xi = 0 for i > r).

For two indices i, j with 1 ≤ i < j ≤ r, let k, l be such that (j, k, l) ∈ Mi. Note that this
necessarily means that xk = xl = 0 (that is k, l > r). Indeed, otherwise x′ = x+ei+ej +ek +el
would be a vector in x + C⊥ of weight smaller than r. The key point for us is that the edges
from x+C⊥ in the directions k, l lead down to ST

r−1. In fact, the vector x+ek = x+ei+ej +el
is of weight r − 1 (and similarly for x+ el).

Let V ⊆ [n] contain all directions leading from x down to ST
r−1. As we have seen, each pair

of indices i, j with 1 ≤ i < j ≤ r defines a pair (k, l) ∈ V × V , which we interpret as an edge
with vertices in V . From now on we assume, for simplicity, that r is even. Going over i, j with
1 ≤ i ≤ r/2 < j ≤ r defines a multigraph G on V with r2/4 edges. In fact, we claim that G is a
simple graph, that is distinct pairs i, j and i1, j1 define distinct edges (k, l) and (k1, l1). Indeed,
otherwise ei + ej + ei1 + ej1 ∈ C⊥, which means that x′ = x+ ei + ej + ei1 + ej1 is a vector in
x+ C⊥ of weight smaller than r.

Next, we claim that G is a disjoint union of stars. This would mean that the number of vertices
of G is larger than its number of edges, i.e., |V | > r2/4, proving Lemma 3.3. This claim is a
simple corollary of the following auxiliary lemma.

Lemma 3.5: Any edge of G contains a vertex of degree 1.

Proof: Assume to the contrary that there exists an edge (k, l) in G such that both k and l have
degree at least 2. There are two possible cases. Either G contains a simple path k1 → k → l→ l1
of length 4, or G contains a triangle with vertices k, l,m. Consider the first case. Let (i, j),
1 ≤ i ≤ r/2 < j ≤ r, be the pair of indices defining the first edge of the path, let (i1, j1) define
the second edge, and (i2, j2) the third edge. We claim that i 6= i1. Indeed, otherwise both
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(j, k1, k) and (j1, k, l) would be in Mi, contradicting the fact that Mi is a family of disjoint
triples. Next, we claim that j = j1. If not, we would have(

ei + ei1 + ej + ej1

)
+
(
ek1 + el

)
=

(
ei + ej + ek1 + ek

)
+
(
ei1 + ej1 + ek + el

)
∈ C⊥,

which would give us a vector x′ = x +
(
ei + ei1 + ej + ej1

)
+
(
ek1 + el

)
in x + C⊥ of weight

smaller than r.

A similar argument shows that i1 6= i2 and j1 = j2 (and therefore also j = j2). We now observe
that i and i2 also have to be distinct. Indeed, otherwise we would have both (j, k1, k) and
(j, l, l1) in Mi.

Taking everything into account, this means that(
ei+ ei1 + ei2 + ej

)
+
(
ek1 + el1

)
=

(
ei+ ej + ek1 + ek

)
+ ...+

(
ei2 + ej2 + el + el1

)
∈ C⊥,

giving a vector x′ = x+
(
ei + ei1 + ei2 + ej

)
+
(
ek1 + el1

)
in x+C⊥ of weight smaller than r,

and in this way reaching a contradiction.

The second case of the lemma is similar (but simpler). We omit the analysis. This completes
the proof of Lemma 3.5 and of Lemma 3.3.

4 Bounds on Locally Testable Codes

In this section we prove Theorems 1.5 and 1.6. The proofs of both theorems are based on the
following lemma.

Lemma 4.1: Let G be a matrix satisfying the assumptions of Theorem 1.6. Then G satisfies
the assumptions of Lemma 2.1 with K = dσ/pe.

Proof: Let t be the number of distinct columns of G and assume, without loss of generality, that
v1, . . . , vt are pairwise distinct. That is, the first t columns represent all the distinct columns
in G. For 1 ≤ i ≤ t, let wi denote the multiplicity of vi in G. Note that

∑t
i=1wi = n. We may,

and will, assume that w1 ≤ . . . ≤ wt = p. For 1 ≤ i ≤ t with vi 6= 0, let Ni = {(j, k) : 1 ≤ j <
k ≤ t, vi = vj + vk}.

Fix an index 1 ≤ i ≤ n with vi 6= 0. We need to show that there are at least K = σ/p disjoint
pairs of indices {r, s} such that i 6∈ {r, s} and vi = vr + vs. It suffices to show this for any of
the copies of vi in G, and so we may assume 1 ≤ i ≤ t.

Assume first that G has no zero columns. In this case we claim that vi participates in exactly∑
(j,k)∈Ni wjwk dependencies of length three. Indeed, each pair (j, k) ∈ Ni contributes wjwk

dependencies, obtained by taking vi together with any copy of vj and any copy of vk. On the
other hand, every dependency is of this form. Hence, by assumption,

∑
(j,k)∈Ni wjwk ≥ σ.
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Next, we note that any pair (j, k) in Ni contributes wj disjoint pairs of indices {r, s} such
that i 6∈ {r, s} and vr + vs = vi, obtained by making vr go over all the copies of vj in G and
matching each vr with a distinct copy of vk. Here we use the fact that wj ≤ wk. Moreover,
these collections of indices are disjoint for different choices of (j, k) ∈ Ni. Altogether this gives∑

(j,k)∈Ni

wj ≥
1

p
·
∑

(j,k)∈Ni

wjwk ≥
σ

p

such pairs, proving the lemma in this case. For the first inequality, recall that all wk are
bounded from above by p.

If G has zero columns, let 1 ≤ z ≤ t be the index with vz = 0. Compared to the previous case,
we have (wi − 1) · wz additional dependencies of length 3 for vi, obtained by choosing any of
the extra copies of vi together with vi itself and with any copy of vz. So, in this case the total
number of dependencies is (wi − 1) ·wz +

∑
(j,k)∈Ni wjwk, and this, by assumption, is at least σ.

On the other hand, we get min{wi − 1, wz} additional disjoint pairs of indices {r, s} such that
i 6∈ {r, s} and vr + vs = vi, by matching as many distinct copies of vi as possible (not counting
vi itself) with distinct copies of vz. Altogether, we get

min{wi − 1, wz}+
∑

(j,k)∈Ni

wj ≥
1

p
·

(wi − 1) · wz +
∑

(j,k)∈Ni

wjwk

 ≥ σ

p

such pairs, proving the lemma in this case as well.

The claim of Theorem 1.6 now follows directly by substituting K = dσ/pe in Corollary 2.2.

We proceed with the proof of Theorem 1.5, using the notation of Lemma 4.1. We first note
that since C is a regular code, each column of G has the same multiplicity p, implying t = n/p.
In particular, the dimension of C is at most n/p. Hence we may and will assume σ > 4p2, since
otherwise we are done.

Next, consider the coset leader graph T = {0, 1}n/V ⊥, where V is the row space of G. By
Lemmas 2.1 and 4.1, the radius of T is at most n

σ/p+1 <
np
σ . The key point to observe is that

while T is an n-regular multigraph, the edges of T corresponding to identical columns of G are
parallel to each other, and hence each vertex of T has precisely t distinct neighbors. Proceeding
as in the proof of Corollary 2.2, we have

|C| = |T| ≤
bnp
σ
c∑

i=0

(
t

i

)
≤ 2tH(npσt ).

Substituting t = n/p, and setting α = σ
p2

, we get

1

n
· log2 |C| ≤

1

p
H

(
p2

σ

)
=

1√
σ
·
√
αH

(
1

α

)
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To complete the proof, we will show that
√
α ·H( 1

α) < 2, for all α ≥ 1. In fact,

α ·H
(

1

α

)
= log2(α) + (α− 1) log2

(
1 +

1

α− 1

)
≤ 1

ln 2
·
(

ln(α) + 1
)
.

Hence
√
α · H( 1

α) ≤ 1
ln 2 ·

lnα+1√
α

. It remains to observe that the function lnα+1√
α

attains its

maximum of 2√
e
< 2 ln 2 at α = e.

The next example shows that Theorem 1.6 is tight, up to the log (dσ/pe)-factor.

Example 4.2: Let m be a power of 2, and let k ≥ log2m be integer. Let U be a linear subspace
of {0, 1}k of dimension log2m with minimal distance at least 3. Let u1, ..., um be the vectors
of U . Let 1 be the all-1 vector of length k, and let Bi be the k × k matrix given by the outer
product ui ⊗ 1. Finally, let I be the k × k identity matrix.

Let G be the following k × n matrix with n = 2km. The first km columns of G are formed by
m square blocks I + Bi, for i = 1, ...,m. The remaining km columns are formed by the blocks
B1, ..., Bm.

Clearly the rows of G are linearly independent, and therefore the dimension of the code C it
generates is k. By construction, for G holds p = k and σ = km (since U is a subspace). Hence
we have

dim(C) = k =
n

2m
=

n

2σ/p
.
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