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Abstract

We give an analogue of the Riis Complexity Gap Theorem for Quantified
Boolean Formulas (QBFs). Every first-order sentence φ without finite models
gives rise to a sequence of QBFs whose minimal refutations in tree-like Q-
Resolution are either of polynomial size (if φ has no models) or at least
exponential in size (if φ has some infinite model). However, differently from
the translations to propositional logic, the translation to QBF must be given
additional structure in order for the polynomial upper bound to hold in tree-
like Q-Resolution. This extra structure is not needed in the system tree-like
∀Exp+Res, where we see the complexity gap on a natural translation to
QBF.

Keywords: Complexity Gap, Proof Complexity, Quantified Boolean
Formulas

1. Introduction

There is a standard way in which to translate a first-order sentence φ to
a sequence of propositional formulas so that the nth member of the sequence
is satisfiable if and only if φ has a model of size n [18], which additionally
ensures that the nth member of the sequence has size at most polynomial
in n. Suppose φ is a first-order sentence without finite models. The cele-
brated Complexity Gap Theorem of Riis [18] states that the minimal sized
refutations in tree-like Resolution, of the nth member of the sequence, has
growth rate either bounded above by some polynomial, or bounded below by
some exponential. Further, the former case prevails precisely when φ has no
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infinite models either. This theorem was subsequently lifted to various set-
tings including Parameterized tree-like Resolution [11] and the Integer Linear
Programming systems of Lovász-Schrijver and Sherali-Adams [12].

Quantified Boolean logic is an extension of propositional logic in which
variables may be existentially or universally quantified. Therefore, the prob-
lem of determining the truth value of a quantified Boolean formula (QBF)
naturally extends the satisfiability problem (SAT) on propositional formulas,
and the success of SAT solving algorithms has laid the foundation for modern
QBF solvers. Motivated by these exciting practical developments, a grow-
ing body of research has examined the proof complexity of QBF, including
different versions of QBF Resolution [16, 15, 4, 19]. It is particularly interest-
ing to understand which propositional ideas and techniques lift to the more
complex QBF setting. In this respect, recent research has shown interesting
effects, with major propositional approaches such as size-width [1] failing in
QBF [6] and new genuine QBF techniques being developed [5, 3, 2].

In this article, we investigate whether the Riis Gap Theorem [18] extends
to QBF resolution systems. We first introduce a method to translate a first-
order sentence φ to a sequence of QBFs, which echoes similar translations
of quantified constraint satisfaction problems (QCSPs) to QBFs that have
appeared in [13, 14]. The translation will ensure that the nth member of the
sequence has size at most polynomial in n, and is true precisely when φ has a
model of size n. In Riis’s Theorem, Resolution may be considered as a refu-
tation system operating on CNF formulas whose literals are ground atoms.
To allow operation on QBFs, the natural extension is the Q-Resolution of
[16].

We demonstrate that tree-like Q-Resolution will always require exponen-
tial size to refute the nth member of the sequence of QBFs when φ has an
infinite model but no finite model. However, unlike in previously considered
contexts, it is not the case that if φ has no models, then there exists tree-like
Q-Resolution refutations, of the nth member of the sequence, with size poly-
nomial in n. We provide a counter example that demonstrates an anomaly
of Q-Resolution. To achieve the polynomial upper bound we embellish some
additional structure to the formula φ (without changing its models), to ob-
tain a formula φ∗, before applying our translation to generate a new sequence
of QBFs. The extra structure enables Q-Resolution to more easily refute the
resultant QBFs precisely when φ has no models. Our main result is:

Theorem 1. Let φ be a first-order sentence without finite models, φ∗ its
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embellishment and 〈Φ∗i 〉i∈N the corresponding sequence of QBFs. If φ has no
models, then there exist tree-like Q-Resolution refutations of 〈Φ∗i 〉i∈N of size
O(ik), where k depends only on φ. If φ has some (infinite) model, then all
tree-like Q-Resolution refutations of 〈Φ∗i 〉i∈N must have size Ω(2εi), where ε
depends only on φ.

Thus we obtain, à la Riis, a gap between polynomial and exponential in
which certain growth behaviours (e.g. subexponential 2

√
i) are forbidden.

We prove that the same phenomenon holds in the system of tree-like QU-
Resolution, whereas in the system of tree-like ∀Exp+Res from [15], the gap
holds naturally, that is without the embellishment. In this sense, ∀Exp+Res
does not possess the same deficiency as Q-Resolution.

On the technical side, our gap theorems exploit a Prover-Delayer game
to show hardness in QBF resolution. While such a game already exists for
tree-like Q-Resolution [7], we modify the game to obtain a full characterisa-
tion for the tree-like versions of the expansion-based QBF resolution systems
∀Exp+Res [15] and IR-calc [4].

2. Preliminaries

We restrict attention to QBFs in closed prenex conjunctive normal form,
Ψ = Q ψ, where ψ is a propositional formula (in CNF). The prefix Q takes
the form Q1x1Q2x2 . . . Qkxkψ where Qi ∈ {∀,∃}, xi are distinct Boolean
variables. In closed formulas, all the variables in ψ must appear in Q. The
prefix also enforces a partial order on the variables. If Qi = Qi+1 we say
xi and xi+1 are in the same quantifier level in the prefix. Variables in the
same level may be reordered arbitrarily to create another logically equivalent
QBF, but otherwise changing the order that variables appear in the prefix
may not preserve the truth value of Ψ.

Q-Resolution consists of a resolution rule and universal reduction. The
resolution rule is

C ∨ x D ∨ ¬x
C ∨D

where C and D are clauses and x is an existentially quantified variable, and
for all variables y 6= x that appear in C, the negation of y does not appear
in D. We call x the pivot of this resolution step.

The universal reduction rule is
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C ∨ x
C

where x is universally quantified and belongs to the inner-most quantifier
level of all variables appearing in C.

A QBF is false if and only if it is possible to derive the empty clause
by application of these rules. A Q-Resolution refutation of Ψ is a sequence
of clauses C1 . . . Cn such that every Ci is either a clause from ψ, derived by
resolution from Cj and Ck (j, k < i) or derived by ∀-reduction from Cj (j < i).
A Q-Resolution proof has an underlying DAG structure, with edges denoting
inference either by resolution or reduction. In a tree-like Q-Resolution proof
this graph must be a tree. Each derived clause can therefore only be used
once in the proof.

QU-Resolution [19] is similar to Q-Resolution except that the pivot of a
resolution step is also permitted to be universally quantified.

Finally, ∀Exp+Res [15] describes an alternative approach to QBF solving
in which existentially quantified variables are expanded according to different
possible Boolean assignments to the universal variables. This produces an
entirely existential formula that can be refuted by propositional Resolution.
When an axiom is downloaded into a ∀Exp+Res proof, some complete as-
signment µ to the universal variables is implicitly being considered. For C a
clause in ψ, the assignment will be one which does not automatically satisfy
the clause (i.e. if universal literal u appears in C then µ will set u = 0). The
universal literals in C are falsified by the assignment and so are removed, and
each existential variable x in C is annotated with µ, to show which part of
the expanded formula it relates to. Because x can only depend on universal
variables that appear in an earlier level than x in the quantifier prefix, µ is
truncated for each existential literal in C to only reference the part of the
assignment that is relevant for this literal.

If µ and ω are distinct assignments to universal variables appearing before
x in the prefix, then xµ and xω are distinct, existentially quantified variables.
Every clause in the refutation is either introduced in this way, or is the result
of a propositional resolution step between some xµ and ¬xµ.

3. Rendering a first-order sentence as a sequence of QBFs

We now give a method to translate a first-order sentence φ to a sequence
〈Φi〉i∈N of QBFs. The method is inspired by the encoding of φ into proposi-
tional formulas in conjunctive normal form (CNF) previously given by Riis
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[18], but has rather more in common with other translations used to encode
QCSP instances as QBF in [13]. A more succinct “binary” or “logarithmic”
form of encoding is discussed in [14]. For our purposes, since φ is fixed, the
benefit of this more succinct encoding is not important.

We will consider a first-order sentence

φ := Q1x1 . . . . . . Qkxk D1(x1 . . . , xk) ∧ . . . ∧ Dr(x1, . . . , xk)

with Qi ∈ {∀,∃}, and where each Di is a disjunction of the form

R1
i (x1, . . . , xk) ∨ . . . ∨Rs

i (x1, . . . , xk).

Note that we do not lose significant generality by assuming all extensional
relations to be of arity k and all disjunctions to be of width s. We can refer
to the set of existentially quantified variables by {xi Qi = ∃}, or to the
relevant indices by {i Qi = ∃}.

We will take each first-order variable of the form x and create n propo-
sitional variables x1, . . . , xn, where we will ask that precisely one of these is
true, say xi, and this indicates that x is evaluated as the ith element in a
model of size n.

Let [n] := {1, . . . , n}.
∑

i∈[n] x
i = 1 asserts that precisely one of the xi is

true, i.e. it is an abbreviation for
(∨

i∈[n] x
i
)
∧
∧
i 6=j∈[n](¬xi ∨¬xj). Similarly

¬(
∑n

i=1 x
i = 1) is shorthand for the conjuction of clauses

(
¬xi ∨

∨
j 6=i x

j
)

,

ensuring that if any two of the xi are true then the conjunction is satisfied,
and if all are false then it is satisfied. In the original sentence a variable x
can only take on one value at a time, and must be given some value. These
conditions ensure the same restriction remains in the QBF. If any existential
variable x is not given exactly one value, the QBF is falsified, and if any
universal variable is not given exactly one value then the QBF evaluates to
true.

Further, we will have propositional variables associated with each in-
stantiation of a relational predicate Rj

i (λ1, . . . , λk), where λ1, . . . , λk ∈ [n],
indicating that the tuple (λ1, . . . , λk) is in the relation Rj

i . Thus, we have
two types of propositional variable, one associated with elements and one
associated with relations. ∃λ1,...,λk∈[n]R

j
i (λ1, . . . , λk) introduces the nk possi-

ble relational Boolean variables for the relation Rj
i and shows that they are

existentially quantified.
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We now build a sequence of QBFs whose nth member φn begins

∃λ1,...,λk∈[n]R
1
1(λ1, . . . , λk) . . . R

s
r(λ1, . . . , λk)

where each Rj
i (λ1, . . . , λk) is a propositional variable, and continues

Q1 x
1
1 . . . x

n
1 . . . . . . Qk x

1
k . . . x

n
k∧

{i Qi=∃}

(∑
j∈[n] x

j
i = 1

)
∧[∧

{i Qi=∀}

(∑
j∈[n] x

j
i = 1

)
→(∧

i∈[r]λ1,...,λk∈[n](x
λ1
1 ∧ . . . ∧ x

λk
k )→ Di(λ1, . . . , λk)

) ]
It is clear by construction that φn is true just in case φ has a model

of size n. We will always imagine that the quantifier-free part of φn is ex-
panded to CNF and so it is important to note that this expansion is not
of size larger than polynomial in n. If the disjuncts Di contain equality re-
lationships between variables then these can be enforced by restriction of
the λ1, . . . , λk ∈ [n]; indeed, if the disjuncts only involve some subset of
x1, . . . , xk then plainly only those need be mentioned. We call Boolean vari-
ables of the form Rj

i (λ1, . . . , λk), always existentially quantified outermost,
relational variables.

Example. Recall the Pigeonhole principle (φPHP), which comes from the
first-order sentence

∀x, y, z ∃w P (x,w) ∧ ¬P (x, 1) ∧ (¬P (x, z) ∨ ¬P (y, z) ∨ x 6= y).

This has no finite models and a typical rendering of it, asserting that there
is no model on a domain [n], in CNF, would have the following form∨

j∈[n] P (i, j) i ∈ [n]

¬P (i, 1) i ∈ [n]
¬P (i, k) ∨ ¬P (j, k) i 6= j ∈ [n], k ∈ [n]

For a translation to QBF we proceed as follows.

∃i,j∈[n]P (i, j) ∀i∈[n]x
i, yi, zi ∃i∈[n]w

i

with quantifier free part of the form

(
∑
i∈[n]

wi = 1) ∧
(

(
∑
i∈[n]

xi = 1 ∧
∑
i∈[n]

yi = 1 ∧
∑
i∈[n]

zi = 1)→
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followed by the conjunction of

xi ∧ w` → P (i, `) i, ` ∈ [n]
xi → ¬P (i, 1) i ∈ [n]
xi ∧ yj ∧ zk → [¬P (i, k) ∨ ¬P (j, k)] i 6= j, k ∈ [n])

Then our QBF can be written explicitly in prenex conjunctive normal form

∃i,j∈[n]P (i, j) ∀i∈[n]x
i, yi, zi ∃i∈[n]w

i∧
i 6=j∈[n]

(¬wi ∨ ¬wj) ∧ (w1 ∨ . . . ∨ wn)∧∧
i,j,k,l∈[n]

(
¬xi ∨

∨
i′ 6=i

xi
′ ∨ ¬yj ∨

∨
j′ 6=j

yj
′ ∨ ¬zk ∨

∨
k′ 6=k

zk
′ ∨ ¬wl ∨ ¬P (i, l)

)
∧∧

i,j,k∈[n]

(
¬xi ∨

∨
i′ 6=i

xi
′ ∨ ¬yj ∨

∨
j′ 6=j

yj
′ ∨ ¬zk ∨

∨
k′ 6=k

zk
′ ∨ ¬P (i, 1)

)
∧∧

i 6=j,k∈[n]

(
¬xi ∨

∨
i′ 6=i

xi
′ ∨ ¬yj ∨

∨
j′ 6=j

yj
′ ∨ ¬zk ∨

∨
k′ 6=k

zk
′ ∨ ¬P (i, k) ∨ ¬P (j, k)

)
4. The lower bound

There is a rich history of game-theoretic methods in Proof Complexity and
these are especially applicable in the tree-like versions of refutation systems.
For tree-like Resolution, such games have been known since [17] and the
argument for the lower bound in [18] is itself game-theoretic. Subsequent
work uncovered a full game characterisation for tree-like Resolution via an
asymmetric game between Prover and Delayer [8, 9]. The previous games
had been symmetric and symmetric games will suffice for our lower bounds,
though we cannot expect them to be tight.

We invoke the game of [7], tailored for tree-like Q-Resolution, which we
now recall. The game proceeds between a Prover and Delayer, who build
a partial assignment to the variables of a QBF Φ. While the Prover tries
to falsify the matrix of Φ, the Delayer aims to play consistently as long as
possible and score points during the course of the game. The game starts
with the empty assignment. Each round of the game has the following phases:

1. Setting universal variables: The Prover can assign values to any number
of universal variables that satisfy the following condition: A universal
variable u can be assigned a value if every existential variable with a
higher quantification level than u is currently unassigned.
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2. Declare Phase: The Delayer can choose to assign values to any number
of unassigned existential variables of his choice. The Delayer does not
score any points for this.

3. Query Phase: This phase has three stages, similar to the original game:

(a) The Prover queries the value of one existential variable x that is
currently unassigned.

(b) The Delayer replies with weights p0 ≥ 0 and p1 ≥ 0 such that
p0 + p1 = 1.

(c) The Prover assigns a value for x. If she assigns x = b for some
b ∈ {0, 1}, the Delayer scores lg( 1

pb
) points. (If Prover picks a

value b where pb = 0, then we give the Delayer an infinite score.)

4. Forget Phase: The Prover can choose any number of assigned variables
(without regard to how they are quantified) in this phase. Every vari-
able chosen by the Prover in this phase will lose its assigned value and
hence become an unassigned variable.

This game exactly characterises tree-like Q-Resolution, with free choices
in the game corresponding to branching points in the tree. In particular, if
there exists a strategy and some choice of weighting, such that the Delayer
is guaranteed at least p points in a game on Φ, regardless of how the Prover
behaves, then any tree-like Q-Resolution refutation of Φ must have size at
least 2p. We give such a strategy for the Delayer on any QBF generated
through the above translation, for which the underlying first-order formula
has an infinite model.

For QBF Φn, representing the (false) statement that the original first-
order sentence ψ has a model of size n, the Delayer’s strategy is stated in
terms of the set of models that satisfy the original first-order sentence. Let
M be the set of all models of ψ. The Delayer cannot win this game since
Φn is false, but we seek to demonstrate that he can guarantee Ω(n) points,
meaning that the tree-like Q-Resolution proof must have size 2Ω(n).

The Delayer’s Strategy

At any point in the game some set of relational, existential, and universal
variables have values assigned. We say that a model M agrees with this
assignment if a) the relations do hold between the indicated constants in the
relational variables, and b) the relations between values selected for universal
and existential variables may hold.
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For example, let S(x, y) be the successor function, which is represented
in Φn by relational variables S(i, j) and in the conditions xi∧yj → S(i, j). If
S(i, j) = 1 then all models agreeing with this assignment must have that the
jth constant cj in our universe is a successor of the ith constant ci. If xi = 1
and yj = 1 all models agreeing with this assignment must not have that cj
cannot be the successor of ci. Here, this is equivalent to requiring that the
models have cj as a successor of ci. However, if xi = 1 but y has not been
assigned any value, then a model agreeing with this assignment must have
some value cj such that cj is not forbidden from being the successor of ci and
yj 6= 0. It is permitted for this cj to be outside of the n elements referenced

by the QBF. At each point in the game we consider the subset of models M̃
that agree with the current assignment.

The Delayer has an opportunity to declare any existential variables and
should assign values wherever all M ∈ M̃ agree. For any existential variable,
setting xi = 1 immediately implies that xj = 0 for all j 6= i, so these values
should also be set in the declare phase.

The Prover can then query the value of any existential or relational vari-
able. This query either asks “is the value of w equal to ci?” or “does rela-
tionship r hold between these constants?” Since we have already assigned
variables for which all models agree, we know that the models differ on the
answer to this question. Set p0 = p1 = 1

2
and let Prover decide on the

assignment. Delayer scores 1 point.
Clearly no existential variable will be given more than one value at a time.

If the Prover declares two values for some universal variable, i.e. xi = 1 and
xj = 1 for i 6= j, treat this as if x has no value assigned. The Prover cannot
win the game with this assignment, and will be forced to re-assign x at some
point, so this strategy does not damage the Delayer. By ignoring the invalid
assignment it is not possible for it to advantage the Prover during the game
and so we can assume that each variable has only one value at any moment.

Lemma 2. Using this strategy, the Delayer can only lose the game by violat-
ing a clause stating that, for some set of existential variables {wi}ni=1, exactly
one must be set to true.

Proof. Because we are following models that satisfy the original sentence,
each such model must satisfy every clause of the QBF, except where the QBF
makes a direct statement about the size of the model. The statements that
reference the size of the model are those stating that exactly one variable from
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each set {wi}ni=1 must be true (i.e. that the assignment to variable w in the
original sentence must correspond to one of the n elements in the universe).
For the same reason, the clause will be violated because all variables are
assigned 0, never because more than one is assigned 1. There are still infinite
models that agree with everything stated so far, and for which w has some
value, but that value falls outside of the n elements permitted by the QBF.
�

We call this set {wi}ni=1 of existential variables the failed witness. As a
result, at least n variables in the QBF must be assigned a value in order for
the Delayer to lose the game, and in particular these variables must between
them reference all n of the elements in the universe. We seek to show that
the number of decisions made by the Prover, and so the number of points
scored by the Delayer, is a constant proportion of the number of elements in
the universe.

A constant is ‘mentioned’ in a free choice if it is referenced by a relational
variable that is decided in a free choice, or if it is the assignment for one of
the main variables when some existential is set in a free choice. This signifies
that the value was relevant to the decision being made, and as such the part
that it can play in the model may have been restricted. Let k be the number
of variables in the first-order sentence.

Lemma 3. At least n−k of the universe’s n elements appear in the questions
asked by the Prover for which she is allowed to choose the assignment.

Proof. Let the set {wi}ni=1 be the failed witness. Say that k′ ≤ k of the
main variables have been assigned, and they are set to c1. . . ck′ . Relational
variables may also be set, either resulting from earlier direct free choices
(querying the relational variables themselves), from indirect free choices (a
free choice on an existential variable that then forced the assignment of a
relational variable), or from structural conditions. Consider some cj with
j > k′.

Suppose that cj has not yet been mentioned in a free choice. When
wj is asked (“is w equal to cj?”), the Delayer considers the models that
satisfy everything decided so far, to see whether to allow a free choice. By
construction, there is at least one infinite model that agrees with the choices
made so far, and since w will be the failed witness we know that one of these
models assigns w a value that is outside of the n elements allowed by the
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QBF. Consider the model M with w = a, a /∈ {c1 . . . ck′ , cj}. Because cj is
not mentioned in any of the variables currently assigned in the QBF, and
has never been mentioned in a free choice, it is not distinguishable from a
and so there is a model identical to M except that w = cj. Therefore, wj is
given as a free choice.

This demonstrates that all cj, with j > k′, must have been mentioned in
a free choice at some point in the game. �

Lemma 4. There are at least (n− k)/k free choice nodes in the game.

Proof. We have that any Prover strategy will result in at least n− k con-
stants being included in a free choice. Since all relations have arity bounded
above by k, and at most k values can be set in the main variables, each free
choice can only consider at most k constants, and the result follows. In the
simple cost structure given, each such choice gives the Delayer one point. �

Therefore, at least Ω(n) points are scored by the Delayer.

Theorem 5. For a first-order sentence φ, if the QBF Φn, representing the
statement that there is a model for φ of size n, is unsatisfiable for all n, then
any tree-like Q-resolution refutation of Φn has size at least 2Ω(n).

5. A surprising lower bound

Let θ :=
∀x∃y∀z∃u∀v∃w R(x, y, z) ∧ ¬R(u, v, w).

Clearly, θ has no models of any size. The translation of θ to QBF Θn,
asserting that θ has a model of size n, by the mechanism given above, gen-
erates a sequence whose minimal refutations in tree-like Q-Resolution are of
exponential size. We show this by giving a strategy for Delayer in the corre-
sponding game. In general once some e.g. yi has been answered as true, all
subsequent yj, for j 6= i, must be answered as false. Beyond this, we also use
the following shorthands: “x = c” should be read as true if xc = 1. Similarly,
“answer y 6= c” should be read as allowing a free choice on yi (if it is queried)
except when i = c (then answer yc = 0).

Within the assumption that no existential variable is assigned two values,
Delayer gives Prover a free choice except:

1. if x = c, or there is some d with R(c, d, e) for all e, then answer u 6= c.
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2. if x = c and ¬R(c, d, e), for some d, e then answer y 6= d.
3. if x = c and y = d, then answer R(c, d, e), for each e.
4. if u = c and v = d and R(c, d, e) for some e, then answer w 6= e.
5. if u = c and v = d and w = e, then answer ¬R(c, d, e).

If Delayer plays according to this strategy, a contradiction cannot be
reached until, for some c, Prover has atoms

¬R(c, 1, f(1)), . . . ,¬R(c, n, f(n)),

for some Skolem function f . Take some path on which these atoms have
been derived. Each atom R(c, i, f(i)) appeared in a free choice, unless it was
subject to Rule 5 above. In this case it was preceded by some free choice
w = f(i) made after an assertion v = i. Therefore this strategy gives at least
n free choices on each branch and so:

Proposition 6. Any tree-like Q-Resolution refutation of Θn must have size
at least 2n.

In order to demonstrate a polynomial upper bound on the size of Resolu-
tion refutations we would seek to use the refutation of the first-order formula
itself as a basis, similar to the methods used in [11, 18].

Considering the tableau refutation in Figure 1 for this simple formula
gives more insight into this counterexample, and the reason that the refuta-
tion of the first-order formula cannot be expanded to a tree-like Q-Resolution
refutation of the translated formula.

The unification that closes the tableau suggests a strategy for the Prover,
which is to query u and set x accordingly, then query y and set v accordingly,
then query w and set z to match, at which point the contradiction is immedi-
ate. Unfortunately, this strategy does not respect the order of the quantifier
prefix. Recall that in the game description of tree-like Q-Resolution, all ex-
istential assignments at a higher level must be forgotten in order to make
a universal assignment at a lower level. Therefore it is not possible for the
prover to set x matching u.

Disobeying this rule in the game corresponds to using ∀-reduction while
existential variables with a higher quantification level remain in the clause.
This is not sound. Our strategy for Delayer shows that this problem cannot
be overcome with the proposed translation from the first-order formula to
QBF. Instead, we will modify the translation to provide the Prover with a
mechanism for ‘remembering’ choices that have previously been made, while
still respecting the rules of the game.
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∀x∃y∀z∃u∀v∃w R(x, y, z) ∧ ¬R(u, v, w)

��
R(x1, Y1(x1), z1) ∧ ¬R(U1(x1, z1), v1,W1(x1, z1, v1))

��
R(x2, Y2(x2), z2) ∧ ¬R(U2(x2, z2), v2,W2(x2, z2, v2))

��
¬R(U1(x1, z1), v1,W1(x1, z1, v1))

��
R(x2, Y2(x2), z2)

Unif

YY

Figure 1: Universal variables are replaced by free variables (lower case with indices), exis-
tential variables are written as functions (upper case) over those free variables. The tableau
is closed by the unification Unif : x2 ← U1(x1, z1), v1 ← Y2(x2), z2 ←W1(x1, z1, v1).

6. Embellishing the QBFs

Continuing with the same example, expand the formula by introducing a
side condition

∀x∃y∀z∃u∀v∃wR(x, y, z) ∧ ¬R(u, v, w)
∧∀x′′y′′z′′u′′S(x′′, y′′, z′′, u′′)→ (∀v∃wR(x′′, y′′, z′′) ∧ ¬R(u′′, v, w))
∧∀x′′y′′z′′u′′¬S(x′′, y′′, z′′, u′′)→ (∃v′∀w′¬R(x′′, y′′, z′′) ∨R(u′′, v′, w′)) .

The new S relations record whether, given some values for x, y, z, u, the
original formula is true or false. As such, their addition does not affect the
models of the formula (notwithstanding the interpretation of S).

We put this expanded formula into prenex form:

∀x′′y′′z′′u′′∀x∃y∀z∃u∃v′∀v∃w∀w′
R(x, y, z) ∧ ¬R(u, v, w)
∧S(x′′, y′′, z′′, u′′)→ (R(x′′, y′′, z′′) ∧ ¬R(u′′, v, w))
∧¬S(x′′, y′′, z′′, u′′)→ (¬R(x′′, y′′, z′′) ∨R(u′′, v′, w′))

and apply the original translation to it. The S relations become existential
variables in the outermost quantifier block.
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The idea is that when the existential variable u is queried and given the
value a, Prover can then ask Delayer to identify some specific sub-problem
with u = a that evaluates to true. If Delayer refuses to do this, their choice
of u in the original formula quickly generates a contradiction, and otherwise
x can be set based on the S variable that was made true. In this way, the S
variables act as a memory of Delayer’s choices.

We describe the decision tree for this formula. Recall that the QBF is
constructed so that if all of the existential variables {xi}ni=1 are assigned 0
then the formula is immediately falsified; similarly no universal set {yi}ni=1

may have more than one value given at a time, else the formula is immediately
satisfied.

1. Set x = α, z = γ arbitrarily. Query ui for i = 1 . . . n until u is given a
value. That is, branch on u1. If u1 = 0 branch on u2. If all ui = 0 we
have a contradiction. Now consider the subtree with ua = 1.

2. Query S(α, ∗, γ, a), for ∗ = 1 . . . n, until some S is set to true. If all
such S are made false, skip to line 8. Suppose S(α, β, γ, a) = 1.

3. Set x = a since S(α, β, γ, a) = 1.

4. Query y. Suppose y = b. Set v = b to match, as well as x′′ = α, y′′ = β,
z′′ = γ, u′′ = a.

5. Query w′. Suppose w′ = c.

6. Since S(α, β, γ, a) = 1 we now have R(α, β, γ) = 1 and, importantly,
R(a, b, c) = 0 forced.

7. x = a and y = b are still set, and R(a, b, c) = 0 prompts setting z = c
for a contradiction.

8. Suppose instead that S(α, ∗, γ, a) = 0 for all values of ∗. Query
R(α, ∗, γ) for ∗ = 1 . . . n.

9. If all R(α, ∗, γ) are made false then with x = α, query y for a contra-
diction.

10. If some R(α, β, γ) = 1, set x′′ = α, y′′ = β, z′′ = γ, u′′ = a and since
S(α, β, γ, a) = 0 we have ∃v′∀w′R(a, v′, w′). Query v′. Suppose v′ = d.

11. Now R(a, d, 1) . . . R(a, d, n) = 1. This contradicts the original choice
to set u = a, so return to the main formula and set v = d, and query
w for a contradiction.

For each instance of an existential variable e in the unification closing the
tableau refutation, the decision tree has branched once on either e, or e′, as
well as branching once on the n variables S(α, ∗, γ, a).

14



This motivating example shows how additional structure derived from
the original sentence can aid the Prover in the resulting sequence of QBFs.
To generalise this method we will introduce new relational variables for each
level of the quantifier prefix.

We are now more interested in blocks of variables than individual vari-
ables, so represent our general formula with slightly different notation to
emphasise this. Take the first-order sentence

φ := ∀X1∃Y1 . . . ∀Xk∃Yk D1(X1, Y1, . . . , Xk, Yk)∧ . . .∧Dr(X1, Y1, . . . , Xk, Yk)

with atoms

R1
i (X1, Y1, . . . , Xk, Yk) ∨ . . . ∨Rs

i (X1, Y1, . . . , Xk, Yk)

where Xi and Yi are mutually disjoint sets of variables.
It is modified to include new relations Sk, S

′
k, . . . , S1, S

′
1. The following

statement is conjoined to the original.

∀X ′′1 , Y ′′1 , . . . , X ′′k , Y ′′k ¬Sk(X ′′1 , Y ′′1 , . . . , X ′′k , Y ′′k ) ∨
∧
i∈[r]Di(X ′′1 , Y ′′1 , . . . , X ′′k , Y ′′k )

∀X ′′1 , Y ′′1 , . . . , X ′′k , Y ′′k Sk(X
′′
1 , Y

′′
1 , . . . , X

′′
k , Y

′′
k ) ∨

∨
i∈[r] ¬Di(X ′′1 , Y ′′1 , . . . , X ′′k , Y ′′k )

∀X ′′1 , Y ′′1 , . . . , X ′′k ¬S ′k(X ′′1 , Y ′′1 , . . . , X ′′k ) ∨ ∃Yk
∧
i∈[r]Di(X ′′1 , Y ′′1 , . . . , X ′′k , Yk)

∀X ′′1 , Y ′′1 , . . . , X ′′k S ′k(X
′′
1 , Y

′′
1 , . . . , X

′′
k ) ∨ ∀Y ′k

∨
i∈[r] ¬Di(X ′′1 , Y ′′1 , . . . , X ′′k , Y ′k)

...
...

∀X ′′1 , Y ′′1 ¬S1(X ′′1 , Y
′′

1 ) ∨ ∀X2∃Y2 . . . ∀Xk∃Yk
∧
i∈[r]Di(X ′′1 , Y ′′1 , . . . , Xk, Yk)

∀X ′′1 , Y ′′1 S1(X ′′1 , Y
′′

1 ) ∨ ∃X ′2∀Y ′2 . . . ∃X ′k∀Y ′k
∨
i∈[r] ¬Di(X ′′1 , Y ′′1 , . . . , X ′k, Y ′k)

∀X ′′1 ¬S ′1(X ′′1 ) ∨ ∃Y1∀X2∃Y2 . . . ∀Xk∃Yk
∧
i∈[r]Di(X ′′1 , Y1, . . . , Xk, Yk)

∀X ′′1 S ′1(X ′′1 ) ∨ ∀Y ′1∃X ′2∀Y ′2 . . . ∃X ′k∀Y ′k
∨
i∈[r] ¬Di(X ′′1 , Y ′1 , . . . , X ′k, Y ′k)

The sets X ′i and X ′′i are copies of the set Xi. To put this additional statement
into prenex form, follow the rules:

• X ′′i , Y ′′i outermost

• X ′i immediately before Xi

• Yi immediately before Y ′i

And then the conjunction of the two parts is returned to the form required for
our original translation. This embellished sentence φ∗ is syntactically ugly
but enjoys the same models as φ up to reduction to the original signature σ;
thus, the semantic change is slight.
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7. The lower bound revisited

The models are essentially unchanged by the proposed modification, the
number of variables has only increased polynomially, and the arity of the new
S relations is still bounded above by the number of variables in the original
first-order sentence. Therefore, the proof of the exponential lower bound in
the case that φ (and so φ∗) has an infinite model still applies exactly as given
in Section 4.

8. The upper bound

Taking an analytic tableau refutation [10] of a logical contradiction φ,
we explain how to generate a decision tree for Φn. The unification that
closes the tableau shows how to determine universal assignments from choices
made for the existential variables. Follow the unification in order, expanding
existential variables with a branching factor of n. When it is necessary to set
a universal variable (unless this can be done within the rules for ∀-reduction),
first use the S relations to find a specific sub-problem claimed to be correct
for the variables that have been assigned so far. Once in a position to derive
R variables (recall these are outermost and existential in our QBF), we do
so.

Let ζi (resp. ηi) range over all assignments to variables in the block Xi

(resp. Yi). If all S(ζ1, η1, . . . , ζj, ηj) (similarly S ′(ζ1, η1, . . . , ζj)) are set to
false, we work through the sub-sentence

S(ζ1, η1, . . . , ζj, ηj) ∨ ∃X ′j+1∀Xj+1∃Yj+1∀Y ′j+1 . . . ∃X ′k∀Xk∃Yk∀Y ′k∨
i∈[r] ¬Di(ζ1, η1, . . . , ζj, ηj, X

′
j+1, Y

′
j+1, . . . , X

′
k, Y

′
k)

∧
∧
i∈[r]Di(ζ1, η1, . . . , ζj, ηj, Xj+1, Yj+1, . . . , Xk, Yk).

Note the quantifier order of this sentence means that the universal variables
can simply copy the choice made for the immediately preceding existential,
and so a contradiction is reached in polynomial expansion of size O(nb),
where b is the total number of variables in the first-order sentence.

Assume instead that some S(ζ1, η1, . . . , ζi, ηi) is set true, then any re-
maining S(ζ1, η1, . . . , ζi, ηi) do not need to be considered in this branch. The
assignments to relational variables (S and R) are never changed on a given
branch, and they will form a memory during backtracking, when later existen-
tial assignments need to be forgotten in order to make universal assignments.
When we backtrack we will need to forget some variables, yet when we jump
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again forward we will have some memory of them in the relational variables,
in the obvious fashion.

Let m be the number of Skolem functions in the unification, b the number
of variables in the original first-order sentence, n the size of model being
searched for. The decision tree branches m times on existential variables,
with a branching factor of n. Up to b sets of S variables have been added,
each with up to nb members, and we may branch on any of these sets, once
only. The size of the decision tree refutation is therefore O(nm · nb2). Thus
we have obtained the following.

Theorem 7. Let φ be a first-order sentence without any models, and φ∗ be
its embellishment. Then the sequence of QBFs 〈Φ∗n〉 enjoy refutations in
tree-like Q-Resolution of size nO(1).

9. Extension to QU-Res

Although stated in terms of Q-Resolution, our result also holds for tree-
like QU-Resolution, in which the Resolution rule may be applied to univer-
sally, as well as existentially, quantified variables.

Since QU-Resolution contains Q-Resolution, our upper bound immedi-
ately transfers. For the exponential lower bound, we note that the game de-
scription of tree-like Q-Resolution can be extended to describe QU-Resolution
by allowing the Prover to query universally quantified variables as well as ex-
istentially quantified [7]. This may shorten the refutation, since it offers a
way for the Prover to set universal variables after existential variables that
are later in the prefix have already been assigned. However, it does not af-
fect the crux of our argument, that Ω(n) values must be considered in a free
choice at some point during the game, and only constantly many values can
be considered in each free choice. Thus, the analogous version of Theorem 1
holds for QU-Resolution as well.

QU-Resolution is exponentially stronger than Q-Resolution in the DAG-
like case. This is demonstrated in [19] via the formulas of Kleine Büning,
Karpinski and Flögel [16]. It is not known whether a separation exists be-
tween the tree-like variants. Our results here mean that such a separation —
if it exists — cannot be shown by using translations of first-order formulas
as considered here.
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10. The gap theorem for the expansion-system ∀Exp+Res

Our observation of the behaviour of tree-like Q-Resolution on the initial
translation of these formulas, reveals a weakness in the proof system. This
weakness can be characterised in the game description as the Prover lacking
memory of previous answers. Further, it suggests that if the game was mod-
ified to allow the Prover to remember answers previously given and return
to these later in the game, we would have a stronger proof system. In fact,
such a game characterises the tree-like version of the QBF resolution system
∀Exp+Res, defined in [15] to model expansion-based QBF solving (cf. also
Section 2).

A new Prover-Delayer game

In each round of the game

1. The Prover assigns some number of universal variables.

2. If the Prover has remembered previous answers that were given under
a universal assignment matching the current assignment, the Delayer
must immediately set those values accordingly.

3. The Prover queries the value of some unassigned existential variable x,
and Delayer responds with weights p0 and p1 such that p0 + p1 = 1.
The Prover chooses a value for x from {0, 1}, and the Delayer scores

lg
(

1
pi

)
points if the Prover set x = i.

4. The Prover remembers the choice for x and the universal assignment
under which that choice was made. All assignments are removed.

The Prover wins the game if any clause in Φ is falsified, and the game ends
as soon as this occurs.

Theorem 8. Suppose there is a tree-like ∀Exp+Res refutation of QBF Φ,
having size at most S. Then there is a strategy for the Prover, such that any
Delayer strategy scores at most lgdS

2
e points.

Proof. Let π be a tree-like ∀Exp+Res refutation of Φ of size ≤ S. In-
formally, the Prover plays according to π, starting at the empty clause and
following a path in the tree to one of the axioms. At a Resolution infer-
ence the Prover will set the universal variables according to the annotation
of the pivot, and query the existential variable. The Prover will keep the
invariant that at each moment in the game, they have in memory a set of
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choices that contradicts each of the annotated literals in the current clause.
This invariant holds in the beginning at the empty clause. In the end the
Prover wins when they reach a clause that was introduced to the proof by
axiom download. The axiom clauses are downloaded with a single annota-
tion across all variables. Therefore the Prover can set the universal variables
according to this assignment, and the Delayer is forced to set the existential
variables according to their earlier, recalled, choices. None of the existential
assignments can satisfy the clause, since we know that the Delayer’s previous
choices must disagree with the annotated literals in the clause, and because
there is a single annotation that must include setting universal literals in the
original clause to 0, it is not satisfied by the universal assignments either.

The Prover is at a clause C that was derived by Resolution. Let the pivot
variable be xµ. The Prover sets universal variables according to µ, that is,
u = 0 if and only if u ∈ µ. If the Delayer chooses to set a value for x, Prover
continues to the next phase.

Otherwise, the Prover queries x and, having been provided with weights
p0 and p1, chooses x = i. The model for making this choice is described
below. If x is set to 0 then the Prover moves to the parent clause with xµ, if
x = 1 then they move to the clause containing ¬xµ. The Prover remembers
the value of x under µ, and forgets all current assignments. The invariant
is maintained, since the new clause is a strict subset of the previous clauses,
plus (wlog) xµ, which is contradicted by the Delayer’s most recent choice.

When the Prover is required to decide the value of x under the universal
assignment µ she considers the subtree rooted at each of the parents of the
current clause C. Recall that if the Prover chooses x = 0 then she will
move on to the parent clause C0 containing xµ, so the subtree corresponding
to setting x = 0 is the subtree rooted at C0. The subtree for choosing
x = 1 is defined analogously, with C1 denoting the parent of C containing
¬xµ. Let L0 and L1 be the number of leaves in the subtrees deriving C0

and C1 respectively. If Li
L0+L1

≤ pi then choose x = i. This must hold for

(at least) one of the pi since p0 + p1 = 1 = L0

L0+L1
+ L1

L0+L1
. Delayer scores

lg
(

1
pi

)
≤ lg

(
L0+L1

Li

)
points.

Suppose the game ends at leaf l after n decision points. Let Lj be the total
number of leaves in the tree rooted at the active clause Cj after j choices.
Then L0 is the number of leaves in the whole tree. From Cj the Prover makes
assignments and queries the pivot variable of the next step. Let Lji be the
number of leaves in the subtree corresponding to setting the pivot to i at step
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j + 1. Note that Lj = Lj0 + Lj1 for every j < n, and Lj = Lj−1
ij

where ij was

the choice made at step j. Delayer scores at most lg

(
Lj−1

Lj−1
ij

)
= lg

(
Lj−1

Lj

)
, if

the pivot is set to i at step j.
By assumption n choices are made in the game, so the total number of

points scored is at most
n∑
j=1

lg

(
Lj−1

Lj

)
= lg

(
n∏
j=1

Lj−1

Lj

)
, which simplifies

to lg
(
L0

Ln

)
. After the final decision the subtree corresponding to the choice

made has exactly one leaf, because the game ends here and the game must
end at an axiom clause. Therefore Ln = 1. L0 is the total number of leaves
in the tree, so L0 ≤ dS

2
e for a tree of size S . The total score is at most lgdS

2
e.
�

Theorem 9. Suppose the shortest tree-like ∀Exp+Res refutation of QBF Φ
has size S. Then there is a strategy for the Delayer allowing him to score at
least lgdS

2
e points against any Prover strategy.

Proof. For QBF Φ, Φ[u/i] indicates that every occurrence of u in Φ has
been substituted with constant i ∈ {0, 1}. The expansion of QBF ∀uΦ on u is
Φ[u/0]∧Φ[u/1]. New copies of every variable are made, and we might denote
the copy of variable x in Φ[u/0] as x¬u and the copy of x in Φ[u/1] as xu, for
example. Supposing the next universally quantified variable was v, now both
copies of the formula have a copy of v, and both can expand on v, causing
each remaining variable to be duplicated again. Now we have four copies
of each variable x, and might label the copy resulting from Φ[u/1][vu/1]
as xuv, the copy from Φ[u/1][vu/0] as xu¬v, etc. The naming for the new
variables is not important; we simply seek to highlight the correspondence
between variables in this expanded formula and variables in a ∀Exp+Res
proof. When the outermost variables are existentially quantified they can
be brought to the beginning of the whole formula, leaving a conjunction of
sub-formulas each beginning with universally quantified variables that can be
further expanded. Continuing this process until only existentially quantified
variables remain produces the full universal expansion of Φ, denoted E(Φ),
a purely propositional formula.

In creating a ∀Exp+Res proof there is an implicit expansion stage. It may
not be necessary to create the full universal expansion of Φ, if the refutation
does not require it. Instead, the formula may be expanded according to an
expansion tree, which generates a subset of the full expansion.
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The set of tree-like ∀Exp+Res refutations of Φ and the set of tree-like
Resolution refutations of E (Φ) are isomorphic, so in particular the shortest
such proofs can be identified with one another. The Delayer’s strategy is to
keep a partial assignment a to the variables in E (Φ), indicating the answers
that have already been given in the game. For a partial existential assignment
a and propositional formula φ, φ|a is the restriction of φ by a.

The existential variable xµ is queried in E (Φ) whenever the universal
variables have been assigned in accordance with µ, and the Prover queries x
in the game on Φ. On receiving such a query, the Delayer finds the number
of leaves in the shortest refutation of each of E (Φ) |a,xµ and E (Φ) |a,¬xµ ,
denoted L1 and L0 respectively. Set pi = Li

L1+L0
.

We use induction on the number of existential variables n in E (Φ) to
show that the number of points scored is at least lgL(E (Φ ` ⊥)) where
L(E (Φ ` ⊥)) is the number of leaves in the shortest tree-like Resolution
refutation of E (Φ). When there are no variables in the expanded formula
then the shortest proof is empty and the Delayer scores no points in the
game. When there is one variable in the expanded formula, the shortest
refutation must be resolution on that one variable. There are two leaves in
the refutation tree and the game consists of a single, balanced, choice scoring
one point.

For the inductive step, let now π be the shortest refutation of E (Φ).
Assume the last step has pivot xµ. Restrict π by xµ and ¬xµ, producing
refutations of E (Φ) |xµ and E (Φ) |¬xµ . These must be the shortest such
refutations or we contradict the assumption that π is minimal. If E (Φ) has
n variables then each of the restricted formulas has n− 1 variables. Let L be
the number of leaves in π, L0 and L1 the number of leaves in the refutations
of E (Φ) |xµ and E (Φ) |¬xµ respectively. L = L0 + L1. Answering xµ = i will

score lg
(
L1+L0

Li

)
, and the game on the sub formula scores at least lg (Li).

Therefore the overall score is at least lg (L1 + L0) = lg (L).
Since every Resolution refutation of E (Φ) is equivalent to a ∀Exp+Res

refutation of Φ, it follows that the Delayer scores at least lgL(Φ), for L(Φ)
the number of leaves in the shortest tree-like ∀Exp+Res refutation of Φ. The
refutation forms a binary tree, so the number of leaves is dS

2
e. �

This game characterisation provides an independent proof that tree-like
∀Exp+Res simulates tree-like Q-Resolution, shown by a rather involved ar-
gument in [15] (cf. also [6]). It is also not difficult to see that the character-
isation similarly works for the more powerful expansion-based QBF system
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IR-calc from [4]. In particular, in the proof of Theorem 8 the Prover can
similarly use a tree-like IR-calc proof to guide her strategy. Interestingly,
∀Exp+Res and IR-calc are separated in their DAG-like versions [5], while
they are equivalent in their tree-like versions [6]. Our game characterisation
here provides an alternative approach towards this equivalence of tree-like
∀Exp+Res and IR-calc.

Returning to the topic of the gap theorem, we now argue that this new
game can be used to prove the lower bound part of the gap theorem on our
original translation, where a constant is ‘mentioned’ if it appears positively in
the annotation of the variable being queried, or is the subject of the question
itself.

The idea for the upper bound is again to mimic the unification, we demon-
strate the technique on the example in Figure 1. Recall that the first-order
formula ∀x∃y∀z∃u∀v∃w R(x, y, z)∧¬R(u, v, w) is disproved using the unifi-
cation x2 ← U1(x1, z1), v1 ← Y2(x2), z2 ← W1(x1, z1, v1) in which lower case
letters indicate free variables and upper case letters indicate functions.

x2 ← U1(x1, z1) is the first part of the unification, stating that the free
variable x2 should mimic the behaviour of function U1 on x1 and z1 (previ-
ously set free variables). In our new game, this means that x and z are first
given arbitrary values by the Prover, say x = α and z = γ, then u is queried
and must be given some value to avoid a contradiction, say u = a. This is
equivalent to discovering how the function U1 behaves on input (α, γ). The
fact that u = a when x = α and z = γ is remembered, and all variables are
unset.

The unification continues with v1 ← Y2(x2). We know from the previous
step that x2 should match the behaviour of U1, so x is set to a, and y queried.
Suppose the Delayer sets y = b. Remember that y = b when x = a, and forget
all assignments. The Prover has discovered something about the behaviour of
function Y2, and will use this to set the assignment to v wherever v1 appears
in the unification.

Finally the unification sets z2 ← W1(x1, z1, v1), meaning the Prover should
query the value of w while x = α, z = γ (returning to the arbitrary assign-
ments used in the first step) and v = b (to match the choice of y determined
in the second step). Suppose the Delayer sets w = c, the Prover remembers
this choice.

Under universal assignments x = α, z = γ and v = b we now have
that u = a, v = b, w = c. Together these allow the Prover to discover
that R(a, b, c) = 0. Under x = a, z = c we have y = b, implying that
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R(a, b, c) = 1. This generates the contradiction.
Generalising this example we obtain:

Theorem 10. Let φ be a first-order sentence and 〈Φn〉 its translations into
QBFs (as obtained in the first translation in Section 3).

If φ has no models, then there exist tree-like ∀Exp+Res refutations of 〈Φn〉
of size nO(1). If φ has some (infinite) model, then all tree-like ∀Exp+Res
refutations of 〈Φn〉 must have size 2Ω(n).

11. Conclusion

We have demonstrated a translation from first-order formulas to QBF
families for which a complexity gap exists in tree-like Q-Resolution. Our
translation is not as natural as that used in Riis’ original translation to propo-
sitional logic, due to an inherent constraint in Q-Resolution that ∀-reduction
must respect the order of variables in the prefix. We demonstrate how to
manage the constraint on ∀-reduction in this setting so that short proofs can
be achieved where the original formula had no models. We have also noted
that in this setting, tree-like QU-Resolution and Q-Resolution coincide, with
the additional power of QU-Resolution providing at most a polynomial im-
provement in the proof length. It is not currently known whether there
are any situations in which tree-like QU-Resolution is exponentially stronger
than tree-like Q-Resolution, the separation of these two systems has only
been demonstrated in the DAG-like variant.

Our investigation has led to a game description of proof size in tree-
like ∀Exp+Res, which may be used to demonstrate that the gap theorem
lifts to tree-like ∀Exp+Res with the more natural QBF encoding. Gener-
ating a series of QBFs generated from the unsatisfiable first-order formula
∀x∃y∀z∃u∀v∃w R(x, y, z) ∧ ¬R(u, v, w), that has short proofs in tree-like
∀Exp+Res but exponential sized proofs in tree-like Q-Resolution and in fact
tree-like QU-Resolution, we have exhibited new formulas that separate the
two systems. It is likely that other separating formulas could be generated
in the same way.
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