More on Size and Width in QBF Resolution

Judith Clymo, Olaf Beyersdorff
School of Computing, University of Leeds, United Kingdom

Abstract

In their influential paper 'Short proofs are narrow - resolution made simple' [3], Ben-Sasson and Wigderson introduced a crucial tool for proving lower bounds on the lengths of proofs in the resolution calculus. Over a decade later their technique for showing lower bounds on the size of proofs, by examining the width of all possible proofs, remains one of the most effective lower bound techniques in propositional proof complexity.

We continue the investigation begun in [5] into the application of this technique to proof systems for quantified Boolean formulas. We demonstrate a relationship between the size of proofs in level-ordered Q-Resolution and the width of proofs in Q-Resolution. In general, however, the picture is not positive, and for most stronger systems based on Q-Resolution, the size-width relation of [3] fails, answering an open question from [5].

1. Introduction

Proof complexity aims to understand the strength and limitations of various systems of logic. In particular, we seek upper and lower bounds on the size of proofs, and to develop general methods for finding such bounds. Resolution is a refutational system for propositional logic, with close connections to modern SAT solvers [7]. An important tool for proving lower bounds on the length of Resolution refutations was introduced in [3]. Ben-Sasson and Wigderson showed that whenever a short resolution refutation exists, a narrow refutation can be constructed from it; so conversely if every refutation of some family of formulas must contain a clause of large width, then no small refutation can exist.

The authors of [5] began the study of possible relationships between size, width and space of refutations in the context of resolution-based proof systems for quantified Boolean formulas (QBF). Understanding which lower bound techniques are effective for QBF is of great importance (cf. [4, 6]); however, the findings of [5] show that size-width relations in the spirit of [3] fail in Q-Resolution, both tree-like and DAG-like. This was shown by presenting a specific class of formulas with short proofs, but requiring large width (even when just counting existential variables).

This investigation is continued here by considering three additional QBF proof systems: level-ordered Q-Resolution, universal Q-Resolution (QU-Res), and long-distance Q-Resolution (LDQ-Res). While QU-Res is a natural counterpart to propositional Resolution, level-ordered and long-distance Q-Resolution are motivated by their connections to QBF solving [9, 10, 13].

Implicit assumptions underlying Ben-Sasson and Wigderson's argument break down in the context of Q-Resolution due to the restrictions imposed by the quantifier prefix. We show that the original argument of [3] can be lifted to QBF in level-ordered Q-Resolution and relate the proof size in that system to the width of Q-Resolution refutations. In contrast, we lift the negative results of [5] to the stronger systems of QU-Res and LDQ-Res, thus answering a question of [5].

2. Preliminaries

2.1. Quantified Boolean formulas

Quantified Boolean logic is an extension of propositional logic in which variables may be universally as well as existentially quantified. We consider quantified Boolean formulas (QBFs) in closed prenex conjunctive normal form, denoted $\Phi=\mathcal{Q} \phi$. In the quantifier prefix, $\mathcal{Q}=\mathcal{Q}_{1} X_{1} \ldots \mathcal{Q}_{m} X_{m}$, the X_{i} are disjoint sets of variables, and $Q_{i} \in\{\forall, \exists\}$. The matrix ϕ is a formula in conjunctive normal form over the variables in $\bigcup_{i=1}^{m} X_{i}$. A variable $x \in X_{i}$ is at quantification level i, written $\operatorname{lv}(x)=i . x$ is existentially quantified if $\mathcal{Q}_{i}=\exists$, universally quantified otherwise. If C is a clause in ϕ then $\operatorname{var}(C)$ is the set of variables appearing in C.
$\Phi[x / a]$ for $a \in\{0,1\}$ is the result of setting $x=a$ throughout ϕ and removing x from \mathcal{Q}, so $\Phi[x / 1]$ removes all clauses from ϕ that contain x as a positive literal, and removes $\neg x$ from the clauses that contain the negative literal.

Semantically, $\forall u \Phi=\Phi[u / 0] \wedge \Phi[u / 1]$ and $\exists x \Phi=\Phi[x / 0] \vee \Phi[x / 1]$.

2.2. Refutations of false QBFs

A refutation π of QBF Φ derives the empty clause by application of the derivation rules. Each line of π is a clause that either appears in the input formula Φ, or is the result of applying a derivation rule to one or two clauses that already appear at an earlier line of π. The final line is the empty clause. A refutation induces a directed acyclic graph (DAG) with each internal node of the DAG associated with a clause, and edges directed from the parent(s) to the child of a single proof step. If the induced graph is a tree then the refutation is tree-like. In this case, each derived clause is only used once.
$\pi[x / a]$ for $a \in\{0,1\}$ is the result of substituting a for x in every clause in π. This substitution may cause some clauses to be satisfied, in which case they cannot be used in future derivations. Therefore it cannot immediately be assumed that the result of this restriction is a valid proof.

2.3. Resolution proof systems

Search-based solving for SAT is based on the DPLL procedure [8], often augmented with clause learning. The Resolution proof system [14] is a refutational proof system acting on propositional formulas in conjunctive normal form. Refutations of false formulas generated in search-based SAT solvers can be understood as Resolution proofs. The proof system has a single inference rule deriving $C \vee D$ from $C \vee x$ and $D \vee \neg x$ where C and D are clauses and x (the pivot) is a variable, and for all variables $y \neq x$ that appear in C, the negation of y does not appear in D.

Resolution is extended to act on QBFs in prenex conjunctive normal form by the addition of the universal reduction rule, which derives C from $C \vee x$ when x
is universally quantified and is at the highest (inner-most) quantifier level of all variables appearing in C. This proof system is known as QU-Resolution (QURes) [15]. In Q-Resolution [12], the pivot in the resolution rule is restricted to existentially quantified variables.

Since search-based SAT solvers have proved successful, it is natural that this approach has been extended to QBF, for example in the solver depQBF [13]. The basic search procedure for QBF must assign variables according to the order of the quantifier prefix, starting from the outermost block. Therefore, as DPLL corresponds to tree-like Resolution, so QDPLL corresponds to tree-like level-ordered Q-Resolution.

Definition 1 ([11]). Let π be a Q-Resolution refutation of a $Q B F$. We say that π is level-ordered if and only if the following holds: Let $x \vee C_{1}$ and $\neg x \vee C_{2}$ be some clauses resolved in π. Then $l v(y) \leq l v(x)$ for any existential variable $y \in \operatorname{var}\left(C_{1} \vee C_{2}\right)$.

We may assume without loss of generality that all proof steps with pivot at level i in the quantifier prefix must be carried out before any proof steps with pivot at level $j<i$.

Long-distance Resolution (LDQ-Res) [1] allows universal literals u and $\neg u$ to appear in the two clauses being resolved together provided that the resolution variable x is at a lower quantification level than u. The opposing literals are merged to form the special universal literal u^{*}. Formally,

$$
\frac{C_{1} \vee U_{1} \vee x \quad C_{2} \vee U_{2} \vee \neg x}{C_{1} \vee C_{2} \vee U}
$$

where x is existentially quantified. C_{1} and C_{2} must not contain any complementary literals or special universal literals. U_{1} and U_{2} contain only universal literals appearing later in the quantifier prefix than the pivot x, every literal in U_{1} is a special universal literal, or has its complement in U_{2} (and vice versa). Then $U=\left\{u^{*} \mid u \in \operatorname{var}\left(U_{1}\right)\right\}$. The literal u^{*} can be \forall-reduced in the same way as any other universal literal.

Note that while QU-Resolution and LDQ-Res are exponentially separated from Q-Resolution [15, 9], it is easy to see that they do not reduce proof size when the proof is required to be level-ordered. It has been shown that even with clause learning and other heuristics, it is impossible for a search-based QBF solver to produce a refutation that is not level-ordered on some input formulas [10].

2.4. Size and width

The size of a proof π is written $|\pi|$ and is the number of clauses in π (equivalently, the number of nodes in the associated tree or DAG). The size of deriving a clause C from Φ (in proof system P), denoted $S_{P}(\Phi \vdash C$), is the minimum size of any P-proof of C from Φ. We drop the subscripts indicating the proof system under consideration if it is already clear from the context.

The width $w(C)$ of a clause C is the number of existential variables it contains. The width $w(\Phi)$ of a $\operatorname{QBF} \Phi$ is the maximum width of a clause in Φ. Similarly, the width $w(\pi)$ of derivation π is the maximum width of any clause contained in π. The width of deriving a clause C from Φ (in proof system P), denoted $w_{P}(\Phi \vdash C)$, is the minimum width of any P-proof of C from Φ.

For tree-like propositional Resolution, Ben-Sasson and Wigderson [3] showed that $w(\phi \vdash \perp) \leq w(\phi)+\lg (S(\phi \vdash \perp))$, and a similar relation holds for DAG-like Resolution, $w(\phi \vdash \perp) \leq w(\phi)+O(\sqrt{n \ln S(\phi)})$.

3. Negative results

We revisit the counterexample for the size-width relation in tree-like QResolution from [5].

Proposition 2 ([5]). There is a family of false QBF sentences Φ_{n} over $O\left(n^{2}\right)$ variables, such that $w\left(\Phi_{n}\right)=3$ and in tree-like Q-Resolution $S\left(\Phi_{n} \vdash \perp\right)=$ $n^{O(1)}$, and $w\left(\Phi_{n} \vdash \perp\right)=\Omega(n)$.

To prove this proposition, the following QBFs, introduced in [11], are used.

$$
\begin{array}{r}
\Phi_{n}=\exists x_{1,1} \ldots x_{1, n} \ldots x_{n, n} \forall z \exists a_{1} \ldots a_{n}, b_{1} \ldots b_{n}, y_{0} \ldots y_{n}, p_{0} \ldots p_{n} \\
\bigwedge_{i, j=1}^{n}\left(x_{i, j} \vee z \vee a_{i}\right) \wedge \bigwedge_{i, j=1}^{n}\left(\neg x_{i, j} \vee \neg z \vee b_{j}\right) \\
\\
\wedge \neg y_{0} \wedge \bigwedge_{i=1}^{n}\left(y_{i-1} \vee \neg a_{i} \vee \neg y_{i}\right) \wedge y_{n} \tag{3}\\
\\
\wedge \neg p_{0} \wedge \bigwedge_{j=1}^{n}\left(p_{j-1} \vee \neg b_{j} \vee \neg p_{j}\right) \wedge p_{n}
\end{array}
$$

There are $O\left(n^{2}\right)$-size tree-like Q-Resolution refutations:

1. Collapse the clauses in (2) and (3) to $\bigvee_{i=1}^{n} \neg a_{i}$ and $\bigvee_{j=1}^{n} \neg b_{j}(O(n)$ steps).
2. Resolve $\bigvee_{i=1}^{n} \neg a_{i}$ with $\left(x_{i, j} \vee z \vee a_{i}\right)$ for fixed j and i ranging from 1 to n. Then \forall-reduce z, giving $\bigwedge_{i=1}^{n} x_{i, j}(O(n)$ steps for each $j)$.
3. Resolve $\bigwedge_{i=1}^{n} x_{i, j}$ with $\left(\neg x_{i, j} \vee \neg z \vee b_{j}\right)$ for fixed j and $i=1 \ldots n$, now we have $\bigwedge_{j=1}^{n}\left(b_{j} \vee \neg z\right)(O(n)$ steps for each $j)$.
4. Resolve all $\left(b_{j} \vee \neg z\right)$ with $\bigvee_{j=1}^{n} \neg b_{j}$ and \forall-red $\neg z$ to reach the empty clause ($O(n)$ steps).

Then we show that any valid Q-Resolution refutation must be wide, by arguing that the clause immediately following the first \forall-red step in any refutation of Φ_{n} must have width $\Omega(n)$. We do not repeat the full argument here, the idea is that in order to perform \forall-red on z (w.l.o.g.), some a_{i} must be removed from a clause ($x_{i, j} \vee z \vee a_{i}$). Doing so necessarily introduces another a literal negatively (perhaps via the intermediate introduction of a y literal), and to remove this introduces another (different) $x_{i, j}$, which must remain until after the \forall-red, as well as another positive a literal. This repeats and ensures that n different $x_{i, j}$ literals must collect in the clause before it is free of a_{i} and y_{i} literals and the \forall-red can be performed.

It was left open in [5] whether the size-width relation holds for extensions of Q-Resolution. We begin by demonstrating that simple modifications of this example, inspired by [2], show that the result also fails for the tree-like versions of QU-Res and LDQ-Res.

Proposition 3. There is a family of false QBF sentences Φ_{n}^{\prime} over $O\left(n^{2}\right)$ variables, such that $w\left(\Phi_{n}^{\prime}\right)=3$ and in tree-like $Q U$-Resolution $S\left(\Phi_{n}^{\prime} \vdash \perp\right)=n^{O(1)}$, and $w\left(\Phi_{n}^{\prime} \vdash \perp\right)=\Omega(n)$.

Proof. Modify Φ_{n} to Φ_{n}^{\prime} by adding another universal variable z^{\prime} at the same level as z. Replace (1) with $\bigwedge_{i, j=1}^{n}\left(x_{i, j} \vee z \vee z^{\prime} \vee a_{i}\right) \wedge \bigwedge_{i, j=1}^{n}\left(\neg x_{i, j} \vee \neg z \vee \neg z^{\prime} \vee b_{j}\right)$.

The size $O\left(n^{2}\right)$ refutation of Φ_{n} is trivially extended to a refutation of Φ_{n}^{\prime} by performing a \forall-reduction step on z^{\prime} immediately after any \forall-reduction step on z. It is simple to confirm that the proof remains valid. In particular, any resolution step that could be blocked by z^{\prime} in Φ_{n}^{\prime} would already have been blocked by z in Φ.

The duplication of the universal variable also ensures that universal resolution cannot result in narrower proofs compared to Q-Resolution. This is simply because we have ensured that every universal literal in the input formula has its complement only in clauses which also conflict on another variable. In addition, any derived clause must contain all of the universal variables from its parents unless it is derived by \forall-reduction or universal resolution. Therefore universal resolution is forbidden until some \forall-reduction step has occurred, until this point we may only use existential resolution. The argument sketched above therefore readily applies to show that the clause immediately following the first \forall-red step in any refutation of Φ_{n} must have width $\Omega(n)$.

The idea of duplicating universal variables can be applied to any formula to prevent universal resolution steps from being possible. In particular, since we know of a family of formulas with long refutations and small width in QResolution, we can also construct similar formulas with long refutations and small width in QU-Resolution.

Proposition 4. There is a family of false $Q B F$ sentences $\Phi_{n}^{\prime \prime}$ over $O\left(n^{2}\right)$ variables, such that $w\left(\Phi_{n}^{\prime \prime}\right)=3$ and in tree-like $L D Q$-Resolution $S\left(\Phi_{n}^{\prime \prime} \vdash \perp\right)=n^{O(1)}$, and $w\left(\Phi_{n}^{\prime \prime} \vdash \perp\right)=\Omega(n)$.

Proof. In this case Φ_{n} is modified by replacing lines (2) and (3) with $\neg y_{0} \wedge$ $\bigwedge_{i=1}^{n}\left(y_{i-1} \vee \neg a_{i} \vee \neg y_{i} \vee z\right) \wedge y_{n}$ and $\neg p_{0} \wedge \bigwedge_{j=1}^{n}\left(p_{j-1} \vee \neg b_{j} \vee \neg p_{j} \vee \neg z\right) \wedge p_{n}$ respectively. This does not affect satisfiability since these clauses are only relevant under one or other of the assignments to z. The same $O\left(n^{2}\right)$ refutation of the original formula applies to give the size upper bound.

For the width lower bound note that long-distance steps are impossible in refuting this formula. The only long-distance steps that could be performed are on some $x_{i, j}$ variable prior to any \forall-reduction in the clauses involved. Then the parent clauses contain some a, b, y, or p literal, as well as the special universal z^{*}. In order for the derived clause to form part of the refutation, a_{i} (without loss of generality) would need to be removed via resolution at some later point. This is now impossible. The only input clause that contains $\neg a_{i}$ also contains z, and any derived clause containing $\neg a_{i}$ must also contain z because \forall-reduction is blocked by $\neg a_{i}$. None of these clauses can be resolved with a clause containing z^{*}, so no long-distance resolution step can apply before at least one \forall-red step, until then we are restricted to standard resolution steps, and so again the clause following the first \forall-red must have width $\Omega(n)$.

4. Relating size and width in tree-like level-ordered Q-Resolution

Suppose we have a Resolution refutation of some propositional formula ϕ. The final step in the proof resolves x and $\neg x$. So we also have a derivation from ϕ to x (and also $\neg x$), that is, ϕ implies $x(\neg x)$. A crucial part of Ben-Sasson and Wigderson's argument in [3] rests on the observation that this derivation of x can be easily transformed into a refutation of $\phi[x / 0]$, by simply applying the assignment $x=0$ to every clause in the derivation.

This does not hold in general in Q-Resolution, even in the tree-like case. Indeed, it is possible to have a Q-Resolution derivation from Φ to u, a universal variable not at the outermost level in the prefix, where $\Phi[u / 0]$ is not even false. The restricted derivation only remains valid if no clause has been satisfied by the assignment. Therefore, if we have a derivation of x, and so wish to restrict by $x=0$, we must know that $\neg x$ does not appear in any clause in the derivation. We show that this property holds for tree-like level-ordered Q-Resolution proofs.

Definition 5 (Regularity). A refutation π of Φ is regular if along any path from root to leaf no two nodes are associated with the same variable.

Lemma 6. Any tree-like level-ordered Q-Resolution refutation may be assumed to be regular.

Proof. Each path must remove variables in the order of the prefix, so a contiguous (possibly empty) section of the path relates to each level. We show that any repeated pivot within such a section of the path can be removed without increasing the size of the proof.

For a section corresponding to a universal quantifier block, a series of \forall reduction steps are applied successively to a single input clause, which cannot contain both u and $\neg u$, so there can be no \forall-reduction steps on opposing literals in a single branch. Since the only condition for carrying out \forall-reduction is that no literal is in the clause from a higher quantification level, the \forall-reduction steps in this block can be reordered and repetitions collapsed to a single step.

For resolution steps, consider two consecutive resolution steps on a branch with pivot x (i.e., between these two steps all have pivot different to x). First (closest to the leaves in the proof tree), $A \vee x$ and $B \vee \neg x$ are resolved to give $A \vee B$ which does not contain variable x. Continuing along this branch, x is reintroduced during some other resolution step. Without loss of generality assume x is reintroduced positively, and later side clause $E \vee \neg x$ is resolved with clause $D \vee x$ from our branch. Between the two resolution steps it is not possible that x appeared negatively in any clause, else some clause is a tautology or the two steps were not consecutive resolutions on x.

Remove the first resolution step and instead of deriving $A \vee B$ continue with $A \vee x$. Proceed down the branch, at each node associate a new clause C^{\prime} in place of C, and a set \mathcal{B}_{C} to be the set of literals in C but not in C^{\prime}. In place of $C_{1}=A \vee B$ we have $C_{1}^{\prime}=A \vee x$, and $\mathcal{B}_{C_{1}}=B \backslash A$. For C_{k} the result of resolving C_{i} and side clause C_{j} on pivot y, if $y \in \mathcal{B}_{C_{i}}$ then $C_{k}^{\prime}=C_{i}^{\prime}$, cut out the resolution step and the branch producing C_{j}, set $\mathcal{B}_{C_{k}}=\mathcal{B}_{C_{i}} \cup C_{j} \backslash C_{i}$. Otherwise, $y \in C_{i}^{\prime}$ and $\neg y \in C_{j}$. By assumption C_{j} does not contain $\neg x$. Therefore C_{k}^{\prime} is the valid result of resolving C_{i}^{\prime} and C_{j} on y and $\mathcal{B}_{C_{k}}=\mathcal{B}_{C_{i}}$. For all nodes, $\neg x \notin C^{\prime}$, $C^{\prime} \backslash x$ subsumes C, and from the point at which x was reintroduced to the branch in the original refutation, the new clause properly subsumes the old.

Any consecutive nodes with identical associated clauses can be merged, and we have removed at least one resolution step to construct a new refutation no larger than the original. The new refutation remains tree like and level ordered.

Lemma 7. Let π be a regular refutation of Φ. If the final step of π is resolution on x then $\pi[x / 0]$ is a refutation of $\Phi[x / 0]$ and $\pi[x / 1]$ is a refutation of $\Phi[x / 1]$. If the final step of π is \forall-reduction on x then either $\pi[x / 0]$ is a refutation of $\Phi[x / 0]$ or $\pi[x / 1]$ is a refutation of $\Phi[x / 1]$.

Proof. In all cases consider an input to the final proof step. This will be a clause consisting of a single literal: without loss of generality, the clause $\{x\}$. In $\pi[x / 0]$ this clause becomes the empty clause. Every proof step in the restricted proof remains valid unless it is a \forall-reduction on x (impossible by assumption of regularity), or (one of) the input(s) to the proof step has been satisfied in the restriction. If a clause in π is satisfied by the restriction then that clause originally contained $\neg x$. Since the final clause did not contain $\neg x$ this literal must have been removed from a clause in an intermediate step, but this contradicts the assumption of regularity. All input clauses to $\pi[x / 0]$ therefore belong to $\Phi[x / 0]$, and $\pi[x / 0]$ is a valid refutation of $\Phi[x / 0]$.

Lemma 8. Let Φ be a $Q B F, \mathcal{C}$ a clause, and x an existentially quantified variable in the outermost quantifier block of Φ. In Q-Resolution, if $w(\Phi[x / 0] \vdash \mathcal{C}) \leq$ k then $w(\Phi \vdash \mathcal{C} \vee x) \leq k+1$.

Proof. Let π be a width k Q-Resolution derivation of \mathcal{C} from $\Phi[x / 0]$. Add x into every clause of π. We claim that the result is a valid derivation of $\mathcal{C} \vee x$.

For C an initial clause in $\Phi[x / 0], C \vee x$ is either an initial clause of Φ or can be obtained from an initial clause by weakening. For C in π and not an initial clause, either C is the result of a resolution step or a universal reduction step.

If C is the result of resolving A and B then $C \vee x$ can be derived from $A \vee x$ and $B \vee x$. Neither A nor B can contain $\neg x$ so the resolution step is not blocked.

If C is the result of a universal reduction from A then $C \vee x$ is the result of universal reduction from $A \vee x$. Since x is in the outermost quantifier block it cannot block any universal reduction step because every universal variable is at a higher quantification level.

The width of every clause in the derivation is increased by 1 , and so the width of the whole proof is increased by 1 .

Similarly, if $w(\Phi[x / 1] \vdash \mathcal{C}) \leq k$ then $w(\Phi \vdash \mathcal{C} \vee \neg x) \leq k+1$. Also in the following, all $[x / 0]$ may be swapped for $[x / 1]$ and vice versa.

Lemma 9. Let Φ be a $Q B F$ and x an existentially quantified variable in the outermost quantifier block of Φ. In Q-Resolution, if $w(\Phi[x / 0] \vdash \perp) \leq k-1$ and $w(\Phi[x / 1] \vdash \perp) \leq k$ then $w(\Phi \vdash \perp) \leq \max \{k, w(\Phi)\}$. For x universally quantified in the outermost quantifier block, if $w(\Phi[x / 0] \vdash \perp) \leq k$ then $w(\Phi \vdash$」) $\leq k$.

Proof. If x is existentially quantified then since $w(\Phi[x / 0] \vdash \perp) \leq k-1$ we have also that $w(\Phi \vdash x) \leq k$ by Lemma 8 . Resolve x with every clause in Φ containing $\neg x$, the resulting collection of clauses are exactly those in the matrix of $\Phi[x / 1]$, and from these we can derive \perp in width k. The total width of the derivation is $\max \{k, w(\Phi)\}$.

If x is universally quantified then $\{x\}$ can be derived in width k and \forall reduction derives \perp. The width of the derivation is k since universally quantified variables do not contribute to the width of a clause.

We can now state the relation between width in Q-Resolution and size in level-ordered Q-Resolution.

Theorem 10. $w_{Q}(\Phi \vdash \perp) \leq w(\Phi)+\left\lceil\lg S_{L}(\Phi \vdash \perp)\right\rceil$, where Q is Q-Resolution and L is level-ordered tree-like Q-Resolution.

Proof. We begin with a level-ordered refutation π of Φ. Let $b=\left\lceil\lg S_{L}(\Phi \vdash \perp)\right\rceil$ so that $S_{L}(\Phi \vdash \perp) \leq 2^{b}$. If $b=0$ then the empty clause is in Φ, so both $w(\Phi)$ and $w_{Q}(\Phi \vdash \perp)$ are 0 and we are done.

Otherwise the last step of the proof may be a universal reduction $\frac{x}{\perp}$ or a resolution step $\frac{x \quad \neg x}{\perp}$ where x is in the outermost quantifier block.

In the case of universal reduction, consider π_{x}, the derivation of $x . \pi_{x}[x / 0]$ is a level-ordered refutation of $\Phi[x / 0]$ of size S_{x}. By induction on the number of variables in Φ we have that $w_{Q}(\Phi[x / 0] \vdash \perp) \leq w(\Phi[x / 0])+\left\lceil\lg S_{x}\right\rceil$. By Lemma 9 , $\Phi \vdash \perp$ has the same width as the restricted proof, and $w(\Phi[x / 0])=w(\Phi)$, so the result follows.

In the case of resolution being the last step, consider π_{x} and $\pi_{\neg x}$, the levelordered derivations of x and $\neg x$, of sizes S_{x} and $S_{\neg x}$, respectively. $\pi_{x}[x / 0]$ is a level-ordered refutation of $\Phi[x / 0]$ of size $S_{x} . S_{L}(\Phi \vdash \perp)=S_{x}+S_{\neg x}+1$. Without loss of generality, $S_{x} \leq 2^{b-1}$ so by induction on b, there is a (possibly not levelordered) proof with $w_{Q}(\Phi[x / 0] \vdash \perp) \leq w(\Phi[x / 0])+b-1 \leq w(\Phi)+b-1$, and by induction on the number of variables in $\Phi, w_{Q}(\Phi[x / 1] \vdash \perp) \leq w(\Phi[x / 1])+b \leq$ $w(\Phi)+b . \quad x$ is outermost so by Lemma 9 we can use these two refutations to construct a refutation of Φ with width at most $w(\Phi)+b$ and the result follows.

In the proof of Theorem 10, we begin with a small level-ordered proof and construct another proof from it which has small width. However, during the construction, the proof loses the level-ordered property. It is not in general possible to construct a level-ordered proof with small width, as demonstrated by the following counter-example

$$
\begin{array}{r}
\Phi=\exists x_{1} \ldots x_{n} \forall z \exists a_{1} \ldots a_{n}, y_{0} \ldots y_{n} \\
\left(\neg y_{0}\right) \wedge\left(y_{n}\right) \wedge \bigwedge_{i \in[n]}\left(\neg x_{i}\right) \wedge\left(z \vee a_{i}\right) \wedge\left(y_{i-1} \vee \neg a_{i} \vee x_{i} \vee \neg y_{i}\right) .
\end{array}
$$

All clauses are needed to refute Φ. Any level-ordered proof must carry out all resolution steps on y_{i} variables before resolving on x_{i} variables, and it is simple to verify that doing so must result in a clause that contains all x_{i} variables. There is a short tree-like level-ordered refutation which collapses ($y_{i-1} \vee \neg a_{i} \vee x_{i} \vee \neg y_{i}$) together to $\left(\neg a_{1} \vee \ldots \vee \neg a_{n} \vee x_{1} \vee \ldots \vee x_{n}\right)$, then resolves this with all $\left(z \vee a_{i}\right)$, removes z and finally refutes $\bigwedge_{i \in[n]}\left(\neg x_{i}\right) \wedge\left(x_{1} \vee \ldots \vee x_{n}\right)$, all of which takes linear size.

Additionally, Theorem 10 cannot be lifted to DAG-like level-ordered QResolution since for the counter-example given in [5] for DAG-like Q-Resolution, the short proof discussed in [5] is level-ordered and directly applies here. A crucial part of the argument in the propositional case is to carefully select the next
variable to use in restricting the refutation, but it is not possible in general to ensure that this variable belongs to a particular level of the prefix.

5. Conclusion

We have demonstrated that the result of [3] can be lifted to relate two variants of Q-Resolution, highlighting an interesting relationship between levelordered and non level-ordered proofs in Q-Resolution. Level ordered Q-Resolution is important since it corresponds to the QDPLL algorithm that underlies some modern QBF solving algorithms, so a mechanism to lower bound the size of proofs is useful in understanding the strength of search-based QBF solvers. Removing either the restriction that the proof must be level-ordered, or the restriction that it must be tree like, is sufficient to lose the desired behaviour. We have also answered the open question from [5] regarding extensions of QResolution, by demonstrating how the counterexamples may be lifted to these stronger calculi.
[1] Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications. Formal Methods in System Design, 41(1):45-65, 2012.
[2] Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and their proof complexities. In SAT'14, pages 154-169, 2014.
[3] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. Journal of the ACM, 48(2):149-169, 2001.
[4] Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. Lower bounds: From circuits to QBF proof systems. In Proc. ACM Conference on Innovations in Theoretical Computer Science (ITCS'16), pages 249-260. ACM, 2016.
[5] Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Are short proofs narrow? QBF resolution is not so simple. ACM Transactions on Computational Logic. To appear. Preliminary version in the proc. of the conference STACS 2016.
[6] Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation for QBF resolution calculi. Logical Methods in Computer Science, 13, 2017.
[7] Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic, 163(7):906-917, 2012.
[8] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. Commun. ACM, 5(7):394-397, July 1962.
[9] Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof generation and strategy extraction in search-based QBF solving. In Logic for Programming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, pages 291-308, 2013.
[10] Mikoláš Janota. On Q-Resolution and CDCL QBF Solving, pages 402-418. Springer International Publishing, Cham, 2016.
[11] Mikoláš Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci., 577:25-42, 2015.
[12] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified Boolean formulas. Inf. Comput., 117(1):12-18, 1995.
[13] Florian Lonsing and Uwe Egly. DepQBF 6.0: A search-based QBF solver beyond traditional QCDCL. In Proc. International Conference on Automated Deduction (CADE), pages 371-384, 2017.
[14] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):23-41, January 1965.
[15] Allen Van Gelder. Contributions to the theory of practical quantified Boolean formula solving. In Principles and Practice of Constraint Programming (CP12), pages 647-663, 2012.

