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Abstract

In their influential paper ‘Short proofs are narrow – resolution made simple’ [3],
Ben-Sasson and Wigderson introduced a crucial tool for proving lower bounds
on the lengths of proofs in the resolution calculus. Over a decade later their
technique for showing lower bounds on the size of proofs, by examining the width
of all possible proofs, remains one of the most effective lower bound techniques
in propositional proof complexity.

We continue the investigation begun in [5] into the application of this tech-
nique to proof systems for quantified Boolean formulas. We demonstrate a rela-
tionship between the size of proofs in level-ordered Q-Resolution and the width
of proofs in Q-Resolution. In general, however, the picture is not positive, and
for most stronger systems based on Q-Resolution, the size-width relation of [3]
fails, answering an open question from [5].

1. Introduction

Proof complexity aims to understand the strength and limitations of various
systems of logic. In particular, we seek upper and lower bounds on the size of
proofs, and to develop general methods for finding such bounds. Resolution is
a refutational system for propositional logic, with close connections to modern
SAT solvers [7]. An important tool for proving lower bounds on the length of
Resolution refutations was introduced in [3]. Ben-Sasson and Wigderson showed
that whenever a short resolution refutation exists, a narrow refutation can be
constructed from it; so conversely if every refutation of some family of formulas
must contain a clause of large width, then no small refutation can exist.

The authors of [5] began the study of possible relationships between size,
width and space of refutations in the context of resolution-based proof systems
for quantified Boolean formulas (QBF). Understanding which lower bound tech-
niques are effective for QBF is of great importance (cf. [4, 6]); however, the find-
ings of [5] show that size-width relations in the spirit of [3] fail in Q-Resolution,
both tree-like and DAG-like. This was shown by presenting a specific class of
formulas with short proofs, but requiring large width (even when just counting
existential variables).

This investigation is continued here by considering three additional QBF
proof systems: level-ordered Q-Resolution, universal Q-Resolution (QU-Res),
and long-distance Q-Resolution (LDQ-Res). While QU-Res is a natural counter-
part to propositional Resolution, level-ordered and long-distance Q-Resolution
are motivated by their connections to QBF solving [9, 10, 13].
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Implicit assumptions underlying Ben-Sasson and Wigderson’s argument break
down in the context of Q-Resolution due to the restrictions imposed by the quan-
tifier prefix. We show that the original argument of [3] can be lifted to QBF in
level-ordered Q-Resolution and relate the proof size in that system to the width
of Q-Resolution refutations. In contrast, we lift the negative results of [5] to the
stronger systems of QU-Res and LDQ-Res, thus answering a question of [5].

2. Preliminaries

2.1. Quantified Boolean formulas

Quantified Boolean logic is an extension of propositional logic in which vari-
ables may be universally as well as existentially quantified. We consider quan-
tified Boolean formulas (QBFs) in closed prenex conjunctive normal form, de-
noted Φ = Qφ. In the quantifier prefix, Q = Q1X1 . . .QmXm, the Xi are
disjoint sets of variables, and Qi ∈ {∀,∃}. The matrix φ is a formula in con-
junctive normal form over the variables in

⋃m
i=1Xi. A variable x ∈ Xi is at

quantification level i, written lv(x) = i. x is existentially quantified if Qi = ∃,
universally quantified otherwise. If C is a clause in φ then var(C) is the set of
variables appearing in C.

Φ[x/a] for a ∈ {0, 1} is the result of setting x = a throughout φ and removing
x fromQ, so Φ[x/1] removes all clauses from φ that contain x as a positive literal,
and removes ¬x from the clauses that contain the negative literal.

Semantically, ∀u Φ = Φ[u/0] ∧ Φ[u/1] and ∃x Φ = Φ[x/0] ∨ Φ[x/1].

2.2. Refutations of false QBFs

A refutation π of QBF Φ derives the empty clause by application of the
derivation rules. Each line of π is a clause that either appears in the input
formula Φ, or is the result of applying a derivation rule to one or two clauses
that already appear at an earlier line of π. The final line is the empty clause.
A refutation induces a directed acyclic graph (DAG) with each internal node of
the DAG associated with a clause, and edges directed from the parent(s) to the
child of a single proof step. If the induced graph is a tree then the refutation is
tree-like. In this case, each derived clause is only used once.

π[x/a] for a ∈ {0, 1} is the result of substituting a for x in every clause
in π. This substitution may cause some clauses to be satisfied, in which case
they cannot be used in future derivations. Therefore it cannot immediately be
assumed that the result of this restriction is a valid proof.

2.3. Resolution proof systems

Search-based solving for SAT is based on the DPLL procedure [8], often
augmented with clause learning. The Resolution proof system [14] is a refu-
tational proof system acting on propositional formulas in conjunctive normal
form. Refutations of false formulas generated in search-based SAT solvers can
be understood as Resolution proofs. The proof system has a single inference
rule deriving C ∨ D from C ∨ x and D ∨ ¬x where C and D are clauses and
x (the pivot) is a variable, and for all variables y 6= x that appear in C, the
negation of y does not appear in D.

Resolution is extended to act on QBFs in prenex conjunctive normal form by
the addition of the universal reduction rule, which derives C from C ∨x when x
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is universally quantified and is at the highest (inner-most) quantifier level of all
variables appearing in C. This proof system is known as QU-Resolution (QU-
Res) [15]. In Q-Resolution [12], the pivot in the resolution rule is restricted to
existentially quantified variables.

Since search-based SAT solvers have proved successful, it is natural that
this approach has been extended to QBF, for example in the solver depQBF
[13]. The basic search procedure for QBF must assign variables according to the
order of the quantifier prefix, starting from the outermost block. Therefore, as
DPLL corresponds to tree-like Resolution, so QDPLL corresponds to tree-like
level-ordered Q-Resolution.

Definition 1 ([11]). Let π be a Q-Resolution refutation of a QBF. We say that
π is level-ordered if and only if the following holds: Let x ∨ C1 and ¬x ∨ C2

be some clauses resolved in π. Then lv(y) ≤ lv(x) for any existential variable
y ∈ var(C1 ∨ C2).

We may assume without loss of generality that all proof steps with pivot at
level i in the quantifier prefix must be carried out before any proof steps with
pivot at level j < i.

Long-distance Resolution (LDQ-Res) [1] allows universal literals u and ¬u to
appear in the two clauses being resolved together provided that the resolution
variable x is at a lower quantification level than u. The opposing literals are
merged to form the special universal literal u∗. Formally,

C1 ∨ U1 ∨ x C2 ∨ U2 ∨ ¬x
C1 ∨ C2 ∨ U

where x is existentially quantified. C1 and C2 must not contain any comple-
mentary literals or special universal literals. U1 and U2 contain only universal
literals appearing later in the quantifier prefix than the pivot x, every literal in
U1 is a special universal literal, or has its complement in U2 (and vice versa).
Then U = {u∗|u ∈ var(U1)}. The literal u∗ can be ∀-reduced in the same way
as any other universal literal.

Note that while QU-Resolution and LDQ-Res are exponentially separated
from Q-Resolution [15, 9], it is easy to see that they do not reduce proof size
when the proof is required to be level-ordered. It has been shown that even
with clause learning and other heuristics, it is impossible for a search-based
QBF solver to produce a refutation that is not level-ordered on some input
formulas [10].

2.4. Size and width

The size of a proof π is written |π| and is the number of clauses in π (equiva-
lently, the number of nodes in the associated tree or DAG). The size of deriving
a clause C from Φ (in proof system P ), denoted SP (Φ ` C), is the minimum
size of any P -proof of C from Φ. We drop the subscripts indicating the proof
system under consideration if it is already clear from the context.

The width w(C) of a clause C is the number of existential variables it con-
tains. The width w(Φ) of a QBF Φ is the maximum width of a clause in Φ.
Similarly, the width w(π) of derivation π is the maximum width of any clause
contained in π. The width of deriving a clause C from Φ (in proof system P ),
denoted wP (Φ ` C), is the minimum width of any P -proof of C from Φ.
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For tree-like propositional Resolution, Ben-Sasson and Wigderson [3] showed
that w(φ ` ⊥) ≤ w(φ)+ lg(S(φ ` ⊥)), and a similar relation holds for DAG-like
Resolution, w(φ ` ⊥) ≤ w(φ) +O(

√
n lnS(φ)).

3. Negative results

We revisit the counterexample for the size-width relation in tree-like Q-
Resolution from [5].

Proposition 2 ([5]). There is a family of false QBF sentences Φn over O(n2)
variables, such that w(Φn) = 3 and in tree-like Q-Resolution S(Φn ` ⊥) =
nO(1), and w(Φn ` ⊥) = Ω(n).

To prove this proposition, the following QBFs, introduced in [11], are used.

Φn = ∃x1,1 . . . x1,n . . . xn,n∀z∃a1 . . . an, b1 . . . bn, y0 . . . yn, p0 . . . pn
n∧

i,j=1

(xi,j ∨ z ∨ ai) ∧
n∧

i,j=1

(¬xi,j ∨ ¬z ∨ bj) (1)

∧¬y0 ∧
n∧

i=1

(yi−1 ∨ ¬ai ∨ ¬yi) ∧ yn (2)

∧¬p0 ∧
n∧

j=1

(pj−1 ∨ ¬bj ∨ ¬pj) ∧ pn (3)

There are O(n2)-size tree-like Q-Resolution refutations:

1. Collapse the clauses in (2) and (3) to
∨n

i=1 ¬ai and
∨n

j=1 ¬bj (O(n) steps).

2. Resolve
∨n

i=1 ¬ai with (xi,j ∨ z ∨ ai) for fixed j and i ranging from 1 to
n. Then ∀-reduce z, giving

∧n
i=1 xi,j (O(n) steps for each j).

3. Resolve
∧n

i=1 xi,j with (¬xi,j ∨ ¬z ∨ bj) for fixed j and i = 1 . . . n, now we
have

∧n
j=1 (bj ∨ ¬z) (O(n) steps for each j).

4. Resolve all (bj ∨ ¬z) with
∨n

j=1 ¬bj and ∀-red ¬z to reach the empty clause
(O(n) steps).

Then we show that any valid Q-Resolution refutation must be wide, by argu-
ing that the clause immediately following the first ∀-red step in any refutation of
Φn must have width Ω(n). We do not repeat the full argument here, the idea is
that in order to perform ∀-red on z (w.l.o.g.), some ai must be removed from a
clause (xi,j ∨z∨ai). Doing so necessarily introduces another a literal negatively
(perhaps via the intermediate introduction of a y literal), and to remove this
introduces another (different) xi,j , which must remain until after the ∀-red, as
well as another positive a literal. This repeats and ensures that n different xi,j
literals must collect in the clause before it is free of ai and yi literals and the
∀-red can be performed.

It was left open in [5] whether the size-width relation holds for extensions
of Q-Resolution. We begin by demonstrating that simple modifications of this
example, inspired by [2], show that the result also fails for the tree-like versions
of QU-Res and LDQ-Res.
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Proposition 3. There is a family of false QBF sentences Φ′n over O(n2) vari-
ables, such that w(Φ′n) = 3 and in tree-like QU-Resolution S(Φ′n ` ⊥) = nO(1),
and w(Φ′n ` ⊥) = Ω(n).

Proof. Modify Φn to Φ′n by adding another universal variable z′ at the same level
as z. Replace (1) with

∧n
i,j=1 (xi,j ∨ z ∨ z′ ∨ ai)∧

∧n
i,j=1 (¬xi,j ∨ ¬z ∨ ¬z′ ∨ bj).

The size O(n2) refutation of Φn is trivially extended to a refutation of Φ′n by
performing a ∀-reduction step on z′ immediately after any ∀-reduction step on z.
It is simple to confirm that the proof remains valid. In particular, any resolution
step that could be blocked by z′ in Φ′n would already have been blocked by z
in Φ.

The duplication of the universal variable also ensures that universal resolu-
tion cannot result in narrower proofs compared to Q-Resolution. This is simply
because we have ensured that every universal literal in the input formula has its
complement only in clauses which also conflict on another variable. In addition,
any derived clause must contain all of the universal variables from its parents
unless it is derived by ∀-reduction or universal resolution. Therefore universal
resolution is forbidden until some ∀-reduction step has occurred, until this point
we may only use existential resolution. The argument sketched above therefore
readily applies to show that the clause immediately following the first ∀-red step
in any refutation of Φn must have width Ω(n).

The idea of duplicating universal variables can be applied to any formula
to prevent universal resolution steps from being possible. In particular, since
we know of a family of formulas with long refutations and small width in Q-
Resolution, we can also construct similar formulas with long refutations and
small width in QU-Resolution.

Proposition 4. There is a family of false QBF sentences Φ′′n over O(n2) vari-
ables, such that w(Φ′′n) = 3 and in tree-like LDQ-Resolution S(Φ′′n ` ⊥) = nO(1),
and w(Φ′′n ` ⊥) = Ω(n).

Proof. In this case Φn is modified by replacing lines (2) and (3) with ¬y0 ∧∧n
i=1 (yi−1 ∨ ¬ai ∨ ¬yi ∨ z) ∧ yn and ¬p0 ∧

∧n
j=1 (pj−1 ∨ ¬bj ∨ ¬pj ∨ ¬z) ∧ pn

respectively. This does not affect satisfiability since these clauses are only rele-
vant under one or other of the assignments to z. The same O(n2) refutation of
the original formula applies to give the size upper bound.

For the width lower bound note that long-distance steps are impossible in
refuting this formula. The only long-distance steps that could be performed are
on some xi,j variable prior to any ∀-reduction in the clauses involved. Then the
parent clauses contain some a, b, y, or p literal, as well as the special universal
z∗. In order for the derived clause to form part of the refutation, ai (without
loss of generality) would need to be removed via resolution at some later point.
This is now impossible. The only input clause that contains ¬ai also contains z,
and any derived clause containing ¬ai must also contain z because ∀-reduction
is blocked by ¬ai. None of these clauses can be resolved with a clause containing
z∗, so no long-distance resolution step can apply before at least one ∀-red step,
until then we are restricted to standard resolution steps, and so again the clause
following the first ∀-red must have width Ω(n).
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4. Relating size and width in tree-like level-ordered Q-Resolution

Suppose we have a Resolution refutation of some propositional formula φ.
The final step in the proof resolves x and ¬x. So we also have a derivation from
φ to x (and also ¬x), that is, φ implies x (¬x). A crucial part of Ben-Sasson
and Wigderson’s argument in [3] rests on the observation that this derivation
of x can be easily transformed into a refutation of φ[x/0], by simply applying
the assignment x = 0 to every clause in the derivation.

This does not hold in general in Q-Resolution, even in the tree-like case.
Indeed, it is possible to have a Q-Resolution derivation from Φ to u, a universal
variable not at the outermost level in the prefix, where Φ[u/0] is not even false.
The restricted derivation only remains valid if no clause has been satisfied by
the assignment. Therefore, if we have a derivation of x, and so wish to restrict
by x = 0, we must know that ¬x does not appear in any clause in the derivation.
We show that this property holds for tree-like level-ordered Q-Resolution proofs.

Definition 5 (Regularity). A refutation π of Φ is regular if along any path
from root to leaf no two nodes are associated with the same variable.

Lemma 6. Any tree-like level-ordered Q-Resolution refutation may be assumed
to be regular.

Proof. Each path must remove variables in the order of the prefix, so a contigu-
ous (possibly empty) section of the path relates to each level. We show that
any repeated pivot within such a section of the path can be removed without
increasing the size of the proof.

For a section corresponding to a universal quantifier block, a series of ∀-
reduction steps are applied successively to a single input clause, which cannot
contain both u and ¬u, so there can be no ∀-reduction steps on opposing literals
in a single branch. Since the only condition for carrying out ∀-reduction is that
no literal is in the clause from a higher quantification level, the ∀-reduction steps
in this block can be reordered and repetitions collapsed to a single step.

For resolution steps, consider two consecutive resolution steps on a branch
with pivot x (i.e., between these two steps all have pivot different to x). First
(closest to the leaves in the proof tree), A ∨ x and B ∨ ¬x are resolved to give
A ∨ B which does not contain variable x. Continuing along this branch, x
is reintroduced during some other resolution step. Without loss of generality
assume x is reintroduced positively, and later side clause E∨¬x is resolved with
clause D∨x from our branch. Between the two resolution steps it is not possible
that x appeared negatively in any clause, else some clause is a tautology or the
two steps were not consecutive resolutions on x.

Remove the first resolution step and instead of deriving A∨B continue with
A ∨ x. Proceed down the branch, at each node associate a new clause C ′ in
place of C, and a set BC to be the set of literals in C but not in C ′. In place of
C1 = A∨B we have C ′1 = A∨x, and BC1 = B \A. For Ck the result of resolving
Ci and side clause Cj on pivot y, if y ∈ BCi

then C ′k = C ′i, cut out the resolution
step and the branch producing Cj , set BCk

= BCi
∪ Cj \ Ci. Otherwise, y ∈ C ′i

and ¬y ∈ Cj . By assumption Cj does not contain ¬x. Therefore C ′k is the valid
result of resolving C ′i and Cj on y and BCk

= BCi . For all nodes, ¬x /∈ C ′,
C ′ \ x subsumes C, and from the point at which x was reintroduced to the
branch in the original refutation, the new clause properly subsumes the old.
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Any consecutive nodes with identical associated clauses can be merged, and we
have removed at least one resolution step to construct a new refutation no larger
than the original. The new refutation remains tree like and level ordered.

Lemma 7. Let π be a regular refutation of Φ. If the final step of π is resolution
on x then π[x/0] is a refutation of Φ[x/0] and π[x/1] is a refutation of Φ[x/1].
If the final step of π is ∀-reduction on x then either π[x/0] is a refutation of
Φ[x/0] or π[x/1] is a refutation of Φ[x/1].

Proof. In all cases consider an input to the final proof step. This will be a
clause consisting of a single literal: without loss of generality, the clause {x}. In
π[x/0] this clause becomes the empty clause. Every proof step in the restricted
proof remains valid unless it is a ∀-reduction on x (impossible by assumption
of regularity), or (one of) the input(s) to the proof step has been satisfied in
the restriction. If a clause in π is satisfied by the restriction then that clause
originally contained ¬x. Since the final clause did not contain ¬x this literal
must have been removed from a clause in an intermediate step, but this contra-
dicts the assumption of regularity. All input clauses to π[x/0] therefore belong
to Φ[x/0], and π[x/0] is a valid refutation of Φ[x/0].

Lemma 8. Let Φ be a QBF, C a clause, and x an existentially quantified vari-
able in the outermost quantifier block of Φ. In Q-Resolution, if w (Φ [x/0] ` C) ≤
k then w (Φ ` C ∨ x) ≤ k + 1.

Proof. Let π be a width k Q-Resolution derivation of C from Φ [x/0]. Add x
into every clause of π. We claim that the result is a valid derivation of C ∨ x.

For C an initial clause in Φ [x/0], C ∨x is either an initial clause of Φ or can
be obtained from an initial clause by weakening. For C in π and not an initial
clause, either C is the result of a resolution step or a universal reduction step.

If C is the result of resolving A and B then C ∨x can be derived from A∨x
and B∨x. Neither A nor B can contain ¬x so the resolution step is not blocked.

If C is the result of a universal reduction from A then C ∨ x is the result of
universal reduction from A ∨ x. Since x is in the outermost quantifier block it
cannot block any universal reduction step because every universal variable is at
a higher quantification level.

The width of every clause in the derivation is increased by 1, and so the
width of the whole proof is increased by 1.

Similarly, if w (Φ [x/1] ` C) ≤ k then w (Φ ` C ∨ ¬x) ≤ k + 1. Also in the
following, all [x/0] may be swapped for [x/1] and vice versa.

Lemma 9. Let Φ be a QBF and x an existentially quantified variable in the
outermost quantifier block of Φ. In Q-Resolution, if w(Φ [x/0] ` ⊥) ≤ k − 1
and w(Φ [x/1] ` ⊥) ≤ k then w(Φ ` ⊥) ≤ max{k,w (Φ)}. For x universally
quantified in the outermost quantifier block, if w(Φ [x/0] ` ⊥) ≤ k then w(Φ `
⊥) ≤ k.

Proof. If x is existentially quantified then since w(Φ[x/0] ` ⊥) ≤ k − 1 we
have also that w(Φ ` x) ≤ k by Lemma 8. Resolve x with every clause in Φ
containing ¬x, the resulting collection of clauses are exactly those in the matrix
of Φ[x/1], and from these we can derive ⊥ in width k. The total width of the
derivation is max{k,w (Φ)}.
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If x is universally quantified then {x} can be derived in width k and ∀-
reduction derives ⊥. The width of the derivation is k since universally quantified
variables do not contribute to the width of a clause.

We can now state the relation between width in Q-Resolution and size in
level-ordered Q-Resolution.

Theorem 10. wQ(Φ ` ⊥) ≤ w(Φ) + dlgSL(Φ ` ⊥)e, where Q is Q-Resolution
and L is level-ordered tree-like Q-Resolution.

Proof. We begin with a level-ordered refutation π of Φ. Let b = dlgSL(Φ ` ⊥)e
so that SL(Φ ` ⊥) ≤ 2b. If b = 0 then the empty clause is in Φ, so both w(Φ)
and wQ(Φ ` ⊥) are 0 and we are done.

Otherwise the last step of the proof may be a universal reduction x
⊥ or a

resolution step x ¬x
⊥ where x is in the outermost quantifier block.

In the case of universal reduction, consider πx, the derivation of x. πx[x/0]
is a level-ordered refutation of Φ[x/0] of size Sx. By induction on the number of
variables in Φ we have that wQ(Φ[x/0] ` ⊥) ≤ w(Φ[x/0])+dlgSxe. By Lemma 9,
Φ ` ⊥ has the same width as the restricted proof, and w(Φ[x/0]) = w(Φ), so
the result follows.

In the case of resolution being the last step, consider πx and π¬x, the level-
ordered derivations of x and ¬x, of sizes Sx and S¬x, respectively. πx[x/0] is a
level-ordered refutation of Φ[x/0] of size Sx. SL(Φ ` ⊥) = Sx+S¬x+1. Without
loss of generality, Sx ≤ 2b−1 so by induction on b, there is a (possibly not level-
ordered) proof with wQ(Φ[x/0] ` ⊥) ≤ w(Φ[x/0])+b−1 ≤ w(Φ)+b−1, and by
induction on the number of variables in Φ, wQ(Φ[x/1] ` ⊥) ≤ w(Φ[x/1]) + b ≤
w(Φ) + b. x is outermost so by Lemma 9 we can use these two refutations
to construct a refutation of Φ with width at most w(Φ) + b and the result
follows.

In the proof of Theorem 10, we begin with a small level-ordered proof and
construct another proof from it which has small width. However, during the
construction, the proof loses the level-ordered property. It is not in general
possible to construct a level-ordered proof with small width, as demonstrated
by the following counter-example

Φ = ∃x1 . . . xn∀z∃a1 . . . an, y0 . . . yn
(¬y0) ∧ (yn) ∧

∧
i∈[n]

(¬xi) ∧ (z ∨ ai) ∧ (yi−1 ∨ ¬ai ∨ xi ∨ ¬yi) .

All clauses are needed to refute Φ. Any level-ordered proof must carry out all res-
olution steps on yi variables before resolving on xi variables, and it is simple to
verify that doing so must result in a clause that contains all xi variables. There is
a short tree-like level-ordered refutation which collapses (yi−1 ∨ ¬ai ∨ xi ∨ ¬yi)
together to (¬a1 ∨ . . . ∨ ¬an ∨ x1 ∨ . . . ∨ xn), then resolves this with all (z ∨ ai),
removes z and finally refutes

∧
i∈[n] (¬xi) ∧ (x1 ∨ . . . ∨ xn), all of which takes

linear size.
Additionally, Theorem 10 cannot be lifted to DAG-like level-ordered Q-

Resolution since for the counter-example given in [5] for DAG-like Q-Resolution,
the short proof discussed in [5] is level-ordered and directly applies here. A cru-
cial part of the argument in the propositional case is to carefully select the next
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variable to use in restricting the refutation, but it is not possible in general to
ensure that this variable belongs to a particular level of the prefix.

5. Conclusion

We have demonstrated that the result of [3] can be lifted to relate two
variants of Q-Resolution, highlighting an interesting relationship between level-
ordered and non level-ordered proofs in Q-Resolution. Level ordered Q-Resolution
is important since it corresponds to the QDPLL algorithm that underlies some
modern QBF solving algorithms, so a mechanism to lower bound the size of
proofs is useful in understanding the strength of search-based QBF solvers.
Removing either the restriction that the proof must be level-ordered, or the
restriction that it must be tree like, is sufficient to lose the desired behaviour.
We have also answered the open question from [5] regarding extensions of Q-
Resolution, by demonstrating how the counterexamples may be lifted to these
stronger calculi.

[1] Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and
its applications. Formal Methods in System Design, 41(1):45–65, 2012.

[2] Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF reso-
lution systems and their proof complexities. In SAT’14, pages 154–169,
2014.

[3] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution
made simple. Journal of the ACM, 48(2):149–169, 2001.

[4] Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. Lower bounds: From
circuits to QBF proof systems. In Proc. ACM Conference on Innovations
in Theoretical Computer Science (ITCS’16), pages 249–260. ACM, 2016.

[5] Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Are
short proofs narrow? QBF resolution is not so simple. ACM Transactions
on Computational Logic. To appear. Preliminary version in the proc. of the
conference STACS 2016.

[6] Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible
interpolation for QBF resolution calculi. Logical Methods in Computer
Science, 13, 2017.

[7] Samuel R. Buss. Towards NP-P via proof complexity and search. Ann.
Pure Appl. Logic, 163(7):906–917, 2012.

[8] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Commun. ACM, 5(7):394–397, July 1962.

[9] Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution:
Proof generation and strategy extraction in search-based QBF solving. In
Logic for Programming, Artificial Intelligence, and Reasoning - 19th Inter-
national Conference, LPAR-19, pages 291–308, 2013.
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