
On The Hardness of Approximate and Exact (Bichromatic)
Maximum Inner Product

Lijie Chen∗

MIT

Abstract

In this paper we study the (Bichromatic) Maximum Inner Product Problem (Max-IP), in which we
are given sets A and B of vectors, and the goal is to find a ∈ A and b ∈ B maximizing inner product
a · b. Max-IP is very basic and serves as the base problem in the recent breakthrough of [Abboud et al.,
FOCS 2017] on hardness of approximation for polynomial-time problems. It is also used (implicitly)
in the argument for hardness of exact `2-Furthest Pair (and other important problems in computational
geometry) in poly-log-log dimensions in [Williams, SODA 2018]. We have three main results regarding
this problem.

• Characterization of Multiplicative Approximation. First, we study the best multiplicative ap-
proximation ratio for Boolean Max-IP in sub-quadratic time. We show that, for Max-IP with two
sets of n vectors from {0, 1}d, there is an n2−Ω(1) time (d/ log n)

Ω(1)-multiplicative-approximating
algorithm, and we show this is conditionally optimal, as such a (d/ log n)

o(1)-approximating algo-
rithm would refute SETH.

• Characterization of Additive Approximation. Second, we achieve a similar characterization for
the best additive approximation error to Boolean Max-IP. We show that, for Max-IP with two
sets of n vectors from {0, 1}d, there is an n2−Ω(1) time Ω(d)-additive-approximating algorithm,
and we show this is conditionally optimal, as such an o(d)-approximating algorithm would refute
SETH.

• 2O(log∗ n)-dimensional Hardness for Exact Max-IP Over The Integers. Last, we revisit the
hardness of solving Max-IP exactly for vectors with integer entries. We show that, under SETH,
for Max-IP with sets of n vectors from Zd for some d = 2O(log∗ n), every exact algorithm requires
n2−o(1) time. With the reduction from [Williams, SODA 2018], it follows that `2-Furthest Pair
and Bichromatic `2-Closest Pair in 2O(log∗ n) dimensions require n2−o(1) time.

The lower bounds in our first and second results make use of a new MA protocol for Set-Disjointness
introduced in [Rubinstein, 2017]. Our algorithms utilize the polynomial method and simple random
sampling. Our third result follows from a new dimensionality self reduction from the Orthogonal Vectors
problem for n vectors from {0, 1}d to n vectors from Z` using Chinese Remainder Theorem, where
` = 2O(log∗ d), dramatically improving the previous reduction in [Williams, SODA 2018].

We also establish a connection between conditional lower bounds for exact Max-IP with integer en-
tries and NP·UPP communication protocols for Set-Disjointness, parallel to the connection between con-
ditional lower bounds for approximating Max-IP and MA communication protocols for Set-Disjointness.
Moreover, as a side product, we obtain an MA communication protocol for Set-Disjointness with com-
plexity O

(√
n log n log log n

)
, slightly improving the O

(√
n log n

)
bound [Aaronson and Wigderson,

TOCT 2009], and approaching the Ω(
√
n) lower bound [Klauck, CCC 2003].

∗Email: lijieche@mit.edu. Supported by an Akamai Fellowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 26 (2018)

1 Introduction

We study the following fundamental problem from similarity search and statistics, which asks to find the
most correlated pair in a dataset:

Definition 1.1 (Bichromatic Maximum Inner Product (Max-IP)). For n, d ∈ N, the Max-IPn,d problem is
defined as: given two sets A,B of vectors from {0, 1}d compute

OPT(A,B) := max
a∈A,b∈B

a · b.

We use Z-Max-IPn,d (R-Max-IPn,d) to denote the same problem, but with A,B being sets of vectors
from Zd (Rd).

Hardness of Approximation Max-IP. A natural brute-force algorithm solves Max-IP in O(n2 · d)-time.
Assuming SETH1, there is no n2−Ω(1)-time algorithm for Max-IPn,d when d = ω(log n) [Wil05].

Despite being one of the most central problems in similarity search and having numerous applica-
tions [IM98, AI06, RR+07, RG12, SL14, AINR14, AIL+15, AR15, NS15, SL15, Val15, AW15, KKK16,
APRS16, TG16, CP16, Chr17], until recently it was unclear whether there could be a near-linear-time, 1.1-
approximating algorithm, before the recent breakthrough of Abboud, Rubinstein and Williams [ARW17]
(see [ARW17] for a thorough discussion on the state of affairs on hardness of approximation in P before
their work). In [ARW17], it is shown that:

Theorem 1.2 ([ARW17]). Assuming SETH, there is no 2(logn)1−o(1)-multiplicative-approximating n2−Ω(1)-
time algorithm for Max-IPn,no(1) .

Theorem 1.2 is an exciting breakthrough for hardness of approximation in P, implying other important
inapproximability results for a host of problems including Bichromatic LCS Closest Pair Over Permutations,
Approximate Regular Expression Matching, and Diameter in Product Metrics [ARW17]. However, we still
do not have a complete understanding of the approximation hardness of Max-IP yet. For instance, consider
the following two concrete questions:

Question 1. Is there a (log n)-multiplicative-approximating n2−Ω(1)-time algorithm for Max-IPn,log2 n?
What about a 2-multiplicative-approximating for Max-IPn,log2 n?

Question 2. Is there a (d/ log n)-additive-approximating n2−Ω(1)-time algorithm for Max-IPn,d?

We note that the lower bound from [ARW17] cannot answer Question 1. Tracing the details of their
proofs, one can see that it only shows approximation hardness for dimension d = logω(1) n. Question 2
concerning additive approximation is not addressed at all by [ARW17]. Given the importance of Max-IP, it
is interesting to ask:

For what ratios r do n2−Ω(1)-time r-approximation algorithms exist for Max-IP?

Does the best-possible approximation ratio (in n2−Ω(1) time) relate to the dimensionality, in some way?
In this paper we provide full characterizations, determining essentially optimal multiplicative approxi-

mations and additive approximations to Max-IP, under SETH.

1SETH (Strong Exponential Time Hypothesis) states that for every ε > 0 there is a k such that k-SAT cannot be solved in
O((2− ε)n) time [IP01].

2

Hardness of Exact Z-Max-IP. Recall that from [Wil05], there is no n2−Ω(1)-time algorithm for exact
Boolean Max-IPn,ω(logn). Since in real life applications of similarity search, one often deals with real-
valued data instead of just Boolean data, it is natural to ask about Z-Max-IP (which is certainly a special
case of R-Max-IP): what is the maximum d such that Z-Max-IPn,d can be solved exactly in n2−Ω(1) time?

Besides being interesting in its own right, there are also reductions from Z-Max-IP to `2-Furthest Pair
and Bichromatic `2-Closest Pair. Hence, lower bounds for Z-Max-IP imply lower bounds for these two
famous problems in computational geometry (see [Wil18] for a discussion on this topic).

Prior to our work, it was implicitly shown in [Wil18] that:

Theorem 1.3 ([Wil18]). Assuming SETH, there is no n2−Ω(1)-time algorithm for Z-Max-IPn,ω((log logn)2)

with vectors of O(log n)-bit entries.

However, the best known algorithm for Z-Max-IP runs in n2−Θ(1/d) time [Mat92, AESW91, Yao82]2,
hence there is still a gap between the lower bound and the best known upper bounds. To confirm these
algorithms are in fact optimal, we would like to prove a lower bound with ω(1) dimensions.

In this paper, we significantly strength the previous lower bound from ω((log log n)2) dimensions to
2O(log∗ n) dimensions (2O(log∗ n) is an extremely slow-growing function, see preliminaries for its formal
definition).

1.1 Our Results

We use OVn,d to denote the Orthogonal Vectors problem: given two sets of vectors A,B each consisting of
n vectors from {0, 1}d, determine whether there are a ∈ A and b ∈ B such that a · b = 0.3 Similarly, we use
Z-OVn,d to denote the same problem except for that A,B consists of vectors from Zd (which is also called
Hopcroft’s problem).

All our results are based on the following widely used conjecture about OV:

Conjecture 1.4 (Orthogonal Vectors Conjecture (OVC) [Wil05, AVW14]). For every ε > 0, there exists a
c ≥ 1 such that OVn,d requires n2−ε time when d = c log n.

OVC is a plausible conjecture as it is implied by the popular Strong Exponential Time Hypothesis [IP01,
CIP09] on the time complexity of solving k-SAT [Wil05, WY14].

Characterizations of Hardness of Approximate Max-IP

The first main result of our paper characterizes when there is a truly sub-quadratic time (n2−Ω(1) time, for
some universal constant hidden in the big-Ω) t-multiplicative-approximating algorithm for Max-IP, and
characterizes the best-possible additive approximations as well. We begin with formal definitions of these
two standard types of approximation:

• We say an algorithm A for Max-IPn,d (Z-Max-IPn,d) is t-multiplicative-approximating, if for all
A,B, A outputs a value ÕPT(A,B) such that ÕPT(A,B) ∈ [OPT(A,B),OPT(A,B) · t].

• We say an algorithm A for Max-IPn,d (Z-Max-IPn,d) is t-additive-approximating, if for all A,B, A
outputs a value ÕPT(A,B) such that |ÕPT(A,B)−OPT(A,B)| ≤ t.

• To avoid ambiguity, we call an algorithm computing OPT(A,B) exactly an exact algorithm for
Max-IPn,d (Z-Max-IPn,d).

2[AESW91, Yao82] are for `2-Furthest Pair or Bichromatic `2-Closest Pair. They also work for Z-Max-IP as there are reductions
from Z-Max-IP to these two problems, see [Wil18] or Lemma 4.5 and Lemma 4.6.

3Here we use the bichromatic version of OV instead of the monochromatic one for convenience, as they are equivalent.

3

Multiplicative Approximations for Max-IP. In the multiplicative case, our characterization (formally
stated below) basically says that there is a t-multiplicative-approximating n2−Ω(1)-time algorithm for Max-IPn,d
if and only if t = (d/ log n)Ω(1). Note that in the following theorem we require d = ω(log n), since in the
case of d = O(log n), there are n2−ε-time algorithms for exact Max-IPn,d [AW15, ACW16].

Theorem 1.5. Letting ω(log n) < d < no(1) and t ≥ 2,4 the following holds:

1. There is an n2−Ω(1)-time t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ log n)Ω(1) ,

and under SETH (or OVC), there is no n2−Ω(1)-time t-multiplicative-approximating algorithm for
Max-IPn,d if

t = (d/ log n)o(1) .

2. Moreover, let ε = min

(
log t

log(d/ log n)
, 1

)
. There are t-multiplicative-approximating deterministic

algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1

ε−1+0.31
2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1

ε−1+0.17
2 · polylog(n)

)
= O

(
n2−Ω(ε) · polylog(n)

)
.

Remark 1.6. The first algorithm is slightly faster, but only truly quadratic when ε = Ω(1), while the second
algorithm still gets a non-trivial speed up over the brute force algorithm as long as ε = ω(log log n/ log n).

We remark here that the above algorithms indeed work for the case where the sets consisting of non-
negative reals (i.e., R+-Max-IP):

Corollary 1.7. Assuming ω(log n) < d < no(1) and letting ε = min

(
log t

log(d/ log n)
, 1

)
, there is a t-

multiplicative-approximating deterministic algorithm for R+-Max-IPn,d running in time

O
(
n2−Ω(ε) · polylog(n)

)
.

Our lower bound is achieved by combining the framework of [ARW17], which applies an MA-protocol
for Set-Disjointness to yield a reduction from OV to approximating Max-IP, and the new improved MA
protocols by using AG-codes [KLM17, Rub17]. Our upper bounds are application of the polynomial
method [Wil14, AWY15]: defining appropriate sparse polynomials for approximating Max-IP on small
groups of vectors, and use fast matrix multiplication to speed up the evaluation of these polynomials on
many pairs of points.

Via the known reduction from Max-IP to LCS-Pair in [ARW17], we also obtain a more refined lower
bound for approximating the LCS Closest Pair problem (defined below).

Definition 1.8 (LCS Closest Pair). The LCS-Closest-Pairn,d problem is: given two sets A,B of n strings
from Σd (Σ is a finite alphabet), determine

max
a∈A,b∈B

LCS(a, b),

where LCS(a, b) is the length of the longest common subsequence of strings a and b.

Corollary 1.9 (Improved Inapproximability for LCS-Closest-Pair). Assuming SETH (or OVC), for every
t ≥ 2, t-multiplicative-approximating LCS-Closest-Pairn,d requires n2−o(1) time, if d = tω(1) · log5 n.

4Note that t and d are both functions of n, we assume they are computable in no(1) time throughout this paper for simplicity.

4

A Different Approach Based on Approximate Polynomial for OR. Making use of the O(
√
n)-degree

approximate polynomial for OR [BCDWZ99, dW08], we also give a completely different proof for the
hardness of multiplicative approximation to {−1, 1}-Max-IP.5 Lower bound from that approach is inferior
to Theorem 1.5: in particular, it cannot achieve a characterization.

It is asked in [ARW17] that whether we can make use of the O(
√
n) BQP communication protocol

for Set-Disjointness [BCW98] to prove conditional lower bounds. Indeed, that quantum communication
protocol is based on theO(

√
n)-time quantum query algorithm for OR (Grover’s algorithm [Gro96]), which

induces the needed approximate polynomial for OR. Hence, the following theorem in some sense answers
their question in the affirmative:

Theorem 1.10 (Informal). Assuming SETH (or OVC), there is no n2−Ω(1) time no(1)-multiplicative-approximating
algorithm for {−1, 1}-Max-IPn,no(1) .

The full statement can be found in Theorem C.1 and Theorem C.2.

Additive Approximations for Max-IP. Our characterization for additive approximations to Max-IP says
that there is a t-additive-approximating n2−Ω(1)-time algorithm for Max-IPn,d if and only if t = Ω(d).

Theorem 1.11. Letting ω(log n) < d < no(1) and 0 ≤ t ≤ d, the following holds:

1. There is an n2−Ω(1)-time t-additive-approximating algorithm for Max-IPn,d if

t = Ω(d),

and under SETH (or OVC), there is no n2−Ω(1)-time t-additive-approximating algorithm for Max-IPn,d
if

t = o(d).

2. Moreover, letting ε =
t

d
, there is an

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating randomized algorithm for Max-IPn,d when ε� log6 log n/ log3 n.

The lower bound here is established similarly as in the multiplicative case, while the upper bound works
by reducing the problem to the d = O(log n) case via random-sampling coordinates, and solving the reduced
problem via known methods [AW15, ACW16].

All-Pair-Max-IP. Finally, we remark here that our algorithms (with slight adaptions) also work for the
following stronger problem6: All-Pair-Max-IPn,d, in which we are given two sets A and B of n vec-
tors from {0, 1}d, and for each x ∈ A we must compute OPT(x,B) := max

y∈B
x · y. An algorithm is t-

multiplicative-approximating (additive-approximating) for All-Pair-Max-IP if for all OPT(x,B)’s, it com-
putes corresponding approximating answers.

Corollary 1.12. Suppose ω(log n) < d < no(1), and let

εM := min

(
log t

log(d/ log n)
, 1

)
and εA :=

min(t, d)

d
.

There is an n2−Ω(εM) polylog(n) time t-multiplicative-approximating algorithm and an n2−Ω(ε
1/3
A / log ε−1

A)

time t-additive-approximating algorithm for All-Pair-Max-IPn,d, when εA � log6 log n/ log3 n.
5That is, Max-IP with sets A and B being n vectors from {−1, 1}d.
6Since All-Pair-Max-IP is stronger than Max-IP, lower bounds for Max-IP automatically apply for All-Pair-Max-IP.

5

Hardness of Exact Z-Max-IP in 2O(log∗ n) Dimensions

Thirdly, we show that Z-Max-IP is hard to solve in n2−Ω(1) time, even with 2O(log∗ n)-dimensional vectors:

Theorem 1.13. Assuming SETH (or OVC), there is a constant c such that any exact algorithm for Z-Max-IPn,d
for d = clog∗ n dimensions requires n2−o(1) time, with vectors of O(log n)-bit entries.

As direct corollaries of the above theorem, using reductions implicit in [Wil18], we also conclude hard-
ness for `2-Furthest Pair and Bichromatic `2-Closest Pair under SETH (or OVC) in 2O(log∗ n) dimensions.

Theorem 1.14 (Hardness of `2-Furthest Pair in clog∗ n Dimensions). Assuming SETH (or OVC), there is a
constant c such that `2-Furthest Pair in clog∗ n dimensions requires n2−o(1) time, with vectors ofO(log n)-bit
entries.

Theorem 1.15 (Hardness of Bichromatic `2-Closest Pair in clog∗ n Dimensions). Assuming SETH (or OVC),
there is a constant c such that Bichromatic `2-Closest Pair in clog∗ n dimensions requires n2−o(1) time, with
vectors of O(log n)-bit entries.

The above lower bounds on `2-Furthest Pair and Bichromatic `2-Closest Pair are in sharp contrast with
the case of `2-Closest Pair, which can be solved in 2O(d) · n logO(1) n time [BS76, KM95, DHKP97].

Improved Dimensionality Reduction for OV and Hopcroft’s Problem

Our hardness of Z-Max-IP is established by a reduction from Hopcroft’s problem, whose hardness is in turn
derived from the following significantly improved dimensionality reduction for OV.

Lemma 1.16 (Improved Dimensionality Reduction for OV). Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log

∗ d·(d/`)) · poly(d)
)

-time

reduction from OVn,d to `O(6log
∗ d·(d/`)) instances of Z-OVn,`+1, with vectors of entries with bit-length

O
(
d/` · log ` · 6log∗ d

)
.

Comparison with [Wil18]. Comparing to the old construction in [Wil18], our reduction here is more
efficient when ` is much smaller than d (which is the case we care about). That is, in [Wil18], OVn,d can be

reduced to dd/` instances of Z-OVn,`+1, while we get
{
`6

log∗ d
}d/`

instances in our improved one. So, for

example, when ` = 7log∗ d, the old reduction yields dd/7
log∗ d

= nω(1) instances (recall that d = c log n for
an arbitrary constant c), while our improved one yields only no(1) instances, each with 2O(log∗ n) dimensions.

From Lemma 1.16, the following theorem follows in the same way as in [Wil18].

Theorem 1.17 (Hardness of Hopcroft’s Problem in clog∗ n Dimensions). Assuming SETH (or OVC), there
is a constant c such that Z-OVn,clog∗ n with vectors of O(log n)-bit entries requires n2−o(1) time.

Connection between Z-Max-IP lower bounds and NP · UPP communication protocols

We also show a new connection between Z-Max-IP and a special type of communication protocol. Let us
first recall the Set-Disjointness problem:

Definition 1.18 (Set-Disjointness). Let n ∈ N, in Set-Disjointness (DISJn), Alice holds a vector X ∈
{0, 1}n, Bob holds a vector Y ∈ {0, 1}n, and they want to determine whether X · Y = 0.

6

Recall that in [ARW17], the hardness of approximating Max-IP is established via a connection to MA
communication protocols (in particular, a fast MA communication protocol for Set-Disjointness). Our lower
bound for (exact) Z-Max-IP can also be connected to similar NP · UPP protocols (note that MA = NP ·
promiseBPP).

Formally, we define NP · UPP protocols as follows:

Definition 1.19. For a problem Π with inputs x, y of length n (Alice holds x and Bob holds y), we say a
communication protocol is an (m, `)-efficient NP · UPP communication protocol if the following holds:

• There are three parties Alice, Bob and Merlin in the protocol.

• Merlin sends Alice and Bob an advice string z of length m, which is a function of x and y.

• Given y and z, Bob sends Alice ` bits, and Alice decides to accept or not.7 They have an unlim-
ited supply of private random coins (not public, which is important) during their conversation. The
following conditions hold:

– If Π(x, y) = 1, then there is an advice z from Merlin such that Alice accepts with probability
≥ 1/2.

– Otherwise, for all possible advice strings from Merlin, Alice accepts with probability < 1/2.

Moreover, we say the protocol is (m, `)-computational-efficient, if in addition the probability distribu-
tions of both Alice and Bob’s behavior can be computed in poly(n) time given their input and the advice.

Our new reduction from OV to Max-IP actually implies a super-efficient NP · UPP protocol for Set-
Disjointness.

Theorem 1.20. For all 1 ≤ α ≤ n, there is an(
α · 6log∗ n · (n/2α), O(α)

)
-computational-efficient

NP · UPP communication protocol for DISJn.

For example, when α = 3 log∗ n, Theorem 1.20 implies there is an O(o(n), O(log∗ n))-computational-
efficient NP · UPP communication protocol for DISJn. Moreover, we show that if the protocol of The-
orem 1.20 can be improved a little (removing the 6log∗ n term), we would obtain the desired hardness for
Z-Max-IP in ω(1)-dimensions.

Theorem 1.21. Assuming SETH (or OVC), if there is an increasing and unbounded function f such that for
all 1 ≤ α ≤ n, there is an

(n/f(α), α) -computational-efficient

NP · UPP communication protocol for DISJn, then Z-Max-IPn,ω(1) requires n2−o(1) time with vectors of
polylog(n)-bit entries. The same holds for `2-Furthest Pair and Bichromatic `2-Closest Pair.

Improved MA Protocols for Set-Disjointness

Finally, we also obtain a slightly improved MA protocol for Set-Disjointness, which improves on the previ-
ous O(

√
n log n) protocol in [AW09], and is closer to the Ω(

√
n) lower bound by [Kla03].

Theorem 1.22. There is an MA protocol for DISJn with communication complexity

O
(√

n log n log logn
)
.

7In UPP, actually one-way communication is equivalent to the seemingly more powerful one in which they communi-
cate [PS86].

7

1.2 Intuition for Dimensionality Self Reduction for OV

The 2O(log∗ n) factor in Lemma 1.16 is not common in theoretical computer science8, and our new reduction
for OV is considerably more complicated than the polynomial-based construction from [Wil18]. Hence, it
is worth discussing the intuition behind Lemma 1.16, and the reason why we get a factor of 2O(log∗ n).

A Direct Chinese Remainder Theorem Based Approach. We first discuss a direct reduction based on
the Chinese Remainder Theorem (CRT) (see Theorem 2.5 for a formal definition). CRT says that given
a collection of primes q1, . . . , qb, and a collection of integers r1, . . . , rb, there exists a unique integer
t = CRR({ri}; {qi}) such that t ≡ ri (mod qi) for each i ∈ [b] (CRR stands for Chinese Remainder
Representation).

Now, let b, ` ∈ N, suppose we would like to have a dimensionality reduction ϕ from {0, 1}b·` to Z`.
We can partition an input x ∈ {0, 1}b·` into ` blocks, each of length b, and represent each block via CRT:
that is, for a block z ∈ {0, 1}b, we map it into a single integer ϕblock(z) := CRR({zi}; {qi}), and the
concatenations of ϕblock over all blocks of x is ϕ(x) ∈ Z`.

The key idea here is that, for z, z′ ∈ {0, 1}b, ϕblock(z) · ϕblock(z′) (mod qi) is simply zi · z′i. That is,
the multiplication between two integers ϕblock(z) · ϕblock(z′) simulates the coordinate-wise multiplication
between two vectors z and z′!

Therefore, if we make all primes qi larger than `, we can in fact determine x · y from ϕ(x) · ϕ(y), by
looking at ϕ(x) · ϕ(y) (mod qi) for each i. That is,

x · y = 0⇔ ϕ(x) · ϕ(y) ≡ 0 (mod qi) for all i.

Hence, let V be the set of all integer 0 ≤ v ≤ ` ·

(
b∏
i=1

qi

)2

that v ≡ 0 (mod qi) for all i ∈ [b], we have

x · y = 0⇔ ϕ(x) · ϕ(y) ∈ V.

The reduction is completed by enumerating all integers v ∈ V , and appending corresponding values to
make ϕA(x) = [ϕ(x),−1] and ϕB(y) = [ϕ(y), v] (this step is from [Wil18]).

Note that a nice property for ϕ is that each ϕ(x)i only depends on the i-th block of x, and the mapping
is the same on each block (ϕblock); we call this the block mapping property.

Analysis of the Direct Reduction. To continue building intuition, let us analyze the above reduction. The

size of V is the number of Z-OVn,`+1 instances we create, and |V | ≥
b∏
i=1

qi. These primes qi have to

be all distinct, and it follows that
b∏
i=1

qi is bΘ(b). Since we want to create at most no(1) instances (or nε for

arbitrarily small ε), we need to set b ≤ log n/ log logn. Moreover, to base our hardness on OVC which deals
with c log n-dimensional vectors, we need to set b · ` = d = c · log n for an arbitrary constant c. Therefore,
we must have ` ≥ log log n, and the above reduction only obtains the same hardness result as [Wil18].

Key Observation: “Most Space Modulo qi” is Actually Wasted. To improve the above reduction, we
need to make |V | smaller. Our key observation about ϕ is that, for the primes qi’s, they are mostly larger
than b � `, but ϕ(x) · ϕ(y) ∈ {0, 1, . . . , `} (mod qi) for all these qi’s. Hence, “most space modulo qi” is
actually wasted.

8Other examples include an O
(
2O(log∗ n)n4/3) algorithm for Z-OVn,3 [Mat93], and O

(
2O(log∗ n)n logn

)
algorithms (Fürer’s

algorithm with its modifications) for Fast Integer Multiplication [Für09, CT15, HVDHL16].

8

Make More “Efficient” Use of the “Space”: Recursive Reduction. Based on the previous observation,
we want to use the “space modulo qi” more efficiently. It is natural to consider a recursive reduction. We
will require all our primes qi’s to be larger than b. Let bmicro be a very small integer compared to b, and let
ψ : {0, 1}bmicro·` → Z` with a set Vψ and a block mapping ψblock be a similar reduction on a much smaller
input: for x, y ∈ {0, 1}bmicro·`, x · y = 0⇔ ψ(x) ·ψ(y) ∈ Vψ. We also require here that ψ(x) ·ψ(y) ≤ b for
all x and y.

For an input x ∈ {0, 1}b·` and a block z ∈ {0, 1}b of x, our key idea is to partition z again into b/bmicro

“micro” blocks each of size bmicro. And for a block z in x, let z1, . . . , zb/bmicro be its b/bmicro micro blocks,
we map z into an integer ϕblock(z) := CRR({ψblock(zi)}b/bmicro

i=1 ; {qi}b/bmicro

i=1).
Now, given two blocks z, z′ ∈ {0, 1}b, we can see that

ϕblock(z) · ϕblock(z′) ≡ ψblock(zi) · ψblock(z′i) (mod qi).

That is, ϕ(x) · ϕ(y) (mod qi) in fact is equal to ψ(x[i]) · ψ(y[i]), where x[i] is the concatenation of
the i-th micro blocks of x in each block, and y[i] is defined similarly. Hence, we can determine whether
x[i] · y[i] = 0 from ϕ(x) · ϕ(y) (mod qi) for all i, and therefore also determine whether x · y = 0 from
ϕ(x) · ϕ(y).

We can now observe that |V | ≤ bΘ(b/bmicro), smaller than before; thus we get an improvement, de-
pending on how large can bmicro be. Clearly, the reduction ψ can also be constructed from even smaller
reductions, and after recursing Θ(log∗ n) times, we can switch to the direct construction discussed before.
By a straightforward (but tedious) calculation, we can derive Lemma 1.16.

High-Level Explanation on the 2O(log∗ n) Factor. Ideally, we want to have a reduction from OV to Z-OV
with only `O(b) instances, in other words, we want |V | = `O(b). The reason we need to pay an extra 2O(log∗ n)

factor in the exponent is as follows:

In our reduction, |V | is at least
b/bmicro∏
i=1

qi, which is also the bound on each coordinate of the reduction:

ψ(x)i equals to a CRR encoding of a vector with {qi}b/bmicro

i=1 , whose value can be as large as
b/bmicro∏
i=1

qi − 1.

That is, all we want is to control the upper bound on the coordinates of the reduction.
Suppose we are constructing an “outer” reduction ϕ : {0, 1}b·` → Z` from the “micro” reduction

ψ : {0, 1}bmicro·` → Z` with coordinate upper bound Lψ (ψ(x)i ≤ Lψ), and let Lψ = `κ·bmicro (that is, κ is
the extra factor comparing to the ideal case). Recall that we have to ensure qi > ψ(x) · ψ(y) to make our
construction work, and therefore we have to set qi larger than L2

ψ.

Then the coordinate upper bound for ϕ becomes Lϕ =

b/bmicro∏
i=1

qi ≥ (Lψ)2·b/bmicro = `2κ·b. Therefore,

we can see that after one recursion, the “extra factor” κ at least doubles. Since our recursion proceeds in
Θ(log∗ n) rounds, we have to pay an extra 2O(log∗ n) factor on the exponent.

1.3 Related Works

SETH-based Conditional Lower Bound. SETH is one of the most fruitful conjectures in the Fine-
Grained Complexity. There are numerous conditional lower bounds based on it for problems in P among dif-
ferent areas, including: dynamic data structures [AV14], computational geometry [Bri14, Wil18, DKL16],
pattern matching [AVW14, BI15, BI16, BGL16, BK18], graph algorithms [RV13, GIKW17, AVY15, KT17].
See [Vas18] for a very recent survey on SETH-based lower bounds (and more).

9

Hardness of Approximation in P. Making use of Chebychev embeddings, [APRS16] proves a 2
Ω
(√

logn
log logn

)
inapproximability lower bound on {−1, 1}-Max-IP. [KLM17] generalizes the “Distributed PCP” [ARW17]
approach and derives inapproximability result for k-Dominating Set under various assumptions. In par-
ticular, it is shown that under SETH, k-Dominating Set has no (log n)1/poly(k,e(ε)) approximation in nk−ε

time9. [AB17] takes an approach different from “Distributed PCP”, and shows that under certain complexity
assumptions, LCS does not have a deterministic 1 + o(1)-approximation in n2−ε time. They also establish
a connection with circuit lower bounds and show that the existence of such a deterministic algorithm im-
plies ENP does not have non-uniform linear-size Valiant Series Parallel circuits. In [AR18], it is improved
to that any constant factor approximation deterministic algorithm for LCS in n2−ε time implies that ENP

does not have non-uniform linear-size NC1 circuits. See [ARW17] for more related results in hardness of
approximation in P.

Communication Complexity and Conditional Hardness. The connection between communication pro-
tocols (in various model) for Set-Disjointness and SETH dates back at least to [PW10], in which it is shown
that a sub-linear, computational efficient protocol for 3-party Number-On-Forehead Set-Disjointness prob-
lem would refute SETH. And it is worth mentioning that [AR18]’s result builds on the Õ(log n) IP commu-
nication protocol for Set-Disjointness in [AW09].

Organization of the Paper

In Section 2, we introduce the needed preliminaries for this paper. In Section 3, we prove our characteri-
zations for approximating Max-IP and other related results. In Section 4, we prove 2O(log∗ n) dimensional
hardness for Z-Max-IP and other related problems. In Section 5, we establish the connection between
NP · UPP communication protocols and SETH-based lower bounds for exact Z-Max-IP. In Section 6, we
present the O

(√
n log n log logn

)
MA protocol for Set-Disjointness.

2 Preliminaries

We begin by introducing some notation. For an integer d, we use [d] to denote the set of integers from 1 to
d. For a vector u, we use ui to denote the i-th element of u.

We use log(x) to denote the logarithm of x with respect to base 2 with ceiling as appropriate, and ln(x)
to denote the natural logarithm of x.

In our arguments, we use the iterated logarithm function log∗(n), which is defined recursively as follows:

log∗(n) :=

{
0 n ≤ 1;

log∗(log n) + 1 n > 1.

2.1 Fast Rectangular Matrix Multiplication

Similar to previous algorithms using the polynomial method, our algorithms make use of the algorithms for
fast rectangular matrix multiplication.

Theorem 2.1 ([GU18]). There is anN2+o(1) time algorithm for multiplying two matricesA andB with size
N ×Nα and Nα ×N , where α > 0.31389.

Theorem 2.2 ([Cop82]). There is an N2 · polylog(N) time algorithm for multiplying two matrices A and
B with size N ×Nα and Nα ×N , where α > 0.172.

9where e : R+ → N is some function

10

2.2 Number Theory

Here we recall some facts from number theory. In our reduction from OV to Z-OV, we will apply the
famous prime number theorem, which supplies a good estimate of the number of primes smaller than a
certain number. See e.g. [Apo13] for a reference on this.

Theorem 2.3 (Prime Number Theorem). Let π(n) be the number of primes ≤ n, then we have

lim
n→∞

π(n)

n/ lnn
= 1.

From a simple calculation, we obtain:

Lemma 2.4. There are 10n distinct primes in [n+ 1, n2] for a large enough n.

Proof. For a large enough n, from the prime number theorem, the number of primes in [n+ 1, n2] is equal
to

π(n2)− π(n) ∼ n2/2 lnn− n/ lnn� 10n.

Next we recall the Chinese remainder theorem, and Chinese remainder representation.

Theorem 2.5. Given d pairwise co-prime integers q1, q2, . . . , qd, and d integers r1, r2, . . . , rd, there is

exactly one integer 0 ≤ t <
d∏
i=1

qi such that

t ≡ ri (mod qi) for all i ∈ [d].

We call this t the Chinese remainder representation (or the CRR encoding) of the ri’s (with respect to these
qi’s). We also denote

t = CRR({ri}; {qi})

for convenience. We sometimes omit the sequence {qi} for simplicity, when it is clear from the context.
Moreover, t can be computed in polynomial time with respect to the total bits of all the given integers.

2.3 Communication Complexity

In our paper we will make use of a certain kind of MA protocol, we call them (m, r, `, s)-efficient proto-
cols10.

Definition 2.6. We say an MA Protocol is (m, r, `, s)-efficient for a communication problem, if in the
protocol:

• There are three parties Alice, Bob and Merlin in the protocol, Alice holds input x and Bob holds input
y.

• Merlin sends an advice string z of length m to Alice, which is a function of x and y.

• Alice and Bob jointly toss r coins to obtain a random string w of length r.

10Our notations here are adopted from [KLM17]. They also defined similar k-party communication protocols, while we only
discuss 2-party protocols in this paper.

11

• Given y and w, Bob sends Alice a message of length `.

• After that, Alice decides whether to accept or not.

– When the answer is yes, Merlin has exactly one advice such that Alice always accept.

– When the answer is no, or Merlin sends the wrong advice, Alice accepts with probability at most
s.

2.4 Derandomization

We make use of expander graphs to reduce the amount of random coins needed in one of our communication
protocols. We abstract the following result for our use here.

Theorem 2.7 (see e.g. Theorem 21.12 and Theorem 21.19 in [AB09]). Let m be an integer, and set
B ⊆ [m]. Suppose |B| ≥ m/2. There is a universal constant c1 such that for all ε < 1/2, there is a
poly(logm, log ε−1)-time computable function F : {0, 1}logm+c1·log ε−1 → [m]c1·log ε−1

, such that

Pr
w∈{0,1}logm+c1·log ε−1

[a /∈ B for all a ∈ F(w)] ≤ ε,

here a ∈ F(w) means a is one of the element in the sequence F(w).

3 Hardness of Approximate Max-IP

In this section we prove our characterizations of approximating Max-IP.

3.1 The Multiplicative Case

We begin with the proof of Theorem 1.5. We recap it here for convenience.

Reminder of Theorem 1.5 Letting ω(log n) < d < no(1) and t ≥ 2, the following holds:

1. There is an n2−Ω(1)-time t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ log n)Ω(1) ,

and under SETH (or OVC), there is no n2−Ω(1)-time t-multiplicative-approximating algorithm for
Max-IPn,d if

t = (d/ log n)o(1) .

2. Moreover, let ε = min

(
log t

log(d/ log n)
, 1

)
. There are t-multiplicative-approximating deterministic

algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1

ε−1+0.31
2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1

ε−1+0.17
2 · polylog(n)

)
= O

(
n2−Ω(ε) · polylog(n)

)
.

In Lemma 3.2 we construct the desired approximate algorithm and in Lemma 3.4 we prove the lower
bound.

12

The Algorithm

First we need the following simple lemma, which says that the k-th root of the sum of the k-th powers of
non-negative reals gives a good approximation to their maximum.

Lemma 3.1. Let S be a set of non-negative real numbers, k be an integer, and xmax := max
x∈S

x. We have

(∑
x∈S

xk

)1/k

∈
[
xmax, xmax · |S|1/k

]
.

Proof. Since (∑
x∈S

xk

)
∈
[
xkmax, |S| · xkmax

]
,

the lemma follows directly by taking the k-th root of both sides.

Lemma 3.2. Assuming ω(log n) < d < no(1) and letting ε = min

(
log t

log(d/ log n)
, 1

)
, there are t-

multiplicative-approximating deterministic algorithms for Max-IPn,d running in time

O

(
n

2+o(1)−0.31· 1

ε−1+0.31
2

)
= O

(
n2+o(1)−Ω(ε)

)
or time

O

(
n

2−0.17· 1

ε−1+0.17
2 · polylog(n)

)
= O

(
n2−Ω(ε) · polylog(n)

)
.

Proof. Let d = c · log n. From the assumption, we have c = ω(1), and ε = min

(
log t

log c
, 1

)
. When

log t > log c, we simply use a c-multiplicative-approximating algorithm instead, hence in the following we
assume log t ≤ log c. We begin with the first algorithm here.

Construction and Analysis of the Power of Sum Polynomial Pr(z). Let r be a parameter to be specified
later and z be a vector from {0, 1}d, consider the following polynomial

Pr(z) :=

(
d∑
i=1

zi

)r
.

Observe that since each zi takes value in {0, 1}, we have zki = zi for k ≥ 2. Therefore, by expanding
out the polynomial and replacing all zki with k ≥ 2 by zi, we can write Pr(z) as

Pr(z) =
∑

S⊆[d],|S|≤r

cS · zS .

In which zS :=
∏
i∈S

zi, and the cS’s are the corresponding coefficients. Note that Pr(z) has

m :=
r∑

k=0

(
d

k

)
≤
(
ed

r

)r

13

terms.
Then consider Pr(x, y) := Pr(x1 · y1, x2 · y2, . . . , xd · yd), plugging in zi := xi · yi, it can be written as

Pr(x, y) :=
∑

S⊆[d],|S|≤r

cS · xS · yS ,

where xS :=
∏
i∈S

xi, and yS is defined similarly.

Construction and Analysis of the Batch Evaluation Polynomial Pr(X,Y). Now, let X and Y be two
sets of b = tr/2 vectors from {0, 1}d, we define

Pr(X,Y) :=
∑

x∈X,y∈Y
Pr(x, y) =

∑
x∈X,y∈Y

(x · y)r.

By Lemma 3.1, we have

Pr(X,Y)1/r ∈ [OPT(X,Y),OPT(X,Y) · t] ,

recall that OPT(X,Y) := max
x∈X,y∈Y

x · y.

Embedding into Rectangle Matrix Multiplication. Now, for x, y ∈ {0, 1}d, we define the mapping
φx(x) as

φx(x) := (cS1 · xS1 , cS2 · xS2 , . . . , cSm · xSm)

and
φy(y) := (yS1 , yS2 , . . . , ySm) ,

where S1, S2, . . . , Sm is an enumeration of all sets S ⊆ [d] and |S| ≤ r.
From the definition, it follows that

φx(x) · φy(y) = Pr(x, y)

for every x, y ∈ {0, 1}d.
Then for each X and Y , we map them into m-dimensional vectors φX(X) and φY (Y) simply by a

summation:
φX(X) :=

∑
x∈X

φx(x) and ΦY (Y) :=
∑
y∈Y

φy(y).

We can see

φX(X) · φY (Y) =
∑
x∈X

φx(x) ·
∑
y∈Y

φy(y) =
∑
x∈X

∑
y∈Y

Pr(x, y) = Pr(X,Y).

Given two sets A,B of n vectors from {0, 1}d, we split A into n/b sets A1, A2, . . . , An/b of size b,
and split B in the same way as well. Then we construct a matrix MA(MB) of size n/b × m, such that
the i-th row of MA(MB) is the vector ΦX(Ai)(ΦY (Bi)). After that, the evaluation of Pr(Ai, Bj) for all
i, j ∈ [n/b] can be reduced to compute the matrix product MA ·MT

B . After knowing all Pr(Ai, Bj)’s, we
simply compute the maximum of them, whose r-th root gives us a t-multiplicative-approximating answer
of the original problem.

14

Analysis of the Running Time. Finally, we are going to specify the parameter r and analyze the time
complexity. In order to utilize the fast matrix multiplication algorithm from Theorem 2.1, we need to have

m ≤ (n/b)0.313,

then our running time is simply (n/b)2+o(1) = n2+o(1)/b2.
We are going to set r = k · log n/ log c, and our choice of k will satisfy k = Θ(1). We have

m ≤
(
e · d
r

)r
≤
(

c log n · e
k · log n/ log c

)k·logn/ log c

,

and therefore

logm ≤ k · log n

[
log

c log c

k
+ 1

]/
log c.

Since c = ω(1) and k = Θ(1), we have

logm ≤ (1 + o(1)) · k log n = k log n+ o(log n).

Plugging in, we have

m ≤ (n/b)0.313

⇐= logm ≤ 0.313 · (log n− log b)

⇐= k log n ≤ 0.31 · (log n− log b)

⇐= 0.31 · (r/2) · log t+ k log n ≤ 0.31 log n (b = tr/2)

⇐=
log n

log c
· k · log t · 0.31

2
+ k log n ≤ 0.31 log n (r = k · log n/ log c)

⇐= k ·
{

1 +
log t

log c
· 0.31

2

}
≤ 0.31

⇐= k =
0.31

1 + log t
log c ·

0.31
2

=
0.31

1 + 0.31
2 · ε

.

Note since ε ∈ [0, 1], k is indeed Θ(1).
Finally, with our choice of k specified, our running time is n2+o(1)/b2 = n2+o(1)/tr.
By a simple calculation,

log tr = r · log t

= k · log n/ log c · log t

= log n ·

{
log t

log c
· 0.31

1 + 0.31
2 · ε

}
= log n · 0.31ε

1 + 0.31
2 · ε

= log n · 0.31

ε−1 + 0.31
2

.

Hence, our running time is

n2+o(1)/tr = n
2+o(1)− 0.31

ε−1+0.31
2

as stated.

15

The Second Algorithm. The second algorithm follows exactly the same except for that we apply Theo-
rem 2.2 instead, hence the constant 0.31 is replaced by 0.17.

Generalization to Non-negative Real Case

Note that Lemma 3.1 indeed works for a set of non-negative reals, we can observe that the above algorithm
in fact works for R+-Max-IPn,d (which is the same as Max-IP except for that the sets consisting of non-
negative reals):11

Reminder of Corollary 1.7 Assuming ω(log n) < d < no(1) and letting ε = min

(
log t

log(d/ log n)
, 1

)
,

there is a t-multiplicative-approximating deterministic algorithm for R+-Max-IPn,d running in time

O
(
n2−Ω(ε) · polylog(n)

)
.

Proof Sketch. We can just use the same algorithm in Lemma 3.2, the only difference is on the analysis of
the number of terms in Pr(z): since z is no longer Boolean, Pr(z) is no longer multi-linear, and we need to

switch to a general upper bound
(
d+ r

r

)
on the number of terms for r-degree polynomials of d variables.

This corollary then follows by a similar calculation as in Lemma 3.2.

The Lower Bound

Before proving our lower bound we need the following reduction from OV to t-multiplicative-approximating
Max-IP, which follows roughly the same as in [ARW17], together with the use of expander graphs to reduce
the amount of random coins. We defer its proof to Section 3.3.

Lemma 3.3. There is a universal constant c1 such that, for every integer c, reals ε ∈ (0, 1] and τ ≥ 2,
OVn,c logn can be reduced to nε Max-IPn,d instances (Ai, Bi) for i ∈ [nε], such that:

• d = τpoly(c/ε) · log n.

• Letting T = c log n · τ c1 , if there is an a ∈ A and b ∈ B such that a · b = 0, then there exists an i
such that OPT(Ai, Bi) ≥ T .

• Otherwise, for all i we must have OPT(Ai, Bi) ≤ T/τ .

Now we are ready to prove the lower bound on t-multiplicative-approximating Max-IP.

Lemma 3.4. Assuming SETH (or OVC), and letting d = ω(log n) and t ≥ 2. There is no n2−Ω(1)-time
t-multiplicative-approximating algorithm for Max-IPn,d if

t = (d/ log n)o(1) .

Proof. Let c = d/ log n, then t = co(1) (recall that t and d are two functions of n).
Suppose for contradiction that there is an n2−ε′ time t(n)-multiplicative-approximating algorithm A for

Max-IP(n, d) for some ε′ > 0.

11In the following we assume a real RAM model of computation for simplicity.

16

Let ε = ε′/2. Now, for every constant c2, we apply the reduction in Lemma 2 with τ = t to reduce an
OVn,c2 logn instance to nε

Max-IPn,tpoly(c2/ε)·logn ≡ Max-IPn,tO(1)·logn

instances. Since t = co(1), which means for sufficiently large n, tO(1) · log n = co(1) · log n = o(d), and
it in turn implies that for sufficiently large n, nε calls to A are enough to solve the OVn,c2 logn instance.

Therefore we can solve OVn,c2 logn in n2−ε′ · nε = n2−ε time for all constant c2. Contradiction to
OVC.

Finally, the correctness of Theorem 1.5 follows directly from Lemma 3.2 and Lemma 3.4.

3.2 The Additive Case

In this subsection we prove Theorem 1.11. We first recap it here for convenience.

Reminder of Theorem 1.11 Letting ω(log n) < d < no(1) and 0 ≤ t ≤ d, the following holds:

1. There is an n2−Ω(1)-time t-additive-approximating algorithm for Max-IPn,d if

t = Ω(d),

and under SETH (or OVC), there is no n2−Ω(1)-time t-additive-approximating algorithm for Max-IPn,d
if

t = o(d).

2. Moreover, letting ε =
t

d
, there is an

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating randomized algorithm for Max-IPn,d when ε� log6 log n/ log3 n.

We proceed similarly as in the multiplicative case by establishing the algorithm first.

The Algorithm

The algorithm is actually very easy, we simply apply the following algorithm from [ACW16].

Lemma 3.5 (Implicit in Theorem 5.1 in [ACW16]). Assuming ε� log6 log(d log n)/ log3 n, there is an

n
2−Ω
(
ε1/3/ log(d

ε logn
)
)

time ε · d-additive-approximating randomized algorithm for Max-IPn,d.

Lemma 3.6. Let ε =
min(t, d)

d
, there is an

O
(
n2−Ω(ε1/3/ log ε−1)

)
time, t-additive-approximating randomized algorithm for Max-IPn,d when ε� log6 log n/ log3 n.

17

Proof. When t > d the problem becomes trivial, so we can assume t ≤ d, and now t = ε · d.
Let ε1 = ε/2 and c1 be a constant to be specified later. Given an Max-IPn,d instance with two setsA and

B of vectors from {0, 1}d, we create another Max-IPn,d1 instance with sets Ã and B̃ and d1 = c1 ·ε−2
1 · log n

as follows:

• Pick d1 uniform random indices i1, i2, i3, . . . , id1 ∈ [d], each ik is an independent uniform random
number in [d].

• Then we construct Ã from A by reducing each a ∈ A into ã = (ai1 , ai2 , . . . , aid1) ∈ {0, 1}d1 and B̃
from B in the same way.

Note for each a ∈ A and b ∈ B, by a Chernoff bound, we have

Pr

[∣∣∣∣∣ ã · b̃d1
− a · b

d

∣∣∣∣∣ ≥ ε1

]
< 2e−2d1ε21 = 2n−2·c1 .

By setting c1 = 2, the above probability is smaller than 1/n3.
Hence, by a simple union bound, with probability at least 1− 1/n, we have∣∣∣∣∣ ã · b̃d1

− a · b
d

∣∣∣∣∣ ≤ ε1

for all a ∈ A and b ∈ B. Hence, it means that this reduction only changes the “relative inner

product”(
a · b
d

or
ã · b̃
d1

) of each pair by at most ε1. Hence the maximum of the “relative inner product”

also changes by at most ε1, and we have |OPT(A,B)/d−OPT(Ã, B̃)/d1| ≤ ε1.
Then we apply the algorithm in Lemma 3.5 on the instance with sets Ã and B̃ with error ε = ε1 to

obtain an estimate Õ, and our final answer is simply
Õ

d1
· d.

From the guarantee from Lemma 3.5, we have |OPT(Ã, B̃)/d1 − Õ/d1| ≤ ε1, and therefore we have
|OPT(A,B)/d− Õ/d1| ≤ 2ε1 = ε, from which the correctness of our algorithm follows directly.

For the running time, note that the reduction part runs in linear time O(n · d), and the rest takes

n
2−Ω
(
ε1/3/ log(

d1
ε1 logn

)
)

= n2−Ω(ε1/3/ log ε−1)

time.

The Lower Bound

Finally we prove the lower bound on t-additive-approximating Max-IP.

Lemma 3.7. Assuming SETH (or OVC), and letting d = ω(log n) and t > 0, there is no n2−Ω(1)-time
t-additive-approximating randomized algorithm for Max-IPn,d if

t = o(d).

Proof. Recall that t and d are all functions of n. Suppose for contradiction that there is an n2−ε′ time
t(n)-additive-approximating algorithm A for Max-IP(n, d) for some ε′ > 0.

18

Let ε = ε′/2. Now, for every constant c2, we apply the reduction in Lemma 3.3 with τ = 2 to reduce an
OVn,c2 logn instance to nε

Max-IPn,2poly(c2/ε)·logn ≡ Max-IPn,d1 where d1 = O(1) · log n

instances. In addition, from Lemma 3.3, to solve the OVc2 logn instance, we only need to distinguish an

additive gap of
T

2
= Ω(log n) = Ω(d1) for these Max-IP instances obtained via the reduction.

This can be solved, via nε calls to A as follows: for each Max-IPn,d1 instance I we get, since d =
ω(log n), which means for a sufficiently large n, d1 = O(log n) � d, and we can duplicate each coor-
dinate d/d1 times (for simplicity we assume d1|d here), to obtain an Max-IPn,d instance Inew, such that
OPT(Inew) = d/d1 · OPT(I). Then A can be used to estimate OPT(Inew) within an additive error

t = o(d). Scaling its estimate by
d1

d
, it can also be used to estimate OPT(I) within an additive error

o(d1) = o(log n) ≤ T/2 for sufficiently large n.
Therefore we can solve OVn,c2 logn in n2−ε′ · nε = n2−ε time for all constant c2. Contradiction to

OVC.

Finally, the correctness of Theorem 1.11 follows directly from Lemma 3.6 and Lemma 3.7.

3.3 Proof of Lemma 3.3

We need the following efficient MA protocol for Set-Disjointness from [KLM17].

Lemma 3.8 (Theorem 6.1 in [KLM17]). For every α and m, there is an (m/α, log2m,poly(α), 1/2)-
efficient MA protocol for DISJm.12

We want to reduce the error probability while keeping the number of total random coins relatively low.
To achieves this, we can use an expander graph (Theorem 2.7) to prove the following theorem.

Lemma 3.9. For every α, m and ε < 1/2, there is an (m/α, log2m + O(log ε−1),poly(α) · log ε−1, ε)-
efficient MA protocol for DISJm.

Proof. Let c1 and F : {0, 1}logm+c1·log ε−1 → [m]c1·log ε−1
be the corresponding constant and function

as in Theorem 2.7, and let Π denote the (m/α, log2m,poly(α), 1/2)-efficient MA protocol for DISJm in
Lemma 3.8. Set q = c1 · log ε−1 and our new protocol Πnew works as follows:

• Merlin still sends the same advice to Alice as in Π.

• Alice and Bob jointly toss r = logm+q coins to get a stringw ∈ {0, 1}r. Then we letw1, w2, . . . , wq
be the sequence corresponding to F(w), each of them can be interpreted as logm bits.

• Bob sends Alice q messages, the i-th message mi corresponds to Bob’s message in Π when the
random bits is wi.

• After that, Alice decides whether to accept or not as follows:

– If for every i ∈ [q], Alice would accept Bob’s message mi with random bits wi in Π, then Alice
accepts.

– Otherwise, Alice rejects.

12The protocol in [KLM17] also works for the k-party number-in-hand model, setting k = 2 we get this lemma.

19

It is easy to verify that the advice length, message length and number of random coins satisfy our
requirements.

For the error probability, note that when these two sets are disjoint, the same advice in Π leads to
acceptance of Alice. Otherwise, suppose the advice from Merlin is either wrong or these two sets are
intersecting, then half of the random bits in {0, 1}logm leads to the rejection of Alice in Π. Hence, from
Theorem 2.7, with probability at least 1− ε, at least one of the random bits wi’s would lead to the rejection
of Alice, which completes the proof.

Finally we are going to prove Lemma 3.3, we recap it here for convenience.

Reminder of Lemma 3.3 There is a universal constant c1 such that, for every integer c, reals ε ∈ (0, 1]
and τ ≥ 2, OVn,c logn can be reduced to nε Max-IPn,d instances (Ai, Bi) for i ∈ [nε], such that:

• d = τpoly(c/ε) · log n.

• Letting T = c log n · τ c1 , if there is an a ∈ A and b ∈ B such that a · b = 0, then there exists an i
such that OPT(Ai, Bi) ≥ T .

• Otherwise, for all i we must have OPT(Ai, Bi) ≤ T/τ .

Proof. The reduction follows exactly the same as in [ARW17], we recap here for completeness.
Set α = c/ε, m = c · log n and ε = 1/τ , and let Π be the (m/α, log2m + O(log ε−1), poly(α) ·

log ε−1, ε)-efficient MA protocol for Set-Disjointness as in Lemma 3.9.
Now, we first enumerate all of 2m/α = 2ε·logn = nε possible advice strings, and create a Max-IP

instance for each of the advice strings.
For a fix advice ψ ∈ {0, 1}ε·logn, we create a Max-IP instance with sets Aψ and Bψ as follows. We use

a ◦ b to denote the concatenation of the strings a and b.
Let r = log2m+ c1 · log ε−1, where c1 is the constant hidden in the big O notation in Lemma 3.9, and

` = poly(α) · log ε−1. Let m1,m2, . . . ,m2` be an enumeration of all strings in {0, 1}`.

• For each a ∈ A, and for each string w ∈ {0, 1}r, we create a vector aw ∈ {0, 1}2` , such that awi
indicates that given advice ψ and randomness w, whether Alice accepts message mi or not (1 for
acceptance, 0 for rejection). Let the concatenation of all these aw’s be aψ. Then Aψ is the set of all
these aψ’s for a ∈ A.

• For each b ∈ B, and for each string w ∈ {0, 1}r, we create a vector bw ∈ {0, 1}2` , such that
bwi = 1 if Bob sends the message mi given advice ψ and randomness w, and = 0 otherwise. Let the
concatenation of all these bw’s be bψ. Then Bψ is the set of all these bψ’s for b ∈ B.

We can see that for a ∈ A and b ∈ B, aψ · bψ is precisely the number of random coins leading Alice to
accept the message from Bob given advice ψ when Alice and Bob holds a and b correspondingly. Therefore,
let T = 2r = c log n · τ c1 , from the properties of the protocol Π, we can see that:

• If there is an a ∈ A and b ∈ B such that a · b = 0, then there is a ψ ∈ {0, 1}ε·logn such that
aψ · bψ ≥ T .

• Otherwise, for all a ∈ A, b ∈ B and advice ψ{0, 1}ε·logn, aψ · bψ ≤ T/τ .

And this completes the proof.

20

3.4 Adaption for All-Pair-Max-IP

Now we sketch the adaption for our algorithms to work for the All-Pair-Max-IP problem.

Reminder of Corollary 1.12 Suppose ω(log n) < d < no(1), and let

εM := min

(
log t

log(d/ log n)
, 1

)
and εA :=

min(t, d)

d
.

There is an n2−Ω(εM) polylog(n) time t-multiplicative-approximating algorithm and an n2−Ω(ε
1/3
A / log ε−1

A)

time t-additive-approximating algorithm for All-Pair-Max-IPn,d, when εA � log6 log n/ log3 n.

Proof Sketch. Note that the algorithm in Lemma 3.5 from [ACW16] actually works for the All-Pair-Max-IPn,d.
Hence, we can simply apply that algorithm after the coordinate sampling phase, and obtain a t-additive-
approximating algorithm for All-Pair-Max-IPn,d.

For t-multiplicative-approximating algorithm, suppose we are given with two sets A and B of n vectors
from {0, 1}d. Instead of partitioning both of them into n/b subsets Ai’s and Bi’s (the notations used here
are the same as in the proof of Lemma 3.2), we only partition B into n/b subsets B1, B2, . . . , Bn/b of size

b, and calculate Pr(x,Bi) :=
∑
y∈Bi

Pr(x, y) for all x ∈ A and i ∈ [n/b] using similar reduction to rectangle

matrix multiplication as in Lemma 3.2. By a similar analysis, these can be done in n2−Ω(εM) · polylog(n)
time, and with these informations we can compute the t-multiplicative-approximating answers for the given
All-Pair-Max-IPn,d instance.

3.5 Improved Hardness for LCS-Closest Pair Problem

We finish this section with the proof of Corollary 1.9. First we abstract the reduction from Max-IP to
LCS-Closest-Pair in [ARW17] here.

Lemma 3.10 (Implicit in Theorem 1.6 in [ARW17]). For big enough t and n, t-multiplicative-approximating
Max-IPn,d reduces to t/2-multiplicative-approximating LCS-Closest-Pairn,O(d3 log2 n).

Now we are ready to prove Corollary 1.9 (restated below for convenience).

Reminder of Corollary 1.9 Assuming SETH (or OVC), for every t ≥ 2, t-multiplicative-approximating
LCS-Closest-Pairn,d requires n2−o(1) time, if d = tω(1) · log5 n.

Proof. From Lemma 3.4, assuming SETH (or OVC), for every t ≥ 2, we have that 2t-multiplicative-
approximating Max-IPn,d requires n2−o(1) time if d = tω(1) ·log n. Then from Lemma 3.10, we immediately
have that t-multiplicative-approximating LCS-Closest-Pairn,d3·log2 n = LCS-Closest-Pairn,tω(1)·log5 n re-
quires n2−o(1) time.

4 Hardness of Exact Z-Max-IP, Hopcroft’s Problem and More

In this section we show hardness of Hopcroft’s problem, exact Z-Max-IP, `2-Furthest Pair and Bichromatic
`2-Closest Pair. Essentially our results follow from the framework of [Wil18], in which it is shown that
hardness of Hopcroft’s problem implies hardness of other three problems, and is implied by dimensionality
reduction for OV.

21

OVn,c logn Z-OVn,2O(log∗ n) Z-Max-IPn,2O(log∗ n)

`2-furthestn,2O(log∗ n)

Bichrom.-`2-closestn,2O(log∗ n)

Figure 1: A diagram for all reductions in this section.

The Organization of this Section

In Section 4.1 we prove the improved dimensionality reduction for OV. In Section 4.2 we establish the
hardness of Hopcroft’s problem in 2O(log∗ n) dimensions with the improved reduction. In Section 4.3 we
show Hopcroft’s problem can be reduced to Z-Max-IP and thus establish the hardness for the later one. In
Section 4.4 we show Z-Max-IP can be reduced to `2-Furthest Pair and Bichromatic `2-Closest Pair, therefore
the hardness for the later two problems follow. See Figure 1 for a diagram of all reductions covered in this
section.

The reduction in last three subsections are all from [Wil18] (either explicit or implicit), we make them
explicit here for our ease of exposition and for making the paper self-contained.

4.1 Improved Dimensionality Reduction for OV

We begin with the improved dimensionality reduction for OV. The following theorem is one of the technical
cores of this paper, which makes use of the CRR encoding (see Theorem 2.5) recursively.

Theorem 4.1. Let b, ` be two sufficiently large integers. There is a reduction ψb,` : {0, 1}b·` → Z` and a set
Vb,` ⊆ Z, such that for every x, y ∈ {0, 1}b·`,

x · y = 0⇔ ψb,`(x) · ψb,`(y) ∈ Vb,`
and

0 ≤ ψb,`(x)i < `6
log∗(b)·b

for all possible x and i ∈ [`]. Moreover, the computation of ψb,`(x) takes poly(b · `) time, and the set Vb,`
can be constructed in O

(
`O(6log

∗(b)·b) · poly(b · `)
)

time.

Remark 4.2. We didn’t make much effort to minimize the base 6 above to keep the calculation clean, it can
be replaced by any constant > 2 with a tighter calculation.

Proof. We are going to construct our reduction in a recursive way. ` will be the same throughout the proof,
hence in the following we use ψb (Vb) instead of ψb,` (Vb,`) for simplicity.

Direct CRR for small b: When b < `, we use a direct Chinese remainder representation of numbers. We
pick b primes q1, q2, . . . , qb in [`+ 1, `2], and use them for our CRR encoding.

Let x ∈ {0, 1}b·`, we partition it into ` equal size groups, and use xi to denote the i-th group, which is
the sub-vector of x from the ((i− 1) · b+ 1)-th bit to the (i · b)-th bit.

22

Then we define ψb(x) as

ψb(x) :=

(
CRR

({
x1
j

}b
j=1

)
,CRR

({
x2
j

}b
j=1

)
, . . . ,CRR

({
x`j

}b
j=1

))
.

That is, the i-th coordinate of ψb(x) is the CRR encoding of the i-th sub-vector xi with respect to the
primes qj’s.

Now, for x, y ∈ {0, 1}b·`, note that for j ∈ [b],

ψb(x) · ψb(y) (mod qj)

≡
∑̀
i=1

CRR
({
xij
}b
j=1

)
· CRR

({
yij
}b
j=1

)
(mod qj)

≡
∑̀
i=1

xij · yij (mod qj).

Since the sum
∑̀
i=1

xij · yij is in [0, `], and qj > `, we can see

∑̀
i=1

xij · yij = 0⇔ ψb(x) · ψb(y) ≡ 0 (mod qj).

Therefore, x · y =

b∑
j=1

∑̀
i=1

xij · yij = 0 is equivalent to that

ψb(x) · ψb(y) ≡ 0 (mod qj)

for every j ∈ [b].

Finally, we have 0 ≤ ψb(x)i <
b∏

j=1

pj < `2·b ≤ `6log
∗(b)·b. Therefore

ψb(x) · ψb(y) < `6
log∗(b)·2b+1,

and we can set Vb to be the set of all integers in [0, `6
log∗(b)·2b+1] that is 0 modulo all the pj’s, and it is easy

to see that

x · y ⇔ ψb(x) · ψb(y) ∈ Vb
for all x, y ∈ {0, 1}b·`.

Recursive Construction for larger b: When b ≥ `, suppose the theorem holds for all b′ < b. Let bmicro be
the number such that (we ignore the rounding issue here and pretend that bmicro is an integer for simplicity),

`6
log∗(bmicro)·bmicro = b.

Then we pick b/bmicro primes p1, p2, . . . , pb/bmicro
in [(b2`), (b2`)2], and use them as our reference primes

in the CRR encodings.

23

Let x ∈ {0, 1}b·`, as before, we partition x into ` equal size sub-vectors x1, x2, . . . , x`, where xi consists
of the ((i−1) · b+ 1)-th bit of x to the (i · b)-th bit of x. Then we partition each xi again into b/bmicro micro
groups, each of size bmicro. We use xi,j to denote the j-th micro group of xi after the partition.

Now, we use x[j] to denote the concatenation of the vectors x1,j , x2,j , . . . , x`,j . That is, x[j] is the
concatenation of the j-th micro group in each of the ` groups. Note that x[j] ∈ {0, 1}bmicro·`, and can be seen
as a smaller instance, on which we can apply ψbmicro

.
Our recursive construction then goes in two steps. In the first step, we make use of ψbmicro

, and transform
each bmicro-size micro group into a single number in [0, b). This step transforms x from a vector in {0, 1}b·`
into a vector S(x) in Z(b/bmicro)·`. And in the second step, we use a similar CRR encoding as in the base case
to encode S(x), to get our final reduced vector in Z`.

S(x) is simply

S(x) :=
(
ψbmicro

(x[1])1, ψbmicro
(x[2])1, . . . , ψbmicro

(x[b/bmicro])1,

ψbmicro
(x[1])2, ψbmicro

(x[2])2, . . . , ψbmicro
(x[b/bmicro])2,

. . . , . . . , . . .

ψbmicro
(x[1])`, ψbmicro

(x[2])`, . . . , ψbmicro
(x[b/bmicro])`

)
.

That is, we apply ψbmicro
on all the x[j]’s, and shrink all the corresponding micro-groups in x into integers.

Again, we partition S into ` equal size groups S1, S2, . . . , S`.
Then we define ψb(x) as

ψb(x) :=

(
CRR

({
S1
j

}b/bmicro

j=1

)
,CRR

({
S2
j

}b/bmicro

j=1

)
, . . . ,CRR

({
S`j

}b/bmicro

j=1

))
.

In other words, the i-th coordinate of ψb(x) is the CRR representation of the number sequence Si, with
respect to our primes {qj}b/bmicro

j=1 .
Now, note that for x, y ∈ {0, 1}b·`, x · y = 0 is equivalent to x[j] · y[j] = 0 for every j ∈ [b/bmicro],

which is further equivalent to
ψbmicro

(x[j]) · ψbmicro
(y[j]) ∈ Vbmicro

for all j ∈ [b/bmicro], by our assumption on ψbmicro
.

Since 0 ≤ ψbmicro
(x[j])i, ψbmicro

(y[j])i < b for all x, y ∈ {0, 1}b·`, i ∈ [`] and j ∈ [b/bmicro], we also have
ψbmicro

(x[j]) · ψbmicro
(y[j]) < b2 · `, therefore we can assume that Vbmicro

⊆ [0, b2`).
For all x, y ∈ {0, 1}b·` and j ∈ [b/bmicro], we have

ψb(x) · ψb(y)

≡
∑̀
i=1

CRR
({
S(x)ij

}b/bmicro

j=1

)
· CRR

({
S(y)ij

}b/bmicro

j=1

)
(mod pj)

≡
∑̀
i=1

S(x)ij · S(y)ij (mod pj)

≡
∑̀
i=1

ψbmicro
(x[j])i · ψbmicro

(y[j])i (mod pj)

≡ψbmicro
(x[j]) · ψbmicro

(y[j]) (mod pj).

24

Since pj ≥ b2 · `, we can determine ψbmicro
(x[j]) · ψbmicro

(y[j]) from ψb(x) · ψb(y) by taking modulo pj .
Therefore,

x · y = 0

is equivalent to

(ψb(x) · ψb(y) mod pj) ∈ Vbmicro
,

for every j ∈ [b/bmicro].
Finally, recall that we have

`6
log∗(bmicro)·bmicro = b.

Taking logarithm of both sides, we have

6log∗(bmicro) · bmicro · log ` = log b.

Then we can upper bound ψb(x)i by

ψb(x)i <

b/bmicro∏
j=1

pj

< (b2`)2·(b/bmicro) (b ≥ `.)
≤ 26·b/bmicro·log b

≤ 26·b/bmicro·6log
∗(bmicro)·bmicro·log `

≤ `6·6log
∗(bmicro)·b

≤ `6log
∗(b)·b (bmicro ≤ log b, log∗(bmicro) + 1 ≤ log∗(log b) + 1 = log∗(b).)

Therefore, we can set Vb as the set of integer t in [0, `6
log∗(b)·2b+1) such that

(t mod pj) ∈ Vbmicro

for every j ∈ [b/bmicro]. And it is easy to see this Vb satisfies our requirement.
Finally, it is easy to see that the straightforward way of constructing ψb(x) takes O(poly(b · `)) time,

and we can construct Vb by enumerating all possible values of ψb(x) · ψb(y) and check each of them in
O(poly(b · `)) time. Since there are at most `O(6log

∗(b)·b) such values, Vb can be constructed in

O
(
`O(6log

∗(b)·b) · poly(b · `)
)

time, which completes the proof.

Now we prove Lemma 1.16, we recap its statement here for convenience.

Reminder of Lemma 1.16 Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log

∗ d·(d/`)) · poly(d)
)

-time

reduction from OVn,d to `O(6log
∗ d·(d/`)) instances of Z-OVn,`+1, with vectors of entries with bit-length

O
(
d/` · log ` · 6log∗ d

)
.

25

Proof. The proof is exactly the same as the proof for Lemma 1.1 in [Wil18] with different parameters, we
recap it here for convenience.

Given two sets A′ and B′ of n vectors from {0, 1}d, we apply ψd/`,` to each of the vectors in A′ (B′) to
obtain a set A (B) of vectors from Z`. From Theorem 4.1, there is a (u, v) ∈ A′ ×B′ such that u · v = 0 if
and only if there is a (u, v) ∈ A×B such that u · v ∈ Vd/`,`.

Now, for each element t ∈ Vd/`,`, we are going to construct two sets At and Bt of vectors from Z`+1

such that there is a (u, v) ∈ A× B with u · v = t if and only if there is a (u, v) ∈ At × Bt with u · v = 0.
We construct a set At as a collection of all vectors uA = [u, 1] for u ∈ A, and a set Bt as a collection of all
vectors vB = [v,−t] for v ∈ B. It is easy to verify this reduction has the properties we want.

Note that there are at most `O(6log
∗ d·(d/`)) numbers in Vd/`,`, so we have such a number of Z-OVn,`+1

instances. And from Theorem 4.1, the reduction takes

O
(
n · `O(6log

∗ d·(d/`)) · poly(d)
)

time.
Finally, the bit-length of reduced vectors is bounded by

log
(
`O(6log

∗ d·(d/`))
)

= O
(
d/` · log ` · 6log∗ d

)
,

which completes the proof.

A Transformation from Nonuniform Construction to Uniform Construction

The proof for Theorem 4.1 works recursively. In one recursive step, we reduce the construction of ψb,` to
the construction of ψbmicro,`, where bmicro ≤ log b. Applying this reduction log∗ n times, we get a sufficiently
small instance that we can switch to a direct CRR construction.

An interesting observation here is that after applying the reduction only thrice, the block length param-
eter becomes b′ ≤ log log log b, which is so small that we can actually use brute force to find the “optimal”
construction ψb′,` in bo(1) time instead of recursing deeper. Hence, to find a construction better than Theo-
rem 4.1, we only need to prove the existence of such a construction. See Appendix B for details.

4.2 Improved Hardness for Hopcroft’s Problem

In this subsection we are going to prove Theorem 1.17 using our new dimensionality reduction Lemma 1.16,
we recap its statement here for completeness.

Reminder of Theorem 1.17 [Hardness of Hopcroft’s Problem in clog∗ n Dimension] Assuming SETH (or
OVC), there is a constant c such that Z-OVn,clog∗ n with vectors of O(log n)-bit entries requires n2−o(1)

time.

Proof. The proof here follows roughly the same as the proof for Theorem 1.1 in [Wil18].
Let c be an arbitrary constant and d := c · log n. We show that an oracle solving Z-OVn,`+1 where

` = 7log∗ n in O(n2−δ) time for some δ > 0 can be used to construct an O(n2−δ+o(1)) time algorithm for
OVn,d, and therefore contradicts the OVC.

26

We simply invoke Lemma 1.16, note that we have

log

{
`
O
(

6log
∗ d·(d/`)

)}
= log ` ·O

(
6log∗ d · (d/`)

)
= O

(
log∗ n · 6log∗ n · c · log n/7log∗ n

)
= O

(
log∗ n · (6/7)log∗ n · c · log n

)
= o(log n).

Therefore, the reduction takes O(n · `O
(

6log
∗ d·(d/`)

)
· poly(d)) = n1+o(1) time, and an OVn,d instance is

reduced to no(1) instances of Z-OVn,`+1, and the reduced vectors have bit length o(log n) as calculated
above. We simply solve all these no(1) instances using our oracle, and this gives us an O(n2−δ+o(1)) time
algorithm for OVn,d, which completes the proof.

4.3 Hardness for Z-Max-IP

Now we move to hardness of exact Z-Max-IP.

Theorem 4.3 (Implicit in Theorem 1.2 [Wil18]). There is an O(poly(d) · n)-time algorithm which reduces
a Z-OVn,d instance into a Z-Max-IPn,d2 instance.

Proof. We remark here that this reduction is implicitly used in the proof of Theorem 1.2 in [Wil18], we
abstract it here only for our exposition.

Given a Z-OVn,d instance with setsA,B. Consider the following polynomial P (x, y), where x, y ∈ Zd.

P (x, y) = −(x · y)2 =
∑
i,j∈[d]

−xi · yj .

It is easy to see that whether there is a (x, y) ∈ A × B such that x · y = 0 is equivalent to whether the
maximum value of P (x, y) is 0.

Now, for each x ∈ A and y ∈ B, we construct x̃, ỹ ∈ Zd
2

such that x̃i = xb(i−1)/dc+1 and ỹi =

−y(i mod d)+1. Then we have x̃ · ỹ = P (x, y). Hence, let Ã be the set of all these x̃’s, and B̃ be the set of all
these ỹ’s, whether there is a (x, y) ∈ A × B such that x · y = 0 is equivalent to whether OPT(Ã, B̃) = 0,
and our reduction is completed.

Now, Theorem 1.13 (restated below) is just a simple corollary of Theorem 4.3 and Theorem 1.17.

Reminder of Theorem 1.13 Assuming SETH (or OVC), there is a constant c such that every exact algorithm
for Z-Max-IPn,d for d = clog∗ n dimensions requires n2−o(1) time, with vectors of O(log n)-bit entries.

A Dimensionality Reduction for Max-IP

The reduction ψb,` from Theorem 4.1 actually does more: for x, y ∈ {0, 1}b·`, from ψb,`(x) ·ψb,`(y) we can
in fact determine the inner product x · y itself, not only whether x · y = 0.

Starting from this observation, together with Theorem 4.3, we can in fact derive a similar dimensionality
self reduction from Max-IP to Z-Max-IP, we deter its proof to Appendix A.

27

Corollary 4.4. Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log

∗ d·(d/`)) · poly(d)
)

-time

reduction from Max-IPn,d to d · `O(6log
∗ d·(d/`)) instances of Z-Max-IPn,(`+1)2 , with vectors of entries with

bit-length O
(
d/` · log ` · 6log∗ d

)
.

4.4 Hardness for `2-Furthest Pair and Bichromatic `2-Closest Pair

We finish the whole section with the proof of hardness of `2-Furthest Pair and Bichromatic `2-Closest Pair.
The two reductions below are slight adaptations of the ones in the proofs of Theorem 1.2 and Corollary 2.1
in [Wil18].

Lemma 4.5. Assuming d = no(1), there is an O(poly(d) · n)-time algorithm which reduces a Z-Max-IPn,d
instance into an instance of `2-Furthest Pair on 2n points in Rd+2. Moreover, if the Z-Max-IP instance
consists of vectors of O(log n)-bit entries, so does the `2-Furthest Pair instance.

Proof. Let A,B be the sets in the Z-Max-IPn,d instance, and k be the smallest integer such that all vectors
from A and B consist of (k · log n)-bit entries.

Let W be nC·k where C is a large enough constant. Given x ∈ A and y ∈ B, we construct point

x̃ =
(
x,
√
W − ‖x‖2, 0

)
and ỹ =

(
−y, 0,

√
W − ‖y‖2

)
,

that is, appending two corresponding values into the end of vectors x and −y.
Now, we can see that for x1, x2 ∈ A, the squared distance between their reduced points is

‖x̃1 − x̃2‖2 = ‖x1 − x2‖2 ≤ 4 · d · n2k.

Similarly we have
‖ỹ1 − ỹ2‖2 ≤ 4 · d · n2k

for y1, y2 ∈ B.
Next, for x ∈ A and y ∈ B, we have

‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2 − 2 · x̃ · ỹ = 2 ·W + 2 · (x · y) ≥ 2 ·W − d · n2k � 4 · d · n2k,

the last inequality holds when we set C to be 5.
Putting everything together, we can see the `2-furthest pair among all points x̃’s and ỹ’s must be a pair

of x̃ and ỹ with x ∈ A and y ∈ B. And maximizing ‖x̃− ỹ‖ is equivalent to maximize x · y, which proves
the correctness of our reduction. Furthermore, when k is a constant, the reduced instance clearly only needs
vectors with O(k) · log n = O(log n)-bit entries.

Lemma 4.6. Assuming d = no(1), there is an O(poly(d) · n)-time algorithm which reduces a Z-Max-IPn,d
instance into an instance of Bichromatic `2-Closest Pair on 2n points in Rd+2. Moreover, if the Z-Max-IP
instance consists of vectors of O(log n)-bit entries, so does the Bichromatic `2-Closest Pair instance.

Proof. Let A,B be the sets in the Z-Max-IPn,d instance, and k be the smallest integer such that all vectors
from A and B consist of (k · log n)-bit entries.

Let W be nC·k where C is a large enough constant. Given x ∈ A and y ∈ B, we construct point

x̃ =
(
x,
√
W − ‖x‖2, 0

)
and ỹ =

(
y, 0,

√
W − ‖y‖2

)
,

28

that is, appending two corresponding values into the end of vectors x and −y. And our reduced instance is
to find the closest point between the set Ã (consisting of all these x̃ where x ∈ A) and the set B̃ (consisting
of all these ỹ where y ∈ B).

Next, for x ∈ A and y ∈ B, we have

‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2 − 2 · x̃ · ỹ = 2 ·W − 2 · (x · y) ≥ 2 ·W − d · n2k � 4 · d · n2k,

the last inequality holds when we set C to be 5.
Hence minimizing ‖x̃ − ỹ‖ where x ∈ A and y ∈ B is equivalent to maximize x · y, which proves the

correctness of our reduction. Furthermore, when k is a constant, the reduced instance clearly only needs
vectors with O(k) · log n = O(log n)-bit entries.

Now Theorem 1.14 and Theorem 1.15 (restated below) are simple corollaries of Lemma 4.5, Lemma 4.6
and Theorem 1.13.

Reminder of Theorem 1.14 [Hardness of `2-Furthest Pair in clog∗ n Dimension] Assuming SETH (or OVC),
there is a constant c such that `2-Furthest Pair in clog∗ n dimensions requires n2−o(1) time, with vectors of
O(log n)-bit entries.

Reminder of Theorem 1.15 [Hardness of Bichromatic `2-closest Pair in clog∗ n Dimension] Assuming
SETH (or OVC), there is a constant c such that Bichromatic `2-Closest Pair in clog∗ n dimensions requires
n2−o(1) time, with vectors of O(log n)-bit entries.

5 NP · UPP communication protocol and Exact Hardness for Z-Max-IP

We note that the inapproximability results for (Boolean) Max-IP is established via a connection to the MA
communication complexity protocol of Set-Disjointness [ARW17]. In the light of this, in this section we
view our reduction from OV to Z-Max-IP (Lemma 1.16 and Theorem 4.3) in the perspective of communi-
cation complexity.

We observe that in fact, our reduction can be understood as an NP · UPP communication protocol for
Set Disjointness. Moreover, we show that if we can get a slightly better NP · UPP communication protocol
for Set-Disjointness, then we would be able to prove Z-Max-IP is hard even for ω(1) dimensions (and also
`2-Furthest Pair and Bichromatic `2-Closest Pair).

5.1 NP · UPP Communication Protocol for Set-Disjointness

First, we rephrase the results of Lemma 1.16 and Theorem 4.3 in a more convenience way for our use here.

Lemma 5.1 (Rephrasing of Lemma 1.16 and Theorem 4.3). Let 1 ≤ ` ≤ d, and m = `O(6log
∗ d·(d/`)). There

exists a family of functions
ψiAlice, ψ

i
Bob : {0, 1}d → R(`+1)2

for i ∈ [m] such that:

• when x · y = 0, there is an i such that ψiAlice(x) · ψiBob(y) ≥ 0;

• when x · y > 0, for all i ψiAlice(x) · ψiBob(y) < 0;

• all ψiAlice(x) and ψiBob(y) can be computed in poly(d) time.

29

From the above lemma, and the standard connection between UPP and sign-rank [PS86] (see also Chap-
ter 4.11 of [Juk12]), we immediately get the communication protocol we want and prove Theorem 1.20
(restated below for convenience).

Reminder of Theorem 1.20 For all 1 ≤ α ≤ n, there is an(
α · 6log∗ n · (n/2α), O(α)

)
-computational-efficient

NP · UPP communication protocol for DISJn.

Proof Sketch. We set α = log ` here. Given the function families {ψiAlice}, {ψ
i
Bob} from Lemma 5.1, Merlin

just sends the index i ∈ [m], the rest follows from the connection between UPP protocols and sign-rank of
matrices.

5.2 Slightly Better Protocols Imply Hardness in ω(1) Dimensions

Finally, we show that if we have a slightly better NP ·UPP protocol for Set-Disjointness, then we can show
Z-Max-IP requires n2−o(1) time even for ω(1) dimensions (and so do `2-Furthest Pair and Bichromatic
`2-Closest Pair). We restate Theorem 1.21 here for convenience.

Reminder of Theorem 1.21 Assuming SETH (or OVC), if there is an increasing and unbounded function
f such that for all 1 ≤ α ≤ n, there is a

(n/f(α), α) -computational-efficient

NP · UPP communication protocol for DISJn, then Z-Max-IPn,ω(1) requires n2−o(1) time with vectors of
polylog(n)-bit entries. The same holds for `2-Furthest Pair and Bichromatic `2-Closest Pair.

Proof. Suppose otherwise, there is an algorithm A for Z-Max-IPn,d running in n2−ε1 time for all constant
d and for a constant ε1 > 0 (note for the sake of Lemma 4.5 and Lemma 4.6, we only need to consider
Z-Max-IP here).

Now, let c be an arbitrary constant, we are going to construct an algorithm for OVn,c logn in n2−Ω(1)

time, which contradicts OVC.
Let ε = ε1/2, and α be the first number such that c/f(α) < ε, note that α is also a constant. Consider

the (c log n/f(α), α)-computational-efficient NP · UPP protocol Π for DISJc logn, and let A,B be the two
sets in the OVn,c logn instance. Our algorithm via reduction works as follows:

• There are 2α possible messages in {0, 1}α, let m1,m2, . . . ,m2α be an enumeration of them.

• We first enumerate all possible advice strings from Merlin in Π, there are 2c logn/f(α) ≤ 2ε·logn = nε

such strings, let φ ∈ {0, 1}ε·logn be such an advice string.

– For each x ∈ A, let ψAlice(x) ∈ R2α be the probabilities that Alice accepts each message from
Bob. That is, ψAlice(x)i is the probability that Alice accepts the message mi, given its input x
and the advice φ.

– Similarly, for each y ∈ B, let ψBob(y) ∈ R2α be the probabilities that Bob sends each message.
That is, ψBob(y)i is the probability that Bob sends the message mi, give its input y and the
advice φ.

30

– Then, for each x ∈ A and y ∈ B, ψAlice(x) · ψBob(y) is precisely the probability that Alice
accepts at the end when Alice and Bob holds x and y correspondingly and the advice is φ. Now
we let Aφ be the set of all the ψAlice(x)’s, and Bφ be the set of all the ψBob(y)’s.

• If there is a φ such that OPT(Aφ, Bφ) ≥ 1/2, then we output yes, and otherwise output no.

From the definition of Π, it is straightforward to see that the above algorithm solves OVn,c·logn. More-
over, notice that from the computational-efficient property of Π, the reduction itself works in n1+ε·polylog(n)
time, and all the vectors inAφ’s andBφ’s have at most polylog(n) bit precision, which means OPT(Aφ, Bφ)
can be solved by a call to Z-Max-IPn,2α with vectors of polylog(n)-bit entries.

Hence, the final running time for the above algorithm is bounded by nε · n2−ε1 = n2−ε (2α is still a
constant), which contradicts the OVC.

6 Improved MA Protocols

In this section we prove Theorem 1.22 (restated below for convenience).

Reminder of Theorem 1.22 There is an MA protocol for DISJn with communication complexity

O
(√

n log n log logn
)
.

To prove Theorem 1.22, we need the following intermediate problem.

Definition 6.1 (The Inner Product Modulo p Problem (IPpn)). Let p and n be two positive integers, in IPpn,
Alice and Bob are given two vectors x and y in {0, 1}n, and they want to determine whether x · y ≡ 0
(mod p).

We are going to use the following MA protocol for IPpn which is a slight adaption from the protocol in
Theorem 6.1 of [KLM17].

Lemma 6.2. For a sufficiently large prime q and integers T and n, there is an(
O (n/T · log q) , log n+O(1), O (T · log q) , 1/2

)
-efficient

MA protocol for IPqn.

Proof Sketch. The protocol is roughly the same as in the protocol in Theorem 6.1 in [KLM17] when setting
k = 2. The only adaption is that we just use the field Fq2 with respect to the given prime q.

Now we ready to prove Theorem 1.22.

Proof of Theorem 1.22. Now, let x be the number such that xx = n, for convenience we are going to
pretend that x is an integer. It is easy to see that x = Θ(log n/ log log n). Then we pick 10x distinct
primes p1, p2, . . . , p10x in [x + 1, x2] (we can assume that n is large enough to make x satisfy the re-
quirement of Lemma 2.4). Let T be a parameter, we use Πpi to denote the

(
O (n/T · log pi) , log n +

O(1), O (T · log pi) , 1/2
)

-efficient MA protocol for IPpin .
Our protocol for DISJn works as follows:

• Merlin sends Alice all the advice strings from the protocols Πp1 ,Πp2 , . . . ,Πp10x .

• Alice and Bob jointly toss O(log(10x)) coins, to pick a uniform random number i? ∈ [10x], and then
they simulate Πpi? . That is, they pretend they are the Alice and Bob in the protocol Πpi? with the
advice from Merlin in Πpi? (which Alice does have).

31

Correctness. Let X,Y ∈ {0, 1}n be the vectors of Alice and Bob. If X · Y = 0, then by the definition of
these protocols Πpi’s, Alice always accepts with the correct advice from Merlin.

Otherwise, let d = X · Y 6= 0, we are going to analyze the probability that we pick a “good” pi? such
that pi? does not divide d. Since pi > x for all pi’s and xx > n ≥ d, d cannot be a multiplier for more than
x primes in pi’s. Therefore, with probability at least 0.9, our pick of pi? is good. And in this case, from
the definition of the protocols Πpi’s, Alice and Bob would reject afterward with probability at least 1/2. In
summary, when X ·Y 6= 0, Alice rejects with probability at least 0.9/2 = 0.45, which finishes the proof for
the correctness.

Complexity. Now, note that the total advice length is

O

(
n/T ·

10x∑
i=1

log pi

)
= O

(
n/T · log

10x∏
i=1

x2

)
= O

(
n/T · log x20x

)
= O (n/T · log n) .

And the communication complexity between Alice and Bob is bounded by

O
(
T · log x2

)
= O (T · log log n) .

Setting T =
√
n log n/ log logn balances the above two quantities, and we obtain the needed MA-

protocol for DISJn.

7 Future Works

We end our paper by discussing a few interesting research directions.

• The most important open question from this paper is that can we further improve the dimensionality
reduction for OV? It is certainly weird to consider 2O(log∗ n) to be the right answer for the limit of
the dimensionality reduction. This term seems more like a product of the nature of our recursive
construction and not the problem itself. We conjecture that there should be an ω(1) dimensional
reduction with a more direct construction.

One possible direction is to combine the original polynomial-based construction from [Wil18] to-
gether with our new number theoretical one. These two approaches seem completely different, hence
a clever combination of them may solve our problem.

• In order to prove ω(1) dimensional hardness for `2-Furthest Pair and Bichromatic `2-Closest Pair,
we can also bypass the OV dimensionality reduction things by proving ω(1) dimensional hardness
for Z-Max-IP directly. One possible way to approach this question is to start from the NP · UPP
communication protocol connection as in Section 5 (apply Theorem 1.21), and (potentially) draw
some connections from some known UPP communication protocols.

• We have seen an efficient reduction from Z-OV to Z-Max-IP which only blows up the dimension
quadratically, is there a similar reduction from Z-Max-IP back to Z-OV? Are Z-Max-IP and Z-OV
equivalent?

• By making use of the new AG-code based MA protocols, we can shave a Õ(
√

log n) factor from
the communication complexity, can we obtain an O(

√
n) MA communication protocol matching the

lower bound for DISJn? It seems new ideas are required.

32

• Can the dependence on ε in the algorithms from Theorem 1.5 be further improved? Is it possible to
apply ideas in the n2−1/Ω̃(

√
c) algorithm for Max-IPn,c logn from [ACW16]?

• For the complexity of 2-multiplicative-approximation to Max-IPn,c logn, Theorem 1.5 implies that
there is an algorithm running in n2−1/O(log c) time, the same as the best algorithm for OVn,c logn [AWY15].
Is this just a coincidence? Or are there some connections between these two problems?

• We obtain a connection between hardness of Z-Max-IP and NP · UPP communication protocols for
Set-Disjointness. Can we get similar connections from other NP · C type communication protocols
for Set-Disjointness? Some candidates include NP · SBP and NP · promiseBQP (QCMA).

Acknowledgment

I am grateful to Virginia Vassilevska Williams, Kaifeng Lv and Peilin Zhong for helpful discussions and
suggestions. And I would like to thank Ryan Williams for introducing the problem to me, countless en-
couragement and helpful discussions during this work, and also many comments on a draft of this paper.
In particular, the idea of improving OV dimensionality self-reduction using CRT (the direct CRT based
approach) is introduced to me by Ryan Williams.

A A Dimensionality Reduction for Max-IP

In fact, tracing the proof of Theorem 4.1, we observe that it is possible to compute the inner product x · y
itself from ψb,`(x) · ψb,`(y), that is:

Corollary A.1. Let b, ` be two sufficiently large integers. There is a reduction ψb,` : {0, 1}b·` → Z` and
b · `+ 1 sets V 0

b,`, V
1
b,`, . . . , V

b·`
b,` ⊆ Z, such that for every x, y ∈ {0, 1}b·`,

x · y = k ⇔ ψb,`(x) · ψb,`(y) ∈ V k
b,` for all 0 ≤ k ≤ b · `,

and
0 ≤ ψb,`(x)i < `6

log∗(b)·b

for all possible x and i ∈ [`]. Moreover, the computation of ψb,`(x) takes poly(b · `) time, and the sets V k
b,`’s

can be constructed in O
(
`O(6log

∗(b)·b) · poly(b · `)
)

time.

Together with Theorem 4.3, it proves Corollary 4.4 (restated below).

Reminder of Corollary 4.4 Let 1 ≤ ` ≤ d. There is an

O
(
n · `O(6log

∗ d·(d/`)) · poly(d)
)

-time

reduction from Max-IPn,d to d · `O(6log
∗ d·(d/`)) instances of Z-Max-IPn,(`+1)2 , with vectors of entries with

bit-length O
(
d/` · log ` · 6log∗ d

)
.

Proof Sketch. Let b = d/` (assume ` divides d here for simplicity), A and B be the sets in the given
Max-IPn,d instance, we proceed similarly as the case for OV.

We first enumerate a number k from 0 to d, for each k we construct the set V k
b,` as specified in Corol-

lary A.1. Then there is (x, y) ∈ A× B such that x · y = k if and only if there is (x, y) ∈ A× B such that

33

ψb,`(x) ·ψb,`(y) ∈ V k
b,`. Using exactly the same reduction as in Lemma 1.16, we can in turn reduce this into

`O(6log
∗(b)·b) instances of Z-OVn,`+1.

Applying Theorem 4.3, with evaluation of (d + 1) · `O(6log
∗(b)·b) Z-Max-IPn,(`+1)2 instances, we can

determine whether there is (x, y) ∈ A×B such that x · y = k for every k, from which we can compute the
answer to the Max-IPn,d instance.

B Nonuniform to Uniform Transformation for Dimensionality Reduction
for OV

In this section we discuss the transformation from nonuniform construction to uniform one for dimension-
ality reduction for OV. In order to state our result formally, we need to introduce some definitions.

Definition B.1 (Nonuniform Reduction). Let b, `, κ ∈ N. We say a function ϕ : {0, 1}b·` → Z` together
with a set V ⊆ Z is a (b, `, κ)-reduction, if the following holds:

• For every x, y ∈ {0, 1}b·`,
x · y = 0⇔ ϕ(x) · ϕ(y) ∈ V.

• For every x and i ∈ [`],
0 ≤ ϕ(x)i < `κ·b.

Similarly, let τ be an increasing function, we say a function family {ϕb,`}b,` together with a set family
{Vb,`}b,` is a τ -reduction family, if for every b and `, (ϕb,`, Vb,`) is a (b, `, τ(b))-reduction.

Moreover, if for all b and all ` ≤ log log log b, there is an algorithm A which computes ϕb,`(x) in poly(b)

time given b, ` and x ∈ {0, 1}b·`, and constructs the set Vb,` in O
(
`O(τ(b)·b) · poly(b)

)
time given b and `,

then we call (ϕb,`, Vb,`) a uniform-τ -reduction family.

Remark B.2. The reason we assume ` to be small is that in our applications we only care about very small
`, and that greatly simplifies the notation. From Theorem 4.1, there is a uniform-

(
6log∗ b

)
-reduction family,

and a better uniform-reduction family implies better hardness for Z-OV and other related problems as well
(Lemma 1.16, Theorem 4.3, Lemma 4.6 and Lemma 4.5).

Now we are ready to state our nonuniform to uniform transformation result formally.

Theorem B.3. Letting τ be an increasing function such that τ(n) = O(log log log n) and supposing there
is a τ -reduction family, then there is a uniform-O(τ)-reduction family.

Proof Sketch. The construction in Theorem 4.1 is recursive, it constructs the reduction ψb,` from a much
smaller reduction ψbmicro,`, where bmicro ≤ log b. In the original construction, it takes log∗ b recursions
to make the problem sufficiently small so that a direct construction can be used. Here we only apply the
reduction thrice. First let us abstract the following lemma from the proof of Theorem 4.1.

Lemma B.4 (Implicit in Theorem 4.1). Letting b, `, bmicro, κ ∈ N and supposing `κ·bmicro = b and there is a
(bmicro, `, κ)-reduction (ϕ, V ′), the following holds:

• There is a (b, `, 6 · κ)-reduction (ψ, V).

• Given (ϕ, V ′), for all x ∈ {0, 1}b·`, ψ(x) can be computed in poly(b · `), and V can be constructed
in O

(
`O(κ·b) · poly(b · `)

)
time.

34

Now, let b, ` ∈ N, we are going to construct our reduction as follows.
Let b1 be the number such that

`τ(b)·62·b1 = b,

and similarly we set b2 and b3 so that

`τ(b)·6·b2 = b1 and `τ(b)·b3 = b2.

We can calculate from above that b3 ≤ log log log b.
From the assumption that there is a τ -reduction, there is a (b3, `, τ(b3))-reduction (ϕb3,`, Vb3,`), which

is also a (b3, `, τ(b))-reduction, as τ is increasing. Note that we can assume ` ≤ log log log b and τ(b) ≤
log log log b from assumption. Now we simply use a brute force algorithm to find (ϕb3,`, Vb3,`). There are

`τ(b)·b3·`·2b3·` = bo(1)

possible functions from {0, 1}b3·` → {0, . . . `τ(b3)·b3 − 1}`. Given such a function ϕ, one can check in
poly(2b3·`) = bo(1) time that whether one can construct a corresponding set V to obtain our (b3, `, τ(b))-
reduction.

Applying Lemma B.4 thrice, one obtain a (b, `, O(τ(b)))-reduction (ψ, V). And since ϕb3,` can be
found in bo(1) time, together with Lemma B.4, we obtain a uniform-τ -reduction family.

Finally, we give a direct corollary of Theorem B.3 that the existence of anO(1)-reduction family implies
hardness of Z-OV, Z-Max-IP, `2-Furthest Pair and Bichromatic `2-Closest Pair in ω(1) dimensions.

Corollary B.5. If there is an O(1)-reduction family, then for every ε > 0, there exists a c ≥ 1 such
that Z-OV, Z-Max-IP, `2-Furthest Pair and Bichromatic `2-Closest Pair in c dimensions with O(log n)-bit
entries require n2−ε time.

Proof Sketch. Note that since its hardness implies the harnesses of other three, we only need to consider
Z-OV here.

From Theorem B.3 and the assumption, there exists a uniform-O(1)-reduction. Proceeding similar as
in Lemma 1.16 with the uniform-O(1)-reduction, we obtain a better dimensionality self reduction from OV
to Z-OV. Then exactly the same argument as in Theorem 1.17 with different parameters gives us the lower
bound required.

C Hardness of Approximate {−1, 1}-Max-IP via Approximate Polynomial
for OR

We first show that making use of the O(
√
n)-degree approximate polynomial for OR [BCDWZ99, dW08],

OV can be reduced to approximating {−1, 1}-Max-IP.

Theorem C.1. Letting ε ∈ (0, 1), an OVn,d instance with sets A,B reduces to a {−1, 1}-Max-IPn,d1
instance with sets Ã and B̃, such that:

• d1 =

(
d

≤ O
(√

d log 1/ε
))3

· 2O
(√

d log 1/ε
)
· ε−1, in which the notation

(
n

≤ m

)
denotes

m∑
i=0

(
n

i

)
.

• There is an integer T > ε−1 such that if there is an (a, b) ∈ A × B such that a · b = 0, then
OPT(Ã, B̃) ≥ T .

35

• Otherwise, |OPT(Ã, B̃)| ≤ T · ε.

• Moreover, the reduction takes n · poly(d1) time.

We remark here that the above reduction fails to achieve a characterization: setting ε = 1/2 and d =

c log n for an arbitrary constant c, we have d1 = 2Õ(
√

logn), much larger than log n. Another interesting
difference between the above theorem and Lemma 3.3 (the reduction from OV to approximating Max-IP) is
that Lemma 3.3 reduces one OV instance to many Max-IP instances, while the above reduction only reduces
it to one {−1, 1}-Max-IP instance.

Proof of Theorem C.1.
Construction and Analysis of Polynomial Pε(z). By [BCDWZ99, dW08], there is a polynomial Pε :

{0, 1}d → R such that:

• Pε is of degree D = O
(√

d log 1/ε
)

.

• For every z ∈ {0, 1}d, Pε(z) ∈ [0, 1].

• Given z ∈ {0, 1}d, if OR(z) = 0, then Pε(z) ≥ 1− ε, otherwise Pε(z) ≤ ε.

• Pε can be constructed in time polynomial in its description size.

Now, let us analyze Pε further. For a set S ⊆ [d], let χS : {0, 1}d → R be χS(z) :=
∏
i∈S

(−1)zi . Then

we can write Pε as:
Pε :=

∑
S⊆[d],|S|≤D

χS · 〈χS , Pε〉,

where 〈χS , Pε〉 is the inner product of χS and Pε, defined as 〈χS , Pε〉 := Ex∈{0,1}dχS(x) · Pε(x).
Let cS = 〈χS , Pε〉, from the definition it is easy to see that cS ∈ [−1, 1].

Discretization of Polynomial Pε. Note that Pε(z) has real coefficients, we need to turn it into another
polynomial with integer coefficients first.

Let M :=

(
d

≤ D

)
, consider the following polynomial P̂ε:

P̂ε :=
∑

S⊆[d],|S|≤D

bcS · 2M/εc · χS .

We can see that |P̂ε(z)/(2M/ε) − Pε(z)| ≤ ε for every z ∈ {0, 1}d, and we let ĉS := bcS ·M · 2/εc
for convenience.

Simplification of Polynomial P̂ε. P̂ε(z) is expressed over the basis χS’s, we need to turn it into a polyno-
mial over standard basis.

For each S ⊆ [d], consider χS , it can also be written as:

χS(z) =
∏
i∈S

(−1)zi :=
∏
i∈S

(1− 2zi) =
∑
T⊆S

(−2)|T |zT ,

36

where zT :=
∏
i∈T

zi. Plugging it into the expression of P̂ε, we have

P̂ε(z) :=
∑

T⊆[d],|T |≤D

 ∑
S⊆[d],|S|≤D,T⊆S

ĉS

 · (−2)|T |zT .

Set

c̃T :=

 ∑
S⊆[d],|S|≤D,T⊆S

ĉS

 · (−2)|T |,

the above simplifies to
P̂ε(z) :=

∑
T⊆[d],|T |≤D

c̃T · zT .

Properties of Polynomial P̂ε. Let us summarize some properties of P̂ε for now. First we need a bound on
|c̃T |, we can see |ĉS | ≤M · 2/ε, and by a simple calculation we have

|c̃T | ≤M2 · 2D · 2/ε.

LetB = M2·2D·2/ε for convenience. For x, y ∈ {0, 1}d, consider P̂ε(x, y) := P̂ε(x1y1, x2y2, . . . , xdyd)
(that is, plugging in zi = xiyi), we have

P̂ε(x, y) :=
∑

T⊆[d],|T |≤D

c̃T · xT · yT ,

where xT :=
∏
i∈T

xi and yT is defined similarly. Moreover, we have

• If x · y = 0, then P̂ε(x, y) ≥ (2M/ε) · (1− 2ε).

• If x · y 6= 0, then |P̂ε(x, y)| ≤ (2M/ε) · 2ε.

The Reduction. Now, let us construct the reduction, we begin with some notations. For two vectors a, b,
we use a ◦ b to denote their concatenation. For a vector a and a real x, we use a · x to denote the vector
resulting from multiplying each coordinate of a by x. Let sgn(x) be the sign function that outputs 1 when
x > 0, −1 when x < 0, and 0 when x = 0. For x ∈ {−B,−B + 1, . . . , B}, we use ex ∈ {−1, 0, 1}B
to denote the vector whose first |x| elements are sgn(x) and the rest are zeros. We also use 1 to denote the
all-1 vector with length B.

Let T1, T2, . . . , TM be an enumeration of all subsets T ⊆ [d] such that |T | ≤ D, we define

ϕx(x) := ◦Mi=1(ec̃Ti · xTi) and ϕy(y) := ◦Mi=1(1 · yTi).

And we have

ϕx(x) · ϕy(y) =

M∑
i=1

(ec̃Ti · 1) · (xTi · yTi) =

M∑
i=1

c̃Ti · xTi · yTi = P̂ε(x, y).

To move from {−1, 0, 1} to {−1, 1}, we use the following carefully designed reductions ψx, ψy :
{−1, 0, 1} → {−1, 1}2, such that

ψx(−1) = ψy(−1) = (−1,−1), ψx(0) = (−1, 1), ψy(0) := (1,−1), and ψx(1) = ψy(1) = (1, 1).

37

It is easy to check that for x, y ∈ {−1, 0, 1}, we have ψx(x) · ψy(y) = 2 · (x · y).
Hence, composing the above two reductions, we get our desired reductions φx = ψ⊗(B·M)

x ◦ϕx and φy =

ψ⊗(B·M)
y ◦ ϕy such that for x, y ∈ {0, 1}d, φx(x), φy(y) ∈ {−1, 1}2B·M and φx(x) · φy(y) = 2 · P̂ε(x, y).

Finally, given an OVn,d instance with two sets A and B, we construct two sets Ã and B̃, such that Ã
consists of all φx(x)’s for x ∈ A, and B̃ consists of all φy(y)’s for y ∈ B.

Then we can see Ã and B̃ consist of n vectors from {−1, 1}d1 , where

d1 = 2B ·M = M3 · 2D · 2/ε =

(
d

≤ O
(√

d log 1/ε
))3

· 2O
(√

d log 1/ε
)
· ε−1

as stated.
It is not hard to see the above reduction takes n · poly(d1) time. Moreover, if there is a (x, y) ∈ A×B

such that x · y = 0, then OPT(Ã, B̃) ≥ (4M/ε) · (1− 2ε), otherwise, OPT(Ã, B̃) ≤ (4M/ε) · 2ε. Setting
ε above to be 1/3 times the ε in the statement finishes the proof.

With Theorem C.1, we are ready to prove our hardness results on {−1, 1}-Max-IP.

Theorem C.2. Assume SETH (or OVC). Letting α : N → R be any function of n such that α(n) = no(1),
there is another function β satisfying β(n) = no(1) and an integer T > α (β and T depend on α), such that
there is no n2−Ω(1)-time algorithm for {−1, 1}-Max-IPn,β(n) distinguishing the following two cases:

• OPT(A,B) ≥ T (A and B are the sets in the {−1, 1}-Max-IP instance).

• |OPT(A,B)| ≤ T/α(n).

Proof. Letting α = no(1) and k = logα/ log n, we have k = o(1). Setting d = c log n where c is
an arbitrary constant and ε = α−1 in Theorem C.1, we have that an OVc logn reduces to a certain α(n)-
approximation to a {−1, 1}-Max-IPn,d1 instance with sets A and B, where

d1 =

(
c log n

≤ O(
√
ck log n)

)3

· 2O(
√
ck logn) ≤

(√
c√
k

)O(
√
ck logn)

· 2O(
√
ck logn) = nO(log(c/k)·

√
ck).

Now set β = nk
1/3

and T be the integer specified by Theorem C.1, since k = o(1), β = no(1). Suppose oth-
erwise there is an n2−Ω(1)-time algorithm for distinguishing whether OPT(A,B) ≥ T or |OPT(A,B)| ≤
T/α(n). Then for any constant c, O(log(c/k)

√
ck) ≤ k1/3 for sufficiently large n, which means d1 ≤ β(n)

for a sufficiently large n, and there is an n2−Ω(1)-time algorithm for OVc logn by Theorem C.1, contradiction
to OVC.

References

[AB09] Sanjeev Arora and Boaz Barak, Computational complexity - A modern approach, Cambridge
University Press, 2009.

[AB17] Amir Abboud and Arturs Backurs, Towards hardness of approximation for polynomial time
problems, LIPIcs-Leibniz International Proceedings in Informatics, vol. 67, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[ACW16] Josh Alman, Timothy M Chan, and Ryan Williams, Polynomial representations of thresh-
old functions and algorithmic applications, Foundations of Computer Science (FOCS), 2016
IEEE 57th Annual Symposium on, IEEE, 2016, pp. 467–476.

38

[AESW91] Pankaj K Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl, Euclidean
minimum spanning trees and bichromatic closest pairs, Discrete & Computational Geometry
6 (1991), no. 3, 407–422.

[AI06] Alexandr Andoni and Piotr Indyk, Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions, Proc. of the 47th FOCS, IEEE, 2006, pp. 459–468.

[AIL+15] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt,
Practical and optimal lsh for angular distance, Advances in Neural Information Processing
Systems, 2015, pp. 1225–1233.

[AINR14] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn, Beyond locality-
sensitive hashing, Proc. of the 25th SODA, SIAM, 2014, pp. 1018–1028.

[Apo13] Tom M. Apostol, Introduction to analytic number theory, Springer Science & Business Me-
dia, 2013.

[APRS16] Thomas Dybdahl Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri, On the
complexity of inner product similarity join, Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, ACM, 2016, pp. 151–164.

[AR15] Alexandr Andoni and Ilya Razenshteyn, Optimal data-dependent hashing for approximate
near neighbors, Proc. of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, ACM, 2015, pp. 793–801.

[AR18] Amir Abboud and Aviad Rubinstein, Fast and deterministic constant factor approximation
algorithms for lcs imply new circuit lower bounds, LIPIcs-Leibniz International Proceedings
in Informatics, vol. 94, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[ARW17] Amir Abboud, Aviad Rubinstein, and Ryan Williams, Distributed PCP Theorems for Hard-
ness of Approximation in P, FOCS, to appear, 2017.

[AV14] Amir Abboud and Virginia Vassilevska Williams, Popular conjectures imply strong lower
bounds for dynamic problems, Proc. of the 55th FOCS, 2014, pp. 434–443.

[AVW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann, Consequences of faster
alignment of sequences, Proc. of the 41st ICALP, 2014, pp. 39–51.

[AVY15] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu, Matching triangles and
basing hardness on an extremely popular conjecture, Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, ACM, 2015, pp. 41–50.

[AW09] Scott Aaronson and Avi Wigderson, Algebrization: A new barrier in complexity theory,
TOCT 1 (2009), no. 1, 2:1–2:54.

[AW15] Josh Alman and Ryan Williams, Probabilistic polynomials and hamming nearest neighbors,
Proc. of the 56th FOCS, IEEE, 2015, pp. 136–150.

[AWY15] Amir Abboud, Ryan Williams, and Huacheng Yu, More applications of the polynomial
method to algorithm design, Proceedings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2015, pp. 218–
230.

39

[BCDWZ99] Harry Buhrman, Richard Cleve, Ronald De Wolf, and Christof Zalka, Bounds for small-error
and zero-error quantum algorithms, Foundations of Computer Science, 1999. 40th Annual
Symposium on, IEEE, 1999, pp. 358–368.

[BCW98] Harry Buhrman, Richard Cleve, and Avi Wigderson, Quantum vs. classical communication
and computation, Proceedings of the thirtieth annual ACM symposium on Theory of comput-
ing, ACM, 1998, pp. 63–68.

[BGL16] Karl Bringmann, Allan Grønlund, and Kasper Green Larsen, A dichotomy for regular expres-
sion membership testing, arXiv preprint arXiv:1611.00918 (2016).

[BI15] Arturs Backurs and Piotr Indyk, Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (unless SETH is false), Proc. of the 47th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), 2015, pp. 51–58.

[BI16] , Which regular expression patterns are hard to match?, Proc. of the 57th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2016, pp. 457–466.

[BK18] Karl Bringman and Marvin Künnemann, Multivariate fine-grained complexity of longest com-
mon subsequence, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SIAM, 2018, pp. 1216–1235.

[Bri14] Karl Bringmann, Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails, Proc. of the 55th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), 2014, pp. 661–670.

[BS76] Jon Louis Bentley and Michael Ian Shamos, Divide-and-conquer in multidimensional space,
Proceedings of the eighth annual ACM symposium on Theory of computing, ACM, 1976,
pp. 220–230.

[Chr17] Tobias Christiani, A framework for similarity search with space-time tradeoffs using locality-
sensitive filtering, Proc. of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, 2017, pp. 31–46.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi, The complexity of satisfiability
of small depth circuits., IWPEC, vol. 5917, Springer, 2009, pp. 75–85.

[Cop82] Don Coppersmith, Rapid multiplication of rectangular matrices, SIAM Journal on Comput-
ing 11 (1982), no. 3, 467–471.

[CP16] Tobias Christiani and Rasmus Pagh, Set similarity search beyond minhash, arXiv preprint
arXiv:1612.07710 (2016).

[CT15] Svyatoslav Covanov and Emmanuel Thomé, Fast integer multiplication using generalized
fermat primes, arXiv preprint arXiv:1502.02800 (2015).

[DHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen, A reliable
randomized algorithm for the closest-pair problem, Journal of Algorithms 25 (1997), no. 1,
19–51.

[DKL16] Roee David, CS Karthik, and Bundit Laekhanukit, On the complexity of closest pair via polar-
pair of point-sets, CoRR, abs/1608.03245 (2016).

40

[dW08] Ronald de Wolf, A note on quantum algorithms and the minimal degree of epsilon-error
polynomials for symmetric functions, arXiv preprint arXiv:0802.1816 (2008).

[Für09] Martin Fürer, Faster integer multiplication, SIAM Journal on Computing 39 (2009), no. 3,
979–1005.

[GIKW17] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams, Completeness
for first-order properties on sparse structures with algorithmic applications, Proc. of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 2162–2181.

[Gro96] Lov K Grover, A fast quantum mechanical algorithm for database search, Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, ACM, 1996, pp. 212–219.

[GU18] Francois Le Gall and Florent Urrutia, Improved rectangular matrix multiplication using pow-
ers of the coppersmith-winograd tensor, Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, 2018, pp. 1029–1046.

[HVDHL16] David Harvey, Joris Van Der Hoeven, and Grégoire Lecerf, Even faster integer multiplication,
Journal of Complexity 36 (2016), 1–30.

[IM98] Piotr Indyk and Rajeev Motwani, Approximate nearest neighbors: towards removing the
curse of dimensionality, Proc. of the thirtieth annual ACM symposium on Theory of com-
puting, ACM, 1998, pp. 604–613.

[IP01] Russell Impagliazzo and Ramamohan Paturi, On the complexity of k-sat, J. Comput. Syst. Sci.
62 (2001), no. 2, 367–375.

[Juk12] Stasys Jukna, Boolean function complexity: advances and frontiers, vol. 27, Springer Science
& Business Media, 2012.

[KKK16] Matti Karppa, Petteri Kaski, and Jukka Kohonen, A faster subquadratic algorithm for find-
ing outlier correlations, Proc. of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, Society for Industrial and Applied Mathematics, 2016, pp. 1288–1305.

[Kla03] Hartmut Klauck, Rectangle size bounds and threshold covers in communication complex-
ity, Computational Complexity, 2003. Proceedings. 18th IEEE Annual Conference on, IEEE,
2003, pp. 118–134.

[KLM17] C.S. Karthik, Bundit Laekhanukit, and Pasin Manurangsi, On the parameterized complexity
of approximating dominating set, arXiv preprint arXiv:1711.11029 (2017).

[KM95] Samir Khuller and Yossi Matias, A simple randomized sieve algorithm for the closest-pair
problem, Information and Computation 118 (1995), no. 1, 34–37.

[KT17] Robert Krauthgamer and Ohad Trabelsi, Conditional lower bounds for all-pairs max-flow,
arXiv preprint arXiv:1702.05805 (2017).

[Mat92] Jiřı́ Matoušek, Efficient partition trees, Discrete & Computational Geometry 8 (1992), no. 3,
315–334.

[Mat93] , Range searching with efficient hierarchical cuttings, Discrete & Computational Ge-
ometry 10 (1993), no. 2, 157–182.

41

[NS15] Behnam Neyshabur and Nathan Srebro, On symmetric and asymmetric lshs for inner prod-
uct search, Proc. of the 32nd International Conference on Machine Learning, ICML, 2015,
pp. 1926–1934.

[PS86] Ramamohan Paturi and Janos Simon, Probabilistic communication complexity, Journal of
Computer and System Sciences 33 (1986), no. 1, 106–123.

[PW10] Mihai Pătraşcu and Ryan Williams, On the possibility of faster sat algorithms, Proc. of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, SIAM, 2010, pp. 1065–
1075.

[RG12] Parikshit Ram and Alexander G Gray, Maximum inner-product search using cone trees, Proc.
of the 18th ACM SIGKDD international conference on Knowledge discovery and data min-
ing, ACM, 2012, pp. 931–939.

[RR+07] Ali Rahimi, Benjamin Recht, et al., Random features for large-scale kernel machines., NIPS,
vol. 3, 2007, p. 5.

[Rub17] Aviad Rubinstein, Hardness of approximate nearest neighbor search (using ag codes), In
submission (2017).

[RV13] Liam Roditty and Virginia Vassilevska Williams, Fast approximation algorithms for the di-
ameter and radius of sparse graphs, Proc. of the 45th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), 2013, pp. 515–524.

[SL14] Anshumali Shrivastava and Ping Li, Asymmetric lsh (alsh) for sublinear time maximum inner
product search (mips), Advances in Neural Information Processing Systems, 2014, pp. 2321–
2329.

[SL15] , Asymmetric minwise hashing for indexing binary inner products and set contain-
ment, Proc. of the 24th International Conference on World Wide Web, ACM, 2015, pp. 981–
991.

[TG16] Christina Teflioudi and Rainer Gemulla, Exact and approximate maximum inner product
search with lemp, ACM Transactions on Database Systems (TODS) 42 (2016), no. 1, 5.

[Val15] Gregory Valiant, Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem, Journal of the ACM (JACM) 62 (2015), no. 2, 13.

[Vas18] Virginia Vassilevska Williams, On some fine-grained questions in algorithms and complexity,
To appear in the proceedings of the ICM, 2018.

[Wil05] R. Ryan Williams, A new algorithm for optimal 2-constraint satisfaction and its implications,
Theoretical Computer Science 348 (2005), no. 2–3, 357–365.

[Wil14] Ryan Williams, Faster all-pairs shortest paths via circuit complexity, Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, ACM, 2014, pp. 664–673.

[Wil18] Ryan Williams, On the difference between closest, furthest, and orthogonal pairs: Nearly-
linear vs barely-subquadratic complexity, Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, 2018, pp. 1207–1215.

42

[WY14] Ryan Williams and Huacheng Yu, Finding orthogonal vectors in discrete structures, Proceed-
ings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, SIAM, 2014,
pp. 1867–1877.

[Yao82] Andrew Chi-Chih Yao, On constructing minimum spanning trees in k-dimensional spaces and
related problems, SIAM Journal on Computing 11 (1982), no. 4, 721–736.

43
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

