Electronic Colloquium on Computational Complexity, Report No. 26 (2018)

On The Hardness of Approximate and Exact (Bichromatic)
Maximum Inner Product

Lijie Chen*
MIT

Abstract

In this paper we study the (Bichromatic) Maximum Inner Product Problem (Max-IP), in which we
are given sets A and B of vectors, and the goal is to find @ € A and b € B maximizing inner product
a - b. Max-IP is very basic and serves as the base problem in the recent breakthrough of [Abboud et al.,
FOCS 2017] on hardness of approximation for polynomial-time problems. It is also used (implicitly)
in the argument for hardness of exact /»-Furthest Pair (and other important problems in computational
geometry) in poly-log-log dimensions in [Williams, SODA 2018]. We have three main results regarding
this problem.

e Characterization of Multiplicative Approximation. First, we study the best multiplicative ap-
proximation ratio for Boolean Max-IP in sub-quadratic time. We show that, for Max-IP with two
sets of n vectors from {0, 1}%, there is an n2~*() time (d/ log n)Q(l)-multiplicative-approximating

o(1)

algorithm, and we show this is conditionally optimal, as such a (d/logn)“*’-approximating algo-

rithm would refute SETH.

e Characterization of Additive Approximation. Second, we achieve a similar characterization for
the best additive approximation error to Boolean Max-IP. We show that, for Max-IP with two
sets of n vectors from {0, 1}%, there is an n>~*(%) time Q(d)-additive-approximating algorithm,
and we show this is conditionally optimal, as such an o(d)-approximating algorithm would refute
SETH.

o 200°8" ") _dimensional Hardness for Exact Max-IP Over The Integers. Last, we revisit the
hardness of solving Max-IP exactly for vectors with integer entries. We show that, under SETH,
for Max-IP with sets of n vectors from Z? for some d = 2°(°8" ™) every exact algorithm requires
n%2°M) time. With the reduction from [Williams, SODA 2018], it follows that ¢5-Furthest Pair
and Bichromatic £5-Closest Pair in 2°(°8” ™) dimensions require n>~°") time.

The lower bounds in our first and second results make use of a new MA protocol for Set-Disjointness
introduced in [Rubinstein, 2017]. Our algorithms utilize the polynomial method and simple random
sampling. Our third result follows from a new dimensionality self reduction from the Orthogonal Vectors
problem for 7 vectors from {0,1}% to n vectors from Z* using Chinese Remainder Theorem, where
¢ = 20Uog™d), dramatically improving the previous reduction in [Williams, SODA 2018].

We also establish a connection between conditional lower bounds for exact Max-IP with integer en-
tries and NP-UPP communication protocols for Set-Disjointness, parallel to the connection between con-
ditional lower bounds for approximating Max-IP and MA communication protocols for Set-Disjointness.
Moreover, as a side product, we obtain an MA communication protocol for Set-Disjointness with com-

plexity O (\/n log nloglog n), slightly improving the O (\/ﬁ log n) bound [Aaronson and Wigderson,
TOCT 2009], and approaching the £2(y/n) lower bound [Klauck, CCC 2003].

*Email: lijieche @mit.edu. Supported by an Akamai Fellowship.

ISSN 1433-8092

1 Introduction

We study the following fundamental problem from similarity search and statistics, which asks to find the
most correlated pair in a dataset:

Definition 1.1 (Bichromatic Maximum Inner Product (Max-IP)). For n,d € N, the Max-IP,, 4 problem is
defined as: given two sets A, B of vectors from {0,1}¢ compute

OPT(A, B) := max a- b.
acA,bE

We use Z-Max-IP,, ; (R-Max-IP,, 4) to denote the same problem, but with A, B being sets of vectors
from Z% (R%).

Hardness of Approximation Max-IP. A natural brute-force algorithm solves Max-IP in O(n? - d)-time.
Assuming SETH, there is no n>~()_time algorithm for Max-IP,, ¢ when d = w(logn) [Wil05].

Despite being one of the most central problems in similarity search and having numerous applica-
tions [IM98, AI06, RRT07, RG12, SL14, AINR14, AIL" 15, AR15, NS15, SL15, Vall5, AW15, KKK 16,
APRS16, TG16, CP16, Chr17], until recently it was unclear whether there could be a near-linear-time, 1.1-
approximating algorithm, before the recent breakthrough of Abboud, Rubinstein and Williams [ARW17]
(see [ARW17] for a thorough discussion on the state of affairs on hardness of approximation in P before
their work). In [ARW17], it is shown that:

Q).

Theorem 1.2 ((ARW17]). Assuming SETH, there is no 2°¢ n)t=e® -multiplicative-approximating n>~
time algorithm for Max-IP,, ,.o.1).

Theorem 1.2 is an exciting breakthrough for hardness of approximation in P, implying other important
inapproximability results for a host of problems including Bichromatic LCS Closest Pair Over Permutations,
Approximate Regular Expression Matching, and Diameter in Product Metrics [ARW17]. However, we still
do not have a complete understanding of the approximation hardness of Max-IP yet. For instance, consider
the following two concrete questions:

W) _time algorithm for Max-IP

Question 1. Is there a (log n)-multiplicative-approximating n*~ log?n’

What about a 2-multiplicative-approximating for Max-IP, logZn’

Question 2. Is there a (d/ log n)-additive-approximating n>= WV _time algorithm for Max-IP,, ;?

We note that the lower bound from [ARW17] cannot answer Question 1. Tracing the details of their
proofs, one can see that it only shows approximation hardness for dimension d = log“’(l) n. Question 2
concerning additive approximation is not addressed at all by [ARW 17]. Given the importance of Max-IP, it
is interesting to ask:

For what ratios r do n>~*Y_time r-approximation algorithms exist for Max-IP?

Does the best-possible approximation ratio (in n?~ %) time) relate to the dimensionality, in some way?

In this paper we provide full characterizations, determining essentially optimal multiplicative approxi-
mations and additive approximations to Max-IP, under SETH.

'SETH (Strong Exponential Time Hypothesis) states that for every € > 0 there is a k such that k-SAT cannot be solved in
O((2 — &)™) time [IPO1].

Hardness of Exact Z-Max-IP. Recall that from [Wil05], there is no n2 %M _time algorithm for exact
Boolean Max-IP,, ,,10gr). Since in real life applications of similarity search, one often deals with real-
valued data instead of just Boolean data, it is natural to ask about Z-Max-IP (which is certainly a special
case of R-Max-IP): what is the maximum d such that Z-Max-IP,, ; can be solved exactly in n?=) time?

Besides being interesting in its own right, there are also reductions from Z-Max-IP to ¢s-Furthest Pair
and Bichromatic /2-Closest Pair. Hence, lower bounds for Z-Max-IP imply lower bounds for these two
famous problems in computational geometry (see [Will8] for a discussion on this topic).

Prior to our work, it was implicitly shown in [Wil18] that:

Theorem 1.3 ([Wil18]). Assuming SETH, there is no n>*~*Y_time algorithm for Z-Max-1P,, ., ((10g 10g n)?)
with vectors of O(log n)-bit entries.

However, the best known algorithm for Z-Max-IP runs in n2-90/d) {ime [Mat92, AESW91, Yao82]2,
hence there is still a gap between the lower bound and the best known upper bounds. To confirm these
algorithms are in fact optimal, we would like to prove a lower bound with w(1) dimensions.

In this paper, we significantly strength the previous lower bound from w((loglog n)z) dimensions to
20002" ") dimensions (2°1°8" ™) is an extremely slow-growing function, see preliminaries for its formal
definition).

1.1 Our Results

We use OV, 4 to denote the Orthogonal Vectors problem: given two sets of vectors A, B each consisting of
n vectors from {0, 1}%, determine whether there are « € A and b € B such that a-b = 0.> Similarly, we use
Z-0V,, 4 to denote the same problem except for that A, B consists of vectors from Vi (which is also called
Hopcroft’s problem).

All our results are based on the following widely used conjecture about OV:

Conjecture 1.4 (Orthogonal Vectors Conjecture (OVC) [Wil05, AVW14]). For every € > 0, there exists a
¢ > 1 such that OV,, q requires n?~¢ time when d = clogn.

OVC is a plausible conjecture as it is implied by the popular Strong Exponential Time Hypothesis [IPO1,
CIP09] on the time complexity of solving k-SAT [Wil05, WY 14].

Characterizations of Hardness of Approximate Max-IP

The first main result of our paper characterizes when there is a truly sub-quadratic time (nQ_Q(l) time, for

some universal constant hidden in the big-Q2) ¢-multiplicative-approximating algorithm for Max-IP, and
characterizes the best-possible additive approximations as well. We begin with formal definitions of these
two standard types of approximation:

e We say an algorithm A for Max-IP,, ; (Z-Max-IP,, 4) is t-multiplicative-approximating, if for all
A, B, A outputs a value OPT(A, B) such that OPT(A, B) € [OPT(A, B),OPT(A, B) - t].

e We say an algorithm A for Max-1P,, ; (Z-Max-IP,, 4) is t-additive-approximating, if for all A, B, A
outputs a value OPT(A, B) such that |OPT(A, B) — OPT(A, B)| < t.

e To avoid ambiguity, we call an algorithm computing OPT(A, B) exactly an exact algorithm for
Max-IP,, 4 (Z-Max-IP,, 4).

2[AESW91, Ya082] are for ¢2-Furthest Pair or Bichromatic £>-Closest Pair. They also work for Z-Max-IP as there are reductions
from Z-Max-IP to these two problems, see [Wil18] or Lemma 4.5 and Lemma 4.6.
Here we use the bichromatic version of OV instead of the monochromatic one for convenience, as they are equivalent.

Multiplicative Approximations for Max-IP. In the multiplicative case, our characterization (formally
stated below) basically says that there is a t-multiplicative-approximating n>~*(!)-time algorithm for Max-1P,, 4

if and only if ¢t = (d/log n)Q(l). Note that in the following theorem we require d = w(logn), since in the
case of d = O(logn), there are n*>~°-time algorithms for exact Max-1P,, 4 [AW15, ACW16].

Theorem 1.5. Letting w(logn) < d < n°Y and t > 2, the following holds:

2-Q(1)

1. Thereisann -time t-multiplicative-approximating algorithm for Max-IP,, 4 if

t = (d/logn)®W
and under SETH (or OVC), there is no n> W) _time t-multiplicative-approximating algorithm for
Max-IP,, 4 if
t = (d/logn)’W .
logt

log(d/logn)’
algorithms for Max-IP,, 4 running in time

o <n2+o(1)0.31-51+105,1> _0 (n2+o(1)—0(a))

2. Moreover, let € = min (1>. There are t-multiplicative-approximating deterministic

or time

2017 —1
O <n et Ogt -polylog(n)> =0 <n279(€) . polylog(n)) .

Remark 1.6. The first algorithm is slightly faster, but only truly quadratic when ¢ = Q(1), while the second
algorithm still gets a non-trivial speed up over the brute force algorithm as long as € = w(loglogn/logn).

We remark here that the above algorithms indeed work for the case where the sets consisting of non-
negative reals (i.e., RT-Max-IP):

logt
log(d/logn)’

multiplicative-approximating deterministic algorithm for R*-Max—led running in time

O (nQ_Q(E) . polylog(n)) .

Our lower bound is achieved by combining the framework of [ARW17], which applies an MA-protocol
for Set-Disjointness to yield a reduction from OV to approximating Max-IP, and the new improved MA
protocols by using AG-codes [KLM17, Rub17]. Our upper bounds are application of the polynomial
method [Will4, AWY15]: defining appropriate sparse polynomials for approximating Max-IP on small
groups of vectors, and use fast matrix multiplication to speed up the evaluation of these polynomials on
many pairs of points.

Via the known reduction from Max-IP to LCS-Pair in [ARW17], we also obtain a more refined lower
bound for approximating the LCS Closest Pair problem (defined below).

Corollary 1.7. Assuming w(logn) < d < n°Y and letting e = min< 1>, there is a t-

Definition 1.8 (LCS Closest Pair). The LCS-Closest-Pair,, 4 problem is: given two sets A, B of n strings
from > (Sisa finite alphabet), determine

max LCS(a,b),
acA,beB

where LCS(a, b) is the length of the longest common subsequence of strings a and b.

Corollary 1.9 (Improved Inapproximability for LCS-Closest-Pair). Assuming SETH (or OVC), for every
t > 2, t-multiplicative-approximating LCS-Closest-Pair,, q requires n>=°W time, ifd = t*M - log® n.

*Note that ¢ and d are both functions of n, we assume they are computable in n°® time throughout this paper for simplicity.

A Different Approach Based on Approximate Polynomial for OR. Making use of the O(y/n)-degree
approximate polynomial for OR [BCDWZ99, dW08], we also give a completely different proof for the
hardness of multiplicative approximation to {—1, 1}—MEIX-|F’.5 Lower bound from that approach is inferior
to Theorem 1.5: in particular, it cannot achieve a characterization.

It is asked in [ARW17] that whether we can make use of the O(v/n) BQP communication protocol
for Set-Disjointness [BCW98] to prove conditional lower bounds. Indeed, that quantum communication
protocol is based on the O(+/n)-time quantum query algorithm for OR (Grover’s algorithm [Gro96]), which
induces the needed approximate polynomial for OR. Hence, the following theorem in some sense answers
their question in the affirmative:

Theorem 1.10 (Informal). Assuming SETH (or OVC), there is no n?=) fime no(l)—multiplicative—approximating
algorithm for {—1, 1}-Max-IP

n,no()-

The full statement can be found in Theorem C.1 and Theorem C.2.

Additive Approximations for Max-IP. Our characterization for additive approximations to Max-IP says
that there is a ¢-additive-approximating n>~()-time algorithm for Max-IP,, 4 if and only if t = Q(d).

Theorem 1.11. Letting w(logn) < d < n°Y and 0 < t < d, the following holds:

2-Q(1)

1. Thereisann -time t-additive-approximating algorithm for Max-IP,, 4 if

t = Q(d),

and under SETH (or OVC), there is no n2=) time t-additive-approximating algorithm for Max-IP,, 4

if
t = o(d).

) t .
2. Moreover, letting € = 7 there is an

O (nZ—Q(al/S’/loga*l))

time, t-additive-approximating randomized algorithm for Max-IP,, 4 when € > log®logn / log® n.

The lower bound here is established similarly as in the multiplicative case, while the upper bound works
by reducing the problem to the d = O(log n) case via random-sampling coordinates, and solving the reduced
problem via known methods [AW15, ACW16].

All-Pair-Max-IP. Finally, we remark here that our algorithms (with slight adaptions) also work for the
following stronger problem®: All-Pair-Max-1P,, 4, in which we are given two sets A and B of n vec-

tors from {0, 1}, and for each € A we must compute OPT(z, B) := maxe - y. An algorithm is ¢-
ye

multiplicative-approximating (additive-approximating) for All-Pair-Max-IP if for all OPT(x, B)’s, it com-
putes corresponding approximating answers.

Corollary 1.12. Suppose w(logn) < d < n°Y and let

£y = min _ logt 1) andey = min(t, d)
M log(d/logn)’ AT g

There is an n polylog(n) time t-multiplicative-approximating algorithm and an n
time t-additive-approximating algorithm for All-Pair-Max-IP,, 4, when € 4 > log®log n/log® n.

2—Q(em) 2—9(6114/3/10g521)

>That is, Max-IP with sets A and B being n vectors from {—1,1}%.
SSince All-Pair-Max-IP is stronger than Max-IP, lower bounds for Max-IP automatically apply for All-Pair-Max-IP.

Hardness of Exact Z-Max-IP in 2°U°¢" ") Dimensions

Thirdly, we show that Z-Max-IP is hard to solve in n2~2M time, even with 291°8" ™)_dimensional vectors:

Theorem 1.13. Assuming SETH (or OVC), there is a constant c such that any exact algorithm for Z-Max-IP,, 4

2—o0(1)

for d = 8" " dimensions requires n time, with vectors of O(log n)-bit entries.

As direct corollaries of the above theorem, using reductions implicit in [Wil18], we also conclude hard-
ness for ¢o-Furthest Pair and Bichromatic ¢5-Closest Pair under SETH (or OVC) in 20008" 1) dimensions.

Theorem 1.14 (Hardness of o-Furthest Pair in ¢!°® ™ Dimensions). Assuming SETH (or OVC), there is a
constant ¢ such that lo-Furthest Pair in ¢'°¢ " dimensions requires n>~°W time, with vectors of O(log n)-bit
entries.

Theorem 1.15 (Hardness of Bichromatic ¢5-Closest Pair in clog™n Dimensions). Assuming SETH (or OVC),
there is a constant c such that Bichromatic {s-Closest Pair in ¢'°% ™ dimensions requires n2—o) time, with
vectors of O(logn)-bit entries.

The above lower bounds on ¢»-Furthest Pair and Bichromatic £»-Closest Pair are in sharp contrast with
the case of /5-Closest Pair, which can be solved in 20(d) . logo(l) n time [BS76, KM95, DHKP97].
Improved Dimensionality Reduction for OV and Hopcroft’s Problem

Our hardness of Z-Max-IP is established by a reduction from Hopcroft’s problem, whose hardness is in turn
derived from the following significantly improved dimensionality reduction for OV.

Lemma 1.16 (Improved Dimensionality Reduction for OV). Let 1 < ¢ < d. There is an
0 (n (O 1(d/0) | poly(d)) -time

reduction from OV, 4 to BO(GIOg* 4-(d/0)

1o (d/€ log £ - 68" d).

instances of 7-OV,, o141, with vectors of entries with bit-length

Comparison with [Will8]. Comparing to the old construction in [Will8], our reduction here is more

efficient when / is much smaller than d (which is the case we care about). That is, in [Will18], OV,, 4 can be
4y d/t

log* . . .
s instances in our improved one. So, for

reduced to d%* instances of Z-OV,, r41, while we get {

example, when ¢ = 718”4 the old reduction yields a4/ Tos n®®) instances (recall that d = clogn for
an arbitrary constant c), while our improved one yields only n°W) instances, each with 2°1°8" ™) dimensions.
From Lemma 1.16, the following theorem follows in the same way as in [Wil18].

Theorem 1.17 (Hardness of Hopcroft’s Problem in °8" ™ Dimensions). Assuming SETH (or OVC), there
is a constant c such that Z-OVn,Clog* » with vectors of O(log n)-bit entries requires n?=°W fime.
Connection between Z-Max-IP lower bounds and NP - UPP communication protocols

We also show a new connection between Z-Max-IP and a special type of communication protocol. Let us
first recall the Set-Disjointness problem:

Definition 1.18 (Set-Disjointness). Let n € N, in Set-Disjointness (DISJ,;), Alice holds a vector X €
{0,1}", Bob holds a vector Y € {0,1}", and they want to determine whether X - Y = 0.

Recall that in [ARW17], the hardness of approximating Max-IP is established via a connection to MA
communication protocols (in particular, a fast MA communication protocol for Set-Disjointness). Our lower
bound for (exact) Z-Max-IP can also be connected to similar NP - UPP protocols (note that MA = NP -
promiseBPP).

Formally, we define NP - UPP protocols as follows:

Definition 1.19. For a problem II with inputs x, y of length n (Alice holds x and Bob holds y), we say a
communication protocol is an (m, ¢)-efficient NP - UPP communication protocol if the following holds:
e There are three parties Alice, Bob and Merlin in the protocol.

e Merlin sends Alice and Bob an advice string z of length m, which is a function of z and y.

e Given y and z, Bob sends Alice / bits, and Alice decides to accept or not.” They have an unlim-
ited supply of private random coins (not public, which is important) during their conversation. The
following conditions hold:

- If II(x,y) = 1, then there is an advice z from Merlin such that Alice accepts with probability
>1/2.
— Otherwise, for all possible advice strings from Merlin, Alice accepts with probability < 1/2.
Moreover, we say the protocol is (m, £)-computational-efficient, if in addition the probability distribu-
tions of both Alice and Bob’s behavior can be computed in poly(n) time given their input and the advice.

Our new reduction from OV to Max-IP actually implies a super-efficient NP - UPP protocol for Set-
Disjointness.

Theorem 1.20. Forall 1 < o < n, there is an
<a L6187 ()29, O(a)) -computational-efficient

NP - UPP communication protocol for DISJ,,.

For example, when o« = 3 log* n, Theorem 1.20 implies there is an O(o(n), O(log™ n))-computational-
efficient NP - UPP communication protocol for DISJ,,. Moreover, we show that if the protocol of The-
orem 1.20 can be improved a little (removing the 6'°¢"™ term), we would obtain the desired hardness for
Z-Max-IP in w(1)-dimensions.

Theorem 1.21. Assuming SETH (or OVC), if there is an increasing and unbounded function f such that for
all 1 < a < n, there is an
(n/ f(@), @) -computational-efficient

NP - UPP communication protocol for DISJ,, then Z-Max-IP, 1 requires n?=°W time with vectors of
polylog(n)-bit entries. The same holds for {-Furthest Pair and Bichromatic {2-Closest Pair.

Improved MA Protocols for Set-Disjointness

Finally, we also obtain a slightly improved MA protocol for Set-Disjointness, which improves on the previ-
ous O(y/nlog n) protocol in [AW09], and is closer to the (/1) lower bound by [Kla03].

Theorem 1.22. There is an MA protocol for DISJ,, with communication complexity

(0] (x/nlognloglogn> .

"In UPP, actually one-way communication is equivalent to the seemingly more powerful one in which they communi-
cate [PS86].

1.2 Intuition for Dimensionality Self Reduction for OV

The 2°01°8™ ™) factor in Lemma 1.16 is not common in theoretical computer science®, and our new reduction
for QV is considerably more complicated than the polynomial-based construction from [Wil18]. Hence, it
is worth discussing the intuition behind Lemma 1.16, and the reason why we get a factor of 90(log™ n),

A Direct Chinese Remainder Theorem Based Approach. We first discuss a direct reduction based on
the Chinese Remainder Theorem (CRT) (see Theorem 2.5 for a formal definition). CRT says that given
a collection of primes qi,...,q, and a collection of integers r1,...,rp, there exists a unique integer
t = CRR({ri};{qi}) such that t = r; (mod ¢;) for each i € [b] (CRR stands for Chinese Remainder
Representation).

Now, let b,/ € N, suppose we would like to have a dimensionality reduction ¢ from {0, 1}” to Z*.
We can partition an input = € {0, 1}“ into ¢ blocks, each of length b, and represent each block via CRT:
that is, for a block z € {0, 1}b, we map it into a single integer ¢pock(2) := CRR({zi};{qi}), and the
concatenations of pjock Over all blocks of x is p(z) € zt.

The key idea here is that, for z, 2’ € {0,1}°, ppiock(2) - Polock(z’) (mod ¢;) is simply z; - z,. That is,
the multiplication between two integers ppjock(2) = Pblock(2’) simulates the coordinate-wise multiplication
between two vectors z and 2'!

Therefore, if we make all primes g; larger than ¢, we can in fact determine x - y from ¢(z) - ¢(y), by
looking at () - p(y) (mod g;) for each 7. That is,

z-y=0<¢(x) oy) =0 (mod ¢) foralli.
b 2
Hence, let V be the set of all integer 0 < v < /- (H qi> that v = 0 (mod g¢;) for all i € [b], we have
i=1

z-y=0sp@) py) eV

The reduction is completed by enumerating all integers v € V, and appending corresponding values to
make p4(x) = [¢p(x), —1] and vp(y) = [¢(y), v] (this step is from [Wil18]).

Note that a nice property for ¢ is that each ¢(x); only depends on the i-th block of x, and the mapping
is the same on each block (¢pjock); we call this the block mapping property.

Analysis of the Direct Reduction. To continue building intuition, let us analyze the above reduction. The
b

size of V' is the number of Z-OV,, o4 instances we create, and |V'| > H q;- These primes g; have to

i=1
b
be all distinct, and it follows that H q; 1S v9®) Since we want to create at most n°") instances (or n® for
i=1
arbitrarily small €), we need to set b < log n/ log log n. Moreover, to base our hardness on OVC which deals
with clog n-dimensional vectors, we need to set b - £ = d = ¢ - logn for an arbitrary constant c. Therefore,
we must have ¢ > log log n, and the above reduction only obtains the same hardness result as [Wil18].

Key Observation: “Most Space Modulo ¢;” is Actually Wasted. To improve the above reduction, we
need to make |V/| smaller. Our key observation about ¢ is that, for the primes ¢;’s, they are mostly larger
than b > ¢, but p(x) - p(y) € {0,1,...,¢} (mod ¢;) for all these ¢;’s. Hence, “most space modulo ¢;” is
actually wasted.

¥Other examples include an O(QO(log* ”)n4/3) algorithm for Z-OV,, 3 [Mat93], and O(QO(log* "nlog n) algorithms (Fiirer’s
algorithm with its modifications) for Fast Integer Multiplication [Fiir09, CT15, HVDHL16].

Make More “Efficient” Use of the “Space”: Recursive Reduction. Based on the previous observation,
we want to use the “space modulo ¢;” more efficiently. It is natural to consider a recursive reduction. We
will require all our primes g;’s to be larger than b. Let bpico be a very small integer compared to b, and let
¥ : {0, 1}b"“c'°'e — Z' with a set Vi, and a block mapping vpjock be a similar reduction on a much smaller
input: for x,y € {0, 1}Pmieot 2.y = 0 & (x) -(y) € Vi We also require here that 1(z) - 1(y) < b for
all z and y.

For an input z € {0,1}*¢ and a block z € {0, 1}® of z, our key idea is to partition z again into b/bmicro
“micro” blocks each of size bmicro. And for a block z in x, let zl, e 2b/bmicro pe ts b/bmicro micro blocks,

. . b bmicro b bmicro
we map z into an integer Ypjock(2) := CRR({wmek(zi)}iil ;{qi}iil).

Now, given two blocks z, 2’ € {0,1}°, we can see that

Polock (%) * Pblock(2') = Yblock (2i) - Vblock (2;) (mod g;).

That is, () - ¢(y) (mod g¢;) in fact is equal to ¥ (z) - (yl!), where 2!/ is the concatenation of
the ¢-th micro blocks of z in each block, and y[i] is defined similarly. Hence, we can determine whether
2yl = 0 from ¢(z) - o(y) (mod ¢;) for all i, and therefore also determine whether = - y = 0 from
e(x) - p(y).

We can now observe that |[V| < O/ b"‘im), smaller than before; thus we get an improvement, de-
pending on how large can bnico be. Clearly, the reduction 1) can also be constructed from even smaller
reductions, and after recursing ©(log* n) times, we can switch to the direct construction discussed before.
By a straightforward (but tedious) calculation, we can derive Lemma 1.16.

High-Level Explanation on the 202" ™) Factor. Ideally, we want to have a reduction from OV to Z-OV
with only £°®) instances, in other words, we want V| = ¢°®) The reason we need to pay an extra 208" ™)
factor in the exponent is as follows:

b/bmicro
In our reduction, |V| is at least H gi, which is also the bound on each coordinate of the reduction:
i=1
b/bmicro
1(x); equals to a CRR encoding of a vector with {qz}fi blmm, whose value can be as large as H qi — 1.
i=1

That is, all we want is to control the upper bound on the coordinates of the reduction.

Suppose we are constructing an “outer” reduction ¢ : {0, I}M — Z* from the “micro” reduction
¥ : {0,1}mice 5 7 with coordinate upper bound Ly ((x); < Ly), and let Ly, = £%Pmieo (that is, & is
the extra factor comparing to the ideal case). Recall that we have to ensure ¢; > ¥ (x) - 1 (y) to make our
construction work, and therefore we have to set g; larger than L?p.

b/bmicro

Then the coordinate upper bound for ¢ becomes L, = H q > (L¢)2'b/ bmico — (250 Therefore,
we can see that after one recursion, the “extra factor” x at lee:s_tldoubles. Since our recursion proceeds in
O(log* n) rounds, we have to pay an extra 2°(°8" ™) factor on the exponent.

1.3 Related Works

SETH-based Conditional Lower Bound. SETH is one of the most fruitful conjectures in the Fine-
Grained Complexity. There are numerous conditional lower bounds based on it for problems in P among dif-
ferent areas, including: dynamic data structures [AV 14], computational geometry [Bril4, Will8, DKL16],
pattern matching [AVW 14, BI15, B116, BGL16, BK18], graph algorithms [RV13, GIKW17, AVY 15, KT17].
See [Vas18] for a very recent survey on SETH-based lower bounds (and more).

JIogn
Hardness of Approximationin P. Making use of Chebychev embeddings, [APRS16] proves a 9 (fos og ")

inapproximability lower bound on {—1, 1}-Max-IP. [KLM17] generalizes the “Distributed PCP” [ARW17]
approach and derives inapproximability result for k-Dominating Set under various assumptions. In par-
ticular, it is shown that under SETH, k-Dominating Set has no (log n)'/ P°¥ (%)) approximation in n*~=
time”. [AB17] takes an approach different from “Distributed PCP”, and shows that under certain complexity
assumptions, LCS does not have a deterministic 1 + o(1)-approximation in n?~¢ time. They also establish
a connection with circuit lower bounds and show that the existence of such a deterministic algorithm im-
plies ENP does not have non-uniform linear-size Valiant Series Parallel circuits. In [AR18], it is improved
to that any constant factor approximation deterministic algorithm for LCS in n?>~¢ time implies that EN?
does not have non-uniform linear-size NC circuits. See [ARW17] for more related results in hardness of
approximation in P.

Communication Complexity and Conditional Hardness. The connection between communication pro-
tocols (in various model) for Set-Disjointness and SETH dates back at least to [PW10], in which it is shown
that a sub-linear, computational efficient protocol for 3-party Number-On-Forehead Set-Disjointness prob-
lem would refute SETH. And it is worth mentioning that [AR18]’s result builds on the O(logn) IP commu-
nication protocol for Set-Disjointness in [AW09].

Organization of the Paper

In Section 2, we introduce the needed preliminaries for this paper. In Section 3, we prove our characteri-
zations for approximating Max-IP and other related results. In Section 4, we prove 200" 1) gimensional
hardness for Z-Max-IP and other related problems. In Section 5, we establish the connection between
NP - UPP communication protocols and SETH-based lower bounds for exact Z-Max-IP. In Section 6, we

present the O (\ /nlognloglog n) MA protocol for Set-Disjointness.

2 Preliminaries

We begin by introducing some notation. For an integer d, we use [d] to denote the set of integers from 1 to
d. For a vector u, we use u; to denote the 7-th element of w.

We use log () to denote the logarithm of = with respect to base 2 with ceiling as appropriate, and In(x)
to denote the natural logarithm of z.

In our arguments, we use the iterated logarithm function log™(n), which is defined recursively as follows:

log”* (n) 0 n < 1;
og*(n) =
8 log*(logn) 4+ 1 n > 1.

2.1 Fast Rectangular Matrix Multiplication

Similar to previous algorithms using the polynomial method, our algorithms make use of the algorithms for
fast rectangular matrix multiplication.

Theorem 2.1 ((GU18]). There is an N*>T°0) time algorithm for multiplying two matrices A and B with size
N x N%and N® x N, where o > 0.31389.

Theorem 2.2 ([Cop82]). There is an N* - polylog(N) time algorithm for multiplying two matrices A and
B with size N x N* and N* x N, where o > 0.172.

‘where e : R — N is some function

10

2.2 Number Theory

Here we recall some facts from number theory. In our reduction from OV to Z-OV, we will apply the
famous prime number theorem, which supplies a good estimate of the number of primes smaller than a
certain number. See e.g. [Apol3] for a reference on this.

Theorem 2.3 (Prime Number Theorem). Let w(n) be the number of primes < n, then we have

im0y

n—oon/lnn

From a simple calculation, we obtain:
Lemma 2.4. There are 10n distinct primes in [n + 1, n2] for a large enough n.

Proof. For a large enough n, from the prime number theorem, the number of primes in [n + 1, nz] is equal
to
m(n?) —m(n) ~n?/2lnn —n/lnn > 10n.

O
Next we recall the Chinese remainder theorem, and Chinese remainder representation.
Theorem 2.5. Given d pairwise co-prime integers qi,qo,...,qq, and d integers r1,72,...,7q, there is
d
exactly one integer 0 <t < H q; such that
i=1

t=r; (modg) forallicld].

We call this t the Chinese remainder representation (or the CRR encoding) of the r;’s (with respect to these
q:’s). We also denote

t =CRR({ri}; {a:})

for convenience. We sometimes omit the sequence {q;} for simplicity, when it is clear from the context.
Moreover, t can be computed in polynomial time with respect to the total bits of all the given integers.
2.3 Communication Complexity

In our paper we will make use of a certain kind of MA protocol, we call them (m,r, ¢, s)-efficient proto-

cols!©,

Definition 2.6. We say an MA Protocol is (m,r,?, s)-efficient for a communication problem, if in the
protocol:

o There are three parties Alice, Bob and Merlin in the protocol, Alice holds input = and Bob holds input
Y.

e Merlin sends an advice string z of length m to Alice, which is a function of = and y.

e Alice and Bob jointly toss coins to obtain a random string w of length 7.

"%Qur notations here are adopted from [KLM17]. They also defined similar k-party communication protocols, while we only
discuss 2-party protocols in this paper.

11

e Given y and w, Bob sends Alice a message of length /.

o After that, Alice decides whether to accept or not.

— When the answer is yes, Merlin has exactly one advice such that Alice always accept.

— When the answer is no, or Merlin sends the wrong advice, Alice accepts with probability at most
S.
2.4 Derandomization

We make use of expander graphs to reduce the amount of random coins needed in one of our communication
protocols. We abstract the following result for our use here.

Theorem 2.7 (see e.g. Theorem 21.12 and Theorem 21.19 in [ABO9]). Let m be an integer, and set
B C [m]. Suppose |B| > m/2. There is a universal constant ¢y such that for all ¢ < 1/2, there is a
poly(log m, log £~ 1)-time computable function J : {0, 1}losmterloge™ _y rppevloge™ o op thay

Pr [a & B forall a € F(w)] <e,

we{071}log m+-cq -log e—1

here a € F(w) means a is one of the element in the sequence F(w).

3 Hardness of Approximate Max-IP

In this section we prove our characterizations of approximating Max-IP.

3.1 The Multiplicative Case

We begin with the proof of Theorem 1.5. We recap it here for convenience.
Reminder of Theorem 1.5 Letting w(logn) < d < n°Y and t > 2, the following holds:
1. There is an n>~ W _time t-multiplicative-approximating algorithm for Max-IP,, g if
t = (d/logn)",

and under SETH (or OVC), there is no n> W time t-multiplicative-approximating algorithm for
Max-IP,, 4 if
t = (d/logn)°V .

logt

log(d/logn)’
algorithms for Max-IP,, 4 running in time

o <n2+0(1)o.31-g_1+10%> _0 (n2+o(1)—ﬂ(e))

2. Moreover, let ¢ = min < 1>. There are t-multiplicative-approximating deterministic

or time

2017 — 1 ___
@) <n iyt -polylog(n)) =0 (nzfﬂ(g) -polylog(n)) .

In Lemma 3.2 we construct the desired approximate algorithm and in Lemma 3.4 we prove the lower
bound.

12

The Algorithm

First we need the following simple lemma, which says that the k-th root of the sum of the k-th powers of
non-negative reals gives a good approximation to their maximum.

Lemma 3.1. Let S be a set of non-negative real numbers, k be an integer, and Tpqz ‘= maxz. We have
xe

1/k
(Z xk> € {xmax,xmax . \S\I/k] .

€S

Proof. Since
k k k
(ZQZ) < [xmazv ’S| 'xmax:|)
z€S

the lemma follows directly by taking the k-th root of both sides.
O

log t
Lemma 3.2. Assuming w(logn) < d < n°Y and letting ¢ = min(8),1>, there are t-

log(d/logn

multiplicative-approximating deterministic algorithms for Max-1P,, 4 running in time

o (s) _ g (st

or time)
2-0.17 —Lgqr
(0] <n st -polylog(n)> =0 (nQ_Q(a) : polylog(n)) .
. . (logt
Proof. Let d = ¢ - logn. From the assumption, we have ¢ = w(1), and ¢ = min oo’ 1). When
ogc

logt > log c, we simply use a c-multiplicative-approximating algorithm instead, hence in the following we
assume log ¢t < log c. We begin with the first algorithm here.

Construction and Analysis of the Power of Sum Polynomial P.(z). Letr be a parameter to be specified
later and z be a vector from {0, 1}d, consider the following polynomial

d T
P.(2) := <Z zi> .
i=1

Observe that since each z; takes value in {0, 1}, we have 2¥ = z; for k > 2. Therefore, by expanding
out the polynomial and replacing all zf with k > 2 by z;, we can write P,(z) as

PT(Z) = Z Cs " 23.

SCld],|S|<r

In which zg := H z;, and the cg’s are the corresponding coefficients. Note that P, (z) has

=2 (1)< (7)

terms.

Then consider P,(x,y) := Pr(x1 - y1,%2 - Y2, ..., T4 Yq), plugging in z; := x; - y;, it can be written as
Prz,y)i= Y s x5-ys,
SCld],|S|<r

where xg := H xi, and yg is defined similarly.
€S

Construction and Analysis of the Batch Evaluation Polynomial P,.(X,Y). Now, let X and Y be two
sets of b = "/2 vectors from {0, 1}%, we define

P(X,Y):= Y Pxy)= Y (z-y)

rzeX,yeY rzeX,yeY

By Lemma 3.1, we have
P(X,Y)'/" € [OPT(X,Y),OPT(X,Y) -1],

recall that OPT(X,Y) := max x-y.
zeX,yeyY

Embedding into Rectangle Matrix Multiplication. Now, for 2, € {0,1}%, we define the mapping
¢z () as
¢z(z) == (cs, - T5,,CSy - TGy -+, CS,, - TS,,)
and
Gy(Y) = (¥$1:YSs -+ -1 YSm) »

where S1, S2, ..., Sy, is an enumeration of all sets S C [d] and |S| < r.
From the definition, it follows that

¢ () - ¢y (y) = Pr(2,y)

for every z,y € {0,1}<.
Then for each X and Y, we map them into m-dimensional vectors ¢x(X) and ¢y (Y) simply by a
summation:
Ox(X) = ¢u(x) and Dy (Y):=) ¢y(y).

reX yey

We can see

¢X(X) : ¢Y(Y) = Z d):r(x) : Z ¢y(y) = Z Z Pr(xvy) = Pr(Xv Y)

zeX yey zeX yeY

Given two sets A, B of n vectors from {0, 1}, we split A into n/b sets Ay, Ao, . .. s App of size b,
and split B in the same way as well. Then we construct a matrix M4(Mp) of size n/b x m, such that
the i-th row of M4(Mp) is the vector ®x (A;)(Py (B;)). After that, the evaluation of P,.(A;, B;) for all
i,j € [n/b] can be reduced to compute the matrix product M4 - M%. After knowing all P,(A;, B;)’s, we
simply compute the maximum of them, whose r-th root gives us a t-multiplicative-approximating answer
of the original problem.

14

Analysis of the Running Time. Finally, we are going to specify the parameter r and analyze the time
complexity. In order to utilize the fast matrix multiplication algorithm from Theorem 2.1, we need to have

m < (n/b)"313,

then our running time is simply (r/b)27°() = p2+) /p2,
We are going to set r = k - log n/ log ¢, and our choice of &k will satisfy k£ = ©(1). We have

e-d\" clogn - e k-logn/logc
m<|(—) <([—="" ,
- (r) - (kz-logn/logc)

1
logm < k-logn [log ¢ ch + 1} /logc.

and therefore

Since ¢ = w(1) and k = O(1), we have
logm < (14 0(1)) - klogn = klogn + o(logn).
Plugging in, we have

m < (n/b)0'313
< logm < 0.313 - (logn — logd)
< klogn <0.31- (logn — logb)

<« 0.31-(r/2) -logt + klogn < 0.31logn (b=1t"7?)
1 0.31
Ogn-k-logt~—+klogn§0.3llogn (r =k -logn/logc)
logc 2
logt 0.31
<:k-{1+og-03}go.31
loge 2
031 03l
S s R S

Note since € € [0, 1], k is indeed O(1).
Finally, with our choice of k specified, our running time is n>+°(1) /p? = n2+o() /¢,
By a simple calculation,

logt" =r-logt
=k-logn/logc-logt

| logt 0.31
=logn- .
& logc 1—1—%-5

0.31e
T

9

log 0.31
=10gNn - ————a37 0.31 "
e+ 5

=logn-

Hence, our running time is
24@0)‘%
n2+°(1)/t’" =n st

as stated.

15

The Second Algorithm. The second algorithm follows exactly the same except for that we apply Theo-
rem 2.2 instead, hence the constant 0.31 is replaced by 0.17. O
Generalization to Non-negative Real Case

Note that Lemma 3.1 indeed works for a set of non-negative reals, we can observe that the above algorithm
in fact works for RT-Max-IP,, 4 (which is the same as Max-IP except for that the sets consisting of non-
negative reals):!!

logt
Reminder of Corollary 1.7 Assuming w(logn) < d < n°Y) and letting ¢ = min L,l ,
log(d/logn)
there is a t-multiplicative-approximating deterministic algorithm for R -Max-IP,, 4 running in time

(@) (nQ_Q(a) . polylog(n)) .

Proof Sketch. We can just use the same algorithm in Lemma 3.2, the only difference is on the analysis of
the number of terms in P, (z): since z is no longer Boolean, P, (z) is no longer multi-linear, and we need to

d
switch to a general upper bound (+ T) on the number of terms for r-degree polynomials of d variables.
r

This corollary then follows by a similar calculation as in Lemma 3.2. O

The Lower Bound

Before proving our lower bound we need the following reduction from OV to ¢-multiplicative-approximating
Max-IP, which follows roughly the same as in [ARW17], together with the use of expander graphs to reduce
the amount of random coins. We defer its proof to Section 3.3.

Lemma 3.3. There is a universal constant ¢y such that, for every integer c, reals € € (0,1] and T > 2,
OV, clogn can be reduced to n® Max-IP,, 4 instances (A;, B;) for i € [nf], such that:

o d=7PWE/E) ogn.,

o Letting T = clogn - 7%, if there isan a € A and b € B such that a - b = 0, then there exists an i
such that OPT(A;, B;) > T.

e Otherwise, for all i we must have OPT(A;, B;) < T/T.

Now we are ready to prove the lower bound on ¢-multiplicative-approximating Max-IP.

Lemma 3.4. Assuming SETH (or OVC), and letting d = w(logn) and t > 2. There is no n?~) time
t-multiplicative-approximating algorithm for Max-1P,, 4 if

t = (d/logn)°W .

Proof. Let c = d/logn, thent = D) (recall that ¢ and d are two functions of n).
Suppose for contradiction that there is an 7>~ time t(n)-multiplicative-approximating algorithm A for
Max-IP(n, d) for some &’ > 0.

"n the following we assume a real RAM model of computation for simplicity.

16

Let e = €’/2. Now, for every constant cz, we apply the reduction in Lemma 2 with 7 = ¢ to reduce an
OV, ¢, log n instance to n°

MaX-|Pn7tpo1y(c2/e),10gn = MaX-IPn,to(l)logn

instances. Since ¢ = ¢°Y), which means for sufficiently large n, O logn = W . logn = o(d), and

it in turn implies that for sufficiently large n, n® calls to A are enough to solve the OV, ., 10g », instance.

. — / — . . .
Therefore we can solve OV, ¢, 1055, in n?7¢ . n® = n?° time for all constant ¢o. Contradiction to

OVC. O

Finally, the correctness of Theorem 1.5 follows directly from Lemma 3.2 and Lemma 3.4.

3.2 The Additive Case

In this subsection we prove Theorem 1.11. We first recap it here for convenience.

Reminder of Theorem 1.11 Letting w(logn) < d < n°® and 0 < t < d, the following holds:

1. There is an n?~ 1)

-time t-additive-approximating algorithm for Max-IP,, 4 if
t =Q(d),
and under SETH (or OVC), there is no n*>~*V_time t-additive-approximating algorithm for Max-IP,, q

if
t =o(d).

t
2. Moreover, letting € = 7 there is an
1) (anQ(sl/g/log 6_1)>

time, t-additive-approximating randomized algorithm for Max-IP,, ; when ¢ > logblogn / log® n.
We proceed similarly as in the multiplicative case by establishing the algorithm first.

The Algorithm

The algorithm is actually very easy, we simply apply the following algorithm from [ACW16].

Lemma 3.5 (Implicit in Theorem 5.1 in [ACW16]). Assuming € > log® log(dlogn)/log® n, there is an

n2—9(51/3/ log(=1%=))

elogn

time € - d-additive-approximating randomized algorithm for Max-IP,, 4.

min(¢, d)

, there is an
d

Lemma 3.6. Letec =

0 (n2—9(51/3/1ogs—1)>

time, t-additive-approximating randomized algorithm for Max-IP,, ; when € > log® logn / log® n.

17

Proof. Whent > d the problem becomes trivial, so we can assume ¢t < d, and now t = ¢ - d.
Lete; = /2 and ¢; be a constant to be specified later. Given an Max-IP,, ; instance with two sets A and

B of vectors from {0, 1}%, we create another Max-IP,, 4, instance with sets Aand Bandd; = ¢, e7%logn
as follows:

e Pick d; uniform random indices i1, i2,13,...,iq, € [d], each i is an independent uniform random
number in [d].

e Then we construct A from A by reducing each a € A into @ = (aj, , asy, . . - v aiy,) € 10, 1}% and B
from B in the same way.

Note for each a € A and b € B, by a Chernoff bound, we have

/|

By setting ¢; = 2, the above probability is smaller than 1/n>.
Hence, by a simple union bound, with probability at least 1 — 1/n, we have

a-b_ab

—2d,¢2 —2.¢
< 2e 71 = 2n 1,
dq d

> e

a-b a-b

<
. d |-

for all a € A and b € B. Hence, it means that this reduction only changes the “relative inner
a-b b
d
also changes by at most 1, and we have |OPT(A, B)/d — OPT(A, B)/dy| < «;.

Then we apply the algorithm in Lemma 3.5 on the instance with sets A and B with error e = £ to

a-b . . .
product”(or d—) of each pair by at most £;. Hence the maximum of the “relative inner product”
1

. . ~ .)
obtain an estimate O, and our final answer is simply T d.
1

From the guarantee from Lemma 3.5, we have |OPT(A, B)/d, — O/dy| < e1, and therefore we have
|OPT(A, B)/d — O/d1| < 2e1 = €, from which the correctness of our algorithm follows directly.
For the running time, note that the reduction part runs in linear time O(n - d), and the rest takes

d
202 08() _ 20/ tog)
time. L]

The Lower Bound

Finally we prove the lower bound on ¢-additive-approximating Max-IP.

Lemma 3.7. Assuming SETH (or OVC), and letting d = w(logn) and t > 0, there is no n> W) ime
t-additive-approximating randomized algorithm for Max-IP,, 4 if

t = o(d).

2—¢’

Proof. Recall that ¢ and d are all functions of n. Suppose for contradiction that there is an n time

t(n)-additive-approximating algorithm A for Max-IP(n, d) for some &’ > 0.

18

Let e = ’/2. Now, for every constant co, we apply the reduction in Lemma 3.3 with 7 = 2 to reduce an
OV, ¢, log n instance to n°

MaX_IPn72poly(c2/g).10gn = MaX'IPn,d1 where d; = O(l) . logn

instances. In addition, from Lemma 3.3, to solve the OV, 1,5 , instance, we only need to distinguish an

T
additive gap of 5= Q(logn) = Q(d;) for these Max-IP instances obtained via the reduction.
This can be solved, via n° calls to A as follows: for each Max-IP,, 4, instance 7 we get, since d =
w(logn), which means for a sufficiently large n, dy = O(logn) < d, and we can duplicate each coor-

dinate d/d; times (for simplicity we assume d;|d here), to obtain an Max-IP,, ;4 instance Z"®", such that
OPT(Z"") = d/dy - OPT(Z). Then A can be used to estimate OPT(Z"®") within an additive error

t = o(d). Scaling its estimate by El’ it can also be used to estimate OPT(Z) within an additive error
o(dy) = o(logn) < T'/2 for sufficiently large n.

Therefore we can solve OV, ¢, 1055, in n?=¢ . n® = n?7° time for all constant ¢s. Contradiction to

OVC. O

Finally, the correctness of Theorem 1.11 follows directly from Lemma 3.6 and Lemma 3.7.

3.3 Proof of Lemma 3.3
We need the following efficient MA protocol for Set-Disjointness from [KLM17].

Lemma 3.8 (Theorem 6.1 in [KLM17]). For every o and m, there is an (m/a,logy, m,poly(a),1/2)-
efficient MA protocol for DISJ,,.'

We want to reduce the error probability while keeping the number of total random coins relatively low.
To achieves this, we can use an expander graph (Theorem 2.7) to prove the following theorem.

Lemma 3.9. For every o, m and € < 1/2, there is an (m/a,logs m + O(loge™!), poly(a) - loge™*

efficient MA protocol for DISJ,,.

€)-

Proof. Let ¢; and F : {0,1}'°8 mterloge™ [m]c1108 "' be the corresponding constant and function
as in Theorem 2.7, and let II denote the (m/«, logy, m, poly (), 1/2)-efficient MA protocol for DISJ,, in
Lemma 3.8. Set ¢ = ¢; - loge ™! and our new protocol ITyew works as follows:

Merlin still sends the same advice to Alice as in I1.

Alice and Bob jointly toss r = log m ¢ coins to get a string w € {0, 1}". Then we let w1, wo, . .., wq
be the sequence corresponding to F(w), each of them can be interpreted as log m bits.

Bob sends Alice g messages, the i-th message m; corresponds to Bob’s message in II when the
random bits is w;.

After that, Alice decides whether to accept or not as follows:

— If for every i € [q], Alice would accept Bob’s message m; with random bits w; in II, then Alice
accepts.

— Otherwise, Alice rejects.

The protocol in [KLLM17] also works for the k-party number-in-hand model, setting k = 2 we get this lemma.

19

It is easy to verify that the advice length, message length and number of random coins satisfy our
requirements.

For the error probability, note that when these two sets are disjoint, the same advice in II leads to
acceptance of Alice. Otherwise, suppose the advice from Merlin is either wrong or these two sets are
intersecting, then half of the random bits in {0, 1}'°6™ leads to the rejection of Alice in II. Hence, from
Theorem 2.7, with probability at least 1 — ¢, at least one of the random bits w;’s would lead to the rejection
of Alice, which completes the proof. O

Finally we are going to prove Lemma 3.3, we recap it here for convenience.

Reminder of Lemma 3.3 There is a universal constant c1 such that, for every integer c, reals ¢ € (0, 1]
and T > 2, OV, c10gn can be reduced to n° Max-IP,, q instances (A;, B;) for i € [nf], such that:

o d=7PW(E/E) ogn,

o Letting T = clogn - 7, if there isan a € A and b € B such that a - b = 0, then there exists an i
such that OPT(A;, B;) > T.

e Otherwise, for all i we must have OPT(A;, B;) < T/r.

Proof. The reduction follows exactly the same as in [ARW17], we recap here for completeness.

Set = ¢/e, m = c-logn and ¢ = 1/7, and let II be the (m/a,logym + O(loge™ 1), poly(a) -
log e, e)-efficient MA protocol for Set-Disjointness as in Lemma 3.9.

Now, we first enumerate all of 2/% = 25198™ — 2 pogsible advice strings, and create a Max-IP
instance for each of the advice strings.

For a fix advice ¢ € {0,1}1°8"™, we create a Max-IP instance with sets A, and By, as follows. We use
a o b to denote the concatenation of the strings a and b.

Let r = logy, m + ¢1 - loge !, where ¢; is the constant hidden in the big O notation in Lemma 3.9, and
¢ = poly(a) -loge™t. Let my, ma, . .., mqye be an enumeration of all strings in {0, 1}*,

e For each a € A, and for each string w € {0,1}", we create a vector a“ € {0, 1}2[, such that a}’
indicates that given advice ¢ and randomness w, whether Alice accepts message m; or not (1 for
acceptance, 0 for rejection). Let the concatenation of all these a'’s be a,,. Then Ay is the set of all
these a,’s fora € A.

e For each b € B, and for each string w € {0,1}", we create a vector b* € {0, 1}2Z, such that
b;” = 1 if Bob sends the message m; given advice 1) and randomness w, and = 0 otherwise. Let the
concatenation of all these b*’s be b,,. Then By, is the set of all these by,’s for b € B.

We can see that fora € A and b € B, ay; - by, is precisely the number of random coins leading Alice to
accept the message from Bob given advice 1) when Alice and Bob holds a and b correspondingly. Therefore,
let T =2" = clogn - 7%, from the properties of the protocol II, we can see that:

o If thereisan a € A and b € B such that a - b = 0, then there is a ¢» € {0,1}°'°8™ such that
aw . b¢ Z T.

e Otherwise, for all a € A, b € B and advice {0, 1}¥1%5™ qa,, - by, < T/7.

And this completes the proof.

20

3.4 Adaption for All-Pair-Max-IP

Now we sketch the adaption for our algorithms to work for the All-Pair-Max-IP problem.

Reminder of Corollary 1.12 Suppose w(logn) < d < n°D, and let

gy = min _ logt 1) andey = min(t, d)
M log(d/logn)’ AT g

2-Q(enr) 2-0(Y/%/10g25")

There is an n polylog(n) time t-multiplicative-approximating algorithm and an n
time t-additive-approximating algorithm for All-Pair-Max-IP,, 4, when € 4 >> log®log n/log® n.

Proof Sketch. Note that the algorithm in Lemma 3.5 from [ACW16] actually works for the All-Pair-Max-IP,, ;.
Hence, we can simply apply that algorithm after the coordinate sampling phase, and obtain a ¢-additive-
approximating algorithm for All-Pair-Max-IP,, 4.

For t-multiplicative-approximating algorithm, suppose we are given with two sets A and B of n vectors
from {0, l}d. Instead of partitioning both of them into n/b subsets A;’s and B;’s (the notations used here
are the same as in the proof of Lemma 3.2), we only partition B into n/b subsets By, Bo, ..., B, /b Of size

b, and calculate P, (x, B;) := Z P.(z,y) forall z € Aand i € [n/b] using similar reduction to rectangle
yEB;

matrix multiplication as in Lemma 3.2. By a similar analysis, these can be done in n - polylog(n)

time, and with these informations we can compute the ¢-multiplicative-approximating answers for the given

All-Pair-Max-IP,, 4 instance. O

2—-Q(em)

3.5 Improved Hardness for LCS-Closest Pair Problem

We finish this section with the proof of Corollary 1.9. First we abstract the reduction from Max-IP to
LCS-Closest-Pair in [ARW17] here.

Lemma 3.10 (Implicit in Theorem 1.6 in [ARW17]). For big enough t and n, t-multiplicative-approximating
Max-IP,, 4 reduces to t/2-multiplicative-approximating LCS-Closest-Pair,, o3 1 n)-

Now we are ready to prove Corollary 1.9 (restated below for convenience).

Reminder of Corollary 1.9 Assuming SETH (or OVC), for every t > 2, t-multiplicative-approximating
LCS-Closest-Pair,, 4 requires n2=°W time, if d = t*M . log® n.

Proof. From Lemma 3.4, assuming SETH (or OVC), for every ¢ > 2, we have that 2¢-multiplicative-
approximating Max-1P,, 4 requires n?~°W time if d = ¢“")-log n. Then from Lemma 3.10, we immediately
have that {-multiplicative-approximating LCS-Closest-Pair,, ;3,,2,, = LCS-Closest-Pair,, j.) 15 ,, Te-

quires n2~°M) time. O

4 Hardness of Exact Z-Max-IP, Hopcroft’s Problem and More

In this section we show hardness of Hopcroft’s problem, exact Z-Max-IP, £s-Furthest Pair and Bichromatic
£5-Closest Pair. Essentially our results follow from the framework of [Will8], in which it is shown that
hardness of Hopcroft’s problem implies hardness of other three problems, and is implied by dimensionality
reduction for OV.

21

Co-furthest,, 50 (0s* n)

/

Z'MaX' I Pn,2O(log* n)

.

BiChrom.—€2—0|OseStn 920 (log* n)

OVn,C logn Z'OVnVQO(log* n)

Y
Y

Figure 1: A diagram for all reductions in this section.

The Organization of this Section

In Section 4.1 we prove the improved dimensionality reduction for OV. In Section 4.2 we establish the
hardness of Hopcroft’s problem in 200og™ 7) gimensions with the improved reduction. In Section 4.3 we
show Hopcroft’s problem can be reduced to Z-Max-IP and thus establish the hardness for the later one. In
Section 4.4 we show Z-Max-IP can be reduced to ¢»-Furthest Pair and Bichromatic ¢/5-Closest Pair, therefore
the hardness for the later two problems follow. See Figure 1 for a diagram of all reductions covered in this
section.

The reduction in last three subsections are all from [Will8] (either explicit or implicit), we make them
explicit here for our ease of exposition and for making the paper self-contained.

4.1 Improved Dimensionality Reduction for OV

We begin with the improved dimensionality reduction for OV. The following theorem is one of the technical
cores of this paper, which makes use of the CRR encoding (see Theorem 2.5) recursively.

Theorem 4.1. Let b, ¢ be two sufficiently large integers. There is a reduction vy, ¢ : {0, l}b'z — 7' and a set
Voo C Z, such that for every x,y € {0,1}"*,

oy =0 () VYpe(y) € Ve

and

0 < hpe(x)i < (8% b

for all possible x and i € [{]. Moreover, the computation of 1y, ¢(x) takes poly (b - £) time, and the set V}, ¢
can be constructed in O <€O(6log ©0)., poly (b - ﬁ)) time.

Remark 4.2. We didn’t make much effort to minimize the base 6 above to keep the calculation clean, it can
be replaced by any constant > 2 with a tighter calculation.

Proof. We are going to construct our reduction in a recursive way. ¢ will be the same throughout the proof,
hence in the following we use 1, (V3) instead of 1y ¢ (V}, ¢) for simplicity.

Direct CRR for small b: When b < ¢, we use a direct Chinese remainder representation of numbers. We
pick b primes q1, g2, ..., qpin [{ + 1, 62], and use them for our CRR encoding.

Let x € {0, 1}M , we partition it into £ equal size groups, and use z to denote the i-th group, which is
the sub-vector of = from the ((i — 1) - b + 1)-th bit to the (7 - b)-th bit.

22

Then we define 1y, (x) as

bp() = (CRR ({x;};?:l) ,CRR ({x?}?zl) ,...,CRR <{x§}j21>> .

That is, the i-th coordinate of 1;(z) is the CRR encoding of the i-th sub-vector x* with respect to the
primes g;’s.
Now, for z,y € {0,1}"*, note that for j € [b],

Yo(x) - p(y) (mod g;)
4
= Z CRR ({l’;}?:l) -CRR ({y}}?ﬂ) (mod g;)
i=1

14
EZ.T}; -y; (mod gj).
i=1

¢
Since the sum Z xz - y; isin [0,], and g; > ¢, we can see
i=1

‘
D oahyi =0 y(x) - dy(y) =0 (mod gj).
=1

b
Therefore, x - y = Z xz . yj- = 0 is equivalent to that
j=1 =1

Yp(z) - Yu(y) =0 (mod gj)

for every j € [b)].
b

Finally, we have 0 < ¢(z); < Hpj < ?t < Eﬁlog*(b)'b. Therefore
j=1

() - () < £6°F 2L

. . log* (b).
and we can set Vj, to be the set of all integers in [0, £6™* @ 241

to see that

that is 0 modulo all the p;’s, and it is easy

z-y < Py(x) - h(y) € Vo
for all z,y € {0,1}"%,

Recursive Construction for larger b: When b > ¢, suppose the theorem holds for all b’ < b. Let bpicro be
the number such that (we ignore the rounding issue here and pretend that b.,icro is an integer for simplicity),

EGIOg*(bmicro)bmicro =b.

Then we pick b/bmicro Primes p1,pz, - - - ; Py /b ero I [(bzf), (b2€)2], and use them as our reference primes
in the CRR encodings.

23

Letx € {0, 1}“, as before, we partition x into ¢ equal size sub-vectors xl, :c2, ey z¢, where 2% consists

of the ((i — 1) - b+ 1)-th bit of z to the (i - b)-th bit of . Then we partition each z’ again into b/bmicro micro
groups, each of size bnicro. We use 247 to denote the j-th micro group of 2" after the partition.

Now, we use 2V to denote the concatenation of the vectors z'7 e A ,xf’j . That is, z17) is the
concatenation of the j-th micro group in each of the ¢ groups. Note that 2Vl e {0, 1}b'“i“°'£ , and can be seen
as a smaller instance, on which we can apply v,_._.. .

Our recursive construction then goes in two steps. In the first step, we make use of ¢, ., and transform
each bpicro-size micro group into a single number in [0, b). This step transforms z from a vector in {0, l}b'z
into a vector S(x) in 7,b/bmicre) ¢ - And in the second step, we use a similar CRR encoding as in the base case
to encode S(z), to get our final reduced vector in Z°.

S(z) is simply

S(z) = <¢bmicro (g;[l])l’ Vo ($[2])17 ot (x[b/bmicw])l,
wbmicm ((E[l])2’ wbmicro (x[Z])Qa ceey wbmicro (‘T[b/bmkm])27

N (Lo S VIRV € PR S (:La[b/bmicro})£> .

That is, we apply v, . onall the 2V]°s, and shrink all the corresponding micro-groups in x into integers.
Again, we partition S into £ equal size groups S*, S%, ..., S*.
Then we define 1, (x) as

Vo) = (CRR ({51}7/"m==) | CRR ({82}"/%=) ,...., CRR <{S§}é/bm‘”">> .

J=1

In other words, the i-th coordinate of v(z) is the CRR representation of the number sequence S, with

respect to our primes {g; }b/ bmicro.

Now, note that for z,y € {0,1}*¢, z -y = 0 is equivalent to V) - 4Vl = 0 for every j € [b/bmicro).
which is further equivalent to ‘ ‘
wbmicro (x[ﬂ) : ,gbbmicro (y[j]) € ‘/bmicro

for all j € [b/bmicro], by our assumption on ¢y, .

Since 0 < 4y, .. (z [j])z,wbm.cm(Ul < bforall z,y € {0,1}"*, i € [£] and j € [b/bmicro), We also have
Wy (2l) -y, (yV) < b2 - £, therefore we can assume that V,___ C [0, b%().

Forall z,y € {0,1}* and j € [b/bmicro], We have

micro —

w() - ¥u(y)
_ZCRR< i) CRR ({S(y)i},27) (mod py)

=3 S-S (mod
=1

L
= Z wbmicro (x[]})l : wbmicro (y[]])z (mOd pj)
=1

E,l/}bmicro (x[ﬂ) : wbmicro (y[j]) (mOd p]) :

24

Since p; > b? - £, we can determine v;,_.__ (2l . Ubiere (1) from 4y(z) - 1y(y) by taking modulo Dj.
Therefore,
z-y=20

is equivalent to

(¥(z) - Yp(y) mod pj) € Vi o

for every j € [b/bmicro)-
Finally, recall that we have
£610g* (bmicm)'bmicro — b

Taking logarithm of both sides, we have
608" Gmicre) . p 2o - log £ = log b.
Then we can upper bound v, (x); by

b/bmicro

o(@)i <] »s
=1

< (b2€)2'(b/bmicro) (b Z ‘6)
< 26'b/bmicro'10g b

< 26~b/bmicro‘610g* (Pmicro) ‘bmicro'log 14

< 86-6103*(bmicro)-b

< (6 O (brmicro < 10g b, 10g" (bmicro) + 1 < log*(log b) + 1 = log"(b).)

Therefore, we can set V;, as the set of integer ¢ in [0, 6 (b)'%H) such that
(t mod p;) €V}

micro

for every j € [b/bmicro]- And it is easy to see this V} satisfies our requirement.
Finally, it is easy to see that the straightforward way of constructing v (x) takes O(poly (b - £)) time,

and we can construct V;, by enumerating all possible values of ¢, (z) - 1(y) and check each of them in

(6108 (%) .p)

O(poly(b - £)) time. Since there are at most © such values, V}, can be constructed in

O <£O(610g*(b)'b) . poly(b . 6))

time, which completes the proof.

Now we prove Lemma 1.16, we recap its statement here for convenience.
Reminder of Lemma 1.16 Let 1 < ¢ < d. There is an

0 (n) go(abg*d-(d/f)) -poly(d)) -time

reduction from OV, 4 to EO(GIOg* “A/0) instances of Z-OV,, ¢41, with vectors of entries with bit-length
0 (d/E log { - 6" d).

25

Proof. The proof is exactly the same as the proof for Lemma 1.1 in [Will18] with different parameters, we
recap it here for convenience.

Given two sets A" and B’ of n vectors from {0, 1}d, we apply 14/ ¢ to each of the vectors in A" (B'yto
obtain a set A (B) of vectors from Z‘. From Theorem 4.1, there is a (u, v) € A’ x B’ such that u - v = 0 if
and only if there is a (u,v) € A x B such thatu-v € V0.

Now, for each element ¢ € V4, we are going to construct two sets A and B; of vectors from
such that there is a (u,v) € A x B with v - v = t if and only if there is a (u,v) € A; x By withu - v = 0.
We construct a set A; as a collection of all vectors u4 = [u, 1] for u € A, and a set B, as a collection of all
vectors vp = [v, —t] for v € B. It is easy to verify this reduction has the properties we want.

log™* d .
Note that there are at most /2 “(@/0) numbers in Vi 0,0 s0 we have such a number of Z-OVy, r41
instances. And from Theorem 4.1, the reduction takes

19 (n 06" 4.(/0)) poly(d)>

Zf-‘rl

time.
Finally, the bit-length of reduced vectors is bounded by

log (z‘ﬂﬁlog* d'W))) ~0 (d/f log - 6% d) :
which completes the proof. O

A Transformation from Nonuniform Construction to Uniform Construction

The proof for Theorem 4.1 works recursively. In one recursive step, we reduce the construction of v ¢ to
the construction of ¢y, . ¢, where bmicro < log b. Applying this reduction log™ n times, we get a sufficiently
small instance that we can switch to a direct CRR construction.

An interesting observation here is that after applying the reduction only thrice, the block length param-
eter becomes b’ < loglog log b, which is so small that we can actually use brute force to find the “optimal”
construction v ¢ in () time instead of recursing deeper. Hence, to find a construction better than Theo-

rem 4.1, we only need to prove the existence of such a construction. See Appendix B for details.

4.2 TImproved Hardness for Hopcroft’s Problem

In this subsection we are going to prove Theorem 1.17 using our new dimensionality reduction Lemma 1.16,
we recap its statement here for completeness.

Reminder of Theorem 1.17 [Hardness of Hopcroft’s Problem in 8" Dimension] Assuming SETH (or
OVC), there is a constant ¢ such that Z-OVmclog* » with vectors of O(logn)-bit entries requires n2—o(t)
time.

Proof. The proof here follows roughly the same as the proof for Theorem 1.1 in [Wil18].
Let ¢ be an arbitrary constant and d := c - logn. We show that an oracle solving Z-OV,, ;1 where
¢ = 7°8" " in O(n®~%) time for some § > 0 can be used to construct an O(n>~T1))

QOV,, 4, and therefore contradicts the OVC.

time algorithm for

26

We simply invoke Lemma 1.16, note that we have

log {€O<61°g*) } =log¢- 0 (6" (d/0))
=0 (log"n - 6% " - ¢ log /75" ")
-0 (1og* n-(6/7)F " . ¢ log n)
= o(logn).

61087 4-(d/0))

Therefore, the reduction takes O(n - EO(

reduced to n°) instances of Z-OV,, o011, and the reduced vectors have bit length o(logn) as calculated
2—5+o(1))

-poly(d)) = n'*T°M) time, and an OV,, 4 instance is

above. We simply solve all these n°) instances using our oracle, and this gives us an O(n time
algorithm for OV, 4, which completes the proof. O

4.3 Hardness for Z-Max-IP
Now we move to hardness of exact Z-Max-IP.

Theorem 4.3 (Implicit in Theorem 1.2 [Will8]). There is an O(poly(d) - n)-time algorithm which reduces
a 7-OV,, q instance into a Z-Max-IP,, 4 instance.

Proof. We remark here that this reduction is implicitly used in the proof of Theorem 1.2 in [Will8], we
abstract it here only for our exposition.
Given a Z-OV,, 4 instance with sets A, B. Consider the following polynomial P(z,y), where z,y € 7.

P(z,y)=—(z-y)> = D —zi-y;

i,j€|d]

It is easy to see that whether there is a (x,y) € A x B such that x - y = 0 is equivalent to whether the

maximum value of P(z,y) is 0.
Now, for each x € A and y € B, we construct z,y € Z% such that Ti = T|(i—1)/d)+1 and y; =

—Y(i mod d)+1- Then we have T -y = P(z,y). Hence, let A be the set of all these Z’s, and B be the set of all

these s, whether there is a (z,y) € A x B such that z - y = 0 is equivalent to whether OPT(A, B) = 0,
and our reduction is completed.
O

Now, Theorem 1.13 (restated below) is just a simple corollary of Theorem 4.3 and Theorem 1.17.

Reminder of Theorem 1.13 Assuming SETH (or OVC), there is a constant c such that every exact algorithm
for Z-Max-IP,, 4 for d = 98" " dimensions requires n?~°Y) time, with vectors of O(logn)-bit entries.

A Dimensionality Reduction for Max-IP

The reduction 1y, ; from Theorem 4.1 actually does more: for z,y € {0, 1}, from 4y, ¢(z) - ¥p.¢(y) we can
in fact determine the inner product x - y itself, not only whether z - y = 0.

Starting from this observation, together with Theorem 4.3, we can in fact derive a similar dimensionality
self reduction from Max-IP to Z-Max-IP, we deter its proof to Appendix A.

27

Corollary 4.4. Let 1 < { < d. There is an

O (n (06" 4(d/0) poly(d)) -time
reduction from Max-IP,, 4 to d - KO(GIDg* *(d/0)
bit-length O (d/z log £ - 68" d).

instances of Z-Max-IP,, (,11y2, with vectors of entries with

4.4 Hardness for /,-Furthest Pair and Bichromatic /5-Closest Pair

We finish the whole section with the proof of hardness of /»-Furthest Pair and Bichromatic ¢»-Closest Pair.
The two reductions below are slight adaptations of the ones in the proofs of Theorem 1.2 and Corollary 2.1
in [Wil18].

Lemma 4.5. Assuming d = n°"Y, there is an O(poly(d) - n)-time algorithm which reduces a Z-Max-IP,, 4
instance into an instance of £a-Furthest Pair on 2n points in RY2. Moreover, if the Z.-Max-IP instance
consists of vectors of O(log n)-bit entries, so does the {y-Furthest Pair instance.

Proof. Let A, B be the sets in the Z-Max-IP,, 4 instance, and k be the smallest integer such that all vectors
from A and B consist of (k - log n)-bit entries.
Let W be n®* where C'is a large enough constant. Given x € A and y € B, we construct point

7= (x,\/W—inch?,Q and §=(—y,0,\/W—7Hy||2)>

that is, appending two corresponding values into the end of vectors x and —y.
Now, we can see that for 1, zo € A, the squared distance between their reduced points is

|71 = Z2|* = Jlor — 22]* < 4-d- 0.
Similarly we have
g1 = 2l* < 4-d-n**

for y1,y2 € B.
Next, forz € A and y € B, we have

7= 312 = 132+ 151 2 F G =2 W42 (2) 22 W —d 0 > 4-d-n,

the last inequality holds when we set C' to be 5.

Putting everything together, we can see the £5-furthest pair among all points Z’s and y’s must be a pair
of 7 and y withz € Aand y € B. And maximizing ||z — ¥|| is equivalent to maximize x - y, which proves
the correctness of our reduction. Furthermore, when k is a constant, the reduced instance clearly only needs
vectors with O(k) - log n = O(log n)-bit entries. O

Lemma 4.6. Assuming d = n°Y), there is an O(poly(d) - n)-time algorithm which reduces a Z-Max-IP,, 4
instance into an instance of Bichromatic {s-Closest Pair on 2n points in RY2. Moreover, if the Z-Max-IP
instance consists of vectors of O(log n)-bit entries, so does the Bichromatic {5-Closest Pair instance.

Proof. Let A, B be the sets in the Z-Max-IP,, ;4 instance, and £ be the smallest integer such that all vectors
from A and B consist of (k - log n)-bit entries.
Let W be n®* where C is a large enough constant. Given x € A and y € B, we construct point

&= (o, VW =TalP.0) and 5= (y.0.VW—Tl).

28

that is, appending two corresponding values into the end of vectors z and —y. And our reduced instance is
to find the closest point between the set A (consisting of all these where x € A) and the set B (consisting
of all these y where y € B).

Next, for x € A and y € B, we have

1Z—g2=1Z1>+ 7> -2-2-§=2-W—=2-(z-y)>2-W—d-n**>4.d-n?

the last inequality holds when we set C' to be 5.

Hence minimizing ||z — y|| where z € A and y € B is equivalent to maximize x - y, which proves the
correctness of our reduction. Furthermore, when k is a constant, the reduced instance clearly only needs
vectors with O(k) - log n = O(log n)-bit entries. O

Now Theorem 1.14 and Theorem 1.15 (restated below) are simple corollaries of Lemma 4.5, Lemma 4.6
and Theorem 1.13.

Reminder of Theorem 1.14 [Hardness of {s-Furthest Pair in A" Dimension] Assuming SETH (or OVC),
there is a constant ¢ such that lo-Furthest Pair in ¢'°2" ™ dimensions requires n>~°1Y) time, with vectors of
O(logn)-bit entries.

Reminder of Theorem 1.15 [Hardness of Bichromatic f5-closest Pair in A" Dimension] Assuming
SETH (or OVC), there is a constant c such that Bichromatic {5-Closest Pair in 8" dimensions requires

n>=°W) time, with vectors of O(log n)-bit entries.

5 NP - UPP communication protocol and Exact Hardness for Z-Max-IP

We note that the inapproximability results for (Boolean) Max-IP is established via a connection to the MA
communication complexity protocol of Set-Disjointness [ARW17]. In the light of this, in this section we
view our reduction from OV to Z-Max-IP (Lemma 1.16 and Theorem 4.3) in the perspective of communi-
cation complexity.

We observe that in fact, our reduction can be understood as an NP - UPP communication protocol for
Set Disjointness. Moreover, we show that if we can get a slightly better NP - UPP communication protocol
for Set-Disjointness, then we would be able to prove Z-Max-IP is hard even for w(1) dimensions (and also
£5-Furthest Pair and Bichromatic #5-Closest Pair).

5.1 NP - UPP Communication Protocol for Set-Disjointness

First, we rephrase the results of Lemma 1.16 and Theorem 4.3 in a more convenience way for our use here.

Lemma 5.1 (Rephrasing of Lemma 1.16 and Theorem 4.3). Let1 < ¢ < d, and m = EO(Blog* “d/0), There
exists a family of functions

7 i ,
¢Alice7 ¢Bob : {07 1} —]R(E 1)
f ri e [m} such that:

o when x -y = 0, there is an i such that V¥'3.e(7) - ¥gop(y) > 0;

o when x -y > 0, for all i Yjie() - Pop(y) < 0;

o all Yjice() and Wiy, (y) can be computed in poly(d) time.

29

From the above lemma, and the standard connection between UPP and sign-rank [PS86] (see also Chap-
ter 4.11 of [Juk12]), we immediately get the communication protocol we want and prove Theorem 1.20
(restated below for convenience).

Reminder of Theorem 1.20 Forall 1 < o« < n, there is an
(a L6198 (2%, O(a)) -computational-efficient
NP - UPP communication protocol for DISJ,,.

Proof Sketch. We set o = log £ here. Given the function families {wfklice}’ {wéob} from Lemma 5.1, Merlin
just sends the index i € [m], the rest follows from the connection between UPP protocols and sign-rank of
matrices. H

5.2 Slightly Better Protocols Imply Hardness in w(1) Dimensions

Finally, we show that if we have a slightly better NP - UPP protocol for Set-Disjointness, then we can show
Z-Max-IP requires n2°M) time even for w(1) dimensions (and so do ¢o-Furthest Pair and Bichromatic
{5-Closest Pair). We restate Theorem 1.21 here for convenience.

Reminder of Theorem 1.21 Assuming SETH (or OVC), if there is an increasing and unbounded function
f such that for all 1 < o < n, there is a

(n/ f(a), @) -computational-efficient

NP - UPP communication protocol for DISJ,, then Z-Max-IP, 1y requires n>=°W) time with vectors of
polylog(n)-bit entries. The same holds for {5-Furthest Pair and Bichromatic {2-Closest Pair.

Proof. Suppose otherwise, there is an algorithm A for Z-Max-IP,, 4 running in n?~¢1 time for all constant
d and for a constant €; > 0 (note for the sake of Lemma 4.5 and Lemma 4.6, we only need to consider
Z-Max-IP here).

Now, let ¢ be an arbitrary constant, we are going to construct an algorithm for OV, 10gr, in n?-
time, which contradicts OVC.

Let € = ¢1/2, and « be the first number such that ¢/ f(a) < &, note that « is also a constant. Consider
the (clogn/ f(«), a)-computational-efficient NP - UPP protocol II for DISJ.og ,, and let A, B be the two
sets in the OVmClogn instance. Our algorithm via reduction works as follows:

Q(1)

e There are 2 possible messages in {0, 1}, let m1, ma, ..., Mmoo be an enumeration of them.

e We first enumerate all possible advice strings from Merlin in II, there are 261087/ /(@) < gelogn — e

such strings, let ¢ € {0, 1}¥1°™ be such an advice string.

— For each = € A, let Ypjice () € RR?" be the probabilities that Alice accepts each message from
Bob. That is, 1ajice(2); is the probability that Alice accepts the message m;, given its input x
and the advice ¢.

— Similarly, for each y € B, let ¢¥gop(y) € R?" be the probabilities that Bob sends each message.
That is, ¥gop(y): is the probability that Bob sends the message m;, give its input y and the
advice ¢.

30

— Then, for each x € A and y € B, vpjice() - ¥Bob(y) is precisely the probability that Alice
accepts at the end when Alice and Bob holds = and y correspondingly and the advice is ¢. Now
we let A, be the set of all the Yajice ()’s, and By be the set of all the 1pop(y)’s.

e If there is a ¢ such that OPT(Ay, Bs) > 1/2, then we output yes, and otherwise output no.

From the definition of II, it is straightforward to see that the above algorithm solves OV, ..1o5 . More-
over, notice that from the computational-efficient property of II, the reduction itself works in ¢ -polylog(n)
time, and all the vectors in A,’s and By s have at most polylog(n) bit precision, which means OPT(Ay, By)
can be solved by a call to Z-Max-IP,, 2« with vectors of polylog(n)-bit entries.

Hence, the final running time for the above algorithm is bounded by n - n?7¢1 = n?7¢ (2% is still a
constant), which contradicts the OVC.]

6 Improved MA Protocols

In this section we prove Theorem 1.22 (restated below for convenience).

Reminder of Theorem 1.22 There is an MA protocol for DISJ,, with communication complexity

(0] (x/n log n log log n) .
To prove Theorem 1.22, we need the following intermediate problem.

Definition 6.1 (The Inner Product Modulo p Problem (IP?)). Let p and n be two positive integers, in IP?,
Alice and Bob are given two vectors x and y in {0, 1}", and they want to determine whether z - y = 0
(mod p).

We are going to use the following MA protocol for IP? which is a slight adaption from the protocol in
Theorem 6.1 of [KLM17].

Lemma 6.2. For a sufficiently large prime q and integers T and n, there is an
(O (n/T -logq),logn+ O(1),0 (T -logq), 1/2) -efficient

MA protocol for IP.

Proof Sketch. The protocol is roughly the same as in the protocol in Theorem 6.1 in [KLM17] when setting
k = 2. The only adaption is that we just use the field > with respect to the given prime g. O

Now we ready to prove Theorem 1.22.

Proof of Theorem 1.22. Now, let x be the number such that z* = n, for convenience we are going to
pretend that x is an integer. It is easy to see that z = ©O(logn/loglogn). Then we pick 10z distinct
primes pi,p2,...,pioz in [T + 1,x2] (we can assume that n is large enough to make x satisfy the re-

quirement of Lemma 2.4). Let T be a parameter, we use II,, to denote the (O (n/T -logp;),logn +
0(1),0 (T -logpi), 1/2) -efficient MA protocol for IPP:.
Our protocol for DISJ,, works as follows:

e Merlin sends Alice all the advice strings from the protocols IL, , IL,,, ..., 11, .

e Alice and Bob jointly toss O(log(10x)) coins, to pick a uniform random number ¢* € [10x], and then
they simulate I, . That is, they pretend they are the Alice and Bob in the protocol II,, , with the
advice from Merlin in IT,, , (which Alice does have).

31

Correctness. Let X,Y € {0,1}" be the vectors of Alice and Bob. If X - Y = 0, then by the definition of
these protocols I, ’s, Alice always accepts with the correct advice from Merlin.

Otherwise, let d = X - Y # 0, we are going to analyze the probability that we pick a “good” p;« such
that p;« does not divide d. Since p; > x for all p;’s and z* > n > d, d cannot be a multiplier for more than
x primes in p;’s. Therefore, with probability at least 0.9, our pick of p;« is good. And in this case, from
the definition of the protocols II,,,’s, Alice and Bob would reject afterward with probability at least 1/2. In
summary, when X - Y # 0, Alice rejects with probability at least 0.9/2 = 0.45, which finishes the proof for
the correctness.

Complexity. Now, note that the total advice length is

10x 10x
O (n/T . Zlong) =0 (n/T . logH$2> =0 (n/T- log:czox) =0 (n/T -logn).
i=1 i=1

And the communication complexity between Alice and Bob is bounded by

O (T -logz®) = O (T -loglogn) .

Setting 1" = \/ nlogn/loglogn balances the above two quantities, and we obtain the needed MA-
protocol for DISJ,,. 0

7 Future Works

We end our paper by discussing a few interesting research directions.

e The most important open question from this paper is that can we further improve the dimensionality
reduction for OV? It is certainly weird to consider 2°(0°8" ™) to be the right answer for the limit of
the dimensionality reduction. This term seems more like a product of the nature of our recursive
construction and not the problem itself. We conjecture that there should be an w(1) dimensional
reduction with a more direct construction.

One possible direction is to combine the original polynomial-based construction from [Will8] to-
gether with our new number theoretical one. These two approaches seem completely different, hence
a clever combination of them may solve our problem.

e In order to prove w(1) dimensional hardness for ¢2-Furthest Pair and Bichromatic ¢2-Closest Pair,
we can also bypass the OV dimensionality reduction things by proving w(1) dimensional hardness
for Z-Max-IP directly. One possible way to approach this question is to start from the NP - UPP
communication protocol connection as in Section 5 (apply Theorem 1.21), and (potentially) draw
some connections from some known UPP communication protocols.

e We have seen an efficient reduction from Z-OV to Z-Max-IP which only blows up the dimension
quadratically, is there a similar reduction from Z-Max-IP back to Z-OV? Are Z-Max-IP and Z-OV
equivalent?

e By making use of the new AG-code based MA protocols, we can shave a 5(s/log n) factor from
the communication complexity, can we obtain an O(y/n) MA communication protocol matching the
lower bound for DISJ,,? It seems new ideas are required.

32

e Can the dependence on ¢ in the algorithms from Theorem 1.5 be further improved? Is it possible to
apply ideas in the n?1/9UVe) algorithm for Max-IP,, ;144 ,, from [ACW16]?

e For the complexity of 2-multiplicative-approximation to Max-IP,, c1o5,, Theorem 1.5 implies that
there is an algorithm running in n2~1/00089) {ime the same as the best algorithm for OV, ¢10gn [AWY15].
Is this just a coincidence? Or are there some connections between these two problems?

e We obtain a connection between hardness of Z-Max-IP and NP - UPP communication protocols for
Set-Disjointness. Can we get similar connections from other NP - C type communication protocols
for Set-Disjointness? Some candidates include NP - SBP and NP - promiseBQP (QCMA).

Acknowledgment

I am grateful to Virginia Vassilevska Williams, Kaifeng Lv and Peilin Zhong for helpful discussions and
suggestions. And I would like to thank Ryan Williams for introducing the problem to me, countless en-
couragement and helpful discussions during this work, and also many comments on a draft of this paper.
In particular, the idea of improving OV dimensionality self-reduction using CRT (the direct CRT based
approach) is introduced to me by Ryan Williams.

A A Dimensionality Reduction for Max-IP

In fact, tracing the proof of Theorem 4.1, we observe that it is possible to compute the inner product x - y
itself from ¢ () - 1y ¢(y), that is:

Corollary A.1. Let b, ¢ be two sufficiently large integers. There is a reduction 1y ¢ : {0, 1}b'£ — 7' and
b€+ 1sets Vi, Vily, ..., Vi¥F C Z, such that for every z,y € {0,1}"%,

zy=ke () Yoely) €V, forall0<k<b-{

and .
og .
0 < Ype(x); < £° b

for all possible x and i € [(]. Moreover, the computation of 1y ¢(x) takes poly (b- €) time, and the sets Vb’fg s
can be constructed in O <50(6log “0). poly (b - 5)) time.

Together with Theorem 4.3, it proves Corollary 4.4 (restated below).
Reminder of Corollary 4.4 Let 1 < ¢ < d. There is an
O (n (06" /) poly(d)) -time

reduction from Max-IP,, 4 to d - 065" 4-(d/0)

bit-length O (d/ﬁ log ¢ - 68 d).

instances of Z-Max-IP,, (,11y2, with vectors of entries with

Proof Sketch. Let b = d/¢ (assume ¢ divides d here for simplicity), A and B be the sets in the given
Max-IP,, 4 instance, we proceed similarly as the case for OV.

We first enumerate a number & from O to d, for each k we construct the set Vb]fg as specified in Corol-
lary A.1. Then there is (x,y) € A x B such that z - y = k if and only if there is (x,y) € A x B such that

33

U e(x) - Ype(y) € V}ffz. Using exactly the same reduction as in Lemma 1.16, we can in turn reduce this into
log™ (b .
(06 ®5) S ctances of Z-OVyp, p41.

Applying Theorem 4.3, with evaluation of (d + 1) - G Z-Max-IP,, (;41)> instances, we can
determine whether there is (z,y) € A x B such that = - y = k for every k, from which we can compute the
answer to the Max-1P,, 4 instance. O

B Nonuniform to Uniform Transformation for Dimensionality Reduction
for OV

In this section we discuss the transformation from nonuniform construction to uniform one for dimension-
ality reduction for OV. In order to state our result formally, we need to introduce some definitions.

Definition B.1 (Nonuniform Reduction). Let b, ¢, x € N. We say a function ¢ : {0, 1}“ — Z* together
with aset V C Z s a (b, ¢, k)-reduction, if the following holds:

e Forevery z,y € {0,1}"%,
z-y=0= o) oy €V

e Forevery z and i € [(],
0 < @(x); < £5°.

Similarly, let 7 be an increasing function, we say a function family {(; ¢} ¢ together with a set family
{Vi,e}p,¢ is a T-reduction family, if for every b and ¢, (yu ¢, Vi ¢) is a (b, £, 7(b))-reduction.

Moreover, if for all b and all £ < logloglog b, there is an algorithm A which computes ¢y, ;() in poly(b)
time given b, £ and 2 € {0,1}"*, and constructs the set V4 ¢ in O <€O(T(b)'b) . poly(b)) time given b and /,
then we call (¢ ¢, Vp ¢) a uniform-7-reduction family.

Remark B.2. The reason we assume ¢ to be small is that in our applications we only care about very small
¢, and that greatly simplifies the notation. From Theorem 4.1, there is a uniform- <61°g* b) -reduction family,

and a better uniform-reduction family implies better hardness for Z-OV and other related problems as well
(Lemma 1.16, Theorem 4.3, Lemma 4.6 and Lemma 4.5).

Now we are ready to state our nonuniform to uniform transformation result formally.

Theorem B.3. Letting T be an increasing function such that T(n) = O(log loglogn) and supposing there
is a T-reduction family, then there is a uniform-O(T)-reduction family.

Proof Sketch. The construction in Theorem 4.1 is recursive, it constructs the reduction 1, from a much
smaller reduction ty,_,__ ¢, Where bmicro < logb. In the original construction, it takes log™ b recursions
to make the problem sufficiently small so that a direct construction can be used. Here we only apply the
reduction thrice. First let us abstract the following lemma from the proof of Theorem 4.1.

Lemma B.4 (Implicit in Theorem 4.1). Letting b, £, bmicro, k € N and supposing (bmice — b and there is a
(bmicros £, K)-reduction (o, V'), the following holds:

e Thereisa (b,0,6 - k)-reduction (¢, V).
e Given (¢, V"), for all = € {0,1}*%, (z) can be computed in poly(b - £), and V can be constructed
in O <€O(“'b) - poly(b - E)) time.

34

Now, let b, £ € N, we are going to construct our reduction as follows.

Let b1 be the number such that
Er(b)-62-b1 —b

and similarly we set by and b3 so that
TG — o gnd mO)bs —

We can calculate from above that b3 < logloglog b.

From the assumption that there is a 7-reduction, there is a (b3, ¢, 7(b3))-reduction (¢4, ¢, Vb, ¢), Which
is also a (bs, ¢, 7(b))-reduction, as 7 is increasing. Note that we can assume ¢ < logloglogb and 7(b) <
log log log b from assumption. Now we simply use a brute force algorithm to find (s, ¢, Vi, ¢). There are

ET(b)'b3'f'2b3[_ bo(l)

possible functions from {0,1}% — {0,...¢7®)®s _ 1} Given such a function ¢, one can check in
poly(2%) = 5°() time that whether one can construct a corresponding set V' to obtain our (bs, £, 7(b))-
reduction.
Applying Lemma B.4 thrice, one obtain a (b, ¢, O(7(b)))-reduction (¢, V). And since ¢y, ¢ can be
found in b°™") time, together with Lemma B.4, we obtain a uniform-7-reduction family.
0

Finally, we give a direct corollary of Theorem B.3 that the existence of an O(1)-reduction family implies
hardness of Z-OV, Z-Max-IP, ¢5-Furthest Pair and Bichromatic ¢5-Closest Pair in w(1) dimensions.

Corollary B.5. [f there is an O(1)-reduction family, then for every ¢ > 0, there exists a ¢ > 1 such
that 7.-OV, Z-Max-IP, {s-Furthest Pair and Bichromatic {2-Closest Pair in ¢ dimensions with O(log n)-bit
entries require n~¢ time.

Proof Sketch. Note that since its hardness implies the harnesses of other three, we only need to consider
Z-0V here.

From Theorem B.3 and the assumption, there exists a uniform-O(1)-reduction. Proceeding similar as
in Lemma 1.16 with the uniform-O(1)-reduction, we obtain a better dimensionality self reduction from OV
to Z-OV. Then exactly the same argument as in Theorem 1.17 with different parameters gives us the lower
bound required. O

C Hardness of Approximate {—1, 1}-Max-IP via Approximate Polynomial
for OR

We first show that making use of the O(y/n)-degree approximate polynomial for OR [BCDWZ99, dWO08],
OV can be reduced to approximating {—1, 1}-Max-IP.

Theorem C.1. Letting € € (0,1), an OV,, q instance with sets A, B reduces to a {—1,1}-Max-IP, 4,
instance with sets A and B, such that:

d 3 - -
P << O (m)) 'QO(m) -e~1, in which the notation (Snm> denotes ; <TZ)

e There is an integer T' > €~
OPT(A,B) > T.

Y such that if there is an (a,b) € A x B such that a - b = 0, then

35

OPT(A,B)| < T -e.

o Otherwise,

e Moreover, the reduction takes n - poly(dy) time.

We remark here that the above reduction fails to achieve a characterization: setting ¢ = 1/2 and d =

clogn for an arbitrary constant ¢, we have d; = 20(VIegn) " much larger than logn. Another interesting
difference between the above theorem and Lemma 3.3 (the reduction from OV to approximating Max-IP) is
that Lemma 3.3 reduces one OV instance to many Max-IP instances, while the above reduction only reduces
it to one {—1, 1}-Max-IP instance.

Proof of Theorem C.1.
Construction and Analysis of Polynomial P.(z). By [BCDWZ99, dW08], there is a polynomial P. :
{0,1}% — R such that:

e P.isofdegree D = O (\/dlogl/e).

e Forevery z € {0,1}%, P.(z) € [0,1].
e Given z € {0,1}%,if OR(z) = 0, then P.(z) > 1 — ¢, otherwise P.(z) < ¢.

e P. can be constructed in time polynomial in its description size.

Now, let us analyze P, further. For a set S C [d], let g : {0,1}% — R be xg(2) := H(—l)zi. Then
1€S
we can write P as:

P = Z XS"<XSyPe>7
SCld],|S|<D

where (xg, P-) is the inner product of y g and P, defined as (xg, P:) := Ex6{071}dxg(x) - P.(z).
Let cs = (xs, P-), from the definition it is easy to see that cg € [—1, 1].

Discretization of Polynomial P.. Note that P.(z) has real coefficients, we need to turn it into another
polynomial with integer coefficients first.

d ~
Let M := (< D) , consider the following polynomial P-:

ﬁg = Z les - 2M/e] - xs.
SCld],|S|<D

We can see that |P-(z)/(2M/e) — P.(z)| < ¢ for every z € {0,1}% and we let &g := |cg - M - 2/¢]
for convenience.

Simplification of Polynomial]35.]35(2) is expressed over the basis xg’s, we need to turn it into a polyno-
mial over standard basis.
For each S C [d], consider g, it can also be written as:

xs(2) = [[-0 = [0~ 22) = 32 (-2,

= i€S TCS

36

where z7 1= H z;. Plugging it into the expression of ﬁg, we have
€T

P(z)= > > es | - (=2) 2.

TCld,|TI<D \SC[d],|S|<D,TCS

Set

the above simplifies to

]38(,2) = Z éT 2T,

TCd],|T|<D

Properties of Polynomial F.. Let us summarize some properties of P for now. First we need a bound on
|ér|, we can see |ég| < M - 2/e, and by a simple calculation we have

er| < M?-2P . 2/¢.

Let B = M2.2P.2 /¢ for convenience. For z,y € {0, 1}%, consider P.(z,y) := P-(z1y1, 22y, - - - » Zaya)
(that is, plugging in z; = z;¥;), we have

Px,y):= Y ér-ar-yrn
TCld)[T|<D

where T 1= H x; and yr is defined similarly. Moreover, we have
ieT
o Ifz-y=0,then P.(x,y) > (2M/e) - (1 — 2¢).
o Ifz-y #0, then | Po(z,y)| < (2M/e) - 2.

The Reduction. Now, let us construct the reduction, we begin with some notations. For two vectors a, b,
we use a o b to denote their concatenation. For a vector a and a real z, we use a - x to denote the vector
resulting from multiplying each coordinate of a by x. Let sgn(x) be the sign function that outputs 1 when
£ >0, —1whenz < 0,and 0 when 2z = 0. Forz € {—-B,—-B+1,...,B}, weuse e, € {—1,0,1}7
to denote the vector whose first |z| elements are sgn(z) and the rest are zeros. We also use 1 to denote the
all-1 vector with length B.

Let 71,75, ..., Ty be an enumeration of all subsets 7' C [d] such that |T| < D, we define

() = ol (ezy, - wr,) and @y (y) := o}y (1 - yr).

And we have

M M
() - py(y) = Z(eﬁn ‘1) (27, - Y1) = Z ér, - oy -yt = Pe(7,y).
=1 i=1

To move from {—1,0,1} to {—1,1}, we use the following carefully designed reductions), :
{~1,0,1} — {—1,1}?, such that

7/}96(_1) = @Z’y(_l) = (_1’_1)7 'QZ}:E(O) = (_L 1)7 ¢y(0) = (17_1)7 and ¢x(1) = Ql)y(l) = (17 1)-

37

It is easy to check that for z,y € {—1,0, 1}, we have () - ¥y (y) =2 (z - y).

Hence, composing the above two reductions, we get our desired reductions ¢, = ¥ oy, and ¢y =
v M 0 oy such that for 2,y € {0, 1}, ¢x(), &y (y) € {1, 1}*" M and ¢u() - ¢y (y) = 2- Pe(x,y).

Finally, given an OV,, 4 instance with two sets A and B, we construct two sets A and B, such that A
consists of all ¢, (z)’s for 2 € A, and B consists of all ¢y(y)’sfory € B.

Then we can see A and B consist of n vectors from {—1 l}d1 where

o A — 3 oD o/ _ d 3' o(y/dlog1/z) 1
dy=2B-M=M"-2 2/€_<SO(ﬁlogl/e)) 2 €

(B-M)

as stated.

It is not hard to see the above reduction takes n - poly(d;) time. Moreover, if there is a (z,y) € A x B
such that z - y = 0, then OPT(A, B) > (4M/e) - (1 — 2¢), otherwise, OPT(A, B) < (4M¢) - 2¢. Setting
¢ above to be 1/3 times the ¢ in the statement finishes the proof. U

With Theorem C.1, we are ready to prove our hardness results on {—1, 1}-Max-IP.

Theorem C.2. Assume SETH (or OVC). Letting o : N — R be any function of n such that a(n) = n°M,
there is another function (satisfying 3(n) = n°M) and an integer I' > « (B and T depend on «), such that
there is no n>~*W_time algorithm for {—1,1}-Max-IP, g distinguishing the following two cases:

e OPT(A,B) > T (A and B are the sets in the {—1, 1}-Max-IP instance).
e |OPT(A,B)| < T/a(n).

Proof. Letting oo = n°® and k = log a/logn, we have k = o(1). Setting d = clogn where c is
an arbitrary constant and £ = o~ ! in Theorem C.1, we have that an OV, 10gn reduces to a certain a(n)-
approximation to a {—1, 1}-Max-IP,, 4, instance with sets A and B, where

3 O(Vcklogn

. clogn . 9O(Veklogn) Ve &)'20(\/cklogn) _ . O(log(c/k)~/ek)

1 — >~ — =N .
< O(\/ck logn) Vk

Now set § = n” ’ and T be the integer specified by Theorem C.1, since k = o(1), 8 = n°. Suppose oth-
erwise there is an n?~(")_time algorithm for distinguishing whether OPT(A, B) > T or |OPT(4, B)| <
T'/(n). Then for any constant ¢, O(log(c/k)Vck) < k'/3 for sufficiently large n, which means d; < 3(n)
for a sufficiently large n, and there is an n?~ U _time algorithm for OV, 1og », by Theorem C.1, contradiction
to OVC. O

References

[ABO9] Sanjeev Arora and Boaz Barak, Computational complexity - A modern approach, Cambridge
University Press, 2009.

[AB17] Amir Abboud and Arturs Backurs, Towards hardness of approximation for polynomial time
problems, LIPIcs-Leibniz International Proceedings in Informatics, vol. 67, Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[ACW16] Josh Alman, Timothy M Chan, and Ryan Williams, Polynomial representations of thresh-
old functions and algorithmic applications, Foundations of Computer Science (FOCS), 2016
IEEE 57th Annual Symposium on, IEEE, 2016, pp. 467-476.

38

[AESWO1]

[AIO6]

[AILT15]

[AINR14]

[Apol3]

[APRS16]

[AR15]

[AR18]

[ARW17]

[AV14]

[AVW14]

[AVY15]

[AW09]

[AW15]

[AWY15]

Pankaj K Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl, Euclidean
minimum spanning trees and bichromatic closest pairs, Discrete & Computational Geometry
6 (1991), no. 3, 407-422.

Alexandr Andoni and Piotr Indyk, Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions, Proc. of the 47th FOCS, IEEE, 2006, pp. 459—-468.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt,
Practical and optimal Ish for angular distance, Advances in Neural Information Processing
Systems, 2015, pp. 1225-1233.

Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn, Beyond locality-
sensitive hashing, Proc. of the 25th SODA, SIAM, 2014, pp. 1018-1028.

Tom M. Apostol, Introduction to analytic number theory, Springer Science & Business Me-
dia, 2013.

Thomas Dybdahl Ahle, Rasmus Pagh, Ilya Razenshteyn, and Francesco Silvestri, On the
complexity of inner product similarity join, Proceedings of the 35th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, ACM, 2016, pp. 151-164.

Alexandr Andoni and Ilya Razenshteyn, Optimal data-dependent hashing for approximate
near neighbors, Proc. of the Forty-Seventh Annual ACM on Symposium on Theory of Com-
puting, ACM, 2015, pp. 793-801.

Amir Abboud and Aviad Rubinstein, Fast and deterministic constant factor approximation
algorithms for lcs imply new circuit lower bounds, LIPIcs-Leibniz International Proceedings
in Informatics, vol. 94, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Amir Abboud, Aviad Rubinstein, and Ryan Williams, Distributed PCP Theorems for Hard-
ness of Approximation in P, FOCS, to appear, 2017.

Amir Abboud and Virginia Vassilevska Williams, Popular conjectures imply strong lower
bounds for dynamic problems, Proc. of the 55th FOCS, 2014, pp. 434-443.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann, Consequences of faster
alignment of sequences, Proc. of the 41st ICALP, 2014, pp. 39-51.

Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu, Matching triangles and
basing hardness on an extremely popular conjecture, Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, ACM, 2015, pp. 41-50.

Scott Aaronson and Avi Wigderson, Algebrization: A new barrier in complexity theory,
TOCT 1 (2009), no. 1, 2:1-2:54.

Josh Alman and Ryan Williams, Probabilistic polynomials and hamming nearest neighbors,
Proc. of the 56th FOCS, IEEE, 2015, pp. 136-150.

Amir Abboud, Ryan Williams, and Huacheng Yu, More applications of the polynomial
method to algorithm design, Proceedings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2015, pp. 218—
230.

39

[BCDWZ99] Harry Buhrman, Richard Cleve, Ronald De Wolf, and Christof Zalka, Bounds for small-error

[BCWO8]

[BGL16]

[BI15]

[BI16]

[BK18]

[Bril4]

[BS76]

[Chr17]

[CIPO9]

[Cop82]

[CP16]

[CT15]

[DHKP97]

[DKL16]

and zero-error quantum algorithms, Foundations of Computer Science, 1999. 40th Annual
Symposium on, IEEE, 1999, pp. 358-368.

Harry Buhrman, Richard Cleve, and Avi Wigderson, Quantum vs. classical communication
and computation, Proceedings of the thirtieth annual ACM symposium on Theory of comput-
ing, ACM, 1998, pp. 63-68.

Karl Bringmann, Allan Grgnlund, and Kasper Green Larsen, A dichotomy for regular expres-
sion membership testing, arXiv preprint arXiv:1611.00918 (2016).

Arturs Backurs and Piotr Indyk, Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (unless SETH is false), Proc. of the 47th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), 2015, pp. 51-58.

, Which regular expression patterns are hard to match?, Proc. of the 57th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2016, pp. 457-466.

Karl Bringman and Marvin Kiinnemann, Multivariate fine-grained complexity of longest com-
mon subsequence, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SIAM, 2018, pp. 1216-1235.

Karl Bringmann, Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails, Proc. of the 55th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), 2014, pp. 661-670.

Jon Louis Bentley and Michael Ian Shamos, Divide-and-conquer in multidimensional space,
Proceedings of the eighth annual ACM symposium on Theory of computing, ACM, 1976,
pp- 220-230.

Tobias Christiani, A framework for similarity search with space-time tradeoffs using locality-
sensitive filtering, Proc. of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SIAM, 2017, pp. 31-46.

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi, The complexity of satisfiability
of small depth circuits., IWPEC, vol. 5917, Springer, 2009, pp. 75-85.

Don Coppersmith, Rapid multiplication of rectangular matrices, STAM Journal on Comput-
ing 11 (1982), no. 3, 467-471.

Tobias Christiani and Rasmus Pagh, Set similarity search beyond minhash, arXiv preprint
arXiv:1612.07710 (2016).

Svyatoslav Covanov and Emmanuel Thomé, Fast integer multiplication using generalized
fermat primes, arXiv preprint arXiv:1502.02800 (2015).

Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen, A reliable
randomized algorithm for the closest-pair problem, Journal of Algorithms 25 (1997), no. 1,
19-51.

Roee David, CS Karthik, and Bundit Laekhanukit, On the complexity of closest pair via polar-
pair of point-sets, CoRR, abs/1608.03245 (2016).

40

[dWO08]

[Fiir09]

[GIKW17]

[Gro96]

[GU18]

[HVDHL16]

[IM98]

[IPO1]

[Juk12]

[KKK16]

[K1a03]

[KLM17]

[KM95]

[KT17]

[Mat92]

[Mat93]

Ronald de Wolf, A note on quantum algorithms and the minimal degree of epsilon-error
polynomials for symmetric functions, arXiv preprint arXiv:0802.1816 (2008).

Martin Fiirer, Faster integer multiplication, SIAM Journal on Computing 39 (2009), no. 3,
979-1005.

Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and R. Ryan Williams, Completeness
for first-order properties on sparse structures with algorithmic applications, Proc. of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2017, pp. 2162-2181.

Lov K Grover, A fast quantum mechanical algorithm for database search, Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, ACM, 1996, pp. 212-219.

Francois Le Gall and Florent Urrutia, Improved rectangular matrix multiplication using pow-
ers of the coppersmith-winograd tensor, Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, 2018, pp. 1029-1046.

David Harvey, Joris Van Der Hoeven, and Grégoire Lecerf, Even faster integer multiplication,
Journal of Complexity 36 (2016), 1-30.

Piotr Indyk and Rajeev Motwani, Approximate nearest neighbors: towards removing the
curse of dimensionality, Proc. of the thirtieth annual ACM symposium on Theory of com-
puting, ACM, 1998, pp. 604-613.

Russell Impagliazzo and Ramamohan Paturi, On the complexity of k-sat, J. Comput. Syst. Sci.
62 (2001), no. 2, 367-375.

Stasys Jukna, Boolean function complexity: advances and frontiers, vol. 27, Springer Science
& Business Media, 2012.

Matti Karppa, Petteri Kaski, and Jukka Kohonen, A faster subquadratic algorithm for find-
ing outlier correlations, Proc. of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, Society for Industrial and Applied Mathematics, 2016, pp. 1288—1305.

Hartmut Klauck, Rectangle size bounds and threshold covers in communication complex-
ity, Computational Complexity, 2003. Proceedings. 18th IEEE Annual Conference on, IEEE,
2003, pp. 118-134.

C.S. Karthik, Bundit Laekhanukit, and Pasin Manurangsi, On the parameterized complexity
of approximating dominating set, arXiv preprint arXiv:1711.11029 (2017).

Samir Khuller and Yossi Matias, A simple randomized sieve algorithm for the closest-pair
problem, Information and Computation 118 (1995), no. 1, 34-37.

Robert Krauthgamer and Ohad Trabelsi, Conditional lower bounds for all-pairs max-flow,
arXiv preprint arXiv:1702.05805 (2017).

Jifi Matousek, Efficient partition trees, Discrete & Computational Geometry 8 (1992), no. 3,
315-334.

, Range searching with efficient hierarchical cuttings, Discrete & Computational Ge-
ometry 10 (1993), no. 2, 157-182.

41

[NS15]

[PS86]

[PW10]

[RG12]

[RRT07]

[Rub17]

[RV13]

[SL14]

[SL15]

[TG16]

[Vall5]

[Vas18]

[Wil05]

[Will4]

[Will8]

Behnam Neyshabur and Nathan Srebro, On symmetric and asymmetric Ishs for inner prod-
uct search, Proc. of the 32nd International Conference on Machine Learning, ICML, 2015,
pp- 1926-1934.

Ramamohan Paturi and Janos Simon, Probabilistic communication complexity, Journal of
Computer and System Sciences 33 (1986), no. 1, 106—123.

Mihai Pétragscu and Ryan Williams, On the possibility of faster sat algorithms, Proc. of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, SIAM, 2010, pp. 1065—
1075.

Parikshit Ram and Alexander G Gray, Maximum inner-product search using cone trees, Proc.
of the 18th ACM SIGKDD international conference on Knowledge discovery and data min-
ing, ACM, 2012, pp. 931-939.

Ali Rahimi, Benjamin Recht, et al., Random features for large-scale kernel machines., NIPS,
vol. 3, 2007, p. 5.

Aviad Rubinstein, Hardness of approximate nearest neighbor search (using ag codes), In
submission (2017).

Liam Roditty and Virginia Vassilevska Williams, Fast approximation algorithms for the di-
ameter and radius of sparse graphs, Proc. of the 45th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), 2013, pp. 515-524.

Anshumali Shrivastava and Ping Li, Asymmetric Ish (alsh) for sublinear time maximum inner
product search (mips), Advances in Neural Information Processing Systems, 2014, pp. 2321-
2329.

, Asymmetric minwise hashing for indexing binary inner products and set contain-
ment, Proc. of the 24th International Conference on World Wide Web, ACM, 2015, pp. 981—
991.

Christina Teflioudi and Rainer Gemulla, Exact and approximate maximum inner product
search with lemp, ACM Transactions on Database Systems (TODS) 42 (2016), no. 1, 5.

Gregory Valiant, Finding correlations in subquadratic time, with applications to learning
parities and the closest pair problem, Journal of the ACM (JACM) 62 (2015), no. 2, 13.

Virginia Vassilevska Williams, On some fine-grained questions in algorithms and complexity,
To appear in the proceedings of the ICM, 2018.

R. Ryan Williams, A new algorithm for optimal 2-constraint satisfaction and its implications,
Theoretical Computer Science 348 (2005), no. 2-3, 357-365.

Ryan Williams, Faster all-pairs shortest paths via circuit complexity, Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, ACM, 2014, pp. 664—673.

Ryan Williams, On the difference between closest, furthest, and orthogonal pairs: Nearly-
linear vs barely-subquadratic complexity, Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, 2018, pp. 1207-1215.

42

[WY14]

[Yao82]

Ryan Williams and Huacheng Yu, Finding orthogonal vectors in discrete structures, Proceed-
ings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, SIAM, 2014,
pp. 1867-1877.

Andrew Chi-Chih Yao, On constructing minimum spanning trees in k-dimensional spaces and
related problems, SIAM Journal on Computing 11 (1982), no. 4, 721-736.

ECCC ISSN 1433-8092
43

https://eccc.weizmann.ac.il

