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Abstract

Arıkan’s exciting discovery of polar codes has provided an altogether new way to efficiently
achieve Shannon capacity. Given a (constant-sized) invertible matrix M , a family of polar
codes can be associated with this matrix and its ability to approach capacity follows from the
polarization of an associated [0, 1]-bounded martingale, namely its convergence in the limit to
either 0 or 1 with probability 1. Arıkan showed appropriate polarization of the martingale
associated with the matrix G2 = ( 1 0

1 1 ) to get capacity achieving codes. His analysis was later
extended to all matrices M which satisfy an obvious necessary condition for polarization.

While Arıkan’s theorem does not guarantee that the codes achieve capacity at small block-
lengths (specifically in length which is a polynomial in 1/ε where ε is the difference between
the capacity of a channel and the rate of the code), it turns out that a “strong” analysis of
the polarization of the underlying martingale would lead to such constructions. Indeed for the
martingale associated with G2 such a strong polarization was shown in two independent works
([Guruswami and Xia, IEEE IT ’15] and [Hassani et al., IEEE IT ’14]), thereby resolving a
major theoretical challenge associated with the efficient attainment of Shannon capacity.

In this work we extend the result above to cover martingales associated with all matrices
that satisfy the necessary condition for (weak) polarization. In addition to being vastly more
general, our proofs of strong polarization are (in our view) also much simpler and modular. Key
to our proof is a notion of local polarization that only depends on the evolution of the martingale
in a single time step. We show that local polarization always implies strong polarization. We
then apply relatively simple reasoning about conditional entropies to prove local polarization in
very general settings. Specifically, our result shows strong polarization over all prime fields and
leads to efficient capacity-achieving source codes for compressing arbitrary i.i.d. sources, and
capacity-achieving channel codes for arbitrary symmetric memoryless channels.
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1 Introduction

Polar codes, proposed in Arıkan’s remarkable work [2], gave a fresh information-theoretic approach
to construct linear codes that achieve the Shannon capacity of symmetric channels, together with
efficient encoding and decoding algorithms. About a decade after their discovery, there is now a vast
and extensive body of work on polar coding spanning hundreds of papers, and polar codes are also
being considered as one of the candidates for use in 5G wireless (e.g., see [7] and references therein).
The underlying concept of polarizing transforms has emerged as a versatile tool to successfully
attack a diverse collection of information-theoretic problems beyond the original channel and source
coding applications, including wiretap channels [16], the Slepian-Wolf, Wyner-Ziv, and Gelfand-
Pinsker problems [14], broadcast channels [9], multiple access channels [22, 1], and interference
networks [24]. We recommend the survey by Şaşoğlu [21] for a nice treatment of the early work on
polar codes.

The algorithmic interest in polar codes emerges from a consequence shown in the works [11,
12, 10] who show that this approach leads to a family of codes of rate C − ε for transmission over
a channel of (Shannon) capacity C, where the block length of the code and the decoding time
grow only polynomially in 1/ε. In contrast, for all previous constructions of codes, the decoding
algorithms required time exponential in 1/ε. Getting a polynomial running time in 1/ε was arguably
one of the most important theoretical challenges in the field of algorithmic coding theory, and polar
codes were the first to overcome this challenge. The analyses of polar codes turn into questions
about polarizations of certain martingales. The vast class of polar codes alluded to in the previous
paragraph all build on polarizing martingales, and the results of [11, 12, 10] show that for one of
the families of polar codes, the underlying martingale polarizes “extremely fast” — a notion we
refer to as strong polarization (which we will define shortly).

The primary goal of this work is to understand the process of polarization of martingales, and in
particular to understand when a martingale polarizes strongly. In attempting to study this question,
we come up with a local notion of polarization and show that this local notion is sufficient to imply
strong polarization. Applying this improved understanding to the martingales arising in the study
of polar codes we show that a simple necessary condition for weak polarization of such martingales
is actually sufficient for strong polarization. This allows us to extend the results of [11, 12, 10] to a
broad class of codes and show essentially that all polarizing codes lead to polynomial convergence
to capacity. Below we formally describe the notion of polarization of martingales and our results.

1.1 Polarization of [0, 1]-martingales

Our interest is mainly in the (rate of) polarization of a specific family of martingales that we call the
Arıkan martingales. We will define these objects later, but first describe the notion of polarization
for general [0, 1]-bounded martingales. Recall that a sequence of random variables X0, . . . , Xt, . . .
is said to be a martingale if for every t and a0, . . . , at it is the case that E[Xt+1|X0 = a0, . . . , Xt =
at] = at. We say that that a martingale is [0, 1]-bounded (or simply a [0, 1]-martingale) if Xt ∈ [0, 1]
for all t ≥ 0.

Definition 1.1 (Weak Polarization). A [0, 1]-martingale sequence X0, X1, . . . , Xt, . . . is defined to
be weakly polarizing if limt→∞{Xt} exists with probability 1, and this limit is either 0 or 1 (and so
the limit is a Bernoulli random variable with expectation X0).

Thus a polarizing martingale does not converge to a single value with probability 1, but rather
converges to one of its extreme values. For the applications to constructions of polar codes, we need
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more explicit bounds on the rates of convergence leading to the notions of (regular) polarization
and strong polarization defined below in Definition 1.3 and 1.4 respectively.

Definition 1.2 ((τ, ε)-Polarization). For functions τ, ε : Z+ → R≥0, a [0, 1]-martingale sequence
X0, X1, . . . Xt, . . . is defined to be (τ, ε)-polarizing if for all t we have

Pr(Xt ∈ (τ(t), 1− τ(t))) < ε(t).

Definition 1.3 (Regular Polarization). A [0, 1]-martingale sequence X0, X1, . . . , Xt, . . . is defined
to be regular polarizing if for all constant γ > 0, there exist ε(t) = o(1), such that Xt is (γt, ε(t))-
polarizing.

We refer to the above as being “sub-exponentially” close to the limit (since it holds for every
γ > 0). While weak polarization by itself is an interesting phenomenon, regular polarization
(of Arıkan martingales) leads to capacity-achieving codes (though without explicit bounds on the
length of the code as a function of the gap to capacity) and thus regular polarization is well-explored
in the literature and tight necessary and sufficient conditions are known for regular polarization of
Arıkan martingales [3, 15].

To get codes of block length polynomially small in the gap to capacity, an even stronger notion
of polarization is needed, where we require that the sub-exponential closeness to the limit happens
with all but exponentially small probability. We define this formally next.

Definition 1.4 (Strong Polarization). A [0, 1]-martingale sequence X0, X1, . . . , Xt, . . . is defined
to be strongly polarizing if for all γ > 0 there exist η < 1 and β < ∞ such that martingale Xt is
(γt, β · ηt)-polarizing.

In contrast to the rich literature on regular polarization, results on strong polarization are quite
rare, reflecting a general lack of understanding of this phenomenon. Indeed (roughly) an Arıkan
martingale can be associated with every invertible matrix over any finite field Fq, and the only
matrix for which strong polarization is known is G2 = ( 1 0

1 1 ) [11, 12, 10].1

Part of the reason behind the lack of understanding of strong polarization is that polarization
is a “limiting phenomenon” in that one tries to understand limt→∞Xt, whereas most stochastic
processes, and the Arıkan martingales in particular, are defined by local evolution, i.e., one that
relates Xt+1 to Xt. The main contribution of this work is to give a local definition of polarization
(Definition 1.5) and then showing that this definition implies strong polarization (Theorem 1.6).
Later we show that Arıkan martingales polarize locally whenever they satisfy a simple condition
that is necessary even for weak polarization. As a consequence we get strong polarization for all
Arıkan martingales for which previously only regular polarization was known.

1.2 Results I: Local Polarization and Implication

Before giving the definition of local polarization, we give some intuition using the following mar-
tingale: Let Z0 = 1/2, and Zt+1 = Zt + Yt+12−(t+2) where Y1, . . . , Yt, . . . are chosen uniformly and

1An exception is the work by Pfister and Urbanke [19] who showed that for the q-ary erasure channel for large
enough q, the martingale associated with a q × q Reed-Solomon based matrix proposed in [18] polarizes strongly. A
recent (unpublished) work [8] shows that for the binary erasure channel, martingales associated with large random
matrices polarize strongly. Both these results obtain an optimal value of η for (specific/random) large matrices.
However, they only apply to the erasure channel, which is simple to error correct via Gaussian elimination and
therefore not really reflective of the general capacity-achieving power of polar codes.
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independently from {−1,+1}. Clearly this sequence is not polarizing (the limit of Zt is uniform
in [0, 1]). One reason why this happens is that as time progresses, the martingale slows down and
stops varying much. We would like to prevent this, but this is also inevitable if a martingale is
polarizing. In particular, a polarizing martingale would be slowed at the boundary and cannot vary
much. The first condition in our definition of local polarization insists that this be the only reason
a martingale slows down (we refer to this as variance in the middle).

Next we consider what happens when a martingale is close to the boundary. For this part
consider a martingale Z0 = 1/2 and Zt+1 = Zt + 1

2Yt+1 min{Zt, 1 − Zt}. This martingale does
polarize and even shows regular polarization, but it can also be easily seen that the probability
that Zt < 1

2 · 2
−t is zero (whereas we would like probability of being less than say 10−t to go

to 1). So this martingale definitely does not show strong polarization. This is so since even in
the best case the martingale is approaching the boundary at a fixed exponential rate, and not a
sub-exponential one. To overcome this obstacle we require that when the martingale is close to the
boundary, with a fixed constant probability it should get much closer in a single step (a notion we
refer to as suction at the ends).

The definition below makes the above requirements precise.

Definition 1.5 (Local Polarization). A [0, 1]-martingale sequence X0, . . . , Xj , . . . , is locally polar-
izing if the following conditions hold:

1. (Variance in the middle): For every τ > 0, there is a θ = θ(τ) > 0 such that for all j, we
have: If Xj ∈ (τ, 1− τ) then E[(Xj+1 −Xj)2|Xj ] ≥ θ.

2. (Suction at the ends): There exists an α > 0, such that for all c < ∞, there exists a
τ = τ(c) > 0, such that:
(a) If Xj ≤ τ then Pr[Xj+1 ≤ Xj/c|Xj ] ≥ α.
(b) Similarly, if 1−Xj ≤ τ then Pr[(1−Xj+1 ≤ (1−Xj)/c|Xj ] ≥ α.
We refer to condition (a) above as Suction at the low end and condition (b) as Suction at the
high end.

When we wish to be more explicit, we refer to the sequence as (α, τ(·), θ(·))-locally polarizing.

As such this definition is neither obviously sufficient for strong polarization, nor is it obviously
satisfiable by any interesting martingale. In the rest of the paper, we address these concerns. Our
first technical contribution is a general theorem connecting local polarization to strong polarization.

Theorem 1.6 (Local vs. Strong Polarization). If a [0, 1]-martingale sequence X0, . . . , Xt, . . . , is
locally polarizing, then it is also strongly polarizing.

It remains to show that the notion of local polarization is not vacuous. Next, we show that in
fact Arıkan martingales polarize locally (under simple necessary conditions). First we give some
background on Polar codes.

1.3 The Arıkan martingale and Polar codes

The setting of polar codes considers an arbitrary symmetric memoryless channel and yields codes
that aim to achieve the capacity of this channel. These notions are reviewed in Section 2.2.1. Given
any q-ary memoryless channel CY |Z and invertible matrix M ∈ Fk×kq , the theory of polar codes
implicitly defines a martingale, which we call the Arıkan martingale associated with (M, CY |Z)
and studies its polarization. (An additional contribution of this work is that we give an explicit
compact definition of this martingale, see Definition 4.1. Since we do not need this definition for
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the purposes of this section, we defer it for Section 4). The consequences of regular polarization
are described by the following remarkable theorem. (Below we use M ⊗ N to denote the tensor
product of the matrix M and N . Further, we use M⊗t to denote the tensor of a matrix M with
itself t times.)

Theorem 1.7 (Implied by Arıkan [2]). Let C be a q-ary symmetric memoryless channel and let
M ∈ Fk×kq be an invertible matrix. If the Arıkan martingale associated with (M, C) polarizes
regularly, then given ε > 0 and c <∞ there is a t0 such that for every t ≥ t0 there is a code C ⊆ Fnq
for n = kt of dimension at least (Capacity(C)− ε) ·n such that C is an affine code generated by the
restriction of (M−1)⊗t to a subset of its rows and an affine shift. Moreover there is a polynomial
time decoding algorithm for these codes that has failure probability bounded by n−c.2

For n = 2t, Arıkan and Telatar [3] proved that the martingale associated with the matrix
G2 = ( 1 0

1 1 ), polarizes regularly over any binary input symmetric channel (Arıkan’s original paper [2]
proved a weaker form of regular polarization with τ(t) < 2−5t/4 which also sufficed for decoding
error going to 0). Subsequent work generalized this to other matrices with the work of Korada,
Şaşoğlu, and Urbanke [15] giving a precise characterization of matrices M for which the Arıkan
martingale polarizes (again over binary input channels). We will refer to such matrices as mixing.

Definition 1.8 (Mixing Matrix). A matrix M ∈ Fk×kq is said to be mixing, if it is invertible
and none of the permutations of the rows of M yields an upper triangular matrix, i.e., for every
permutation π : [k]→ [k] there exists i, j ∈ [k] with j < π(i) such that Mi,j 6= 0.

It is not too hard to show that the Arıkan martingale associated with non-mixing matrices
do not polarize (even weakly). In contrast [15] shows that every mixing matrix over F2 polarizes
regularly. Mori and Tanaka [18] show that the same result holds for all prime fields, and give
a slightly more complicated criterion that characterizes (regular) polarization for general fields.
(These works show that the decoding failure probability of the resulting polar codes is at most
2−nβ for some positive β determined by the structure of the mixing matrix — this follows from an
even stronger decay in the first of the two parameters in the definition of polarization. However,
they do not show strong polarization, which is what we achieve.)

As alluded to earlier, strong polarization leads to even more effective code constructions and
this is captured by the following theorem.

Theorem 1.9 ([2, 11, 12]). Let C be a q-ary symmetric memoryless channel and let M ∈ Fk×kq be
an invertible matrix. If the Arıkan martingale associated with (M, C) polarizes strongly, then for
every c there exists t0(x) = O(log x) such that for every ε > 0 and every t ≥ t0(1/ε) there is an
affine code C, that is generated by the rows of (M−1)(⊗t) and an affine shift, with the property that
the rate of C is at least Capacity(C) − ε, and C can be encoded and decoded in time O(n logn)
where n = kt and failure probability of the decoder is at most n−c.

This theorem is implicit in the works above, but for completeness we include a proof of this
theorem in Appendix A. As alluded to earlier, the only Arıkan martingales that were known to
polarize strongly were those where the underlying matrix was G2 = ( 1 0

1 1 ). Specifically Guruswami
2We remark that the encoding and decoding are not completely uniform as described above, since the subset of

rows and the affine shift that are needed to specify the code are only guaranteed to exist. In the case of additive
channels, where the shift can be assumed to be zero, the work of Tal and Vardy [23] (or [11, Sec. V]) removes this
non-uniformity by giving a polynomial time algorithm to find the subset.
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and Xia [11] and Hassani et al. [12] show strong polarization of the Arıkan martingale associated
with this matrix over any binary input symmetric channel, and Guruswami and Velingker [10]
extended to the case of q-ary input channels for prime q. By using the concept of local polarization
we are able to extend these results to all mixing matrices.

1.4 Results II: Local polarization of Arıkan martingales

In our second main result, we show that every mixing matrix gives rise to an Arıkan martingale
that is locally polarizing:

Theorem 1.10. For every prime q, for every mixing matrix M ∈ Fk×kq , and for every symmetric
memoryless channel CY |Z over Fq, the associated Arıkan martingale sequence is locally polarizing.

As a consequence of Theorems 1.9, 1.6, and 1.10, we have the following theorem.

Theorem 1.11. For every prime q, every mixing matrix M ∈ Fk×kq , every symmetric memoryless
channel C over Fq, and every c < ∞, there exists t0(x) = O(log x) such that for every ε > 0, for
every t ≥ t0(1/ε), there is an affine code C, that is generated by the rows of (M−1)(⊗t) and an
affine shift, with the property that the rate of C is at least Capacity(C)− ε, and C can be encoded
and decoded in time O(n logn) where n = kt and failure probability of the decoder is at most n−c.

The above theorem shows that all polar codes associated with every mixing matrix achieves
the Shannon capacity of a symmetric memoryless channel efficiently, thus, vastly expanding on the
class of polar codes known to satisfy this condition.

Our primary motivation in this work is to develop a general approach to proving polarization
that applies to all matrices (matching the simple necessary condition for polarization) and is strong
enough for the desired coding theory conclusion (convergence to capacity at polynomial block
lengths, the distinguishing feature of polar codes). At the same time, our proof is arguably simpler
and brings to light exactly what drives strong polarization — namely some simple local polarization
conditions that hold for the single step evolution. One concrete motivation to consider polar codes
with different choice of mixing matrices M is that an appropriate choice can lead to decoding error
probability of exp(−nβ) for any β < 1 (as opposed to β < 1/2 for G2) [15, 18], where n = kt is the
block length of the code.

1.5 Comparison with previous analyses of (strong) polarization

While most of the ingredients going into our eventual analysis of strong polarization are familiar
in the literature on polar codes, our proofs end up being much simpler and modular. We describe
some of the key steps in our proofs and contrast them with those in previous works.

Definition of Local Polarization. While we are not aware of a definition similar to local
polarization being explicit in the literature before, such notions have been considered implicitly
before. For instance, for the variation in the middle (where we require that E[(Xt+1 −Xt)2] ≥ θ if
Xt ∈ (τ, 1− τ)) the previous analyses in [11, 10] required θ be quadratic in τ . Indeed this was the
most significant technical hurdle in the analysis for prime case in [10]. In contrast, our requirement
on the variation is very weak and qualitative, allowing any function θ(τ) > 0. Similarly, our
requirement in the suction at the ends case is relative mild and qualitative. In previous analyses
the requirements were of the form “if Xt ≤ τ then Xt+1 ≤ X2

t with positive probability.” This high
demand on the suction case prevented the analyses from relying only on the local behavior of the
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martingale X0, . . . , Xt, . . . and instead had to look at other parameters associated with it which
essentially depend on the entire sequence. (For the reader familiar with previous analyses, this is
where the Bhattacharyya parameters enter the picture.) Our approach, in contrast, only requires
arbitrarily large constant factor drop, and thereby works entirely with the local properties of Xt.

Local Polarization implies Strong Polarization. Our proof that local polarization implies
strong polarization is short (about 3 pages) and comes in two parts. The first part uses a sim-
ple variance argument to shows that Xt is exponentially close (in t) to the limit except with
probability exponentially small in t. The second part then amplifies Xt’s proximity to {0, 1} to
sub-exponentially small values using the suction at the end guarantee of each local step, coupled
with Doob’s martingale inequality and standard concentration inequalities. Such a two-part break-
down of the analysis is not new; however, our technical implementation is more abstract, more
general and more compact all at the same time.

Local Polarization of Arıkan martingales. We will elaborate further on the approach for this
after defining the Arıkan martingales, but we can say a little bit already now: First we essentially
reduce the analysis of the polarization of Arıkan martingale associated with an arbitrary mixing
matrix M to the analysis when M = G2. This reduction loses in the parameters (α, τ(·), θ(·))
specifying the level of local polarization, but since our strong polarization theorem works for any
function, such loss in performance does not hurt the eventual result. Finally, local polarization for
the case where the matrix is G2 is of course standard, but even here our proofs (which we include
for completeness) are simpler since they follow from known entropic inequalities on sums of two
independent random variables. We stress that even quantitatively weak forms of these inequalities
meet our requirements of local polarization, and we do not need strong forms of such inequalities
(like Mrs. Gerber’s lemma for the binary case [5, 11] and an ad hoc one for the prime case [10]).

Some weakness in our analyses. We first point out two weaknesses in our analyses. First, in
contrast to the result of Mori and Tanaka [18] who characterize the set of matrices that lead to
regular polarization over all fields, we only get a characterization over prime fields. Second, our
definition of strong polarization only allows us to bound the failure probability of decoding by an
arbitrarily small polynomial in the block length whereas results such as those in [3] actually get
exponentially small (2−nβ for some β > 0) failure probability.

In both cases we do not believe that these limitations are inherent to our approach. In particular
the extension to general fields will probably involve more care, but should not run into major
technical hurdles. Reducing the failure probability will lead to new technical challenges, but we
do believe they can be overcome. Specificially, this requires stronger suction which is not true for
the Arıkan martingale if one considers a single step evolution, but it seems plausible that multiple
steps (even two) might show strong enough suction. We hope to investigate this in future work.

Organization of the rest of this paper. We first introduce some of the notation and proba-
bilistic preliminaries used to define and analyze the Arıkan martingale in Section 2. We then prove
Theorem 1.6 showing that local polarization implies strong polarization in Section 3. This is fol-
lowed by the formal definition of the Arıkan martingale in Section 4. Section 5.1 gives an overview
of the proof of Theorem 1.10 which asserts that the Arıkan martingale is locally polarizing (under
appropriate conditions). Section 5.2 then states the local polarization conditions for sums of two
independent variables, with proofs deferred to Section 6. Section 5.3 reduces the analysis of local
polarization of general mixing matrices to the conditions studied in Section 5.2 and uses this re-
duction to prove Theorem 1.10. Finally in Appendix A we show (for completeness) how the Arıkan
martingale (and its convergence) can be used to construct capacity achieving codes.
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2 Preliminaries and Notation

In this section we introduce the notation needed to define the Arıkan martingale (which will be
introduced in the following section). We also include information-theoretic and probabilistic in-
equalities that will be necessary for the subsequent analysis.

2.1 Notation

The Arıkan martingale is based on a recursive construction of a vector valued random variable.
To cleanly describe this construction it is useful to specify our notational conventions for vectors,
tensors and how to view the tensor products of matrices. These notations will be used extensively
in the following sections.

2.1.1 Probability Notation

Throughout this work, all random variables involved will be discrete. For a probability distribution
D and random variable X, we write X ∼ D to mean that X is distributed according to D, and
independent of all other variables. Similarly, for a set S, we write X ∼ S to mean that X is
independent and uniform over S. For a set S, let ∆(S) denote the set of probability distributions
over S.

We occasionally abuse notation by treating distributions as random variables. That is, for
D ∈ ∆(Fkq ) and a matrix M ∈ Fk×kq , we write DM to denote the distribution of the random
variable {XM}X∼D. For a distribution D and an event E, we write D|E to denote the conditional
distribution of D conditioned on E.

2.1.2 Tensor Notation

Here we introduce useful notation for dealing with scalars, vectors, tensors, and tensor-products.
All scalars will be non-boldfaced, for example: X ∈ Fq.
Any tensors of order ≥ 1 (including vectors) will be boldfaced, for example: Y ∈ Fkq . One

exception to this is the matrix M used in the polarization transforms, which we do not boldface.
Subscripts are used to index tensors, with indices starting from 1. For example, for Y as above,

Yi ∈ Fq. Matrices and higher-order tensors are indexed with multiple subscripts: For Z ∈ (Fkq )⊗3,
we may write Z1,2,1 ∈ Fq. We often index tensors by tuples (multiindices), which will be boldfaced:
For i = (1, 2, 1) ∈ [k]3, we write Zi = Z1,2,1. Let ≺ be the lexicographic order on these indexing
tuples.

When an index into a tensor is the concatenation of multiple tuples, we emphasize this by using
brackets in the subscript. For example: for tensor Z as above, and i = (1, 2) and j = 1, we may
write Z[i,j] = Z1,2,1.

For a given tensor Z, we can consider fixing some subset of its indices, yielding a slice of Z
(a tensor of lower order). We denote this with brackets, using · to denote unspecified indices. For
example for tensor Z ∈ (Fkq )⊗3 as above, we have Z[1,2,·] ∈ Fkq and Z[·,1] ∈ (Fkq )⊗2.

We somewhat abuse the indexing notation, using Z≺i to mean the set of variables {Zj : j ≺ i}.
Similarly, Z[i,<j] := {Z[i,k] : k < j}.

We occasionally unwrap tensors into vectors, using the correspondence between (Fkq )⊗t and Fktq .
Here, we unwrap according to the lexicographic order ≺ on tuples.
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Finally, for matrices specifically, Mi,j specifies the entry in the i-th row and j-th column of
matrix M . Throughout, all vectors will be row-vectors by default.

2.1.3 Tensor Product Recursion

The construction of polar codes and analysis of the Arıkan martingale rely crucially on the recursive
structure of the tensor product. Here we review the definition of the tensor product, and state its
recursive structure.

For a linear transform M : Fkq → Fkq , let M⊗t : (Fkq )⊗t → (Fkq )⊗t denote the t-fold tensor power
of M . Explicitly (fixing basis for all the spaces involved), this operator acts on tensors X ∈ (Fkq )⊗t
as:

[M⊗t(X)]j =
∑
i∈[k]t

XiMi1,j1Mi2,j2 · · ·Mit,jt .

The tensor product has the following recursive structure: M⊗t = (M⊗t−1) ⊗M , which corre-
sponds explicitly to:

[M⊗t(X)][a,jt] =
∑
it∈[k]

Mit,jt [M⊗t−1(X[·,it])]a. (1)

In the above, if we define tensor

Y (it) := M⊗t−1(X[·,it])

then this becomes
[M⊗t(X)][a,·] = M((Y (1)

a ,Y (2)
a , . . . ,Y (k)

a )) (2)

where the vector (Y (1)
a ,Y

(2)
a , . . . ,Y

(k)
a ) ∈ Fkq .

Finally, we use that (M⊗t)−1 = (M−1)⊗t.

2.2 Information Theory Preliminaries

For the sake of completeness we include the information-theoretic concepts and tools we use in this
paper.

For a discrete random variable X, let H(X) denote its binary entropy:

H(X) :=
∑

a∈Support(X)
pX(a) log( 1

pX(a))

where pX(a) := Pr[X = a] is the probability mass function of X. Throughout, log(·) by default
denotes log2(·).

For p ∈ [0, 1], we overload this notation, letting H(p) denote the entropy H(X) for X ∼
Bernoulli(p).

For arbitrary random variables X,Y , let H(X|Y ) denote the conditional entropy:

H(X|Y ) = E
Y

[H(X|Y = y)].

For a q-ary random variable X ∈ Fq, let H(X) ∈ [0, 1] denote its q-ary entropy:

H(X) := H(X)
log(q) .

9



Finally, the mutual information between jointly distributed random variables X,Y is:

I(X;Y ) := H(X)−H(X|Y ) = H(Y )−H(Y |X)

We will use the following standard properties of entropy:
1. (Adding independent variables increases entropy): For any random variables X,Y, Z

such that X,Y are conditionally independent given Z, we have

H(X + Y |Z) ≥ H(X|Z) (3)

2. (Transforming Conditioning): For any random variables X,Y , any function f , and any
bijection σ, we have

H(X|Y ) = H(X + f(Y )|Y ) = H(X + f(Y )|σ(Y )) (4)

3. (Chain rule): For arbitrary random variables X,Y : H(X,Y ) = H(X) +H(Y |X).
4. (Conditioning does not increase entropy): For X,Y, Z arbitrary random variables,
H(X|Y,Z) ≤ H(X|Y ).

5. (Monotonicity): For p ∈ [0, 1/2), the binary entropy H(p) is non-decreasing with p. And
for p ∈ (1/2, 1], the binary entropy H(p) is non-increasing with p.

6. (Deterministic postprocessing does not increase entropy): For arbitrary random
variables X,Y and function f we have H(X|Y ) ≥ H(f(X)|Y ).

7. (Conditioning on independent variables): For random variables X,Y, Z where Z is
independent from (X,Y ), we have H(X|Y ) = H(X|Y,Z).

2.2.1 Channels

Given a finite field Fq, and output alphabet Y, a q-ary channel CY |Z is a probabilistic function
from Fq to Y. Equivalently, it is given by q probability distributions {CY |α}α∈Fq supported on Y.
We use notation C(Z) to denote the channel operating on inputs Z. A memoryless channel maps
Fnq to Yn by acting independently (and identically) on each coordinate. A symmetric channel is
a memoryless channel where for every α, β ∈ Fq there is a bijection σ : Y → Y such that for
every y ∈ Y it is the case that CY=y|α = CY=σ(y)|β, and moreover for any pair y1, y2 ∈ Y, we have∑
x∈Fq CY=y1|x =

∑
x∈Fq CY=y2|x (see, for example, [4, Section 7.2]). As shown by Shannon every

memoryless channel has a finite capacity, denoted Capacity(CY |Z). For symmetric channels, this is
the mutual information I(Y ;Z) between the input Z and output Y where Z is drawn uniformly
from Fq and Y is drawn from CY |Z given Z.

2.3 Basic Probabilistic Inequalities

We first show that a random variable with small-enough entropy will usually take its most-likely
value:

Lemma 2.1. Let X ∈ Fq be a random variable. Then there exist x̂ such that

Pr[X 6= x̂] ≤ H(X)

and therefore
Pr[X 6= x̂] ≤ H(X) log q.
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Proof. Let α := H(X) and let pi := PrX [X = i]. Let x̂ = argmaxi{pi} be the value maximizing
this probability. Let px̂ = 1− γ. We wish to show that γ ≤ α. If γ ≤ 1/2 we have

α = H(X)

=
∑
i

pi log 1
pi

≥
∑
i 6=x̂

pi log 1
pi

(Since all summands are non-negative)

≥
∑
i 6=x̂

pi log 1∑
j 6=x̂ pj

(Since pi ≤
∑
j 6=x̂ pj .)

=

∑
i 6=x̂

pi

 · log
(

1∑
j 6=x̂ pj

)
= γ · log 1/γ
≥ γ (Since γ ≤ 1/2 and so log 1/γ ≥ 1)

as desired. Now if γ > 1/2 we have a much simpler case since now we have

α = H(X)

=
∑
i

pi log 1
pi

≥
∑
i

pi log 1
px̂

(Since pi ≤ px)

= log 1
px̂

(Since
∑
i pi = 1)

= log 1
1− γ

≥ 1. (Since γ ≥ 1/2)

But γ is always at most 1 so in this case also we have α ≥ 1 ≥ γ as desired. �

For the decoder, we will need a conditional version of Lemma 2.1, saying that if a variable X
has low conditional entropy conditioned on Y , then X can be predicted well given the instantiation
of variable Y .

Lemma 2.2. Let X,Y be arbitrary discreete random variables with range X ,Y respectively. Then
there exists a function X̂ : X → Y such that

Pr
X,Y

[X 6= X̂(Y )] ≤ H(X|Y )

In particular, the following estimator satisfies this:

X̂(y) := argmax
x
{Pr[X = x|Y = y]}

Proof. For every setting of Y = y, we can bound the error probability of this estimator using
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Lemma 2.1 applied to the conditional distribution X|Y = y:

Pr
X,Y

[X 6= X̂(Y )] = E
Y

[ Pr
X|Y

[X̂(Y ) 6= X]]

≤ E
Y

[H(X|Y = y)] (Lemma 2.1)

= H(X|Y )

�

We will need an inverse to the usual Chebychev inequality. Recall that Chebychev shows that
variables with small variance are concentrated close to their expectation. The Paley-Zygmund
inequality below can be used to invert it (somewhat) — for a random variable W with comparable
fourth and second central moment, by applying the lemma below to Z = (W − E[W ])2 we can
deduce that W has positive probability of deviating noticeably from the mean.

Lemma 2.3 (Paley-Zygmund). If Z ≥ 0 is a random variable with finite variance, then

Pr(Z > λE[Z]) ≥ (1− λ)2E[Z]2

E[Z2] .

Next, we define the notion of a sequence of random variables being adapted to another sequence
of variables, which will be useful in our later proofs.

Definition 2.4. We say that a sequence Y1, Y2 . . . of random variables is adapted to the sequence
X1, X2 . . . if and only if for every t, Yt is completely determined given X1, . . . Xt. We will use
E[Z|X[1:t]] as a shorthand E[Z|X1, . . . Xt], and Pr[E|X[1:t]] as a shorthand for E[1E |X1, . . . Xt]. If
the underlying sequence X is clear from context, we will skip it and write just E[Z|Ft].

Lemma 2.5. Consider a sequence of non-negative random variables Y1, Y2, . . . , Yt, . . . adapted to
the sequence Xt. If for every t we have Pr(Yt+1 > λ |X[1:t]) < exp(−λ), then for every T > 0:

Pr(
∑
i≤T

Yi > CT ) ≤ exp(−Ω(T ))

for some universal constant C.

Proof. First, observe that

E[exp(Yt+1/2)|Ft] =
∫ ∞

0
Pr(exp(Yt+1/2) > λ|Ft) dλ

≤ 1 +
∫ ∞

1
exp(−2 log λ) dλ

= 1 +
∫ ∞

1
λ−2 dλ

≤ exp(C0) (5)

for some constant C0. On the other hand, we have decomposition (where we apply (5) in the first
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equality):

E[exp(
∑
i≤T

Yi
2 )] = E[E[exp(

∑
i≤T

Yi
2 )|FT−1]]

= E[exp(
∑

i≤T−1
Yi/2)E[exp(YT /2)|FT−1]]

≤ E[exp(
∑

i≤T−1
Yi/2)] exp(C0)

≤ · · ·
≤ exp(C0T ).

Now we can apply Markov inequality to obtain desired tail bounds:

Pr(
∑
i≤T

Yi > 4C0T ) = Pr(exp(1
2
∑
i≤T

Yi) > exp(2C0T )) ≤ E

exp(1
2
∑
i≤T

Yi)

 exp(−2C0T ) ≤ exp(−C0T ).

�

Lemma 2.6. Consider a sequence of random variables Y1, Y2, . . . with Yi ∈ {0, 1}, adapted to the
sequence Xt. If Pr(Yt+1 = 1|X[1:t]) > µt+1 for some deterministic value µt, then for µ :=

∑
t≤T µt

we have
Pr(

∑
t≤T

Yt < µ/2) ≤ exp(−Ω(µ))

Proof. Let Mt+1 := E[Yt+1|X[1:t]], we know that Mt > µt with probability 1. Standard calculation
involving Markov inequality yields following bound

Pr(
∑
t≤T

Yt <
∑
t≤T

Mt/2) = Pr(exp(−
∑
t≤T

Yt +
∑
t≤T

Mt/2) > 1)

≤ E[exp(
∑
t≤T

(−Yt +Mt/2))]

= E[E[exp(
∑
t≤T

(−Yt +Mt/2))|X[1:T−1]]]

≤ E[exp(
∑

t≤T−1
(−Yt +Mt/2))E[exp(−YT +MT /2)|X[1:T−1]]]. (6)

We now observe that for any random variable Ỹ ∈ {0, 1} with E[Ỹ ] = p, we have

logE[exp(−Ỹ + p/2)] = p

2 + log[(1− p) + p

e
] ≤ p

2 − p+ p

e
≤ −cp

with constant c = (1 − 1
2 −

1
e ) > 0. In particular E[exp(−YT + MT /2)|X[1:T−1]] ≤ exp(−cMT ) ≤

exp(−cµT ). Plugging this back to (6), we get

Pr(
∑
t≤T

Yt <
∑
t≤T

Mt/2) ≤ E[exp(
∑

t≤T−1
(−Yt +Mt/2))] exp(−c′µT )

≤ · · ·

≤ exp(−c
∑
t≤T

µt)

= exp(−cµ)
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And moreover, since Mt > µt deterministically, we have Pr(
∑
t≤T Yt < µ/2) ≤ Pr(

∑
t≤T Yt <∑

Mt/2) ≤ exp(−Ω(µ)) as desired.
�

Finally, we will use the well-known Doob’s martingale inequality:

Lemma 2.7 (Doob’s martingale inequality [6, Theorem 5.4.2]). If a sequence X0, X1, . . . is a
martingale, then for every T we have

Pr(sup
t≤T

Xt > λ) ≤ E[|XT |]
λ

Corollary 2.8. If X0, X1, . . . is a nonnegative martingale, then for every T we have

Pr(sup
t≤T

Xt > λ) ≤ E[X0]
λ

3 Local to global polarization

In this section we prove Theorem 1.6, which asserts that every locally polarizing [0, 1]-martingale
is also strongly polarizing. The proofs in this section depend on some basic probabilistic concepts
and inequalities that we have seen in in Section 2.3.

The proof of this statement is implemented in two main steps: first, we show that any locally
polarizing martingale, is ((1 − ν

2 )t, (1 − ν
4 )t)-polarizing for some constant ν depending only on

the parameters α, τ, θ of local polarization. This means that, except with exponentially small
probability, min{Xt/2, 1−Xt/2} is exponentially small in t, which we can use to ensure that Xs for
all t

2 ≤ s ≤ t stays in the range where the conditions of suction at the ends apply (again, except
with exponentially small failure probability). Finally, we show that if the martingale stays in the
suction at the ends regime, it will polarize strongly — i.e. if we have a [0, 1]-martingale, such that
in each step it has probability at least α to decrease by a factor of C, we can deduce that at the
end we have Pr(XT > C−αT/4) ≤ exp(−Ω(αT )).

We start by showing that in the first t/2 steps we do get exponentially small polarization, with
all but exponentially small failure probability. This is proved using a simple potential function
min{

√
Xt,
√

1−Xt} which we show shrinks by a constant factor, 1−ν for some ν > 0, in expectation
at each step. Previous analyses in [11, 10] tracked

√
Xt(1−Xt) (or some tailormade algebraic

functions [13, 17]) as potential functions, and relied on quantitatively strong forms of variance in
the middle to demonstrate that the potential diminishes by a constant factor in each step. While
such analyses can lead to sharper bounds on the parameter ν, which in turn translate to better
scaling exponents in the polynomial convergence to capacity, e.g. see [13, Thm. 18] or [17, Thm.
1], these analyses are more complex, and less general.

Lemma 3.1. If a [0, 1]-martingale sequence X0, . . . Xt, . . . , is (α, τ(·), θ(·))-locally polarizing, then
there exist ν > 0, depending only on α, τ, θ, such that

E[min(
√
Xt,

√
1−Xt)] ≤ (1− ν)t.

Proof. Take τ0 = τ(4), θ0 = θ(τ0). We will show that E[min(
√
Xt+1,

√
1−Xt+1)|Xt] ≤ (1 −

ν) min(
√
Xt,
√

1−Xt), for some ν > 0 depending on τ0, θ0 and α. The statement of the lemma will
follow by induction.
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Let us condition on Xt, and first consider the case Xt ∈ (τ0, 1− τ0). We know that

E[min(
√
Xt+1,

√
1−Xt+1)] ≤ min(E[

√
Xt+1],E[

√
1−Xt+1]),

we will show that E[
√
Xt+1] ≤ (1 − ν)

√
Xt. The proof of E[

√
1−Xt+1] ≤ (1 − ν)

√
1−Xt is

symmetric.
Indeed, let us take T :=

√
Xt+1
Xt

. Because (Xt)t is a martingale, we have E[T 2] = 1, and
by Jensen’s inequality, we have that E[T ] ≤

√
E[T 2] ≤ 1, where all the expectations above are

conditioned on Xt. Take δ such that E[T ] = 1 − δ. We will show a lower bound on δ in terms of
θ0, τ0 and α0.

The high-level idea of the proof is that we can show that local polarization criteria implies that
T is relatively far from 1 with noticeable probability, but if E[T ] were close to one, by Chebyshev
inequality we would be able to deduce that T is far from its mean with much smaller probability.
This implies that mean of T has to be bounded away from 1.

More concretely, observe first that by Chebyshev inequality, we have Pr(|T − E[T ]| > λ) <
Var(T )
λ2 = 2δ−δ2

λ2 ≤ 2δ
λ2 , hence, for C0 = 4, we have:

Pr
(
|T − 1| ≥ δ + C0

√
δθ−1

0 τ−1
0

)
≤ 1

8θ
2
0τ

2
0 . (7)

On the other hand, because of the Variation in the middle condition of local polarization, we
have

Var(T 2) =
E[X2

t+1]−X2
t

X2
t

≥ θ0
X2
t

≥ θ0,

where the last inequality follows since Xt ≤ 1. Moreover T < 1√
τ0
, because

√
Xt+1 < 1 and

√
Xt >

√
τ0.

Let us now consider Z = (T 2 − 1)2. We have E[Z] = Var(T 2) ≥ θ0, and moreover E[Z2] < τ−2
0

(because T is bounded and τ0 ≤ 1), hence by Lemma 2.3 (for C1 = 1/2)

Pr
(
(1− T 2)2 > C1θ0

)
≥ 1

4θ
2
0τ

2
0 .

And also 1−T 2 = −(1−T )2 +2(1−T ) < 2(1−T ), hence if (1−T 2)2 > C1θ0 then |1−T | >
√
C1
2
√
θ0,

which implies (for the choice of C2 =
√
C1/2):

Pr(|T − 1| > C2
√
θ0) ≥ 1

4θ
2
0τ

2
0 . (8)

By comparing (7) and (8), we deduce that δ ≥ C4θ
3
0τ

2
0 , (for C4 = C2

2/(4C2
0 )– note that with our

choice of parameters, we have C0
√
δθ−1

0 τ−1
0 ≥ δ) and by the definition of δ we have E[

√
Xt+1|Xt] ≤

(1− δ)
√
Xt]. The same argument applies to show that E[

√
1−Xt+1|Xt] ≤ (1− C4θ

3
0τ

2
0 )
√

1−Xt.
Consider now the case when Xt < τ0. For T, δ as above (and again after conditioning on Xt),

we have Var(T ) < 2δ (note that the argument for this inequality from the previous case also holds
here), and hence by Chebyshev inequality (for the choice of C5 = 2):

Pr

|T − 1| ≥ δ + C5

√
δ

α

 ≤ α

2 . (9)

On the other hand, because of the suction at the end condition of local polarization, we know that
with probability α, we have T ≤ 1

2 , which means |T − 1| ≥ 1
2 and by comparing this with (9),

15



we deduce δ ≥ C6α (for C6 = 1
16C2

5
). Therefore, in the case Xt < τ0, we have E[

√
Xt+1|Xt] ≤

(1−C6α)
√
Xt = (1−C6α) min(

√
Xt,
√

1−Xt). The case Xt > 1− τ0 is symmetric and is omitted.
This implies the statement of the lemma with ν = min(C6α,C4θ

3
0τ

2
0 ). �

Corollary 3.2. If a [0, 1]-martingale sequence X0, . . . Xt, . . . , is (α, τ(·), θ(·))-locally polarizing,
then there exist ν > 0, depending only on α, τ, θ, such that

Pr
[
min(Xt/2, 1−Xt/2) > λ(1− ν

2 )t
]
≤ (1− ν

4 )t 1√
λ
.

Proof. By applying Markov Inequality to the bound from Lemma 3.1 (with t/2 instead of t), we
get

Pr
[
min

(
Xt/2, 1−Xt/2

)
> λ(1− ν

2 )t
]

= Pr
[
min

(√
Xt/2,

√
1−Xt/2

)
>
√
λ(1− ν

2 )t/2
]

≤ (1− ν)t/2(1− ν

2 )−t/2 1√
λ

≤ (1− ν

4 )t 1√
λ
.

�

The next lemma will be used to show that if a [0,1]-martingale indeed stays at all steps s ≥ t
2

in the suction at the ends range, i.e. in each step it has constant probability α of dropping by some
large constant factor C, then expect it to be

(
C−αt/8, exp(−Ω(αt))

)
-polarized.

Lemma 3.3. There exists c < ∞, such that for all K,α with Kα ≥ c the following holds. Let
Xt be a martingale satisfying Pr

(
Xt+1 < e−KXt|Xt

)
≥ α, where X0 ∈ (0, 1). Then Pr(XT >

exp(−αKT/4)) ≤ exp(−Ω(αT )).

Proof. Consider Yt+1 := log Xt+1
Xt

, and note that sequence Yt is adapted to sequence Xt in the sense
of Definition 2.4. We have the following bounds on the upper tails of Yt+1, conditioned on X[1:t],
given by Markov inequality

Pr(Yt+1 > λ | Ft) = Pr
(
Xt+1
Xt

> exp(λ)
∣∣∣∣X[1:t]

)
= Pr

(
Xt+1 > exp(λ)Xt |X[1:t]

)
≤ exp(−λ).

Let us decompose Yt+1 =: (Yt+1)+ + (Yt+1)−, where (Yt+1)+ := max(Yt+1, 0). By Lemma 2.5,

Pr

∑
t≤T

(Yt+1)+ > CT

 ≤ exp(−Ω(T )).

On the other hand, let Et+1 be the indicator of Yt+1 ≤ −K. It is again adapted to the
sequence Xt, and we know that Pr(Et+1|X[1:t]) ≥ α, hence by Lemma 2.6 with probability at
most exp(−Ω(αT )) at most αT/2 of those events holds. Note that (Yt)− ≤ 0, which implies
that if at least αT/2 of the events Et hold then we have

∑
t≤T (Yt)− ≤ −αKT/2. Thus, we have

Pr(
∑
t≤T (Yt)− > −αKT/2) ≤ exp(−Ω(αT )). Therefore, as long as αK/4 > C, we can conclude

Pr

∑
t≤T

Yt > −αKT/4

 ≤ exp(−Ω(T )) + exp(−Ω(αT )) ≤ exp(−Ω(αT )).

The proof is complete by noting that
∑
t≤T Yt = log(Xt/X0) and recalling that X0 ≤ 1. �
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Proof of Theorem 1.6. For given γ, we take K to be large enough so that exp(−αK/8) ≤ γ, and
moreover αK to be large enough to satisfy assumptions of Lemma 3.3. Let us also take τ0 = τ(eK).
We consider ν as in Corollary 3.2. We have

Pr
(

min(Xt/2, 1−Xt/2) >
(

1− ν

2

)t
τ0

)
≤ (1− ν

4 )−t 1
√
τ0
.

Now Doob’s martingale inequality (Corollary 2.8) implies that, conditioned onXt/2 < (1− ν
4 )tτ0,

we have Pr( sup
i∈(t/2,t)

Xi > τ0) ≤ (1− ν
4 )t.

Finally, after conditioning on Xi ≤ τ0, ∀ t/2 ≤ i ≤ t, process Xi for i ∈ (t/2, t) satisfies con-
ditions of Lemma 3.3, because Xi always stays below τ0 and as such suction at the end condition
of local polarization corresponds exactly to the assumption in this Lemma. Therefore we can con-
clude that except with probability exp(−Ω(αt)), we have Xt < exp(−αKt/8) = γt. The other case
(1−Xt/2 < (1− ν

2 )tτ0) is symmetric, and in this case we get 1−Xt < exp(−αKt/8) except with
probability exp(−Ω(αt)). �

4 Arıkan Martingale

We now formally describe the Arıkan martingale associated with an invertible matrix M ∈ Fk×kq

and a channel CY |Z . Briefly, this martingale measures at time t, the conditional entropy of a random
variable A′

i, conditioned on the values of a vector of variables B′ and on the values of A′
j for j

smaller than i for a random choice of the index i. Here A′ is a vector of kt random variables taking
values in Fq while B′ ∈ Ykt . The exact construction of the joint distribution of these 2kt variables
is the essence of the Arıkan construction of codes, and we describe it shortly. The hope with this
construction is that eventually (for large values of t) the conditional entropies are either very close
to 0, or very close to log q for most choices of i.

When t = 1, the process starts with k independent and identical pairs of variables {(Ai, Bi)}i∈[k]
where Ai ∼ Fq and Bi ∼ CY |Z=Ai . (So each pair corresponds to an independent input/output pair
from transmission of a uniformly random input over the channel CY |Z .) Let A = (A1, . . . , Ak) and
B′ = (B1, . . . , Bk), and note that the conditional entropies H(Ai|A≺i,B′) are all equal, and this
entropy, divided by log2 q, will be our value of X0. On the other hand, if we now let A′ = A ·M
then the conditional entropies H(A′

i|A′
≺i,B

′) are no longer equal (for most, and in particular for
all mixing, matrices M). On the other hand, conservation of conditional entropy on application
of an invertible transformation tells us that Ei∼[k][H(A′

i|A′
≺i,B

′)/ log2 q] = X0. Thus letting
X1 = H(A′

i|A′
≺i,B

′)/ log2 q (for random i) gives us the martingale at time t = 1.
While this one step of multiplication by M differentiates among the k (previously identical)

random variables, it doesn’t yet polarize. The hope is by iterating this process one can get po-
larization3. But to get there we need to describe how to iterate this process. This iteration is
conceptually simple (though notationally still complex) and illustrated in Figure 1. Roughly the
idea is that at the beginning of stage t, we have defined a joint distribution of kt dimensional vectors
(A,B) along with a multi-index i ∈ [k]t. We now sample k independent and identically distributed
pairs of these random variables {(A(`),B(`))}`∈[k] and view (A(`))`∈[k] as a kt× k matrix which we
multiply by M to get a new kt × k matrix. Flattening this matrix into a kt+1-dimensional vector
gives us a sample from the distribution of A′ ∈ Fkt+1

q . B′ is simply the concatenation of all the
vectors (B(`))`∈[k]. And finally the new index j ∈ [k]t+1 is simply obtained by extending i ∈ [k]t

3In the context of Polar coding, differentiation and polarization are good events, and hence our “hope.”
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with a (t + 1)th coordinate distributed uniformly at random in [k]. Xt+1 is now defined to be
H(A′

j |A′
≺j ,B

′)/ log2 q. The formal description is below.

Definition 4.1 (Arıkan martingale). Given an invertible matrix M ∈ Fk×kq and a channel descrip-
tion CY |Z for Z ∈ Fq, Y ∈ Y, the Arıkan-martingale X0, . . . Xt, . . . associated with it is defined as
follows. For every t ∈ N, let Dt be the distribution on pairs Fktq × Yk

t described inductively below:
A sample (A,B) from D0 supported on Fq×Y is obtained by sampling A ∼ Fq, and B ∼ CY |Z=A.

For t ≥ 1, a sample (A′,B′) ∼ Dt supported on Fktq × Yk
t is obtained as follows:

• Draw k independent samples (A(1),B(1)), . . . , (A(k),B(k)) ∼ Dt−1.
• LetA′ be given byA′[i,·] = (A(1)

i , . . . , A
(k)
i )·M for all i ∈ [k]t−1 andB′ = (B(1),B(2), . . .B(k)).

Then, the sequence Xt is defined as follows: For each t ∈ N, sample it ∈ [k] iid uniformly. Let
j = (i1, . . . , it) and let Xt := H(Aj |A≺j ,B)/ log2 q, where the entropies are with respect to the
distribution (A,B) ∼ Dt.4

M⊗t A
(1)
∗

CY |Z

CY |Z

CY |Z

CY |Z

CY |Z

M⊗t A
(2)
∗

CY |Z

CY |Z

CY |Z

CY |Z

CY |Z

M⊗t A
(3)
∗

CY |Z

CY |Z

CY |Z

CY |Z

CY |Z

M

A
(1)
~1

A′[~1,1]

A
(2)
~1

A′[~1,2]

A
(3)
~1

A′[~1,3]

M

M

Figure 1: Evolution of Arıkan martingale for 3× 3 matrix M .

Figure 1 illustrates the definition by highlighting the construction of the vector A′, and in
particular highlights the recursive nature of the construction.

It is easy (and indeed no different than in the case t = 1) to show that E[Xt+1|Xt] = Xt and so
the Arıkan martingale is indeed a martingale. This is shown below.

Proposition 4.2. For every matrix M and channel CY |Z , the Arıkan martingale is a martingale
and in particular a [0, 1]-martingale.

Proof. The fact that Xt ∈ [0, 1] follows from the fact for 0 ≤ H(Ai|A≺i,B) ≤ H(Ai) ≤ log2 q and
so 0 ≤ Xt = H(Ai|A≺i,B)/ log2 q ≤ 1.

4We stress that the only randomness in the evolution of Xt is in the choice of i1, . . . , it, . . .. The process of sampling
A and B is only used to define the distributions for which we consider the conditional entropies H(Aj |A≺j ,B).
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We turn to showing that E[Xt+1|Xt = a] = a. To this end, consider a sequence of indices i =
(i1, . . . it), such thatH(Ai |A≺i,B) = a. We wish to show that Eit+1∼[k][H(A′[i,it+1] |A

′
≺[i,it+1],B

′)] =
a.

Since the pairs (A(s),B(s)) are independent, note that for any s, we have H(A(s)
i | A

(s)
≺i ,B

(s)) =
a. Furthermore, because of the same independence, we have

H(A(s)
i | A

(s)
≺i ,B

(s)) = H(A(s)
i | ∪j∈[k] A

(j)
≺i ,∪j∈[k]B

(j))

and H(A(1)
i , . . . ,A

(k)
i | ∪j∈[k] A

(j)
≺i ,∪j∈[k]B

(j)) = k · a.

By the invertibility of M we have

H(A′[i,1], . . .A
′
[i,k] | ∪j∈[k] A

(j)
≺i ,∪j∈[k]B

(j)) = H(A(1)
i , . . . ,A

(k)
i | ∪j∈[k] A

(j)
≺i ,∪j∈[k]B

(j)) = k · a.

We can apply again invertibility of the matrix M to deduce that conditioning on ∪j∈[k]A
(j)
≺i is

the same as conditioning on A′
≺[i,1] — i.e. for any multiindex i′ ≺ i variables A(1)

i′ , . . .A
(k)
i′ and

A′
[i′,1], . . .A

′
[i′,k] are related via invertible transform M . This yields

H(A′
[i,1], . . .A

′
[i,k] | A′

≺[i,1], B
′) = H(A′

[i,1], . . .A
′
[i,k] | ∪j∈[k] A

(j)
≺i ,∪j∈[k]B

(j)) = ka.

Finally by the Chain rule of entropy we have

H(A′
[i,1], . . .A

′
[i,k] | A′

≺[i,1],B
′) =

k∑
it+1=1

H(A′
[i,it+1] | A′[i,<it+1],A

′
≺[i,1],B

′)

=
k∑

it+1=1
H(A′

[i,it+1] | A′≺[i,it+1],B
′)

Putting these together, we have E[Xt+1|Xt = a] = Eit+1 [H(A′
[i,it+1] | A′

≺[i,it+1],B
′)] = a. �

Finally, we remark that based on the construction it is not too hard to see that if M were an
identity matrix, or more generally a non-mixing matrix, then Xt would deterministically equal X0.
(There is no differentiation and thus no polarization.) The thrust of this paper is to show that in
all other cases we have strong polarization.

5 Proof of Local Polarization

In this section we prove Theorem 1.10, which states that the Arıkan martingale is locally polarizing,
modulo some entropic inequalities. In Section 6, we prove these inequalities.

We first start with an overview of the proof.

5.1 Proof Overview

Here we describe the overall structure of the proof that the Arıkan martingale is locally polarizing.
First we recall the theorem we would like to prove:

Theorem 1.10. For every prime q, for every mixing matrix M ∈ Fk×kq , and for every symmetric
memoryless channel CY |Z over Fq, the associated Arıkan martingale sequence is locally polarizing.
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The main ideas are roughly as follows. Let A ∈ Fkq be a random vector, and let W be an
arbitrary random variable. Suppose the entries of A are independent and identically-distributed,
conditioned on W . Let X0 := H(A1|W ) be the conditional entropy of each entry of A.

Let A′ := A ·M , corresponding to variables in the next step of polarization. Local polarization
of the Arıkan martingale boils down to showing that for a random index i ∈ [k], the conditional en-
tropies of the transformed variables X1 ∼ H(A′

i|A′
≺i,W ) satisfy the local polarization conditions.

Note that by conservation of entropy (since M is invertible), Ei[X1] = X0.
In particular, it is sufficient to show that:
1. (Variance in the middle): There is some index j ∈ [k] for which the following holds: For

every τ > 0, there exists ε > 0 such that if X0 := H(A1|W ) ∈ (τ, 1− τ), then

H(A′
j |A′

≺j ,W ) ≥ H(A1|W ) + ε.

This implies variance-in-the-middle, since with constant probability (1/k) the index j will be
chosen, and in this case X1 = H(A′

j |A′
≺j ,W ) ≥ X0 + ε. Thus E[(X1 − X0)2|X0] ≥ ε′ for

some constant ε′.
2. (Suction at the lower end): There is some index j ∈ [k] for which the following holds:

For every c <∞, there exists τ > 0 such that if X0 := H(A1|W ) < τ then

H(A′
j |A′

≺j ,W ) ≤ 1
c
H(A1|W ).

This implies suction at the low end, since with constant probability (1/k) the index j will be
chosen, in which case the entropy drops by at least c. Thus Pri[X1 ≤ X0/c] ≥ 1/k.

3. (Suction at the high end): Analogously to suction at the low end, it is sufficient to show
that there is some index j ∈ [k] for which the following holds:
For every c <∞, there exists τ > 0 such that if X0 := H(A1|W ) > 1− τ then

1−H(A′
j |A′

≺j ,W ) ≤ 1
c

(1−H(A1|W )).

In Section 5.2 we state three inequalities relating conditional entropy of a sum of random two
random variables, with entropy of each of those random variables — these inequalities can be used
to show that Arıkan martingale for matrix G2 = ( 1 0

1 1 ) is locally polarizing — each condition of
local polarization can be deduced directly from the corresponding entropic inequality.

In Section 5.3 we show that using Gaussian Elimination we can reduce showing local polarization
of any mixing k × k matrix to the very same entropic inequalities that are proven in Section 5.2.

5.2 Entropic Lemmas in the 2× 2 Case

In this section, we state entropic inequalities which hold the key to proving the local polarization
property. For 2 × 2 matrix G2 = ( 1 0

1 1 ), each condition of the local polarization can be almost
directly deduced from the corresponding entropic inequalities. Later in Section 5.3 we will see that
with some extra effort we can reduce local polarization conditions of any k×k mixing matrix to the
same entropic inequalities, naturally arising in the proof of local polarization of Arıkan martingale
for G2.

The proofs of these lemmas are deferred to Section 6.
The following lemma corresponds to Suction at the upper end (for Xt > 1− τ).
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Lemma 5.1. For every finite field Fq and every γ > 0, there exist τ , such that if (X1, A1) and
(X2, A2) are independent random variables with Xi ∈ Fq, and such that 1 −H(X1 | A1) ≤ τ and
1−H(X2 | A2) ≤ τ , then

1−H(X1 +X2 | A1, A2) ≤ γ(1−H(X1 | A1)).

Analogous inequality for low entropic variables corresponds to Suction at the lower end (for
Xt < τ).

Lemma 5.2. For every finite field Fq and every γ > 0, there exist τ such that the following holds.
Let (X1, A1) and (X2, A2) be any pair of independent random variables with Xi ∈ Fq, and such that
A1, A2 are identically distributed, and moreover for every a we have H(X1 | A1 = a) = H(X2 | A2 =
a). Then if H(X1 | A1) = H(X2 | A2) ≤ τ , we have

H(X1 | X1 +X2, A1, A2) ≤ γH(X1 | A1).

Finally, the following lemma, corresponding to the Variance in the middle was already present
in the literature, and we will not reproduce the proof — we state it here for future reference.

Lemma 5.3 ([5, Lemma 4.2]). For every τ > 0 and prime finite field Fq, there exist ε > 0 such that
if (X1, Y1) and (X2, Y2) are independent pairs of random variables (but not necessairly identically
distributed), with Xi ∈ Fq for some prime q. Then

H(X1 | Y1), H(X2 | Y2) ∈ (τ, 1− τ)

implies
H(X1 +X2|Y1, Y2) ≥ max{H(X1 | Y1), H(X2 | Y2)}+ ε.

5.3 Local polarization of k × k mixing matrices

In this section we prove Theorem 1.10, that k × k mixing matrices locally polarize, essentially by
reducing to the entropic inequalities of the 2× 2 case from Section 5.2.

The high-level strategy for showing local polarization k× k mixing matrix M is as follows. For
simplicity, let us ignore the conditioning on B. At the t-th step of polarization, for some fixed
index i ∈ [q]t, consider the random vector U with iid coordinates, U := (A(1)

i , . . . , A
(k)
i ), where

A(j) ∼ Dt−1 as in Definition 4.1. And let the linearly-transformed variables in the next step be
V := U ·M . In Section 5.3.1 we will show that:

1. There is some index j ∈ [k] and some α ∈ F∗q for which

H(Vj |V<j) ≥ H(U1 + αU2)

2. There is some index j ∈ [k] and some α ∈ F∗q for which

H(Vj |V<j) ≤ H(U1|U1 + αU2)

Those two, together with entropic inequalities stated in Section 5.2, are enough to show local
polarization of a given matrix: we can use condition 1, together with a lower bound H(U1 +αU2) ≥
H(U1)+ε given by Lemma 5.3 to deduce Variance in the middle; condition 1 together with a lower
bound from Lemma 5.1 to deduce Suction at the upper end (with γ = 1/c); and condition 2 together
with an upper bound from Lemma 5.2 to deduce Suction at the lower end (with γ = 1/c). This is
made formal in the proof of Theorem 1.10, which is proved in Section 5.3.2.
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5.3.1 Reduction to the 2× 2 case

This section will be devoted to proving following two lemmas, which are proven essentially by
applying Gaussian Elimination.

Lemma 5.4 (Reduction for Suction at the upper end). Let (U ,W ) be a joint distribution where
U ∈ Fkq (with Ui for i ∈ [k] being independent) and let M be any mixing matrix. Then, there exist
three indices j, `, s ∈ [k], and α ∈ F∗q, such that

H((UM)j | (UM)<j ,W ) ≥ H(U` + αUs | W ).

Lemma 5.5 (Reduction for Suction at the lower end). Let (U ,W ) be a joint distribution, where
U ∈ Fkq , and let M be any mixing matrix. Then, there exist three indices j, `, s ∈ [k], and α ∈ F∗q,
such that

H((UM)j | (UM)<j ,W ) ≤ H(U` | U` + αUs,W ).

Note that for both statements Lemma 5.4 and Lemma 5.5, are invariant under row permutations
of M : i.e. if they are true for M ′, which is a row permutation of M , the same statement is true for
M itself, with different choice of indices `, s.

First, consider performing column-wise Gaussian Elimination on M , and mark the k pivot
elements. Let σ be an appropriate row-permutation of M , which brings all the pivot elements to
the diagonal. Let M ′ := σ(M) be this row-permuted matrix. From now on we will focus on this
matrix instead.

The main idea is that H((UM)j |(UM)<j) = H((UM)j +f((UM)<j) | P ((UM)<j)) for any f
and any full-rank linear transform P (Equation (4)). Thus, we can equivalently consider entropies
after “forward-eliminating” variables. The following definition will be useful.

Definition 5.6. For j ∈ [k], we define the matrix M (j) as follows. M (j) is the result of applying
the following operations to M ′:

1. Perform column-wise Gaussian Elimination on the first j− 1 columns. That is, perform both
the “forward" and “backward" pass of Gaussian Elimination.

2. Forward-eliminate the j-th column, using the previous j − 1 columns.

Notice the matrices M (j) have the following properties:
1. We can equivalently consider entropies after forward-elimination. That is, for any arbitrary

random variable Z, we have the following “forward-elimination identity”:

H((U ·M ′)j | (U ·M ′)<j , Z) = H((U ·M (j))j | (U ·M (j))<j , Z). (10)

2. By definition of M ′ and Gaussian Elimination, M (s) has all ones on the diagonal, and the
top left (s − 1) × (s − 1) sub-matrix will be the identity matrix. That is, [M (s)]i,j = δi,j for
i, j ≤ s− 1. Further, by the forward elimination, [M (s)]i,s = 0 for all i < s.

3. If M (and hence M ′) is a mixing matrix, then for all j ∈ [k], M (j) is not upper-triangular.
For example, for j = 3, matrices M (j) will have the following form:

M (3) =


1 0 0 . . .
0 1 0 . . .
? ? 1 . . .
? ? ? . . .
? ? ? . . .

 ,
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where ? denotes any arbitrary element in Fq.
We are ready now to show the Proof of Lemma 5.4.

Proof of Lemma 5.4. Take V := UM ′ (recall that proving the result for M ′ is enough to prove our
result for M) and consider the first index j ∈ [k] such that the j-th column of M (j) has support
larger than 1. There must exist such an index j, because M (j) is not upper-triangular for at least
one j ∈ [k]. Let s > j be the index of the non-diagonal element, such that α := [M (j)]s,j 6= 0.
Then, we have from (10):

H(Vj |V<j ,W ) = H((U ·M (j))j |(U ·M (j))<j ,W )
= H(

∑
i∈[k]

(M (j))i,jUi|U<j ,W )

≥ H(Uj + (M (j))s,jUs|U<j ,W ) (by (3))
= H(Uj + αUs|W )

The final equality uses the fact that {Ui}i∈[k] are independent, and s > j. �

Proof of Lemma 5.5. Note that here, and throughout, all vectors are row-vectors by default. Let
V := U ·M ′ (recall that proving the result for M ′ is enough to prove our result for M). Let j ∈ [k]
be the last index where the span of the first (j−1) columns ofM ′ does not equal span{eT1 , . . . , eTj−1},
where {ei} are the standard basis vectors.

Such an index must exist, because otherwise the matrix M ′ is upper-triangular (Recall that M ′
has been row-permuted to place the pivots on the diagonal; thus if for every j, the span of the first
(j − 1) columns of M ′ is exactly span{eT1 , . . . , eTj−1}, then M ′ is upper-triangular). Further, since
M (and hence M ′) is invertible, we also have j ≤ k.

Now by definition of j, the span of the first j columns ofM ′ must exactly equal span{eT1 , . . . , eTj }.
Thus, all of the first (j− 1) columns of M (j) can only be supported on coordinates {1, . . . , j}. Fur-
ther, by Definition 5.6, the j-th column of M (j) must be exactly eTj . Finally, because the span of
the first (j − 1) columns is not span{eT1 , . . . , eTj−1}, there must exist some column ` < j of M (j)

that is supported on coordinate j. In fact, the `-th column of M (j) must be exactly (eT` +αeTj ) for
some α ∈ F∗q , due to the Gaussian Elimination. (Recall that we have made sure that the top left
(j − 1)× (j − 1) submatrix is the identity matrix.)

For example, if j = 3, then M (3) must have the form:

M (3) =


1 0 0 . . .
0 1 0 . . .
α ? 1 . . .
0 0 0 . . .
0 0 0 . . .

 OR


1 0 0 . . .
0 1 0 . . .
? α 1 . . .
0 0 0 . . .
0 0 0 . . .


Now we can see that this j, `, α satisfies the statement of the Lemma:

H(Vj |V<j ,W ) = H((U ·M (j))j | (U ·M (j))<j ,W ) (From (10))
= H( 〈U , eTj 〉 | (U ·M (j))<j ,W )
≤ H( 〈U , eTj 〉 | (U ·M (j))`,W )

(Conditioning does not increase entropy, and ` < j)
= H(Uj | U` + αUj ,W ). �
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This concludes our analysis of the reductions. Combined with the entropic inequalities of
Section 5.2, this is sufficient to show local polarization of k × k mixing matrices.

5.3.2 Proof of Theorem 1.10

We begin with a lemma that will be useful in the proof of Theorem 1.10:

Lemma 5.7. Let A(1), . . .A(k), and A′ be defined as in Definition 4.1, and let V,W be arbitrary
random variables. Then for any multiindex i ∈ [k]t and any it+1 ∈ [k] we have

H(V | A′≺[i,it+1],W ) = H(V | A′[i,<it+1],A
(1)
≺i ,A

(2)
≺i , . . .A

(k)
≺i ,W ) .

Proof. Observe first that by definition of the order ≺ we have that A′≺[i,it+1] = (A′≺[i,1],A
′
[i,<it+1]),

hence
H(V | A′≺[i,it+1],W ) = H(V | A′[i,<it+1],A

′
≺[i,1],W ) .

The definition of the sequence A′ in terms of A (in Definition 4.1) reads

A′[j,·] = (A(1)
j , · · · ,A(k)

j )M.

Note that if random variables B,B′ are related by invertible function B = f(B′), then H(A|B) =
H(A|B′). By definition of mixing matrix, M is invertible, and hence variables A′≺[i,1] and variables
A

(1)
≺i , . . .A

(k)
≺i are indeed related by invertible (linear) transformation, which yields

H(V | A′[i,<it+1],A
′
≺[i,1],W ) = H(V | A′[i,<it+1],A

(1)
≺i ,A

(2)
≺i , . . .A

(k)
≺i ,W ) . �

Proof of Theorem 1.10. Consider a mixing matrix M ∈ Fk×kq , let us condition on a choice of se-
quence of indices i1, . . . it, and let us pick a sequence (A(1),B(1)), . . . , (A(k),B(k)) ∼ Dt as in Defi-
nition 4.1. For future convenience we will use i := (i1, . . . it), and h := H(A(1)

i |A
(1)
≺i ,B

(1)). For any
other s ∈ [k] we also have H(A(s)

i | A
(s)
≺i ,B

(s)) = h, because all the pairs (A(s),B(s)) are iid. Let us
also take independently (A,B) ∼ Dt, and (A′,B′) constructed from (A(1),B(1)), . . . (A(s),B(s))
as in Definition 4.1. In particular (A′,B′) ∼ Dt+1. Note that with this notation, we have

Xt = H(A(s)
i | A

(s)
≺i ,B

(s)) = h,

and for a random choce of it+1, we have

Xt+1 = H(A′[i,it+1]|A
′
≺[i,it+1],B

′).

We will first show the Variance in the middle condition: if for given i1, . . . it we have h ∈
(τ, 1 − τ), then Varit+1∼[k](H(A′[i,it+1]|A

′
≺[i,it+1],B

′) − H(Ai|A≺i,B)) > θ(τ). Note that by the
martingale property, we have Eit+1∼[k][H(A′[i,it+1]|A

′
≺[i,it+1],B

′)−H(Ai|A≺i,B)] = 0, and as such
to obtain the lower bound on the variance it is enough to show that

Pr
it+1∼[k]

(H(A′[i,it+1]|A
′
≺[i,it+1],B

′) ≥ h+ ε(τ)) ≥ 1
k
. (11)
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This would allow us to deduce that the variance above is lower bounded by ε(τ)2/k. (Note that
this lower bound is true for every h and hence the actual variance needed in the statement of the
Variance in the middle condition is also true.)

We apply Lemma 5.4 with U =
(
Ai

(1), . . . ,Ai
(k)
)
(note that each entry is independent as

required). Now consider the triple of indices j, `, s and α ∈ F∗q guaranteed by Lemma 5.4. We have
Pr(it+1 = j) = 1

k , and if this happens, by Lemma 5.7 we have

H(A′[i,it+1] | A
′
≺[i,it+1],B

′) =H(A′[i,it+1] | A
′
[i,<it+1],A

(1)
≺i , . . . ,A

(k)
≺i ,B

′),

and by applying Lemma 5.4 we get (recall that (UM)j = A′[i,j])

H(A′[i,it+1] | A
′
[i,<it+1],A

(1)
≺i , . . . ,A

(k)
≺i ,B

′) ≥ H(A(`)
i + αA

(s)
i | A

(1)
≺i , . . .A

(k)
≺i ,B

′)

= H(A(`)
i + αA

(s)
i | A

(`)
≺i,A

(s)
≺i ,B

(`),B(s))

where the equality is deduced by dropping conditioning on random variables independent with
A

(`)
i + αA

(s)
i (i.e. if the pair (X,Y ) is independent from Y ′, then H(X|Y ) = H(X|Y, Y ′)).

Now we can apply Lemma 5.3, to deduce that

H(A(`)
i + αA

(s)
i | A

(`)
≺i,A

(s)
≺i ,B

(`),B(s)) > h+ ε(τ).

Indeed assumptions of the Lemma 5.3 are satisfied: (A(`),B(`)) and (A(s),B(s)) are independent
by construction, and H(αA(s)

i | B(s),A
(s)
≺i) = H(A(s)

i | B(s),A
(s)
≺i) = H(A(`)

i | B(`),A
(`)
≺i) = h ∈

(τ, 1 − τ). (The first equality used the fact that α is non-zero.) This proves inequality (11), and
therefore shows variation in the middle for Arıkan martingale.

Now we move to the suction at the upper end condition. That is, we wish to show that for
every c if 1 − h < τ(c), then with probability at least 1

k , over the choice of it+1 we will have
1−H(A′[i,it+1]|A

′
≺[i,it+1],B

′) < 1
c (1− h).

The first phase of the proof is analogous to the previous one showing variation in the middle.
Let us take again triple of indices j, `, s and α ∈ F∗q implied by Lemma 5.4, and as above — with
probability 1

k we have it+1 = j, in which case by Lemma 5.7 and Lemma 5.4, and dropping out
superfluous conditioning we get

H(A′[i,it+1] | A
′
≺[i,it+1],B

′) ≥ H(A(`)
i + αA

(s)
i | A

(`)
≺i,A

(s)
≺i ,B

(`),B(s)).

Now applying Lemma 5.1 to pairs (A(`)
i , (B(`),A

(`)
≺j)) and (αA(s)

i , (A(s)
≺j ,B

(s))) (with γ = 1/c and
τ is picked accordingly), we get desired inequality

1−H(A′[i,it+1] | A
′
≺[i,it+1],B

′) ≤ 1
c
· (1− h).

Hence, we have shown the desired suction at the upper end (with probability at least α = 1
k ).

Finally, we will show that the Arıkan martingale for a mixing matrix M satisfies suction at the
lower end. That is, we want to show that if h < τ(c) for τ the same τ(c) as in the Lemma 5.2 (with
γ = 1/c), then with probability at least 1

k we have

H(A′[i,it+1]|A
′
≺[i,it+1],B

′) ≤ h

c
. (12)
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Consider triple of indices j, `, s and α ∈ F∗q as in Lemma 5.5. With probability 1
k we have it+1 = j,

in which case we can use Lemma 5.7 and Lemma 5.5 to deduce

H(A′[i,it+1] | A
′
≺[i,it+1], B

′) = H(A′[i,it+1] | A
′
[i,<it+1],A

(1)
≺i , . . .A

(k)
≺i ,B

′)

≤ H(A(`)
i | A

(s)
i + αA

(`)
i ,A

(1)
≺i , . . .A

(k)
≺i ,B

′)

= H(A(`)
i | A

(s)
i + αA

(`)
i ,A

(`)
≺i,A

(s)
≺i ,B

(`),B(s)),

where, again, the last identity is justified by dropping conditioning on variables that are independent
from the rest of the expression.

Now, pairs (αA(s)
i , (A(s)

≺i ,B
(s))) and (A(`)

i , (A(`)
≺i,B

(`))) satisfy assumptions of of Lemma 5.2 (be-
cause pairs (A(s),B(s)) and (A(`),B(`)) are iid, and moreover we are assumingH(A(`)

i |A
(`)
≺i,B

(`)) <
τ(c) and γ = 1/c), and therefore

H(A(j)
i | A

(`)
i + αA

(j)
i ,A

(j)
≺i ,A

(`)
≺i,B

(j),B(`)) ≤ 1
c
H(A(j)

i | A
(j)
≺i ,B

(i)) = h

c
.

This shows the last property of local polarization, and concludes the proof of the lemma (with τ(c)
chosen small enough to satsify all the corresponding conditions in Lemmas 5.1, 5.2 and 5.3). �

6 Proofs of Entropic Lemmas

Here we prove the entropic lemmas stated in Section 5.2.

6.1 Suction at the upper end

To establish Lemma 5.1, we will first show similar kind of statement for unconditional entropies.
To this end, we first show that for random variables taking values in small set, having entropy close
to maximal is essentially the same as being close to uniform with respect to L2 distance. The L2
distance of a probability distribution to uniform is controlled by the sum of squares of non-trivial
Fourier coefficients of the distribution, and all the non-trivial Fourier coefficients are significantly
reduced after adding two independent variables close to the uniform distribution.

Finally a simple averaging argument is sufficient to lift this result to conditional entropies,
establishing Lemma 5.1.

Lemma 6.1. If X ∈ Fq is a random variable with a distribution DX , then

d2(DX , U)2 1
2 log q ≤ 1−H(X) ≤ d2(DX , U)2O(q),

where U is a uniform distribution over Fq, and dp(D1,D2) :=
(∑

x∈Fq(D1(x)−D2(x))p
)1/p

.

Proof. Pinskers inequality [20] yields d1(DX , U) ≤
√

2 log q ·
√

1−H(X), and by standard relations
between `p norms, we have d2(DX , U) ≤ d1(DX , U), which after rearranging yields the bound
d2(DX , U)2 ≤ (2 log q)(1−H(X)), which in turn proves the claimed lower bound.

For the upper bound, given i ∈ Fq let us take δi such that DX(i) = 1+δi
q . We have

∑
i∈Fq δi = 0,

and d2(DX , U)2 = 1
q2
∑
i δ

2
i . Now

1−H(X) = 1
log q

∑
i∈Fq

(1 + δi)
q

log(1 + δi).
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By Taylor expansion we have log(1 + δi) = δi + E(δi) with some error term E(δi) such that
|E(δi)| ≤ 2δ2

i for |δi| < 1. Therefore in the case when all δi < 1, we have (for some constant C):

1−H(X) = 1
q log q

∑
i∈Fq

(1 + δi)(δi + E(δi))

≤ 1
q log q

∑
i∈Fq

[δi + δ2
i +O(δ2

i )]

≤ 1
q log q

∑
i∈Fq

δi + C
∑
i∈Fq

δ2
i


≤ Cqd2(DX , U)2.

If some δi ≥ 1, then the inequality is satisfied trivially: d2(DX , U) ≥ 1
q , hence 1 − H(X) ≤

qd2(DX , U)2. �

Lemma 6.2. If X,Y ∈ Fq are independent random variables, then 1 −H(X + Y ) ≤ poly(q)(1 −
H(X))(1−H(Y )).

Proof. By Lemma 6.1 it is enough to show that d2(DX+Y , U)2 ≤ poly(q)d2(DX , U)2d2(DY , U)2. For
a distribution DX , consider a Fourier transform of this distribution given by D̂X(k) = Ej∼DX ωjk,
where ω = exp(−2πi/q). As usual, we have D̂X+Y (k) = D̂X(k)D̂Y (k).

Moreover, by Parseval’s identity we will show that d2(DX , U)2 = 1
q

∑
k 6=0 D̂X(k)2. Indeed — as

in the proof of Lemma 6.1, define DX(i) =: 1+δi
q . Then by Parseval’s identity we have

1
q
·
∑
k∈Fq
D̂X(k)2 =

∑
i∈Fq

(1 + δi)2

q2 = 1
q

+ d2(DX , U)2,

which implies the claimed bound by noting that D̂X(0) = 1.
This yields

q · d2(DX+Y , U)2 =
∑
k 6=0
D̂X(k)2D̂Y (k)2

≤

∑
k 6=0
D̂X(k)2

∑
k 6=0
D̂Y (k)2

 = q2d2(DX , U)2d2(DY , U)2.

�

Lemma 6.3. Let X1, X2 ∈ Fq be a pair of random variables, and let A1, A2 be pair of discrete
random variables, such that (X1, A1) and (X2, A2) are independent. Then

1−H(X1 +X2|A1, A2) ≤ (1−H(X1|A1))(1−H(X2|A2)) poly(q).
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Proof. We have

1−H(X1 +X2|A1, A2)
=

∑
a1,a2

Pr(A1 = a1) Pr(A2 = a2)(1−H(X1 +X2|A1 = a1, A2 = a2))

≤ poly(q)
∑
a1,a2

Pr(A1 = a1) Pr(A1 = a1)(1−H(X1|A1 = a1, A2 = a2))(1−H(X2|A1 = a1, A2 = a2))

= poly(q)
∑
a1,a2

Pr(A1 = a1)(1−H(X1|A1 = a1)) Pr(A2 = a2)(1−H(X2|A2 = a2))

= poly(q)
(∑
a1

Pr(A1 = a1)(1−H(X1|A1 = a1))
)(∑

a2

Pr(A2 = a2)(1−H(X2|A2 = a2))
)

= poly(q)(1−H(X1 | A1))(1−H(X2 | A2)),

where the inequality follows from Lemma 6.2 and the second equality follows from independence
of (X1, A1) and (X2, A2). �

Proof of Lemma 5.1. Given γ, q, take τ < γ/P (q) where P (q) is the polynomial appearing in the
statement of Lemma 6.3. By applying the conclusion of Lemma 6.3, we have

1−H(X1 +X2|A1, A2) ≤ (1−H(X1 | A1))(1−H(X2 | A2)P (q)
≤ (1−H(X1 | A1))τP (q)
≤ γ(1−H(X1 | A1)).

�

6.2 Suction at the lower end

In this subsection will show Lemma 5.2. To this end, we want to show that for pairs (X1, A1)
and (X2, A2) with low conditional entropy H(X1 | A1) < τ,H(X2 | A2) < τ , the entropy of
the sum is almost as big as sum of corresponding entropies, i.e. H(X1 + X2 | A1, A2) ≥ (1 −
γ)(H(X1 | A1) + H(X2 | A2)) — and the statement of Lemma 5.2 will follow by application of
chain rule. To this end, we first show the same type of statement for non-conditional entropies,
i.e. if H(X1) < τ,H(X2) < τ , then H(X1 + X2) > (1 − γ)(H(X1) + H(X2)) — this fact can be
deduced by reduction to the analogous fact for binary random variables, where it becomes just a
simple computation. Then we proceed by lifting this statement to the corresponding statement
about conditional entropies — this requires somewhat more effort than in Lemma 5.1.

Lemma 6.4. Let X,Y be independent random variables in Fq. For any γ < 1, there exists α = α(γ)
such that: if H(X) ≤ α and H(Y ) ≤ α, then

H(X + Y ) ≥ (1− γ)(H(X) +H(Y )).

First, we will show some preliminary useful lemmas.

Assumption 6.5. In the following, without loss of generality, let 0 be the most likely value for
both random variables X,Y . (This shifting does not affect entropies).

Lemma 6.6. Let X be a random variable over Fq, such that 0 is the most-likely value of X. Then
for any q, there exists a function α2(γ) := exp(−1/γ) such that for any γ < 1 we have

H(X) ≤ α2(γ) =⇒ Pr[X 6= 0] ≤ γH(X).
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Proof. Let β := Pr[X 6= 0], and α := H(X). We have

α log q = H(X) ≥ H(δ(X)) = H(β) ≥ β log(1/β).

In the above the inequality follows from the fact that applying a deterministic fuction to a random
variable can only decrease its entropy. Thus,

Pr[X 6= 0] = β ≤ α log q
log(1/β)

≤ α log q
log(1/α)− log log q

where we used the fact that β ≤ α log q from Lemma 2.1.
Hence, as soon as log 1

α >
log q
γ + log log q, the statement of the lemma holds. �

Lemma 6.7 (Suction-at-lower-end in the Binary Case). Let U, V be independent binary random
variables. There exists a function α0(γ) such that, for any 0 < γ < 1,

H(U), H(V ) ≤ α0(γ) =⇒ H(U ⊕ V ) ≥ (1− γ)(H(U) +H(V )).5

Proof. Let p1 and p2 be the biases of U, V respectively, such that U ∼ Bernoulli(p1) and V ∼
Bernoulli(p2). Let p1 ◦ p2 = p1(1 − p2) + (1 − p1)p2 be the bias of U ⊕ V , that is U ⊕ V ∼
Bernoulli(p1 ◦ p2).

We first describe some useful bounds on H(p). On the one hand we have H(p) ≥ p log 1/p. For
p ≤ 1/2 we also have −(1 − p) log(1 − p) ≤ (1/ ln 2)(1 − p)(p + p2) ≤ (1/ ln 2)p ≤ 2p. And so we
have H(p) ≤ p(2 + log 1/p).

Summarizing, we have p log(1/p) ≤ H(p) ≤ p log(1/p) + 2p. Suppose H(p1), H(p2) ≤ τ . We
now consider H(p1) +H(p2)−H(p1 ◦ p2). WLOG assume p1 ≤ p2. We have

H(p1) +H(p2)−H(p1 ◦ p2)
≤ p1(log(1/p1) + 2) + p2(log(1/p2) + 2)− (p1 ◦ p2) log(1/(p1 ◦ p2))
≤ p1(log(1/p1) + 2) + p2(log(1/p2) + 2)− (p1 + p2 − 2p1p2) log(1/(2p2))
= p1 log(2p2/p1) + p2 log(2p2/p2) + 2p1p2 log(1/(2p2)) + 2(p1 + p2)
≤ p1 log(p2/p1) + 2p1p2 log(1/(p2)) + 6p2

≤ 2p1H(p2) + 7p2 (Using p1 log(p2/p1) ≤ p2)
≤ 2p1H(p2) + 7H(p2)/ log(1/p2)
≤ 9H(p2)/ log(1/τ).

In the above, the last inequaliy follows from the assumption that τ ≤ 1/8 (which will be true in
our case). Indeed, note that with this assumption τ log(1/τ) ≤ 1 (which along with the fact that
p1 ≤ τ implies p1 ≤ 1/ log(1/τ)) and p2 ≤ τ (since we have p2 log(1/p2) ≤ τ). Thus, we have

H(U), H(V ) ≤ τ =⇒ H(U) +H(V )−H(U ⊕ V ) ≤ 9H(V )/ log(1/τ)

This implies the desired statement, for α0(γ) := 2−9/γ . �

5We note that we could have replaced ⊕ by just + as those operations are over F2 but we chose to keep + for
addition over reals.
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Let δ : Fq → {0, 1} be the complemented Kronecker-delta function, δ(x) := 1{x 6= 0}. For small
enough entropies, the entropy H(δ(X)) is comparable to H(X):

Lemma 6.8. There exists a function α1(γ) such that for any given 0 < γ < 1, and any arbitrary
random variable X ∈ Fq,

H(X) ≤ α1(γ) =⇒ H(X) ≥ 1
log qH(δ(X)) ≥ (1− γ)H(X).

Proof. The first inequality H(X) log q = H(X) ≥ H(δ(X)) always holds, by properties of entropy.
Thus, we will now show the second bound: that for small enough entropies, 1

log qH(δ(X)) ≥ (1 −
γ)H(X). This is equivalent with showing that H(δ(X)) ≥ (1− γ)H(X). Given γ, let α1 := α2(γ)
be the entropy guaranteed by Lemma 6.6, such that if H(X) ≤ α2(γ) then Pr[δ(X) = 1] = Pr[X 6=
0] ≤ γH(X). Now, for H(X) ≤ α1, we have

H(X) = H(X, δ(X))
= H(δ(X)) +H(X|δ(X)) (Chain rule)
= H(δ(X)) +H(X|δ(X) = 1) Pr[δ(X) = 1] (because H(X|δ(X) = 0) = 0)
≤ H(δ(X)) + log(q) Pr[δ(X) = 1] (because X ∈ Fq, so H(X) ≤ log(q))
≤ H(δ(X)) + log(q)γH(X) (by Lemma 6.6)
≤ H(δ(X)) + γH(X).

Thus, if H(X) ≤ α1, then (1− γ)H(X) ≤ H(δ(X)) as desired. �

Now, by combining these, we can reduce suction-at-the-lower-end from Fq to the binary case.

Proof of Lemma 6.4. Given γ, we will set α ≤ 1/4, to be determined later. Notice that we have

H(X + Y ) = 1
log qH(X + Y ) ≥ 1

log qH(δ(X + Y )). (13)

We will proceed to show first that

H(δ(X + Y )) ≥ H(δ(X)⊕ δ(Y )). (14)

This inequality is justified by comparing the distributions of δ(X + Y ) and δ(X) ⊕ δ(Y ), both
binary random variables, and noticing that

Pr[δ(X+Y ) = 0] = Pr[X+Y = 0] ≤ Pr[{X = 0, Y = 0}∪{X 6= 0, Y 6= 0}] = Pr[δ(X)⊕δ(Y ) = 0].

Moreover, let us observe that Pr[δ(X + Y ) = 0] = Pr[X + Y = 0] ≥ 1/2. Indeed,

Pr[X + Y 6= 0] ≤ H(X + Y ) ≤ H(X,Y ) ≤ H(X) +H(Y ) ≤ 2α ≤ 1/2.

In the above, the second inequality follows since X + Y is a determinitis function of X,Y and
the third inequality follows from the chain rule and the fact that conditioning can only decrease
entropy. Therefore, by monotonicity of the binary entropy function H(p) for 1/2 ≤ p ≤ 1, and
since Pr[δ(X + Y ) = 0] ≤ Pr[δ(X)⊕ δ(Y ) = 0] we have

H(δ(X + Y )) ≥ H(δ(X)⊕ δ(Y )).
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This justifies Equation (14).
Now we conclude by using the suction-lemma in the binary case, applied to δ(X)⊕ δ(Y ).
Let γ′ be a small enough constant, such that (1 − γ′)2 ≥ (1 − γ). Let α0 := α0(γ′) be the

entropy bound provided by Lemma 6.7, and let α1 := α1(γ′) be the entropy bound provided by
Lemma 6.8. Set α := min{α0, α1, 1/4}.

Then, for H(X), H(Y ) ≤ α, we have

H(X + Y ) log q ≥ H(δ(X + Y )) (Equation (13))
≥ H(δ(X)⊕ δ(Y )) (Equation (14))
≥ (1− γ′)(H(δ(X)) +H(δ(Y ))) (Lemma 6.7 and H(δ(Z)) ≤ H(Z) for r.v. Z)
≥ (1− γ′)2(H(X) +H(Y )) log q. (Lemma 6.8)

With our setting of γ′, this concludes the proof. �

We will now see how Lemma 6.4 implies its strengthening for conditional entropies.

Lemma 6.9. Let (X1, A1) and (X2, A2) be independent random variables with Xi ∈ Fq, and
such that A1, A2 are identically distributed, and moreover for every a we have H(X1|A1 = a) =
H(X2|A2 = a). Then for every γ > 0, there exist τ such that if H(X1|A1) ≤ τ , done]technically
A and X have not been defined. then

H(X1 +X2|A1, A2) ≥ (1− γ)(H(X1|A1) +H(X2|A2)). (15)

Proof. Let us take α := H(X1|A1) = H(X2|A2). For given γ we shall find τ such that if α < τ
then inequality (15) is satisfied. Let us now consider GA := {a : H(X1|A1 = a) < α1}, for α1 = α

γ .
(In the remainder of the proof when we want to talk about a random variable from the identical
distribution from which A1 and A2 are drawn, we will denote it by A.) By Markov inequality

Pr(A 6∈ GA) ≤ α

α1
= γ.

Let us fix now τ which appears in the statement of this lemma to be smaller than γ and moreover
small enough so that when α < τ for every a1, a2 ∈ GA we can apply Lemma 6.4 to distributions
(X1|A1 = a1) and (X2|A2 = a2) to ensure that H(X1 +X2|A1 = a1, A2 = a2) ≥ (1−γ)(H(X1|A1 =
a1) +H(X2|A2 = a2)).

Let us use shorthand S(a1, a2) = H(X1 +X2|A1 = a1, A2 = a2) Pr(A1 = a1, A2 = a2). We have

H(X1 +X2|A1, A2) =
∑
a1,a2

S(a1, a2)

≥
∑

a1∈GA
a2∈GA

S(a1, a2) +
∑

a1 6∈GA
a2∈GA

S(a1, a2) +
∑

a1∈GA
a2 6∈GA

S(a1, a2). (16)

If both a1 and a2 are in GA, then by Lemma 6.4 we have

S(a1, a2) ≥ (1− γ)(H(X1|A1 = a1) +H(X2|A2 = a2)) Pr(A1 = a1, A2 = a2),

therefore ∑
a1∈GA,a2∈GA

S(a1, a2) ≥ 2(1− γ) Pr(A ∈ GA)
∑

a1∈GA

H(X1|A1 = a1) Pr(A1 = a1), (17)
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where in the above we have used the fact that A1 and A2 are identically distributed.
On the other hand, for a1 6∈ GA, a2 ∈ GA let us bound

S(a1, a2) = H(X1 +X2|A1 = a1, A2 = a2) Pr(A1 = a1, A2 = a2)
≥ H(X1 +X2|A1 = a1, A2 = a2, X2) Pr(A1 = a1, A2 = a2)
= H(X1|A1 = a1) Pr(A1 = a1, A2 = a2)

where the inequality follows from the fact that additional conditioning decreases entropy (and we
also used the fact that since X1 and X2 are independent, H(X1 + X2|A1 = a1, A2 = a2, X2) =
H(X1|A1 = a1, A2 = a2, X2) = H(X1|A1 = a1, A2 = a2) = H(X1|A1 = a1)). Summing this bound
over all such pairs yields∑

a1 6∈GA,a2∈GA

S(a1, a2) ≥ Pr(A ∈ GA)
∑

a1 6∈GA

H(X1|A1 = a1) Pr(A1 = a1) (18)

and symmetrically for the third summand, we get∑
a1∈GA,a2 6∈GA

S(a1, a2) ≥ Pr(A ∈ GA)
∑

a2 6∈GA

H(X2|A2 = a2) Pr(A2 = a2). (19)

Plugging in (17), (18) and (19) into (16) (and the fact that A1 and A2 are identically distributed)
we find

H(X1 +X2|A1, A2) ≥ 2(1− γ) Pr(A1 ∈ GA)
∑
a1

H(X1|A1 = a1) Pr(A1 = a1)

= 2(1− γ) Pr(A ∈ GA)H(X1|A1).

We have Pr(A ∈ GA) ≥ (1− γ), which yields

H(X1 +X2|A1, A2) ≥ 2(1− γ)2α ≥ 2(1− 2γ)α

and the statement of the lemma follows, after rescaling γ by half. �

Proof of Lemma 5.2. By chain rule we have

H(X1 | X1 +X2, A1, A2) = H(X1, X1 +X2 | A1, A2)−H(X1 +X2 | A1, A2)
= H(X1, X2 | A1, A2)−H(X1 +X2 | A1, A2)
= 2H(X1 | A1)−H(X1 +X2 | A1, A2),

where the last equality follows from the independence of (X1, A1) and (X2, A2). Now we can apply
Lemma 6.9 to get

H(X1 | X1 +X2, A1, A2) ≤ 2H(X1 | A1)− (1− γ)(2H(X1 | A1) = 2γH(X1 | A1)

and the statement follows directly from Lemma 6.9 and rescaling γ by half. �
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A Codes from Polarization

In this section, we describe the construction of polar codes, and analyze the failure probability of
decoders by corresponding them to the Arıkan martingale. This proves Theorem 1.9.

Specifically, we first describe the polar encoder along with a fastO(n logn)-time implementation,
where n is the blocklength. Then, in Section A.2 we define the (inefficient) successive-cancellation
decoder, and analyze its failure probability assuming a correspondence between polar coding and the
Arıkan martingale. In Section A.2.2, we describe a fast O(n logn)-time decoder that is functionally
equivalent to the successive-cancellation decoder. Finally, in Section A.2.3, we prove the required
correspondence between polar coding and the Arıkan martingale.

Throughout this section, fix parameters k ∈ N as the dimension of the mixing matrixM ∈ Fk×kq ,
Fq as a finite field, and n = kt as the codeword length.

A.1 Polar Encoder

Given a set S ⊆ [n] and a fixing α ∈ F|S
c|

q ,6 we define the polar code of dimension |S| by giving the
encoder mapping FSq → Fnq as follows:

Algorithm 1 Polar Encoder
Constants: M ∈ Fk×kq , S ⊆ [n],α ∈ FScq
Input: U ∈ FSq
Output: Z ∈ Fnq
1: procedure Polar-Encoder(U ;α)
2: Extend U to U ∈ Fnq by letting (U i)i 6∈S = α for coordinates not in S
3: Return Z = U · (M−1)⊗t

The above gives a polynomial time algorithm for encoding. An Oq(n logn) algorithm can also
be obtained by using the recursive structure imposed by the tensor powers.

Below, we switch to considering vectors in Fktq as tensors in (Fkq )⊗t, indexed by multiindices
i ∈ [k]t. The following encoder takes as input the “extended” message U , as defined above.

Algorithm 2 Fast Polar Encoder
Constants: M ∈ Fk×kq

Input: U ∈ (Fkq )⊗t
Output: Z = U · (M−1)⊗t
1: procedure Fast-Polar-Encodert(U)
2: for all j ∈ [k] do
3: Z(j) ← Fast-Polar-Encodert−1(U [·,j])
4: for all i ∈ [k]t−1 do
5: Z[i,·] ← (Z(1)

i ,Z
(2)
i , . . . ,Z

(k)
i ) ·M−1

6: Return Z
6We use the notation Sc = [n] \ S.
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A.2 The Successive-Cancellation Decoder

Here we describe a successive-cancellation decoder. Note that this decoder is not efficient, but the
fast decoder described later will have the exact same error probability as this decoder.

For given channel outputs Y , let Z be the posterior distribution on channel inputs given outputs
Y . Each Zi ∈ ∆(Fq) is the conditional distribution Zi|Yi defined by the channel CY |Z and the
recevied output Yi.

Now, for a set S ⊆ [n] and a fixing α ∈ FScq , we define the decoder on input Z as follows.

Algorithm 3 Successive-Cancellation Decoder
Constants: M ∈ Fk×kq , S ⊆ [n],α ∈ FScq
Input: Z ∈ ∆(Fkq )n

Output: Û ∈ Fnq
1: procedure SC-Decoder(Z)
2: Compute joint distribution U ∈ ∆(Fnq ) : U ← ZM⊗t

3: for all i ∈ [n] do
4: If i ∈ S then
5: Ûi ← argmaxx∈Fq PrU (Ui = x)
6: else
7: Ûi ← αi
8: Update distribution U ← (U |Ui = Ûi)
9: Return Û

Note that several of the above steps, including computing the joint distribution of U and
marginal distributions of Ui, are not computationally efficient.

A.2.1 Decoding Analysis

We will first reason about the “genie-aided” case, when the fixing α ∈ F|S
c|

q of non-message bits is
chosen uniformly at random, and revealed to both the encoder and decoder. Then, we will argue
that it is sufficient to use a deterministic fixing α = α0.

We now argue that over a uniform choice of message US , and a uniform fixing α of non-message
bits, the probability of decoding failure is bounded as follows.

Claim A.1. For V ∼ FSq , and α ∼ FScq , take Z := Polar-Encoder(V ;α) and Y sampled
according to the channel Y := C(Z).Let U ∈ Fnq be specified by V on coordinates i ∈ S, and
specified by α on coordinates i 6∈ S. With this notation, we have

Pr[SC-Decoder(Y ;α) 6= U ] ≤
∑
i∈S

H(Ui | U<i,Y ).

Proof. Note that U is uniform over Fnq . Now, we have:

Pr[SC-Decoder(Y ;α) 6= U ] = Pr[∃i Ûi 6= Ui]
=
∑
i≤n

Pr[Ûi 6= Ui | Û<i = U<i].
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Clearly for i 6∈ S we have Pr[Ûi 6= Ui] = 0, since both are defined to be equal to αi on those
coordinates. It is enough to show that for i ∈ S we have

Pr(Ûi 6= Ui | U<i = Û<i) ≤ H(Ui | U<i,Y ).

This follows directly from Lemma 2.2, as Ûi is defined exactly as a maximum likelihood estimator
of Ui given channel outputs Y and conditioning on U<i. �

Claim A.2. If Xt satisfies (τ, ε)-polarization, then there exist a set S ⊂ [n] of size (Capacity(CY |Z)−
ε− 2τ)n, such that ∑

i∈S
H(Ui | U<i,Y ) ≤ τn log q.

Proof. First, observe that for uniform choice of i ∈ [n], H(Ui|U<i,Y ) is distributed identically
as Xt in the Arıkan Martingale. Because, by definition of the encoder, we have channel inputs
Z = U · (M⊗t)−1 or equivalently

U = Z ·M⊗t.

And Y = C(Z). Thus, by Lemma A.6, H(Ui|U<i,Y ) for a random i ∈ [n] is distributed identically
as Xt.

Now, for symmetric channels, the uniform distribution achieves capacity (See eg, Theorem 7.2.1
in [4]). Thus, for uniform channel input Z,

Capacity(CY |Z) = H(Z)−H(Z|Y ) = 1−H(Z|Y ).

Let S be the set of all indices i such that H(Ui | U<i,Y ) < τ . By definition, we have∑
i∈S

H(Ui | U<i,Y ) ≤ τn

as desired.
Now observe that polarization of martingale Xt directly implies that we have at most εn indicies

i satisfying H(Ui | U<i) ∈ (τ, 1− τ). Let S′ be a set of indices for which H(Ui | U<i,Y ) > 1− τ .
We have

n(1− Capacity(CY |Z)) = H(U(M−1)⊗t | Y )
= H(U1, . . . ,Un|Y ) (Since (M−1)⊗t is full rank)
=
∑
i∈[n]

H(Ui|U<i,Y ) (Chain rule)

≥
∑
i∈S′

H(Ui|U<i,Y )

≥ (1− τ)|S′|,

which implies (for τ < 1
2) that

|S′| ≤ n(1− Capacity(CY |Z) + 2τ),

and finally
|S| ≥ n− |S′| − εn ≥ n(Capacity(CY |Z)− ε− 2τ).

�
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We can now combine the above to prove a version of Theorem 1.9 for the (inefficient) successive-
cancellation decoder:

Theorem A.3. If a matrix M ∈ Fk×kq strongly polarizes for a symmetric channel CY |Z then for
every c <∞ there exists t0(x) = O(log x) such that for every ε > 0, for every t ≥ t0(1/ε), the rows
of (M−1)⊗t together with an affine shift generate an affine code of codeword length n = kt, and of
rate Capacity(CY |Z)− ε. Furthermore, the successive-cancellation decoder succeeds with probability
at least 1− n−c.

Proof. Fix some constant c, and take γ < k−c−1 log−1 q. By the definition of strong polarization
property, we know that for some constants β, η, martingale Xt is (γt, β · ηt)-polarizing, hence by
Claim A.2, there exist a set S ⊂ [n] of size (Capacity(CY |Z)− β · ηt − 2γt)n, such that∑

i∈S
H(Ui | U<i,Y ) ≤ γtn log q

≤ n−c.

Thus, by Claim A.1,

Pr[SC-Decoder(Y ;α)S 6= U ] ≤
∑
i∈S

H(Ui | U<i,Y )

≤ n−c

and so the SC-Decoder fails with probability (arbitrary) inverse-polynomial. Note that this
failure probability is an average over random choice of fixing α, but this implies there is some
deterministic fixing α = α0 with failure probability at least as good. Further, by linearity of the
encoding, such a deterministic fixing yields an affine code.

Finally, for t ≥ Ωη,β(log(1/ε)), we have βηt+2γt ≤ ε, and hence the size |S| ≥ (Capacity(CY |Z−
ε)n. Now the rate of the code as defined above is |S|/n ≥ Capacity(CY |Z)− ε, as desired. �

A.2.2 Fast Decoder

In this section we will define the recursive Fast-Decoder algorithm. The observation that polar
codes admit this recursive fast-decoder was made in the original work of Arıkan [2].

Fast-Decoder will take on input descriptions of the posterior distributions on channel inputs
{Zi}i∈[k]s for some s, where each individual Zi ∈ ∆(Fq) is a distribution over Fq, as well as
α ∈ (Fq∪{⊥})[k]s where αi 6= ⊥ for i 6∈ S, are fixed values corresponding to non-message positions.
The output of Fast-Decoder is a vector Ẑ ∈ (Fkq )⊗s — the guess for the actual channel inputs.
To recover the message, it is enough to apply Û := ẐM⊗t, and restrict it to unknown positions S.

Below, for Wi ∈ ∆(Fkq ) — a description of joint probability distribution over Fkq , we will write
πj(Wi) ∈ ∆(Fq) as a j-th marginal of Wi, i.e. projection on the j-th coordinate.
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Algorithm 4 Fast Decoder
Constants: M ∈ Fk×kq

Input: Z = {Zi ∈ ∆(Fq)}i∈[k]s , α ∈ (Fq ∪ {⊥})[k]s

Output: Ẑ ∈ (Fkq )⊗s
1: procedure Fast-Decoders(Z; α)
2: If s = 0 then
3: If α = ⊥ then
4: Return Ẑ = argmaxx∈Fq Pr[Z = x]
5: else
6: Return Ẑ = α
7: else
8: for all i ∈ [k]s−1 do
9: Compute joint distribution Wi ∈ ∆(Fkq ), given by Wi ← Z[·,i]M

10: for all j ∈ [k] do
11: Z ′(j) ← {πj(Wi)}i∈[k]s−1

12: V̂ (j) ← Fast-Decoders−1(Z ′(j);α[j,·])
13: for all i ∈ [k]s−1 do
14: Update distribution Wi ← (Wi|πj(Wi) = V̂

(j)
i )

15: for all i ∈ [k]s−1 do
16: Ẑ[·,i] ←WiM

−1

17: Return Ẑ

Note that in Line 16 above, Wi is technically a distribution, but by this point Wi is determin-
istic, since all its coordinates have been set previously via Line 14. We abuse notation by usingWi

in Line 16 to denote a fixed vector in Fkq .
The Fast-Decoder as described above runs in time O(n logn), where n = kt is blocklength.
Moreover, it can be seen directly that Fast-Decoder is equivalent to the SC-Decoder on

the same input:

Lemma A.4. For all product distributions Z on inputs (where each Zi ∈ ∆(Fq) is a distribution
over Fq), for all sets S ⊆ [k]s and all fixings α ∈ (Fq ∪ {⊥})[k]s of the set S, the following holds:

Fast-Decoder(Z;α) ·M⊗s = SC-Decoder(Z;α|S).

Proof of Lemma A.4. Given Z, S,α as in the statement, let U be the joint distribution defined by
U := ZM⊗s. We will use this joint distribution on (U ,Z) throughout the proof.

First, notice the following about the operation of the SC-Decoder: SC-Decoder(Z;α|S) by
definition iteratively computes estimates ÛSC such that for all i ∈ [k]s:

ÛSC
i =

{
argmaxx∈Fq Pr[Ui = x|U≺i = ÛSC

≺i ] for i 6∈ S
αi for i ∈ S.

(20)

We now argue that the Fast-Decoder computes the identical estimates. That is,

Fast-Decoder(Z;α) ·M⊗s = ÛSC = SC-Decoder(Z;α|S)
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We prove this by induction on s. i ∈ [k]s per the lexicographic order ≺. Note that this equality
clearly holds for the “frozen” indices i ∈ S, so we focus on proving the claim for indices i 6∈ S.

For s = 0, the claim is true by definition (both Fast-Decoder and SC-Decoder, on input a
distribution Z ∈ ∆(Fq), output argmaxx Pr[Z = x]).

For s > 0: Let ÛF := Fast-Decoder(Z;α) ·M⊗s. We argue by a further induction on indices
that ÛF = ÛSC. Suppose for induction that for some j ∈ [k], we have ÛF

[<j,·] = ÛSC
[<j,·]. We will

now show that ÛF
[j,·] = ÛSC

[j,·].

Let Z ′(j) be the random variable as defined by Fast-Decoder(Z;α) in Line 11, at the fixed
iteration j ∈ [k]. And for all ` ∈ [k], let V̂ (`) denote the variable defined in Line 12, when the loop
variable j is equal to `.

By definition of the Fast-Decoder, and the structure of the tensor-product, we have

∀` ∈ [k] : V̂ (`) ·M⊗s−1 = ÛF
[`,·] (21)

Indeed, consider the value of Wi defined in the Fast-Decoder, when it is accessed in Line 16 of
the algorithm. Let W ∈ (Fkq )⊗s be defined by ∀i ∈ [k]s−1, j ∈ [k] : W [j,i] = πj(Wi), recalling that
Wi is deterministic. Let Ẑ be the return value in Line 15. Now, the assignment in Line 14 sets

Ẑ = W · (M−1 ⊗ I⊗s−1
k )

where Ik is the k × k Identity. Thus, we have

ÛF
[`,·] := [Fast-Decoder(Z;α) ·M⊗s][`,·]

= [Ẑ ·M⊗s][`,·]
= [W · (M−1 ⊗ I⊗s−1

k ) ·M⊗s][`,·]
= [W · (Ik ⊗M⊗s−1)][`,·]
= W [`,·] ·M⊗s−1

= {π`(Wi)}i∈[k]s−1 ·M⊗s−1

= V̂ (`) ·M⊗s−1, (by Line 12 in Fast-Decoder)

which establishes (21).
Combined with our inductive assumption, this gives

∀` < j : V̂ (`) ·M⊗s−1 = ÛF
[`,·] = ÛSC

[`,·]. (22)

With this setup, by definition of the Fast-Decoder we have:

Z ′(j) := {πj(Wi)}i∈[k]s−1 (23)

and
V̂ (j) := Fast-Decoder(Z ′(j);α[j,·]) (24)

where (by Line 8 in Fast-Decoder)

Wi ≡ Z[·,i]M | { ∀` < j : π`(Z[·,i]M) = V̂
(`)
i } (25)

The main observation is the following.
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Claim A.5. The following distributions are identical:

{U[j,·] | U[<j,·] = ÛSC
[<j,·]} ≡ Z

′(j) ·M⊗s−1

Proof. By the structure of the tensor product (using our joint distribution U := ZM⊗s), we have
∀` ∈ [k] : U[`,·] = {π`(Z[·,i]M)}i∈[k]s−1 ·M⊗s−1,or equivalently,

∀` ∈ [k] : U[`,·] · (M−1)⊗s−1 = {π`(Z[·,i]M)}i∈[k]s−1 . (26)

Now, we can re-write the conditional distributions (where the indexing over {. . . }i is always
over {. . . }i∈[k]s−1),

{U[j,·] | U[<j,·] = ÛSC
[<j,·]}

≡ {U[j,·] | { ∀` < j : U[`,·] = ÛSC
[`,·]}}

≡ {U[j,·] | { ∀` < j : U[`,·](M−1)⊗s−1 = ÛSC
[`,·](M

−1)⊗s−1}} (as (M−1)⊗s−1 has full rank)

≡ {U[j,·] | { ∀` < j : U[`,·](M−1)⊗s−1 = V̂ (`)}} (Equation (22))
≡ {U[j,·] | { ∀` < j : {π`(Z[·,i]M)}i = V̂ (`)}} (Equation (26))
≡ {{πj(Z[·,i]M)}i ·M⊗s−1 | { ∀` < j : {π`(Z[·,i]M)}i = V̂ (`)}} (Equation (26))
≡ {{πj(Wi)}i ·M⊗s−1} (?)
≡ {Z ′(j) ·M⊗s−1}. (by definition of Z ′(j))

Line (?) follows by noting that since Z is a product distribution, the joint distributions Z[·,i] for
each i are conditionally independent given the event { ∀` < j : {π`(Z[·,i]M)}i = V̂ (`)}. Thus, these
distributions may be equivalently sampled via Wi, which agrees on the marginals by definition
(Equation (25)). This concludes the proof of Claim A.5. �

We now have:

ÛF
[j,·] = V̂ (j) ·M⊗s−1 (Equation (21))

= Fast-Decoder(Z ′(j);α[j,·]) ·M⊗s−1. (Equation (24))

We may now apply the inductive hypothesis for (s− 1). Letting

U ′ := Z ′(j) ·M⊗s−1 (27)

and
Û ′F := Fast-Decoder(Z ′(j);α[j,·]) ·M⊗s−1,

the inductive hypothesis guarantees that Û ′F = SC-Decoder(Z ′(j);α[j,·]|S), and thus

∀i ∈ [k]s−1 : Û ′Fi =
{

argmaxx∈Fq Pr[U ′
i = x|U ′

≺i = Û ′F≺i] for [j, i] 6∈ S
α[j,i] for [j, i] ∈ S.
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Thus, for all indices [j, i] 6∈ S, we have:

ÛF
[j,i] = Û ′Fi

= argmax
x∈Fq

Pr[U ′
i = x|U ′

≺i = Û ′F≺i]

= argmax
x∈Fq

Pr[U ′
i = x|U ′

≺i = ÛF
[j,≺i]] (as ÛF

[j,·] = Û ′F)

= argmax
x∈Fq

Pr[(Z′(j)M⊗s−1)i = x|(Z′(j)M⊗s−1)≺i = ÛF
[j,≺i]] (Equation (27))

= argmax
x∈Fq

Pr[U[j,i] = x|U[j,≺i] = ÛF
[j,≺i] ∧U[<j,·] = ÛSC

[<j,·]]. (Claim A.5)

Since this relation holds for all indices [j, i] 6∈ S (and for [j, i] ∈ S we trivially have ÛF
[j,i] = α[j,i] =

ÛSC
[j,i]), we can unwrap the above relation by induction on i to find that:

ÛF
[j,i] = argmax

x∈Fq
Pr[U[j,i] = x|U[j,≺i] = ÛSC

[j,≺i] ∧U[<j,·] = ÛSC
[<j,·]]

= ÛSC
[j,i].

Thus we have shown that ÛF
[j,·] = ÛSC

[j,·], completing the inductive step. This concludes the proof of
Lemma A.4. �

This equivalence (Lemma A.4), together with Theorem A.3 on the correctness of the SC-
Decoder, suffices to prove Theorem 1.9.

A.2.3 Arıkan Martingale and Polar Coding

Here we build a correspondence between the definition of the Arıkan Martingale and the process
of polar coding.

Let Z ∈ Fktq , Y ∈ Fktq , and U ∈ Fktq . We think of Z as the channel inputs, Y as the channel
outputs, and U as the encoding inputs.

Lemma A.6. For a matrix M ∈ Fk×kq and symmetric channel CY |Z , let {Xt} be the associated
Arıkan Martingale. For a given t, let L = M⊗t be the polarization transform, and let n = kt be the
blocklength. Let the channel inputs Zi be i.i.d. uniform in Fq, and channel outputs Yi ∼ C(Zi).

Then, for a uniformly random index i ∈ [n], the normalized entropy H((ZL)i | Y , (ZL)<i) is
distributed identically as Xt.

Proof. Throughout this proof, we will switch to considering vectors in Fktq as tensors in (Fkq )⊗t, for
convenience — this correspondence is induced by lexicographic ordering ≺ on tuples [k]t. Also, we
will write P (Z) to mean the operator P acting on Z. In this notation, we wish to show that for a
uniformly random multiindex i ∈ [k]t, the entropy H((M⊗t(Z))i | Y , (M⊗t(Z))≺i) ∼ Xt.

We will show by induction that for all t, there is some permutation of coordinates7 σ′ : [k]t → [k]t
such that the joint distributions

{(A′,B′)}(A′,B′)∼Dt ≡ {(M
⊗t(Z), σ′(C(Z)))}U∼(Fkq )⊗t

7This is in fact just a reversal of the co-ordinates, i.e. σ′((i1, i2, . . . it)) = (it, . . . , i2, i1).
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where (A′,B′) ∼ Dt are the distributions defined in the t-th step of the Arıkan martingale, and
Z ∼ (Fkq )⊗t is sampled with iid uniform coordinates. This is sufficient, because a permutation of
the channel outputs does not affect the relevant entropies. That is,

H(A′
i | B′,A′

≺i) = H(A′
i | σ′(B′),A′

≺i).

First, the base case t = 0 follows by definition of the distribution D0 in the Arıkan martingale.
For the inductive step, assume the claim holds for t− 1. Let σ be the permutation guaranteed

for t− 1. For each j ∈ [k], sample an independent uniform Z(j) ∼ (Fkq )⊗t−1 and define

(A(j),B(j)) := (M⊗t−1(Z(j)) , σ(C(Z(j)))). (28)

By the inductive hypothesis, (A(j),B(j)) ∼ Dt−1, for each j ∈ [k].
As in the Arıkan martingale, define (A′,B′) deriving from {(A(j),B(j))}j∈[k] as

A′[i,·] := M((A(1)
i , . . . , A

(k)
i )) and B′[j,·] := B(j). (29)

Note that B′ can equivalently be written (unwrapped) as

B′ := (B(1),B(2), . . . ,B(k))

By definition of the Arıkan martingale, we have (A′,B′) ∼ Dt.
Finally, define Z ∈ (Fkq )⊗t by

Z[·,j] := Z(j).

To finish the proof, we will show that (A′,B′) = (M⊗t(Z), σ′(C(Z))) for some permutation σ′.
The main claim is the following.

Claim A.7. For every instantiation of the underlying randomness Z, we have

A′ = M⊗t(Z).

Proof of Claim A.7. Expanding the recursive definition of the tensor product, Equation (2), we
have:

[M⊗t(Z)][i,·] = M((W (1)
i ,W

(2)
i , . . .W

(k)
i ))

where
W (j) := M⊗t−1(Z[·,j]) = M⊗t−1(Z(j)) = A(j).

Where the last equality is by the inductive assumption. Thus,

[M⊗t(Z)][i,·] = M((A(1)
i , . . . , A

(k)
i ))

= A′
[i,·]. (By definition, Equation (29))

And so M⊗t(Z) = A′ as desired.
�
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Continuing the proof of Lemma A.6, we now have

(A′ , B′) = (A′ , (B(1),B(2), . . . ,B(k))) (By definition, Equation (29))
= (A′ , (σ(C(Z(1))), σ(C(Z(2))), . . . , σ(C(Z(k))))

(Definition of sampling, Equation (28))
= (A′ , σ′(C(Z))) (?)
= (M⊗t(Z) , σ′(C(Z))).

In the above, the equality in line (?), follows from the fact in both cases, entries of the tensor are
{C(Zi)}i, and they only differ by some permutation of coordinates.

Since we established (A′,B′) ∼ Dt by definition, this completes the proof.
�
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