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Abstract

The recent line of study on randomness extractors has been a great success, resulting in excit-
ing new techniques, new connections, and breakthroughs to long standing open problems in the
following five seemingly different topics: seeded non-malleable extractors, privacy amplification
protocols with an active adversary, independent source extractors (and explicit Ramsey graphs),
non-malleable independent source extractors, and non-malleable codes in the split state model.
Two key ingredients used in these works are correlation breakers and independence preserving
mergers. By giving very efficient constructions of these two objects, we now have close to optimal
solutions to the above five problems [Li17]: seeded non-malleable extractors with seed length
and entropy requirement O(log n+ log(1/ε) log log(1/ε)) for error ε; two-round privacy amplifi-
cation protocols with optimal entropy loss for security parameter up to Ω(k/ log k), where k is
the entropy of the shared weak source; two-source extractors for entropy O(log n log log n); non-
malleable two-source extractors for entropy (1− γ)n with error 2−Ω(n/ log n); and non-malleable
codes in the 2-split state model with rate Ω(1/ log n). However, in all cases there is still a
small gap to optimum and the motivation to close this gap remains strong. On the other hand,
previous techniques seem to have reached their limit and insufficient for this purpose.

In this paper we introduce new techniques to recycle the entropy used in correlation breakers
and independence preserving mergers. This allows us to break the barriers of previous techniques
and give further improvements to the above problems. Specifically, we obtain the following
results: (1) a seeded non-malleable extractor with seed length O(log n) + log1+o(1)(1/ε) and
entropy requirement O(log log n + log(1/ε)), where the entropy requirement is asymptotically
optimal by a recent result of Gur and Shinkar [GS18]; (2) a two-round privacy amplification
protocol with optimal entropy loss for security parameter up to Ω(k), which solves the pri-
vacy amplification problem completely;1 (3) a two-source extractor for entropy O( log n log log n

log log log n ),
which also gives an explicit Ramsey graph on N vertices with no clique or independent set

of size (logN)O( log log log N
log log log log N ); (4) a non-malleable two-source extractor for entropy (1 − γ)n

with error 2−Ω(n log log n/ log n); and (5) non-malleable codes in the 2-split state model with rate
Ω(log log n/ log n). Some of our techniques are similar in spirit to what has been done in previ-
ous constructions of pseudorandom generators for small space computation [Nis92, NZ96], and
we believe they can be a promising way to eventually obtain optimal constructions to the five
problems mentioned above.

∗Supported by NSF award CCF-1617713.
1Except for the communication complexity, which is of secondary concern to this problem.
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1 Introduction

The study of randomness extractors has been a central line of research in the area of pseudoran-
domness, where the goal is to understand how to use randomness more efficiently in computation.
As fundamental objects in this area, randomness extractors are functions that transform imperfect
random sources into nearly uniform random bits. Their original motivation is to bridge the gap
between the uniform random bits required in standard applications (such as in randomized algo-
rithms, distributed computing, and cryptography), and practical random sources which are almost
always biased (either because of natural noise or adversarial information leakage). However the
study of these objects has led to applications far beyond this motivation, in several different fields
of computer science and combinatorics (e.g., coding theory, graph theory, and complexity theory).

As mentioned above, the inputs to a randomness extractor are usually imperfect randomness,
which are modeled by the notion of general weak random sources with a certain amount of entropy.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

An extensively studied model of randomness extractors is the so called seeded extractors, in-
troduced by Nisan and Zuckerman [NZ96]. The inputs to a seeded extractor are a general weak
random source and a short independent uniform random seed. The random seed is necessary here
since it is well known that no deterministic extractor with one general weak source as input can
exist. Seeded extractors have many applications in computer science, and we have the following
formal definition.

Definition 1.2. (Seeded Extractor) A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-extractor
if for every source X with min-entropy k and independent Y which is uniform on {0, 1}d,

|Ext(X,Y )− Um| ≤ ε.

If in addition we have |(Ext(X,Y ), Y )− (Um, Y )| ≤ ε then we say it is a strong (k, ε)-extractor.

Through a long line of research, we now have explicit constructions of seeded extractors with
almost optimal parameters (e.g., [LRVW03, GUV09, DW08, DKSS09]). In the last decade or so,
the focus has shifted to several different but related models of randomness extractors, including
seedless extractors and non-malleable extractors. The study of these topics has also been quite
fruitful, leading to breakthroughs to several long standing open problems.

1.1 Seedless extractors

As the name suggests, a seedless extractor uses no uniform seed, and the only inputs are weak
random sources. Here, again we have two different cases. In the first case, one puts additional
restrictions on a single weak random source in order to allow possible extraction, thus obtaining
deterministic extractors for special classes of (structured) sources. In the second case, the sources
are still general weak random sources, but the extractor needs to use more than one sources. To
make extraction possible, one typically assumes the input sources to the extractor are independent,
and this kind of extractors are sometimes called independent source extractors.
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Since the pioneering work of Chor and Goldreich [CG88], the study of independent source extrac-
tors has gained significant attention due to their close connections to explicit Ramsey graphs, and
their applications in distributed computing and cryptography with general weak random sources
[KLRZ08, KLR09]. The goal here is to give explicit constructions that match the probabilistic
bound: an extractor for just two independent (n, k) sources with k ≥ log n + O(1) that outputs
Ω(k) bits with exponentially small (in k) error. Note that an explicit two-source extractor for such
entropy (even with one bit output and constant error) will give an (strongly) explicit Ramsey graph
on N vertices with no clique or independent set of size O(logN), solving an open problem proposed
by Erdős [Erd47] in his seminal paper that inaugurated the probabilistic method.

While early progress on this problem has been quite slow, with the best known construction in
almost 20 years only able to handle two independent (n, k) sources with k > n/2 [CG88], since 2004
there has been a long line of work [BIW04, BKS+05, Raz05, Bou05, Rao06, BRSW06, Li11, Li12b,
Li13b, Li13a, Li15b, Coh15, CZ16, Li16, CS16, CL16, Coh16a, BADTS17, Coh17, Li17] introducing
exciting new techniques to this problem. This line of work greatly improved the situation and led
to a series of breakthroughs. Now we have three source extractors for entropy k ≥ polylog(n)
that output Ω(k) bits with exponentially small error [Li15b], two-source extractors for entropy
k ≥ polylog(n) that output Ω(k) bits with polynomially small error [CZ16, Li16, Mek15], and
two-source extractors for entropy k ≥ O(log n log log n) that output one bit with any constant error
[Li17]. This also gives an explicit Ramsey graph on N vertices with no clique or independent set of
size (logN)O(log log logN). Interestingly and somewhat surprisingly, the most recent progress which
brought the entropy requirement close to optimal, has mainly benefited from the study of another
kind of extractors, the so called non-malleable extractors, which we now describe below.

1.2 Non-malleable extractors

Non-malleable extractors are strengthening of standard extractors, where one requires that the
output is close to uniform even given the output of the extractor on tampered inputs.

Definition 1.3 (Tampering Funtion). For any function f : S → S, f has a fixed point at s ∈ S
if f(s) = s. We say f has no fixed points in T ⊆ S, if f(t) 6= t for all t ∈ T . We say f has
no fixed points if f(s) 6= s for all s ∈ S. For any n > 0, let Fn denote the set of all functions
f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering functions.

Again, there are different models of non-malleable extractors. If the tampering acts on the
seed of a seeded extractor, such extractors are called seeded non-malleable extractors, originally
introduced by Dodis and Wichs in [DW09].

Definition 1.4 (Non-malleable extractor). A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a
seeded non-malleable extractor for min-entropy k and error ε if the following holds : If X is a source
on {0, 1}n with min-entropy k and A : {0, 1}d → {0, 1}d is an arbitrary tampering function with
no fixed points, then

|snmExt(X,Ud) ◦ snmExt(X,A(Ud)) ◦ Ud − Um ◦ snmExt(X,A(Ud)) ◦ Ud| < ε

where Um is independent of Ud and X.

If the tampering acts on the sources of an independent source extractor, such extractors
are called seedless non-malleable extractors, originally introduced by Cheraghchi and Guruswami
[CG14b].
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Definition 1.5 (Seedless Non-Malleable C-Source Extractor). A function nmExt : ({0, 1}n)C →
{0, 1}m is a (k, ε)-seedless non-malleable extractor for C independent sources, if it satisfies the
following property: Let X1, · · · , XC be C independent (n, k) sources, and f1, · · · , fC : {0, 1}n →
{0, 1}n be C arbitrary tampering functions such that there exists an fi with no fixed points, then

|nmExt(X1, · · · , XC) ◦ nmExt(f1(X1), · · · , fC(X2))− Um ◦ nmExt(f1(X1), · · · , fC(X2))| < ε.

Remark 1.6. The original definition of seedless non-malleable independent source extractors in
[CG14b] is more general, in the sense that the tampering functions may have some fixed points.
However, Cheraghchi and Guruswami [CG14b] showed that this is essentially equivalent to the
definition above, up to a small loss in parameters. We present the details in Section 7.

Seeded non-malleable extractors and privacy amplification. As stated above, seeded non-
malleable extractors were first introduced by Dodis and Wichs [DW09], to study a cryptographic
problem known as privacy amplification [BBR88]. The problem considers the situation where two
parties with local (non-shared) uniform random bits try to convert a shared secret weak random
source X into shared secret nearly uniform random bits. They do this by communicating through a
channel, which is watched by an adversary with unlimited computational power. Standard strong
seeded extractors provide very efficient protocols for a passive adversary (i.e., can only see the
messages but cannot change them), but fail for an active adversary (i.e., can arbitrarily change,
delete and reorder messages). In the latter case (which is the focus of this paper), the main goal
is to design a protocol that uses as few number of interactions as possible, and achieves a shared
uniform random string R which has entropy loss (the difference between the length of the output
and H∞(X)) as small as possible. Such a protocol is defined with a security parameter s, which
means the probability that an active adversary can successfully make the two parties output two
different strings without being detected is at most 2−s. On the other hand, if the adversary remains
passive, then the two parties should achieve shared secret random bits that are 2−s-close to uniform.
We refer the reader to [DLWZ14] for a formal definition.

A long line of work has been devoted to this problem [MW97, DKRS06, DW09, RW03, KR09,
CKOR10, DLWZ14, CRS14, Li12a, Li12b, Li15a, CGL16, Coh16b, Coh16c, CL16, Coh16a, Coh17,
Li17]. It is known that one round protocol can only exist when the entropy rate of X is bigger than
1/2, and the protocol has to incur a large entropy loss. When the entropy rate of X is smaller than
1/2, [DW09] showed that any protocol has to take at least two rounds with entropy loss at least
Ω(s). Achieving a two-round protocol with entropy loss O(s) for all possible security parameters s
is thus the holy grail of this problem (note that s can be at most Ω(k) where k = H∞(X)).

While early works on this problem used various techniques, in [DW09], Dodis and Wichs intro-
duced a major tool, the seeded non-malleable extractor defined above. They showed that two-round
privacy amplification protocols with optimal entropy loss can be constructed using explicit seeded
non-malleable extractors. Furthermore, non-malleable extractors exist when k > 2m+ 2 log(1/ε) +
log d+ 6 and d > log(n− k+ 1) + 2 log(1/ε) + 5. Since then, the study of non-malleable extractors
has seen significant progress starting from the first explicit construction in [DLWZ14], with further
connections to independent source extractors established in [Li12b, Li13b, CZ16]. Previous to this
work, the best known seeded non-malleable extractor is due to the author [Li17], which works for
entropy k ≥ O(log n+log(1/ε) log log(1/ε)) and has seed length d = O(log n+log(1/ε) log log(1/ε)).
Although quite close to optimal, the extra O(log log(1/ε)) factor in the entropy requirement im-
plies that by using this extractor, one can only get two-round privacy amplification protocols with

3



optimal entropy loss for security parameter up to s = Ω(k/ log k). This still falls short of achieving
the holy grail, and may be problematic for some applications. For example, even if the shared weak
source has slightly super-logarithmic entropy, the error of the protocol can still be sub-polynomially
large; while ideally one can hope to get negligible error, which is important for other cryptographic
applications based on this. The only previous protocol that can achieve security parameter up to
s = Ω(k) is the work of [CKOR10], which has entropy loss O(log n+ s) but also uses O(log n+ s)
rounds of interactions, much larger than 2. This also results in a total communication complexity
of O((log n+ s)2) and requires the two parties’ local random bits to be at least this long.

Seedless non-malleable extractors and non-malleable codes. Seedless non-malleable ex-
tractors were first introduced by Cheraghchi and Guruswami [CG14b] to study non-malleable codes
[DPW10], a generalization of standard error correcting codes to handle a much larger class of at-
tacks. Informally, a non-malleable code is defined w.r.t. a specific family of tampering functions F .
The code consists of a randomized encoding function E and a deterministic decoding function D,
such that for any f ∈ F , if a codeword E(x) is modified into f(E(x)), then the decoded message
x′ = D(f(E(x))) is either the original message x or a completely unrelated message. The formal
definition is given in Section 7. In [DPW10], Dziembowski et. al showed that such codes can be
used generally in tamper-resilient cryptography to protect the memory of a device.

Even with such generalization, non-malleable codes still cannot exist if F is completely unre-
stricted. However, they do exist for many broad families of tampering functions. One of the most
studied families of tampering functions is the so called t-split-state model. Here, a k-bit message x is
encoded into a codeword with t parts y1, · · · , yt, each of length n. An adversary can then arbitrarily
tamper with each yi independently. In this case, the rate of the code is defined as k/(tn).

This model arises naturally in many applications, typically when different parts of memory are
used to store different parts of y1, · · · , yt. Such a code can also be viewed as a kind of “non-malleable
secret sharing scheme”. The case of t = 2 is the most useful and interesting setting, since t = 1
corresponds to the case where F is unrestricted. Again, there has been a lot of previous work on
non-malleable codes in this model. In this paper we will focus on the information theoretic setting.

Dziembowski et. al [DPW10] first proved the existence of non-malleable codes in the split-state
model. Cheraghchi and Guruswami [CG14a] showed that the optimal rate of such codes in the 2-
split-state model is 1/2. The first explicit construction appears in [DKO13], with later improvements
appearing in [ADL14, Agg14, ADKO15], but all constructions only achieve rate n−Ω(1).

Cheraghchi and Guruswami [CG14b] found a way to construct non-malleable codes in the t-
split state model using sufficiently good non-malleable t-source extractors. Chattopadhyay and
Zuckerman [CZ14] constructed the first seedless non-malleable, which works for 10 independent
sources with entropy (1−γ)n. They further used this extractor to give a constant rate non-malleable
code in the 10-split-state model. Subsequently, constructions of non-malleable two source extractors
appeared in [CGL16] and [Li17], where both constructions work for min-entropy k = (1− γ)n and

output Ω(k) bits. The construction in [CGL16] has error 2−n
Ω(1)

while the construction in [Li17]
has error 2−Ω(n/ logn). Both can be used to give explicit non-malleable codes in the 2-split state
model, where the former achieves rate n−Ω(1) and the latter achieves Ω( 1

logn). Very recently, a
work by Kanukurthi et. al [KOS17] achieved constant rate in the 4-split state model, but the best
construction in the 2-split state model still only achieves rate Ω( 1

logn) [Li17].
As can be seen from the above discussions, extensive past research has established strong connec-

tions among the following 5 seemingly different problems: seeded non-malleable extractors, privacy
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amplification protocols, independent source extractors (and explicit Ramsey graphs), non-malleable
independent source extractors, and non-malleable codes (in the split state model). Furthermore,
past research has brought each one of them close to optimal, but there remains a small gap to
close and the motivation to close this gap remains strong. On the other hand, achieving this seems
challenging and beyond the reach of the techniques developed so far.

1.3 Our Results

In this paper we introduce new techniques as an effort and the first step to close the gaps mentioned
above. Our techniques lead to improvements to all the 5 problems discussed. We will first list our
results here, and then give an informal overview of our techniques in the next section. Our first
theorem gives explicit seeded non-malleable extractors which have optimal entropy requirement
with respect to the error.

Theorem 1.7. There exists a constant C > 1 such that for any constant a ∈ N, a ≥ 2, any
n, k ∈ N and any 0 < ε < 1 with k ≥ C(log log n + a log(1/ε)), there is an explicit construction
of a strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n) +

log(1/ε)2O(a(log log(1/ε))
1
a ) and m = Ω(k).

Note that this theorem provides a trade-off between the entropy requirement and the seed length.
For example, if we take a = 2, then we need the source to have entropy O(log log n + log(1/ε))

while the seed length is O(log n) + 2O(
√

log log(1/ε)) log(1/ε) = O(log n) + log1+o(1)(1/ε). By a recent
result of Gur and Shinkar [GS18], the entropy requirement in our construction is asymptotically
optimal. Combined with the protocol in [DW09], this gives the following theorem.

Theorem 1.8. For any constant integer a ≥ 2 there exists a constant 0 < α < 1 such that for any
n, k ∈ N and security parameter s ≤ αk, there is an explicit two-round privacy amplification protocol
with entropy loss O(log log n + s), in the presence of an active adversary. The communication

complexity of the protocol is O(log n) + s2O(a(log s)
1
a ).

Note that our two-round protocol has optimal entropy loss for security parameter up to s = Ω(k),
thus achieving the holy grail of this problem. Compared to the O(log n + s)-round protocol in
[CKOR10], our protocol also has better dependence on n and significantly better communication
complexity. We remark that the O(log log n) term in both theorems is also the best possible (up
to constant) if one wants to apply the two-round protocol in [DW09]. This is because the output
of the non-malleable extractor is used in the second round as the key for a message authentication
code (MAC) that authenticates the seed of a strong seeded extractor with security parameter s.
Since the seed of the extractor uses at least Ω(log n) bits, the MAC requires a key of length at least
log logn+ s. See [DW09] for more details.

We can also achieve smaller seed length while requiring slightly larger entropy.

Theorem 1.9. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε < 1 with
k ≥ C(log log n+ log(1/ε) log log log(1/ε)), there is an explicit construction of a strong seeded (k, ε)
non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)(log log(1/ε))2) and
m = Ω(k).

Theorem 1.10. There exists a constant 0 < α < 1 such that for any n, k ∈ N and security pa-
rameter s ≤ αk/ log log k, there is an explicit two-round privacy amplification protocol with entropy
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loss O(log log n+ s), in the presence of an active adversary. The communication complexity of the
protocol is O(log n+ s log2 s).

Remark 1.11. In both Theorem 1.7 and Theorem 1.9, the dependence on the error ε in the
seed length and entropy requirement can be switched. For example, in Theorem 1.7, we can also

achieve k ≥ C log logn+log(1/ε)2C·a(log log(1/ε))
1
a and d = O(log n+a log(1/ε)). In other words, our

construction can be asymptotically optimal in either the seed length or the entropy requirement,
but not in both.

We also have the following non-malleable two-source extractor and seeded non-malleable extractor.

Theorem 1.12. There exists a constant 0 < γ < 1 and a non-malleable two-source extractor for
(n, (1− γ)n) sources with error 2−Ω(n log logn/ logn) and output length Ω(n).

Theorem 1.13. There is a constant C > 0 such that for any ε > 0 and n, k ∈ N with k ≥
C(log log n+ log(1/ε) log log(1/ε)

log log log(1/ε) ), there is an explicit strong seeded non-malleable extractor for (n, k)

sources with seed length d = O(log n+ log(1/ε) log log(1/ε)
log log log(1/ε) ), error ε and output length Ω(k).

Combined with the techniques in [BADTS17], we obtain the following theorem which gives
improved constructions of two-source extractors.

Theorem 1.14. For every constant ε > 0, there exists a constant C > 1 and an explicit two source
extractor Ext : ({0, 1}n)2 → {0, 1} for entropy k ≥ C logn log logn

log log logn with error ε.

As a corollary, we obtain the following improved constructions of Ramsey graphs.

Corollary 1.15. For every large enough integer N there exists a (strongly) explicit construction

of a K-Ramsey graph on N vertices with K = (logN)
O( log log log N

log log log log N
)
.

We can also efficiently sample uniformly from the pre-image of any given output of the extractor
in Theorem 1.12. Combined with the connection in [CG14b], we obtain the following theorem.

Theorem 1.16. For any n ∈ N there exists a non-malleable code with efficient encoder/decoder in
the 2-split-state model with block length 2n, rate Ω(log log n/ log n) and error ε = 2−Ω(n log logn/ logn).

1.4 Overview of The Constructions and Techniques

We demonstrate our techniques here by an informal overview of our construction on non-malleable
extractors. Throughout this section we will be mainly interested in the dependence of various
parameters (e.g., seed length, entropy requirement) on the error ε, since this makes the presentation
cleaner. The dependence on n comes from the alternating extraction between the seed and the
source, thus the seed needs to have an O(log n) term while the source only needs an O(log log n)
term. We use letters with prime to denote the tampered version of random variables.

All recent constructions on non-malleable extractors essentially follow the same high level sketch:
first obtain a small advice on L = O(log(1/ε)) bits such that with probability 1 − ε, the advice is
different from its tampered version. Then, use the rest of the inputs, together with a correlation
breaker with advice (informally introduced in [CGL16] and formally defined in [Coh16b]) to obtain
the final output. There are several constructions of the correlation breaker, with the most efficient
one using a non-malleable independence preserving merger (NIPM for short, introduced in [CS16]
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and generalized in [CL16]). The NIPM takes an L×m random matrix V with m = O(log(1/ε)) and
use the other inputs to merge it into one output. It has the property that if the matrix has one row
which is uniform given the corresponding row in its tampered version2 (which can be obtained from
the advice and inputs), then the output is guaranteed to be uniform given the tampered output.
From now on, we assume the inputs to the extractor are two independent sources X and Y (in the
case of seeded non-malleable extractor, Y can be viewed as the seed).

Previously, the best construction of an NIPM is due to the author [Li17], which works roughly
as follows. Suppose the matrix V is a deterministic function of the source X, then we first generate
` = logL random variables (Y1, · · · , Y`) from Y , such that each Yi is close to uniform given the
previous random variables and their tampered versions (i.e., (Y1, Y

′
1 , · · · , Yi−1, Y

′
i−1)). We call this

property the look-ahead property. Next, we run a simpler merger for ` iterations, with each iteration
using a new Yi to merge every two consecutive rows in V , thus decreasing the number of rows by
a factor of 2. We output the final matrix V which has one row. The property of the merger
guarantees that in the end the output is uniform given its tampered version.

Let’s turn to the entropy requirement. In this construction each Yi needs to have at least
Ω(log(1/ε)) bits in order to ensure the error is at most ε, thus it is clear that Y needs to have
entropy at least O(` log(1/ε)) = O(log(1/ε) log log(1/ε)). However, it turns out that X also needs
to have such entropy, for the following two reasons. First, in each iteration after we apply the simple
merger, the length of each row in the matrix decreases by a constant factor (due to the entropy
loss of any seeded extractor). Thus we cannot afford to just repeat the process for ` times since
that would require the original row in V to have length at least polylog(1/ε), which implies the
same entropy requirement for X. Instead, we again create ` random variables (X1, · · · , X`) from X
with the look-ahead property, and in each iteration after merging we use each row of the matrix to
extract from a new Xi (using a standard seeded extractor, and possibly after first extracting from
another new Yi), in order to restore the length of the rows in the matrix. We need the look-ahead
property in (X1, · · · , X`) and (Y1, · · · , Y`) so that after each iteration we can fix the previously used
random variables and maintain the independence of X and Y , as well as the fact that the matrix
is a deterministic function of X. Each Xi again needs at least Ω(log(1/ε)) bits so this puts a lower
bound on the entropy of X.

Second, in order to prepare the random variables (Y1, · · · , Y`), we in fact run an alternating
extraction protocol between (part of) X and Y . This protocol lasts 2` rounds between X and Y ,
and in each round either X or Y needs to spend Ω(log(1/ε)) random bits. This again puts a lower
bound of O(` log(1/ε)) on the entropy of X.

We remark that the above description is slightly different from the standard definition of an
NIPM, where the only input besides the matrix V is Y . Indeed, in [Li17] it was presented as a
correlation breaker. However, these two objects are actually similar, and for this paper it is more
convenient to consider NIPMs with an additional input X, which is independent of Y but may be
correlated with V . We will use this notion here and formally define it in Section 4.

Improved merger construction. We develop new techniques to break the above barriers, so
that we can achieve essentially optimal entropy requirement in one of the sources (e.g., X). Our new
techniques recycle the entropy in X, similar in sprit to what has been done in previous constructions
of pseudorandom generators for small space computation [Nis92, NZ96].

2Sometimes we also require the other rows to be uniform, in order to make the construction simpler. This is the
case of this paper, but we ignore the issue here for simplicity and clarity.
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For the first problem, our key observation is that the random variables (X1, · · · , X`) can be
replaced by the original source X, as long as we have slightly more (e.g., 2`) Yi’s and they satisfy
the look ahead property. To achieve this we crucially use the property that the NIPM only needs
one row of V to be uniform given the corresponding row in its tampered version, and does not
care about the dependence among the rows of V (in fact, they can have arbitrary dependence).
Consider a particular iteration i in which we have just finished applying the simple merger. We
can first fix all random variables {Yj} that have been used so far, and conditioned on this fixing
we know that X and Y are still independent, and the matrix V is a deterministic function of X,
which is independent of all random variables obtained from Y . To restore the length of each row
in V , we use each row of V to first extract O(log(1/ε)) bits from Yj+1, and then extract back from
the original source X. Note that we only need to consider each row separately (since we don’t care
about the dependence among them). Assume row h in V has the property that Vh is uniform given
V ′h. Since each random variable only has O(log(1/ε)) bits, as long as the entropy of X is c log(1/ε)
for a large enough constant c > 1, we can argue that conditioned on the fixing of (Vh, V

′
h), X

still has entropy at least some O(log(1/ε)). On the other hand since Vh is uniform given V ′h, their
corresponding outputs after extracting from (Yj+1, Y

′
j+1) will also preserve this independence; and

conditioned on the fixing of (Vh, V
′
h), these outputs are deterministic functions of (Y, Y ′), which

are independent of (X,X ′). Thus they can be used to extract back from (X,X ′) and preserve the
independence. By standard properties of a strong seeded extractor, this holds even conditioned
on the fixing of (Yj+1, Y

′
j+1). Note that conditioned on the further fixing of (Yj+1, Y

′
j+1), the new

matrix is again a deterministic function of X, thus we can go into the next iteration. Therefore, by
recycling the entropy in X, altogether we only need X to have entropy some O(log(1/ε)). In each
iteration we use two new Yi’s so we need roughly 2` such random variables.

We note the following important difference between this approach and the previous approach:
the previous approach actually also roughly preserves the independence between different rows in
the matrix, since each time we use a new Xi to restore the length of each row, and Xi is uniform
given all previously used random variables. In contrast, the current approach only preserves the
independence between the corresponding row in V and V ′, which is in fact all we need. Thus we
can always use X to restore the length of each row, and this recycles the entropy in X.

However, we still need to address the second problem, where we need to generate the random
variables (Y1, · · · , Y2`). One way to generate them with the look-ahead property, as we men-
tioned above, is to use an alternating extraction protocol, but this will require entropy roughly
O(` log(1/ε)) from X. To solve this problem, we observe that there is another way to generate
these random variables, which requires much less entropy from X. For simplicity assume that Y is
uniform, we first take 2` slices Y i from Y , where Y i has size (2i−1)d for some d = O(log(1/ε)). This
ensures that even conditioned on the fixing of (Y 1, Y ′1, · · · , Y i−1, Y ′i−1), the (average) conditional
min-entropy of Yi is at least (2i− 1)d− 2 · (2i−1− 1)d = d. Then, we can take O(log(1/ε)) uniform
bits obtained from X, and use the same bits to extract Yi from Y i for every i. As long as we use a
strong seeded extractor here, we are guaranteed that (Y1, · · · , Y2`) satisfy the look-ahead property;
and moreover conditioned on the fixing of the O(log(1/ε)) bits from X, we have that (Y1, · · · , Y2`) is
a deterministic function of Y . Note here again we only require entropy O(log(1/ε)) from X, and to-
gether with the approach described above this gives us a non-malleable extractor where X can have
entropy O(log(1/ε)). However Y will need to have entropy at least 22`O(log(1/ε)) = O(log3(1/ε)).

To improve the entropy requirement of Y , we note that in the above approach, we only used
part of X once to help obtaining the {Y i}. Thus we have to use larger and larger slices of Y which
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actually waste some entropy. Instead, we can use several parts of X, each with O(log(1/ε)) uniform
bits. For example, say that we have obtainedX1 andX2, where each is uniform on some O(log(1/ε))
bits and X2 is uniform even conditioned on the fixing of (X1, X ′1). We can now take some t slices
{Y i} of Y , each of length (2i−1)·2d for some parameters t, d. We first useX1 to extract from each Y i

and obtain d uniform bits. Note that conditioned on the fixing of (X1, X ′1), these t random variables
already satisfy the look-ahead property. Now for each of these d bits obtained from Y i, we can
apply the same process, i.e., we take some t slices of these d bits, each of length (2i−1) ·O(log(1/ε))
and then use X2 to extract from each of them. This way we obtain t2 random variables {Yi} that
satisfy the look-ahead property. We can thus choose t2 = 2` which means t = O(

√
`). The entropy

requirement of Y is roughly (2t− 1) · (2t− 1)O(log(1/ε)) = O(22t log(1/ε)) = 2O(
√
`) log(1/ε), while

the entropy requirement for X is 2O(log(1/ε)) + O(log(1/ε)) = O(log(1/ε)). This significantly
improves the entropy requirement of Y .

We can repeat the previous process and use some a parts (X1, · · · , Xa) obtained from X. As
long as a is a constant integer, the entropy requirement for X will be O(a log(1/ε)) = O(log(1/ε)),

while the entropy requirement of Y will be reduced to 2O(a`
1
a ) log(1/ε) = 2O(alog log(1/ε)

1
a ) log(1/ε).

To prepare the a parts of X, we perform an initial alternating extraction protocol between X and
Y , which only needs entropy O(a log(1/ε)) from either of them. This gives Theorem 1.7. In the
extreme case, we can also try to minimize the entropy requirement of Y . For this we can first
create log `+ 1 = log log log(1/ε) +O(1) Xi’s, and in each step use a new Xi to double the number
of Yi’s. This can be done by using the same Xi to do an alternating extraction of two rounds
with each Yi in parallel. Thus after log ` + 1 steps we obtain (Y1, · · · , Y2`). In this case X needs
to have entropy O(log(1/ε) log log log(1/ε)). Ideally, we would want to claim that Y needs entropy
O(log(1/ε) log log(1/ε)), but due to technical reasons (each time the output shrinks by a constant
factor) we can only show that this works as long as Y has entropy O(log(1/ε)(log log(1/ε))2).3

The balanced case. Notice that in the above discussion, the entropy requirement for X and
Y is unbalanced, in the sense that we can reduce one of them to be quite small, while the other
is relatively large (in fact, larger than O(log(1/ε) log log(1/ε)) as in previous construction [Li17]).
For applications to two-source extractors and non-malleable codes, we need a balanced entropy
requirement. Upon first look it does not seem that the new techniques we have introduced so far
can achieve any improvement in this case, since in the above discussion we are still merging two
rows of the matrix V in each step, and for this merging we need at least O(log(1/ε)) fresh random
bits. Note that we need ` = logL = log log(1/ε) steps to finish the merging, thus it seems the total
entropy requirement is at least O(log(1/ε) log log(1/ε)).

Our key observation here is that we can apply the same idea of recycling entropy discussed
above. Specifically, let us choose a parameter t ∈ N and we merge every t rows in the matrix V
at each step, using some merger that we have developed above. For example, we can choose the
merger which for merging t rows, requires X to have entropy O(log(1/ε)) and Y to have entropy
2O(
√

log t) log(1/ε). This will take us logL
log t steps to finish merging, and we will do it in the following

way. First, we create s = O( logL
log t ) random variablesX1, · · · , Xs that satisfy the look-ahead property.

Then, in each step of the merging, we will use a new Xj . The Xj ’s can be prepared by taking a
small slice of both X and Y and do an alternating extraction protocol with O(s) rounds, which
consumes entropy O(s log(1/ε)) = O( logL

log t log(1/ε)) from both X and Y . However, in each step of

3The exponent 2 can be reduced to be arbitrarily close to log 3.
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the merging, we will not use fresh entropy from Y , but will recycle the entropy in Y . Note that by
doing this, we are recycling the entropy in both X and Y . The recycling in X is done within each
step of applying the small merger, while the recycling in Y is done between these steps.

To achieve this, consider a particular step i in the merging. Since we are using a new Xj in each
step, we can fix all previous Xj ’s that have been used and their tampered versions. Conditioned
on this fixing, the matrix V obtained so far (and the tampered version V ′) is a deterministic
function of Y , therefore independent of X. We now want to claim that conditioned on the random
variable (V, V ′), Y still has high entropy. If this is true then we can take a new Xj+1 and apply
a strong seeded extractor to Y using Xj+1 as the seed, and the extracted random bits (which are
deterministic functions of Y conditioned on the fixing of Xj+1) can be used for merging in the next
step. Also note that to apply the merger, we can take yet another new Xj+2 and use each row
of V to extract from Xj+2 and create a matrix W . Conditioned on the fixing of (V, V ′), we have
that (W,W ′) is a deterministic function of (X,X ′) and therefore independent of (Y, Y ′). Moreover
the independence between corresponding rows in (V, V ′) is preserved in (W,W ′) (i.e., there is also
a row in W that is uniform given the corresponding row in W ′). Thus now we can indeed apply
the merger again to W and the extracted random bits from Y , possibly together with a new Xj+3.
Again, this is similar in spirit to what has been done in previous constructions of pseudorandom
generators for small space computation [Nis92, NZ96].

The above idea indeed works, except for the following subtle point: the computation of the
merger is actually not a small space computation. Indeed, the matrix V can have many rows and
the size of V can be potentially larger than the entropy of Y (in fact, it will definitely be larger
than the entropy of Y , unless we are willing to afford entropy O(log2(1/ε)) in Y ), at least in the
first several steps of merging when the number or rows in V is still large. To get around this,
we again use the property that the only thing we need from the matrix V is that one row in V
is independent of the corresponding row in V ′ (we call this the good row), and between different
rows we can allow arbitrary dependence. Therefore, since we are merging t rows in each step,
we only need to condition on the fixing of these t rows (and their tampered versions). This will
ensure that if originally there is a good row in these t rows, then after merging the output is
still a good row in the new matrix. The dependence between different rows in the new matrix
could change, but that does not matter. Thus, we only need the entropy of Y to be roughly
O(t log(1/ε)) + 2O(

√
log t) log(1/ε) + O( logL

log t log(1/ε)) = O(t log(1/ε) + logL
log t log(1/ε)) since we will

maintain the length of each row in V to be O(log(1/ε)).
Now the problem is just to pick an appropriate t to make the entropy requirements for X and

Y balanced. A simple calculation shows that by choosing t = logL
log logL , both X and Y only need en-

tropy O( logL
log logL log(1/ε)) = O( log(1/ε) log log(1/ε)

log log log(1/ε) ). By the connections in [Li17, BADTS17, CG14b],

this dependence will translate into two source extractors for entropy O( logn log logn
log log logn ), non-malleable

two-source extractors for entropy (1− γ)n with some constant γ > 0 and error 2−Ω(n log logn/ logn),
and non-malleable codes in the 2-split state model with rate Ω(log log n/ log n).

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 2, and define alternating extraction in Section 3. We present independence preserving
mergers in Section 4, correlation breakers in Section 5, non-malleable extractors in Section 6, and
non-malleable codes in Section 7. Finally we conclude with some open problems in Section 8.
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2 Preliminaries

We often use capital letters for random variables and corresponding small letters for their instanti-
ations. Let |S| denote the cardinality of the set S. For ` a positive integer, U` denotes the uniform
distribution on {0, 1}`. When used as a component in a vector, each U` is assumed independent of
the other components. When we have adversarial tampering, we use letters with prime to denote
the tampered version of random variables. All logarithms are to the base 2.

2.1 Probability Distributions

Definition 2.1 (statistical distance). Let W and Z be two distributions on a set S. Their statistical
distance (variation distance) is

∆(W,Z)
def
= max

T⊆S
(|W (T )− Z(T )|) =

1

2

∑
s∈S
|W (s)− Z(s)|.

We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a set S
and a function h : S → T , let h(D) denote the distribution on T induced by choosing x according
to D and outputting h(x).

Lemma 2.2. For any function α and two random variables A,B, we have ∆(α(A), α(B)) ≤
∆(A,B).

2.2 Average Conditional Min Entropy

Definition 2.3. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(

Ew←W

[
max
x

Pr[X = x|W = w]
])

= − log
(

Ew←W

[
2−H∞(X|W=w)

])
.

Lemma 2.4 ([DORS08]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.

Lemma 2.5 ([DORS08]). If a random variable B has at most 2` possible values, then H̃∞(A|B) ≥
H∞(A)− `.

2.3 Prerequisites from Previous Work

Sometimes it is convenient to talk about average case seeded extractors, where the source X has
average conditional min-entropy H̃∞(X|Z) ≥ k and the output of the extractor should be uniform
given Z as well. The following lemma is proved in [DORS08].

Lemma 2.6. [DORS08] For any δ > 0, if Ext is a (k, ε) extractor then it is also a (k+log(1/δ), ε+δ)
average case extractor.

For a strong seeded extractor with optimal parameters, we use the following extractor con-
structed in [GUV09].
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Theorem 2.7 ([GUV09]). For every constant α > 0, there exists a constant β > 0 such that for all
positive integers n, k and any ε > 2−βk, there is an explicit construction of a strong (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log(1/ε)) and m ≥ (1 − α)k. The same
statement also holds for a strong average case extractor.

Theorem 2.8 ([CG88]). For every 0 < m < n there is an explicit two-source extractor IP : {0, 1}n×
{0, 1}n → {0, 1}m based on the inner product function, such that if X,Y are two independent (n, k1)
and (n, k2) sources respectively, then

(IP(X,Y ), X) ≈ε (Um, X) and (IP(X,Y ), Y ) ≈ε (Um, Y ),

where ε = 2−
k1+k2−n−m−1

2 .

The following standard lemma about conditional min-entropy is implicit in [NZ96] and explicit
in [MW97].

Lemma 2.9 ([MW97]). Let X and Y be random variables and let Y denote the range of Y . Then
for all ε > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1

ε

)]
≥ 1− ε.

We also need the following lemma.

Lemma 2.10. [Li13a] Let (X,Y ) be a joint distribution such that X has range X and Y has
range Y. Assume that there is another random variable X ′ with the same range as X such that
|X −X ′| = ε. Then there exists a joint distribution (X ′, Y ) such that |(X,Y )− (X ′, Y )| = ε.

3 Alternating Extraction

Our constructions use the following alternating extraction protocol as a key ingredient. Alternating
extraction was first introduced in [DP07], and has now become an important tool in constructions
related to extractors.

Definition 3.1. (Alternating Extraction) Assume that we have two parties, Quentin and Wendy.
Quentin has a source Q, Wendy has a source W . Also assume that Quentin has a uniform random
seed S1 (which may be correlated with Q). Suppose that (Q,S1) is kept secret from Wendy and W
is kept secret from Quentin. Let Extq, Extw be strong seeded extractors with optimal parameters,
such as that in Theorem 2.7. Let r, s be two integer parameters for the protocol. For some integer
parameter ` > 0, the alternating extraction protocol is an interactive process between Quentin and
Wendy that runs in ` steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(W,S1). She sends
R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step R1, S2 each outputs r and
s bits respectively. In each subsequent step i, Quentin sends Si to Wendy, Wendy computes
Ri = Extw(W,Si). She replies Ri to Quentin and Quentin computes Si+1 = Extq(Q,Ri). In step
i, Ri, Si+1 each outputs r and s bits respectively. Therefore, this process produces the following
sequence:
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Quentin: Q,S1 Wendy: X

S1

S1

−−−−−−−−−−−−−→
R1

←−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2

−−−−−−−−−−−−−→
R2

←−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·

S` = Extq(Q,R`−1)
S`

−−−−−−−−−−−−−→
R` = Extw(X,S`)

Figure 1: Alternating Extraction.

S1, R1 = Extw(W,S1), S2 = Extq(Q,R1), · · · ,
S` = Extq(Q,R`−1), R` = Extw(W,S`).

The output of an alternating extraction protocol is often described as a look-ahead extractor,
defined as follows. Let Y = (Q,S1) be a seed, the look-ahead extractor is defined as

laExt(W,Y ) = laExt(W, (Q,S1))
def
= R1, · · · , R`.

The following lemma is a special case of Lemma 6.5 in [CGL16].

Lemma 3.2. Let W be an (nw, kw)-source and W ′ be a random variable on {0, 1}nw that is ar-
bitrarily correlated with W . Let Y = (Q,S1) such that Q is a (nq, kq)-source, S1 is a uniform
string on s bits, and Y ′ = (Q′, S′1) be a random variable arbitrarily correlated with Y , where Q′

and S′1 are random variables on nq bits and s bits respectively. Let Extq,Extw be strong seeded
extractors that extract s and r bits from sources with min-entropy k with error ε and seed length
d ≤ min{r, s}. Suppose (Y, Y ′) is independent of (W,W ′), kq > k + 2(` − 1)s + 2 log(1

ε ), and
kw > k + 2(`− 1)r + 2 log(1

ε ). Let laExt be the look-ahead extractor defined above using Extq,Extw,
and (R1, · · · , R`) = laExt(W,Y ), (R′1, · · · , R′`) = laExt(W ′, Y ′). Then for any 0 ≤ j ≤ ` − 1, we
have

(Y, Y ′, {R1, R
′
1, · · · , Rj , R′j}, Rj+1)

≈ε1(Y, Y ′, {R1, R
′
1, · · · , Rj , R′j}, Ur),

where ε1 = O(`ε).

4 Non-Malleable Independence Preserving Merger

We now describe the notion of non-malleable independence preserving merger, introduced in [CL16]
based on the notion of independence preserving merger introduced in [CS16].
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Definition 4.1. A (L, d′, ε)-NIPM : {0, 1}Lm × {0, 1}d → {0, 1}m1 satisfies the following property.
Suppose

• X,X′ are random variables, each supported on boolean L ×m matrices s.t for any i ∈ [L],
Xi = Um,

• {Y,Y′} is independent of {X,X′}, s.t Y,Y′ are each supported on {0, 1}d and H∞(Y) > d′,

• there exists an h ∈ [L] such that (Xh,X
′
h) = (Um,X

′
h),

then

|(L, d′, ε)-NIPM(X,Y), (L, d′, ε)-NIPM(X′,Y′)

− Um1 , (L, d
′, ε)-NIPM(X′,Y′)| 6 ε.

We have the following construction and theorem.
L-Alternating Extraction We extend the previous alternating extraction protocol by letting

Quentin have access to L sources Q1, . . . , QL (instead of just Q) which have the same length. Now
in the i’th round of the protocol, he uses Qi to produce the r.v Si = Extq(Qi, Ri). More formally,
the following sequence of r.v’s is generated: S1, R1 = Extw(W,S1), S2 = Extq(Q2, R1), . . . , RL−1 =
Extw(W,S`−1), SL = Extq(QL, RL−1).

The NIPM is now constructed as follows. Let S1 be a slice of X1 with length O(log(d/ε)), then
run the L-alternating extraction described above with (Q1, . . . , QL) = (X1, . . . ,XL) and W = Y.
Finally output SL.

Theorem 4.2 ([CL16]). There exists a constant c > 0 such that for all integers m, d, d′, L > 0 and
any ε > 0, with m > 4cL log(d/ε), d′ > 4cL log(m/ε), the above construction NIPM : ({0, 1}m)` ×
{0, 1}d → {0, 1}m1 has output length m1 ≥ 0.2m, such that if the following conditions hold:

• X,X′ are random variables, each supported on boolean L ×m matrices s.t for any i ∈ [L],
Xi = Um,

• {Y,Y′} is independent of {X,X′}, s.t Y,Y′ are each supported on {0, 1}d and H∞(Y) > d′,

• there exists an h ∈ [L] such that (Xh,X
′
h) = (Um,X

′
h),

then

|NIPM(X,Y),NIPM(X′,Y′),Y,Y′ − Um1 ,NIPM(X′,Y′),Y,Y′| 6 Lε.

It is sometimes more convenient to consider NIPMs which use an additional source X in the
computation. We generalize the above definition as follows.

Definition 4.3. A (L, d, d′, ε)-NIPM : {0, 1}Lm×{0, 1}d×{0, 1}d′ → {0, 1}m1 satisfies the following
property. Suppose

• V, V ′ are random variables, each supported on boolean L ×m matrices s.t for any i ∈ [L],
Vi = Um,

• there exists an h ∈ [L] such that (Vh, V
′
h) = (Um, V

′
h),
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• X,X′ are random variables, each supported on d bits, such that X is uniform conditioned on
(V, V ′),

• (Y,Y′) is independent of (V, V ′,X,X′), s.t Y,Y′ are each supported on {0, 1}d′ and Y is
uniform,

If the function is an NIPM that is strong in Y then

|(L, d, d′, ε)-NIPM(V,X,Y), (L, d, d′, ε)-NIPM(V ′,X′,Y′),Y,Y′

− Um1 , (L, d, d
′, ε)-NIPM(V ′,X′,Y′),Y,Y′| 6 ε.

If the function is an NIPM that is strong in X then

|(L, d, d′, ε)-NIPM(V,X,Y), (L, d, d′, ε)-NIPM(V ′,X′,Y′),X,X′

− Um1 , (L, d, d
′, ε)-NIPM(V ′,X′,Y′),X,X′| 6 ε.

We will now use the above construction to give another NIPM, which recycles the entropy.
Specifically, we have the following construction.

Construction 4.4. Asymmetric NIPM.
Inputs:

• L,m, n, d ∈ N and an error parameter ε > 0 such that m ≥ c log(d/ε) and d ≥ c log(n/ε) for
some constant c > 1.

• A random variable V supported on a boolean L×m matrix.

• An (n, 6m) source X.

• Random variables Y1, · · · ,Y` where ` = logL and each Yi is supported on {0, 1}d.

Output: a random variable W ∈ {0, 1}m.

Let V 0 = V . For i = 1 to logL do the following.

1. Take a slice Y1
i of Yi with length d/3. Merge every two rows of V i−1, using Y1

i and the
NIPM from Theorem 4.2. That is, for every j ≤ t/2 where t is the current number of rows in

V i−1 (initially t = L), compute V i−1
j = NIPM((V i−1

2j−1, V
i−1

2j ),Y1
i ).

2. For every j ≤ t/2, compute Yij = Ext1(Yi, V
i−1
j ), where Ext1 is the extractor in Theorem 2.7

and output d/4 bits.

3. For every i ≤ t/2, compute Ṽ i−1
j = Ext2(X,Yij), where Ext2 is the extractor in Theorem 2.7

and output m bits.

4. Let V i with the concatenation of Ṽ i−1
j , j = 1, · · · , t/2. Note that the number of rows in V i

has decreased by a factor of 2.

Finally output W = V logL.

15



Lemma 4.5. There is a constant c > 1 such that suppose we have the following random variables:

• V, V ′, each supported on a boolean L ×m matrix s.t for any i ∈ [L], Vi = Um. In addition,
there exists an h ∈ [L] such that (Vh, V

′
h) = (Um, V

′
h).

• X,X′ where X is an (n, 6m) source.

• Random variables (Y1,Y
′
1), · · · , (Y`,Y

′
`) obtained from Y,Y′ deterministically, where ` =

logL. These random variables satisfy the following look-ahead condition: ∀j < `, we have

(Yj ,Y1,Y
′
1, · · · ,Yj−1,Y

′
j−1) = (Ud,Y1,Y

′
1, · · · ,Yj−1,Y

′
j−1).

In addition, (V, V ′,X,X′) is independent of (Y,Y′).

Let W be the output of the NIPM on (V,X,Y1, · · · ,Y`) and W′ be the output of the NIPM on
(V ′,X′,Y′1, · · · ,Y′`). Then

(W,W′,Y,Y′) ≈O(Lε) (Um,W
′,Y,Y′).

Proof. We use induction to show the following claim.

Claim 4.6. For every 0 ≤ i ≤ ` = logL, the following holds after step i.

• V i, V ′i are each supported on boolean (t = L/2i)×m matrices s.t for any j ∈ [t], (V i
j ,Y,Y′) ≈εj

(Um,Y,Y′). In addition, there exists an h ∈ [t] such that (V i
h , V

′i
h ,Y,Y′) ≈εi (Um, V

′i
h ,Y,Y′).

Here εi is the error after step i which satisfies that ε0 = 0 and εi+1 ≤ 2εi + 4ε.

• Conditioned on the fixing of Y1,Y
′
1, · · · ,Yj ,Y

′
j, each of V i and V ′i is a deterministic function

of V, V ′,X,X′.

For the base case of i = 0, the claim clearly holds. Now assume that the claim holds for i, we
show that it holds for i+ 1.

We first fix Y1,Y
′
1, · · · ,Yi,Y

′
i. By the induction hypothesis, conditioned on the fixing of

these random variables, each of V i and V ′i is a deterministic function of V, V ′,X,X′, and thus
independent of (Yi+1,Y

′
i+1). We only consider the row h ∈ [t] such that (Vh, V

′
h) ≈4·2iε (Um, V

′
h),

since the analysis for the rest of the rows are similar and simpler.
First we ignore the error εi. By Theorem 4.2, and note that we are merging every two rows at

one step, we can choose a suitable constant c > 1 in the construction such that

(V i
h′ , V

′i
h′ ,Y

1
i+1,Y

′1
i+1) ≈2ε (Um1 , V

′i
h′ ,Y

1
i+1,Y

′1
i+1),

where h′ = dh2 e and m1 = 0.2m. We now fix (Y1
i+1,Y

′1
i+1). Note that conditioned on the

fixing, Yi+1 still has average conditional min-entropy at least d−d/3 = 2d/3 and is independent of

(V i
h′ , V

′i
h′). Now we can first fix V ′ih′ and then Y′ih′ . Note that conditioned on this fixing, V i

h′ is still
(close to) uniform and the average conditional min-entropy of Yi+1 is at least 2d/3 − d/4 > d/3.
Thus as long as c is large enough, by Theorem 2.7 we have that

(Yih′ , V
i
h′) ≈ε (Ud/4, V

i
h′).
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We now further fix V i
h′ . Note that conditioned on this fixing, Yih′ is still (close to) uniform.

Moreover conditioned on all the random variables we have fixed, Yih′ is a deterministic function
of Y1,Y

′
1, · · · ,Yi+1,Y

′
i+1 and thus independent of X,X′. Also conditioned on all the random

variables we have fixed, the average conditional min-entropy of X is at least 6m− 2m1 > 5m.

We can now further fix Ṽ ′ih′ , which is a deterministic function of X′. Conditioned on this fixing
the independence of random variables still holds, while the average conditional min-entropy of X
is at least 5m−m = 4m. Therefore by Theorem 2.7 we have that

(Ṽ i
h′ ,Yih′) ≈ε (Um,Yih′).

Since we have already fixed Y′ih′ and Ṽ ′ih′ , and note that conditioned on this fixing, (Y,Y′) are

independent of Ṽ i
h′ which is a deterministic function of X, we also have that

(Ṽ i
h′ , X̃

′
h′ ,Y,Y′) ≈ε (Um, X̃′h′ ,Y,Y′).

Adding back all the errors we get that there exists an h′ ∈ [t] such that

(X̃h′ , Ṽ
′i
h′ ,Y,Y′) ≈εi+1 (Um, Ṽ ′ih′ ,Y,Y′),

where εi+1 ≤ 2εi+4ε. Furthermore, it is clear that conditioned on the fixing of Y1,Y
′
1, · · · ,Yi+1,Y

′
i+1,

each of V i+1 and V ′i+1 is a deterministic function of V, V ′,X,X′.
We can now estimate the final error to be ε` ≤ 4(

∑`
i=1 2iε) = O(Lε). Finally, when the number

or rows in V i decreases to 1 after step `, the output W = V logL satisfies the conclusion of the
lemma.

We will now construct another NIPM. First we need the following lemma.

Lemma 4.7. For any constant a ∈ N, any `, s ∈ N and any ε > 0 there exists an explicit function

Conva : {0, 1}n × {0, 1}a·d → {0, 1}`·s with d = O(log(n/ε)) and n = 2O(a·`
1
a ) · s such that the

following holds. Let (Y, Y ′) be two random variables each on n bits, and Y is uniform. Let (X =
(X1, · · · , Xa), X

′ = (X ′1, · · · , X ′a)) be random variables each on a · d bits, where each Xi and X ′i is
on d bits. Further assume that (X,X ′) satisfies the following look-ahead property: ∀i ∈ [a], we have

(Xi, X1, X
′
1, · · · , Xi−1, X

′
i−1) = (Ud, X1, X

′
1, · · · , Xi−1, X

′
i−1).

Let (W1, · · · ,W`) = Conva(Y,X) and (W ′1, · · · ,W ′`) = Conva(Y
′, X ′). Then we have

(X,X ′,W1,W
′
1, · · · ,W`,W

′
`) ≈O(`ε) (X,X ′, Us,W

′
1, · · · , Us,W ′`),

where each Us is independent of previous random variables but may depend on later random
variables.

Proof. We will prove the lemma by induction on a. For the base case a = 1, consider the following
construction. For j = 1, · · · , `, let Yj be a slice of Y with length (2j − 1) · 2s (this is possible since
the total entropy required is at most 2` · 2s), and compute Wj = Ext(Yj , X1). Note that for any
j ∈ [`], conditioned on the fixing of Y1, Y

′
1 , · · · , Yj−1, Y

′
j−1, the average conditional min-entropy of

Yj is at least (2j − 1) · 2s− 2(2j−1 − 1) · 2s = 2s. Thus by Theorem 2.7 we have that

(Wj , Y1, Y
′

1 , · · · , Yj−1, Y
′
j−1, X,X

′) ≈ε (Us, Y1, Y
′

1 , · · · , Yj−1, Y
′
j−1, X,X

′).
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Since (W1,W
′
1, · · · ,Wj−1,W

′
j−1) is a deterministic function of (Y1, Y

′
1 , · · · , Yj−1, Y

′
j−1) and (X,X ′),

we also have that

(Wj ,W1,W
′
1, · · · ,Wj−1,W

′
j−1, X,X

′) ≈ε (Us,W1,W
′
1, · · · ,Wj−1,W

′
j−1,W,W

′).

By adding all the errors the statement of the lemma holds.
Now assume that the lemma holds for a, we will construct another function Conva+1 for the

case of a + 1. First choose a parameter t ∈ N to be decided later. For j = 1, · · · , `/t, let Yj be a
slice of Y with length (2j − 1) · 2m, where m is the length of Y (i.e., n) for Conva when choosing

` = t. Thus we have m = 2O(a·t
1
a ) ·s. Now, for every j we first use X1 to compute Ŵj = Ext(Yj , X1)

and output m bits, then compute (Ŵ1j , · · · , Ŵtj) = Conva(Ŵj , X2, · · · , Xa+1). The final outputs
are obtained by combining all the {Ŵij} in sequence.

Note that by the same argument as above, we have that

(X1, X
′
1, Ŵ1, Ŵ ′1, · · · , Ŵ`/t, Ŵ ′`/t) ≈O( `

t
ε) (X1, X

′
1, Um, Ŵ

′
1, · · · , Um, Ŵ ′`/t).

Now we can fix (X1, X
′
1). Note that conditioned on the fixing, (Ŵ1, Ŵ ′1, · · · , Ŵ`/t, Ŵ ′`/t) is

a deterministic function of (Y, Y ′), thus independent of (X,X ′). Now we can used the induction
hypothesis to conclude that the statement holds for the case of a+ 1. Note that the total error is
O( `t ε) + `/t ·O(tε) = O(`ε) since the part of O( `t ε) decreases as a geometric sequence. Finally, the

entropy requirement of Y is (2`/t − 1) · 2m = (2`/t − 1) · 2 · 2O(a·t
1
a ) · s = 2l/t+O(a·t

1
a )+1 · s.

We now just need to choose a t to minimize this quantity. We can choose t = `
a

a+1 so that the

entropy requirement of Y is 2O((a+1)·`
1

a+1 ) · s.

We now have the following construction.

Construction 4.8. NIPMx (which is strong in Y ) or NIPMy (which is strong in X).
Inputs:

• An error parameter ε > 0 and a constant a ∈ N.

• A random variable V supported on a boolean L×m matrix.

• A uniform string X on d1 bits.

• A uniform string Y on d2 bits.

• Let d = c log(max{d1, d2}/ε) for some constant c > 1.

Output: NIPMx outputs a random variable Wx ∈ {0, 1}m, and NIPMy outputs Wy ∈ {0, 1}d.

1. Let ` = logL.4 Let X0 be a slice of X with length 4a · d, and Y0 be a slice of Y with length
4a · d. Use X0 and Y0 to run an alternating extraction protocol, and output (R0, · · · , Ra) =
laExt(X0, Y0) where each Ri has d bits.

2. Compute Z = Ext(Y,R0) and output d2/2 bits, where Ext is the strong seeded extractor from
Theorem 2.7.

4Without loss of generality we assume that L is a power of 2. Otherwise add 0 to the string until the length is a
power of 2.
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3. For every i ∈ [L], compute Vi = Ext(Y0, Vi) and output d bits. Then, compute V̂i = Ext(X,Vi)
and output m bits.

4. Compute (Z1, · · · , Z`) = Conva(Z,R1, · · · , Ra) where each Zi has d bits.

5. NIPMx outputs Wx = NIPM(V̂ , Z1, · · · , Z`), where NIPM is the merger in Construction 4.4
and Lemma 4.5. NIPMy outputs Wy = Ext(Y,Wx) with d bits.

We now have the following lemma.

Lemma 4.9. There exist a constant c > 1 such that for any ε > 0 and any L,m, d1, d2, n ∈ N such

that d ≥ c(log max{d1, d2} + log(1/ε)), m ≥ d, d1 ≥ 8a · d + 6m and d2 ≥ 8a · d + ca·log
1
a L · d, the

above construction gives an (L, d1, d2, O(Lε))-NIPM that is either strong in X or strong in Y .

Proof. Note that Y0 has min-entropy 4ad ≥ 4d, thus by Theorem 2.7 we have that for every i ∈ [L],

(Vi, Vi) ≈ε (Ud, Vi),

and there exists an h ∈ [L] such that

(Vh, V
′
h, Vh, V

′
h) ≈ε (Ud, V

′
h, Vh, V

′
h).

Note that conditioned on the fixing of (V, V ′), we have that (X,X ′) and (Y, Y ′) are still indepen-
dent, and furthermore (V , V ′) is a deterministic function of (Y, Y ′). Note that conditioned on the
fixing of (X0, X

′
0), the average conditional min-entropy of X is at least 8a · d+ 6m− 2 · 4a · d = 6m.

Thus again by Theorem 2.7 we have that for every i ∈ [L],

(V̂i, Vi) ≈ε (Ud, Vi),

and there exists an h ∈ [L] such that

(V̂h, V̂ ′h, Vh, V
′
h) ≈ε (Ud, V̂ ′h, Vh, V

′
h).

Note that now conditioned on the fixing of (Vh, V
′
h), we have that (X,X ′) and (Y, Y ′) are still

independent, and furthermore (V̂h, V̂ ′h) is a deterministic function of (X,X ′). Thus we basically
have that conditioned on the fixing of (X0, X

′
0, Y0, Y

′
0), (V̂ , V̂ ′) is a deterministic function of (X,X ′)

and they satisfy the property needed by an NIPM.
Now, by Lemma 3.2, we have that

(Y0, Y
′

0 , R0, R
′
0, · · · , Ra, R′a) ≈O(a2ε) (Y0, Y

′
0 , Ud, R

′
0, · · · , Ud, R′a).

Note that conditioned on the fixing of (Y0, Y
′

0), we have that (X,X ′) and (Y, Y ′) are still
independent, and furthermore (R0, R

′
0, · · · , Ra, R′a) is a deterministic function of (X,X ′). Also the

average conditional min-entropy of Y is at least d2 − 2 · 4a · d = ca·log
1
a L · d > 3d2/4 for a large

enough constant c. Thus by Theorem 2.7 we have that

(Z,R0) ≈ε (Ud2/2, R0).
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We can now fix (R0, R0). Note that now (Z0, Z
′
0) is a deterministic function of (Y, Y ′), and

d2/2 > 1
2c
a·log

1
a L · d. Note that now (R1, R

′
1, · · · , Ra, R′a) still satisfies the look-ahead property.

Thus as long as c is large enough, by Lemma 4.7 we have that

(Z1, Z
′
1, · · · , Z`, Z ′`, X0, X

′
0) ≈O(`ε) (Ud,W

′
1, · · · , Ud,W ′`, X0, X

′
0).

We can now fix (X0, X
′
0), and note that conditioned on this fixing (Z1, Z

′
1, · · · , Z`, Z ′`) is a

deterministic function of (Y, Y ′). In summary, conditioned on the fixing of (X0, X
′
0, Y0, Y

′
0), we have

that (V̂ , V̂ ′)and (Z1, Z
′
1, · · · , Z`, Z ′`) satisfy the conditions required by Lemma 4.5. Therefore we can

now apply that lemma to finish the proof. The total error is at most O(Lε)+O(a2ε)+O(ε)+O(`ε) =
O(Lε).

The extreme case of the above construction gives the following NIPM.

Construction 4.10. NIPMx (which is strong in Y ) or NIPMy (which is strong in X).
Inputs:

• An error parameter ε > 0.

• A random variable V supported on a boolean L×m matrix.

• A uniform string X on n bits.

• A uniform string Y on n′ bits.

Output: NIPMx outputs a random variable Wx ∈ {0, 1}m, and NIPMy outputs Wy ∈ {0, 1}O(log(n/ε)).

1. Let d1 = c log(n′/ε) and d2 = c log(n/ε). Take a slice X0 of X with length 10 log logL · d1,
and a slice Y0 of Y with length 10 log logL · d2.

2. Use X0 and Y0 to do an alternating extraction protocol, and output (R0, R1, · · · , Rt) =
laExt(X0,Y0) where t = log logL and each Ri has 4d1 bits, each Si (used in the alternating
extraction) has d2 bits.

3. For each i ∈ [L], compute Yi = Ext(Y0, Vi) where each Yi outputs d2 bits. Then compute
V i = Ext(X,Yi) where each V i outputs m bits. Here Ext is the strong seeded extractor from
Theorem 2.7. Let V be the matrix whose i’th row is V i.

4. Let Y0
1 = Y. For j = 0 to log logL do the following. For h = 1 to 2j , use Yj

h and Rj
to do an alternating extraction protocol, and output (Sjh1, S

j
h2) = laExt(Yj

h, Rj), where each

Sjhi has ( loglog a L
aj−1 − 1)d2 bits. Note that altogether we get 2j+1 outputs and relabel them as

Yj+1
1 , · · · ,Yj+1

2j+1 .

5. After the previous step, we get 2 logL outputs. Let them be Y1, · · · ,Y2 logL, and output
Wx = NIPM(V ,X,Y1, · · · ,Y2 logL) with m bits. Let Wy = Ext(Y,Wx) with d2 bits.

We now have the following lemma.

Lemma 4.11. There is a constant c > 1 such that suppose we have the following random variables
and conditions:
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• V, V ′, each supported on a boolean L ×m matrix s.t for any i ∈ [L], Vi = Um. In addition,
there exists an h ∈ [L] such that (Vh, V

′
h) = (Um, V

′
h).

• Y,Y′, each supported on n′ bits, where Y is uniform.

• X,X′, each supported on n bits, where X is uniform. In addition, X is independent of (V, V ′),
and (V, V ′,X,X′) is independent of (Y,Y′).

• m ≥ c log(n′/ε), n ≥ 20c log logL log(n′/ε) + 6m and n′ ≥ 20c loglog a L log(n/ε).

Let (Wx,Wy) be the outputs of (NIPMx,NIPMy) on (V,X,Y) and (W′
x,W

′
y) be the outputs of

the (NIPMx,NIPMy) on (V ′,X′,Y′). Then

(Wx,W
′
x,Y,Y′) ≈O(Lε) (Um,W

′
x,Y,Y′)

and

(Wy,W
′
y, V, V

′,X,X′) ≈O(Lε) (UO(log(n/ε)),W
′
y, V, V

′,X,X′).

Proof. First, since (V, V ′,X,X′) is independent of (Y,Y′), as long as c is large enough, by Theo-
rem 2.7 we know that for any i ∈ [L],

(Yi, V ) ≈ε (Ud, V ).

In addition, suppose for some h ∈ [L] we have that (Vh, V
′
h) = (Um, V

′
h), then we can first fix V ′h

and then Yh. Conditioned on this fixing Vh is still uniform, the average conditional min-entropy
of Y0 is at least 10 log logL · d− d > 3d and Vh and Y0 are still independent, thus by Theorem 2.7
we have that

(Yh,Y
′
h, V, V

′) ≈ε (Ud,Y
′
h, V, V

′).

In other words, the random variables {(Yi,Y
′
i)} inherit the properties of {(Vi, V ′i )}. We now ignore

the errors since this adds at most Lε to the final error. Now we fix (V, V ′). Note that conditioned

on this fixing, the random variables (Yi,Y
′
i) are deterministic functions of (Y0,Y

′
0), and are thus

independent of (X,X′). Furthermore, we have that conditioned on this fixing, X is still uniform.
In addition, even conditioned on the fixing of (X0,X

′
0), the average conditional min-entropy of X

is at least 20c log logL log(n′/ε)+6m−2 ·10 log logL ·d1 = 6m. Thus by the same argument before
we have that for any i ∈ [L],

(V i,Y0,X0,X
′
0) ≈ε (Um,Y0,X0,X

′
0),

and that there exists an h ∈ [L] such that

(V h, V
′
h,Y0,Y

′
0,X0,X

′
0) ≈ε (Um, V

′
h,Y0,Y

′
0,X0,X

′
0).

We will again ignore the error for now since this adds at most Lε to the final error. Next, by
Lemma 3.2 we have that for any 0 ≤ j ≤ t− 1,

(Rj+1, (R1, R
′
1, · · · , Rj , R′j),Y0,Y

′
0) ≈O(tε) (U4d1 , (R1, R

′
1, · · · , Rj , R′j),Y0,Y

′
0).
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Thus by a hybrid argument and the triangle inequality, we have that

(Y0,Y
′
0, R1, R

′
1, · · · , Rt, R′t) ≈O(t2ε) (Y0,Y

′
0, U4d1 , R

′
1, · · · , U4d1 , R

′
t),

where each U4d1 is independent of all the previous random variables (but may depend on later ran-
dom variables). From now on, we will proceed as if eachRj is uniform given (Y0,Y

′
0, {R1, R

′
1, · · · , Rj−1, R

′
j−1}),

since this only adds O(t2ε) to the final error.

Now we can fix (Y0,Y
′
0). Note that conditioned on this fixing, (V , V

′
, R1, R

′
1, · · · , Rt, R′t)

are deterministic functions of (V, V ′,X,X′), and thus independent of (Y,Y′). Also note that
conditioned on this fixing, the average conditional min-entropy of Y is at least 20 loglog a L · d2 −
2 · 10 log logL · d2 > a2 loglog a L · d2. We now prove the following claim.

Claim 4.12. Let Rj = (R1, · · · , Rj). Suppose that at the beginning of the j’th iteration, we have
that conditioned on the fixing of Rj−1, the following holds.

1. , (X,X′) is independent of (Y,Y′), and (Y1,Y
′
1, · · · ,Y2j ,Y

′
2j

) is a deterministic function
of (Y,Y′).

2. For every h ∈ [2j ], the average conditional min-entropy of Yh given (Y1,Y
′
1, · · · ,Yh−1,Y

′
h−1)

is at least ( loglog a L
aj−2 − 1)d2.

Then at the end of the j’th iteration, the following holds.

1. Conditioned on the fixing of Rj, (X,X′) is independent of (Y,Y′), and (Y1,Y
′
1, · · · ,Y2j+1 ,Y′2j+1)

is a deterministic function of (Y,Y′).

2. For every h ∈ [2j+1],

(Yh, (Y1,Y
′
1, · · · ,Yh−1,Y

′
h−1), Rj) ≈ε (U

( loglog a L

aj−1 −1)d2
, (Y1,Y

′
1, · · · ,Yh−1,Y

′
h−1), Rj).

Proof of the claim. First, since the computation in the j’th iteration only involves (Rj , R
′
j) and

(Y1,Y
′
1, · · · ,Y2j ,Y

′
2j

), and (Rj , R
′
j) is a deterministic function of (X,X′) conditioned on the fixing

of the previous random variables, we know that at the end of the j’th iteration, conditioned on the
fixing of (R1, · · · , Rj) we have that (X,X′) is independent of (Y,Y′), and (Y1,Y

′
1, · · · ,Y2j+1 ,Y′2j+1)

is a deterministic function of (Y,Y′).
Next, we use (Z1, Z

′
1, · · · , Z2j+1 , Z ′2j+1) to represent the outputs computed from (Rj , R

′
j) and

(Y1,Y
′
1, · · · ,Y2j ,Y

′
2j

), and assume that 2` − 1 ≤ h ≤ 2` for some `, then Zh is obtained from
Y`. We can now first fix (Y1,Y

′
1, · · · ,Y`−1,Y

′
`−1), and conditioned on this fixing Y` has average

conditional min-entropy at least ( loglog a L
aj−2 − 1)d2. Now by Lemma 3.2 we have that

(S`1, Rj , R
′
j) ≈ε (U

( loglog a L

aj−1 −1)d2
, Rj , R

′
j)

and

(S`2, S
`
1, S
′`
1 , Rj , R

′
j) ≈ε (U

( loglog a L

aj−1 −1)d2
, S`1, S

′`
1 , Rj , R

′
j),
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since ( loglog a L
aj−2 −1)d2 ≥ 2·( loglog a L

aj−1 −1)d2+(1+α)( loglog a L
aj−1 −1)d2+d2 and 4d1 ≥ 2d1+1.1d1+0.9d1.

Thus as long as the constant c is large enough one can make sure that min{d2, 0.9d1} ≥ 2 log(1/ε),

and we can extract ( loglog a L
aj−1 − 1)d2 bits from entropy (1 + α)( loglog a L

aj−1 − 1)d2 and d1 bits from
entropy 1.1d1. Note that (Z1, Z

′
1, · · · , Z2`−2, Z

′
2`−2) are computed from (Y1,Y

′
1, · · · ,Y`−1,Y

′
`−1)

and (Rj , R
′
j), and (Y1,Y

′
1, · · · ,Y`−1,Y

′
`−1) are already fixed. Thus the second part of the claim

also holds.

Now note that at the beginning of the first iteration, the condition of the claim holds. Thus if
we ignore the errors, then we can apply the claim repeatedly until the end of the iteration. At this

time for each h ∈ [logL] we have that Yh has at least ( loglog a L
alog log L−1 − 1)d2 > d2 bits. Furthermore

(Yh, (Y1,Y
′
1, · · · ,Yh−1,Y

′
h−1), Rt) ≈ (U, (Y1,Y

′
1, · · · ,Yh−1,Y

′
h−1), Rt).

The total error so far is O(Lε) +O(t2ε) +
∑log logL

j=0 2j · 2ε = O(Lε). Note that now conditioned

on all the fixed random variables (X0,X
′
0,Y0,Y

′
0, Rt) (note that Rt is a deterministic function of

(X0,X
′
0,Y0,Y

′
0), we have that (V, V ′,Y1,Y

′
1, · · · ,Y2 logL,Y

′
2 logL,X,X

′) satisfies the conditions of
the Lemma 4.5, since the average conditional min-entropy of X is at least n−20 log logL ·d1 ≥ 6m.
Now we can apply Lemma 4.5 to show that

(Wx,W
′
x,Y,Y′) ≈ (Um,W

′
x,Y,Y′),

where the total error is O(Lε) + O(Lε) = O(Lε). Furthermore, note that conditioned on
the fixing of (Y1,Y

′
1, · · · ,Y2 logL,Y

′
2 logL), we have that (Wx,W

′
x) is a deterministic function of

(V, V ′,X,X′), and thus independent of (Y,Y′). Also note that Y has average conditional min-
entropy at least 20c loglog a L log(n/ε)− 4 logLd2 > 10d2. Thus by Theorem 2.7 we have that

(Wy,W
′
y,Wx,W

′
x) ≈ (Ud2 ,W

′
y,Wx,W

′
x),

where the error is O(Lε) + O(ε) = O(Lε). Note that given (Wx,W
′
x), we have that (Wy,W

′
y) is

a deterministic function of (Y,Y′). Thus we also have that

(Wy,W
′
y, V, V

′,X,X′) ≈O(Lε) (Ud2 ,W
′
y, V, V

′,X,X′).

5 Correlation Breaker with Advice

We now use our non-malleable independence preserving mergers to construct improved correlation
breakers with advice. A correlation breaker uses independent randomness to break the correlations
between several correlated random variables. The first correlation breaker appears implicitly in
the author’s work [Li13a], and this object is strengthened and formally defined in [Coh15]. A
correlation breaker with advice additionally uses some string as an advice. This object was first
introduced and used without its name in [CGL16], and then explicitly defined in [Coh16b].

Definition 5.1 (Correlation breaker with advice). A function

AdvCB : {0, 1}n × {0, 1}d × {0, 1}L → {0, 1}m
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is called a (k, k′, ε)-correlation breaker with advice if the following holds. Let Y, Y ′ be d-bit random
variables such that H∞(Y ) ≥ k′. Let X,X ′ be n-bit random variables with H∞(X) ≥ k, such that
(X,X ′) is independent of (Y, Y ′). Then, for any pair of distinct L-bit strings α, α′,

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′)) ≈ε (U,AdvCB(X ′, Y ′, α′)).

In addition, we say that AdvCB is strong if

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′), Y, Y ′)

≈ε(U,AdvCB(X ′, Y ′, α′), Y, Y ′).

Our construction needs the following flip-flop extraction scheme, which was constructed by
Cohen [Coh15] using alternating extraction, based on a previous similar construction of the author
[Li13a]. The flip-flop function can be viewed as a basic correlation breaker, which (informally) uses
an independent source X to break the correlation between two r.v’s Y and Y′, given an advice bit.

Theorem 5.2 ([Coh15, CGL16]). There exists a constant c5.2 such that for all n > 0 and any
ε > 0, there exists an explicit function flip-flop : {0, 1}n × {0, 1}d → {0, 1}m, m = 0.4k, satisfying
the following: Let X be an (n, k)-source, and X′ be a random variable on n bits arbitrarily correlated
with X. Let Y be an independent uniform seed on d bits, and Y′ be a random variable on d bits
arbitrarily correlated with Y. Suppose (X,X′) is independent of (Y,Y′). If k, d > C5.2 log(n/ε),
then for any bit b,

|flip-flop(X,Y, b),Y,Y′ − Um,Y,Y′| 6 ε.

Furthermore, for any bits b, b′ with b 6= b′,

|flip-flop(X,Y, b),flip-flop(X′,Y′, b′),Y,Y′

− Um,flip-flop(X′,Y′, b′),Y,Y′| 6 ε.

5.1 Asymmetric correlation breaker

We will present correlation breakers that use general NIPMs. By plugging in various NIPMs this
gives different correlation breakers.

Construction 5.3. Inputs:

• Let `,m ∈ N be two integers, ε > 0 be an error parameter.

• X,Y , two independent sources on n bits and s bits respectively, with min-entropy at least
n− ` and s− `.

• an advice string α ∈ {0, 1}L.

• An (L, d1, d2, O(Lε))-NIPMx that is strong in Y .

• Let IP be the two source extractor from Theorem 2.8.

1. Let d′ = O(log(max{n, s}/ε)) be the seed length of the extractor from Theorem 2.7, and let
d = 8d′. Let X0 be a slice of X with length d+ 2`+ 2 log(1/ε), and Y 0 be a slice of Y with
length d+ 2`+ 2 log(1/ε).
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2. Compute Z = IP(X0, Y 0) and output d bits.

3. Use X and Z to do an alternating extraction, and output two random variables (X0, X1) =
laExt(X,Z) where each Xi has 3m bits.

4. Use Y and Z to do an alternating extraction, and output two random variables (Y0, Y1) =
laExt(Y, Z) where each Yi has 3d bits.

5. Use X1, Y1, α to obtain an L ×m matrix V , where for any i ∈ [L], Vi = flip-flop(X1, Y1, αi)
and outputs m bits.

6. Compute X̂ = Ext(X,Y0) and output n/2 bits. Compute Ŷ = Ext(Y,X0) and output s/2
bits. Here Ext is the strong seeded extractor from Theorem 2.7.

7. Output V̂ = NIPMx(V, X̂, Ŷ ).

We now have the following lemma.

Lemma 5.4. There exists a costant c > 1 such that the following holds. Suppose that there exists
an (L, d1, d2, O(Lε))-NIPM that is strong in Y which outputs m bits, then there exists an explicit
(n−`, s−`, O(Lε)) AdvCB : {0, 1}n×{0, 1}s×{0, 1}L → {0, 1}m as long as m ≥ c log(max{n, s}/ε),
n ≥ 20m+ 2d1 + 5`+ 4 log(1/ε) and s ≥ m+ 2d2 + 5`+ 4 log(1/ε).

Proof. Throughout the proof we will use letters with prime to denote the corresponding random
variables obtained from (X ′, Y ′, α′). First, notice that both X0 and Y 0 have min-entropy at least
d+ `+ 2 log(1/ε). Thus by Theorem 2.8 we have that

(Z,X0) ≈ε (Ud, X
0)

and

(Z, Y 0) ≈ε (Ud, Y
0).

We now ignore the error ε. Note that conditioned on the fixing of (X0, X ′0), (Z,Z ′) is a deter-
ministic function of (Y 0, Y ′0), and thus independent of (X,X ′). Moreover, the average conditional
min-entropy of X given this fixing is at least n − ` − 2(d + 2` + 2 log(1/ε)) ≥ 10m as long as c is
large enough. Thus by Lemma 3.2 (note that the extractor from Z side can use seed length d′) we
have that

(Y 0, Y ′0, X0, X
′
0, X1, X

′
1, Z, Z

′) ≈O(ε) (Y 0, Y ′0, U3m, X
′
0, Ud1 , X

′
1, Z, Z

′),

where each U3m is uniform given the previous random variables, but may depend on later random
variables. Similarly, note that conditioned on the fixing of (Y 0, Y ′0), (Z,Z ′) is a deterministic
function of (X0, X ′0), and thus independent of (Y, Y ′). Moreover, the average conditional min-
entropy of Y given this fixing is at least s− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 10d. Thus by Lemma 3.2
we have that

(Y0, Y
′

0 , Y1, Y
′

1 , Z, Z
′, X0, X ′0) ≈O(ε) (U3d, Y

′
0 , Ud2 , Y

′
1 , Z, Z

′, X0, X ′0),

where each U3d is uniform given the previous random variables, but may depend on later
random variables. We can now fix (X0, X ′0, Y 0, Y ′0), and conditioned on this fixing, we have that
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(X,X ′) and (Y, Y ′) are still independent, (X0, X
′
0, X1, X

′
1) is a deterministic function of (X,X ′), and

(Y0, Y
′

0 , Y1, Y
′

1) is a deterministic function of (Y, Y ′). Further they satisfy the look-ahead properties
in the previous two equations. We will ignore the error for now since this only adds at most O(ε)
to the final error.

We now claim that conditioned on the fixing of (X0, X
′
0, Y0, Y

′
0 , Y1, Y

′
1) (and ignoring the error),

the random variables (V, V ′, X̂, X̂ ′) and (Ŷ , Ŷ ′) satisfy the conditions required by Lemma 4.9. To
see this, note that if we fix (Y0, Y

′
0 , Y1, Y

′
1), then the average conditional min-entropy of Y is at least

s− `− 2(d+ 2`+ 2 log(1/ε))− 2 · 3d > 2s/3 as long as c is large enough. Thus by Theorem 2.7 we
have that

(Ŷ , X0, X
′
0) ≈ε (Us/2, X0, X

′
0).

Thus conditioned on the further fixing of (X0, X
′
0), we have that (Ŷ , Ŷ ′) is a deterministic

function of (Y, Y ′), and s/2 ≥ d2. On the other hand, conditioned on the fixing of (X0, X
′
0) and

(Y0, Y
′

0), we have X1 is still close to uniform. Thus by Theorem 5.2 we have that for any i ∈ [L],

|Vi, Y1, Y
′

1 − Um, Y1, Y
′

1 | 6 ε

and there exists i ∈ [L] such that

|Vi, V ′i , Y1, Y
′

1 − Um, V ′i , Y1, Y
′

1 | 6 ε.

We now further fix (Y1, Y
′

1). Note that conditioned on this fixing (X,X ′) and (Y, Y ′) are still
independent. Furthermore (V, V ′) is now a deterministic function of (X1, X

′
1), and thus independent

of (Y, Y ′). Finally, note that conditioned on the fixing of (X0, X
′
0, X1, X

′
1), the average conditional

min-entropy of X is at least n− `− 2(d+ 2`+ 2 log(1/ε))− 2 · 3m > 2n/3. Thus by Theorem 2.7
we have that

(X̂, Y0, Y
′

0) ≈ε (Un/2, Y0, Y
′

0).

Thus conditioned on the further fixing of (Y0, Y
′

0), we have that (X̂, X̂ ′) is a deterministic func-
tion of (X,X ′), and n/2 ≥ d1. Thus, even if conditioned on the fixing of (X0, X

′
0, X1, X

′
1, Y0, Y

′
0 , Y1, Y

′
1),

we have that (X̂ is close to Un/2. Since (V, V ′) is obtained from (X1, X
′
1, Y1, Y

′
1), we know that (X̂

is close to uniform even given (X0, X
′
0, Y0, Y

′
0 , Y1, Y

′
1) and (V, V ′). Thus by Lemma 4.9 we have that

(V̂ , V̂ ′, Y, Y ′) ≈ (Um, V̂ ′, Y, Y
′),

where the error is O(Lε) +O(Lε) +O(ε) = O(Lε).

Next we give another correlation breaker, which recycles the randomness used.

Construction 5.5. Inputs:

• Let `,m ∈ N be two integers, ε > 0 be an error parameter.

• X,Y , two independent sources on n bits with min-entropy at least n− `.

• an advice string α ∈ {0, 1}L and an integer 2 ≤ t ≤ L.

• An (L, d1, d2, O(Lε))-NIPMy that is strong in X.
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• Let IP be the two source extractor from Theorem 2.8.

1. Let d′ = O(log(n/ε)) be the seed length of the extractor from Theorem 2.7, and let d =
8 logL

log t d
′. Let X0 be a slice of X with length d+ 2`+ 2 log(1/ε), and Y 0 be a slice of Y with

length d+ 2`+ 2 log(1/ε).

2. Compute Z = IP(X0, Y 0) and output d bits.

3. Use X and Z to do an alternating extraction, and output 3 logL
log t + 1 random variables

X0, · · · , X3 log L
log t

where each Xi has d1 bits.

4. Use Y and Z to do an alternating extraction, and output two random variables Y0, Y1 where
each Yi has d2 bits.

5. Use X0, Y0, α to obtain an L×m matrix V 0, where for any i ∈ [L], V 0
i = flip-flop(X0, Y0, αi)

and outputs m bits.

6. For i = 1 to logL
log t do the following. Merge every t rows of V i−1 using NIPMy and (X3i−2, Yi),

and output d′ bits. Concatenate the outputs to become another matrix W i. Note that W i

has L/ti rows. Then for every row j ∈ [L/ti], compute V i
j = Ext(X3i,W

i
j ) to obtain a new

matrix V i. Finally let Yi+1 = Ext(Y,X3i−1) and output d2 bits.

7. Output V̂ = V
log L
log t .

We now have the following lemma.

Lemma 5.6. There exists a costant c > 1 such that the following holds. Suppose that for any
t ∈ N there exists an (t, d1, d2, O(tε))-NIPMy that is strong in X which outputs d′ = O(log(n/ε))
bits, then there exists an explicit (n − `, n − `, O(Lε)) correlation breaker with advice AdvCB :
{0, 1}n×{0, 1}n×{0, 1}L → {0, 1}m as long as d1 ≥ 4m, m ≥ c log(d2/ε), and n ≥ c logL

log t log(n/ε)+

max{8 logL
log t d1, 2t · d′ + 4d2}+ 5`+ 4 log(1/ε).

Proof. Throughout the proof we will use letters with prime to denote the corresponding random
variables obtained from (X ′, Y ′, α′). First, notice that both X0 and Y 0 have min-entropy at least
d+ `+ 2 log(1/ε). Thus by Theorem 2.8 we have that

(Z,X0) ≈ε (Ud, X
0)

and

(Z, Y 0) ≈ε (Ud, Y
0).

We now ignore the error ε. Note that conditioned on the fixing of (X0, X ′0), (Z,Z ′) is a deter-
ministic function of (Y 0, Y ′0), and thus independent of (X,X ′). Moreover, the average conditional
min-entropy of X given this fixing is at least n− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 8 logL

log t d1 as long as c

is large enough. Thus by Lemma 3.2 (note that the extractor from Z side can use seed length d′)
we have that
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(Y 0, Y ′0, Z, Z ′, X0, X
′
0, · · · , X3 log L

log t
, X ′

3 log L
log t

) ≈
O(( log L

log t
)2ε)

(Y 0, Y ′0, Z, Z ′, Ud1 , X
′
0, · · · , Ud1 , X

′
3 log L

log t

),

where each Ud1 is uniform given the previous random variables, but may depend on later random
variables. Similarly, note that conditioned on the fixing of (Y 0, Y ′0), (Z,Z ′) is a deterministic
function of (X0, X ′0), and thus independent of (Y, Y ′). Moreover, the average conditional min-
entropy of Y given this fixing is at least n− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 4d2. Thus by Lemma 3.2
we have that

(Z,Z ′, X0, X ′0, Y0, Y
′

0 , Y1, Y
′

1) ≈O(ε) (Z,Z ′, X0, X ′0, Ud2 , Y
′

0 , Ud2),

where each Ud2 is uniform given the previous random variables, but may depend on later
random variables. We can now fix (X0, X ′0, Y 0, Y ′0), and conditioned on this fixing, we have that
(X,X ′) and (Y, Y ′) are still independent, (X0, X

′
0, · · · , X3 log L

log t
, X ′

3 log L
log t

) is a deterministic function

of (X,X ′), and (Y0, Y
′

0 , Y1, Y
′

1) is a deterministic function of (Y, Y ′). Further they satisfy the look-
ahead properties in the previous two equations. We will ignore the error for now since this only
adds at most O(( logL

log t )2ε) to the final error.
Now by Theorem 5.2 we have that for any i ∈ [L],

|V 0
i , Y0, Y

′
0 − Um, Y0, Y

′
0 | 6 ε

and there exists i ∈ [L] such that

|V 0
i , V

′0
i , Y0, Y

′
0 − Um, V ′0i , Y0, Y

′
0 | 6 ε.

We now further fix (Y0, Y
′

0). Note that conditioned on this fixing (X,X ′) and (Y, Y ′) are still inde-
pendent. Furthermore (V 0, V ′0) is now a deterministic function of (X0, X

′
0), and thus independent

of (Y, Y ′). Thus by the property of NIPMy we have that for every row j in W 1,

(W 1
j , V

0, V ′0, X1, X
′
1) ≈O(tε) (Ud′ , V

0, V ′0, X1, X
′
1),

and there exists a row j such that

(W 1
j ,W

′1
j , V

0, V ′0, X1, X
′
1) ≈O(tε) (Ud′ ,W

′1
j , V

0, V ′0, X1, X
′
1).

Note that we have fixed (X0, X ′0, Y 0, Y ′0), and if we further condition on the fixing of (X0, X
′
0, Y0, Y

′
0 , X1, X

′
1),

then (W 1,W ′1) is a deterministic function of (Y, Y ′). Furthermore (X,X ′) and (Y, Y ′) are still in-
dependent. We will now use induction to prove the following claim (note that we have already fixed
(X0, X ′0, Y 0, Y ′0)).

Claim 5.7. Let Ti = (Y0, Y
′

0 , X0, X
′
0, · · · , X3i−2, X

′
3i−2). In the i’ th iteration, the following holds.

1. Conditioned on the further fixing of Ti, we have that (X,X ′) and (Y, Y ′) are still independent,
and furthermore (W i,W ′i) is a deterministic function of (Y, Y ′).

2. For every row j in W i,

(W i
j , Ti) ≈εi (Ud′ , Ti),
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and there exists a row j such that

(W i
j ,W

′i
j , Ti) ≈εi (Ud′ ,W

′i
j , Ti),

where εi = O(
∑i

j=1 t
jε).

Proof of the claim. The base case of i = 1 is already proved above. Now suppose the claim holds
for the i’th iteration, we show that it also holds for the i+ 1’th iteration.

To see this, note that conditioned on the fixing of Ti, (X,X ′) and (Y, Y ′) are still independent,
and furthermore (W i,W ′i) is a deterministic function of (Y, Y ′) and thus independent of (X,X ′).
Note that Yi+1 is computed from Y and X3i−1 while V i is computed from X3i and W i. Thus if we
further fix X3i−1, X

′
3i−1 and (W i,W ′i), then (X,X ′) and (Y, Y ′) are still independent, and further-

more Yi+1 is a deterministic function of Y and V i is a deterministic function of X3i. Now W i+1 is
computed from V i, X3i+1 and Yi+1. Thus if we further fix (X3i, X

′
3i) and (X3i+1, X

′
3i+1) (i.e., we

have fixed Ti+1) then (X,X ′) and (Y, Y ′) are still independent, and furthermore (W i+1,W ′i+1) is
a deterministic function of (Y, Y ′).

Next, let h be the row in W i such that

(W i
h,W

′i
h , Ti) ≈εi (Ud′ ,W

′i
h , Ti).

Note that V i has the same number of rows as W i, and consider the merging of some t rows in
V i that contain row h into W i+1

j (the merging of the other rows is similar and simpler). Without
loss of generality assume that these t rows are row 1, 2, · · · , t.

First, since for every row j in W i,

(W i
j , Ti) ≈εi (Ud′ , Ti),

and rows h in W i and W ′i satisfy the independence property, by Theorem 2.7 (and ignoring
the error εi) we have that for every j ∈ [t],

(V i
j , Ti, X3i−1, X

′
3i−1,W

i
j ,W

′i
j ) ≈ε (Um, Ti, X3i−1, X

′
3i−1,W

i
j ,W

′i
j ),

and

(V i
h , V

′i
h , Ti, X3i−1, X

′
3i−1,W

i
j ,W

′i
j ) ≈ε (Um, V

′i
h , Ti, X3i−1, X

′
3i−1,W

i
j ,W

′i
j ).

This is because X3i has average conditional min-entropy at least d1 even conditioned on the
fixing of (X3i−1, X

′
3i−1). We now ignore the error ε. Note that conditioned on the fixing of (W i

j ,W
′i
j ),

we have that (V i
j , V

′i
j ) is a deterministic function of (X3i, X

′
3i), and thus independent of (Y, Y ′).

We now fix {(W i
j ,W

′i
j ), j ∈ [t]}. Note that conditioned on this fixing {V i

j , j ∈ [t]} and {V ′ij , j ∈ [t]}
each is a t×m matrix, and a deterministic function of (X3i, X

′
3i). Further note that they form two

matrices that meet the condition to apply an NIPM. Since {(W i
j ,W

′i
j ), j ∈ [t]} is a deterministic

function of (Y, Y ′), conditioned on this fixing (X,X ′) and (Y, Y ′) are still independent. Furthermore
the average conditional min-entropy of Y is at least n− `−2(d+2`+2 log(1/ε))−2d2−2td′ ≥ 2d2.
Thus by Theorem 2.7 we have that

(Yi+1, X3i−1) ≈ε (Ud2 , X3i−1).
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Note that conditioned on the fixing of X3i−1, we have that Yi+1 is a deterministic function of
Y . Thus we can now further fix (X3i−1, X

′
3i−1), and conditioned on this fixing, Yi+1 is still close

to uniform. To conclude, now conditioned on the fixing of {(W i
j ,W

′i
j ), j ∈ [t]} and (X3i−1, X

′
3i−1),

we have that {V i
j , j ∈ [t]} and {V ′ij , j ∈ [t]} each is a t ×m matrix, and a deterministic function

of (X3i, X
′
3i); Yi+1 is still close to uniform and (Yi+1, Y

′
i+1) is a deterministic function of (Y, Y ′).

Furthermore X3i+1 is close to uniform. Now we can use the property of NIPMy to show that after
merging these t rows, the corresponding row j in W i+1 satisfies

(W i+1
j ,W ′i+1

j , Ti, X3i−1, X
′
3i−1, X3i, X

′
3i, X3i+1, X

′
3i+1)

≈tε(Ud′ ,W ′i+1
j , Ti, X3i−1, X

′
3i−1, X3i, X

′
3i, X3i+1, X

′
3i+1).

Adding back all the errors we get that

(W i+1
j ,W ′i+1

j , Ti+1) ≈εi+1 (Ud′ ,W
′i+1
j , Ti+1),

where εi+1 = tεi +O(tε) = O(
∑i+1

j=1 t
jε).

Now we are basically done. In the last iteration we know that W
log L
log t has reduced to one row,

and W
log L
log t is close to uniform given W

′ log L
log t . Also conditioned on the fixing of T log L

log t
they are

deterministic functions of (Y, Y ′). Thus when we use W
log L
log t to extract V

log L
log t from X

3 log L
log t

, by

Theorem 2.7 we have that

(V̂ , V̂ ′, Y, Y ′) ≈ (Um, V̂ ′, Y, Y
′),

where the error is O(
∑ log L

log t

j=1 tjε) +O(( logL
log t )2ε) = O(Lε).

6 The Constructions of Non-Malleable Extractors

In this section we construct our improved seeded non-malleable extractors and seedless non-
malleable extractors. Both the constructions follow the general approach developed in recent works
[CGL16, CL16, Coh16a, Li17], i.e., first obtaining an advice and then applying an appropriate
correlation breaker with advice. First we need the following advice generator from [CGL16].

Theorem 6.1 ([CGL16]). There exist a constant c > 0 such that for all n > 0 and any ε > 0,
there exists an explicit function AdvGen : {0, 1}n × {0, 1}d → {0, 1}L with L = c log(n/ε) satisfying
the following: Let X be an (n, k)-source, and Y be an independent uniform seed on d bits. Let
Y ′ be a random variable on d bits s.t Y ′ 6= Y , and (Y, Y ′) is independent of X. Then with
probability at least 1 − ε, AdvGen(X,Y ) 6= AdvGen(X,Y ′). Moreover, there is a deterministic
function g such that AdvGen(X,Y ) is computed as follows. Let Y1 be a small slice of Y with length
O(log(n/ε)), compute Z = Ext(X,Y1) where Ext is an optimal seeded extractor from Theorem 2.7
which outputs O(log(n/ε)) bits. Finally compute Y2 = g(Y,Z) which outputs O(log(1/ε)) bits and
let AdvGen(X,Y ) = (Y1, Y2).

For two independent sources we also have the following slightly different advice generator.
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Theorem 6.2 ([CGL16]). There exist constants 0 < γ < β < 1 such that for all n > 0 and any
ε ≥ ε′ for some ε′ = 2−Ω(n), there exists an explicit function AdvGen : {0, 1}n × {0, 1}n → {0, 1}L
with L = 2βn + O(log(1/ε)) satisfying the following: Let X,Y be two independent (n, (1 − γ)n)-
sources, and (X ′, Y ′) be some tampered versions of (X,Y ), such that (X,X ′) is independent of
(Y, Y ′). Furthermore either X 6= X ′ or Y 6= Y ′. Then with probability at least 1−ε, AdvGen(X,Y ) 6=
AdvGen(X ′, Y ′). Moreover, there is a deterministic function g such that AdvGen(X,Y ) is com-
puted as follows. Let X1, Y1 be two small slice of X,Y respectively, with length βn, compute
Z = IP(X,Y1) where IP is the inner product two source extractor from Theorem 2.8 which out-
puts Ω(n) bits. Finally compute X2 = g(X,Z), Y2 = g(Y,Z) which both output O(log(1/ε)) bits and
let AdvGen(X,Y ) = (X1, X2, Y1, Y2).

By using these advice generators, the general approach of constructing seeded non-malleable
extractors and seedless non-malleable extractors can be summarized in the following two theorems.

Theorem 6.3. [CGL16, CL16, Coh16a, Li17] There is a constant c > 1 such that for any n, k, d ∈
N and ε1, ε2 > 0, if there is a (k− c log(n/ε1), d− c log(n/ε1), ε2) advice correlation breaker AdvCB :
{0, 1}k×{0, 1}d×{0, 1}c log(n/ε1) → {0, 1}m, then there exists an (O(k), ε1+ε2) seeded non-malleable
extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m. Furthermore if m ≥ c log(d/ε1) then there exists an
(O(k), ε1 + ε2) seeded non-malleable extractor nmExt : {0, 1}n × {0, 1}O(d) → {0, 1}Ω(k).

Sketch. The seeded non-malleable extractor is constructed as follows. First use the seed and the
source to obtain an advice as in Theorem 6.1 with error ε1/3, however when we compute Z =
Ext(X,Y1) we in fact output Z1 = Ext(X,Y1) with k bits and choose Z to be a small slice of Z1

with length O(log(n/ε)). Then we can fix the random variables (Y1, Y
′

1 , Z, Z
′, Y2, Y

′
2). Note that

conditioned on this fixing (X,X ′) is still independent of (Y, Y ′), and (Z1, Z
′
1) is a deterministic

function of (X,X ′) thus is independent of (Y, Y ′). Furthermore with probability 1 − ε1/3, Z1 has
min-entropy at least k − O(log(n/ε1)) and Y has min-entropy at least d − O(log(n/ε1)). We can
now apply the correlation breaker to (Z1, Y ) and the advice to get the desired output, where the
total error is at most ε1/3 + ε1/3 + ε1/3 + ε2 = ε1 + ε2. If the output m is large enough (i.e.,
m ≥ c log(d/ε1)), then we can use it to extract from Y and then extract again from Z1 to increase
the output length to Ω(k).

Theorem 6.4. [CGL16, CL16, Coh16a, Li17] There are constants c > 1, 0 < γ < β < 1/100 such
that for any n ∈ N and ε1, ε2 > 0, if there is a ((1− 2β)n− c log(n/ε1), (1− 2β)n− c log(n/ε1), ε2)
advice correlation breaker AdvCB : {0, 1}n×{0, 1}n×{0, 1}2βn+c log(1/ε1) → {0, 1}m, then there exists
an ((1−γ)n, (1−γ)n, ε1+ε2) non-malleable two source extractor nmExt : {0, 1}n×{0, 1}n → {0, 1}m.
Furthermore if m ≥ c log(n/ε1) then there exists an ((1− γ)n, (1− γ)n, ε1 + ε2) non-malleable two
source extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}Ω(n).

Sketch. The non-malleable two-source extractor is constructed as follows. First use the two inde-
pendent sources (X,Y ) to obtain an advice as in Theorem 6.2 with error ε1/3, then we can fix the
random variables (X1, X

′
1, Y1, Y

′
1 , X2, X

′
2, Y2, Y

′
2). Note that conditioned on this fixing (X,X ′) is

still independent of (Y, Y ′), furthermore with probability 1− ε1/3, both X and Y have min-entropy
at least (1 − γ)n − βn − c log(1/ε1) ≥ (1 − 2β)n − c log(1/ε1). We can now apply the correla-
tion breaker to (X,Y ) and the advice to get the desired output, where the total error is at most
ε1/3+ε1/3+ε1/3+ε2 = ε1 +ε2. If the output m is large enough (i.e., m ≥ c log(d/ε1)), then we can
use it to extract from Y and then extract again from X to increase the output length to Ω(n).
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Combined with our new correlation breakers with advice, we have the following new construc-
tions of non-malleable extractors.

Theorem 6.5. There exists a constant C > 1 such that for any constant a ∈ N, a ≥ 2, any
n, k ∈ N and any 0 < ε < 1 with k ≥ C(log n + a log(1/ε)), there is an explicit construction
of a strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n) +

log(1/ε)2O(a(log log(1/ε))
1
a ) and m = Ω(k). Alternatively, we can also achieve entropy k ≥ C log n+

log(1/ε)2C·a(log log(1/ε))
1
a and d = O(log n+ a log(1/ε)).

Proof. The theorem is obtained by combining Theorem 6.3, Lemma 5.4 and Lemma 4.9. We choose
an error ε′ to be the error in Theorem 6.3, Lemma 5.4 and Lemma 4.9. Thus the total error is
O(Lε′) where L = O(log(n/ε′)). To ensure O(Lε′) = ε it suffices to take ε′ = ε

c log(n/ε) for some

constant c > 1. We know ` = O(log(n/ε′)). Therefore to apply Lemma 5.4 and Lemma 4.9, we
need to find m, d′, d1, d2 such that

d′ ≥ c(log max{d1, d2}+ log(1/ε′)),m ≥ d′, d1 ≥ 8a · d′ + 6m and d2 ≥ 8a · d′ + ca·log
1
a L · d′.

Then we can take

k = O(d1 +m+ `+ log(1/ε′)) and d = O(d2 +m+ `+ log(1/ε′)).

It can be seen that we can take m = O(log(n/ε′)), d′ = O(log log n + log(1/ε′)), d1 = 8a · d′ +
6m = O(log n + a log(1/ε′)) and d2 = 2O(a(log log(n/ε′))

1
a ) · d′. We now consider two cases. First,

log(1/ε′) > logn

c′a(log log n)
1
a

for some large constant c′. In this case we have that

log(1/ε′) >
log n

c′a(log logn)
1
a

>
√

log n

for any a ≥ 2. Thus

log log(n/ε′)) = log(log n+ log(1/ε′)) < log(log2(1/ε′) + log(1/ε′)) < 2 log log(1/ε′) + 1.

Also note that d′ = O(log log n + log(1/ε′)) = O(log(1/ε′)). Thus in this case we have

d2 ≤ O(log(1/ε′))2O(a(log log(1/ε′))
1
a ) = log(1/ε′)2O(a(log log(1/ε′))

1
a ). Next, consider the case where

log(1/ε′) ≤ logn

c′a(log log n)
1
a

. In this case note that we have log(1/ε′) < log n and thus 2O(a(log log(n/ε′))
1
a ) <

2O(a(log log(n))
1
a ). Therefore when c′ is large enough and a ≥ 2 we have that

d2 ≤ 2O(a(log log(n))
1
a )(log log n+ log(1/ε′)) ≤ log n.

Therefore altogether we have that d2 ≤ (log n+log(1/ε′)2O(a(log log(1/ε′))
1
a )) and d = O(d2 +m+

`+ log(1/ε′)) = O(log n) + log(1/ε′)2O(a(log log(1/ε′))
1
a ). Note that log(1/ε′) = log(1/ε) + log(log n+

log(1/ε)) +O(1), a careful analysis similar as above shows that we also have that

d = O(log n) + log(1/ε)2O(a(log log(1/ε))
1
a ).
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Note that the correlation breaker is completely symmetric to both sources, and the only differ-
ence is in generating the advice. Thus after advice generation which costs both sources O(log(n/ε))
entropy, we can switch the role of the seed and the source. Therefore we can also get the other

setting of parameters where k ≥ C log n+log(1/ε)2C·a(log log(1/ε))
1
a and d = O(log n+a log(1/ε)).

By using this theorem, we can actually improve the entropy requirement of the non-malleable
extractor. Specifically, we have the following theorem.

Theorem 6.6. There exists a constant C > 1 such that for any constant a ∈ N, a ≥ 2, any
n, k ∈ N and any 0 < ε < 1 with k ≥ C(log log n + a log(1/ε)), there is an explicit construction
of a strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n) +

log(1/ε)2O(a(log log(1/ε))
1
a ) and m = Ω(k). Alternatively, we can also achieve entropy k ≥ C log logn+

log(1/ε)2C·a(log log(1/ε))
1
a and d = O(log n+ a log(1/ε)).

Proof. We start by taking a slice of the seed Y1 with length O(log(n/ε)) to extract from the source,
and output some k′ = 0.9k uniform bits with error ε/2. Note that conditioned on the fixing of
(Y1, Y

′
1) where Y ′1 is the tampered version, the two sources are still independent, and the seed now

has average conditional entropy at least d − O(log(n/ε)). We now switch the role of the seed and
the source, and use the output of the extractor from the source as the seed of a non-malleable
extractor and apply Theorem 6.5 with error ε/2, so that the final error is ε.

Note that now we know the original seed is different from its tampered version, so we only need
to obtain advice from the original seed and thus the advice size is O(log(d/ε)). Now we only need

k ≥ C(log d+ a log(1/ε))

and

d−O(log(n/ε)) ≥ C log k + log(1/ε)2C·a(log log(1/ε))
1
a .

Thus we can choose
k ≥ C ′(log log n+ a log(1/ε))

for some slightly larger constant C ′ > 1, while the requirement of the seed is still

d = O(log n) + log(1/ε)2O(a(log log(1/ε))
1
a ).

Similarly, we can switch the role of the seed and the source to get the other setting of parameters.

The next theorem improves the seed length, at the price of using a slightly larger entropy.

Theorem 6.7. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε < 1 with
k ≥ C(log n + log(1/ε) log log log(1/ε)), there is an explicit construction of a strong seeded (k, ε)
non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)(log log(1/ε))2) and
m = Ω(k).
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Proof. The theorem is obtained by combining Theorem 6.3, Lemma 5.4 and Lemma 4.11. Again,
We choose an error ε′ to be the error in Theorem 6.3, Lemma 5.4 and Lemma 4.11. Thus the total
error is O(Lε′) where L = O(log(n/ε′)). To ensure O(Lε′) = ε it suffices to take ε′ = ε

c log(n/ε) for

some constant c > 1. We also know ` = O(log(n/ε′)) in Lemma 5.4. Thus to apply Lemma 4.11,
we need to find m, d1, d2 such that (for simplicity, we choose a = 4 in Lemma 4.11),

m ≥ c log(d2/ε
′), d1 ≥ 20c log logL log(d2/ε

′) + 6m and d2 ≥ 20c log2 L log(d1/ε
′).

Then we can take

k = O(d1 +m+ `+ log(1/ε′)) and d = O(d2 +m+ `+ log(1/ε′)).

A careful but tedious calculation shows that we can choose k ≥ C(log n+ log(1/ε′) log log log(1/ε′))
for some large enough constant C > 1, and d = O(log n + log(1/ε′)(log log(1/ε′))2). Note that we
can choose m = O(log(n/ε′)) for a large enough constant in O(.), thus by Theorem 6.3 we can get
an output length of Ω(k). Finally, note that log(n/ε′) = O(log(n/ε)), thus the theorem follows.

Similar to what we have done above, we can also use this to get improved parameters. Specifi-
cally, we have

Theorem 6.8. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε < 1 with
k ≥ C(log log n+ log(1/ε) log log log(1/ε)), there is an explicit construction of a strong seeded (k, ε)
non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)(log log(1/ε))2) and
m = Ω(k). Alternatively, we can also achieve entropy k ≥ C(log log n + log(1/ε)(log log(1/ε))2)
and seed length d = O(log n+ log(1/ε) log log log(1/ε)).

For non-malleable two-source extractors we have the following theorem.

Theorem 6.9. There exists a constant 0 < γ < 1 and a non-malleable two-source extractor for
(n, (1− γ)n) sources with error 2−Ω(n log logn/ logn) and output length Ω(n).

Proof. The theorem is obtained by combining Theorem 6.4, Lemma 5.6 and Lemma 4.9. Again,
we choose an error ε′ to be the error in Theorem 6.3, Lemma 5.4 and Lemma 4.11. Thus the total
error is O(Lε′) where L = O(n). To ensure O(Lε′) = ε it suffices to take ε′ = ε

cn for some constant
c. We also know ` = 2βn + o(n) for some constant β < 1/100 in Lemma 5.6. We choose a = 2
in Lemma 4.9 and thus we obtain a correlation breaker with m = O(log(n/ε′)), d1 = O(log(n/ε′))
and d2 = log(n/ε′)2O(

√
log t) where t is the parameter in Construction 5.5 with t ≤ L. Note that

this also satisfies that d1 ≥ 4m and m ≥ c log(d2/ε) as required by Lemma 5.6.
Now we need to ensure that

(1− β)n ≥ c logL

log t
log(n/ε′) +max{8logL

log t
d1, 2t · d′ + 4d2}+ 5`+ 4 log(1/ε′),

where d′ = O(log(n/ε′)). We choose t = logL
log logL and this gives us

(1− 12β)n ≥ C logL

log logL
log(n/ε′),

for some constant C > 1. Note that log(n/ε′) = O(log(n/ε)) thus we can set ε = 2−Ω(n log logn/ logn)

and satisfy the above inequality.
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For applications in two-source extractors, we first need the following generalization of non-
malleable extractors, which allows multiple tampering.

Definition 6.10 (Seeded t-Non-malleable extractor). A function snmExt : {0, 1}n × {0, 1}d →
{0, 1}m is a seeded t-non-malleable extractor for min-entropy k and error ε if the following holds :
If X is a source on {0, 1}n with min-entropy k and A1, · · · ,At : {0, 1}d → {0, 1}d are t arbitrary
tampering functions with no fixed points, then

|snmExt(X,Ud) ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud − Um ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud| < ε

where Um is independent of Ud and X.

The following theorem is a special case of Theorem 8.6 proved in [Li17].

Theorem 6.11. Suppose there is a function f , a constant γ > 0 and an explicit non-malleable
two-source extractor for (f(ε), (1 − γ)f(ε)) sources with error ε and output length Ω(f(ε)). Then
there is a constant C > 0 such that for any 0 < ε < 1 with k ≥ Ct2(log n+f(ε)), there is an explicit
strong seeded t-non-malleable extractor for (n, k) sources with seed length d = Ct2(log n + f(ε)),
error O(tε) and output length Ω(f(ε)).

Combined with Theorem 6.9, this immediately gives the following theorem.

Theorem 6.12. There is a constant C > 0 such that for any 0 < ε < 1 and n, k ∈ N with
k ≥ Ct2(log n + log(1/ε) log log(1/ε)

log log log(1/ε) ), there is an explicit strong seeded t-non-malleable extractor for

(n, k) sources with seed length d = Ct2(log n + log(1/ε) log log(1/ε)
log log log(1/ε) ), error O(tε) and output length

Ω(k/t2). As a special case, there exists a seeded non-malleable extractor for entropy k ≥ C(log n+
log(1/ε) log log(1/ε)

log log log(1/ε) ) and seed length d = C(log n+ log(1/ε) log log(1/ε)
log log log(1/ε) ).

Similar techniques as above can reduce the logn term in the entropy requirement to log log n,
so we get

Theorem 6.13. There is a constant C > 0 such that for any 0 < ε < 1 and n, k ∈ N with
k ≥ C(log log n + log(1/ε) log log(1/ε)

log log log(1/ε) ), there is an explicit strong seeded non-malleable extractor for

(n, k) sources with seed length and seed length d = C(log n+ log(1/ε) log log(1/ε)
log log log(1/ε) ).

Ben-Aroya et. al [BADTS17] proved the following theorem.

Theorem 6.14. [BADTS17] Suppose there is a function f and an explicit strong seeded t-non-
malleable extractor (n, k′) sources with seed length and entropy requirement d = k′ = f(t, ε), then
for every constant ε > 0 there exist constants t = t(ε), c = c(ε) and an explicit extractor Ext :
({0, 1}n)2 → {0, 1} for two independent (n, k) sources with k ≥ f(t, 1/nc) and error ε.

Combined with Theorem 6.7, this immediately gives the following theorem.

Theorem 6.15. For every constant ε > 0, there exists a constant C > 1 and an explicit two source
extractor Ext : ({0, 1}n)2 → {0, 1} for entropy k ≥ C logn log logn

log log logn with error ε.
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7 Non-Malleable Two-Source Extractor and Non-Malleable Code

Formally, non-malleable codes are defined as follows.

Definition 7.1. [ADKO15] Let NMk denote the set of trivial manipulation functions on k-bit
strings, which consists of the identity function I(x) = x and all constant functions fc(x) = c,
where c ∈ {0, 1}k. Let E : {0, 1}k → {0, 1}m be an efficient randomized encoding function, and
D : {0, 1}m → {0, 1}k be an efficient deterministic decoding function. Let F : {0, 1}m → {0, 1}m be
some class of functions. We say that the pair (E,D) defines an (F , k, ε)-non-malleable code, if for
all f ∈ F there exists a probability distribution G over NMk, such that for all x ∈ {0, 1}k, we have

|D(f(E(x)))−G(x)| ≤ ε.

Remark 7.2. The above definition is slightly different form the original definition in [DPW10].
However, [ADKO15] shows that the two definitions are equivalent.

We will mainly be focusing on the following family of tampering functions in this paper.

Definition 7.3. Given any t > 1, let Stn denote the tampering family in the t-split-state-model,
where the adversary applies t arbitrarily correlated functions h1, · · · , ht to t separate, n-bit parts
of string. Each hi can only be applied to the i-th part individually.

We remark that even though the functions h1, · · · , ht can be correlated, their correlation is
independent of the original codewords. Thus, they are actually a convex combination of independent
functions, applied to each part of the codeword. Therefore, without loss of generality we can assume
that each hi is a deterministic function, which acts on the i-th part of the codeword individually.We
will mainly consider the case of t = 2, i.e., the two-split-state model. We recall the original definition
of non-malleable two-source extractors by Cheraghchi and Gursuswami [CG14b]. First we define
the following function.

copy(x, y) =

{
x if x 6= same?

y if x = same?

Definition 7.4 (Seedless Non-Malleable 2-Source Extractor). A function nmExt : ({0, 1}n)2 →
{0, 1}m is a (k, ε)-seedless non-malleable extractor for two independent sources, if it satisfies the
following property: Let X,Y be two independent (n, k) sources, and f1, f2 : {0, 1}n → {0, 1}n be
two arbitrary tampering functions, then

1. |nmExt(X,Y )− Um| ≤ ε.

2. There is a distribution D over {0, 1}m ∪ {same?} such that for an independent Z sampled
from D, we have

(nmExt(X,Y ), nmExt(f1(X), f2(Y ))) ≈ε (nmExt(X,Y ), copy(Z, nmExt(X,Y ))).

Cheraghchi and Gursuswami [CG14b] showed that the relaxed definition 1.5 implies the above
general definition with a small loss in parameters. Specifically, we have
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Lemma 7.5 ([CG14b]). Let nmExt be a (k − log(1/ε), ε)-non-malleable two-source extractor ac-
cording to Definition 1.5. Then nmExt is a (k, 4ε)-non-malleable two-source extractor according to
Definition 7.4.

The following theorem was proved by Cheraghchi and Gursuswami [CG14b], which establishes
a connection between seedless non-malleable extractors and non-malleable codes.

Theorem 7.6. Let nmExt : {0, 1}n × {0, 1}n → {0, 1}m be a polynomial time computable seedless
2-non-malleable extractor at min-entropy n with error ε. Then there exists an explicit non-malleable
code with an efficient decoder in the 2-split-state model with block length = 2n, rate = m

2n and error
= 2m+1ε.

One can construct a non-malleable code in the 2-split-state model from a non-malleable two-
source extractor as follows: Given any message s ∈ {0, 1}m, the encoding Enc(s) is done by out-
putting a uniformly random string from the set nmExt−1(s) ⊂ {0, 1}2n. Given any codeword
c ∈ {0, 1}2n, the decoding Dec(c) is done by outputting nmExt(c). Thus, to get an efficient encoder
we need a way to efficiently uniformly sample from the pre-image of any output of the extractor.

Since our new non-malleable two-source extractor follows the same structure as in [Li17], we
can use the same sampling procedure there to efficiently uniformly sample from the pre-image of
any output of the extractor. We briefly recall the construction and sampling procedure in [Li17].

The extractor construction and sampling. The high level structure of the non-malleable two-
source extractor in [Li17] is as follows. First take two small slices (X1, Y1) of both sources and apply
the inner product based two-source extractor, as in Theorem 2.8. Then, use the output to sample
O(log(1/ε)) bits from the encodings of both sources, using a randomness efficient sampler and an
asymptotically good linear encoding of the sources. We need an asymptotically good encoding
since then we only need to sample O(log(1/ε)) bits to ensure that the sampling of two different
codewords are different with probability at least 1− ε. The advice is then obtained by combining
the slices and the sample bits. Now, take two larger slices (X2, Y2) of both sources and apply the
correlation breaker. Finally, take another larger slice of either source (say X3 from X) and apply
a strong linear seeded extractor, which is easy to invert and has the same pre-image size for any
output. By limiting the size of each slice to be small, the construction ensures that there are at
least n/2 bits of each source that are only used in the encoding of the sources but never used in
the subsequent extraction.

Now to sample uniformly from the pre-image of any output, we first uniformly independently
generate the slices (X1, Y1, X2, Y2) and the sampled bits Z. From these we can compute the coor-
dinates of the sampled bits and the output of the correlation breaker. Now we can invert the linear
seeded extractor and uniformly sample X3 given the output of the extractor and the output of the
correlation breaker (which is used as the seed of the linear seeded extractor). Now, to sample the
rest of the bits, we need to condition on the event that the sample bits from the encoding of the
sources are indeed Z. Note that Z has size at most αn for some small constant α < 1/2 since we
can restrict the error to be at least some 2−Ω(n). Also note that for each source we have already
sampled some bits but there are still at least n/2 un-sampled free bits, thus we insist on that no
matter which αn columns of the generating matrix of the encoding we look at, the sub matrix
corresponding to these columns and the last n/2 rows have full column rank. If this is true then
no matter which coordinates we use and what Z is, the pre-image always have the same size and
we can uniformly sample from the pre-image by solving a system of linear equations.
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In [Li17], we use the Reed-Solomn encoding for each source with field Fq for q ≈ n. This is
asymptotically good and also satisfies the property that any sub matrix with less columns than
rows has full column rank since it is a Vandermonde matrix. However in this case each symbol has
roughly log n bits so we can sample at most n/ log n symbols (otherwise fixing them may already
cost us all the entropy), thus the best error we can get using this encoding is 2−n/ logn. Here we
need to get better error, so we use a binary generating matrix. It is easy to show using standard
probabilist argument that there exists a binary generating matrix that satisfies our requirements.

Theorem 7.7. There exists constants 0 < α, β < 1 such that for any n ∈ N there exists an
n×m matrix over F2 with n = βm which is the generating matrix of an asymptotically good code.
Furthermore, Any sub-matrix formed by taking αn columns and the last n/2 rows has full column
rank. In addition, for some ε = 2−O(n), an ε-biased sample space over nm bits generates such a
matrix with probability 1− 2−Ω(n).

Proof. We take an ε-biased sample space over nm bits for some ε = 2−O(n). First, consider the
sum of the rows over any non-empty subset of the rows. The sum is an m-bit string such that any
non-empty parity is ε-close to uniform. Thus by the XOR lemma it is 2m/2ε-close to uniform. We
know a uniform m-bit string has weight d = m/4 with probability at least 1−2−Ω(m). Thus for this
string the probability is at least 1− 2−Ω(m)− 2m/2ε. By a union bound the total failure probability
is at most 2n(2−Ω(m) + 2m/2ε) = 2−Ω(n) by an appropriate choice of β and ε = 2−O(n).

Next, consider any sub-matrix formed by taking βm columns and the last n/2 rows, if it’s truly
uniform, then the probability that it has full column rank is at least 1−αn2αn−n/2 ≥ 1− 2−n/4 for
α < 1/5. Now by a union bound the total failure probability is at most(

m

αn

)
(2−n/4 + ε) ≤

(em
αn

)αn
2−n/4+1 =

(
e

βα

)αn
2−n/4+1,

if we choose ε < 2−n/4. Note that for a fixed β, the quantity ( e
βα)α goes to 1 as α goes to

0. Thus we can choose α small enough such that this failure probability is also 2−Ω(n). Therefore
altogether the failure probability is 2−Ω(n).

Note that an ε-biased sample space over nm bits can be generated using O(log(nm/ε)) = O(n)
bits if ε = 2−O(n). Now for any length n ∈ N, we can compute the generating matrix (either using
an ε-biased sample space or compute it deterministically in 2O(n) time) once in the pre-processing
step, and when we do encoding and decoding of the non-malleable code, all computation can be
done in polynomial time.

Combining Theorem 7.6 and Theorem 6.9, we immediately obtain the following theorem.

Theorem 7.8. For any n ∈ N there exists a non-malleable code with efficient encoder/decoder in
the 2-split-state model with block length 2n, rate Ω(log logn/ log n) and error = 2−Ω(n log logn/ logn).

8 Discussion and Open Problems

Several natural open problems remain here. The most intriguing one is how far we can push our
new techniques. As mentioned above, one bottleneck here is that the computation of the merger is
not a small space computation. If one can find a more succinct way to represent the computation,
then it will certainly lead to further improvements (e.g., decrease the entropy requirement in two-
source extractors to O(log n

√
log logn)). If in addition we can find a way to apply the recursive
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construction as in Nisan’s generator [Nis92], then it is potentially possible to decrease the entropy
requirement in two-source extractors to O(log n log log log n). Finally, we believe our approach has
the potential to eventually achieve truly optimal (up to constants) constructions.
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