
Average-case linear matrix factorization and reconstruction
of low width Algebraic Branching Programs

Neeraj Kayal
Microsoft Research India
neeraka@microsoft.com

Vineet Nair
Indian Institute of Science

vineet@iisc.ac.in

Chandan Saha
Indian Institute of Science

chandan@iisc.ac.in

April 26, 2018

Abstract

Let us call a matrix X as a linear matrix if its entries are affine forms, i.e. degree one poly-
nomials. What is a minimal-sized representation of a given matrix F as a product of linear
matrices? Finding such a minimal representation is closely related to finding an optimal way
to compute a given polynomial via an algebraic branching program. Here we devise an effi-
cient algorithm for an average-case version of this problem. Specifically, given w, d, n ∈N and
blackbox access to the w2 entries of a matrix product F = X1 · · ·Xd, where each Xi is a w× w
linear matrix over a given finite field Fq, we wish to recover a factorization F = Y1 · · ·Yd′ , where
every Yi is also a linear matrix over Fq (or a small extension of Fq). We show that when the
input F is sampled from a distribution defined by choosing random linear matrices X1, . . . , Xd
over Fq independently and taking their product and n ≥ 4w2 and the characteristic of Fq is
at least (ndw)Ω(1) then an equivalent factorization F = Y1 · · ·Yd can be recovered in (random-
ized) time (wdn log q)O(1). We also show that in this situation, if we are instead given a single
entry of F rather than its w2 correlated entries then the recovery can be done in (randomized)
time (dw3

n log q)O(1).
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1 Introduction

Polynomial matrix factorization. In this paper, we are interested in factorization of a polynomial
matrix (that is a matrix with multivariate polynomial entries) into linear matrices, if such a fac-
torization exists. We call this problem linear matrix factorization. It is a natural generalization of
the problem of factoring a multivariate polynomial into linear factors for which there is a known
efficient randomized algorithm [KT90]. Motivated by applications in control theory, polynomial
matrix factorization has been studied in the literature under various restrictions on input and out-
put matrices (see [LMW17] and the references therein). To our knowledge, these restrictions are
quite different from the requirement of outputting linear matrix factors of an input polynomial
matrix. Our primary motivation for studying this problem stems from the problem of learning or
reconstruction of algebraic branching programs (ABPs) – a powerful subclass of arithmetic circuits
capturing determinant and iterated matrix multiplication computations (see Definition 1.1).

Reconstruction. Circuit reconstruction is a notable problem in algebraic complexity theory along-
side proving lower bounds and polynomial identity testing. Reconstruction of a circuit class C is
the following problem: Given black-box access (i.e. membership query access) to a polynomial
function f that is computed by a circuit of size s from C, output a circuit (preferably from C) of size
not much larger than s (ideally, a polynomial or quasi-polynomial function of s) computing f . As
reconstruction of general circuits is believed to be a hard problem, research on reconstruction has
focused on interesting restricted models (see the survey [SY10] and the references in [KNST17]),
and on the average-case complexity of this problem. In [GKL11] and [GKQ13], average-case re-
construction algorithms were given for multilinear formulas and general formulas respectively
under intuitive input distributions. Algebraic branching programs being more powerful than
formulas, the problem of efficient average-case reconstruction of ABPs was posed in our earlier
work [KNST17] under a natural distribution (see Definition 1.2) 1. We explain below why the
average-case ABP reconstruction problem is interesting to study under this distribution, and in
what sense this work is an improvement over [KNST17].

Does lower bound imply reconstruction (even in the average-case)? An intriguing question in
circuit complexity is whether or not lower bound implies some kind of learning. More precisely,
if there is an explicit function that cannot be computed by circuits in a class C of size s then can
we design an efficient learning algorithm for circuits in C of size s? The intuitive reason for ex-
pecting a positive answer rests on the high level view that a lower bound proof points to some
structural property/weakness of a circuit class and the same property is potentially useful in de-
signing learning algorithms for the class. Indeed, for Boolean circuits, a recent result [CIKK16] has
shown that a natural lower bound proof (in the sense of [RR97]) for a circuit class implies quasi-
polynomial time PAC learning over the uniform distribution for the same class. This generic result
is preceded by results (evidences) that hinted at such a connection, like the learning algorithms for
AC0 circuits [LMN93] and AC0 circuits with few majority gates [JKS02] 2. Analogous to Boolean
circuits, does a natural lower bound proof (in the sense of [FSV17,GKSS17]) for an algebraic circuit

1It is worth noting that an average-case reconstruction algorithm for ABPs does not necessarily subsume a result on
average-case reconstruction of formulas as the distributions of the inputs may be incomparable.

2For circuit classes whose known lower bound proofs do not fit in the natural proof framework, the situation is less
clear. Examples of such classes are ACC0 [Wil14] and monotone circuits [Raz85]. A hardness result for polynomial-time
learning of monotone circuits is known assuming the existence of one-way functions [DLM+08].
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class imply efficient reconstruction for the same class? 3 There are a few results in favor of such a
connection, like the reconstruction algorithms for read-once oblivious ABPs, set-multilinear ABPs
and non-commutative ABPs [FS13, KS06]. However, there are many other interesting arithmetic
circuit classes for which we know of strong lower bounds (that are also algebraically natural),
but not efficient reconstruction algorithms. Instances of such classes are homogeneous depth
three circuits [NW97], homogeneous depth four circuits [KLSS17, KS17], constant depth multi-
linear circuits [RY09], multilinear formulas [Raz09], regular formulas [KSS14], and a few other
classes [KS16a,KS16b]. Even for more general models like arithmetic formulas and homogeneous
ABPs, it makes sense to ask – can we reconstruct sub-quadratic size formulas or sub-quadratic
size homogeneous ABPs efficiently? Quadratic lower bounds for formulas and homogeneous
ABPs are known [Kal85, Kum17]. In the absence of a generic connection (analogous to [CIKK16])
in the algebraic setting, it would be useful to gather more evidences/examples, perhaps by also
moderating the reconstruction setup. Average-case reconstruction is one such natural way to re-
lax the setup 4. After all, we have little insight into even the ‘weaker’ question of whether or
not lower bound implies average-case reconstruction. However, we should choose an input dis-
tribution for an average-case reconstruction problem that is relevant in the context of lower bound.

For the discussion ahead, we denote a n-variate, degree-d polynomial as a (n, d)-polynomial; a
random (n, d)-polynomial denotes a (n, d)-polynomial with coefficients chosen independently
and uniformly at random from F. Assume that F is a sufficiently large finite field Fq, although
this requirement is not necessary for the most part of the arguments.

Choosing an input distribution. A lower bound proof for a class C shows that an explicit (n, d)-
polynomial is not computable by size-s circuits from C. Such a proof demonstrates some weakness
of size-s circuits from C computing (n, d)-polynomials. Typically, the explicit polynomial has de-
gree d ≤ n (as in determinant/permanent [Raz09, RY09, GKKS14] or the Nisan-Wigderson design
polynomial [KSS14] or the elementary/power symmetric polynomials [NW97,SW01,Kum17] or a
variant of the design polynomial [KST16]), and s is much larger than n (and hence also larger than
d). In order to define a corresponding average-case reconstruction problem, we should ideally
define an input distribution that is supported on (n, d)-polynomials computable by size-s circuits
in C; moreover, the distribution should be polynomial-time samplable and reasonably natural.
For many circuit classes, defining such a distribution is a bit of a challenge as some of the natural
P-samplable distributions tend to be primarily supported on (n, d)-polynomials, where d is close
to the size s of the circuits [GKL11, GKQ13]. But, for some classes, like homogeneous ABPs and
homogeneous depth three circuits, these requirements from an input distribution can be mitigated
easily. We study the former model in this paper.

Choosing a distribution on ABPs. A well-known ABP homogenization argument [Nis91] implies

3Unlike PAC learning, in the algebraic setting we need to reconstruct a circuit that computes the input polynomial
exactly instead of approximately (as two polynomial functions differ at too many points). If we insist on exact learning
in the Boolean setting (which is closely related to the compression problem) then the best known output circuit size
for AC0 and AC0[p] functions is exponential in the number of variables [CKK+15, Sri15, CIKK16]. On the other hand,
reconstruction algorithms have the power of making membership queries.

4Even in the Boolean setting, similar average-case relaxations of learning problems have been studied, particularly
for DNFs [LSW06, JLSW08].
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the following: If a (n, d)-polynomial is computable by an ABP A of size5 s then it is also computable
by an ABP B of width w ≤ s and length d. If A is a homogeneous ABP 6 of size s then B is also a ho-
mogeneous ABP of size s. In [Kum17], a quadratic lower bound for homogeneous ABP is given by
essentially showing that any (w, d, n)-ABP computing the power symmetric polynomial ∑n

i=1 xd
i

must satisfy w ≥ n
2 , implying that the size of such an ABP is s ≈ wd = Ω(nd). Choosing d = Θ(n)

yields the quadratic bound. A Ω(n1+ε) lower bound on w, for a constant ε > 0, would imply a
Ω(n1+ε) lower bound on the size of general ABPs – such a bound is hitherto unknown. Thus, for
the average-case ABP reconstruction problem (see Problem 2), the distribution given in Definition
1.2 is quite appropriate to study as it produces (n, d)-polynomials computable by ABPs of size
s ≈ wd that can potentially be much larger than n and d. Further, from the perspective of the
quadratic lower bound [Kum17], the average-case ABP reconstruction problem is interesting even
for w = O(n). We make progress in this direction by giving a nontrivial7 reconstruction algorithm
for w ≤

√
n/2, irrespective of d. The algorithm outputs a (w, d, n)-ABP (with high probability) for

the input polynomial chosen according to the distribution.

Comparison to [KNST17]. In [KNST17], we gave a reconstruction algorithm for w ≤
√ n

d . Ob-
serve that, under this width constraint, the size s ≈ wd of an ABP is upper bounded by max(n, d).
Whereas, in this paper we give a reconstruction algorithm for w ≤

√
n/2 (independent of d), and

hence the size of the ABPs here can be s = Θ(
√

nd). To highlight this improvement, if we set
d = Θ(n) (as in several lower bound results [Kum17, KST16, SW01, NW97]) then the width con-
straint in [KNST17] reduces to w = O(1); moreover, for d = Θ(n) the size of the ABPs in this
work can be Θ(n1.5) which is subtantially larger than both n and d. On the flip side, the running
time of the algorithm in [KNST17] is polynomial in w, d, n and log q, whereas the algorithm here
has time complexity (dw3

n log q)O(1). The exponential dependence on w3 comes from a step in our
algorithm that solves polynomial equations; all the remaining steps have (wdn log q)O(1) running
time. In fact, the main step (linear matrix factorization) of our algorithm has (wdn log q)O(1) time
complexity (Theorem 1). It may be possible to get around this expensive solvability step and re-
duce the overall complexity of the algorithm – we leave this as an open question in Section 1.4.

Our proof approach is also quite different from that of [KNST17]. In [KNST17], the Lie algebra
of the iterated matrix multiplication polynomial is analyzed to establish a connection between the
layer spaces of a full-rank ABP and the irreducible invariant subspaces of the Lie algebra of the
polynomial computed by the ABP. This in turn helped reduce the problem to reconstruction of a
set-multilinear ABP. We cannot hope to do a similar reduction here as the number of variables is

5A more general way to define an ABP (in Definition 1.1) is to consider matrices of varying dimensions, i.e. the i-th
matrix has dimension wi ×wi+1, and w1 = wd+1 = 1. In this case, size of the ABP is the quantity ∑d+1

i=1 wi. Equivalently,
an ABP can be defined as a layered directed acyclic graph, in which case size is the number of nodes in the graph.

6An ABP X1 · X2 . . . Xd is homogeneous, if every entry in every partial product X1 · X2 . . . Xi is a homogeneous
polynomial.

7A trivial brute-force algorithm to reconstruct a (w, d, n)-ABP over Fq takes time qΘ(w2dn). By ‘nontrivial’ recon-
struction, we mean an algorithm that takes time exponentially better than the trivial complexity. Note that we can
interpolate a polynomial computed by a (w, d, n)-ABP in (dn log q)O(1) time, but knowing the coefficients of the poly-
nomial does not give us any immediate information about the (w, d, n)-ABP that computes it. Hence, if we want a
(w, d, n)-ABP representation for the input polynomial then even a (dn log q)O(1) time reconstruction algorithm is non-
trivial as dn � qΘ(w2dn). The complexity of our algorithm is (dw3

n log q)O(1) which is exponentially better than the
trivial complexity qΘ(w2dn) for w = O(n).
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much fewer (and independent of d). Instead, our proof hinges on the following three steps:

1. Showing the uniqueness of the corner spaces when w ≤
√

n/2, and finding these spaces.
This step involves solving polynomial equations.

2. Recovering the intermediate matrices modulo the corner spaces and rearranging them in the
correct order. This is the linear matrix factorization step.

3. Completing the affine forms in the intermediate matrices by showing linear independence
of the so-called minors of a random ABP.

Along the way, we give an efficient equivalence test for the determinant (which is used to get
partial access to the intermediate matrices) over finite fields. The details of these steps are given
in Section 1.3 and subsequent sections. We think that these steps give us some crucial insights
into the structure of a random ABP which may find applications in other similar problems and in
resolving some of the questions stated in Section 1.4.

1.1 The problems

We study two related problems in this work, average-case matrix factorization and average-case ABP
reconstruction. The average-case matrix factorization problem aids us in making progress on
average-case ABP reconstruction (see also the remark after Problem 2). The definition of an ABP
given below is quite standard and similar to the one stated in [KNST17].

Definition 1.1 (Algebraic branching program). An algebraic branching program (ABP) of width w and
length d is a product expression X1 · X2 . . . Xd, where X1, Xd are row, column linear matrices over
F of length w respectively, and Xi is a w×w linear matrix over F for i ∈ [2, d− 1]. The polynomial
computed by the ABP is the entry of the 1× 1 matrix obtained from the product ∏d

i=1 Xi. An ABP
of width w, length d, and in n variables will be called a (w, d, n)-ABP over F.

Remarks:

(a) The iterated matrix multiplication polynomial (IMMw,d) is computed by a (w, d, n)-ABP where
each entry in Xi is a distinct variable, for all i ∈ [d], and hence n = w2(d− 2) + 2w.

(b) A polynomial computed by a (w, d, n)-ABP can be viewed as an entry of a product of d, w×w
linear matrices X1, X2, . . . , Xd. The w× w matrix F = X1 · X2 . . . Xd is then called a (w, d, n)-
matrix product. We note that in the matrix product formulation X1, Xd are w × w linear ma-
trices, while in the ABP formulation X1, Xd are row and column linear matrices of length w
respectively; hopefully, the context will make the dimensions of these matrices clear.

To study average-case reconstruction for ABP, [KNST17] defined a natural distribution on the
polynomials computed by it. The distribution is expressed by a random (w, d, n)-ABP.

Definition 1.2 (Random ABP and matrix product). A random (w, d, n)-ABP over F is a (w, d, n)-ABP
X1 · X2 . . . Xd over F, where Xi is a random linear matrix chosen independently for every i ∈ [d].
Similarly, a random (w, d, n)-matrix product over F is a (w, d, n)-matrix product F = X1 · X2 . . . Xd
over F, where Xi is a random linear matrix chosen independently for every i ∈ [d].

Having defined the distributions, the two average-case problems can be posed as follows.

6



Problem 1 (Average-case matrix factorization). Design an algorithm which when given w, d, n ∈ N,
and blackbox access to w2, (n, d)-polynomials { fst}s,t∈[w] that constitute the entries of a random
(w, d, n)-matrix product F over Fq, outputs d, w× w linear matrices Y1, . . . , Yd over Fq (or a small
extension of Fq) such that F = Y1 · Y2 . . . Yd, with high probability8. The desired running time of
the algorithm is (wdn log q)O(1).

Problem 2 (Average-case ABP reconstruction). Design an algorithm which when given w, d, n ∈
N, and blackbox access to a (n, d)-polynomial f computed by a random (w, d, n)-ABP over Fq,
outputs a (w, d, n)-ABP over Fq (or a small extension of Fq) computing f , with high probability.
The desired running time of the algorithm is (wdn log q)O(1).

Remark: In Problem 1 we have blackbox access to w2 polynomials constituting the entries of a
matrix, whereas in Problem 2 we have blackbox access to a single polynomial. In this sense, Prob-
lem 1 is supposedly easier than Problem 2. Still, Problem 1 is of independent interest because if
the coefficients of the affine forms are chosen adversarially (instead of randomly) in X1, X2, . . . , Xd
then even for w = 3 the problem becomes as hard as formula reconstruction [BC92].

1.2 Our results

Throughout this article, F will denote Fq with char(F) ≥ (wdn)7, and L the field Fqw 9. Also, we
will assume d ≥ 5. Theorem 1 solves Problem 1 for n ≥ 2w2.

Theorem 1 (Average-case matrix factorization). For n ≥ 2w2, there is a randomized algorithm that
takes as input blackbox access to w2, (n, d)-polynomials { fst}s,t∈[w] that constitute the entries of a random
(w, d, n)-matrix product F = X1 · X2 . . . Xd over F, and with probability 1− (wdn)−Ω(1) returns w× w
linear matrices Y1, Y2, . . . , Yd over L satisfying F = ∏d

i=1 Yi. The algorithm runs in (wdn log q)O(1) time
and queries the blackbox at points in Ln.

Remarks:

• The constraint on char(F) is a bit arbitrary, the results in this paper hold as long as |F| and
char(F) are sufficiently large polynomial functions in w, d and n.

• Uniqueness of factorization: The proof of the theorem shows that there are Ci, Di ∈ GL(w, L)
such that Yi = Ci · Xi · Di, for every i ∈ [d]. Moreover, there are c1, . . . , cd−1 ∈ L× satisfying
C1 = Dd = Iw, Di · Ci+1 = ci Iw for i ∈ [d − 1], and ∏d−1

i=1 ci = 1. At a very high level, it
is this uniqueness feature of a random matrix product that guides the algorithm to find a
factorization for F. In the worst-case, such a factorization need not be unique even if the
determinants of the Xi’s are coprime irreducible polynomials. For instance10,[

x1 x2
x3 x4

]
·
[

2x3 − x2 x4
x1 x3

]
=

[
x3 x1
x4 2x3 − x2

]
·
[

x1 x2
x3 x4

]
=

[
2x1x3 x1x4 + x2x3

2x2
3 − x2x3 + x1x4 2x3x4

]
.

Using Theorem 1, Theorem 2 addresses Problem 2 for n ≥ 4w2.

8The probability is taken over the input distribution and the random bits used by the algorithm, if it is randomized.
9L can constructed from a basis of Fq using a randomized algorithm running in (w log q)O(1) time [vzGG03].

10We thank Rohit Gurjar for showing us a similar example.
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Theorem 2 (Average-case ABP reconstruction). For n ≥ 4w2, there is a randomized algorithm that
takes as input blackbox access to a (n, d)-polynomial f computed by a random (w, d, n)-ABP over F, and
with probability 1− (wdn)−Ω(1) returns a (w, d, n)-ABP over L computing f . The algorithm runs in time
(dw3

n log q)O(1) and queries the blackbox at points in Ln.

Remarks:

1. Comparison to [KNST17]: [KNST17] gave an efficient randomized algorithm to solve Problem
2 when n ≥ w2d 11. Theorem 2 improves over [KNST17] by relaxing the constraint on n to
n ≥ 4w2, but pays in the running time which is exponential in w3 12. Nevertheless, Theorem
2 gives a nontrivial average-case reconstruction algorithm for w ≤

√
n/2, irrespective of d.

2. Time-complexity: There is one step in the algorithm that finds the affine forms in X1 and Xd

by solving systems of polynomial equations over F, and this takes dO(w3) field operations.
Except this step, every other step runs in (wdn log q)O(1) time. If the complexity of this step
is improved then the overall time complexity of the algorithm will also come down.

3. Not pseudorandom: Consider a formal (w, d, n)-ABP where the coefficients of the affine forms
are distinct y-variables, and let h(x, y) be the polynomial computed by this ABP. Here, |y| =
(n + 1) · (w2(d− 2) + 2w) = m (say). If w = O(

√
n), the family H = {h(x, b) : b ∈ Fm} is

not pseudorandom under the distribution defined by b ∈r Fm. This is because, the w affine
forms in X1 are linearly independent with high probability. So, the variety of f = h(x, b)
(denoted by V( f )) has a subspace of dimension n−w over F; a random polynomial does not
have this property with high probability. Using a randomized algorithm (Theorem 2.6 and
3.9 in [HW99]) we can check if V( f ) has a large subspace in (dw2

n log q)O(1) time. Observe
that (dw2

n log q)O(1) is close to exp(n) for w = O(
√

n), and so the algorithm does not take
time� exp(n) to distinguish f from a random polynomial thereby implying that H is not a
pseudorandom family.

4. Comparison to [GKQ13]: [GKQ13] gave an efficient average-case reconstruction algorithm for
formulas. Their input is picked from a distribution defined by complete binary trees with
alternating layers of + and × gates and with random affine forms at the leaves. As width-3
ABPs form a complete model for formulas under p-projections [BC92], Theorem 2 can also
be seen as giving another average-case reconstruction algorithm for formulas (when w = 3),
albeit with a different input distribution. Our result does not subsume [GKQ13] as the input
distributions appear incomparable to us.

The proof of Theorem 1 requires an efficient affine equivalence test for the determinant over finite
fields. An n-variate polynomial f (x) is affine equivalent to an m-variate polynomial g, for n ≥ m, if
there is an A ∈ Fm×n of rank m and an a ∈ Fm such that f = g(A · x + a). Further, for m = n,
f is equivalent to g if there is an A ∈ GL(n, F) such that f = g(A · x). Given blackbox access to a
(n, w)-polynomial f , where n ≥ w2, the affine equivalence test problem for the determinant is to
check whether f is affine equivalent to Detw, and if yes then output a B ∈ Fw2×n of rank w2 and
a b ∈ Fw2

such that f = Detw(B · x + b). The algorithm in the theorem below almost solves this
problem over finite fields – it returns a B ∈ Lw2×n of rank w2 and a b ∈ Lw2

.
11The algorithm in [KNST17] works over both Q and Fq, whereas ours is over Fq.
12 [KNST17] has running time polynomial in all the relevant parameters, and it also works if the width w is varying

along the ABP.

8



Theorem 3 (Determinant equivalence test). There is a randomized algorithm that takes as input black-
box access to a (n, w)-polynomial f ∈ F[x], where n ≥ w2, and does the following with probability
1 − nO(1)

q : If f is affine equivalent to Detw then it outputs a B ∈ Lw2×n of rank w2 and a b ∈ Lw2

such that f = Detw(B · x + b), else it outputs ‘ f not affine equivalent to Detw’. The algorithm runs in
(n log q)O(1) time and queries the blackbox at points in Ln.

Remarks:

1. Comparison to [Kay12]: An efficient equivalence test for the determinant over C was given
in [Kay12]. The computation model in [Kay12] assumes that arithmetic over C and root
finding of univariate polynomials over C can be done efficiently. While we follow the general
strategy of analyzing the Lie algebra of the determinant and reduction to PS-equivalence
from [Kay12], our algorithm is somewhat simpler: Unlike [Kay12], our algorithm does not
involve the Cartan subalgebras and is almost the same as the simpler equivalence test for
the permanent polynomial in [Kay12]. The simplification is achieved by showing that the
characteristic polynomial of a random element of the Lie algebra of Detw splits completely
over L with high probability (Lemma 5.2) – this is crucial for Theorem 1 as it allows the
algorithm to output a matrix factorization over a fixed low extension of F, namely L.

2. Average-case ABP reconstruction over Q: In our arguments, Theorem 3 is the only place where
we need the underlying field is finite. In other words, the algorithms in Theorems 1 and
2 work over Q if only there is an efficient equivalence test for Detw over Q. Also, if there
is an affine equivalence test for Detw that outputs B, b over the base field (Q or F) then the
algorithm in Theorem 2 would output an ABP over the base field.

1.3 Algorithms and their analysis

The algorithms mentioned in Theorem 1 and 2 are given in Algorithm 1 and 2, respectively. In this
section, we briefly discuss their correctness and complexity – for the missing details, we allude to
the relevant parts of the subsequent sections.

1.3.1 Analysis of Algorithm 1

Since F = X1 · X2 . . . Xd is a random (w, d, n)-matrix product, with probability 1 − (wdn)−Ω(1),
the following property is satisfied: Every Xi is a full rank linear matrix (that is the affine forms
in Xi are F-linearly independent), and det(X1), det(X2), . . . , det(Xd)

13 are coprime irreducible
polynomials (see Claim 2.3). We analyze Algorithm 1 assuming that this property of the input is
satisfied. Algorithm 1 has three main stages:

1. Computing the irreducible factors of det(F) (Steps 2–6): From blackbox access to the entries of F,
a blackbox access to det(F) is computed in (wdn log q)O(1) time using Gaussian elimination.
Subsequently, using Kaltofen-Trager’s factorization algorithm [KT90], blackbox access to the
irreducible factors g1, g2, . . . , gd of det(F) are constructed in (wdn log q)O(1) time (see Lemma
2.1). Since det(X1), . . . , det(Xd) are coprime irreducible polynomials, there is a permutation
σ of [d], and ci ∈ F× for all i ∈ [d], such that ci · det(Xi) = gσ(i) and ∏d

i=1 ci = 1. For the next

13det(Xi) is the determinant of the w× w matrix Xi.

9



Algorithm 1 Average-case matrix factorization

INPUT: Blackbox access to w2, (n, d)-polynomials { fst}s,t∈[w] that constitute the entries of a ran-
dom (w, d, n)- matrix product F = X1 · X2 . . . Xd.
OUTPUT: Linear matrices Y1, Y2, . . . , Yd over L such that F = Y1 ·Y2 . . . Yd.

1. /* Factorization of the determinant */
2. Compute blackbox access to det(F).
3. Compute blackbox access to the irreducible factors of det(F); call them g1, g2, . . . , gd.
4. if the number of irreducible factors is not equal to d then
5. Output ‘Failed’.
6. end if
7.
8. /* Affine equivalence test for determinant */
9. Set j = 1.

10. while j ≤ d do
11. Call the algorithm in Theorem 3 with input as blackbox access to gj; let Bj and bj be its

output. Construct the w× w full-rank linear matrix Zj over L determined by Bj and bj.
12. if the algorithm outputs ‘gj not affine equivalent to Detw’ then
13. Output ‘Failed’.
14. end if
15. Set j = j + 1.
16. end while
17.
18. /* Rearrangement of the matrices */
19. Call Algorithm 3 on input blackbox access to F and Z1, . . . , Zd, and let Y1, . . . , Yd be its output.
20. if Algorithm 3 outputs ‘Rearrangement not possible’ then
21. Output ‘Failed’.
22. end if
23.
24. Output Y1, Y2, . . . , Yd.

10



two stages, assume w > 1 as the w = 1 case gets solved readily at this stage.

2. Affine equivalence test (Steps 9–16): Let j = σ(i) and X′i be the matrix Xi with the affine forms
in the first row multiplied by ci. Then, gj = det(X′i) = ci · det(Xi), which is affine equivalent
to Detw. At step 11, the algorithm14 in Theorem 3 finds a Bj ∈ Lw2×n of rank w2 and bj ∈ Lw2

such that gj = Detw(Bj · x + bj), with probability 1− (wdn)−Ω(1). Let Zj be the matrix ob-
tained by appropriately replacing the entries of the w × w symbolic matrix with the affine
forms in Bj · x + bj such that det(Zj) = gj = det(X′i). This certifies that there are matrices
Ci, Di ∈ SL(w, L) satisfying, Zj = Ci · X′i · Di or ZT

j = Ci · X′i · Di (see Fact 1 in Section 5.1).
Multiplying the first column of Ci with ci, and calling the resulting matrix Ci again, we see
that there are matrices Ci, Di ∈ GL(w, L) satisfying, Zj = Ci · Xi · Di or ZT

j = Ci · Xi · Di.
Observe that such Ci, Di are unique up to multiplications by elements in L× 15.

3. Rearrangement of the retrieved matrices (Steps 19–22): At step 19, Algorithm 3 constructs the
matrices Y1, Y2, . . . , Yd by determining the permutation σ and whether Zσ(i) = Ci · Xi · Di or
ZT

σ(i) = Ci · Xi · Di. Internally, Algorithm 3 uses Algorithm 4 which when given blackbox
access to Fd = F and a Z (that is either Zk or ZT

k for some k ∈ [d]), does the following with
probability 1− (wdn)−Ω(1): If Z = Cd ·Xd ·Dd then it outputs a D̃d = adDd for some ad ∈ L×.
For all other cases – if Z = Ci ·Xi ·Di or ZT = Ci ·Xi ·Di for i ∈ [d− 1], or ZT = Cd ·Xd ·Dd – it
outputs ‘Failed’. Algorithm 4 uses the critical fact that F is a random matrix product to accom-
plish the above and locate the unique last matrix. The running time of the algorithm, which
is (wdn log q)O(1), and its proof of correctness16 are discussed in Section 3.2. Algorithm 3
calls Algorithm 4 on inputs F, Zk and F, ZT

k for all k ∈ [d]. If Algorithm 4 returns a matrix D̃d
for some k ∈ [d] on either inputs F, Zk or F, ZT

k then it sets Md = Zk or Md = ZT
k respectively,

and σ(d) = k. Subsequently, Algorithm 3 computes blackbox access to a length d− 1 matrix
product Fd−1 = F · D̃d · M−1

d = X1 · · ·Xd−2 · (Xd−1 · adC−1
d ), and repeats the above process

to compute Md−1 and σ(d − 1) with the inputs Fd−1 and {Z1, . . . , Zd}\Zσ(d). Thus, using
Algorithm 4 repeatedly, Algorithm 3 iteratively determines σ and Md, Md−1, . . . , M2: At the
(d− t + 1)-th iteration, for t ∈ [d− 1, 2], it computes a matrix D̃t = at(Ct+1 · Dt) for some
at ∈ L×, sets Mt and σ(t) accordingly, creates blackbox access to Ft−1 = Ft · D̃t · M−1

t and
prepares the list {Z1, . . . , Zd}\{Zσ(d), Zσ(d−1), . . . , Zσ(t)} for the next iteration. Finally, setting
Y1 = F1 and Yi = Mi · D̃−1

i , for all i ∈ [2, d], we have F = ∏d
i=1 Yi.

1.3.2 Analysis of Algorithm 2

Let f be the polynomial computed by a (w, d, n)-ABP X1 · X2 . . . Xd. We can assume that f is a
homogeneous degree-d polynomial and the entries in each Xi are linear forms (i.e., affine forms
with constant term zero), owing to the following simple homogenization trick.

14Given in Section 5.
15i.e., if Ci · Xi · Di = C′i · Xi · D′i , where Xi is a full rank matrix, then C′i = αCi and D′i = α−1Di for some α ∈ L×
16which also gives the uniqueness of factorization mentioned in the remark after Theorem 1
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Homogenization of ABP: Consider the (n + 1)-variate homogeneous degree-d polynomial

fhom = xd
0 · f

(
x1

x0
,

x2

x0
, . . . ,

xn

x0

)
.

The polynomial fhom is computable by the (w, d, n)-ABP X′1 · X′2 . . . X′d, where X′i is equal to Xi but
with the constant term in the affine forms multiplied by x0. If we construct an ABP for fhom then
an ABP for f is obtained by setting x0 = 1.

Algorithm 2 Average-case ABP reconstruction
INPUT: Blackbox access to a (n, d)-polynomial f computed by a random (w, d, n)-ABP.
OUTPUT: A (w, d, n)-ABP over L computing f .

1. /* Computing the corner spaces */
2. Call Algorithm 5 on f to compute bases of the two unique w-dimensional F-linear spaces X1

and Xd, spanned by linear forms in F[x], such that f is zero modulo each of X1 and Xd.
3. if Algorithm 5 outputs ‘Failed’ then
4. Output ‘Failed to construct an ABP’.
5. end if
6. Compute a transformation A ∈ GL(n, F) that maps the bases of X1 and Xd to distinct variables

y = {y1, y2, . . . , yw} and z = {z1, z2, . . . zw} respectively, where y, z ⊆ x. Let r = x \ (y ] z),
X′1 = (y1 y2 . . . yw), X′d = (z1 z2 . . . zw)T and f ′ = f (A · x).

7.
8. /* Computing the coefficients of the r variables */
9. Construct blackbox access to the w2 polynomials that constitute the entries of the w×w matrix

F = ( ∂ f ′
∂yszt
|y=0,z=0)s,t∈[w] .

10. Call Algorithm 1 on input F to compute a factorization of F as S2 · S3 . . . Sd−1.
11. if Algorithm 1 outputs ‘Failed’ then
12. Output ‘Failed to construct an ABP’.
13. end if
14.
15. /* Computing the coefficients of the y and z variables */
16. Call Algorithm 6 on inputs f ′ and {S2, S3, . . . , Sd−1} to compute matrices T2, T3, . . . , Td−1 such

that f ′ is computed by the ABP X′1 · T2 · · · Td−1 · X′d.
17. if Algorithm 6 outputs ‘Failed’ then
18. Output ‘Failed to construct an ABP’.
19. end if
20. Apply the transformation A−1 on the x variables in the matrices X′1, X′d, and Tk for k ∈ [2, d− 1].

Call the resulting matrices Y1, Yd, and Yk for k ∈ [2, d− 1] respectively.
21. Output Y1 ·Y2 . . . Yd as the ABP computing f .

We give an overview of the three main stages in Algorithm 2. As in Algorithm 1, the matrices
X1, X2, . . . , Xd are assumed to be full rank linear matrices and further, for a similar reason, the 2w
linear forms in X1 and Xd are assumed to be F-linearly independent.

1. Computing the corner spaces (Steps 2–6): Polynomial f is zero modulo each of the two w-
dimensional F-linear spaces X1 and Xd spanned by the linear forms in X1 and Xd respec-
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tively 17. We show in Lemma 4.1, if n ≥ 4w2 then with probability 1− (wdn)−Ω(1) the fol-
lowing holds: Let K ⊇ F be any field. If f = 0 mod 〈l1, . . . , lw〉, where li’s are linear forms
in K[x], then the li’s either belong to the K-span of the linear forms in X1 or belong to the K-
span of the linear forms in Xd. In this sense, the spaces X1 and Xd are unique. The algorithm
invokes Algorithm 5 which computes bases of X1 and Xd by solving O(n) systems of poly-
nomial equations over F. Such a system has dO(w2) equations in m = O(w3) variables and
the degree of the polynomials in the system is at most d; we intend to find all the solutions
in Fm. It turns out that owing to the uniqueness of X1 and Xd, the variety over F 18defined
by such a system has exactly two points and these points lie in Fm. From the two solutions,
bases of X1 and of Xd can be derived. The two solutions of the system are computed by a
randomized algorithm running in (dw3

log q)O(1) time ( [Ier89, HW99], see Lemma 2.2) – the
algorithm exploits the fact that the variety over F is zero-dimensional. Thus, at step 2, the
two spaces are either equal to X1 and Xd or Xd and X1 respectively. Without loss of gener-
ality, we assume the former. Once bases of the corner spaces X1 and Xd are computed, an
invertible transformation A maps the linear forms in the bases to distinct variables (as the
linear forms in X1 and Xd are F-linearly independent).

2. Computing the coefficients of the r variables (Steps 9–13): There is an ABP X′1 ·X′2 . . . X′d comput-
ing f ′ = f (A · x), where X′1 and X′d are equal to (y1 y2 . . . yw) and (z1 z2 . . . zw)T respec-
tively. For k ∈ [2, d− 1], let Rk = (X′k)y=0,z=0

19 and F = R2 · R3 . . . Rd−1. As X1 · X2 . . . Xd is
a random (w, d, n)-ABP, R2 · R3 . . . Rd−1 is a random (w, d− 2, n− 2w)-matrix product over
F. The (s, t)-th entry of F is equal to

(
∂ f ′

∂yszt

)
y=0,z=0

, for s, t ∈ [w]. Blackbox access to each

of the w2 entries of F are constructed in (wdn log q)O(1) time using Claim 2.1. From F, Al-
gorithm 1 computes linear matrices S2, . . . , Sd−1 over L in r = x \ (y ] z) variables such
that F = S2 · S3 . . . Sd−1. Moreover, the uniqueness of factorization implies there are linear
matrices T2, . . . , Td−1 over L in the x-variables, satisfying (Tk)y=0,z=0 = Sk, such that f ′ is
computed by the ABP X′1 · T2 · · · Td−1 · X′d.

3. Computing the coefficients of y and z variables in Tk (Steps 16–20 ): Algorithm 6 finds the coef-
ficients of the y and z variables in the linear forms present in T2, . . . , Td−1 in (wdn log q)O(1)

time. We present the idea here; the detail proof of correctness is given in Section 4.2. In
the following discussion, M(i, j) denotes the (i, j)-th entry, M(i, ∗) the i-th row, and M(∗, j)
the j-th column of a linear matrix M. Let us focus on finding the coefficients of y1 in the
linear forms present in T2(1, ∗), T3, . . . , Td−2, Td−1(∗, 1). There are w2(d − 4) + 2w linear
forms in these matrices and these would be indexed by [w2(d − 4) + 2w]. Let ce be the
coefficient of y1 in the e-th linear form le for e ∈ [w2(d − 4) + 2w]. We associate a poly-

nomial he(r) in r variables with le as follows: If le is the (i, j)-th entry of Tk then he
def
=

[S2(1, ∗) · S3 · · · Sk−2 · Sk−1(∗, i)] · [Sk+1(j, ∗) · Sk+2 · · · Sd−2 · Sd−1(∗, 1)] 20. Observe that if f ′

is treated as a polynomial in y and z variables with coefficients in L(r) then the coefficient of
y2

1z1 is exactly ∑e∈[w2(d−4)+2w] ce · he(r). On the other hand, this coefficient is
(

∂ f ′

∂y2
1z1

)
y=0,z=0

,

17For a field K ⊇ F, we say f is zero modulo a K-linear space X = spanK{l1, . . . , lw}, where li’s are linear forms in
K[x], if f is in the ideal of K[x] generated by {l1, . . . , lw}. This is also denoted by f = 0 mod 〈l1, . . . , lw〉.

18the algebraic closure of F
19The matrix X′i with the y and z variables in its linear forms substituted to zero.
20by identifying the 1× 1 matrix of the R.H.S with the entry of the matrix
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for which we can obtain blackbox access using Claim 2.1. This allows us to write the equa-
tion,

w2(d−4)+2w

∑
e=1

ce · he(r) =
(

∂ f ′

∂y2
1z1

)
y=0,z=0

. (1)

We show in Lemma 4.2 and Corollary 4.1 that the polynomials he, for e ∈ [w2(d − 4) +
2w], are L-linearly independent with probability21 1− (wdn)−Ω(1). By substituting random
values to the r variables in the above equation, we can set up a system of w2(d − 4) + 2w
linear equations in the ce’s. The linear independence of the he’s ensures that we can solve for
ce (by Claim 2.2).

1.3.3 Proof strategy for Theorem 3

The algorithm in Theorem 3 has three stages:

1. Reduction to equivalence testing: Applying known techniques – ‘variable reduction’ (Claim
5.1) and ‘translation equivalence’ (Claim 5.2) – the affine equivalence testing problem is
efficiently reduced to equivalence testing for Detw with high probability. An equivalence
test takes blackbox access to a w2-variate polynomial g(y) as input and does the follow-
ing with high probability: If g is equivalent to Detw then it outputs a Q ∈ GL(w2, L) such
that g = Detw(Q · y) else it outputs ‘g not equivalent to Detw’.

2. Reduction to PS-equivalence: The reduction is given in Algorithm 7. The algorithm proceeds
by computing an F-basis of the Lie algebra of the group of symmetries of g (denoted as gg,
see Claim 5.3). It then picks an element F uniformly at random from gg and computes its
characteristic polynomial h(x). Since F ∈ gg, it is similar to a L ∈ gDetw (see Fact 3 in Section
5.1), implying that their characteristic polynomials are equal. As F is a random element of
gg, L is also a random element of gDetw . In Lemma 5.2, we show that the characteristic poly-
nomial h of a L ∈r gDetw is square-free and splits completely over L, with high probability22.
The roots of h are computed in randomized (w log q)O(1) time ( [CZ81], see also [vzGG03]).
From the roots, a D ∈ GL(w2, L) can be computed such that D−1FD is diagonal23. There-
after, the structure of the group of symmetries of Detw and its Lie algebra helps argue, in
Section 5.2, that f (D · x) is PS-equivalent to Detw.

3. Doing the PS-equivalence: This step follows directly from [Kay12] (see Lemma 5.1).

1.4 Few questions

The following questions are immediate from the above discussions:

(a) Can we compute the corner spaces in (wd log q)O(1) time? If so then the overall complexity of
the algorithm would come down to (wd log q)O(1).

21over the randomness of the input f
22This lemma makes our reduction to PS-equivalence simpler than [Kay12], enabling the equivalence test to work

over finite fields.
23In [Kay12], a basis of the centralizer of F in gg is computed first and then a D ∈ GL(w2, C) is obtained that simula-

neously diagonalizes this basis.
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(b) In the equivalence test for the determinant, can we output a linear matrix over the base field
F instead of a matrix over the extension L?

(c) Is it possible to do nontrivial reconstruction in the average-case when w is significantly larger
than

√
n, say for w = n

2 ?

(d) For w significantly larger than
√

n, say w = n2, can we show that linear factorization of a
random (w, d, n)-matrix product is unique (in the sense as in the second remark after Theorem
1)?

2 Preliminaries

2.1 Notations

GL(w, F) is the set of w×w invertible matrices over F, and SL(w, F) the set of w×w matrices over
F with determinant one. Bold letters x, y, z, u, v, w are used to represent either column vectors (or
sets) of variables or column vectors of field elements, calligraphic letters like X to represent vector
spaces, capital letters like A, B, C, S, T for matrices or sets – the context of a usage of any of these
symbols would hopefully make its purpose clear. The derivative of a polynomial f with respect
to a monomial µ is denoted as ∂ f

∂µ or ∂µ f .

2.2 Algorithmic preliminaries

The following result on blackbox polynomial factorization is proved in [KT90].

Lemma 2.1 ( [KT90]). There is a randomized algorithm that takes as input blackbox access to a (n, d)-
polynomial f over F, and constructs blackbox access to the irreducible factors of f over F in (nd log q)O(1)

time with success probability 1− (nd)O(1)

q .

Let I be an ideal of F[x] generated by (n, d)-polynomials g1, . . . , gm, and VF(I) the variety or the
algebraic set defined by I over F. VF(I) is zero-dimensional if it has finitely many points. We say
a point a ∈ VF(I) is F-rational if a ∈ Fn. The proof of the next result follows from [Ier89] (see
also [HW99]).

Lemma 2.2 ( [Ier89]). There is a randomized algorithm that takes input m, (n, d)-polynomials g1, g2, . . . , gm
generating an ideal I of F[x]. If VF(I) is zero-dimensional and all points in it are F-rational then the al-
gorithm computes all the points in VF(I) with probability 1− exp(−mnd log q). The running time of the
algorithm is (mdn log q)O(1). 24

2.3 A few useful facts

We list down three claims (without proofs) that will be used in the later sections. A proof of
the first can be given using interpolation. Proofs of the last two follow from applications of the
Schwartz-Zippel lemma [Sch80, Zip79].

24A similar result, but for homogeneous g1, . . . , gm, follows from [Laz01].
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Claim 2.1. There is a deterministic algorithm that given blackbox access to a (n, d)-polynomial f ∈ F[x],
and a monomial µ of constant degree in x, computes blackbox access to ∂µ f in (nd log q)O(1) time.

Claim 2.2. Let f1, f2, . . . , fm be F-linearly independent (n, d)-polynomials in F[x]. If a1, a2, . . . , am are
points in Fn chosen independently and uniformly at random, then the matrix ( ft(as))s,t∈[m] has rank m
over F with probability at least 1− dm

q .

Claim 2.3. Let X1 ·X2 . . . Xd be a random (w, d, n)-matrix product over F. If n ≥ w2 then X1, X2, . . . , Xd
are full rank linear matrices and det(X1), det(X2), . . . , det(Xd) are coprime irreducible polynomials with
probability 1− (wdn)−Ω(1).

3 Average-case matrix factorization: Proof of Theorem 1

The algorithm in Theorem 1 is presented in Algorithm 1. To complete the analysis, given in Section
1.3.1, we need to argue the correctness of the key step of rearrangement of the matrices (Algorithm
3) by finding the last matrix (Algorithm 4). As the functioning of Algorithm 3 is already sketched
out in Section 1.3.1, the reader may skip to Section 3.2. For completeness, we include an analysis
of Algorithm 3 in the following subsection.

3.1 Rearranging the matrices

Recall, we have assumed F is a (w, d, n)-matrix product X1 · X2 . . . Xd, where X1, X2, . . . , Xd are
full rank linear matrices, and det(X1), det(X2), . . . , det(Xd) are coprime irreducible polynomi-
als. The inputs to Algorithm 3 are d full rank linear matrices Z1, Z2, . . . , Zd over L such that
there are matrices Ci, Di ∈ GL(w, L) and a permutation σ of [d] satisfying Zσ(i) = Ci · Xi · Di

or ZT
σ(i) = Ci · Xi · Di for every i ∈ [d]. Algorithm 3 iteratively determines σ (implicitly) by re-

peatedly using Algorithm 4. The behavior of Algorithm 4 is summarized in the lemma below. For
the lemma statement, assume n ≥ 2w2, Z is a full rank linear matrix over L, and Ft is a (w, t, n)-
matrix product R1 · R2 . . . Rt over L, where t ≤ d. Also, R1, R2, . . . , Rt are full rank linear matrices,
and det(R1), det(R2), . . . , det(Rt) are coprime irreducible polynomials. Further, there are matrices
C, D ∈ GL(w, L) and i ∈ [t] such that Z = C · Ri · D or ZT = C · Ri · D.

Lemma 3.1. Algorithm 4 takes input Z and blackbox access to the w2 entries of Ft, and with probability
1− (wdn)−Ω(1) does this: If Z = C · Rt · D then it outputs a D̃ = aD for an a ∈ L×, and for all other
cases – Z = C · Ri · D or ZT = C · Ri · D for i ∈ [t− 1], or ZT = C · Rt · D – it outputs ‘Failed’.

Algorithm 4 and the proof of Lemma 3.1 are presented in Section 3.2. We analyze Algorithm 3
below by tracing its steps:

Step 2: The algorithm enters an outer loop and iterates from t = d to t = 2. For a fixed t ∈ [d, 2],
at the start of the loop the algorithm ensures Ft is a (w, t, n)-matrix product R1 · R2 . . . Rt

25 over
L, where R1, R2, . . . , Rt are full rank linear matrices and det(R1), det(R2), . . . , det(Rt) are coprime
irreducible polynomials. Further, there is a permutation σt of [t], and for every i ∈ [t] there are
matrices Ci, Di ∈ GL(w, L) such that either Zσt(i) = Ci · Ri · Di or ZT

σt(i)
= Ci · Ri · Di. In the loop,

25For t = d, Ri = Xi for all i ∈ [d].
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Algorithm 3 Rearrangement of the matrices
INPUT: Blackbox access to F, and w× w full rank linear matrices Z1, Z2, . . . , Zd over L.
OUTPUT: Linear matrices Y1, Y2, . . . , Yd over L such that F = Y1 ·Y2 · · ·Yd.

1. Set t = d, k = 1, and Fd = F.
2. while t > 1 do
3.
4. while k ≤ t do
5. Call Algorithm 4 on inputs Ft and Zk.
6. if Algorithm 4 outputs D̃ then
7. Rename Zk as Zt and Zt as Zk, and set D̃t = D̃. /* σ is determined implicitly. */
8. Set Mt = Zt and Ft−1 = Ft · D̃t ·M−1

t .
9. Set k = 1 and t = t− 1.

10. Exit the inner loop.
11. end if
12.
13. Call Algorithm 4 on inputs Ft and ZT

k .
14. if Algorithm 4 outputs a D̃ then
15. Rename Zk as Zt and Zt as Zk, and set D̃t = D̃. /* σ is determined implicitly. */
16. Set Mt = ZT

t and Ft−1 = Ft · D̃t ·M−1
t .

17. Set k = 1 and t = t− 1.
18. Exit the inner loop.
19. end if
20. Set k = k + 1.
21. end while
22.
23. if k = t + 1 then
24. Exit the outer loop.
25. end if
26.
27. end while
28.
29. if t ≥ 2 then
30. Output ‘Rearrangement not possible’.
31. else
32. Set Y1 = F1, and Yt = Mt · D̃−1

t for all t ∈ [2, d]. Output Y1, . . . , Yd.
33. end if
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the algorithm determines σt(t) and whether Zσt(t) = Ct · Rt · Dt or ZT
σt(t)

= Ct · Rt · Dt.

Steps 4–21: Inside the inner loop, the algorithm calls Algorithm 4 on inputs Ft, Zk (step 5) and
Ft, ZT

k (step 13) for all k ∈ [t]. By Lemma 3.1, only when k = σt(t), Algorithm 4 returns a D̃ = atDt
for some at ∈ L×. The renaming of Zk and Zt (in steps 7 and 15) ensures that we have a suitable
permutation σt−1 of [t− 1] in the next iteration of the outer loop. The setting of Mt (in steps 8 and
16) implies that Mt = Ct · Rt · Dt. Hence,

Ft−1 = Ft · D̃t ·M−1
t = (R1 · R2 . . . Rt−1) · (atC−1

t ).

By reusing symbols and calling Rt−1 · (atC−1
t ) as Rt−1, and a−1

t Ct · Dt−1 as Dt−1, we observe that
the setup at step 2 is maintained in the next iteration of the outer loop.

Step 32: As Ft−1 = Ft · D̃t ·M−1
t at every iteration of the outer loop, setting Yt = Mt · D̃−1

t implies
Ft−1 = Ft ·Y−1

t for every t ∈ [d, 2]. Therefore, F = Fd = Y1 · · ·Yd.

3.2 Determining the last matrix: Proof of Lemma 3.1

We give an overview of the proof by first assuming that Z is the ‘last’ matrix in the product Ft. The
correctness of the idea is then made precise by tracing the steps of Algorithm 4.

Overview: Suppose Z = C · Rt · D, where C, D ∈ GL(w, L). As Z is a full rank linear matrix, we
can assume the entries of Z are distinct variables, by applying an invertible linear transformation.
For any polynomial h ∈ L[x], h mod det(Z) can be identified with an element of L(x) 26. Let
Z′, F′t ∈ L(x)w×w be obtained by reducing the entries of Z and Ft, respectively, modulo det(Z).
The coprimality of the determinants of R1, . . . , Rt and their full rank nature imply,

D ·KernelL(x)(Z′) = KernelL(x)(F′t ),

and these two kernels have dimensions one. A basis of KernelL(x)(Z′) can be easily derived as Z
is known explicitly. However, we only have blackbox access to F′t . To leverage the above relation,
we compute bases of KernelL(F′t (a)) and KernelL(Z′(a)) for several random a ∈r Fn, and form
two matrices U, V ∈ GL(w, L) from these bases so that D equals U ·V−1 (up to scaling by elements
in L×). Hereafter, KernelL will be denoted as Ker in the analysis of Algorithm 4.

Applying an invertible linear map (Step 2): The invertible linear transformation lets us assume that
Z = (zlk)l,k∈[w], where zlk’s are distinct variables in x.

Reducing Z and Ft modulo det(Z) (Step 5): The reduction of the entries of Z and the blackbox entries
of Ft modulo det(Z) is achieved by the substitution,

z11 = −∑w
k=2 z1k · N1k

N11
.

26det(Z) being multilinear, there is an injective ring homomorphism from L[x]/(det(Z)) to L(x) via a simple substi-
tution map taking a variable to a rational function.

18



Algorithm 4 Determining the last matrix
INPUT: Blackbox access to a (w, t, n)-matrix product Ft and a full rank linear matrix Z over L.
OUTPUT: A matrix D̃ ∈ GL(w, L), if Z is the ‘last’ matrix of the product Ft.

1. /* Applying an invertible linear map */
2. Let the first w2 variables in x be z = {zlk}l,k∈[w]. Compute an invertible linear map A that

maps the affine forms in Z to distinct z variables, and apply A to the w2 blackbox entries of Ft.
Reusing symbols, Z = (zlk)l,k∈[w] and Ft is the matrix product after the transformation.

3.
4. /* Reducing Z and Ft modulo det(Z) */
5. Let Nlk be the (l, k)-th cofactor of Z, for l, k ∈ [w]. Substitute z11 =

−∑w
k=2 z1k N1k

N11
in Z and in the

blackbox for Ft. Call the matrices Z′ and F′t respectively after the substitution.
6.
7. /* Computing the kernels */
8. for k = 1 to w + 1 do
9. Choose ak, bk ∈r Fn. Compute bases of Ker(F′t (ak)), Ker(Z′(ak)), Ker(F′t (bk)), Ker(Z′(bk)).

Pick non-zero uk ∈ Ker(F′t (ak)), vk ∈ Ker(Z′(ak)), wk ∈ Ker(F′t (bk)), sk ∈ Ker(Z′(bk)).
If the computation fails (i.e., N11(ak) = 0 or N11(bk) = 0), or any of the kernels is empty,
output ‘Failed’.

10. end for
11.
12. /* Extracting D from the kernels */
13. Compute αk, βk, γk, δk ∈ L for k ∈ [w] such that uw+1 = ∑w

k=1 αkuk, vw+1 = ∑w
k=1 βkvk, ww+1 =

∑w
k=1 γkwk and sw+1 = ∑w

k=1 δksk. If the computation fails, or any of αk, βk, γk, δk is zero for
some k ∈ [w], output ‘Failed’.

14.
15. Set U, V, W, S ∈ Lw×w such that the k-th column of U, V, W, S are αk ·uk

βk
, vk, γk ·wk

δk
, sk respectively.

If any of U, V, W, S 6∈ GL(w, L), output ‘Failed’.
16.
17. if UV−1SW−1 is a scalar matrix then
18. Set D̃ = U ·V−1 and output D̃.
19. else
20. Output ‘Failed’. /* The check fails w.h.p if Z is not the ‘last’ matrix */
21. end if
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After the substitution, the matrices become Z′ and F′t = R′1 · R′2 . . . R′t respectively. As there is an
i ∈ [t] and C, D ∈ GL(w, L) such that either Z = C · Ri · D or ZT = C · Ri · D, we have either
Z′ = C · R′i · D or (Z′)T = C · R′i · D and hence det(Z′) = det(R′i) = det(F′t ) = 0.

Observation 3.1. 1. KernelL(x)(Z′) = spanL(x){(N11 N12 . . . N1w)
T},

2. KernelL(x)((Z′)T) = spanL(x){(N11 N21 . . . Nw1)
T}.

Hence, KernelL(x)(Z′) has dimension one, and the observation below implies KernelL(x)(F′t ) is
also one dimensional. The proof follows from the coprimality of det(R1), det(R2), . . . , det(Rt).

Observation 3.2. For all j ∈ [t] and j 6= i, det(R′j) 6= 0, and so the dimension of KernelL(x)(F′t ) is one.

Computing the kernels (Steps 8–10): The following observation shows that the algorithm does not
fail at step 9 with high probability. The proof is immediate from the above two observations and
an application of the Schwartz-Zippel lemma.

Observation 3.3. Let ak, bk ∈r Fn for k ∈ [w + 1]. Then, for every k ∈ [w + 1], and a = ak or bk,

1. Ker(Z′(a)) = spanL{(N11(a) N12(a) . . . N1w(a))T},

2. Ker((Z′(a))T) = spanL{(N11(a) N21(a) . . . Nw1(a))T},

and Ker(F′t (ak)), Ker(F′t (bk)) are one dimensional subspaces of Lw, with probability 1− (wdn)−Ω(1).

Extracting D from the kernels (Steps 13 – 21): We analyse these steps for three separate cases. The
analysis shows that if Z is the ‘last’ matrix then the algorithm succeeds with high probability, oth-
erwise the test at step 17 fails with high probability.

Case a [Z = C · Rt · D]: From Observation 3.2, det(R′j(ak)) and det(R′j(bk)) are nonzero with high
probability, for all j ∈ [t− 1] and k ∈ [w+ 1]. Assuming this, the following holds for all k ∈ [w+ 1]:

D ·Ker(Z′(ak)) = Ker(F′t (ak)) ,
D ·Ker(Z′(bk)) = Ker(F′t (bk)) . (2)

Hence, at step 9, there are λk, ρk ∈ L× such that

D · vk = λkuk, D · sk = ρkwk for k ∈ [w + 1].

Step 13 also succeeds with high probability due to the following claim (proof in Appendix A).

Claim 3.1. With probability 1− (wdn)−Ω(1), any subset of w vectors in any of the sets {u1, u2, . . . , uw+1},
{v1, v2, . . . , vw+1}, {w1, w2, . . . , ww+1}, or {s1, s2, . . . , sw+1} are L-linearly independent.

At this step, vw+1 = ∑w
k=1 βkvk and sw+1 = ∑w

k=1 δksk, and so by applying D on both sides,

λw+1uw+1 =
w

∑
k=1

βkλkuk, ρw+1ww+1 =
w

∑
k=1

δkρkwk .
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Also, uw+1 = ∑w
k=1 αkuk and ww+1 = ∑w

k=1 γkwk. By Claim 3.1, none of the αk, βk, γk, δk is zero and

λk

λw+1
=

αk

βk
,

ρk

ρw+1
=

γk

δk
, for all k ∈ [w].

From the construction of U, V, W and S at step 15,

D ·V = λw+1U , D · S = ρw+1W,

and U, V, W, S ∈ GL(w, L) (by Claim 3.1). Therefore, UV−1SW−1 is a scalar matrix.

Case b [ZT = C · Rt · D]: In this case, the check at step 17 fails with high probability. Suppose the
algorithm passes steps 13 and 15, and reaches step 17. We show that UV−1SW−1 being a scalar ma-
trix implies an event E that happens with a low probability. The event E can be derived as follows:

Let M def
= U · V−1, and c ∈ L× such that M = cW · S−1. Assuming the invertibility of R′j(ak) and

R′j(bk) for j ∈ [t− 1] (Observation 3.2), and as in Equation 2, the following holds for all k ∈ [w+ 1].

D ·Ker((Z′(ak))
T) = Ker(F′t (ak)) ,

D ·Ker((Z′(bk))
T) = Ker(F′t (bk)) .

By Observation 3.3, we can assume the above four kernels are one-dimensional. Hence, at step 9
there are pk ∈ Ker((Z′(ak))

T) and qk ∈ Ker((Z′(bk))
T) satisfying D · pk = uk and D · qk = wk,

for every k ∈ [w + 1]. Consider the w × w matrices P and Q such that the k-th column of these
matrices are αk

βk
pk and γk

δk
qk respectively, where αk, βk, γk, δk are the constants computed at step 13.

Clearly, D · P = U and D ·Q = W, where U, W are the matrices computed at step 15.

As M = cW · S−1 (by assumption), we have D−1MS = cD−1W = cQ. Hence, for k ∈ [w],

D−1M · sk =
cγk

δk
qk.

At step 13, ww+1 = ∑w
k=1 γkwk and sw+1 = ∑w

k=1 δksk. Multiplying D−1 on both sides and D−1M
on both sides of these two equations respectively,

qw+1 =
w

∑
k=1

γkqk, and D−1M · sw+1 =
w

∑
k=1

cγkqk .

⇒ D−1M · sw+1 = cqw+1. (3)

From Observation 3.3, there are λ1, λ2 ∈ L× such that

sw+1 = λ1 · (N11(bw+1) N12(bw+1) . . . N1w(bw+1))
T ,

qw+1 = λ2 · (N11(bw+1) N21(bw+1) . . . Nw1(bw+1))
T .

Let D−1M = (mlk)l,k∈[w]. Using the above values of sw+1 and qw+1 in Equation 3 and restricting to
the first two entries of the resulting column vectors, we have

λ1

(
w

∑
k=1

m1kN1k(bw+1)

)
= cλ2N11(bw+1) , λ1

(
w

∑
k=1

m2kN1k(bw+1)

)
= cλ2N21(bw+1) .
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Thus we get the following relation,

N21(bw+1)

(
w

∑
k=1

m1kN1k(bw+1)

)
= N11(bw+1)

(
w

∑
k=1

m2kN1k(bw+1)

)
.

Event E is defined by the above equality, i.e. we say E has happened whenever the above equality
holds. Now observe that D−1M is independent27 of the random bits used to choose bw+1. Hence,
it is sufficient to show that the above equality happens with low probability over the randomness
of bw+1, for any arbitrarily fixed m11, . . . , m1w and m21, . . . , m2w from L. Moreover, as D−1M is
invertible, we can assume – not all in {m11, . . . , m1w} or {m21, . . . , m2w} are zero. The following
observation and Schwartz-Zippel lemma complete the proof in this case.

Observation 3.4. N21(z) (∑w
k=1 m1k · N1k(z)) 6= N11(z) (∑w

k=1 m2k · N1k(z)) as polynomials in F[z].

Proof. Suppose the two sides are equal. As N21(z) and N11(z) are irreducible and coprime polyno-
mials, N21(z) must divide ∑w

k=1 m2k · N1k(z). But the two polynomials have the same degree and
they are monomial disjoint, thereby giving us a contradiction.

Case c [Z = C · Ri · D or ZT = C · Ri · D for some i ∈ [t− 1]]: Assume Z = C · Ri · D for some
i ∈ [t− 1]. The case ZT = C · Ri · D can be argued similarly. Similar to Case b, we show that if
the algorithm passes steps 13 and 15, and reaches step 17 then UV−1SW−1 being a scalar matrix
implies an event E that happens with very low probability. Hence, the check at step 17 fails with
high probability. The event E can be derived as follows:

Let M def
= U ·V−1, and c ∈ L× be such that M = c ·WS−1. From the construction of W and S,

cγk

δk
wk = M · sk , for all k ∈ [w],

where γk, δk are as computed at step 13. Since ww+1 = ∑w
k=1 γkwk and sw+1 = ∑w

k=1 δk · sk,

c ·ww+1 = M · sw+1.

Let H def
= D−1 · R′i+1 . . . R′t. From Observation 3.2, the following holds,

H−1 ·KernelL(x)(Z′) = KernelL(x)(F′t ).

Let n = (N11(bw+1) N12(bw+1) . . . N1w(bw+1))
T. From Observation 3.3, and as H(bw+1) is

invertible with high probability over the random choice of bw+1, there are λ1, λ2 ∈ L× such that

ww+1 = λ1H−1(bw+1) · n
sw+1 = λ2n.

Substituting the above values of ww+1 and sw+1 in c ·ww+1 = M · sw+1, we have

cλ1H−1(bw+1) · n = λ2M · n , ⇒ cλ1n = λ2H(bw+1) ·M · n.

27One way of seeing this is that D−1 M is already fixed before bw+1 is chosen.
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Let H ·M = (hlk)l,k∈[w]. Restricting to the first two entries of the vectors in the above equality, we
have

cλ1N11(bw+1) = λ2

(
w

∑
k=1

h1k(bw+1) · N1k(bw+1)

)
,

cλ1N12(bw+1) = λ2

(
w

∑
k=1

h2k(bw+1) · N1k(bw+1)

)
.

Hence, we get the following relation

N11(bw+1) ·
(

w

∑
k=1

h2k(bw+1) · N1k(bw+1)

)
= N12(bw+1) ·

(
w

∑
k=1

h1k(bw+1) · N1k(bw+1)

)
. (4)

Event E is defined by the above equality, that is E happens if the above equality is satisfied. Ob-
serve that the entries of the matrix product H ·M = (hlk)l,k∈[w] are rational functions in x variables
and are independent of the random bits used to choose bw+1. We show next the probability that the
above equality holds is low over the randomness of bw+1.

The only implications of the average-case nature of Ft that we have used in the proofs so far
are: every Ri is full rank and det(R1), . . . , det(Rt) are mutually coprime with high probability.
However, these two properties are not sufficient to ensure the uniqueness of the last matrix in
the product (as mentioned in a remark after Theorem 1). In the following claim, we use one more
effect of Ft being a random matrix product which ensures the desired uniqueness of the last matrix.

Claim 3.2. If E = Q1 · · ·Q` is a random (w, `, m)-matrix product over F, where w2 + 1 ≤ m ≤ n and
` ≤ d, then the entries of E are F-linearly independent with probability 1− (wdn)−Ω(1).

If the entries of E are F-linearly independent then they are also L-linearly independent. We con-
clude the proof of Case c using the above claim (proof given in Appendix A).

Observation 3.5. Let n ≥ 2w2. Then all the entries of H · M are nonzero polynomials after setting the

variables in z1
def
= {z11, z21, z31, . . . , zw1} to zero, with probability 1− (wdn)−Ω(1).

Proof. H ·M = D−1 · R′i+1 . . . R′t ·M = (hlk)l,k∈[w]. Recalling the substitution z11 =
−∑w

k=2 z1k N1k
N11

at
step 5, we observe that the rational function hlk becomes a polynomial under the setting z11 =
z21 = . . . = zw1 = 0 28. Let Qj = (Rj)z1=0. By observing (Rj)z1=0 = (R′j)z1=0, it follows that
(H · M)z1=0 = D−1 · Qi+1 . . . Qt · M. Moreover, Qi+1 · Qi+2 . . . Qt is a random (w, t − i, n − w)-
matrix product. By Claim 3.2, the entries of Qi+1 . . . Qt are L-linearly independent with high
probability. Hence, none of the entries of D−1 ·Qi+1 . . . Qt ·M is zero as D, M ∈ GL(L, w).

Observation 3.6. N11(x) · (∑w
k=1 h2k(x)N1k(x)) 6= N12(x) · (∑w

k=1 h1k(x)N1k(x)) as rational functions
in L(x), with probability 1− (wdn)−Ω(1).

Proof. Suppose N11(x) · (∑w
k=1 h2k(x)N1k(x)) = N12(x) · (∑w

k=1 h1k(x)N1k(x)). By substituting z1 =
0 in the equation, the R.H.S becomes zero whereas the L.H.S reduces to N2

11 · (h21)z1=0 6= 0 with
high probability (from Observation 3.5).

28z11 does not even appear in hlk.
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Noting that the degrees of the numerator and the denominator of hlk are upper bounded by wd,
we conclude that the equality in Equation 4 happens with a low probability over the randomness
of bw+1.

4 Average-case ABP reconstruction: Proof of Theorem 2

The algorithm for average-case ABP reconstruction is presented in Algorithm 2, Section 1.3.2. The
algorithm uses Algorithm 5 and Algorithm 6 during its execution – we present and analyze these
two algorithms in the following subsections.

4.1 Computing the corner spaces

Let f be the polynomial computed by a random (w, d, n)-ABP X1 ·X2 . . . Xd over F, where n ≥ 4w2.

Lemma 4.1. With probability 1− (wdn)−Ω(1) over the randomness of f , the following holds: Let K ⊇ F

be any field and f = 0 mod 〈l1, . . . , lk〉, where li’s are linear forms in K[x]. Then k ≥ w and for k = w,
the space spanK{l1, . . . , lw} equals the K-span of either the linear forms in X1 or the linear forms in Xd.

The above uniqueness of the corner spaces, X1 and Xd (defined in Section 1.3.2), helps compute
them in Algorithm 5. The proof of the lemma is given at the end of this subsection.

Canonical bases of X1 and Xd: For a set of variables y ⊆ x and a linear form g in F[x], define

g(y) def
= gx\y =0. We say g(y) is the linear form g projected to the y variables. Let x1, . . . , xw and v

be a designated set of w + 1 variables in x, and u = x \ {x1, . . . , xw, v}. With n ≥ 4w2, a random
(w, d, n)-ABP X1 · X2 . . . Xd satisfies the following condition with probability 1− (wdn)−Ω(1):
(*a) The linear forms in X1 (similarly, Xd) projected to x1, . . . , xw are F-linearly independent.
If the above condition is satisfied then there is a C ∈ GL(w, F) such that the linear forms in X1 · C
are of the kind:

xi − αiv− gi(u), for i ∈ [w], (5)

where each αi ∈ F and gi is a linear form in F[u]. Thus, we can assume without loss of generality,
the linear forms in X1 are of the above kind. Similarly, the linear forms in Xd are also of the kind:

xi − βiv− hi(u), for i ∈ [w], (6)

where each βi ∈ F and hi is a linear form in F[u]. Moreover, with probability 1− (wdn)−Ω(1) over
the randomness of the ABP, the following condition is satisfied:
(*b) α1, . . . , αw and β1, . . . , βw are distinct elements in F.
The task at hand for Algorithm 5 is to solve for αi, gi and β j, hj, for i, j ∈ [w], assuming that condi-
tions (*a) and (*b) are satisfied. The bases defined by Equations 5 and 6 are canonical forX1 andXd.

We analyze the three main steps of Algorithm 5 next:

1. Partitioning the variables (Step 2): The only thing to note here is, if n− (w + 1) is not divisible
by 4w2− (w + 1) then we allow the last two sets um−1 and um to overlap – the algorithm can
be suitably adjusted in this case.
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Algorithm 5 Computing the corner spaces
INPUT: Blackbox access to a f computed by a random (w, d, n)-ABP.
OUTPUT: Bases of the two corner spaces X1 and Xd modulo which f is zero.

1. /* Partitioning the variables */
2. Choose w + 1 designated variables x1, x2, . . . , xw, v, and let u = x \ {x1, . . . , xw, v}. Partition u

into sets u1, u2, . . . , um, each of size 4w2 − (w + 1). .
3.
4. /* Reduction to solving m systems of polynomial equations */
5. for ` = 1 to m do
6. Set f` = fu\u` =0.
7. Solve for all possible (α1, . . . , αw, g1(u`), . . . , gw(u`)), where each αi ∈ F and gi(u`) is a linear

form in F[u`] such that
f` = 0 mod 〈x1 − α1v− g1(u`), . . . , xw − αwv− gw(u`)〉.

8. if Step 7 does not return exactly two solutions for (α1, . . . , αw, g1(u`), . . . , gw(u`)) then
9. Output ‘Failed’.

10. else
11. The solutions be (α`1, . . . , α`w, g1(u`), . . . , gw(u`)) and (β`1, . . . , β`w, h1(u`), . . . , hw(u`)).
12. end if
13. end for
14.
15. /* Combining the solutions */
16. if | ∪`∈[m] {(α`1, . . . , α`w), (β`1, . . . , β`w)}| 6= 2 then
17. Output ‘Failed’.
18. else
19. Without loss of generality, (α`1, . . . , α`w) = (α1, . . . , αw) and (β`1, . . . , β`w) = (β1, . . . , βw) for

every ` ∈ [m]. Set gi(u) = ∑`∈[w] gi(u`) and hi(u) = ∑`∈[w] hi(u`) for every i ∈ [w].
20. Return {xi − αiv− gi(u)}i∈[w] and {xi − βiv− hi(u)}i∈[w] as the bases of X1 and Xd.
21. end if
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2. Reduction to solving systems of polynomial equations (Steps 5–13): At step 7, the task of comput-
ing (α1, . . . , αw, g1(u`), . . . , gw(u`)) such that

f` = 0 mod 〈x1 − α1v− g1(u`), . . . , xw − αwv− gw(u`)〉,

can be reduced to solving for all F-rational points of a system of polynomial equations over
F as follows: Treat α1, . . . , αw and the 4w3 − w(w + 1) coefficients of g1(u`), . . . , gw(u`), say
w, as formal variables. Substitute xi = αiv + gi(u`) for every i ∈ [w] in the blackbox for
f`, and interpolate the resulting polynomial p in the variables α1, . . . , αw, w, v, u` with coef-
ficients in F. The interpolation, which can be done in (dw3

log q)O(1) time29, gives p in dense
representation (i.e. as a sum of monomials). Now by treating p as a polynomial in the vari-
ables v, u` with coefficients in F(α1, . . . , αw, w), and equating these coefficients to zero, we
get a system of dO(w2) polynomial equations in O(w3) variables with degree of each polyno-
mial equation bounded by d. By Lemma 4.1, such a system has exactly two solutions over F

and moreover, these two solution points are F-rational. Hence, by applying Lemma 2.2, we
can compute the two solutions for (α1, . . . , αw, w) at step 7, in (dw3

log q)O(1) time.

3. Combining the solutions (Steps 16–21): The correctness of the steps follows from condition (*b).

Uniqueness of the corner spaces: Proof of Lemma 4.1

As n ≥ 4w2, a random (w, d, n)-ABP X1 · · ·Xd satisfies the following condition with probability
1− (wdn)−Ω(1):
(**) The linear forms in X1, Xd and any three or less of the other Xi’s are F-linearly independent.
So, it is sufficient to prove the following restatement of the lemma.

Lemma 4.1. Suppose f is computed by a (w, d, n)-ABP X1 · X2 · · ·Xd satisfying the above condition (**).
If f = 0 mod 〈l1, . . . , lk〉, where li’s are linear forms over K ⊇ F, then k ≥ w and for k = w, the space
spanK{l1, . . . , lw} equals the K-span of either the linear forms in X1 or the linear forms in Xd.

We prove the lemma first for d = 3, and then use this case to prove it for d > 3.

Case [d = 3]: There is an A ∈ GL(n, F) such that f (A · x) is computed by (y1 y2 . . . yw) · (rij)i,j∈[w] ·
(z1 z2 . . . zw)T, where y = {yi}i∈[w], r = {rij}i,j∈[w] and z = {zj}j∈[w] are distinct variables in x.
If f = 0 mod 〈l1, . . . , lk〉, then f (A · x) = 0 mod 〈l1(A · x), . . . , lk(A · x)〉. Next, we show that
if f (A · x) = 0 modulo k′ linear forms h1, . . . , hk′ ∈ K[y ] z ] r] then k′ ≥ w, and for k′ = w,
the space spanK{h1, . . . , hw} equals either spanK{y1, . . . , yw} or spanK{z1, . . . , zw}. It follows that
k ≥ k′ ≥ w, and for k = w, the linear forms l1(A · x), . . . , lw(A · x) must belong to K[y] z] r]30 and
hence spanK{l1, . . . , lw} equals the K-span of either the linear forms in X1 or the linear forms in Xd.

Reusing symbols, assume that f is computed by X1 · X2 · X3, where X1 = (y1 y2 . . . yw), X2 =
(rij)i,j∈[w] and X3 = (z1 z2 . . . zw)T, and f = 0 mod 〈l1, . . . , lk〉, where li’s are linear forms in
K[y] z] r]. Suppose k ≤ w; otherwise, we have nothing to prove. Consider the reduced Gröbner

29As the individual degrees of the variables in p are bounded by d, we only need |F| > d to carry out this interpola-
tion.

30Otherwise, we will have f (A · x) = 0 modulo less than w linear forms in K[y] z] r].
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basis31 G of the ideal 〈l1, . . . , lk〉 with respect to the lexicographic monomial ordering defined by
y � z � r. There are sets Sy, Sz ⊆ [w] and Sr ⊆ [w]× [w], satisfying |Sy|+ |Sz|+ |Sr| ≤ k, such
that G consists of linear forms of the kind:

yi − gi(y, z, r) for i ∈ Sy,
zj − hj(z, r) for j ∈ Sz,
r`e − p`e(r) for (`, e) ∈ Sr,

where gi, hj and p`e are linear forms over K in their respective sets of variables. Let X′1, X′2, X′3 be
the linear matrices obtained from X1, X2, X3 respectively, by replacing yi by gi(y, z, r), r`e by p`e(r)
and zj by hj(z, r), for i ∈ Sy, (`, e) ∈ Sr and j ∈ Sz. Then,

X′1 · X′2 · X′3 = 0. (7)

The dimension of the K-span of the linear forms of X′1 is at least (w− |Sy|), that of X′2 is at least
(w2− |Sr|), and of X′3 is at least (w− |Sz|). Also, there are C, D ∈ GL(w, K) such that X′1 ·C, D · X′3
are obtained32 from X1, X3 respectively, by replacing yi by gi(0, z, r) and zj by hj(0, r), for i ∈ Sy
and j ∈ Sz. Consider the following equation,

(X′1C) · (C−1X′2D−1) · (DX′3) = 0. (8)

By examining the L.H.S, we can conclude that for s ∈ [w] \ Sy and t ∈ [w] \ Sz, the coefficient of
the monomial yszt over K(r) is the (s, t)-th entry of C−1X′2D−1 which must be zero. Hence, the
dimension of the K-span of the linear forms in C−1X′2D−1 is at most w2 − (w − |Sy|)(w − |Sz|).
As the dimension of the K-span of the linear forms in X′2 remains unaltered under left and right
multiplications by elements in GL(w, K), we get the relation

w2 − |Sr| ≤ w2 − (w− |Sy|)(w− |Sz|)
⇒ (w− |Sy|)(w− |Sz|) ≤ |Sr|

⇒ w2 − (|Sy|+ |Sz|)w + |Sy| · |Sz| ≤ |Sr|
⇒ w2 − (w− |Sr|)w + |Sy| · |Sz| ≤ |Sr|, as |Sy|+ |Sz|+ |Sr| ≤ k ≤ w

⇒ |Sr|w + |Sy| · |Sz| ≤ |Sr|.

As |Sy|, |Sz|, |Sr| ≥ 0, we must have |Sr| = 0, and either |Sy| = 0 or |Sz| = 0.

Suppose |Sr| = |Sz| = 0 (the case for |Sr| = |Sy| = 0 is similar). Then, Equation 8 simplifies to

(X′1C) · (C−1X2) · X3 = 0.

If k < w then there is a ys in X1 that is not replaced while forming X′1C from X1. By examining
the coefficient of ys over K(r, z) in the L.H.S of the above equation, we arrive at a contradiction.
Hence, k = w, in which case Equation 7 simplifies to

X′1 · X2 · X3 = 0.

31See [CLO07]. Equivalently, think of the set of linear forms obtained from a reduced row echelon form of the
coefficient matrix of l1, . . . , lk.

32via row and column operations on X′1 and X′3, respectively
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The entries of X′1 are linear forms in z and r, and so X′1 = X′1(z) + X′1(r) where the entries of X′1(z)
(similarly, X′1(r)) are linear forms in z (respectively, r). The above equation implies

X′1(z) · X2 · X3 = 0 and X′1(r) · X2 · X3 = 0,

as the two L.H.S above are monomial disjoint. It is now easy to argue that X′1(z) = X′1(r) = 0,
implying X′1 = 0 and hence the reduced Gröbner basis G is in fact {y1, . . . , yw}.

Case [d > 3]: As before, by applying an invertible transformation, we can assume that X1 =
(y1 y2 . . . yw), X2 = (rij)i,j∈[w] and Xd = (z1 z2 . . . zw)T. Let u = x \ (y ] z ] r) and k ≤ w.
Consider the reduced Gröbner basis G of the ideal 〈l1, l2, . . . , lk〉 with respect to the lexicographic
monomial ordering defined by u � y � z � r. There are sets Su ⊆ [n−w2− 2w], Sy, Sz ⊆ [w] and
Sr ⊆ [w2], satisfying |Su|+ |Sy|+ |Sz|+ |Sr| ≤ k, such that G consists of linear forms of the kind:

um − tm(u, y, z, r) for m ∈ Su,
yi − gi(y, z, r) for i ∈ Sy,

zj − hj(z, r) for j ∈ Sz,
r`e − p`e(r) for (`, e) ∈ Sr,

where tm, gi, hj and p`e are linear forms over K in their respective sets of variables. Let X′ be the
matrix obtained from X by replacing um by tm(u, y, z, r), yi by gi(y, z, r), zj by hj(z, r), and r`e by
p`e(r), for m ∈ Su, i ∈ Sy, j ∈ Sz, and (`, e) ∈ Sr. Then,

X′1 · X′2 · X′3 . . . X′d = 0.

Let X(u) def
= (X)y=z=r=0. By treating the L.H.S of the above equation as a polynomial in u-variables

with coefficients from K(y, z, r) and focusing on the degree-(d− 3) homogeneous component of
this polynomial, we have

X′1 · X′2 · X′3(u) . . . X′d−1(u) · X′d = 0. (9)

If X′3(u) · · ·X′d−1(u) ∈ GL(w, K(u)) then there is a c ∈ F|u| such that C = X′3(c) · · ·X′d−1(c) ∈
GL(w, K). Define

f1 = X1 · X2 · C · Xd,

and observe that Equation 9 implies f1 is zero modulo the linear forms,

yi − gi(y, z, r) for i ∈ Sy,
zj − hj(z, r) for j ∈ Sz,
r`e − p`e(r) for (`, e) ∈ Sr.

By applying Case [d=3] on f1, we get the desired conclusion, i.e. k = w and the K-span of the
above linear forms (hence also that of {l1, . . . , lk}) is either spanK{y1, . . . , yw} or spanK{z1, . . . , zw}.
So, suppose X′3(u) · · ·X′d−1(u) 6∈ GL(w, K(u)) in Equation 9. Then, there is a j ∈ [3, d− 1] such that
det(X′j(u)) = 0. Observe that X′i(u) can be obtained from Xi(u) by replacing um by tm(u, 0, 0, 0)
for m ∈ Su. That is,

X′i(u) = Xi(u) mod 〈{um − tm(u, 0, 0, 0)}m∈Su〉, for every i ∈ [3, d− 1].

As Xj(u) is full rank33 and det(X′j(u)) = 0, the fact below implies |Su| = w, |Sy| = |Sz| = |Sr| = 0.

33which follows from condition (**)
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Observation 4.1. If the symbolic determinant Detw is zero modulo s linear forms then s ≥ w.

Hence, Equation 9 simplifies to

X1 · X2 · X′3(u) . . . X′d−1(u) · Xd = 0,
⇒ X′3(u) · · ·X′d−1(u) = 0. (10)

The above equality can not happen and this can be argued by applying induction on the number
of matrices in the L.H.S of Equation 10:

Base case: (d = 4) The L.H.S of Equation 10 has one matrix X′3(u). As X3(u) is full
rank33, it cannot vanish modulo w linear forms.
Induction hypothesis: Equation 10 does not hold if the L.H.S has at most d− 4 matrices.
Inductive step: (d > 4) Suppose Equation 10 is true. As the 2w2 linear forms in X3(u)
and Xd−1(u) are linearly independent33, by Observation 4.1, at least one of X′3(u) and
X′d−1(u) is invertible. This gives a shorter product where we can apply the induction
hypothesis to get a contradiction.

4.2 Finding the coefficients in the intermediate matrices

Following the notations in Section 1.3.2, y = {y1, . . . , yw} and z = {z1, . . . , zw} are subsets of x,
r = x \ (y] z), X′1 = (y1 y2 . . . yw) and X′d = (z1 z2 . . . zw)T. When Algorithm 2 reaches the third
and final stage, it has blackbox access to a f ′ ∈ F[x] and linear matrices S2, . . . , Sd−1 ∈ L[r]w×w re-
turned by Algorithm 1, such that S2 · S3 . . . Sd−1 is the linear matrix factorization of a random
(w, d − 2, n − 2w)-matrix product R2 · R3 . . . Rd−1 over F. Further, there exist linear matrices
T2, . . . , Td−1 ∈ L[x]w×w satisfying (Tk)y=0,z=0 = Sk for every k ∈ [2, d − 1], such that f ′ is com-
puted by the ABP X′1 · T2 . . . Td−1 · X′d−1. The task for Algorithm 6 is to efficiently compute the
coefficients of the y and z variables in Tk. At a high level, this is made possible because of the
uniqueness of such Tk matrices: Indeed the analysis of Algorithm 6 shows that with high proba-
bility the coefficients of y and z in T3, . . . , Td−2 are uniquely determined, and (if a certain canonical
form is assumed then) the same is true for matrices T2 and Td−1.

Canonical form for T2 and Td−1: Matrix T2 is said to be in canonical form if for every l ∈ [w] the
coefficient of yl is zero in the linear form at the (i, j)-th entry of T2, whenever i > l. Similarly,
Td−1 is in canonical form if for every l ∈ [w] the coefficient of zl is zero in the linear form at the
(i, j)-th entry of Td−1 whenever j > l. It can be verified (see [KNST17]), if f ′ is computed by an
ABP X′1 · T2 . . . Td−1 · X′d−1 then it is computed by another ABP where the corresponding T2 and
Td−1 are in canonical form, and the other matrices remain unchanged.

Linear independence of minors of a random ABP: The lemma given below is the reason Algorithm 6 is
able to reduce the task of finding the coefficients of the y and z variables to solving linear equa-
tions. In the following discussion, the i-th row and j-th column of a matrix M will be denoted by
M(i, ∗) and M(∗, j) respectively.

Let R2 · R3 . . . Rd−1 be a random (w, d− 2, n− 2w)-matrix product in r-variables over F. For every
s, t ∈ [w], R2(s, ∗) · R3 . . . Rd−2 · Rd−1(∗, t) is a random (w, d − 2, n − 2w)-ABP having a total of
w2(d− 4) + 2w linear forms in all the Rk matrices. Let us index the linear forms34 by [w2(d− 4) +

34by picking an arbitrarily fixed ordering among the linear forms
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2w]. We associate a polynomial g(s,t)
e with the e-th linear form, for every e ∈ [w2(d− 4) + 2w], as

follows: If the e-th linear form is the (`, m)-th entry of Rk then

g(s,t)
e (r) def

= [R2(s, ∗) · R3 . . . Rk−2 · Rk−1(∗, `)] · [Rk+1(m, ∗) · Rk+2 . . . Rd−2 · Rd−1(∗, t)].35

The polynomials {g(s,t)
e : e ∈ [w2(d − 4) + 2w]}, will be called the minors of the ABP R2(s, ∗) ·

R3 . . . Rd−2 · Rd−1(∗, t).

Lemma 4.2. With probability 1− (wdn)−Ω(1) over the randomness of R2 · · · Rd−1 the following holds:
For every s, t ∈ [w], the minors {g(s,t)

e : e ∈ [w2(d− 4) + 2w]}, are F-linearly independent.

The proof of the lemma is given at the end of this section. Due to the uniqueness of factorization,
the matrices S2, . . . , Sd−1 in Algorithm 2 are related to R2, . . . , Rd−1 as follows: There are Ci, Di ∈
GL(w, L) such that Si = Ci · Ri · Di, for every i ∈ [2, d− 1]; moreover, there are c2, . . . , cd−2 ∈ L×

satisfying C2 = Dd−1 = Iw, Di · Ci+1 = ci Iw for i ∈ [2, d − 2], and ∏d−2
i=2 ci = 1. Define minors

of the ABP S2(s, ∗) · S3 . . . Sd−2 · Sd−1(∗, t), for every s, t ∈ [w], like above. The edges of the ABP
are indexed by [w2(d− 4) + 2w] and a polynomial h(s,t)

e is associated with the e-th linear form as
follows: If the e-th linear form is the (`, m)-th entry of Sk then

h(s,t)
e (r) def

= [S2(s, ∗) · S3 . . . Sk−2 · Sk−1(∗, `)] · [Sk+1(m, ∗) · Sk+2 . . . Sd−2 · Sd−1(∗, t)]. (11)

It is a simple exercise to derive the following corollary from the lemma above.

Corollary 4.1. With probability 1− (wdn)−Ω(1) the following holds: For every s, t ∈ [w], the minors
{h(s,t)

e : e ∈ [w2(d− 4) + 2w]} are L-linearly independent.

We are now ready to argue the correctness of Algorithm 6 by tracing its steps.

1. Computing the partial derivatives (Step 2): In this step, we compute all the third order partial
derivatives of f ′ using Claim 2.1.

2. Computing almost all the coefficients of the y and z variables (Steps 6–13): Equations 12 and 13
are justified by treating f ′ as a polynomial in the y and z variables with coefficients from
L(r), and examining the coefficients of y2

s zt and ysz2
t respectively. A linear system obtained

at step 9 or step 11 has w2(d− 4) + 2w variables and the same number of linear equations.
Corollary 4.1, together with Claim 2.2, ensure that the square coefficient matrix of the linear
system is invertible (with high probability), and hence the solution computed is unique. The
uniqueness implies that the solutions obtained across multiple iterations of the loop do not
conflict with each other36. This also shows that the matrices T3, . . . , T4 are unique. By the
end of this stage, the coefficients of y and z variables are computed for all the linear forms,
except for the coefficients of yl in T2(s, ∗) for l > s, and the coefficients of zl in Td−1(∗, t) for
l > t. These coefficients are retrieved in the next stage.

35by identifying the 1× 1 matrix of the R.H.S with the entry of the matrix
36For instance, the coefficients of ys in the linear forms in T2(s, ∗), T3, . . . , Td−2 get computed repeatedly at step 9 for

every value of t ∈ [w] – uniqueness ensures that we always get the same values for these coefficients.
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Algorithm 6 Computing the coefficients of y and z variables in Tk

INPUT: Blackbox access to f ′ and linear matrices S2, . . . , Sd−1 ∈ L[r]w×w.
OUTPUT: Linear matrices T2, T3, . . . , Td−1 ∈ L[x]w×w such that f ′ is computed by y · T2 ·
T3 . . . Td−1 · zT, satisfying (Tk)y=0,z=0 = Sk for every k ∈ [2, d− 1].

1. /* Computing the partial derivatives */
2. Compute blackbox access to ( ∂ f ′

∂ysylzt
)y=0,z=0 and ( ∂ f ′

∂yszlzt
)y=0,z=0 for all s, l, t ∈ [w].

3. For every s, t ∈ [w], let {h(s,t)
e : e ∈ [w2(d − 4) + 2w]} be the minors of the ABP S2(s, ∗) ·

S3 . . . Sd−2 · Sd−1(∗, t), as defined in Equation 11.
4.
5. /* Computing almost all the coefficients of the y and z variables in Tk*/
6. Set E = w2(d− 4) + 2w.
7. for every s, t ∈ [w] do
8. Pick a1, . . . , aE ∈r F|r| independently.
9. Solve the linear system over L defined by

∑
e∈[E]

ce · h(s,t)
e (ai) =

(
∂ f ′

∂y2
s zt

)
y=0,z=0

(ai), for i ∈ [E], (12)

for a unique solution of {ce}e∈[E]. If the coefficient matrix is not invertible, output ‘Failed’.
10. For every e ∈ [E], set the solution value of ce as the coefficient of ys in the e-th linear form of

the ABP T2(s, ∗) · T3 . . . Td−2 · Td−1(∗, t).
11. Solve the linear system over L defined by

∑
e∈[E]

de · h(s,t)
e (ai) =

(
∂ f ′

∂ysz2
t

)
y=0,z=0

(ai), for i ∈ [E], (13)

for a unique solution of {de}e∈[E].
12. For every e ∈ [E], set the solution value of de as the coefficient of zt in the e-th linear form of

the ABP T2(s, ∗) · T3 . . . Td−2 · Td−1(∗, t).
13. end for
14.
15. /* Computing the remaining y and z coefficients in T2 and Td−1 */
16. for every s, t ∈ [w] do
17. For every l > s, compute the coefficients of yl in the linear forms in T2(s, ∗) by setting up a

linear system similar to Equation 12, but with the R.H.S replaced by ∂ f ′
∂ysylz1

.
18. For every l > t, compute the coefficients of zl in the linear forms in Td−1(∗, t) by setting up

a linear system similar to Equation 13, but with the R.H.S replaced by ∂ f ′
∂y1zlzt

.
19. end for
20.
21. The coefficients of the r variables in the linear forms in Tk remain the same as that in Sk, for all

k ∈ [2, d− 1]. Output T2, T3, . . . Td−1.
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3. Computing the remaining y and z coefficients in T2 and Td−1 (Steps 16–19): For an s ∈ [w],
consider the following minors of S2(s, ∗) · S3 . . . Sd−2 · Sd−1(∗, 1):

S3(m, ∗) · S4 . . . Sd−2 · Sd−1(∗, 1) for all m ∈ [w].

Without loss of generality, let these minors be h(s,1)
1 , . . . , h(s,1)

w . Let l > s. By treating f ′ as a
polynomial in the y, z variables, with coefficients from L(r), and examining the coefficient
of ysylz1 in f ′, we arrive at the equation,

w

∑
e=1

ce · h(s,1)
e + K(r) =

(
∂ f ′

∂ysylz1

)
y=0,z=0

,

where c1, . . . , cw are the unknown coefficients of yl in the linear forms of T2(s, ∗), and K(r)
is a known linear combination of some other minors. The fact that K(r) is known at step 17
follows from this observation – while forming a monomial ysylz1, we either choose ys from
X′1 and yl from T2(s, ∗) or T3, . . . , Td−1(∗, 1), or yl from X′1 and ys from T3, . . . , Td−1(∗, 1). In
the latter case, we are using the fact that T2 is in canonical form, and so ys does not appear
in T2(l, ∗). As the coefficients of ys, yl in T3, . . . , Td−1(∗, 1) are known from the computation
in steps 6–13, we conclude that K(r) in known. Thus, we can solve for c1, . . . , cw by plugging
in w random points in place of the r variables and setting up a linear system in w variables.
Corollary 4.1 and Claim 2.2 imply the w × w coefficient matrix of the system is invertible,
and hence the solution for c1, . . . , cw is unique. The correctness of step 18 can be argued
similarly, and this finally implies that T2 and Td−1 (in canonical form) are unique.

Linear independence of minors: Proof of Lemma 4.2

We have to show that the minors of R2(s, ∗) · R3 . . . Rd−2 · Rd−1(∗, t) are F-linearly independent
with high probability, for every s, t ∈ [w], where R2 · R3 . . . Rd−1 is a random (w, d − 2, n − 2w)-
matrix product. We will prove it for a fixed s, t ∈ [w], and then by union bound the result will
follow for every s, t ∈ [w]. As n ≥ 4w2, we have n− 2w ≥ 3w2. So, it is sufficient to show the linear
independence of the minors of a random (w, d, n)-ABP X1 · X2 . . . Xd in x-variables, for n ≥ 3w2.

Treat the coefficients of the linear forms in X1, . . . , Xd as formal variables. In particular,

X1 =
n

∑
i=1

U(1)
i xi, Xk =

n

∑
i=1

U(k)
i xi for k ∈ [2, d− 1], Xd =

n

∑
i=1

U(d)
i xi, (14)

where U(1)
i and U(d)

i are row and column vectors of length w respectively, U(k)
i is a w× w matrix,

and the entries of these matrices are distinct u-variables. We will denote the (`, m)-th entry of U(k)
i

by U(k)
i (`, m), and the m-th entry of U(d)

i by U(d)
i (m). From the above equations, X1 · X2 . . . Xd is a

(w, d, n)-ABP over F(u). We will show in the following claim that the minors of this ABP are F(u)-
linearly independent. As the coefficients of the x-monomials of these minors are polynomials (in
fact, multilinear polynomials) of degree d− 1 in the u-variables, an application of the Schwartz-
Zippel lemma implies F-linear independence of the minors (with high probability) when the u-
variables are set randomly to elements in F (as is done in a random ABP over F).

Claim 4.1. The minors of X1 · X2 . . . Xd are F(u)-linearly independent.
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Proof. We will prove by induction on d.

Base case (d=3): Clearly, if the minors are F-linearly independent after setting the u-variables
to some F-elements then the minors are also F(u)-linearly independent before the setting. As
n ≥ w2 + 2w, it is possible to set the u-variables in X1, X2, X3 such that the entries of these matri-
ces (after the setting) become distinct x-variables. The minors of this u-evaluated ABP X1 · X2 · X3
are monomial disjoint and so F-linearly independent.

Inductive step: Split the w2(d− 2) + 2w minors of X1 · X2 . . . Xd into two sets: The first set G1 con-
sists of minors ge, for e ∈ [w2(d− 3) + 2w], such that the e-th linear form is the (`, m)-th entry of
some matrix Xk satisfying k 6= d and if k = d− 1 then m = w. The second set G2 consists of minors
ge, for e ∈ [w2(d− 3) + 2w+ 1, w2(d− 2) + 2w], such that the e-th linear form is either the (`, m)-th
entry of Xd−1 for m 6= w, or the `-th entry of Xd. Set G1 has p = w2(d− 3) + 2w minors and G2 has
w2 minors.

Suppose µ1, . . . , µp are monomials in x-variables of degree d− 2. Imagine a (w2(d− 2) + 2w)×
(w2(d − 2) + 2w) matrix M whose rows are indexed by the minors in G1 and G2, and columns
by monomials µ1x1, µ2x1, . . . , µpx1 and xd−1

2 , xd−1
3 , . . . , xd−1

w2+1, The (g, σ)-th entry of M contains the
coefficient of the monomial σ in g, this coefficient is a multilinear polynomial in the u-variables.
In a sequence of observations, we show that there exist µ1, . . . , µp such that det(M) 6= 0.

Consider the variable u def
= U(d)

1 (w). The following observations are easy to verify.

Observation 4.2. 1. Variable u does not appear in any of the monomials of the (g, σ)-th entry of M if
g ∈ G2 or σ ∈ {xd−1

2 , . . . , xd−1
w2+1}.

2. Variable u appears in some monomials of the (g, σ)-th entry of M if g ∈ G1 and σ ∈ {µ1x1, . . . , µpx1},
irrespective of µ1, . . . , µp.

Observation 4.3. Let g ∈ G1 and σ ∈ {µ1x1, . . . , µpx1}. If we treat the (g, σ)-th entry of M as a
polynomial in u with coefficients from F[u \ u] then the coefficient of u does not depend on the variables:

(a) U(d)
i (j) for j 6= w and i ∈ [n],

(b) U(d)
i (w) for i ∈ [2, n],

(c) U(d−1)
i (`, m) for `, m ∈ [w] with m 6= w, and i ∈ [n].

Denote the union of the u-variables specified in (a), (b) and (c) of the above observation by v.

Observation 4.4. The set {gv=0 : g ∈ G1} equals the set {h ·ux1 : h is a minor of X1 ·X2 . . . Xd−1(∗, w)}.

By the induction hypothesis, the minors of X1 · X2 . . . Xd−1(∗, w), say h1, . . . , hp, are F(u)-linearly
independent. Hence there are p monomials in x-variables of degree d − 2 such that h1, . . . , hp,
when restricted to these monomials, are F(u)-linearly independent. These p monomials are our
choices for µ1, . . . , µp. Let N be the p× p matrix with rows indexed by h1, . . . , hp and columns by
µ1, . . . , µp, and N(h, µ) contains the coefficient of the monomial µ in h. Then, det(N) 6= 0. Under
these settings, we have the following observation (which can be derived easily from the above).
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Observation 4.5. The coefficient of up in det(M), when treated as a polynomial in u with coefficients from
F[u \ u], is det(N) · det(M0), where M0 is the submatrix of M defined by rows indexed by {g : g ∈ G2}
and columns by xd−1

2 , . . . , xd−1
w2+1.

The next observation completes the proof of the claim by showing det(M) 6= 0.

Observation 4.6. det(M0) 6= 0.

The proof of the above follows by noticing that M0 looks like ( fi(uj))i,j∈[w2], where u1, . . . , uw2 are
some disjoint subsets of the u-variables and f1, . . . , fw2 are F-linearly independent polynomials.
The observation then follows from Claim 2.2.

5 Equivalence test for determinant over finite fields

We prove Theorem 3 in this section. It is known that the affine equivalence test can be reduced to
equivalence test [Kay12], as briefly explained below.

Reduction to equivalence test: Suppose f is a (n, w)-polynomial that is affine equivalent to Detw,
where n ≥ w2. The following claim reduces the number of variables from n to w2. A proof can be
found in [Kay12] (see also Algorithm 8 and Claim 2.3 in [KNST17]).

Claim 5.1. There is a randomized algorithm that takes input blackbox access to f (x) and with probability
1− nO(1)

q outputs a matrix C ∈ GL(n, F) such that f (C · x) is a (w2, w)-polynomial. The algorithm runs

in (n log q)O(1) time.

Suppose y ⊆ x is the set of w2 variables appearing in f (C · x), and let g(y) be the degree-w homo-
geneous component of f (C · x) which must be equivalent to Detw. By using an equivalence test for
Detw, we can compute a Q ∈ GL(w2, L) such that g(y) = Detw(Q ·y), implying g(x) = Detw(Q′ · x)
where Q′ ∈ Lw2×n is obtained by padding Q with (n− w2) all-zero columns. Now observe that
there is an a ∈ Fn such that f (C · x) = g(x+ a); the translation equivalence test in the claim below
returns a c ∈ Fn such that f (C · x) = g(x + c). Hence, f (C · x) = Detw(Q′x + Q′ · c) implying
f (x) = Detw(Q′C−1x + Q′ · c). The algorithm in Theorem 3 returns B = Q′C−1 and b = Q′ · c.

Claim 5.2. Let f (x) = g(x + a), where f , g are (n, d)-polynomials and a ∈ Fn. There is randomized

algorithm that takes blackbox access to f and g and with probability 1− (nd)O(1)

q computes a c ∈ Fn such
that f (x) = g(x + c).

See [Kay12, DdOS14] (also Algorithm 9 and Lemma 2.1 in [KNST17]) for proofs of the claim.

For the rest of this section, set n = w2. The equivalence test for Detw is done in two steps: In the
first step, the problem is reduced to the simpler problem of PS-equivalence testing. The second
step then solves the PS-equivalence test. A (w2, w)-polynomial f ∈ L[x] is PS-equivalent to Detw
if there is a permutation matrix P and a diagonal matrix S ∈ GL(w2, L) such that f = Detw(PS · x).

Lemma 5.1 ( [Kay12]). There is a randomized algorithm that takes input blackbox access to f , which is PS-
equivalent to Detw, and with probability 1− wO(1)

q outputs a permutation matrix P and a diagonal matrix

S ∈ GL(w2, L) such that f = Detw(PS · x). The algorithm runs in (w log q)O(1) time.
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It is in the first step where our algorithm differs from (and slightly simplifies) [Kay12]. This re-
duction to PS-equivalence testing is given in Section 5.2. As in [Kay12], the algorithm uses the
structure of the group of symmetries and the Lie algebra of Detw. An estimate of the probability
that a random element of the Lie algebra of gDetw has all its eigenvalues in L (Lemma 5.4) is key to
the simplification in the first step.

5.1 Group of symmetries and Lie algebra of determinant

We state a few well known facts and claims about the Lie algebra and the group of symmetries of
Detw. Proofs of these can be found in [Kay12, KNST17] and the references therein.

Definition 5.1. The group of symmetries of an n-variate polynomial f , denoted as G f , consists of
matrices A ∈ GL(n, F) such that f (x) = f (A · x).

Detw(x) is the determinant of the symbolic matrix X = (xij)i,j∈[w], where x = {xij}i,j∈[w]. Let A(X)

denote the w× w linear matrix obtained by applying a transformation A ∈ Fw2×w2
on x.

Fact 1. An A ∈ GL(w2, F) is in GDetw if and only if there are two matrices S, T ∈ SL(w, F) such that
either A(X) = S · X · T or A(X) = S · XT · T.

Definition 5.2. The Lie algebra of a polynomial f ∈ F[x1, x2, . . . , xn], denoted as g f , is the set of all
n× n matrices E = (eij)i,j∈[n] in Fn×n satisfying

∑
i,j∈[n]

eijxj ·
∂ f
∂xi

= 0.

To express the Lie algebra of Detw, order the variables of x in row major fashion and call them
x1, . . . , xn. Let Zw be the F-linear space of all w× w traceless matrices over F, Lrow be the space
Zw ⊗ Iw = {Z⊗ Iw : Z ∈ Zw}, and Lcol the space Iw ⊗Zw = {Iw ⊗ Z : Z ∈ Zw}.

Fact 2. gDetw = Lrow ⊕Lcol.

It follows that the dimension of gDetw over F is 2w2 − 2.

Fact 3. Let f , g be n-variate polynomials such that there is an A ∈ GL(n, F) satisfying f = g(A · x). Then
g f = A−1 · gg · A = {A−1 · L · A | L ∈ gg}.

Claim 5.3. There is a randomized algorithm that given blackbox access to a (n, d)-polynomial f over F,

computes an F-basis of g f with probability 1− (nd)O(1)

q . The algorithm runs in (nd log q)O(1) time.

From Fact 2, it is easy to observe that gDetw contains a diagonal matrix with distinct elements on
the diagonal. The next claim can be proved using this observation.

Claim 5.4. Let L1, . . . , L2w2−2 be an F-basis of gDetw , and L = ∑2w2−2
i=1 αi · Li, where α1, . . . , α2w2−2 ∈r F

are picked independently. Then, the characteristic polynomial of L is square-free with probability 1− wO(1)

q .

The following lemma is the main technical contribution of this section.

Lemma 5.2. Let L1, . . . , L2w2−2 be an F-basis of gDetw , and L = ∑2w2−2
i=1 αi · Li, where α1, . . . , α2w2−2 ∈r F

are picked independently. Then, the characteristic polynomial of L is square-free and splits completely over
L with probability at least 1

2w2 .
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Proof. Let h(y) be the characteristic polynomial of L. From Claim 5.4, h is square-free with prob-
ability 1− wO(1)

q . From Fact 2, L = L1 + L2 where L1 ∈ Lrow and L2 ∈ Lcol. As L is uniformly
distributed over gDet, so is L1 over Lrow and L2 over Lcol. In other words, if L1 = Z1 ⊗ Iw
and L2 = Iw ⊗ Z2 then Z1, Z2 are both uniformly (and independently) distributed over Zw. If
the characteristic polynomial of Z1 (similarly Z2) is irreducible over F then the eigenvalues of
Z1 (respectively, Z2) lie in L and are distinct. If this happens for both Z1 and Z2 then there are
D1, D2 ∈ GL(w, L) such that D−1

1 Z1D1 and D−1
2 Z2D2 are diagonal matrices. This further implies,

(D−1
1 ⊗ Iw) · (Iw ⊗ D−1

2 ) · L · (Iw ⊗ D2) · (D1 ⊗ Iw)

is a diagonal matrix, due to the observation below.

Observation 5.1. For any M, N ∈ F
w×w, (M⊗ Iw) and (Iw⊗N) commutes. Also, if M, N ∈ GL(w, F)

then (M⊗ Iw)−1 = (M−1 ⊗ Iw) and (Iw ⊗ N)−1 = (Iw ⊗ N−1).

Thus, if we show that the characteristic polynomial of Z ∈r Zw is irreducible with probability
δ then with probability at least δ2 the characteristic polynomial of L splits completely over L.
Much like the proof of Claim 5.4, it can be shown that the characteristic polynomial of Z ∈r Zw is
square-free with probability 1− wO(1)

q . Hence, if the characteristic polynomial of Z ∈r Z ′w, where
Z ′w ⊂ Zw consists of matrices with distinct eigenvalues in F, is irreducible with probability ρ then
δ ≥ ρ · (1− wO(1)

q ). Next, we lower bound ρ.

Let P be the set of monic, degree-w, square-free polynomials in F[y] with the coefficient of yw−1

equal to zero. Define a map φ from Z ′w to P ,

φ : Z 7→ characteristic polynomial of Z.

The map φ is onto as the companion matrix of p(y) ∈ P belongs to its pre-image under φ. Let
φ−1(p(y)) be the set of matrices in Z ′w that map to p.

Claim 5.5. Let p(y) ∈ P . Then

(qw − 1) · (qw − q) . . . (qw − qw−1)

qw ≤ |φ−1(p(y))| ≤ (qw − 1) · (qw − q) . . . (qw − qw−1)

qw(1− w
q )

.

Proof. Let Cp be the companion matrix of p(y). If the characteristic polynomial of a Z ∈ Z ′w
equals p(y) then there is an E ∈ GL(w, F) such that Z = E · Cp · E−1, as the eigenvalues of Cp are
distinct in F. Moreover, for any E ∈ GL(w, F), E · Cp · E−1 ∈ Z ′w has characteristic polynomial
p(y). Hence, φ−1(p(y)) = {E · Cp · E−1 | E ∈ GL(w, F)}. Suppose E, F ∈ GL(w, F) such that
F · Cp · F−1 = E · Cp · E−1. Then E−1F commutes with Cp. Since Cp has distinct eigenvalues in F,
E−1F can be expressed as a polynomial in Cp, say h(Cp), of degree at most (w− 1) with coefficients
from F. Conversely, if h ∈ F[y]≤(w−1) 37 and h(Cp) is invertible then F = E · h(Cp) is such that
F · Cp · F−1 = E · Cp · E−1. As h1(Cp) 6= h2(Cp) for distinct h1, h2 ∈ F[y]≤(w−1), we have

|φ−1(p(y))| = |GL(w, F)|
|{h ∈ F[y] : deg(h) ≤ (w− 1) and h(Cp) ∈ GL(w, F)}| .

37the set of polynomials in F[y] of degree at most w− 1.
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The numerator is exactly (qw − 1) · (qw − q) . . . (qw − qw−1), and the denominator is trivially up-
per bounded by qw. A lower bound on the denominator can be worked out as follows: Let
λ1, . . . , λw ∈ F be the distinct eigenvalues of Cp. If h(y) = aw−1yw−1 + aw−2yw−2 + . . . + a0 ∈ F[y],
then h(λ1), . . . , h(λw) are the eigenvalues of h(Cp). Observe that

Prh∈rF[y]≤(w−1) {h(λi) = 0, for some fixed i ∈ [w]} ≤ 1
q

,

⇒ Prh∈rF[y]≤(w−1) {h(λi) = 0, for any i ∈ [w]} ≤ w
q

,

⇒ Prh∈rF[y]≤(w−1) {h(Cp) ∈ GL(w, F)} ≥ 1− w
q

.

Hence, the denominator is lower bounded by qw(1− w
q ).

Let ρp = |φ−1(p(y))|
|Z ′w|

, the probability that p(y) is the characteristic polynomial of Z ∈r Z ′w. From
Claim 5.5, it follows that

|Z ′w| ≤
(qw − 1) · (qw − q) . . . (qw − qw−1)

qw(1− w
q )

· |P| ⇒ 1− w
q
≤ ρp · |P| .

We show in the next claim that a p ∈r P is irreducible over F with probability at least 1
w (1−

2
qw/2 ),

implying the characteristic polynomial of Z ∈r Z ′w is irreducible over F with probability ρ ≥
1
w (1−

2
qw/2 )(1− w

q ). Therefore, the probability that the characteristic polynomial of Z ∈r Zw is

irreducible over F is δ ≥ 1
w (1 −

2
qw/2 )(1 − w

q )(1 −
wO(1)

q ). As q ≥ w7, the probability that the

characteristic polynomial of L ∈r gDetw splits completely over L is at least δ2 ≥ 1
2w2 .

Claim 5.6. A polynomial p ∈r P is irreducible over F with probability at least 1
w (1−

2
qw/2 ).

Proof. Let F be the set of monic, degree-w, square-free polynomials in F[y]. The difference be-
tween F and P is that a polynomial in P additionally has coefficient of yw−1 equal to zero. We
argue in the next paragraph that the fraction of F-irreducible polynomials in F and in P are the
same. As irreducible polynomials are square-free, the number of irreducible polynomials inF is at

least qw−2qw/2

w [vzGG03]. Hence, the fraction of irreducible polynomials in F is at least 1
w (1−

2
qw/2 ).

Define a map Ψ from F to P as follows: For a u(y) = yw + aw−1yw−1 + . . . + a0 ∈ F , define
Ψ(u) = u(y− aw−1

w ). Observe that the coefficient of yw−1 in Ψ(u) is zero. It is also an easy exercise
to show that Ψ(u1) = Ψ(u2) if and only if there exists an a ∈ F such that u1(y) = u2(y + a). As
u(y) is irreducible over F if and only if u(y + a) is irreducible over F, for a ∈ F, the fraction of
F-irreducible polynomials in F is the same as that in P .

This completes the proof of Lemma 5.2.
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5.2 Reduction to PS-equivalence testing

Algorithm 7 gives a reduction to PS-equivalence testing for Detw. Suppose the input to the algo-
rithm is a blackbox access to f = Detw(A · x), where A ∈ GL(w2, F). We argue the correctness of
the algorithm by tracing its steps:

Algorithm 7 Reduction to PS-equivalence

INPUT: Blackbox access to a (w2, w)-polynomial f ∈ F[x] that is equivalent to Detw over F.
OUTPUT: A D ∈ GL(w2, L) such that f (D · x) is PS-equivalent to Detw over L.

1. Compute an F-basis of g f . Let {F1, F2, . . . F2w2−2} be the basis. Set j = 1.
2.
3. for j = 1 to w3 log q do
4. Pick α1, . . . , α2w2−2 ∈r F independently. Set F = ∑i∈[2w2−2] αi · Fi.
5. Compute the characteristic polynomial h of F. Factorize h into irreducible factors over L.
6. if h is square-free and splits completely over L then
7. Use the roots of h to compute a D ∈ GL(w2, L) such that D−1 · F · D is diagonal.
8. Exit loop.
9. else

10. Set j = j + 1.
11. end if
12. end for
13.
14. if No D found at step 7 in the loop then
15. Output ‘Failed’.
16. else
17. Output D.
18. end if

Step 1: An F-basis of g f can be computed efficiently using Claim 5.3.

Step 3–12: At step 4 an element F of g f is chosen uniformly at random. By Fact 3, F = A−1 · L · A,
where L is a random element of gDetw . Lemma 5.2 implies, in every iteration of the loop, h (at
step 5) is square-free and splits completely over L with probability at least 1

2w2 . Since the loop has
w3 log q iterations, the algorithm finds an h that is square-free and splits completely over L, with
probability at least 1− 1

q . Assume that the algorithm succeeds in finding such an h, and suppose
λ1, . . . , λw2 ∈ L are the distinct roots of h. The algorithm finds a D in step 7 by picking a random
solution of the linear system obtained from the relation F · D = D · diag(λ1, . . . , λw2) treating the
entries of D as formal variables. We argue next that f (D · x) is PS-equivalent to Detw over L.

By Fact 2, L = L1 + L2 where L1 ∈ Lrow and L2 ∈ Lcol. In other words, there are Z1, Z2 ∈ Zw such
that L1 = Z1 ⊗ Iw and L2 = Iw ⊗ Z2. It is easy to verify, if L has distinct eigenvalues then so do Z1
and Z2. Hence, there are D1, D2 ∈ GL(w, F) such that D1Z1D−1

1 and D2Z2D−1
2 are both diagonal,

implying

M def
= (D1 ⊗ Iw) · (Iw ⊗ D2) · L · (D−1

1 ⊗ Iw) · (Iw ⊗ D−1
2 )
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is diagonal (by Observation 5.1) with distinct diagonal entries. Also,

D−1 · F · D = (AD)−1 · L · (AD)

= ((D1 ⊗ Iw) · (Iw ⊗ D2) · AD)−1 ·M · ((D1 ⊗ Iw) · (Iw ⊗ D2) · AD)

As both D−1 · F · D and M are diagonal matrices with distinct diagonal entries, it must be that

(D1 ⊗ Iw) · (Iw ⊗ D2) · AD = P · S,

where P is a permutation matrix and S ∈ GL(w2, F) is a diagonal matrix. Now observe that
Detw((D1⊗ Iw) · x) = β ·Detw(x) and Detw((Iw⊗D2) · x) = γ ·Detw(x), for β, γ ∈ F \ {0}. Hence,

Detw(P · S · x) = Detw((D1 ⊗ Iw) · (Iw ⊗ D2) · AD · x)
= βγ ·Detw(AD · x)
= βγ · f (D · x)

⇒ f (D · x) = Detw(P · S′ · x),

where S′ ∈ GL(w2, F) is also diagonal. Therefore, f (D · x) is PS-equivalent to Detw over F. As
f (D · x) ∈ L[x], it is a simple exercise to show that f (D · x) must be PS-equivalent to Detw over L.
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A Proof of two claims in Section 3

Claim 3.1 (restated): With probability 1− (wdn)−Ω(1), any subset of w vectors in any of the sets {u1, u2,
. . . , uw+1}, {v1, v2, . . . , vw+1}, {w1, w2, . . . , ww+1}, or {s1, s2, . . . , sw+1} are L-linearly independent.

Proof. From Observation 3.3, for the sets {v1, v2, . . . , vw+1} and {s1, s2, . . . , sw+1} it is sufficient to
show that any w columns of the w× (w+ 1) matrices (N1i(aj))i∈[w],j∈[w+1] and (N1i(bj))i∈[w],j∈[w+1]
are L-linearly independent with high probability. As the cofactors N11, . . . , N1w are L-linearly in-
dependent, the above follows from Claim 2.2. For the sets {u1, u2, . . . , uw+1} and {w1, w2, . . . , ww+1},
it follows from Equation 2 that there are λk, ρk ∈ L× such that D · vk = λkuk and D · sk = ρkwk for
all k ∈ [w + 1]. Since D is invertible, the claim follows for these two sets as well.

Claim 3.2 (restated): If E = Q1 · · ·Q` is a random (w, `, m)-matrix product over F, where w2 + 1 ≤
m ≤ n and ` ≤ d, then the entries of E are F-linearly independent with probability 1− (wdn)−Ω(1).

Proof. Treat the coefficients of the linear forms in Q1, Q2, . . . , Q` as distinct formal variables. In
particular

Qk =
m

∑
i=1

U(k)
i xi for k ∈ [`] ,

where the U(k)
i ’s are w× w matrices and the entries of these matrices are distinct u-variables. The

entries of the matrix product E are polynomials in the x-variables over F(u). If we show the w2

entries of E are F(u)-linearly independent then an application of Schwartz-Zippel lemma implies
the statement of the claim. On the other hand, to show that the entries of E are F(u)-linearly
independent, it is sufficient to show that the entries are F-linearly independent under a setting of
the u-variables to F elements. Consider such a setting: For every k ∈ [`] \ {1}, let U(k)

w2+1 = Iw and

U(k)
i = 0 for all i ∈ [m] \ {w2 + 1}. Let U(1)

i = 0 for all i ≥ w2 + 1 and set U(1)
1 , . . . , U(1)

w2 in a way so

that the linear forms in ∑w2

i=1 U(1)
i xi are F-linearly independent. It is straightforward to check that

the entries of E under this setting are F-linearly independent.
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