
Average-case linear matrix factorization and reconstruction
of low width Algebraic Branching Programs

Neeraj Kayal
Microsoft Research India
neeraka@microsoft.com

Vineet Nair
Indian Institute of Science

vineet@iisc.ac.in

Chandan Saha
Indian Institute of Science

chandan@iisc.ac.in

November 12, 2018

Abstract

A matrix X is called a linear matrix if its entries are affine forms, i.e. degree one polynomials
in n variables. What is a minimal-sized representation of a given matrix F as a product of linear
matrices? Finding such a minimal representation is closely related to finding an optimal way to
compute a given polynomial via an algebraic branching program. Here we devise an efficient
algorithm for an average-case version of this problem. Specifically, given w, d, n ∈N and black-
box access to the w2 entries of a matrix product F = X1 · · ·Xd, where each Xi is a w× w linear
matrix over a given finite field Fq, we wish to recover a factorization F = Y1 · · ·Yd′ , where ev-
ery Yi is also a linear matrix over Fq (or a small extension of Fq). We show that when the input F
is sampled from a distribution defined by choosing random linear matrices X1, . . . , Xd over Fq

independently and taking their product and n ≥ 4w2 and char(Fq) = (ndw)Ω(1) then an equiv-
alent factorization F = Y1 · · ·Yd can be recovered in (randomized) time (wdn log q)O(1). In fact,
we give a (worst-case) polynomial time randomized algorithm to factor any non-degenerate
or pure matrix product (a notion we define in the paper) into linear matrices; a matrix product
F = X1 · · ·Xd is pure with high probability when the Xi’s are chosen independently at random.
We also show that in this situation, if we are instead given a single entry of F rather than its w2

correlated entries then the recovery can be done in (randomized) time (dw3
n log q)O(1).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 29 (2018)

Contents

1 Introduction 3
1.1 Motivation and an overview . 3
1.2 The problems . 8
1.3 Our results . 9
1.4 Algorithms and their analysis . 12

1.4.1 Analysis of Algorithm 1 . 12
1.4.2 Analysis of Algorithm 2 . 14
1.4.3 Proof strategy for Theorem 3 . 17

1.5 Few questions . 17

2 Preliminaries 18
2.1 Notations . 18
2.2 Algorithmic preliminaries . 18
2.3 A few useful facts . 18

3 Average-case matrix factorization: Proof of Theorem 1 19
3.1 Rearranging the matrices . 19
3.2 Determining the last matrix: Proof of Lemma 3.1 . 21

4 Average-case ABP reconstruction: Proof of Theorem 2 26
4.1 Computing the corner spaces . 27
4.2 Finding the coefficients in the intermediate matrices 32
4.3 Non-degenerate ABP . 37

5 Equivalence test for determinant over finite fields 37
5.1 Group of symmetries and Lie algebra of determinant 38
5.2 Reduction to PS-equivalence testing . 41

A Proof of two claims 47

2

1 Introduction

1.1 Motivation and an overview

Polynomial matrix factorization. In this paper, we are interested in factorization of a polynomial
matrix (that is a matrix with multivariate polynomial entries) into linear matrices, if such a fac-
torization exists. A linear matrix has affine forms as entries. We call this problem linear matrix
factorization. It is a natural generalization of the problem of factoring a multivariate polynomial
into linear factors for which there is a known efficient randomized algorithm [KT90]. Motivated by
applications in control theory, polynomial matrix factorization has been studied in the literature
under various restrictions on input and output matrices (see [LMW17] and the references therein).
To our knowledge, these restrictions are quite different from the requirement of outputting linear
matrix factors of an input polynomial matrix. Our primary motivation for studying this problem
stems from the problem of learning or reconstruction of algebraic branching programs (ABPs) – a
powerful subclass of arithmetic circuits capturing determinant and iterated matrix multiplication
computations (see Definition 1.1). The linear matrix factorization problem can be equivalently
thought of as the problem of reconstructing ABPs.

Hardness of reconstruction. Circuit reconstruction is a notable problem in algebraic complexity
theory alongside proving lower bounds and polynomial identity testing. Reconstruction of a cir-
cuit class C is the following problem: Given black-box access (i.e. membership query access) to a
polynomial function f that is computed by an arithmetic circuit of size s from C, output a circuit
(preferably from C) of size not much larger than s (ideally, a polynomial or quasi-polynomial func-
tion of s) computing f . Reconstruction of general arithmetic circuits is believed to be an inherently
hard computational problem. An algorithm for reconstruction naturally gives an approximation
of the size of the smallest circuit computing f . Thus, hardness of reconstruction is related to hard-
ness of approximation of the minimum circuit size problem. The hardness of the minimum circuit
size problem for Boolean circuits, known as MCSP, is an intensely studied problem in the litera-
ture. In the MCSP problem, we are given the truth-table of a Boolean function and a parameter s
as input and the task is to determine if the function can be computed by a Boolean circuit of size
at most s. Allender and Hirahara [AH17] showed that approximating the minimum circuit size
within a factor of N1−o(1) is NP-intermediate, assuming the existence of one-way functions, where
N is the size of the input truth-table 1. Drawing analogy between the Boolean and the arithmetic
worlds, we expect the reconstruction problem to be hard even if the polynomial function f is given
verbosely as a list of coefficients, and it only gets harder if f is given succinctly as a circuit or a
black-box holding the circuit. If we insist on a very small approximation factor and on computing
an output circuit that belongs to the same class C as the input circuit (as in proper learning), then
the problem becomes NP-hard even for simple circuit classes like set-multilinear depth three cir-
cuits and depth three powering circuits [BIJL18, SWZ17, Shi16, Hås90].

It is also known that efficient reconstruction implies lower bounds. It was shown in [FK09] that
a randomized polynomial time reconstruction algorithm for an arithmetic circuit class C implies
the existence of a function in BPEXP that does not have polynomial size circuits from C. Also,

1Another related result is the hardness of approximating minimum size DNF. Umans [Uma99] showed that there
is no polynomial time algorithm to compute n1−ε factor approximation of the minimum DNF size of an input DNF of
size n, for every constant ε ∈ (0, 1), assuming Σ

p
2 6⊆ DTIME(nO(log n)).

3

Volkovich [Vol16] showed that a deterministic polynomial time reconstruction algorithm for C
implies the existence of an explicit polynomial h such that any circuit from C computing h has
exponential size. In hindsight, it is no wonder that research on reconstruction has focused on
interesting restricted circuit classes for which non-trivial lower bounds are known (see the sur-
vey [SY10] and the references in [KNST17]). Does lower bound imply reconstruction? Even if we
believe in the existence of explicit polynomials with high circuit complexity, we may not hope to
get such an implication unconditionally as reconstruction seems to be an inherently hard prob-
lem. However, the answer is less clear for lower bound proofs with additional features such as
“natural proofs”. Taking inspiration from [RR97], the notion of algebraic natural proofs is defined
in [FSV17, GKSS17] to explore the limitations of existing techniques in proving VP 6= VNP 2.

Does natural lower bound proofs imply reconstruction? The intuitive reason for expecting a
somewhat positive answer rests on the high level view that a natural lower bound proof (in the
sense of [RR97]) is able to “efficiently” check some property of polynomials computed by a circuit
class, and the same property is potentially useful in designing reconstruction algorithms for the
class. Indeed, for Boolean circuits, an interesting result [CIKK16] showed that the natural lower
bound proof framework [RR97] for AC0[p] circuits can be used to give a quasi-polynomial time
PAC learning (with membership queries) algorithm for the same class. The result generalizes to
any circuit class C containing AC0[p] for some prime p, the “usefulness” parameter of a natural
proof for C determines the efficiency of such a PAC learning algorithm for C. This generic result
is preceded by evidences that hinted at such a connection, like the learning algorithms for AC0

circuits [LMN93] and AC0 circuits with few majority gates [JKS02] 3. Analogous to Boolean cir-
cuits, does an algebraically natural lower bound proof (in the sense of [FSV17, GKSS17]) for an
arithmetic circuit class imply efficient reconstruction for the same class? Unlike PAC learning, in
the algebraic setting we need to reconstruct a circuit that computes the input polynomial exactly
instead of approximately, as two distinct polynomial functions differ at far too many points. If
we insist on such exact learning in the Boolean setting (which is closely related to the compres-
sion problem for Boolean functions) then the best known output circuit size for AC0 and AC0[p]
functions is exponential in the number of variables [CKK+15, Sri15, CIKK16]. In the absence of
a generic connection (analogous to [CIKK16]) in the algebraic setting, we could gather more evi-
dences for or against such a connection by focusing on restricted classes for which natural lower
bound proofs are known.

There are a few favorable results, like the reconstruction algorithms for read-once oblivious ABPs,
set-multilinear ABPs and non-commutative ABPs [FS13, KS06]. However, there are many other
interesting arithmetic circuit classes for which we know of strong lower bounds (that are also
algebraically natural), but not efficient reconstruction algorithms. Instances of such classes are
homogeneous depth three circuits [NW97, KST16], homogeneous depth four circuits [KLSS17,
KS17], constant depth multilinear circuits [RY09], multilinear formulas [Raz09], regular formu-
las [KSS14], and a few other classes [KS16a, KS16b]. Even for a more powerful model like homo-
geneous ABPs, it makes sense to ask – can we reconstruct sub-linear width homogeneous ABPs

2In another interesting work [EGdOW18], limitations of rank based lower bound methods have been shown uncon-
ditionally towards achieving strong lower bounds for set-multilinear depth-3 circuits and diagonal depth-3 circuits.

3For circuit classes whose known lower bound proofs do not fit in the natural proof framework, the situation is less
clear. Examples of such classes are ACC0 [Wil14] and monotone circuits [Raz85]. A hardness result for polynomial-time
learning of monotone circuits is known assuming the existence of one-way functions [DLM+08].

4

efficiently? A linear width lower bound for homogeneous ABPs is known [Kum17], and this
lower bound proof is also natural. Unfortunately, there is some amount of evidence that indicate
that the problem remains hard in the worst-case even for models for which natural lower bound
proofs are known. For example, a polynomial time reconstruction algorithm for homogeneous
depth three circuits implies a sub-exponential time reconstruction algorithm for general circuits
due to the depth reduction to depth three results [GKKS16, Tav13, Koi12, AV08]; it would also
give a super-polynomial lower bound for depth three circuits (via the learning to lower bound
connection in [FK09]) – proving such a lower bound is a long-standing open problem. Similarly,
a polynomial time reconstruction algorithm for constant width (in fact, width-3) homogeneous
ABPs implies a polynomial time reconstruction algorithm for arithmetic formulas due to the re-
duction from formulas to width-3 ABPs in [BC92], and this in turn would give a super-polynomial
lower bound for formulas (by [FK09]) – proving such a lower bound is another challenging open
problem in algebraic complexity.

Average-case reconstruction. For any one of the above-mentioned models lacking efficient worst-
case reconstruction, we can attempt to make progress by asking a slightly weaker question: Can
we do efficient reconstruction for almost all polynomials computed by the model? This amounts to
studying the reconstruction problem under some distributional assumptions on the polynomials
computed by the model. Such types of reconstruction are called average-case reconstruction4. Often
than not, an average-case algorithm in fact gives a worst-case algorithm for inputs satisfying some
natural/easy-to-state non-degeneracy condition (like the ‘pure matrix product’ condition stated in
Section 1.3), which is almost surely satisfied by a random input chosen according to any reason-
able distribution. We feel that it is worth knowing these non-degeneracy conditions that make
worst-case reconstruction tractable for some of models mentioned above. But, even average-case
reconstruction (i.e., reconstruction under non-degeneracy conditions) turns out to be quite non-
trivial for these models under some natural distributions.

In [GKL11] and [GKQ13], average-case reconstruction algorithms were given for multilinear for-
mulas and fanin-2 regular formulas respectively under intuitive input distributions. Algebraic
branching programs being more powerful than formulas, the problem of efficient average-case
reconstruction of ABPs was posed in our earlier work [KNST17] under a natural distribution (see
Definition 1.2). A polynomial-time samplable (in short, P-samplable) input distribution is addi-
tionally interesting if it is also relevant in the context of lower bound proofs – we elaborate on this
point next.

For the discussion ahead, we denote a n-variate, degree-d polynomial as a (n, d)-polynomial; a
random (n, d)-polynomial denotes a (n, d)-polynomial with coefficients chosen independently
and uniformly at random from F. Assume that F is a sufficiently large finite field Fq, although
this requirement is not binding for the most part of our arguments.

Choosing an input distribution. A lower bound proof for a class C shows that an explicit (n, d)-
polynomial5 is not computable by size-s circuits from C, for some s > max(n, d). Such a proof

4Similar average-case relaxations of learning problems have been studied in the Boolean setting, particularly for
DNFs [LSW06, JLSW08].

5Typically, the explicit polynomial has degree d ≤ n, say d =
√

n or d = Θ(n) (as in determinant/permanent [Raz09,

5

demonstrates a weakness of the set of (n, d)-polynomials computable by size-s circuits from C.
In order to exploit the weakness of this set in an average-case reconstruction problem for C, we
should ideally define an input distribution that is supported on (n, d)-polynomials computable by
size-s circuits in C, where s > max(n, d); moreover, the distribution should be P-samplable. For
many circuit classes, defining such a distribution is a bit tricky as some of the natural P-samplable
distributions tend to be primarily supported on (n, d)-polynomials where d or n is closely attached
to the size s of the circuits produced by these distributions (as in [GKL11, GKQ13, KNST17])6,
thereby restricting s from being much larger than max(n, d). However, for some classes, like ho-
mogeneous ABPs and homogeneous depth three circuits, these requirements from an input dis-
tribution (especially, allowing s� max(n, d)) can be mitigated easily. We study the former model
here. The latter is handled in [KS18].

Choosing a distribution on homogeneous ABPs and the role of width. A well-known ABP ho-
mogenization argument [Nis91] implies the following: If a (n, d)-polynomial is computable by an
ABP A of size s then it is also computable by an ABP B of width w ≤ s and length d. If A is a
homogeneous ABP of size s then B is also a homogeneous ABP of size s. From the perspective
of lower bound for homogeneous ABPs, the distribution given in Definition 1.2 for average-case
ABP reconstruction (Problem 2) is quite appropriate to study as it produces (n, d)-polynomials
computable by ABPs of size s ≈ wd that can potentially be much larger than max(n, d) with grow-
ing width w. In [Kum17], a quadratic lower bound for homogeneous ABP is given by essentially
showing a linear width lower bound: Any (w, d, n)-ABP computing the power symmetric poly-
nomial ∑n

i=1 xd
i must satisfy w ≥ n

2 , implying that the size of such an ABP is s ≈ wd = Ω(nd).
Choosing d = Θ(n) yields the quadratic bound. This means, the homogeneous ABP reconstruc-
tion problem is interesting for w < n

2 . However, as mentioned before, we cannot hope to do an
efficient worst-case reconstruction for homogeneous ABP of even constant width in the absence of
a super-polynomial lower bound for formulas [BC92, FK09]. But, can we do average-case recon-
struction for w < n

2 ? We answer this question partially. Before stating our contribution, let us note
that average-case reconstruction beyond w = O(n) seems difficult at the moment given that no
Ω(n1+ε) lower bound on w is known, for any constant ε > 0 7. Such a lower bound would in turn
imply a Ω(n1+ε) lower bound on the size of general ABPs which, if shown, would be an excellent
progress in the area. Thus, pushing our understanding of the ABP reconstruction complexity (in
the average-case) for w up to Θ(n) seems like a worthwhile endeavor to us.

Our contribution. We make progress in this direction by giving a nontrivial average-case re-
construction algorithm for w ≤

√
n/2, irrespective of d (Theorem 2). The algorithm outputs a

(w, d, n)-ABP (with high probability) for the input polynomial chosen according to the distribu-
tion in Definition 1.2. A trivial brute-force algorithm to reconstruct a (w, d, n)-ABP over Fq takes
time qΘ(w2dn). By ‘nontrivial’ reconstruction, we mean an algorithm that takes time subexponen-

RY09, GKKS14] or the Nisan-Wigderson design polynomial [KSS14] or the elementary/power symmetric polynomials
[NW97, SW01, Kum17] or a variant of the design polynomial [KST16]).

6The result in [GKQ13] can be viewed as an average-case reconstruction algorithm for size-s, fanin-2 regular formu-
las computing (n, d)-polynomials, where s = Θ(nd2). In comparison, a nΩ(log d) size lower bound is known for regular
formulas [KSS14].

7An average-case reconstruction for width w = n1+ε homogeneous ABP would necessarily show that polynomials
computed by such ABPs do not form a pseudo-random family which in turn opens up the possibility of having a
natural lower bound proof for this class of ABPs.

6

tial in the quantity w2dn. Note that we can interpolate a polynomial computed by a (w, d, n)-ABP
in (dn log q)O(1) time, but knowing the coefficients of the polynomial does not give us any imme-
diate information about the (w, d, n)-ABP that computes it – this point is related to the hardness
of the MCSP problem and reconstruction under verbose representation of the input polynomial
mentioned before. Hence, if we want a (w, d, n)-ABP representation for the input polynomial then
even a (dn log q)O(1) time reconstruction algorithm is nontrivial as dn is subexponential in w2dn for
any d = nΩ(1). The complexity of our algorithm is (dw3

n log q)O(1) which is also subexponential
in w2dn for w ≤

√
n/2. For instance, if m = w2dn, w =

√
n/2 and d = Θ(n) then the trivial

complexity is exp(m) and our algorithm’s time complexity is exp(
√

m). For constant width ho-
mogeneous ABPs, our algorithm runs in polynomial time; if we can achieve the same complexity
for worst-case reconstruction (instead of average-case) then that would imply a super-polynomial
lower bound for arithmetic formulas! We also note that the main step (linear matrix factorization,
Theorem 1) of our algorithm has only (wdn log q)O(1) time complexity and is therefore polynomial
time. The exponential dependence on w3 comes from a step in our algorithm that solves polyno-
mial equations. It is quite possible that this expensive solvability step can be circumvented and
the overall complexity of the algorithm reduced to polynomial time – we leave this as an open
question in Section 1.5. Along the way, we give an efficient equivalence test for the determinant
over finite fields (Theorem 3) which is independently interesting.

Theorem 1 can be interpreted as a worst-case randomized polynomial time algorithm to factor a
pure matrix product. We define the notion of purity after stating the theorem in Section 1.3. It is
easy to show that the input distribution churns out a pure matrix product with high probability.
Similarly, Theorem 2 can be interpreted as a worst-case randomized algorithm to reconstruct a
non-degenerate ABP in (dw3

n log q)O(1) time. The non-degeneracy conditions are stated in Section
4.3.

Comparison with our previous work. In [KNST17], we gave a reconstruction algorithm for
w ≤

√ n
d . Observe that, under this width constraint, the size s ≈ wd of an ABP is upper bounded

by max(n, d). Whereas, in this paper we give a reconstruction algorithm for w ≤
√

n/2 (indepen-
dent of d), and hence the size of the ABPs here can be s = Θ(

√
nd). To highlight this improvement,

if we set d = Θ(n) (as in several lower bound results [Kum17,KST16,SW01,NW97]) then the width
constraint in [KNST17] reduces to w = O(1) and size becomes Θ(n), whereas the size of the ABPs
in this work is Θ(n1.5) which is significantly closer to the best known Ω(n2) lower bound for ho-
mogeneous ABPs. Also, it is because of the independence of d on the width constraint that we
could infer that the same time complexity for worst-case reconstruction of constant width homo-
geneous ABP would imply a super-polynomial formula lower bound, as the process of homog-
enizing a non-homogeneous ABP to a homogeneous ABP (described in Section 1.4.2) bloats up
the degree d. These factors underscore the importance of getting rid of the dependence on d from
the width constraint. On the flip side though the running time of the algorithm in [KNST17] is
(wdn log q)O(1), whereas the algorithm here has time complexity (dw3

n log q)O(1).

Our approach. Our proof approach is quite different from that of [KNST17]. In [KNST17], the
Lie algebra of the iterated matrix multiplication polynomial is analyzed to establish a connection
between the layer spaces of a full-rank ABP and the irreducible invariant subspaces of the Lie
algebra of the polynomial computed by the ABP. This in turn helped reduce the problem to recon-

7

struction of a set-multilinear ABP. We cannot hope to do a similar reduction here as the number of
variables is much fewer (and independent of d). Instead, our proof hinges on three steps whose
proofs of correctness are somewhat technical:

Step 1. Showing the uniqueness of the corner spaces when w ≤
√

n/2, and finding these spaces. This
step involves solving polynomial equations. The corner spaces are the two F-linear spaces
spanned by the affine forms in the first matrix and the affine forms in the last matrix of the
ABP.

Step 2. (Main step) Recovering the intermediate matrices modulo the corner spaces and rearranging
them in the correct order. This is the linear matrix factorization step (Theorem 1) and is the
main part of our algorithm.

Step 3. Completing the affine forms in the intermediate matrices by showing linear independence of
the so-called minors of a random ABP. See Section 4.2 for the definition of a minor.

The determinant equivalence test is used to recover the intermediate matrices (modulo the corner
spaces) in Step 2. More details on the three steps are given in Section 1.4. We think that these steps
give us some crucial insights into the structure of a random ABP which may find applications in
other similar problems and in resolving some of the questions stated in Section 1.5.

1.2 The problems

We study two related problems in this work, average-case matrix factorization and average-case ABP
reconstruction. The average-case matrix factorization problem aids us in making progress on the
average-case ABP reconstruction problem, but the former is also independently interesting. The
definition of an ABP given below is quite standard and similar to the one stated in [KNST17].

Definition 1.1 (Algebraic branching program). An algebraic branching program (ABP) of width w and
length d is a product expression X1 · X2 . . . Xd, where X1, Xd are row, column linear matrices over
F of length w respectively, and Xi is a w×w linear matrix over F for i ∈ [2, d− 1]. The polynomial
computed by the ABP is the entry of the 1 × 1 matrix obtained from the product ∏d

i=1 Xi. An
ABP of width w, length d, and in n variables will be called a (w, d, n)-ABP over F. An ABP X1 ·
X2 . . . Xd is homogeneous, if every entry in every partial product X1 · X2 . . . Xi is a homogeneous
polynomial.

Remarks:

(a) A more general way to define an ABP is to consider matrices of varying dimensions, i.e. the
i-th matrix has dimension wi × wi+1, and w1 = wd+1 = 1. Size of such an ABP is the quantity
∑d+1

i=1 wi. Equivalently, an ABP can be defined as a layered directed acyclic graph, in which
case size is the number of nodes in the graph.

(b) The iterated matrix multiplication polynomial (IMMw,d) is computed by a (w, d, n)-ABP where
each entry in Xi is a distinct variable, for all i ∈ [d], and hence n = w2(d− 2) + 2w.

(c) A polynomial computed by a (w, d, n)-ABP can be viewed as an entry of a product of d, w×w
linear matrices X1, X2, . . . , Xd. The w× w matrix F = X1 · X2 . . . Xd is then called a (w, d, n)-
matrix product. We note that in the matrix product formulation X1, Xd are w × w linear ma-
trices, while in the ABP formulation X1, Xd are row and column linear matrices of length w
respectively; hopefully, the context will make the dimensions of these matrices clear.

8

To study average-case reconstruction for ABP, [KNST17] defined a natural distribution on polyno-
mials computed by ABPs. The distribution is expressed by a random (w, d, n)-ABP. In the following
definition a random linear matrix is a linear matrix where the coefficients of the affine forms are
chosen independently and uniformly at random from F.

Definition 1.2 (Random ABP and matrix product). A random (w, d, n)-ABP over F is a (w, d, n)-ABP
X1 · X2 . . . Xd over F, where Xi is a random linear matrix chosen independently for every i ∈ [d].
Similarly, a random (w, d, n)-matrix product over F is a (w, d, n)-matrix product F = X1 · X2 . . . Xd
over F, where Xi is a random linear matrix chosen independently for every i ∈ [d].

Having defined the distributions, the two average-case problems can be posed as follows.

Problem 1 (Average-case matrix factorization). Design an algorithm which when given w, d, n ∈ N,
and blackbox access to w2, (n, d)-polynomials { fst}s,t∈[w] that constitute the entries of a random
(w, d, n)-matrix product F over Fq, outputs d, w× w linear matrices Y1, . . . , Yd over Fq (or a small
extension of Fq) such that F = Y1 ·Y2 . . . Yd, with high probability. The desired running time of the
algorithm is (wdn log q)O(1).

Problem 2 (Average-case ABP reconstruction). Design an algorithm which when given w, d, n ∈
N, and blackbox access to a (n, d)-polynomial f computed by a random (w, d, n)-ABP over Fq,
outputs a (w, d, n)-ABP over Fq (or a small extension of Fq) computing f , with high probability.
The desired running time of the algorithm is (wdn log q)O(1).

Remark: For both problems, the success probability is taken over the input distribution and the
random bits used by the algorithm, if it is randomized. In Problem 1 we have blackbox access to
w2 polynomials constituting the entries of a matrix, whereas in Problem 2 we have blackbox access
to a single polynomial. In this sense, Problem 1 is supposedly easier than Problem 2. Still, Problem
1 is of independent interest because if the coefficients of the affine forms are chosen adversarially
(instead of randomly) in X1, X2, . . . , Xd then even for w = 3 the problem becomes as hard as
formula reconstruction [BC92].

1.3 Our results

Throughout this article, F will denote Fq with char(F) ≥ (wdn)7, and L the extension field Fqw .
(L can constructed from a basis of Fq using a randomized algorithm running in (w log q)O(1) time
[vzGG03].) Also, we will assume d ≥ 5 for technical reasons. Theorem 1 solves Problem 1 for
n ≥ 2w2.

Theorem 1 (Average-case matrix factorization). For n ≥ 2w2, there is a randomized algorithm that
takes as input blackbox access to w2, (n, d)-polynomials { fst}s,t∈[w] that constitute the entries of a random
(w, d, n)-matrix product F = X1 · X2 . . . Xd over F, and with probability 1− (wdn)−Ω(1) returns w× w
linear matrices Y1, Y2, . . . , Yd over L satisfying F = ∏d

i=1 Yi. The algorithm runs in (wdn log q)O(1) time
and queries the blackbox at points in Ln.

Remarks:

• The constraint on char(F) is a bit arbitrary, the results in this paper hold as long as |F| and
char(F) are sufficiently large polynomial functions in w, d and n.

9

• Pure matrix product: A (w, d, n)-matrix product X1 · X2 . . . Xd over F is pure if it satisfies the
following properties:

1. For every i ∈ [d], Xi is full-rank i.e., the affine forms in Xi are F-linearly independent.

2. For every i, j ∈ [d] and i 6= j, det(Xi) and det(Xj) are coprime. Here det(Xi) is the
determinant of Xi.

3. For every i, j ∈ [d] and i < j, the w2 polynomial entries of the partial product Xi+1 · · ·Xj

are F-linearly independent modulo the affine forms in the first row and column of Xi. 8

It can be easily shown (using Claim 2.3 and Claim 2.4) that a random (w, d, n)-matrix prod-
uct is a pure matrix product (in short, a pure product) with high probability, for n ≥ 2w2.
Theorem 1 actually gives a polynomial time linear matrix factorization algorithm for a pure
product.

• Uniqueness of factorization: The proof of the theorem also shows that linear matrix factoriza-
tion of a pure product is unique in the following sense – there are Ci, Di ∈ GL(w, L) such
that Yi = Ci · Xi · Di, for every i ∈ [d]. Moreover, there are c1, . . . , cd−1 ∈ L× satisfying
C1 = Dd = Iw, Di · Ci+1 = ci Iw for i ∈ [d− 1], and ∏d−1

i=1 ci = 1. At a very high level, it is this
uniqueness feature that guides the algorithm in finding a factorization. Such a factorization
need not be unique if only the first two properties are satisfied. For instance9,[

x1 x2
x3 x4

]
·
[

2x3 − x2 x4
x1 x3

]
=

[
x3 x1
x4 2x3 − x2

]
·
[

x1 x2
x3 x4

]
=

[
2x1x3 x1x4 + x2x3

2x2
3 − x2x3 + x1x4 2x3x4

]
.

Using Theorem 1, Theorem 2 addresses Problem 2 for n ≥ 4w2.

Theorem 2 (Average-case ABP reconstruction). For n ≥ 4w2, there is a randomized algorithm that
takes as input blackbox access to a (n, d)-polynomial f computed by a random (w, d, n)-ABP over F, and
with probability 1− (wdn)−Ω(1) returns a (w, d, n)-ABP over L computing f . The algorithm runs in time
(dw3

n log q)O(1) and queries the blackbox at points in Ln.

Remarks:

1. Comparison to [KNST17]: The differences are already highlighted before. Moreover, the algo-
rithm in [KNST17] works over both Q and Fq, whereas ours is over Fq. The choice of finite
fields comes from Theorem 3 (see the remarks following it).

2. Time-complexity: There is one step in the algorithm that finds the affine forms in X1 and Xd

by solving systems of polynomial equations over F, and this takes dO(w3) field operations.
Except this step, every other step runs in (wdn log q)O(1) time. If the complexity of this step
is improved then the overall time complexity of the algorithm will also come down.

8The choice of the first row and column are arbitrary. The analysis holds if the entries of Xi+1 · · ·Xj are F-linearly
independent modulo the affine forms in some row and column of Xi. Also, we have not attempted to optimize this
third property, in order to keep the analysis relatively simple. It may be possible to weaken the property significantly
with a more careful analysis.

9We thank Rohit Gurjar for showing us a similar example, but with non-coprime determinants.

10

3. Not pseudorandom: Consider a formal (w, d, n)-ABP where the coefficients of the affine forms
are distinct y-variables, and let h(x, y) be the polynomial computed by this ABP. Here, |y| =
(n + 1) · (w2(d − 2) + 2w) = m (say). If w = O(

√
n), the family H = {h(x, b) : b ∈ Fm}

is not pseudorandom under the distribution defined by b ∈r Fm. This is because, the w
affine forms in X1 are linearly independent with high probability. So, the variety of f =
h(x, b) (denoted by V(f)) has a subspace of dimension n− w over F; a random polynomial
does not have this property with high probability. Using a randomized algorithm (Theorem
2.6 and 3.9 in [HW99]) we can check if V(f) has a large subspace in (dw2

n log q)O(1) time.
Observe that (dw2

n log q)O(1) = dO(n) for w = O(
√

n), and so the algorithm does not take
time much larger than the number of monomials in f to distinguish it from a random (n, d)-
polynomial thereby implying that H is not a pseudorandom family. However, a family not
being pseudorandom under a distribution does not say much a priori about average-case
reconstruction under the same distribution for the family. The latter is presumbably a much
harder problem for arbitrary non-pseudorandom polynomial families.

4. Non-degenerate ABP: Similar to pure product, we can state a set of non-degeneracy conditions
such that the algorithm in Theorem 2 (with a slight modification) solves the reconstruction
problem for ABPs satisfying these conditions. These non-degeneracy conditions are stated
in Section 4.3, and the proof of Theorem 2 shows that a random (w, d, n)-ABP satisfies them
with high probability, for n ≥ 4w2.

The proof of Theorem 1 requires an efficient affine equivalence test for the determinant. An n-
variate polynomial f (x) is affine equivalent to an m-variate polynomial g, for n ≥ m, if there is an
A ∈ Fm×n of rank m and an a ∈ Fm such that f = g(A · x+ a). Further, for m = n, f is equivalent to
g if there is an A ∈ GL(n, F) such that f = g(A · x). Given blackbox access to a (n, w)-polynomial
f , where n ≥ w2, the affine equivalence test problem for the determinant is to check whether f
is affine equivalent to Detw, and if yes then output a B ∈ Fw2×n of rank w2 and a b ∈ Fw2

such
that f = Detw(B · x + b). Here Detw is the w× w symbolic determinant polynomial. The theorem
below solves this problem over finite fields – it returns a B ∈ Lw2×n of rank w2 and a b ∈ Lw2

.

Theorem 3 (Determinant equivalence test). There is a randomized algorithm that takes as input black-
box access to a (n, w)-polynomial f ∈ F[x], where n ≥ w2, and does the following with probability
1 − nO(1)

q : If f is affine equivalent to Detw then it outputs a B ∈ Lw2×n of rank w2 and a b ∈ Lw2

such that f = Detw(B · x + b), else it outputs ‘ f not affine equivalent to Detw’. The algorithm runs in
(n log q)O(1) time and queries the blackbox at points in Ln.

Remarks:

1. Comparison to [Kay12]: An efficient equivalence test for the determinant over C was given
in [Kay12]. The computation model in [Kay12] assumes that arithmetic over C and root
finding of univariate polynomials over C can be done efficiently. While we follow the general
strategy of analyzing the Lie algebra of the determinant and reduction to PS-equivalence
from [Kay12], our algorithm is somewhat simpler: Unlike [Kay12], our algorithm does not
involve the Cartan subalgebras and is almost the same as the simpler equivalence test for
the permanent polynomial in [Kay12]. The simplification is achieved by showing that the
characteristic polynomial of a random element of the Lie algebra of Detw splits completely
over L with high probability (Lemma 5.2) – this is crucial for Theorem 1 as it allows the
algorithm to output a matrix factorization over a fixed low extension of F, namely L.

11

2. Average-case ABP reconstruction over Q: In our arguments, Theorem 3 is the only place where
we need the underlying field is finite. In other words, the algorithms in Theorems 1 and
2 work over Q if only there is an efficient equivalence test for Detw over Q. Also, if there
is an affine equivalence test for Detw that outputs B, b over the base field (Q or F) then the
algorithm in Theorem 2 would output an ABP over the base field.

1.4 Algorithms and their analysis

The algorithms mentioned in Theorem 1 and 2 are given in Algorithm 1 and 2, respectively. In this
section, we briefly discuss their correctness and complexity – for the missing details, we allude to
the relevant parts of the subsequent sections.

1.4.1 Analysis of Algorithm 1

Since F = X1 · X2 . . . Xd is a random (w, d, n)-matrix product, with probability 1 − (wdn)−Ω(1),
the first two properties of a pure product are satisfied: Every Xi is a full rank linear matrix,
and det(X1), det(X2), . . . , det(Xd) are coprime irreducible polynomials (see Claim 2.3). Claim 2.4
shows that the third property of a pure product is also satisfied with probability 1− (wdn)−Ω(1).
We analyze Algorithm 1 assuming that F is a pure product over F (which also implies that F is a
pure product over L). The third property of a pure product will be used only in Observation 3.5
in Section 3.2. The algorithm has three main stages:

1. Computing the irreducible factors of det(F) (Steps 2–6): From blackbox access to the entries of F,
a blackbox access to det(F) is computed in (wdn log q)O(1) time using Gaussian elimination.
Subsequently, using Kaltofen-Trager’s factorization algorithm [KT90], blackbox access to the
irreducible factors g1, g2, . . . , gd of det(F) are constructed in (wdn log q)O(1) time (see Lemma
2.1). Since det(X1), . . . , det(Xd) are coprime irreducible polynomials, there is a permutation
σ of [d], and ci ∈ F× for all i ∈ [d], such that ci · det(Xi) = gσ(i) and ∏d

i=1 ci = 1. For the next
two stages, assume w > 1 as the w = 1 case gets solved readily at this stage.

2. Affine equivalence test (Steps 9–16): Let j = σ(i) and X′i be the matrix Xi with the affine forms
in the first row multiplied by ci. Then, gj = det(X′i) = ci · det(Xi), which is affine equivalent
to Detw. At step 11, the algorithm in Theorem 3 (given in Section 5) finds a Bj ∈ Lw2×n of
rank w2 and bj ∈ Lw2

such that gj = Detw(Bj · x + bj), with probability 1 − (wdn)−Ω(1).
Let Zj be the matrix obtained by appropriately replacing the entries of the w× w symbolic
matrix with the affine forms in Bj · x + bj such that det(Zj) = gj = det(X′i). This certifies
that there are matrices Ci, Di ∈ SL(w, L) satisfying, Zj = Ci · X′i · Di or ZT

j = Ci · X′i · Di (see
Fact 1 in Section 5.1). Multiplying the first column of Ci with ci, and calling the resulting
matrix Ci again, we see that there are matrices Ci, Di ∈ GL(w, L) satisfying, Zj = Ci · Xi · Di

or ZT
j = Ci · Xi · Di. Observe that such Ci, Di are unique up to multiplications by elements

in L× i.e., if Ci · Xi · Di = C′i · Xi · D′i , where Xi is a full rank matrix, then C′i = αCi and
D′i = α−1Di for some α ∈ L×.

3. Rearrangement of the retrieved matrices (Steps 19–22): This stage is the most crucial part of
Algorithm 1. At step 19, Algorithm 3 constructs the matrices Y1, Y2, . . . , Yd by determining
the permutation σ and whether Zσ(i) = Ci ·Xi ·Di or ZT

σ(i) = Ci ·Xi ·Di. Internally, Algorithm

12

Algorithm 1 Average-case matrix factorization

INPUT: Blackbox access to w2, (n, d)-polynomials { fst}s,t∈[w] that constitute the entries of a ran-
dom (w, d, n)- matrix product F = X1 · X2 . . . Xd.
OUTPUT: Linear matrices Y1, Y2, . . . , Yd over L such that F = Y1 ·Y2 . . . Yd.

1. /* Factorization of the determinant */
2. Compute blackbox access to det(F).
3. Compute blackbox access to the irreducible factors of det(F); call them g1, g2, . . . , gd.
4. if the number of irreducible factors is not equal to d then
5. Output ‘Failed’.
6. end if
7.
8. /* Affine equivalence test for determinant */
9. Set j = 1.

10. while j ≤ d do
11. Call the algorithm in Theorem 3 with input as blackbox access to gj; let Bj and bj be its

output. Construct the w× w full-rank linear matrix Zj over L determined by Bj and bj.
12. if the algorithm outputs ‘gj not affine equivalent to Detw’ then
13. Output ‘Failed’.
14. end if
15. Set j = j + 1.
16. end while
17.
18. /* Rearrangement of the matrices */
19. Call Algorithm 3 on input blackbox access to F and Z1, . . . , Zd, and let Y1, . . . , Yd be its output.
20. if Algorithm 3 outputs ‘Rearrangement not possible’ then
21. Output ‘Failed’.
22. end if
23.
24. Output Y1, Y2, . . . , Yd.

13

3 uses Algorithm 4, which when given blackbox access to Fd = F and a Z (that is either
Zk or ZT

k for some k ∈ [d]), does the following with probability 1 − (wdn)−Ω(1): If Z =
Cd · Xd · Dd then it outputs a D̃d = adDd for some ad ∈ L×. For all other cases – if Z =
Ci · Xi · Di or ZT = Ci · Xi · Di for i ∈ [d − 1], or ZT = Cd · Xd · Dd – it outputs ‘Failed’.
Algorithm 4 uses the critical fact that F is a pure product to accomplish the above and locate
the unique last matrix. The running time of the algorithm, which is (wdn log q)O(1), and
its proof of correctness (which also gives the uniqueness of factorization mentioned in the
remark after Theorem 1) are discussed in Section 3.2. Algorithm 3 calls Algorithm 4 on
inputs F, Zk and F, ZT

k for all k ∈ [d]. If Algorithm 4 returns a matrix D̃d for some k ∈ [d]
on either inputs F, Zk or F, ZT

k then it sets Md = Zk or Md = ZT
k respectively, and σ(d) =

k. Subsequently, Algorithm 3 computes blackbox access to a length d − 1 matrix product
Fd−1 = F · D̃d ·M−1

d = X1 · · ·Xd−2 · (Xd−1 · adC−1
d), and repeats the above process to compute

Md−1 and σ(d − 1) with the inputs Fd−1 and {Z1, . . . , Zd}\Zσ(d). Thus, using Algorithm 4
repeatedly, Algorithm 3 iteratively determines σ and Md, Md−1, . . . , M2: At the (d− t + 1)-th
iteration, for t ∈ [d− 1, 2], it computes a matrix D̃t = at(Ct+1 · Dt) for some at ∈ L×, sets
Mt and σ(t) accordingly, creates blackbox access to Ft−1 = Ft · D̃t · M−1

t and prepares the
list {Z1, . . . , Zd}\{Zσ(d), Zσ(d−1), . . . , Zσ(t)} for the next iteration. Finally, setting Y1 = F1 and
Yi = Mi · D̃−1

i , for all i ∈ [2, d], we have F = ∏d
i=1 Yi.

1.4.2 Analysis of Algorithm 2

Let f be the polynomial computed by a (w, d, n)-ABP X1 · X2 . . . Xd. We can assume that f is a
homogeneous degree-d polynomial and the entries in each Xi are linear forms (i.e., affine forms
with constant term zero), owing to the following simple homogenization trick.

Homogenization of ABP: Consider the (n + 1)-variate homogeneous degree-d polynomial

fhom = xd
0 · f

(
x1

x0
,

x2

x0
, . . . ,

xn

x0

)
.

The polynomial fhom is computable by the (w, d, n)-ABP X′1 · X′2 . . . X′d, where X′i is equal to Xi but
with the constant term in the affine forms multiplied by x0. If we construct an ABP for fhom then
an ABP for f is obtained by setting x0 = 1.

We give an overview of the three main stages in Algorithm 2. As in Algorithm 1, the matrices
X1, X2, . . . , Xd are assumed to be full rank linear matrices and further, for a similar reason, the 2w
linear forms in X1 and Xd are assumed to be F-linearly independent. For a field K ⊇ F, we say f
is zero modulo a K-linear space X = spanK{l1, . . . , lw}, where li’s are linear forms in K[x], if f is
in the ideal of K[x] generated by {l1, . . . , lw}. This is also denoted by f = 0 mod 〈l1, . . . , lw〉.

1. Computing the corner spaces (Steps 2–6): Polynomial f is zero modulo each of the two w-
dimensional F-linear spaces X1 and Xd spanned by the linear forms in X1 and Xd respec-
tively. We show in Lemma 4.1, if n ≥ 4w2 then with probability 1− (wdn)−Ω(1) the follow-
ing holds: Let K ⊇ F be any field. If f = 0 mod 〈l1, . . . , lw〉, where li’s are linear forms
in K[x], then the li’s either belong to the K-span of the linear forms in X1 or belong to the
K-span of the linear forms in Xd. In this sense, the spaces X1 and Xd are unique. The al-
gorithm invokes Algorithm 5 which computes bases of X1 and Xd by solving O(n) systems

14

Algorithm 2 Average-case ABP reconstruction
INPUT: Blackbox access to a (n, d)-polynomial f computed by a random (w, d, n)-ABP.
OUTPUT: A (w, d, n)-ABP over L computing f .

1. /* Computing the corner spaces */
2. Call Algorithm 5 on f to compute bases of the two unique w-dimensional F-linear spaces X1

and Xd, spanned by linear forms in F[x], such that f is zero modulo each of X1 and Xd.
3. if Algorithm 5 outputs ‘Failed’ then
4. Output ‘Failed to construct an ABP’.
5. end if
6. Compute a transformation A ∈ GL(n, F) that maps the bases of X1 and Xd to distinct variables

y = {y1, y2, . . . , yw} and z = {z1, z2, . . . zw} respectively, where y, z ⊆ x. Let r = x \ (y] z),
X′1 = (y1 y2 . . . yw), X′d = (z1 z2 . . . zw)T and f ′ = f (A · x).

7.
8. /* Computing the coefficients of the r variables in the intermediate matrices */
9. Construct blackbox access to the w2 polynomials that constitute the entries of the w×w matrix

F = (∂ f ′
∂yszt
|y=0,z=0)s,t∈[w] .

10. Call Algorithm 1 on input F to compute a factorization of F as S2 · S3 . . . Sd−1.
11. if Algorithm 1 outputs ‘Failed’ then
12. Output ‘Failed to construct an ABP’.
13. end if
14.
15. /* Computing the coefficients of the y and z variables in the intermediate matrices */
16. Call Algorithm 6 on inputs f ′ and {S2, S3, . . . , Sd−1} to compute matrices T2, T3, . . . , Td−1 such

that f ′ is computed by the ABP X′1 · T2 · · · Td−1 · X′d.
17. if Algorithm 6 outputs ‘Failed’ then
18. Output ‘Failed to construct an ABP’.
19. end if
20. Apply the transformation A−1 on the x variables in the matrices X′1, X′d, and Tk for k ∈ [2, d− 1].

Call the resulting matrices Y1, Yd, and Yk for k ∈ [2, d− 1] respectively.
21. Output Y1 ·Y2 . . . Yd as the ABP computing f .

15

of polynomial equations over F. Such a system has dO(w2) equations in m = O(w3) vari-
ables and the degree of the polynomials in the system is at most d; we intend to find all the
solutions in Fm. It turns out that owing to the uniqueness of X1 and Xd, the variety over
F (the algebraic closure of F) defined by such a system has exactly two points and these
points lie in Fm. From the two solutions, bases of X1 and of Xd can be derived. The two
solutions of the system are computed by a randomized algorithm running in (dw3

log q)O(1)

time ([Ier89,HW99], see Lemma 2.2) – the algorithm exploits the fact that the variety over F

is zero-dimensional. Thus, at step 2, the two spaces are either equal to X1 and Xd or Xd and
X1 respectively. Without loss of generality, we assume the former. Once bases of the corner
spaces X1 and Xd are computed, an invertible transformation A maps the linear forms in the
bases to distinct variables (as the linear forms in X1 and Xd are F-linearly independent).

2. Computing the coefficients of the r variables (Steps 9–13): There is an ABP X′1 ·X′2 . . . X′d comput-
ing f ′ = f (A · x), where X′1 and X′d are equal to (y1 y2 . . . yw) and (z1 z2 . . . zw)T respec-
tively. For k ∈ [2, d− 1], let Rk = (X′k)y=0,z=0 and F = R2 · R3 . . . Rd−1. As X1 · X2 . . . Xd is
a random (w, d, n)-ABP, R2 · R3 . . . Rd−1 is a random (w, d− 2, n− 2w)-matrix product over
F. The (s, t)-th entry of F is equal to

(
∂ f ′

∂yszt

)
y=0,z=0

, for s, t ∈ [w]. Blackbox access to each

of the w2 entries of F are constructed in (wdn log q)O(1) time using Claim 2.1. From F, Al-
gorithm 1 computes linear matrices S2, . . . , Sd−1 over L in r = x \ (y] z) variables such
that F = S2 · S3 . . . Sd−1. Moreover, the uniqueness of factorization implies there are linear
matrices T2, . . . , Td−1 over L in the x-variables, satisfying (Tk)y=0,z=0 = Sk, such that f ′ is
computed by the ABP X′1 · T2 · · · Td−1 · X′d.

3. Computing the coefficients of y and z variables in Tk (Steps 16–20): Algorithm 6 finds the coef-
ficients of the y and z variables in the linear forms present in T2, . . . , Td−1 in (wdn log q)O(1)

time. We present the idea here; the detail proof of correctness is given in Section 4.2. In
the following discussion, M(i, j) denotes the (i, j)-th entry, M(i, ∗) the i-th row, and M(∗, j)
the j-th column of a linear matrix M. Let us focus on finding the coefficients of y1 in the
linear forms present in T2(1, ∗), T3, . . . , Td−2, Td−1(∗, 1). There are w2(d − 4) + 2w linear
forms in these matrices and these would be indexed by [w2(d − 4) + 2w]. Let ce be the
coefficient of y1 in the e-th linear form le for e ∈ [w2(d − 4) + 2w]. We associate a poly-

nomial he(r) in r variables with le as follows: If le is the (i, j)-th entry of Tk then he
def
=

[S2(1, ∗) · S3 · · · Sk−2 · Sk−1(∗, i)] · [Sk+1(j, ∗) · Sk+2 · · · Sd−2 · Sd−1(∗, 1)] , by identifying the
1× 1 matrix of the R.H.S with the entry of the matrix. Observe that if f ′ is treated as a poly-
nomial in y and z variables with coefficients in L(r) then the coefficient of y2

1z1 is exactly

∑e∈[w2(d−4)+2w] ce · he(r). On the other hand, this coefficient is
(

∂ f ′

∂y2
1z1

)
y=0,z=0

, for which we

can obtain blackbox access using Claim 2.1. This allows us to write the equation,

w2(d−4)+2w

∑
e=1

ce · he(r) =
(

∂ f ′

∂y2
1z1

)
y=0,z=0

. (1)

We show in Lemma 4.2 and Corollary 4.1 that the polynomials he, for e ∈ [w2(d− 4) + 2w],
are L-linearly independent with probability 1 − (wdn)−Ω(1), over the randomness of the
input f . By substituting random values to the r variables in the above equation, we can set

16

up a system of w2(d− 4) + 2w linear equations in the ce’s. The linear independence of the
he’s ensures that we can solve for ce (by Claim 2.2).

1.4.3 Proof strategy for Theorem 3

The algorithm in Theorem 3 has three stages:

1. Reduction to equivalence testing: Applying known techniques – ‘variable reduction’ (Claim
5.1) and ‘translation equivalence’ (Claim 5.2) – the affine equivalence testing problem is
efficiently reduced to equivalence testing for Detw with high probability. An equivalence
test takes blackbox access to a w2-variate polynomial g(y) as input and does the following
with high probability: If g is equivalent to Detw then it outputs a Q ∈ GL(w2, L) such that
g = Detw(Q · y) else it outputs ‘g not equivalent to Detw’.

2. Reduction to PS-equivalence: The reduction is given in Algorithm 7. The algorithm proceeds
by computing an F-basis of the Lie algebra of the group of symmetries of g (denoted as gg,
see Claim 5.3). It then picks an element F uniformly at random from gg and computes its
characteristic polynomial h(x). Since F ∈ gg, it is similar to a L ∈ gDetw (see Fact 3 in Sec-
tion 5.1), implying that their characteristic polynomials are equal. As F is a random element
of gg, L is also a random element of gDetw . In Lemma 5.2, we show that the characteristic
polynomial h of a L ∈r gDetw is square-free and splits completely over L, with high proba-
bility. (This lemma makes our reduction to PS-equivalence simpler than [Kay12], enabling
the equivalence test to work over finite fields.) The roots of h are computed in randomized
(w log q)O(1) time ([CZ81], see also [vzGG03]). From the roots, a D ∈ GL(w2, L) can be com-
puted such that D−1FD is diagonal10. Thereafter, the structure of the group of symmetries
of Detw and its Lie algebra helps argue, in Section 5.2, that f (D · x) is PS-equivalent to Detw.

3. Doing the PS-equivalence: This step follows directly from [Kay12] (see Lemma 5.1).

1.5 Few questions

The following questions are immediate from the above discussions:

(a) Can we compute the corner spaces in (wd log q)O(1) time? If so then the overall complexity of
the algorithm would come down to (wd log q)O(1).

(b) In the equivalence test for the determinant, can we output a linear matrix over the base field
F instead of a matrix over the extension L?

(c) Is it possible to do nontrivial reconstruction in the average-case when w is significantly larger
than

√
n, say for w = n

2 ?

(d) For w significantly larger than
√

n, say w = n2, can we show that linear factorization of a
random (w, d, n)-matrix product is unique (in the sense as mentioned in the second remark
after Theorem 1)?

10In [Kay12], a basis of the centralizer of F in gg is computed first and then a D ∈ GL(w2, C) is obtained that simula-
neously diagonalizes this basis.

17

2 Preliminaries

2.1 Notations

GL(w, F) is the set of w×w invertible matrices over F, and SL(w, F) the set of w×w matrices over
F with determinant one. Bold letters x, y, z, u, v, w are used to represent either column vectors (or
sets) of variables or column vectors of field elements, calligraphic letters like X to represent vector
spaces, capital letters like A, B, C, S, T for matrices or sets – the context of a usage of any of these
symbols would hopefully make its purpose clear. The derivative of a polynomial f with respect
to a monomial µ is denoted as ∂ f

∂µ or ∂µ f .

2.2 Algorithmic preliminaries

The following result on blackbox polynomial factorization is proved in [KT90].

Lemma 2.1 ([KT90]). There is a randomized algorithm that takes as input blackbox access to a (n, d)-
polynomial f over F, and constructs blackbox access to the irreducible factors of f over F in (nd log q)O(1)

time with success probability 1− (nd)O(1)

q .

Let I be an ideal of F[x] generated by (n, d)-polynomials g1, . . . , gm, and VF(I) the variety or the
algebraic set defined by I over F. VF(I) is zero-dimensional if it has finitely many points. We say
a point a ∈ VF(I) is F-rational if a ∈ Fn. The proof of the next result follows from [Ier89] (see
also [HW99]).

Lemma 2.2 ([Ier89]). There is a randomized algorithm that takes input m, (n, d)-polynomials g1, g2, . . . , gm
generating an ideal I of F[x]. If VF(I) is zero-dimensional and all points in it are F-rational then the al-
gorithm computes all the points in VF(I) with probability 1− exp(−mnd log q). The running time of the
algorithm is (mdn log q)O(1).

A similar result, but for homogeneous g1, . . . , gm, follows from [Laz01].

2.3 A few useful facts

We list down four useful claims here. A proof of the first can be given using interpolation. Proofs
of the next two follow from applications of the Schwartz-Zippel lemma [Sch80, Zip79].

Claim 2.1. There is a deterministic algorithm that given blackbox access to a (n, d)-polynomial f ∈ F[x],
and a monomial µ of constant degree in x, computes blackbox access to ∂µ f in (nd log q)O(1) time.

Claim 2.2. Let f1, f2, . . . , fm be F-linearly independent (n, d)-polynomials in F[x]. If a1, a2, . . . , am are
points in Fn chosen independently and uniformly at random, then the matrix (ft(as))s,t∈[m] has rank m
over F with probability at least 1− dm

q .

Claim 2.3. Let X1 ·X2 . . . Xd be a random (w, d, n)-matrix product over F. If n ≥ w2 then X1, X2, . . . , Xd
are full rank linear matrices and det(X1), det(X2), . . . , det(Xd) are coprime irreducible polynomials with
probability 1− (wdn)−Ω(1).

The following claim implies that a random matrix product satisfies the third property of a pure
product with high probability.

18

Claim 2.4. If E = Q1 · · ·Q` is a random (w, `, m)-matrix product over F, where w2 + 1 ≤ m ≤ n and
` ≤ d, then the entries of E are F-linearly independent with probability 1− (wdn)−Ω(1).

If the entries of E are F-linearly independent then they are also L-linearly independent. A proof
of the claim is given in Appendix A.

3 Average-case matrix factorization: Proof of Theorem 1

The algorithm in Theorem 1 is presented in Algorithm 1. To complete the analysis, given in Section
1.4.1, we need to argue the correctness of the key step of rearrangement of the matrices (Algorithm
3) by finding the last matrix (Algorithm 4). As the functioning of Algorithm 3 is already sketched
out in Section 1.4.1, the reader may skip to Section 3.2. For completeness, we include an analysis
of Algorithm 3 in the following subsection.

3.1 Rearranging the matrices

Recall, we have assumed F is a pure (w, d, n)-matrix product X1 · X2 . . . Xd over F, and hence also
a pure product over L. The inputs to Algorithm 3 are d full rank linear matrices Z1, Z2, . . . , Zd
over L such that there are matrices Ci, Di ∈ GL(w, L) and a permutation σ of [d] satisfying Zσ(i) =

Ci · Xi · Di or ZT
σ(i) = Ci · Xi · Di for every i ∈ [d]. Algorithm 3 iteratively determines σ (implicitly)

by repeatedly using Algorithm 4. The behavior of Algorithm 4 is summarized in the lemma below.
For the lemma statement, assume n ≥ 2w2, Z is a full rank linear matrix over L, and Ft is a pure
(w, t, n)-matrix product R1 · R2 . . . Rt over L, where t ≤ d. Further, there are matrices C, D ∈
GL(w, L) and i ∈ [t] such that Z = C · Ri · D or ZT = C · Ri · D.

Lemma 3.1. Algorithm 4 takes input Z and blackbox access to the w2 entries of Ft, and with probability
1− (wdn)−Ω(1) does this: If Z = C · Rt · D then it outputs a D̃ = aD for an a ∈ L×, and for all other
cases – Z = C · Ri · D or ZT = C · Ri · D for i ∈ [t− 1], or ZT = C · Rt · D – it outputs ‘Failed’.

Algorithm 4 and the proof of Lemma 3.1 are presented in Section 3.2. We analyze Algorithm 3
below by tracing its steps:

Step 2: The algorithm enters an outer loop and iterates from t = d to t = 2. For a fixed t ∈ [d, 2], at
the start of the loop the algorithm ensures Ft is a pure (w, t, n)-matrix product R1 · R2 . . . Rt over
L. For t = d, Ri = Xi for all i ∈ [d]. Further, there is a permutation σt of [t], and for every i ∈ [t]
there are matrices Ci, Di ∈ GL(w, L) such that either Zσt(i) = Ci · Ri · Di or ZT

σt(i)
= Ci · Ri · Di. In

the loop, the algorithm determines σt(t) and whether Zσt(t) = Ct · Rt · Dt or ZT
σt(t)

= Ct · Rt · Dt.

Steps 4–21: Inside the inner loop, the algorithm calls Algorithm 4 on inputs Ft, Zk (step 5) and
Ft, ZT

k (step 13) for all k ∈ [t]. By Lemma 3.1, only when k = σt(t), Algorithm 4 returns a D̃ = atDt
for some at ∈ L×. The renaming of Zk and Zt (in steps 7 and 15) ensures that we have a suitable
permutation σt−1 of [t− 1] in the next iteration of the outer loop. The setting of Mt (in steps 8 and
16) implies that Mt = Ct · Rt · Dt. Hence,

Ft−1 = Ft · D̃t ·M−1
t = (R1 · R2 . . . Rt−1) · (atC−1

t).

19

Algorithm 3 Rearrangement of the matrices
INPUT: Blackbox access to F, and w× w full rank linear matrices Z1, Z2, . . . , Zd over L.
OUTPUT: Linear matrices Y1, Y2, . . . , Yd over L such that F = Y1 ·Y2 · · ·Yd.

1. Set t = d, k = 1, and Fd = F.
2. while t > 1 do
3.
4. while k ≤ t do
5. Call Algorithm 4 on inputs Ft and Zk.
6. if Algorithm 4 outputs D̃ then
7. Rename Zk as Zt and Zt as Zk, and set D̃t = D̃. /* σ is determined implicitly. */
8. Set Mt = Zt and Ft−1 = Ft · D̃t ·M−1

t .
9. Set k = 1 and t = t− 1.

10. Exit the inner loop.
11. end if
12.
13. Call Algorithm 4 on inputs Ft and ZT

k .
14. if Algorithm 4 outputs a D̃ then
15. Rename Zk as Zt and Zt as Zk, and set D̃t = D̃. /* σ is determined implicitly. */
16. Set Mt = ZT

t and Ft−1 = Ft · D̃t ·M−1
t .

17. Set k = 1 and t = t− 1.
18. Exit the (inner) loop.
19. end if
20. Set k = k + 1.
21. end while
22.
23. if k = t + 1 then
24. Exit the (outer) loop.
25. end if
26.
27. end while
28.
29. if t ≥ 2 then
30. Output ‘Rearrangement not possible’.
31. else
32. Set Y1 = F1, and Yt = Mt · D̃−1

t for all t ∈ [2, d]. Output Y1, . . . , Yd.
33. end if

20

Note that Ft−1 is a pure (w, t − 1, n)-matrix product over L. By reusing symbols and calling
Rt−1 · (atC−1

t) as Rt−1, and a−1
t Ct · Dt−1 as Dt−1, we observe that the setup at step 2 is maintained

in the next iteration of the outer loop.

Step 32: As Ft−1 = Ft · D̃t ·M−1
t at every iteration of the outer loop, setting Yt = Mt · D̃−1

t implies
Ft−1 = Ft ·Y−1

t for every t ∈ [d, 2]. Therefore, F = Fd = Y1 · · ·Yd.

3.2 Determining the last matrix: Proof of Lemma 3.1

We give an overview of the proof by first assuming that Z is the ‘last’ matrix in the pure product
Ft. The correctness of the idea is then made precise by tracing the steps of Algorithm 4.

Overview: Suppose Z = C · Rt · D, where C, D ∈ GL(w, L). As Z is a full rank linear matrix, we
can assume the entries of Z are distinct variables, by applying an invertible linear transformation.
For any polynomial h ∈ L[x], h mod det(Z) can be identified with an element of L(x). This is
because, det(Z) is multilinear and so there is an injective ring homomorphism from L[x]/(det(Z))
to L(x) via a simple substitution map taking a variable to a rational function. Let Z′, F′t ∈ L(x)w×w

be obtained by reducing the entries of Z and Ft, respectively, modulo det(Z). The coprimality of
the determinants of R1, . . . , Rt and their full rank nature imply,

D ·KernelL(x)(Z′) = KernelL(x)(F′t),

and these two kernels have dimensions one. A basis of KernelL(x)(Z′) can be easily derived as Z
is known explicitly. However, we only have blackbox access to F′t . To leverage the above relation,
we compute bases of KernelL(F′t (a)) and KernelL(Z′(a)) for several random a ∈r Fn, and form
two matrices U, V ∈ GL(w, L) from these bases so that D equals U ·V−1 (up to scaling by elements
in L×). Hereafter, KernelL will also be denoted as Ker in Algorithm 4 and its analysis.

Applying an invertible linear map (Step 2): The invertible linear transformation lets us assume that
Z = (zlk)l,k∈[w], where zlk’s are distinct variables in x.

Reducing Z and Ft modulo det(Z) (Step 5): The reduction of the entries of Z and the blackbox entries
of Ft modulo det(Z) is achieved by the substitution,

z11 = −∑w
k=2 z1k · N1k

N11
.

After the substitution, the matrices become Z′ and F′t = R′1 · R′2 . . . R′t respectively. As there are
i ∈ [t] and C, D ∈ GL(w, L) such that either Z = C · Ri · D or ZT = C · Ri · D, we have either
Z′ = C · R′i · D or (Z′)T = C · R′i · D and hence det(Z′) = det(R′i) = det(F′t) = 0.

Observation 3.1. 1. KernelL(x)(Z′) = spanL(x){(N11 N12 . . . N1w)
T},

2. KernelL(x)((Z′)T) = spanL(x){(N11 N21 . . . Nw1)
T}.

Hence, KernelL(x)(Z′) has dimension one, and the observation below implies KernelL(x)(F′t) is
also one dimensional. The proof follows from the coprimality of det(R1), det(R2), . . . , det(Rt).

21

Algorithm 4 Determining the last matrix
INPUT: Blackbox access to a (w, t, n)-matrix product Ft and a full rank linear matrix Z over L.
OUTPUT: A matrix D̃ ∈ GL(w, L), if Z is the ‘last’ matrix of the product Ft.

1. /* Applying an invertible linear map */
2. Let the first w2 variables in x be z = {zlk}l,k∈[w]. Compute an invertible linear map A that

maps the affine forms in Z to distinct z variables, and apply A to the w2 blackbox entries of Ft.
Reusing symbols, Z = (zlk)l,k∈[w] and Ft is the matrix product after the transformation.

3.
4. /* Reducing Z and Ft modulo det(Z) */
5. Let Nlk be the (l, k)-th cofactor of Z, for l, k ∈ [w]. Substitute z11 =

−∑w
k=2 z1k N1k

N11
in Z and in the

blackbox for Ft. Call the matrices Z′ and F′t respectively after the substitution.
6.
7. /* Computing the kernels at random points */
8. for k = 1 to w + 1 do
9. Choose ak, bk ∈r Fn. Compute bases of Ker(F′t (ak)), Ker(Z′(ak)), Ker(F′t (bk)), Ker(Z′(bk)).

Pick non-zero uk ∈ Ker(F′t (ak)), vk ∈ Ker(Z′(ak)), wk ∈ Ker(F′t (bk)), sk ∈ Ker(Z′(bk)).
If the computation fails (i.e., N11(ak) = 0 or N11(bk) = 0), or any of the kernels is not one
dimensional, output ‘Failed’.

10. end for
11.
12. /* Extracting D from the kernels */
13. Compute αk, βk, γk, δk ∈ L for k ∈ [w] such that uw+1 = ∑w

k=1 αkuk, vw+1 = ∑w
k=1 βkvk, ww+1 =

∑w
k=1 γkwk and sw+1 = ∑w

k=1 δksk. If the computation fails, or any of αk, βk, γk, δk is zero for
some k ∈ [w], output ‘Failed’.

14.
15. Set U, V, W, S ∈ Lw×w such that the k-th column of U, V, W, S are αk ·uk

βk
, vk, γk ·wk

δk
, sk respectively.

If any of U, V, W, S 6∈ GL(w, L), output ‘Failed’.
16.
17. if UV−1SW−1 is a scalar matrix then
18. Set D̃ = U ·V−1 and output D̃.
19. else
20. Output ‘Failed’. /* The check fails w.h.p if Z is not the ‘last’ matrix */
21. end if

22

Observation 3.2. For all j ∈ [t] and j 6= i, det(R′j) 6= 0, and so the dimension of KernelL(x)(F′t) is one.

Computing the kernels at random points (Steps 8–10): The following observation shows that the algo-
rithm does not fail at step 9 with high probability. The proof is immediate from the above two
observations and an application of the Schwartz-Zippel lemma.

Observation 3.3. Let ak, bk ∈r Fn for k ∈ [w + 1]. Then, for every k ∈ [w + 1], and a = ak or bk,

1. Ker(Z′(a)) = spanL{(N11(a) N12(a) . . . N1w(a))T},

2. Ker((Z′(a))T) = spanL{(N11(a) N21(a) . . . Nw1(a))T},

and Ker(F′t (ak)), Ker(F′t (bk)) are one dimensional subspaces of Lw, with probability 1− (wdn)−Ω(1).

Extracting D from the kernels (Steps 13 – 21): We analyse these steps for three separate cases. The
analysis shows that if Z is the ‘last’ matrix then the algorithm succeeds with high probability, oth-
erwise the test at step 17 fails with high probability.

Case a [Z = C · Rt · D]: From Observation 3.2, det(R′j(ak)) and det(R′j(bk)) are nonzero with high
probability, for all j ∈ [t− 1] and k ∈ [w+ 1]. Assuming this, the following holds for all k ∈ [w+ 1]:

D ·Ker(Z′(ak)) = Ker(F′t (ak)) ,
D ·Ker(Z′(bk)) = Ker(F′t (bk)) . (2)

Hence, at step 9, there are λk, ρk ∈ L× such that

D · vk = λkuk, D · sk = ρkwk for k ∈ [w + 1].

Step 13 also succeeds with high probability due to the following claim (proof in Appendix A).

Claim 3.1. With probability 1− (wdn)−Ω(1), any subset of w vectors in any of the sets {u1, u2, . . . , uw+1},
{v1, v2, . . . , vw+1}, {w1, w2, . . . , ww+1}, or {s1, s2, . . . , sw+1} are L-linearly independent.

At this step, vw+1 = ∑w
k=1 βkvk and sw+1 = ∑w

k=1 δksk, and so by applying D on both sides,

λw+1uw+1 =
w

∑
k=1

βkλkuk, ρw+1ww+1 =
w

∑
k=1

δkρkwk .

Also, uw+1 = ∑w
k=1 αkuk and ww+1 = ∑w

k=1 γkwk. By Claim 3.1, none of the αk, βk, γk, δk is zero and

λk

λw+1
=

αk

βk
,

ρk

ρw+1
=

γk

δk
, for all k ∈ [w].

From the construction of matrices U, V, W and S at step 15,

D ·V = λw+1U , D · S = ρw+1W,

and U, V, W, S ∈ GL(w, L) (by Claim 3.1). Therefore, UV−1SW−1 is a scalar matrix.

23

Case b [ZT = C · Rt · D]: In this case, the check at step 17 fails with high probability. Suppose the
algorithm passes steps 13 and 15, and reaches step 17. We show that UV−1SW−1 being a scalar ma-
trix implies an event E that happens with a low probability. The event E can be derived as follows:

Let M def
= U · V−1, and c ∈ L× such that M = cW · S−1. Assuming the invertibility of R′j(ak) and

R′j(bk) for j ∈ [t− 1] (Observation 3.2), and as in Equation 2, the following holds for all k ∈ [w+ 1].

D ·Ker((Z′(ak))
T) = Ker(F′t (ak)) ,

D ·Ker((Z′(bk))
T) = Ker(F′t (bk)) .

By Observation 3.3, we can assume the above four kernels are one-dimensional. Hence, at step 9
there are pk ∈ Ker((Z′(ak))

T) and qk ∈ Ker((Z′(bk))
T) satisfying D · pk = uk and D · qk = wk,

for every k ∈ [w + 1]. Consider the w × w matrices P and Q such that the k-th column of these
matrices are αk

βk
pk and γk

δk
qk respectively, where αk, βk, γk, δk are the constants computed at step 13.

Clearly, D · P = U and D ·Q = W, where U, W are the matrices computed at step 15.

As M = cW · S−1 (by assumption), we have D−1MS = cD−1W = cQ. Hence, for k ∈ [w],

D−1M · sk =
cγk

δk
qk.

At step 13, ww+1 = ∑w
k=1 γkwk and sw+1 = ∑w

k=1 δksk. Multiplying D−1 on both sides and D−1M
on both sides of these two equations respectively,

qw+1 =
w

∑
k=1

γkqk, and D−1M · sw+1 =
w

∑
k=1

cγkqk .

⇒ D−1M · sw+1 = cqw+1. (3)

From Observation 3.3, there are λ1, λ2 ∈ L× such that

sw+1 = λ1 · (N11(bw+1) N12(bw+1) . . . N1w(bw+1))
T ,

qw+1 = λ2 · (N11(bw+1) N21(bw+1) . . . Nw1(bw+1))
T .

Let D−1M = (mlk)l,k∈[w]. Using the above values of sw+1 and qw+1 in Equation 3 and restricting to
the first two entries of the resulting column vectors, we have

λ1

(
w

∑
k=1

m1kN1k(bw+1)

)
= cλ2N11(bw+1) , λ1

(
w

∑
k=1

m2kN1k(bw+1)

)
= cλ2N21(bw+1) .

Thus we get the following relation,

N21(bw+1)

(
w

∑
k=1

m1kN1k(bw+1)

)
= N11(bw+1)

(
w

∑
k=1

m2kN1k(bw+1)

)
.

Event E is defined by the above equality, i.e. we say E has happened whenever the above equality
holds. Now observe that D−1M is independent of the random bits used to choose bw+1, one way of

24

seeing this is that D−1M is already fixed before bw+1 is chosen. Hence, it is sufficient to show that
the above equality happens with low probability over the randomness of bw+1, for any arbitrarily
fixed m11, . . . , m1w and m21, . . . , m2w from L. Moreover, as D−1M is invertible, we can assume – not
all in {m11, . . . , m1w} or {m21, . . . , m2w} are zero. The following observation and Schwartz-Zippel
lemma complete the proof in this case.

Observation 3.4. N21(z) (∑w
k=1 m1k · N1k(z)) 6= N11(z) (∑w

k=1 m2k · N1k(z)) as polynomials in F[z].

Proof. Suppose the two sides are equal. As N21(z) and N11(z) are irreducible and coprime polyno-
mials, N21(z) must divide ∑w

k=1 m2k · N1k(z). But the two polynomials have the same degree and
they are monomial disjoint, thereby giving us a contradiction.

Case c [Z = C · Ri · D or ZT = C · Ri · D for some i ∈ [t− 1]]: Assume Z = C · Ri · D for some
i ∈ [t− 1]. The case ZT = C · Ri · D can be argued similarly. Similar to Case b, we show that if
the algorithm passes steps 13 and 15, and reaches step 17 then UV−1SW−1 being a scalar matrix
implies an event E that happens with very low probability. Hence, the check at step 17 fails with
high probability. The event E can be derived as follows:

Let M def
= U ·V−1, and c ∈ L× be such that M = c ·WS−1. From the construction of W and S,

cγk

δk
wk = M · sk , for all k ∈ [w],

where γk, δk are as computed at step 13. Since ww+1 = ∑w
k=1 γkwk and sw+1 = ∑w

k=1 δk · sk,

c ·ww+1 = M · sw+1. (4)

Let H def
= D−1 · R′i+1 . . . R′t. From Observation 3.2, the following holds,

H−1 ·KernelL(x)(Z′) = KernelL(x)(F′t).

Let n = (N11(bw+1) N12(bw+1) . . . N1w(bw+1))
T. From Observation 3.3, and as H(bw+1) is

invertible with high probability over the random choice of bw+1, there are λ1, λ2 ∈ L× such that

ww+1 = λ1H−1(bw+1) · n
sw+1 = λ2n.

Substituting the above values of ww+1 and sw+1 in Equation 4, we have

cλ1H−1(bw+1) · n = λ2M · n , ⇒ cλ1n = λ2H(bw+1) ·M · n.

Let H ·M = (hlk)l,k∈[w]. Restricting to the first two entries of the vectors in the above equality, and
observing that M is independent of bw+1, we have

cλ1N11(bw+1) = λ2

(
w

∑
k=1

h1k(bw+1) · N1k(bw+1)

)
,

cλ1N12(bw+1) = λ2

(
w

∑
k=1

h2k(bw+1) · N1k(bw+1)

)
.

25

Hence, we get the following relation

N11(bw+1) ·
(

w

∑
k=1

h2k(bw+1) · N1k(bw+1)

)
= N12(bw+1) ·

(
w

∑
k=1

h1k(bw+1) · N1k(bw+1)

)
. (5)

Event E is defined by the above equality, that is E happens if the above equality is satisfied. Ob-
serve that the entries of the matrix product H ·M = (hlk)l,k∈[w] are rational functions in x variables
and are independent of the random bits used to choose bw+1. We show next the probability that the
above equality holds is low over the randomness of bw+1.

So far we have used only the first two properties of a pure product Ft, i.e, every Ri is full rank and
det(R1), . . . , det(Rt) are mutually coprime. However, these two properties are not sufficient to
ensure the uniqueness of the last matrix in the product (as mentioned in a remark after Theorem
1). In the following observation, we use the third property of a pure product which ensures the
desired uniqueness of the last matrix.

Observation 3.5. Let n ≥ 2w2. Then all the entries of H · M are nonzero polynomials after setting the

variables in z1
def
= {z11, z21, z31, . . . , zw1} to zero.

Proof. H ·M = D−1 · R′i+1 . . . R′t ·M = (hlk)l,k∈[w]. Recalling the substitution z11 =
−∑w

k=2 z1k N1k
N11

at
step 5, we observe that the rational function hlk becomes a polynomial under the setting z11 =
z21 = . . . = zw1 = 0, the variable z11 does not even appear in hlk. Let Qj = (Rj)z1=0. By observing
(Rj)z1=0 = (R′j)z1=0, it follows that (H ·M)z1=0 = D−1 ·Qi+1 . . . Qt ·M. By the third property of a
pure product, the entries of Qi+1 . . . Qt are L-linearly independent. Hence, none of the entries of
D−1 ·Qi+1 . . . Qt ·M is zero, as M ∈ GL(L, w) whenever the algorithm passes step 15.

Observation 3.6. N11(x) · (∑w
k=1 h2k(x)N1k(x)) 6= N12(x) · (∑w

k=1 h1k(x)N1k(x)) as rational functions
in L(x).

Proof. Suppose N11(x) · (∑w
k=1 h2k(x)N1k(x)) = N12(x) · (∑w

k=1 h1k(x)N1k(x)). By substituting z1 =
0 in the equation, the R.H.S becomes zero whereas the L.H.S reduces to N2

11 · (h21)z1=0, which is
nonzero (by Observation 3.5).

Noting that the degrees of the numerator and the denominator of hlk are upper bounded by wd,
we conclude that the equality in Equation 5 happens with a low probability over the randomness
of bw+1.

In case c if ZT = C · Ri · D to begin with then the argument remains very similar except in Ob-
servation 3.5, the variables in the first row and column of Z (instead of just the first column) are
substituted to zero.

4 Average-case ABP reconstruction: Proof of Theorem 2

The algorithm for average-case ABP reconstruction is presented in Algorithm 2, Section 1.4.2. The
algorithm uses Algorithm 5 and Algorithm 6 during its execution – we present and analyze these
two algorithms in the following subsections.

26

4.1 Computing the corner spaces

Let f be the polynomial computed by a random (w, d, n)-ABP X1 ·X2 . . . Xd over F, where n ≥ 4w2.

Lemma 4.1. With probability 1− (wdn)−Ω(1) over the randomness of f , the following holds: Let K ⊇ F

be any field and f = 0 mod 〈l1, . . . , lk〉, where li’s are linear forms in K[x]. Then k ≥ w and for k = w,
the space spanK{l1, . . . , lw} equals the K-span of either the linear forms in X1 or the linear forms in Xd.

The above uniqueness of the corner spaces, X1 and Xd (defined in Section 1.4.2), helps compute
them in Algorithm 5. The proof of the lemma is given at the end of this subsection.

Canonical bases of X1 and Xd: For a set of variables y ⊆ x and a linear form g in F[x], define

g(y) def
= gx\y =0. We say g(y) is the linear form g projected to the y variables. Let x1, . . . , xw and v

be a designated set of w + 1 variables in x, and u = x \ {x1, . . . , xw, v}. With n ≥ 4w2, a random
(w, d, n)-ABP X1 · X2 . . . Xd satisfies the following condition with probability 1− (wdn)−Ω(1):

(*a) The linear forms in X1 (similarly, Xd) projected to x1, . . . , xw are F-linearly independent.

If the above condition is satisfied then there is a C ∈ GL(w, F) such that the linear forms in X1 · C
are of the kind:

xi − αiv− gi(u), for i ∈ [w], (6)

where each αi ∈ F and gi is a linear form in F[u]. Thus, we can assume without loss of generality,
the linear forms in X1 are of the above kind. Similarly, the linear forms in Xd are also of the kind:

xi − βiv− hi(u), for i ∈ [w], (7)

where each βi ∈ F and hi is a linear form in F[u]. Moreover, with probability 1− (wdn)−Ω(1) over
the randomness of the ABP, the following condition is satisfied:

(*b) α1, . . . , αw and β1, . . . , βw are distinct elements in F.

The task at hand for Algorithm 5 is to solve for αi, gi and β j, hj, for i, j ∈ [w], assuming that condi-
tions (*a) and (*b) are satisfied. The bases defined by Equations 6 and 7 are canonical for X1 and
Xd.

We analyze the three main steps of Algorithm 5 next:

1. Partitioning the variables (Step 2): The only thing to note here is, if n− (w + 1) is not divisible
by 4w2− (w + 1) then we allow the last two sets um−1 and um to overlap – the algorithm can
be suitably adjusted in this case.

2. Reduction to solving systems of polynomial equations (Steps 5–13): At step 7, the task of comput-
ing (α1, . . . , αw, g1(u`), . . . , gw(u`)) such that

f` = 0 mod 〈x1 − α1v− g1(u`), . . . , xw − αwv− gw(u`)〉,

can be reduced to solving for all F-rational points of a system of polynomial equations over
F as follows: Treat α1, . . . , αw and the 4w3 − w(w + 1) coefficients of g1(u`), . . . , gw(u`), say

27

Algorithm 5 Computing the corner spaces
INPUT: Blackbox access to a f computed by a random (w, d, n)-ABP.
OUTPUT: Bases of the two corner spaces X1 and Xd modulo which f is zero.

1. /* Partitioning the variables */
2. Choose w + 1 designated variables x1, x2, . . . , xw, v, and let u = x \ {x1, . . . , xw, v}. Partition u

into sets u1, u2, . . . , um, each of size 4w2 − (w + 1). .
3.
4. /* Reduction to solving m systems of polynomial equations */
5. for ` = 1 to m do
6. Set f` = fu\u` =0.
7. Solve for all possible (α1, . . . , αw, g1(u`), . . . , gw(u`)), where each αi ∈ F and gi(u`) is a linear

form in F[u`] such that
f` = 0 mod 〈x1 − α1v− g1(u`), . . . , xw − αwv− gw(u`)〉.

8. if Step 7 does not return exactly two solutions for (α1, . . . , αw, g1(u`), . . . , gw(u`)) then
9. Output ‘Failed’.

10. else
11. The solutions be (α`1, . . . , α`w, g1(u`), . . . , gw(u`)) and (β`1, . . . , β`w, h1(u`), . . . , hw(u`)).
12. end if
13. end for
14.
15. /* Combining the solutions */
16. if | ∪`∈[m] {(α`1, . . . , α`w), (β`1, . . . , β`w)}| 6= 2 then
17. Output ‘Failed’.
18. else
19. Without loss of generality, (α`1, . . . , α`w) = (α1, . . . , αw) and (β`1, . . . , β`w) = (β1, . . . , βw) for

every ` ∈ [m]. Set gi(u) = ∑`∈[w] gi(u`) and hi(u) = ∑`∈[w] hi(u`) for every i ∈ [w].
20. Return {xi − αiv− gi(u)}i∈[w] and {xi − βiv− hi(u)}i∈[w] as the bases of X1 and Xd.
21. end if

28

w, as formal variables. Substitute xi = αiv + gi(u`) for every i ∈ [w] in the blackbox for
f`, and interpolate the resulting polynomial p in the variables α1, . . . , αw, w, v, u` with coef-
ficients in F. The interpolation, which can be done in (dw3

log q)O(1) time, gives p in dense
representation (i.e. as a sum of monomials). As the individual degrees of the variables in
p are bounded by d, we only need |F| > d to carry out this interpolation. Now by treating
p as a polynomial in the variables v, u` with coefficients in F(α1, . . . , αw, w), and equating
these coefficients to zero, we get a system of dO(w2) polynomial equations in O(w3) variables
with degree of each polynomial equation bounded by d. By Lemma 4.1, such a system has
exactly two solutions over F and moreover, these two solution points are F-rational. Hence,
by applying Lemma 2.2, we can compute the two solutions for (α1, . . . , αw, w) at step 7, in
(dw3

log q)O(1) time.

3. Combining the solutions (Steps 16–21): The correctness of the steps follows from condition (*b).

Uniqueness of the corner spaces: Proof of Lemma 4.1

As n ≥ 4w2, a random (w, d, n)-ABP X1 · · ·Xd satisfies the following condition with probability
1− (wdn)−Ω(1):

(**) For every choice of three (or less) matrices among X2, X3, . . . , Xd−1, the linear forms in these
matrices and X1 and Xd are F-linearly independent.

So, it is sufficient to prove the following restatement of the lemma.

Lemma 4.1. Suppose f is computed by a (w, d, n)-ABP X1 · X2 · · ·Xd satisfying the above condition (**).
If f = 0 mod 〈l1, . . . , lk〉, where li’s are linear forms over K ⊇ F, then k ≥ w and for k = w, the space
spanK{l1, . . . , lw} equals the K-span of either the linear forms in X1 or the linear forms in Xd.

We prove the lemma first for d = 3, and then use this case to prove it for d > 3.

Case [d = 3]: There is an A ∈ GL(n, F) such that f (A · x) is computed by (y1 y2 . . . yw) · (rij)i,j∈[w] ·
(z1 z2 . . . zw)T, where y = {yi}i∈[w], r = {rij}i,j∈[w] and z = {zj}j∈[w] are distinct variables in x.
If f = 0 mod 〈l1, . . . , lk〉, then f (A · x) = 0 mod 〈l1(A · x), . . . , lk(A · x)〉. Next, we show that
if f (A · x) = 0 modulo k′ linear forms h1, . . . , hk′ ∈ K[y] z] r] then k′ ≥ w, and for k′ = w,
the space spanK{h1, . . . , hw} equals either spanK{y1, . . . , yw} or spanK{z1, . . . , zw}. It follows that
k ≥ k′ ≥ w, and for k = w, the linear forms l1(A · x), . . . , lw(A · x) must belong to K[y] z] r]
(otherwise, we will have f (A · x) = 0 modulo less than w linear forms in K[y] z] r]), and hence
spanK{l1, . . . , lw} equals the K-span of either the linear forms in X1 or the linear forms in Xd.

Reusing symbols, assume that f is computed by X1 · X2 · X3, where X1 = (y1 y2 . . . yw), X2 =
(rij)i,j∈[w] and X3 = (z1 z2 . . . zw)T, and f = 0 mod 〈l1, . . . , lk〉, where li’s are linear forms in
K[y] z] r]. Suppose k ≤ w; otherwise, we have nothing to prove. Consider the reduced Gröbner
basis11 G of the ideal 〈l1, . . . , lk〉 with respect to the lexicographic monomial ordering defined by

11See [CLO07]. Equivalently, think of the set of linear forms obtained from a reduced row echelon form of the
coefficient matrix of l1, . . . , lk.

29

y � z � r. There are sets Sy, Sz ⊆ [w] and Sr ⊆ [w]× [w], satisfying |Sy|+ |Sz|+ |Sr| ≤ k, such
that G consists of linear forms of the kind:

yi − gi(y, z, r) for i ∈ Sy,
zj − hj(z, r) for j ∈ Sz,
r`e − p`e(r) for (`, e) ∈ Sr,

where gi, hj and p`e are linear forms over K in their respective sets of variables. Let X′1, X′2, X′3 be
the linear matrices obtained from X1, X2, X3 respectively, by replacing yi by gi(y, z, r), r`e by p`e(r)
and zj by hj(z, r), for i ∈ Sy, (`, e) ∈ Sr and j ∈ Sz. Then,

X′1 · X′2 · X′3 = 0. (8)

The dimension of the K-span of the linear forms of X′1 is at least (w− |Sy|), that of X′2 is at least
(w2− |Sr|), and of X′3 is at least (w− |Sz|). Also, there are C, D ∈ GL(w, K) such that X′1 ·C, D · X′3
are obtained (via row and column operations on X′1 and X′3, respectively) from X1, X3 respectively,
by replacing yi by gi(0, z, r) and zj by hj(0, r), for i ∈ Sy and j ∈ Sz. Consider the following
equation,

(X′1C) · (C−1X′2D−1) · (DX′3) = 0. (9)

By examining the L.H.S, we can conclude that for s ∈ [w] \ Sy and t ∈ [w] \ Sz, the coefficient of
the monomial yszt over K(r) is the (s, t)-th entry of C−1X′2D−1 which must be zero. Hence, the
dimension of the K-span of the linear forms in C−1X′2D−1 is at most w2 − (w − |Sy|)(w − |Sz|).
As the dimension of the K-span of the linear forms in X′2 remains unaltered under left and right
multiplications by elements in GL(w, K), we get the relation

w2 − |Sr| ≤ w2 − (w− |Sy|)(w− |Sz|)
⇒ (w− |Sy|)(w− |Sz|) ≤ |Sr|

⇒ w2 − (|Sy|+ |Sz|)w + |Sy| · |Sz| ≤ |Sr|
⇒ w2 − (w− |Sr|)w + |Sy| · |Sz| ≤ |Sr|, as |Sy|+ |Sz|+ |Sr| ≤ k ≤ w

⇒ |Sr|w + |Sy| · |Sz| ≤ |Sr|.

As |Sy|, |Sz|, |Sr| ≥ 0, we must have |Sr| = 0, and either |Sy| = 0 or |Sz| = 0.

Suppose |Sr| = |Sz| = 0 (the case for |Sr| = |Sy| = 0 is similar). Then, Equation 9 simplifies to

(X′1C) · (C−1X2) · X3 = 0.

If k < w then there is a ys in X1 that is not replaced while forming X′1C from X1. By examining
the coefficient of ys over K(r, z) in the L.H.S of the above equation, we arrive at a contradiction.
Hence, k = w, in which case Equation 8 simplifies to

X′1 · X2 · X3 = 0.

The entries of X′1 are linear forms in z and r, and so X′1 = X′1(z) + X′1(r) where the entries of X′1(z)
(similarly, X′1(r)) are linear forms in z (respectively, r). The above equation implies

X′1(z) · X2 · X3 = 0 and X′1(r) · X2 · X3 = 0,

30

as the two L.H.S above are monomial disjoint. It is now easy to argue that X′1(z) = X′1(r) = 0,
implying X′1 = 0 and hence the reduced Gröbner basis G is in fact {y1, . . . , yw}.

Case [d > 3]: As before, by applying an invertible transformation, we can assume that X1 =
(y1 y2 . . . yw), X2 = (rij)i,j∈[w] and Xd = (z1 z2 . . . zw)T. Let u = x \ (y] z] r) and k ≤ w.
Consider the reduced Gröbner basis G of the ideal 〈l1, l2, . . . , lk〉 with respect to the lexicographic
monomial ordering defined by u � y � z � r. There are sets Su ⊆ [n−w2− 2w], Sy, Sz ⊆ [w] and
Sr ⊆ [w2], satisfying |Su|+ |Sy|+ |Sz|+ |Sr| ≤ k, such that G consists of linear forms of the kind:

um − tm(u, y, z, r) for m ∈ Su,
yi − gi(y, z, r) for i ∈ Sy,

zj − hj(z, r) for j ∈ Sz,
r`e − p`e(r) for (`, e) ∈ Sr,

where tm, gi, hj and p`e are linear forms over K in their respective sets of variables. Let X′ be the
matrix obtained from X by replacing um by tm(u, y, z, r), yi by gi(y, z, r), zj by hj(z, r), and r`e by
p`e(r), for m ∈ Su, i ∈ Sy, j ∈ Sz, and (`, e) ∈ Sr. Then,

X′1 · X′2 · X′3 . . . X′d = 0.

Let X(u) def
= (X)y=z=r=0. By treating the L.H.S of the above equation as a polynomial in u-variables

with coefficients from K(y, z, r) and focusing on the degree-(d− 3) homogeneous component of
this polynomial, we have

X′1 · X′2 · X′3(u) . . . X′d−1(u) · X′d = 0. (10)

If X′3(u) · · ·X′d−1(u) ∈ GL(w, K(u)) then there is a c ∈ F|u| such that C = X′3(c) · · ·X′d−1(c) ∈
GL(w, K). Define

f1 = X1 · X2 · C · Xd,

and observe that Equation 10 implies f1 is zero modulo the linear forms,

yi − gi(y, z, r) for i ∈ Sy,
zj − hj(z, r) for j ∈ Sz,
r`e − p`e(r) for (`, e) ∈ Sr.

By applying Case [d=3] on f1, we get the desired conclusion, i.e. k = w and the K-span of the
above linear forms (hence also that of {l1, . . . , lk}) is either spanK{y1, . . . , yw} or spanK{z1, . . . , zw}.
So, suppose X′3(u) · · ·X′d−1(u) 6∈ GL(w, K(u)) in Equation 10. Then, there is a j ∈ [3, d − 1]
such that det(X′j(u)) = 0. Observe that X′i(u) can be obtained from Xi(u) by replacing um by
tm(u, 0, 0, 0) for m ∈ Su. That is,

X′i(u) = Xi(u) mod 〈{um − tm(u, 0, 0, 0)}m∈Su〉, for every i ∈ [3, d− 1].

As Xj(u) is full rank (which follows from condition (**)) and det(X′j(u)) = 0, the fact below
implies |Su| = w, |Sy| = |Sz| = |Sr| = 0.

Observation 4.1. If the symbolic determinant Detw is zero modulo s linear forms then s ≥ w.

31

Hence, Equation 10 simplifies to

X1 · X2 · X′3(u) . . . X′d−1(u) · Xd = 0,
⇒ X′3(u) · · ·X′d−1(u) = 0. (11)

The above equality can not happen and this can be argued by applying induction on the number
of matrices in the L.H.S of Equation 11:

Base case: (d = 4) The L.H.S of Equation 11 has one matrix X′3(u). As X3(u) is full rank
(by condition (**)), it cannot vanish modulo w linear forms.
Induction hypothesis: Equation 11 does not hold if the L.H.S has at most d− 4 matrices.
Inductive step: (d > 4) Suppose Equation 11 is true. As the 2w2 linear forms in X3(u)
and Xd−1(u) are linearly independent (condition (**) again), by Observation 4.1, at
least one of X′3(u) and X′d−1(u) is invertible. This gives a shorter product where we
can apply the induction hypothesis to get a contradiction.

4.2 Finding the coefficients in the intermediate matrices

Following the notations in Section 1.4.2, y = {y1, . . . , yw} and z = {z1, . . . , zw} are subsets of x,
r = x \ (y] z), X′1 = (y1 y2 . . . yw) and X′d = (z1 z2 . . . zw)T. When Algorithm 2 reaches the third
and final stage, it has blackbox access to a f ′ ∈ F[x] and linear matrices S2, . . . , Sd−1 ∈ L[r]w×w re-
turned by Algorithm 1, such that S2 · S3 . . . Sd−1 is the linear matrix factorization of a random
(w, d − 2, n − 2w)-matrix product R2 · R3 . . . Rd−1 over F. Further, there exist linear matrices
T2, . . . , Td−1 ∈ L[x]w×w satisfying (Tk)y=0,z=0 = Sk for every k ∈ [2, d − 1], such that f ′ is com-
puted by the ABP X′1 · T2 . . . Td−1 · X′d−1. The task for Algorithm 6 is to efficiently compute the
coefficients of the y and z variables in Tk. At a high level, this is made possible because of the
uniqueness of such Tk matrices: Indeed the analysis of Algorithm 6 shows that with high proba-
bility the coefficients of y and z in T3, . . . , Td−2 are uniquely determined, and (if a certain canonical
form is assumed then) the same is true for matrices T2 and Td−1.

Canonical form for T2 and Td−1: Matrix T2 is said to be in canonical form if for every l ∈ [w] the
coefficient of yl is zero in the linear form at the (i, j)-th entry of T2, whenever i > l. Similarly,
Td−1 is in canonical form if for every l ∈ [w] the coefficient of zl is zero in the linear form at the
(i, j)-th entry of Td−1 whenever j > l. It can be verified (see [KNST17]), if f ′ is computed by an
ABP X′1 · T2 . . . Td−1 · X′d−1 then it is computed by another ABP where the corresponding T2 and
Td−1 are in canonical form, and the other matrices remain unchanged.

Linear independence of minors of a random ABP: The lemma given below is the reason Algorithm 6 is
able to reduce the task of finding the coefficients of the y and z variables to solving linear equa-
tions. In the following discussion, the i-th row and j-th column of a matrix M will be denoted by
M(i, ∗) and M(∗, j) respectively.

Let R2 · R3 . . . Rd−1 be a random (w, d− 2, n− 2w)-matrix product in r-variables over F. For every
s, t ∈ [w], R2(s, ∗) · R3 . . . Rd−2 · Rd−1(∗, t) is a random (w, d − 2, n − 2w)-ABP having a total of
w2(d − 4) + 2w linear forms in all the Rk matrices. Let us index the linear forms arbitrarily by
[w2(d− 4) + 2w]. We associate a polynomial g(s,t)

e with the e-th linear form, for every e ∈ [w2(d−

32

4) + 2w], as follows: If the e-th linear form is the (`, m)-th entry of Rk then

g(s,t)
e (r) def

= [R2(s, ∗) · R3 . . . Rk−2 · Rk−1(∗, `)] · [Rk+1(m, ∗) · Rk+2 . . . Rd−2 · Rd−1(∗, t)],

by identifying the 1× 1 matrix of the R.H.S with the entry of the matrix. The polynomials {g(s,t)
e :

e ∈ [w2(d− 4) + 2w]}, will be called the minors of the ABP R2(s, ∗) · R3 . . . Rd−2 · Rd−1(∗, t).

Lemma 4.2. With probability 1− (wdn)−Ω(1) over the randomness of R2 · · · Rd−1 the following holds:
For every s, t ∈ [w], the minors {g(s,t)

e : e ∈ [w2(d− 4) + 2w]}, are F-linearly independent.

The proof of the lemma is given at the end of this section. Due to the uniqueness of factorization,
the matrices S2, . . . , Sd−1 in Algorithm 2 are related to R2, . . . , Rd−1 as follows: There are Ci, Di ∈
GL(w, L) such that Si = Ci · Ri · Di, for every i ∈ [2, d− 1]; moreover, there are c2, . . . , cd−2 ∈ L×

satisfying C2 = Dd−1 = Iw, Di · Ci+1 = ci Iw for i ∈ [2, d − 2], and ∏d−2
i=2 ci = 1. Define minors

of the ABP S2(s, ∗) · S3 . . . Sd−2 · Sd−1(∗, t), for every s, t ∈ [w], like above. The edges of the ABP
are indexed by [w2(d− 4) + 2w] and a polynomial h(s,t)

e is associated with the e-th linear form as
follows: If the e-th linear form is the (`, m)-th entry of Sk then

h(s,t)
e (r) def

= [S2(s, ∗) · S3 . . . Sk−2 · Sk−1(∗, `)] · [Sk+1(m, ∗) · Sk+2 . . . Sd−2 · Sd−1(∗, t)]. (12)

It is a simple exercise to derive the following corollary from the lemma above.

Corollary 4.1. With probability 1− (wdn)−Ω(1) the following holds: For every s, t ∈ [w], the minors
{h(s,t)

e : e ∈ [w2(d− 4) + 2w]} are L-linearly independent.

We are now ready to argue the correctness of Algorithm 6 by tracing its steps.

1. Computing the partial derivatives (Step 2): In this step, we compute all the third order partial
derivatives of f ′ using Claim 2.1.

2. Computing almost all the coefficients of the y and z variables (Steps 6–13): Equations 13 and 14 are
justified by treating f ′ as a polynomial in the y and z variables with coefficients from L(r),
and examining the coefficients of y2

s zt and ysz2
t respectively. A linear system obtained at step

9 or step 11 has w2(d− 4)+ 2w variables and the same number of linear equations. Corollary
4.1, together with Claim 2.2, ensure that the square coefficient matrix of the linear system is
invertible (with high probability), and hence the solution computed is unique. The unique-
ness implies that the solutions obtained across multiple iterations of the loop do not conflict
with each other. For instance, the coefficients of ys in the linear forms in T2(s, ∗), T3, . . . , Td−2
get computed repeatedly at step 9 for every value of t ∈ [w] – uniqueness ensures that we
always get the same values for these coefficients. This also shows that the matrices T3, . . . , T4
are unique. By the end of this stage, the coefficients of y and z variables are computed for all
the linear forms, except for the coefficients of yl in T2(s, ∗) for l > s, and the coefficients of zl
in Td−1(∗, t) for l > t. These coefficients are retrieved in the next stage.

3. Computing the remaining y and z coefficients in T2 and Td−1 (Steps 16–19): For an s ∈ [w],
consider the following minors of S2(s, ∗) · S3 . . . Sd−2 · Sd−1(∗, 1):

S3(m, ∗) · S4 . . . Sd−2 · Sd−1(∗, 1) for all m ∈ [w].

33

Algorithm 6 Computing the coefficients of y and z variables in Tk

INPUT: Blackbox access to f ′ and linear matrices S2, . . . , Sd−1 ∈ L[r]w×w.
OUTPUT: Linear matrices T2, T3, . . . , Td−1 ∈ L[x]w×w such that f ′ is computed by y · T2 ·
T3 . . . Td−1 · zT, satisfying (Tk)y=0,z=0 = Sk for every k ∈ [2, d− 1].

1. /* Computing the partial derivatives */
2. Compute blackbox access to (∂ f ′

∂ysylzt
)y=0,z=0 and (∂ f ′

∂yszlzt
)y=0,z=0 for all s, l, t ∈ [w].

3. For every s, t ∈ [w], let {h(s,t)
e : e ∈ [w2(d − 4) + 2w]} be the minors of the ABP S2(s, ∗) ·

S3 . . . Sd−2 · Sd−1(∗, t), as defined in Equation 12.
4.
5. /* Computing almost all the coefficients of the y and z variables in Tk*/
6. Set E = w2(d− 4) + 2w.
7. for every s, t ∈ [w] do
8. Pick a1, . . . , aE ∈r F|r| independently.
9. Solve the linear system over L defined by

∑
e∈[E]

ce · h(s,t)
e (ai) =

(
∂ f ′

∂y2
s zt

)
y=0,z=0

(ai), for i ∈ [E], (13)

for a unique solution of {ce}e∈[E]. If the coefficient matrix is not invertible, output ‘Failed’.
10. For every e ∈ [E], set the solution value of ce as the coefficient of ys in the e-th linear form of

the ABP T2(s, ∗) · T3 . . . Td−2 · Td−1(∗, t).
11. Solve the linear system over L defined by

∑
e∈[E]

de · h(s,t)
e (ai) =

(
∂ f ′

∂ysz2
t

)
y=0,z=0

(ai), for i ∈ [E], (14)

for a unique solution of {de}e∈[E].
12. For every e ∈ [E], set the solution value of de as the coefficient of zt in the e-th linear form of

the ABP T2(s, ∗) · T3 . . . Td−2 · Td−1(∗, t).
13. end for
14.
15. /* Computing the remaining y and z coefficients in T2 and Td−1 */
16. for every s, t ∈ [w] do
17. For every l > s, compute the coefficients of yl in the linear forms in T2(s, ∗) by setting up a

linear system similar to Equation 13, but with the R.H.S replaced by ∂ f ′
∂ysylz1

.
18. For every l > t, compute the coefficients of zl in the linear forms in Td−1(∗, t) by setting up

a linear system similar to Equation 14, but with the R.H.S replaced by ∂ f ′
∂y1zlzt

.
19. end for
20.
21. The coefficients of the r variables in the linear forms in Tk remain the same as that in Sk, for all

k ∈ [2, d− 1]. Output T2, T3, . . . Td−1.

34

Without loss of generality, let these minors be h(s,1)
1 , . . . , h(s,1)

w . Let l > s. By treating f ′ as a
polynomial in the y, z variables, with coefficients from L(r), and examining the coefficient
of ysylz1 in f ′, we arrive at the equation,

w

∑
e=1

ce · h(s,1)
e + K(r) =

(
∂ f ′

∂ysylz1

)
y=0,z=0

,

where c1, . . . , cw are the unknown coefficients of yl in the linear forms of T2(s, ∗), and K(r)
is a known linear combination of some other minors. The fact that K(r) is known at step 17
follows from this observation – while forming a monomial ysylz1, we either choose ys from
X′1 and yl from T2(s, ∗) or T3, . . . , Td−1(∗, 1), or yl from X′1 and ys from T3, . . . , Td−1(∗, 1). In
the latter case, we are using the fact that T2 is in canonical form, and so ys does not appear
in T2(l, ∗). As the coefficients of ys, yl in T3, . . . , Td−1(∗, 1) are known from the computation
in steps 6–13, we conclude that K(r) in known. Thus, we can solve for c1, . . . , cw by plugging
in w random points in place of the r variables and setting up a linear system in w variables.
Corollary 4.1 and Claim 2.2 imply the w × w coefficient matrix of the system is invertible,
and hence the solution for c1, . . . , cw is unique. The correctness of step 18 can be argued
similarly, and this finally implies that T2 and Td−1 (in canonical form) are unique.

Linear independence of minors: Proof of Lemma 4.2

We have to show that the minors of R2(s, ∗) · R3 . . . Rd−2 · Rd−1(∗, t) are F-linearly independent
with high probability, for every s, t ∈ [w], where R2 · R3 . . . Rd−1 is a random (w, d − 2, n − 2w)-
matrix product. We will prove it for a fixed s, t ∈ [w], and then by union bound the result will
follow for every s, t ∈ [w]. As n ≥ 4w2, we have n− 2w ≥ 3w2. So, it is sufficient to show the linear
independence of the minors of a random (w, d, n)-ABP X1 · X2 . . . Xd in x-variables, for n ≥ 3w2.

Treat the coefficients of the linear forms in X1, . . . , Xd as formal variables. In particular,

X1 =
n

∑
i=1

U(1)
i xi, Xk =

n

∑
i=1

U(k)
i xi for k ∈ [2, d− 1], Xd =

n

∑
i=1

U(d)
i xi, (15)

where U(1)
i and U(d)

i are row and column vectors of length w respectively, U(k)
i is a w× w matrix,

and the entries of these matrices are distinct u-variables. We will denote the (`, m)-th entry of U(k)
i

by U(k)
i (`, m), and the m-th entry of U(d)

i by U(d)
i (m). From the above equations, X1 · X2 . . . Xd is a

(w, d, n)-ABP over F(u). We will show in the following claim that the minors of this ABP are F(u)-
linearly independent. As the coefficients of the x-monomials of these minors are polynomials (in
fact, multilinear polynomials) of degree d− 1 in the u-variables, an application of the Schwartz-
Zippel lemma implies F-linear independence of the minors (with high probability) when the u-
variables are set randomly to elements in F (as is done in a random ABP over F).

Claim 4.1. The minors of X1 · X2 . . . Xd are F(u)-linearly independent.

Proof. We will prove by induction on d.

Base case (d=3): Clearly, if the minors are F-linearly independent after setting the u-variables
to some F-elements then the minors are also F(u)-linearly independent before the setting. As

35

n ≥ w2 + 2w, it is possible to set the u-variables in X1, X2, X3 such that the entries of these matri-
ces (after the setting) become distinct x-variables. The minors of this u-evaluated ABP X1 · X2 · X3
are monomial disjoint and so F-linearly independent.

Inductive step: Split the w2(d− 2) + 2w minors of X1 · X2 . . . Xd into two sets: The first set G1 con-
sists of minors ge, for e ∈ [w2(d− 3) + 2w], such that the e-th linear form is the (`, m)-th entry of
some matrix Xk satisfying k 6= d and if k = d− 1 then m = w. The second set G2 consists of minors
ge, for e ∈ [w2(d− 3) + 2w+ 1, w2(d− 2) + 2w], such that the e-th linear form is either the (`, m)-th
entry of Xd−1 for m 6= w, or the `-th entry of Xd. Set G1 has p = w2(d− 3) + 2w minors and G2 has
w2 minors.

Suppose µ1, . . . , µp are monomials in x-variables of degree d− 2. Imagine a (w2(d− 2) + 2w)×
(w2(d − 2) + 2w) matrix M whose rows are indexed by the minors in G1 and G2, and columns
by monomials µ1x1, µ2x1, . . . , µpx1 and xd−1

2 , xd−1
3 , . . . , xd−1

w2+1, The (g, σ)-th entry of M contains the
coefficient of the monomial σ in g, this coefficient is a multilinear polynomial in the u-variables.
In a sequence of observations, we show that there exist µ1, . . . , µp such that det(M) 6= 0.

Consider the variable u def
= U(d)

1 (w). The following observations are easy to verify.

Observation 4.2. 1. Variable u does not appear in any of the monomials of the (g, σ)-th entry of M if
g ∈ G2 or σ ∈ {xd−1

2 , . . . , xd−1
w2+1}.

2. Variable u appears in some monomials of the (g, σ)-th entry of M if g ∈ G1 and σ ∈ {µ1x1, . . . , µpx1},
irrespective of µ1, . . . , µp.

Observation 4.3. Let g ∈ G1 and σ ∈ {µ1x1, . . . , µpx1}. If we treat the (g, σ)-th entry of M as a
polynomial in u with coefficients from F[u \ u] then the coefficient of u does not depend on the variables:

(a) U(d)
i (j) for j 6= w and i ∈ [n],

(b) U(d)
i (w) for i ∈ [2, n],

(c) U(d−1)
i (`, m) for `, m ∈ [w] with m 6= w, and i ∈ [n].

Denote the union of the u-variables specified in (a), (b) and (c) of the above observation by v.

Observation 4.4. The set {gv=0 : g ∈ G1} equals the set {h ·ux1 : h is a minor of X1 ·X2 . . . Xd−1(∗, w)}.

By the induction hypothesis, the minors of X1 · X2 . . . Xd−1(∗, w), say h1, . . . , hp, are F(u)-linearly
independent. Hence there are p monomials in x-variables of degree d − 2 such that h1, . . . , hp,
when restricted to these monomials, are F(u)-linearly independent. These p monomials are our
choices for µ1, . . . , µp. Let N be the p× p matrix with rows indexed by h1, . . . , hp and columns by
µ1, . . . , µp, and N(h, µ) contains the coefficient of the monomial µ in h. Then, det(N) 6= 0. Under
these settings, we have the following observation (which can be derived easily from the above).

Observation 4.5. The coefficient of up in det(M), when treated as a polynomial in u with coefficients from
F[u \ u], is det(N) · det(M0), where M0 is the submatrix of M defined by rows indexed by {g : g ∈ G2}
and columns by xd−1

2 , . . . , xd−1
w2+1.

The next observation completes the proof of the claim by showing det(M) 6= 0.

36

Observation 4.6. det(M0) 6= 0.

The proof of the above follows by noticing that M0 looks like (fi(uj))i,j∈[w2], where u1, . . . , uw2 are
some disjoint subsets of the u-variables and f1, . . . , fw2 are F-linearly independent polynomials.
The observation then follows from Claim 2.2.

4.3 Non-degenerate ABP

From the analysis, it can be easily shown that Theorem 2 gives a reconstruction algorithm for a
(w, d, n)-ABP X1 · X2 . . . Xd, where 4w2 ≤ n ≤ dw2

, and the following conditions are satisfied:

1. There are w + 1 variables {x1, x2, . . . , xw, v} ⊂ x such that the linear forms in X1 (similarly
Xd) projected to x1, x2, . . . , xw (i.e. after setting the variables other than x1, x2, . . . , xw to zero)
are F-linearly independent. Further, if u = x \ {x1, x2, . . . , xw, v} then in the bases {xi −
αiv − gi(u) | i ∈ [w]} and {xi − βiv − hi(u) | i ∈ [w]} of the spaces X1 and Xd (defined
in Section 1.4.2) respectively, where αi, βi ∈ F and gi, hi are linear forms in the u-variables,
α1, α2, . . . , αw, β1, β2, . . . βw are distinct elements of F.

2. For every set r ⊆ x of size 4w2 the following holds: The linear forms in X1, Xd and every
choice of three matrices among X2, . . . , Xd−1, projected to the r-variables, are F-linearly in-
dependent.

3. The matrix product X2 · X3 . . . Xd−1 modulo the F-linear space spanned by the linear forms
in X1 and Xd is a pure product.

4. The minors of the ABP X2(s, ∗) · X3 . . . Xd−1(∗, t) (where X2(s, ∗) denotes the s-th row of
X2 and Xd−1(∗, t) the t-th column of Xd−1) modulo the F-linear space spanned by the linear
forms in X1 and Xd are F-linearly independent , for all s, t ∈ [w].

Given a (w, d, n)-ABP, it can be checked whether the ABP satisfies condition 1 in deterministic
(n

w+1)(wn log q)O(1) time, condition 2 in deterministic (n
4w2)(wdn log q)O(1) time, and conditions 3

and 4 in randomized (wdn log q)O(1) time. The one thing to note here is that, to reconstruct an ABP
satisfying the above conditions, Algorithm 5 needs to be slightly modified as follows: At step 2,
instead of working with a designated set of w + 1 variables, the algorithm checks condition 1 for
every choice of w + 1 variables till it finds a correct choice. Then the running time of the algorithm
is (n

w+1)(wn log q)O(1) +(dw3
n log q)O(1), which equals (dw3

n log q)O(1) for n ≤ dw2
.

5 Equivalence test for determinant over finite fields

We prove Theorem 3 in this section. It is known that the affine equivalence test can be reduced to
equivalence test [Kay12], as briefly explained below.

Reduction to equivalence test: Suppose f is a (n, w)-polynomial that is affine equivalent to Detw,
where n ≥ w2. The following claim reduces the number of variables from n to w2. A proof can be
found in [Kay12] (see also Algorithm 8 and Claim 2.3 in [KNST17]).

37

Claim 5.1. There is a randomized algorithm that takes input blackbox access to f (x) and with probability
1− nO(1)

q outputs a matrix C ∈ GL(n, F) such that f (C · x) is a (w2, w)-polynomial. The algorithm runs

in (n log q)O(1) time.

Suppose y ⊆ x is the set of w2 variables appearing in f (C · x), and let g(y) be the degree-w homo-
geneous component of f (C · x) which must be equivalent to Detw. By using an equivalence test for
Detw, we can compute a Q ∈ GL(w2, L) such that g(y) = Detw(Q ·y), implying g(x) = Detw(Q′ · x)
where Q′ ∈ Lw2×n is obtained by padding Q with (n− w2) all-zero columns. Now observe that
there is an a ∈ Fn such that f (C · x) = g(x+ a); the translation equivalence test in the claim below
returns a c ∈ Fn such that f (C · x) = g(x + c). Hence, f (C · x) = Detw(Q′x + Q′ · c) implying
f (x) = Detw(Q′C−1x + Q′ · c). The algorithm in Theorem 3 returns B = Q′C−1 and b = Q′ · c.

Claim 5.2. Let f (x) = g(x + a), where f , g are (n, d)-polynomials and a ∈ Fn. There is randomized

algorithm that takes blackbox access to f and g and with probability 1− (nd)O(1)

q computes a c ∈ Fn such
that f (x) = g(x + c).

See [Kay12, DdOS14] (also Algorithm 9 and Lemma 2.1 in [KNST17]) for proofs of the claim.

For the rest of this section, set n = w2. The equivalence test for Detw is done in two steps: In the
first step, the problem is reduced to the simpler problem of PS-equivalence testing. The second
step then solves the PS-equivalence test. A (w2, w)-polynomial f ∈ L[x] is PS-equivalent to Detw
if there is a permutation matrix P and a diagonal matrix S ∈ GL(w2, L) such that f = Detw(PS · x).

Lemma 5.1 ([Kay12]). There is a randomized algorithm that takes input blackbox access to f , which is PS-
equivalent to Detw, and with probability 1− wO(1)

q outputs a permutation matrix P and a diagonal matrix

S ∈ GL(w2, L) such that f = Detw(PS · x). The algorithm runs in (w log q)O(1) time.

It is in the first step where our algorithm differs from (and slightly simplifies) [Kay12]. This re-
duction to PS-equivalence testing is given in Section 5.2. As in [Kay12], the algorithm uses the
structure of the group of symmetries and the Lie algebra of Detw. An estimate of the probability
that a random element of the Lie algebra of gDetw has all its eigenvalues in L (Lemma 5.4) is key to
the simplification in the first step.

5.1 Group of symmetries and Lie algebra of determinant

We state a few well known facts and claims about the Lie algebra and the group of symmetries of
Detw. Proofs of these can be found in [Kay12, KNST17] and the references therein.

Definition 5.1. The group of symmetries of an n-variate polynomial f , denoted as G f , consists of
matrices A ∈ GL(n, F) such that f (x) = f (A · x).

Detw(x) is the determinant of the symbolic matrix X = (xij)i,j∈[w], where x = {xij}i,j∈[w]. Let A(X)

denote the w× w linear matrix obtained by applying a transformation A ∈ Fw2×w2
on x.

Fact 1. An A ∈ GL(w2, F) is in GDetw if and only if there are two matrices S, T ∈ SL(w, F) such that
either A(X) = S · X · T or A(X) = S · XT · T.

38

Definition 5.2. The Lie algebra of a polynomial f ∈ F[x1, x2, . . . , xn], denoted as g f , is the set of all
n× n matrices E = (eij)i,j∈[n] in Fn×n satisfying

∑
i,j∈[n]

eijxj ·
∂ f
∂xi

= 0.

To express the Lie algebra of Detw, order the variables of x in row major fashion and call them
x1, . . . , xn. Let Zw be the F-linear space of all w× w traceless matrices over F, Lrow be the space
Zw ⊗ Iw = {Z⊗ Iw : Z ∈ Zw}, and Lcol the space Iw ⊗Zw = {Iw ⊗ Z : Z ∈ Zw}.

Fact 2. gDetw = Lrow ⊕Lcol.

It follows that the dimension of gDetw over F is 2w2 − 2.

Fact 3. Let f , g be n-variate polynomials such that there is an A ∈ GL(n, F) satisfying f = g(A · x). Then
g f = A−1 · gg · A = {A−1 · L · A | L ∈ gg}.

Claim 5.3. There is a randomized algorithm that given blackbox access to a (n, d)-polynomial f over F,

computes an F-basis of g f with probability 1− (nd)O(1)

q . The algorithm runs in (nd log q)O(1) time.

From Fact 2, it is easy to observe that gDetw contains a diagonal matrix with distinct elements on
the diagonal. The next claim can be proved using this observation.

Claim 5.4. Let L1, . . . , L2w2−2 be an F-basis of gDetw , and L = ∑2w2−2
i=1 αi · Li, where α1, . . . , α2w2−2 ∈r F

are picked independently. Then, the characteristic polynomial of L is square-free with probability 1− wO(1)

q .

The following lemma is the main technical contribution of this section.

Lemma 5.2. Let L1, . . . , L2w2−2 be an F-basis of gDetw , and L = ∑2w2−2
i=1 αi · Li, where α1, . . . , α2w2−2 ∈r F

are picked independently. Then, the characteristic polynomial of L is square-free and splits completely over
L with probability at least 1

2w2 .

Proof. Let h(y) be the characteristic polynomial of L. From Claim 5.4, h is square-free with prob-
ability 1− wO(1)

q . From Fact 2, L = L1 + L2 where L1 ∈ Lrow and L2 ∈ Lcol. As L is uniformly
distributed over gDet, so is L1 over Lrow and L2 over Lcol. In other words, if L1 = Z1 ⊗ Iw
and L2 = Iw ⊗ Z2 then Z1, Z2 are both uniformly (and independently) distributed over Zw. If
the characteristic polynomial of Z1 (similarly Z2) is irreducible over F then the eigenvalues of
Z1 (respectively, Z2) lie in L and are distinct. If this happens for both Z1 and Z2 then there are
D1, D2 ∈ GL(w, L) such that D−1

1 Z1D1 and D−1
2 Z2D2 are diagonal matrices. This further implies,

(D−1
1 ⊗ Iw) · (Iw ⊗ D−1

2) · L · (Iw ⊗ D2) · (D1 ⊗ Iw)

is a diagonal matrix, due to the observation below.

Observation 5.1. For any M, N ∈ F
w×w, (M⊗ Iw) and (Iw⊗N) commutes. Also, if M, N ∈ GL(w, F)

then (M⊗ Iw)−1 = (M−1 ⊗ Iw) and (Iw ⊗ N)−1 = (Iw ⊗ N−1).

39

Thus, if we show that the characteristic polynomial of Z ∈r Zw is irreducible with probability
δ then with probability at least δ2 the characteristic polynomial of L splits completely over L.
Much like the proof of Claim 5.4, it can be shown that the characteristic polynomial of Z ∈r Zw is
square-free with probability 1− wO(1)

q . Hence, if the characteristic polynomial of Z ∈r Z ′w, where
Z ′w ⊂ Zw consists of matrices with distinct eigenvalues in F, is irreducible with probability ρ then
δ ≥ ρ · (1− wO(1)

q). Next, we lower bound ρ.

Let P be the set of monic, degree-w, square-free polynomials in F[y] with the coefficient of yw−1

equal to zero. Define a map φ from Z ′w to P ,

φ : Z 7→ characteristic polynomial of Z.

The map φ is onto as the companion matrix of p(y) ∈ P belongs to its pre-image under φ. Let
φ−1(p(y)) be the set of matrices in Z ′w that map to p.

Claim 5.5. Let p(y) ∈ P . Then

(qw − 1) · (qw − q) . . . (qw − qw−1)

qw ≤ |φ−1(p(y))| ≤ (qw − 1) · (qw − q) . . . (qw − qw−1)

qw(1− w
q)

.

Proof. Let Cp be the companion matrix of p(y). If the characteristic polynomial of a Z ∈ Z ′w
equals p(y) then there is an E ∈ GL(w, F) such that Z = E · Cp · E−1, as the eigenvalues of Cp are
distinct in F. Moreover, for any E ∈ GL(w, F), E · Cp · E−1 ∈ Z ′w has characteristic polynomial
p(y). Hence, φ−1(p(y)) = {E · Cp · E−1 | E ∈ GL(w, F)}. Suppose E, F ∈ GL(w, F) such that
F · Cp · F−1 = E · Cp · E−1. Then E−1F commutes with Cp. Since Cp has distinct eigenvalues in F,
E−1F can be expressed as a polynomial in Cp, say h(Cp), of degree at most (w− 1) with coefficients
from F. Let F[y]≤(w−1) denote the set of polynomials in F[y] of degree at most w− 1. Conversely,
if h ∈ F[y]≤(w−1) and h(Cp) is invertible then F = E · h(Cp) is such that F · Cp · F−1 = E · Cp · E−1.
As h1(Cp) 6= h2(Cp) for distinct h1, h2 ∈ F[y]≤(w−1), we have

|φ−1(p(y))| = |GL(w, F)|
|{h ∈ F[y] : deg(h) ≤ (w− 1) and h(Cp) ∈ GL(w, F)}| .

The numerator is exactly (qw − 1) · (qw − q) . . . (qw − qw−1), and the denominator is trivially up-
per bounded by qw. A lower bound on the denominator can be worked out as follows: Let
λ1, . . . , λw ∈ F be the distinct eigenvalues of Cp. If h(y) = aw−1yw−1 + aw−2yw−2 + . . . + a0 ∈ F[y],
then h(λ1), . . . , h(λw) are the eigenvalues of h(Cp). Observe that

Prh∈rF[y]≤(w−1) {h(λi) = 0, for some fixed i ∈ [w]} ≤ 1
q

,

⇒ Prh∈rF[y]≤(w−1) {h(λi) = 0, for any i ∈ [w]} ≤ w
q

,

⇒ Prh∈rF[y]≤(w−1) {h(Cp) ∈ GL(w, F)} ≥ 1− w
q

.

Hence, the denominator is lower bounded by qw(1− w
q).

40

Let ρp = |φ−1(p(y))|
|Z ′w|

, the probability that p(y) is the characteristic polynomial of Z ∈r Z ′w. From
Claim 5.5, it follows that

|Z ′w| ≤
(qw − 1) · (qw − q) . . . (qw − qw−1)

qw(1− w
q)

· |P| ⇒ 1− w
q
≤ ρp · |P| .

We show in the next claim that a p ∈r P is irreducible over F with probability at least 1
w (1−

2
qw/2),

implying the characteristic polynomial of Z ∈r Z ′w is irreducible over F with probability ρ ≥
1
w (1−

2
qw/2)(1− w

q). Therefore, the probability that the characteristic polynomial of Z ∈r Zw is

irreducible over F is δ ≥ 1
w (1 −

2
qw/2)(1 − w

q)(1 −
wO(1)

q). As q ≥ w7, the probability that the

characteristic polynomial of L ∈r gDetw splits completely over L is at least δ2 ≥ 1
2w2 .

Claim 5.6. A polynomial p ∈r P is irreducible over F with probability at least 1
w (1−

2
qw/2).

Proof. Let F be the set of monic, degree-w, square-free polynomials in F[y]. The difference be-
tween F and P is that a polynomial in P additionally has coefficient of yw−1 equal to zero. We
argue in the next paragraph that the fraction of F-irreducible polynomials in F and in P are the
same. As irreducible polynomials are square-free, the number of irreducible polynomials inF is at

least qw−2qw/2

w [vzGG03]. Hence, the fraction of irreducible polynomials in F is at least 1
w (1−

2
qw/2).

Define a map Ψ from F to P as follows: For a u(y) = yw + aw−1yw−1 + . . . + a0 ∈ F , define
Ψ(u) = u(y− aw−1

w). Observe that the coefficient of yw−1 in Ψ(u) is zero. It is also an easy exercise
to show that Ψ(u1) = Ψ(u2) if and only if there exists an a ∈ F such that u1(y) = u2(y + a). As
u(y) is irreducible over F if and only if u(y + a) is irreducible over F, for a ∈ F, the fraction of
F-irreducible polynomials in F is the same as that in P .

This completes the proof of Lemma 5.2.

5.2 Reduction to PS-equivalence testing

Algorithm 7 gives a reduction to PS-equivalence testing for Detw. Suppose the input to the algo-
rithm is a blackbox access to f = Detw(A · x), where A ∈ GL(w2, F). We argue the correctness of
the algorithm by tracing its steps:

Step 1: An F-basis of g f can be computed efficiently using Claim 5.3.

Step 3–12: At step 4 an element F of g f is chosen uniformly at random. By Fact 3, F = A−1 · L · A,
where L is a random element of gDetw . Lemma 5.2 implies, in every iteration of the loop, h (at
step 5) is square-free and splits completely over L with probability at least 1

2w2 . Since the loop has
w3 log q iterations, the algorithm finds an h that is square-free and splits completely over L, with
probability at least 1− 1

q . Assume that the algorithm succeeds in finding such an h, and suppose
λ1, . . . , λw2 ∈ L are the distinct roots of h. The algorithm finds a D in step 7 by picking a random
solution of the linear system obtained from the relation F · D = D · diag(λ1, . . . , λw2) treating the
entries of D as formal variables. We argue next that f (D · x) is PS-equivalent to Detw over L.

41

Algorithm 7 Reduction to PS-equivalence

INPUT: Blackbox access to a (w2, w)-polynomial f ∈ F[x] that is equivalent to Detw over F.
OUTPUT: A D ∈ GL(w2, L) such that f (D · x) is PS-equivalent to Detw over L.

1. Compute an F-basis of g f . Let {F1, F2, . . . F2w2−2} be the basis. Set j = 1.
2.
3. for j = 1 to w3 log q do
4. Pick α1, . . . , α2w2−2 ∈r F independently. Set F = ∑i∈[2w2−2] αi · Fi.
5. Compute the characteristic polynomial h of F. Factorize h into irreducible factors over L.
6. if h is square-free and splits completely over L then
7. Use the roots of h to compute a D ∈ GL(w2, L) such that D−1 · F · D is diagonal.
8. Exit loop.
9. else

10. Set j = j + 1.
11. end if
12. end for
13.
14. if No D found at step 7 in the loop then
15. Output ‘Failed’.
16. else
17. Output D.
18. end if

By Fact 2, L = L1 + L2 where L1 ∈ Lrow and L2 ∈ Lcol. In other words, there are Z1, Z2 ∈ Zw such
that L1 = Z1 ⊗ Iw and L2 = Iw ⊗ Z2. It is easy to verify, if L has distinct eigenvalues then so do Z1
and Z2. Hence, there are D1, D2 ∈ GL(w, F) such that D1Z1D−1

1 and D2Z2D−1
2 are both diagonal,

implying

M def
= (D1 ⊗ Iw) · (Iw ⊗ D2) · L · (D−1

1 ⊗ Iw) · (Iw ⊗ D−1
2)

is diagonal (by Observation 5.1) with distinct diagonal entries. Also,

D−1 · F · D = (AD)−1 · L · (AD)

= ((D1 ⊗ Iw) · (Iw ⊗ D2) · AD)−1 ·M · ((D1 ⊗ Iw) · (Iw ⊗ D2) · AD)

As both D−1 · F · D and M are diagonal matrices with distinct diagonal entries, it must be that

(D1 ⊗ Iw) · (Iw ⊗ D2) · AD = P · S,

where P is a permutation matrix and S ∈ GL(w2, F) is a diagonal matrix. Now observe that
Detw((D1⊗ Iw) · x) = β ·Detw(x) and Detw((Iw⊗D2) · x) = γ ·Detw(x), for β, γ ∈ F \ {0}. Hence,

Detw(P · S · x) = Detw((D1 ⊗ Iw) · (Iw ⊗ D2) · AD · x)
= βγ ·Detw(AD · x)
= βγ · f (D · x)

⇒ f (D · x) = Detw(P · S′ · x),

where S′ ∈ GL(w2, F) is also diagonal. Therefore, f (D · x) is PS-equivalent to Detw over F. As
f (D · x) ∈ L[x], it is a simple exercise to show that f (D · x) must be PS-equivalent to Detw over L.

42

Acknowledgment

We thank Sébastien Tavenas for a few initial discussions on this work. Thanks also to the anony-
mous reviewers for their helpful comments.

References

[AH17] Eric Allender and Shuichi Hirahara. New Insights on the (Non-)Hardness of Circuit
Minimization and Related Problems. In 42nd International Symposium on Mathematical
Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark,
pages 54:1–54:14, 2017.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In
49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 67–75, 2008.

[BC92] Michael Ben-Or and Richard Cleve. Computing Algebraic Formulas Using a Con-
stant Number of Registers. SIAM J. Comput., 21(1):54–58, 1992.

[BIJL18] Markus Bläser, Christian Ikenmeyer, Gorav Jindal, and Vladimir Lysikov. General-
ized Matrix Completion and Algebraic Natural Proofs. In 50th ACM Symposium on
Theory of Computing (STOC 2018), Los Angeles, California, USA, 2018.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning Algorithms from Natural Proofs. In 31st Conference on Compu-
tational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 10:1–10:24,
2016.

[CKK+15] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David
Zuckerman. Mining Circuit Lower Bound Proofs for Meta-Algorithms. Computa-
tional Complexity, 24(2):333–392, 2015.

[CLO07] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms (3. ed.).
Springer, 2007.

[CZ81] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials
over finite fields. Math. Comp., 36(154):587–592, 1981.

[DdOS14] Zeev Dvir, Rafael Mendes de Oliveira, and Amir Shpilka. Testing Equivalence of
Polynomials under Shifts. In Automata, Languages, and Programming - 41st Interna-
tional Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part
I, pages 417–428, 2014.

[DLM+08] Dana Dachman-Soled, Homin K. Lee, Tal Malkin, Rocco A. Servedio, Andrew Wan,
and Hoeteck Wee. Optimal Cryptographic Hardness of Learning Monotone Func-
tions. In Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Au-
tomata, Complexity, and Games, pages 36–47, 2008.

43

[EGdOW18] Klim Efremenko, Ankit Garg, Rafael Mendes de Oliveira, and Avi Wigderson. Bar-
riers for Rank Methods in Arithmetic Complexity. In 9th Innovations in Theoretical
Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA,
pages 1:1–1:19, 2018.

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit
lower bounds. J. Comput. Syst. Sci., 75(1):27–36, 2009.

[FS13] Michael A. Forbes and Amir Shpilka. Quasipolynomial-Time Identity Testing of
Non-commutative and Read-Once Oblivious Algebraic Branching Programs. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 243–252, 2013.

[FSV17] Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and barriers
to proving algebraic circuits lower bounds. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 653–664, 2017.

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approach-
ing the Chasm at Depth Four. J. ACM, 61(6):33:1–33:16, 2014.

[GKKS16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic
circuits: A chasm at depth 3. SIAM J. Comput., 45(3):1064–1079, 2016.

[GKL11] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Efficient Reconstruction
of Random Multilinear Formulas. In IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages
778–787, 2011.

[GKQ13] Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random Arithmetic Formulas Can
Be Reconstructed Efficiently. In Proceedings of the 28th Conference on Computational
Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 1–9, 2013.

[GKSS17] Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. To-
wards an algebraic natural proofs barrier via polynomial identity testing. CoRR,
abs/1701.01717, 2017.

[Hås90] Johan Håstad. Tensor Rank is NP-Complete. J. Algorithms, 11(4):644–654, 1990.

[HW99] Ming-Deh A. Huang and Yiu-Chung Wong. Solvability of systems of polynomial
congruences modulo a large prime. Computational Complexity, 8(3):227–257, 1999.

[Ier89] Douglas John Ierardi. The Complexity of Quantifier Elimination in the Theory of an Alge-
braically Closed Field. PhD thesis, Department of Computer Science, Cornell Univer-
sity, Ithaca, New York 14853-7501, 1989.

[JKS02] Jeffrey C. Jackson, Adam R. Klivans, and Rocco A. Servedio. Learnability beyond
AC0. In Proceedings on 34th Annual ACM Symposium on Theory of Computing, May
19-21, 2002, Montréal, Québec, Canada, pages 776–784, 2002.

44

[JLSW08] Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and Andrew Wan. Learning
Random Monotone DNF. In Approximation, Randomization and Combinatorial Opti-
mization. Algorithms and Techniques, 11th International Workshop, APPROX 2008, and
12th International Workshop, RANDOM 2008, Boston, MA, USA, August 25-27, 2008.
Proceedings, pages 483–497, 2008.

[Kay12] Neeraj Kayal. Affine projections of polynomials: extended abstract. In Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 643–662, 2012.

[KLSS17] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Expo-
nential Lower Bound for Homogeneous Depth Four Arithmetic Formulas. SIAM J.
Comput., 46(1):307–335, 2017.

[KNST17] Neeraj Kayal, Vineet Nair, Chandan Saha, and Sébastien Tavenas. Reconstruction of
Full Rank Algebraic Branching Programs. In 32nd Computational Complexity Confer-
ence, CCC 2017, July 6-9, 2017, Riga, Latvia, pages 21:1–21:61, 2017.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Com-
put. Sci., 448:56–65, 2012.

[KS06] Adam R. Klivans and Amir Shpilka. Learning Restricted Models of Arithmetic Cir-
cuits. Theory of Computing, 2(10):185–206, 2006.

[KS16a] Neeraj Kayal and Chandan Saha. Lower Bounds for Depth-Three Arithmetic Circuits
with small bottom fanin. Computational Complexity, 25(2):419–454, 2016.

[KS16b] Mrinal Kumar and Shubhangi Saraf. Sums of Products of Polynomials in Few Vari-
ables: Lower Bounds and Polynomial Identity Testing. In 31st Conference on Compu-
tational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 35:1–35:29,
2016.

[KS17] Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4 Arith-
metic Circuits. SIAM J. Comput., 46(1):336–387, 2017.

[KS18] Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous
depth three circuits. Electronic Colloquium on Computational Complexity (ECCC),
25:191, 2018.

[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial
lower bound for regular arithmetic formulas. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 146–153, 2014.

[KST16] Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An Almost Cubic Lower
Bound for Depth Three Arithmetic Circuits. In 43rd International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages
33:1–33:15, 2016.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with Polynomials Given By Black
Boxes for Their Evaluations: Greatest Common Divisors, Factorization, Separation
of Numerators and Denominators. J. Symb. Comput., 9(3):301–320, 1990.

45

[Kum17] Mrinal Kumar. A Quadratic Lower Bound for Homogeneous Algebraic Branching
Programs. In Proceedings of the 32nd Computational Complexity Conference, CCC ’17,
pages 19:1–19:16, 2017.

[Laz01] Daniel Lazard. Solving systems of algebraic equations. ACM SIGSAM Bulletin,
35(3):11–37, 2001.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant Depth Circuits, Fourier
Transform, and Learnability. J. ACM, 40(3):607–620, 1993.

[LMW17] Dong Lu, Xiaodong Ma, and Dingkang Wang. A New Algorithm for General Fac-
torizations of Multivariate Polynomial Matrices. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation (ISSAC), pages 277–284, 2017.

[LSW06] Homin K. Lee, Rocco A. Servedio, and Andrew Wan. DNF Are Teachable in the
Average Case. In Learning Theory, 19th Annual Conference on Learning Theory, COLT
2006, Pittsburgh, PA, USA, June 22-25, 2006, Proceedings, pages 214–228, 2006.

[Nis91] Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Ab-
stract). In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
May 5-8, 1991, New Orleans, Louisiana, USA, pages 410–418, 1991.

[NW97] Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial
Derivatives. Computational Complexity, 6(3):217–234, 1997.

[Raz85] Alexander A. Razborov. Lower bounds on the monotone complexity of some
Boolean functions. Soviet Mathematics Doklady, 31:354–357, 1985.

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM, 56(2):8:1–8:17, 2009.

[RR97] Alexander A. Razborov and Steven Rudich. Natural Proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997.

[RY09] Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth
Multilinear Circuits. Computational Complexity, 18(2):171–207, 2009.

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Iden-
tities. J. ACM, 27(4):701–717, 1980.

[Shi16] Yaroslav Shitov. How hard is the tensor rank? arXiv, abs/1611.01559, 2016.

[Sri15] Srikanth Srinivasan. A Compression Algorithm for AC0[⊕] circuits using Certifying
Polynomials. Electronic Colloquium on Computational Complexity (ECCC), 22:142, 2015.

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of charac-
teristic zero. Computational Complexity, 10(1):1–27, 2001.

[SWZ17] Zhao Song, David P. Woodruff, and Peilin Zhong. Relative Error Tensor Low Rank
Approximation. CoRR, abs/1704.08246, 2017.

46

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–
388, 2010.

[Tav13] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. In Math-
ematical Foundations of Computer Science 2013 - 38th International Symposium, MFCS
2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings, pages 813–824, 2013.

[Uma99] Christopher Umans. Hardness of Approximating Sigma2
p Minimization Problems.

In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 465–474, 1999.

[Vol16] Ilya Volkovich. A Guide to Learning Arithmetic Circuits. In Proceedings of the 29th
Conference on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages
1540–1561, 2016.

[vzGG03] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra (2. ed.). Cam-
bridge University Press, 2003.

[Wil14] Ryan Williams. Nonuniform ACC Circuit Lower Bounds. J. ACM, 61(1):2:1–2:32,
2014.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and
Algebraic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Al-
gebraic Computation, Marseille, France, June 1979, Proceedings, pages 216–226, 1979.

A Proof of two claims

Claim 2.4 (restated): If E = Q1 · · ·Q` is a random (w, `, m)-matrix product over F, where w2 + 1 ≤
m ≤ n and ` ≤ d, then the entries of E are F-linearly independent with probability 1− (wdn)−Ω(1).

Proof. Treat the coefficients of the linear forms in Q1, Q2, . . . , Q` as distinct formal variables. In
particular

Qk =
m

∑
i=1

U(k)
i xi for k ∈ [`] ,

where the U(k)
i ’s are w× w matrices and the entries of these matrices are distinct u-variables. The

entries of the matrix product E are polynomials in the x-variables over F(u). If we show the w2

entries of E are F(u)-linearly independent then an application of Schwartz-Zippel lemma implies
the statement of the claim. On the other hand, to show that the entries of E are F(u)-linearly
independent, it is sufficient to show that the entries are F-linearly independent under a setting of
the u-variables to F elements. Consider such a setting: For every k ∈ [`] \ {1}, let U(k)

w2+1 = Iw and

U(k)
i = 0 for all i ∈ [m] \ {w2 + 1}. Let U(1)

i = 0 for all i ≥ w2 + 1 and set U(1)
1 , . . . , U(1)

w2 in a way so

that the linear forms in ∑w2

i=1 U(1)
i xi are F-linearly independent. It is straightforward to check that

the entries of E under this setting are F-linearly independent.

47

Claim 3.1 (restated): With probability 1− (wdn)−Ω(1), any subset of w vectors in any of the sets {u1, u2,
. . . , uw+1}, {v1, v2, . . . , vw+1}, {w1, w2, . . . , ww+1}, or {s1, s2, . . . , sw+1} are L-linearly independent.

Proof. From Observation 3.3, for the sets {v1, v2, . . . , vw+1} and {s1, s2, . . . , sw+1} it is sufficient to
show that any w columns of the w× (w+ 1) matrices (N1i(aj))i∈[w],j∈[w+1] and (N1i(bj))i∈[w],j∈[w+1]
are L-linearly independent with high probability. As the cofactors N11, . . . , N1w are L-linearly in-
dependent, the above follows from Claim 2.2. For the sets {u1, u2, . . . , uw+1} and {w1, w2, . . . , ww+1},
it follows from Equation 2 that there are λk, ρk ∈ L× such that D · vk = λkuk and D · sk = ρkwk for
all k ∈ [w + 1]. Since D is invertible, the claim follows for these two sets as well.

48

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

