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Abstract

Key-agreement protocols whose security is proven in the random oracle model are an impor-
tant alternative to the more common public-key based key-agreement protocols. In the random
oracle model, the parties and the eavesdropper have access to a shared random function (an
“oracle”), but they are limited in the number of queries they can make to it. Unfortunately,
as shown by Impagliazzo and Rudich [STOC ’89] and Barak and Mahmoody [Crypto ’09], such
protocols can only guarantee limited secrecy: the key of any `-query protocol can be revealed
by an O(`2)-query adversary. This quadratic gap between the query complexity of the honest
parties and the eavesdropper matches the gap obtained by the Merkle’s Puzzles protocol of
Merkle [CACM ’78].

In this work we tackle a new aspect of key-agreement protocols in the random oracle model:
their communication complexity. In Merkle’s Puzzles, to obtain secrecy against an eavesdrop-
per that makes roughly `2 queries, the honest parties need to exchange Ω(`) bits. We show
that for protocols with certain natural properties, ones that Merkle’s Puzzle has, such high
communication is unavoidable. Specifically, this is the case if the honest parties’ queries are
uniformly random, or alternatively if the protocol uses non-adaptive queries and has only two
rounds. Our proof for the first setting uses a novel reduction from random-oracle protocols to
the set-disjointness problem in two-party communication complexity, which is known to have
high communication cost. For the second setting we prove the lower bound directly, using
information-theoretic arguments.

Understanding the communication complexity of protocols whose security is proven in the
random-oracle model is an important question in the study of practical protocols. Our results
and proof techniques are a first step in this direction.
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1 Introduction

In a key-agreement protocol (Diffie and Hellman [5]), two parties communicating over an insecure
channel want to securely agree on a shared secret key, so that an eavesdropper observing their
communication cannot find the key. There are numerous candidate constructions of key-agreement
schemes, e.g., [16, 14, 1, 11], based on assumptions implying that public-key encryption schemes
exist. A fundamental open question is whether we can design key-agreement protocols based on
the security of symmetric primitives, e.g., private-key encryption; the security of such primitives is
believed to be more robust.

A first step in this direction was made by Merkle [12], presenting a key-agreement scheme called
Merkle’s Puzzles, which has some level of security in the random oracle model : the parties and the
eavesdropper have limited access to a random function (an “oracle”). In Merkle’s Puzzles, the
honest parties make ` queries, for an arbitrary parameter ` ∈ N, and the key remains secure as
long as the eavesdropper makes o(`2) oracle queries. While the quadratic gap between the `-query
honest parties and the `2-query eavesdropper achieved by Merkle’s Puzzles might not seem like
much, if the honest parties are willing to work hard enough (take large `) and only need the secrecy
of the key to hold for limited time, this limited gap might yield a good enough advantage.

It turns out that in the random oracle model it is not possible to achieve a better-than-quadratic
gap: Barak and Mahmoody [2] (following Impagliazzo and Rudich [9]) showed that Merkle’s Puzzles
have optimal secrecy, as the security of any protocol where the honest parties make O(`) queries
can be broken by an adversary that makes O(`2) queries, and can guess the secret key with high
success probability. Thus, the trade-off between the number of queries and security is completely
characterized in the random oracle model.

In this work we consider another crucial aspect of any distributed protocol: communication.
In many distributed systems, communication between the parties is the most energy and time-
consuming part of the computation, dwarfing even computation-expensive local tasks (e.g., in [4],
experiments show that a wireless network running Kerberos spends 95% of its energy consumption
on communication and only 5% on local computation). In such settings, even a key-agreement
protocol that uses a small number of queries cannot be considered truly efficient if it has high
communication requirements. In Merkle’s Puzzles, for example, the players need to send Θ(`) bits
(the answers to all their queries).

In this work we initiate the study of communication-efficient protocols in the random oracle
model. We show that under some restrictions on the protocol, the high communication incurred
by Merkle’s Puzzles is unavoidable: in order to achieve security against an adversary that can ask
Θ(`2) queries, the two parties must exchange Ω(`) bits of communication. Specifically, we show that
the bound above holds for protocols where the parties’ queries are uniformly random subsets, and
the bound also holds for any non-adaptive protocol that uses only two rounds of communication.
(These are both properties of Merkle’s Puzzles: there, the parties use uniformly random queries
and send one message each.) It is our hope that our work will initiate further interest in the
communication cost of cryptography in the random oracle model.

A key-agreement protocol is measured by two parameters: its agreement guarantee, which
is the probability that the honest parties output the same key, and its secrecy guarantee, the
probability that an eavesdropper guesses the common key. To simplify the discussion, we focus
below on protocols whose agreement guarantee is larger by some constant compared to their secrecy
guarantee. Our results generalize to any arbitrary trade-off between the protocol’s communication
cost and the eavesdropper’s query complexity.



Uniform-query protocols. An oracle protocol has uniform queries, if the parties’ oracle queries
are chosen independently and uniformly from a predetermined set. We give the following lower
bound on the communication complexity of such protocols.

Theorem 1.1 (lower bound on uniform-inputs protocols, informal). Any `-uniform-query key-
agreement protocol achieving non-trivial secrecy against o(`2)-query adversaries, has communication
complexity Ω(`).

Theorem 1.1 is proved by a novel reduction to set-disjointness — a problem in communication
complexity known to require high communication complexity, a reduction we believe to be of
independent interest. See more details in Section 1.1.1.

Two-message non-adaptive protocols. An oracle protocol has non-adaptive queries, if the
distribution of queries the parties make is fixed in advance — it is determined (arbitrarily) before
the parties communicate with each other and independently of the oracle’s answers. We give the
following lower bound on the communication complexity of such protocols.

Theorem 1.2 (lower bound on two-message non-adaptive protocols, informal). Any two-message
`-query non-adaptive key-agreement protocol of non-trivial secrecy against o(`2)-query adversaries
has communication complexity Ω(`).

We prove the above bound by presenting an o(`2)-query eavesdropper that prevents the par-
ties from exploiting the correlation induced by their random oracle calls, by asking all joint (i.e.,
intersecting) queries that the parties “understand” to be such. This is very different from the eaves-
dropper used by Barak and Mahmoody [2], and by Impagliazzo and Rudich [9]: their eavesdropper,
by making Θ(`2) queries, has high probability of finding all joint queries. Finding the right defini-
tion for what it means to “learn” that a given query is in the intersection, and constructing a low
query-complexity eavesdropper that manages to ask all such queries, is the main difficulty in our
proof. See more details in Section 1.1.2.

1.1 Our Technique

We give some high-level description of the techniques used for proving our two lower bounds (The-
orems 1.1 and 1.2).

1.1.1 Uniform-Query Protocols

The lower bound for uniform-query key-agreement protocols is proved via a reduction to set-
disjointness — two parties receive sets from a predetermined distribution, and have to decide
(by communicating) whether their sets intersect. We emphasize that the parties trying to solve
the set-disjointness problem have no oracle, but are allowed to use joint (public) randomness. Set-
disjointness was proved to require high communication complexity: for any ` ∈ N there exists
“hard” distribution over subsets of [`], such that in order to solve disjointness over this distribution
(even only with high probability), the parties have to exchange Θ(`) bits of communication. We
show how to transform an `-uniform-query key-agreement protocol of non-trivial secrecy against
o(`2)-query adversaries, to a protocol for solving set-disjointness over a hard distribution. This
yields an Θ(`) bound on the communication complexity of the key-agreement protocol. More
details below.
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Let Π = (A,B) be an `-uniform-query key-agreement protocol. We assume for simplicity that
the key-length is one (i.e., a bit), that Π has perfect agreement (parties always agree) and that
an o(`2)-query cannot guess the key with probability larger than 3/4. We use Π to build two
(no-oracle) protocols ΛCom = (ACom,BCom) and ΛDist = (ADist,BDist), with the same communication
complexity as of Π, such that at least one of them can be used to solve set-disjointness well over
an hard distribution.

In protocol ΛCom, the parties interact in a random execution of Π using public (common) ran-
domness to emulate the random oracle: the common random string is interpreted as the description
of a random function. Since the joint distribution of the transcript and outputs induced by a ran-
dom execution of ΛCom equals to that induced by a random execution Π, protocol ΛCom has perfect
agreement. Furthermore, an adversary seeing only the protocol transcript, cannot guess the com-
mon key with probability better than 3/4. Indeed, such an adversary is equivalent to an adversary
that is trying to guess the key in a random execution of Π without using the oracle.

In the second protocol ΛDist, the parties also interact in a random execution of Π, but use their
private randomness to emulate the random oracle. In other words, each party uses a different
function as the random oracle. The joint distribution of the transcript and outputs induced by
a random execution of ΛDist, might be very far from the distribution induced by of Π. Yet, note
that conditioned that the queries are disjoint, it is easy to see that the two distributions are the
same. In particular, the perfect agreement of Π yields that the parties of ΛDist output the same
key under this conditioning. A second observation is that since the parties of ΛDist use no common
(public) randomness, their view is in a product distribution given the transcript. Hence, there exist
an adversary E that seeing only the transcript, finds the key with same probability that the parties
output the same value. Combining the above observations yields that one of the following must
holds:

Agreement gap: The agreement probability ΛDist is at most 7/8 (comparing to one in ΛCom), or

Secrecy gap: the probability that E guesses ADist’s output in ΛDist is at least 7/8 (comparing to
3/4 in ΛCom).

We start by describing the set-disjointness protocol assuming an accuracy gap exists, and later
explain how to address the case of secrecy gap.

Agreement gap. Recall that ΛDist has perfect agreement if the parties’ queries do not intersect,
and that, by assumption, its overall agreement is at most 7/8. Assume for simplicity that the
inaccuracy of ΛDist holds for every non zero intersection size. That is, the agreement probability
of ΛDist conditioned that the sets intersect with c queries is at most 7/8, for every c ∈ N. We
exploit the gap between the imperfect agreement of ΛDist when the parties’ inputs do not intersect,
to its perfect agreement when they do, to build a protocol for solving set-disjointness over any
distribution.1

The set-disjointness protocol ΛSet = (ASet,BSet) is defined as follows: first, each party permutes
its input set using a permutation defined by the common public randomness. The parties then
interact in ΛDist, with each party using the permuted value of its private input as its uniform
queries. At the end of the execution, party ASet sends its output to BSet, who outputs 1 if the
received value is equal to its own output.

1The agreement gap might only exist for some values of c. We handle this complication using specific properties
of a known hard distribution for set-disjointness. See Section 3.
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If the parties’ input sets are disjoint, the permuted input sets are disjoint as well (the parties
permute their input sets using the same permutation defined by the public randomness) . Thus, the
parties’ outputs are equal with probability one. On the other hand, if the input sets do intersect,
the permuted input sets are random sets in the domain of the same intersection size. Thus the
parties’ output are equal with probability at most 7/8.

It follows that BSet outputs 1 with probability one if the parties’ input sets are disjoint, and with
probability at most 7/8 otherwise. Since the latter hold for any input, the above protocol solves set-
disjointness with error “too low” over hard distributions, and thus must have high communication
complexity.

Secrecy gap. We convert ΛCom and ΛDist into a pair of protocols with agreement gap, and then
continue as above. Consider protocol Λ′Dist = (A′Dist,B

′
Dist) in which the parties acts as in ΛDist, but

at the end of the execution B′Dist executes E on the transcript and outputs its output. Protocol
Λ′Com is defined analogously with respect to ΛCom. By assumption, E guesses ADist’s output in ΛDist

with probability at least 7/8, and guesses ACom’s output in ΛCom with probability at most 3/4.
Hence, Λ′Dist has agreement at least 7/8, and Λ′Com has agreement at most 3/4. Namely, there is
an agreement gap between Λ′Dist and Λ′Com, and we can apply a simple variant of the reduction
described above to solve set-disjointness.

1.1.2 Two-Message Non-Adaptive Protocols

Consider an oracle key-agreement protocol Π = (A,B). We show that to produce a shared key,
the parties of Π must transfer information about the intersection between their queries. Moreover,
the queries and their intersection need to be “unpredictable” (have high min-entropy) given the
transcript, otherwise an eavesdropper can make the same queries and neutralize the honest parties’
advantage. Since A does not know in advance her intersection with B’s queries, if she sends a short
message, she will not convey much information about the intersection; and similarly for B’s message.
More formally, if each query as probability at most δ of being asked by B, and A’s message has C
bits, then B learns no more than δC bits of information about the intersection, and this argument
can be carried to B’s return message as well. However, what should we do about queries with
probability higher than δ of being asked?

To guarantee that all queries have low prior probability of being asked by one of the players
(or viewed another way — to “neutralize” queries that are too predictable) we use a variant of the
eavesdropper of Barak and Mahmoody [2]. The eavesdropper in their work finds and queries all
the “heavy queries” — queries that were asked with probability at least δ given the eavesdropper’s
view (the messages it has seen and the queries it has asked). In our proof, we set the “heavy query”
threshold δ to Θ(1/C) instead of 1/`, where C is the communication complexity of the protocol.
Intuitively, this is because we only care about queries the players have talked to each other about,
not queries they asked but did not communicate to the other player.2 The eavesdropper asks all
the heavy queries at the beginning of every communication round, and at the end of the protocol, it
outputs the key it believes B would output, given the messages the eavesdropper observed between
the players and the queries it asked. We prove that the eavesdropper generates a total of only
Θ(C`) queries, and breaks the secrecy of the protocol.

2This is an over-simplification, since a player’s message can contain partial information about queries, e.g., XORs
of subsets of queries and so on.
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Note that when C � `, an eavesdropper that asks only Θ(C`) queries stands no chance of finding
all the intersection queries shared by the parties. For example, if A and B each ask ` random queries,
but do not communicate with each other at all (C = 0), then our eavesdropper is not allowed to
make any queries (C · ` = 0), and in particular, even though with high probability A and B’s
queries intersect, the eavesdropper will not find an intersection query. This is a key difference
from the proof of [2, 9], whose eavesdropper with high probability asks all the intersection queries.
Nevertheless, we show that unless the parties can learn that a given query is in their intersection,
this query is not useful to them.

We assume without loss of generality that the secret key is the first bit of one of B’s queries
(we show that any protocol can be transformed into a protocol that has this property, without
harming consistency or security). The technical key to the proof is to bound the dependence
between B’s queries and A’s view: this dependence exactly captures the players’ “advantage” over
the eavesdropper. In particular, if the players can figure out an intersection query, they create a lot
of dependence that is hidden from the eavesdropper. We show that this does not happen, except
with small probability. Thus, the players have very small advantage over the eavesdropper, and
when at the end of the protocol the eavesdropper guesses B’s key, it has roughly the same chance
of agreeing with A’s key as B does.

The proof formalizes the intuition that any dependence between B’s queries and A’s view (or
vice-versa) is “created through” the intersection of their queries. We then show that (1) A’s message
does not convey much information about the intersection, and hence, (2) B’s message also does not
convey much information about the intersection.

The argument for (1) uses fairly standard ideas from information theory: when we consider n
random variables X1, . . . ,Xn and a function M(X1, . . . ,Xn), and choose an index i ∈ [n] with some
distribution that has high min-entropy, then I(M; Xi) is small. In our case, we choose not one index
but possibly several (as the intersection can be large), so the argument needs to be generalized
somewhat.3

The second message is a different story, because with some small probability, A’s first message
revealed too much information about the intersection. (The mutual information I(M; Xi) is, after
all, an expectation over messages.) If the players managed to establish such dependence, then
the eavesdropper no longer stands any chance of breaking the protocol’s secrecy. To deal with
this low-probability event, we switch to using statistical distance instead of mutual information.
Mutual information is unbounded, so even low-probability events can cost too much in expectation;
statistical distance on the other hand is bounded by one.

Statistical distance is less convenient to work with (e.g., it is not additive), so our argument for
the second message is more complex. It involves “pretending” that B learned nothing about the
intersection, proving that in this case his message also does not reveal much about the intersection,
and then switching back to the real distribution, where B knows a little about the intersection, and
accounting for the difference.

The reason we could not continue this argument to any number of rounds is that perversely,
after the second round, the eavesdropper’s own queries may create dependence between the queries
of the two parties.4 This means that, even though we bounded the dependence created by the

3For the reader familiar with Shearer’s inequality — we prove a Shearer-like statement for mutual information.
4For instance, A can send the answer to her first query, and B can reply with his first query, followed by the XOR

of the answers to his first two queries. In this case, the view of A is independent from the queries of B; however, after
the eavesdropper asks B’s first query, she learns whether or not B’s second query is equal to A’s first query. This
creates dependence between the honest parties’ views, when we condition on the eavesdropper’s view.
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messages in the first two rounds, when the eavesdropper asks the heavy queries after the second
round, its own queries can increase the dependence and violate our bound.

1.2 Related Work

Impagliazzo and Rudich [9] showed that the key of any `-query key-agreement protocol in the
random-oracle model can be revealed by an O(`6) query eavesdropper. Barak and Mahmoody [2]
have improved upon the above presenting an O(`2) query eavesdropper for this task, yielding that
Merkle Puzzles is optimal in this respect. Haitner, Omri, and Zarosim [6] used the machinery of [2],
to show that any no-input `-query random oracle protocol, can be mapped into an “equivalent” no-
oracle protocol, using an O(`2)-query mapping, yielding that a no input task that is impassible to
achieve information theoretical, cannot be computed securely in the random-oracle model against
O(`2)-query adversaries. The focus of the above works is on no-input random oracle protocols.
Finding limitation on the usefulness of random oracles for with-input protocols seems to be a more
difficult question, Chor and Kushilevitz [3], and Mahmoody et al. [10] made some progress in this
direction. Finally, Haitner, Hoch, Reingold, and Segev [7] gave lower bounds on the communication
complexity of statistically hiding commitments and single-server private information retrieval in a
weaker oracle model that captures the hardness of one-way functions/permutation more closely.

Paper Organization

Formal definitions and notation used throughout the paper are given in Section 2. The bound for
uniform-query protocols is formally stated and proved in Section 3, and the bound for two-message
non-adaptive protocols is stated and proved in Section 4.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and lowercase for values.
For m ∈ N, let [m] = {1, . . . ,m}. For a random variable X, let x

R← X to denote that x is

chosen according to X. Similarly, for a set S let s
R← S to denote that s is chosen according to the

uniform distribution over S. The support of the distribution D, denoted Supp(D), is defined as
{u ∈ U : PrD [u] > 0}. The statistical distance between two distributions P and Q over a finite set
U , denoted SD(P,Q), is defined as 1

2

∑
u∈U |PrP [u]−PrQ [u] |, which is equal to maxS⊂U (PrP [S]−

PrQ [S]).
For a vector X = X1, ..., Xn and an index i ∈ [n], let X<i denote the vector X1, ..., Xi−1 and X≤i

denote the vector X1, ..., Xi. For a set of indexes T = {i1, . . . , ik} ⊆ [n] such that i1 < i2 < · · · < ik,
let XT denote the vector Xi1 , . . . , Xik . Similarly, XT,<i denotes the vector XT∩{1,...,i−1}. For a
function f , let f(X) = (f(X1), ..., f(Xn)).

For random variables A and B we use A|B=b to denote te distribution of A condition on the
event B = b.

2.2 Interactive Protocols

A two-party protocol Π = (A,B) is a pair of probabilistic interactive Turing machines. The com-
munication between the Turing machines A and B is carried out in rounds, where in each round
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one of the parties is active and the other party is idle. In the j-th round of the protocol, the
currently active party P acts according to its partial view, writing some value on its output tape,
and then sending a message to the other party (i.e., writing the message on the common tape).
The communication transcript (henceforth, the transcript) of a given execution of the protocol
Π = (A,B), is the list of messages m exchanged between the parties in an execution of the protocol,
where m1,...,j denotes the first j messages in m. A view of a party contains its input, its random
tape and the messages exchanged by the parties during the execution. Specifically, A’s view is a
tuple vA = (iA, rA,m), where iA is A’s input, rA are A’s random coins, and m is the transcript of
the execution. Let outA denote the output of A in the end of the protocol, and outB B’s output.
Notice that given a protocol, the transcript and the outputs are deterministic function of the joint
view (iA, rA, iB, rB). For a joint view v, let trans(v), outA(v) and outB(v) be the transcript of the
protocol and the parties’ outputs determined by v. For a distribution D we denote the distribution
over the parties’ joint view in a random execution of Π, with inputs drawn from D by Π(D).

A protocol Π has r rounds, if for every possible random tapes for the parties, the number of
rounds is exactly r. The Communication Complexity of a protocol Π, denote as CC(Π) is the
length of the transcript of the protocol in the worst case.

2.3 Oracle-Aided Protocols

An oracle-aided two-party protocol Π = (A,B) is a pair of interactive Turing machines, where each
party has an additional tape called the oracle tape; the Turing machine can make a query to the
oracle by writing a string q on its tape. It then receives a string ans (denoting the answer for this
query) on the oracle tape. An oracle-aided protocol is `-queries protocol if each party makes at
most ` queries during each run of the protocol. In a non-adaptive oracle-aided protocol, the parties
choose their queries before the protocol starts and before querying the oracle. A uniform query
oracle-aided protocol, is a non-adaptive protocol in which the parties queries are chosen uniformly
form a predetermined set.

2.4 Key-Agreement Protocols

Since we are giving lower bounds, we focus on single bit protocols.

Definition 2.1 (key-agreement protocol). Let 0 ≤ γ, α ≤ 1 and q ∈ N . A two-party boolean output
protocol Π = (A,B) is a (q, α, γ)-key-agreement relative to a function family F , if the following hold:

Accuracy: Π has (1− α)-accuracy. For every f ∈ F :

Pr
v

R←Πf

[
outA(v) = outB(v)

]
≥ 1− α.

Secrecy: Π has (q, γ)-secrecy. For every q-query oracle-aided algorithm E:

Pr
f

R←F ,v R←Πf

[
Ef (trans(v)) = outA(v)

]
≤ γ.

If F is a trivial function family (e.g., F only contains only the identity function), then all
correlation between the parties’ view is implied by the transcript. Hence, an adversary that on a
given transcript τ samples a random view for A that is consistent with τ , and outputs whatever A
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would upon this view, agrees with B with the same probability as does A. This simple argument
yields the following fact.

Fact 2.2. For every 0 ≤ α ≤ 1 and 0 ≤ γ < 1− α, there exists no (q, α, γ)-key-agreement protocol
relative to the trivial family.

2.5 Entropy and Information

The Shannon Entropy of a random variable A is defined as H(A) =
∑

a∈Supp(A) PrA [a] log 1
PrA[a] .

The conditional Entropy of a random variable A given B is defined as H(A|B) = E
b
R←B

[H(A|B = b)].
The following fact is called the chain rule of Shannon Entropy:

Fact 2.3 (Chain rule for entropy). For a random variable A = A1, ...,An the following holds:

H(A1, ...,An) =

n∑
i=1

H(Ai|A1, ...Ai−1).

The mutual information between two random variables A and B is defined as I(A; B) = H(A)−
H(A|B). The mutual information is known to be symmetric, and the following facts are known:

Fact 2.4 (Chain rule for information). For a random variables A = A1, ...,An and B,

I(A; B) =
n∑
i=1

I(Ai; B|A1, ...,Ai−1).

Fact 2.5. For every random variables A and B, 0 ≤ I(A; B) ≤ H(A) ≤ |A|.

Fact 2.6. Let A,B,C be random variables.

• If A is independent of C, Then I(A; B) ≥ I(A; B|C).

• If condition on B, A is independent of C, Then I(A; B) ≤ I(A; B|C).

Fact 2.7 (Data processing inequality). Let A,B be random variables, and f a function. Then:
I(f(A); B) ≤ I(A; B) and H(f(A)) ≤ H(A).

Lastly, a connection between mutual information and statistical distance is known:

Fact 2.8 (Pinsker’s inequality).

SD ((A,B) , (A× B)) ≤ 2
√

I(A; B).

We will also use the next general lemmas in our proof:

Lemma 2.9. For every random variables A,B,C and D it holds that

− I(A; D|C) ≤ I(A; B|C,D)− I(A; B|C) ≤ I(A; D|C,B)

.
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Proof.
I(A; B|C,D)− I(A; B|C)

= H(A|C,D)−H(A|B,C,D)− [H(A|C)−H(A|B,C)]

= H(A|C,D)−H(A|C)− [H(A|B,C,D)−H(A|B,C)]

= I(A; D|C,B)− I(A; D|C)

The inequalities hold by the fact that mutual information is always positive. �

The next two lemmas are useful in bounding information by using Bernoulli random variables:

Lemma 2.10. Let J be a Bernoulli random variable, s.t. Pr [J = 1] ≤ 1/2. Then

H(J) ≤ Pr [J = 1] (log
1

Pr [J = 1]
+ 4).

Proof.

H(J) = Pr [J = 1] log
1

Pr [J = 1]
+ Pr [J = 0] log

1

Pr [J = 0]

≤ Pr [J = 1] log
1

Pr [J = 1]
+ log

1

1− Pr [J = 1]

Let f(x) = log 1
1−x − 4x. We need to show that f(x) ≤ 0 for all 0 ≤ x ≤ 1/2. f(0) = 0, therefore it

is enough to show that f ′(x) ≤ 0.

f ′(x) =
1

ln 2

1

1− x
− 4

≤ 2
1

1− x
− 4 ≤ 4− 4 = 0 (0 ≤ x ≤ 1/2)

�

Lemma 2.11. Let A,B,M and for each m ∈M Em be random variables. Let Jm be the indicator
for the event M = m, then

I(A; B|M,EM ) ≤
∑
m∈M

[
I(A; B|Em) + I(Jm; B|Em,A)

]
.
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Proof.

I(A; B|M,EM ) =
∑
m∈M

Pr [M = m] I(A; B|M = m,Em)

=
∑
m∈M

Pr [Jm = 1] I(A; B|Jm = 1,Em)

≤
∑
m∈M

[
Pr [Jm = 1] I(A; B|Jm = 1,Em) + Pr [Jm = 0] I(A; B|Jm = 0,Em)

]
(Because I is non-negative)

=
∑
m∈M

I(A; B|Jm,Em)

≤
∑
m∈M

I(A, Jm; B|Em) (Chain rule)

=
∑
m∈M

[
I(A; B|Em) + I(Jm; B|Em,A)

]
(Chain rule)

�

2.5.1 Some Useful Facts

Fact 2.12 (Data processing inequality for statistical distance). Let A,B be random variables, and
f a function. Then: SD(f(A), f(B)) ≤ SD(A,B).

Fact 2.13. Let A,B,C be random variables. Then: SD((A,B), (A,C)) = E
a

R←A
[SD(B|A=a,C|A=a)].

Fact 2.14. Let A,B,C be random variables. Then: SD((A× B), (A× C)) = SD(B,C).

Fact 2.15 (Hoeffding’s inequality[8]). Let A1, ...,An be independent random variables s.t. Ai ∈ [0, 1]
and let Â = 1

nΣn
i=1Ai. It holds that:

Pr
[
Â− E

[
Â
]
≥ t
]
≤ e−2nt2 .

Fact 2.16 (Jensen’s inequality). Let f be some convex function, and x1, ..., xn some numbers in
f ’s domain. And let w1, ..., wn be positive weights such that Σwi = 1. Then:

f(Σwixi) ≥ Σwif(xi).

The proofs for the next three lemmas are appear in Appendix B:

Lemma 2.17. Let A,B and C be random variables. Then

E
c
R←C

[SD ((A,B|C=c) , (A|C=c)× (B|C=c))] ≤ 2SD ((A,C,B) , (A,C)× (B)) .

Lemma 2.18. Let A,B and M be random variables. Then

SD ((M,A) , (M×A)) ≤ E
b
R←B

[SD ((M,A|B=b) , (M|B=b)× (A|B=b))] + SD ((A,B) , (A× B)) .
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Lemma 2.19. Let A,B and M be random variables. Then

E
m

R←M

[SD ((A,B|M=m) , ((A|M=m)× (B|M=m)))] ≤ 2 E
b
R←B

[SD ((A,M|B=b) , ((A|B=b)× (M|B=b)))]

+ 2SD ((A,B) , (A× B)) .

For our proof we need only the following specific case of Lemma 2.19:

Corollary 2.20. Let A,B and M be random variables, such that A⊥B. Then

E
m

R←M

[SD ((A,B|M=m) , (A|M=m × B|M=m))] ≤ 2 E
b
R←B

[SD ((A,M|B=b) , (A|B=b ×M|B=b))] .

3 Uniform-Query Protocols

In this section, we prove a lower bound on the communication complexity of uniform-query key-
agreement protocols. Recall that an oracle-aided protocol has uniform-queries, if the queries made
by the parties are uniformly chosen independently from an (a-priori fixed) domain. Our bound is
that an `-uniform-query protocol secure against `2-query eavesdropper, must have communication
complexity Ω(`). It follows that the uniform-query protocol of Merkle [12] (i.e., Merkle puzzle) has
optimal communication complexity (up to a log factor) for such protocols. We prove the bound
by exhibiting a reduction from uniform-query key-agreement protocol to (no oracle) protocol for
solving the set-disjointness problem.

Definition 3.1 (Set-disjointness). Protocol Π = (A,B) solves set-disjointness with error ε over dis-
tribution D (with support ({0, 1}∗)∗ × ({0, 1}∗)∗), if

Pr
(X ,Y)

R←D
rA

R←{0,1}∗,rB
R←{0,1}∗,rp

R←{0,1}∗

[(A(X ; rA),B(Y; rB))(rP) = (X ∩ Y = ∅ ∧ X ∩ Y = ∅)] ≥ 1− ε.

Namely, with save but probability ε over the instance in hand and their private and public
randomness, the parties find outs whether their two input sets intersect. Our reduction is to
solving set-disjointness over the distribution below, known to be hard for low complexity protocols.

Definition 3.2 (hard distribution for set-disjointness). For ` ∈ N, let Q0
` = {X ,Y ⊂ [`] : |X | =

|Y| = b`/4c , X ∩Y = ∅} and let Q1
` = {X ,Y ⊂ [`] : |X | = |Y| = b`/4c , |X ∩ Y| = 1}. Let D0

` and
D1
` be the uniform distribution over Q0

` and Q1
` respectively, and let D` = 3

4 ·D
0
` + 1

4 ·D
1
` .

Razborov [15] has shown that solving set-disjointness D` with small error require high commu-
nication complexity.

Theorem 3.3 (hardness of D`, [15]). Exists ε > 0 such that for every ` ∈ N and a protocol Π that
solves set-disjointness over D` with error ε, it holds that CC(Π) ≥ Ω(`).

For a finite set S, let FS = {f : S 7→ {0, 1}∗} be the family of all functions from S to binary
strings. Our reduction is stated in the following theorem.
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Theorem 3.4 (from uniform-query key-agreement protocols to set-disjointness). Assume exists an
`-uniform-query (0, α, γ)-key agreement protocol relative to FS , for some set S, of communication
complexity c. Then there exists a protocol for solving set-disjointness over D` with ε error and

communication complexity 215·`4·log 1/ε

|S|2(1−α−γ)4
· c.

Note that the above theorem holds also for protocols that are only secure against eavesdropper
without access to the oracle. Combining Theorems 3.3 and 3.4 yields the following bound on the
communication complexity of uniform-query key-agreement protocols.

Theorem 3.5 (Main result for uniform-inputs protocols). For any `-uniform-query (q, α, γ)-key
agreement protocol Π relative to FS , it holds that CC(Π) ∈ Ω((1− α− γ)4q2/`3).

Proof. By Theorems 3.3 and 3.4, protocol Π has communication complexity Ω((1−α−γ)4 |S|2 /`3).
By Fact 2.2, an eavesdropper that queries all the elements in S can guess the key with probability
1 − α. Since without loss of generality 1 − α > γ, it must hold that q < |S|. Hence, CC(Π) ∈
Ω((1− α− γ)4q2/`3). �

The rest of this section is devoted for proving Theorem 3.4. Assume there exists an `-uniform-
query (0, α, γ)-key-agreement protocol Π = (A,B) relative to the function family FS . We use Π
to create a (no-oracle) protocol of about the same communication complexity that finds out the
intersection size of parties inputs. We complete the proof showing that the latter protocol can be
used to solve set-disjointness over the hard distribution D`.

Protocol ΛCom below emulates protocol Π relative to the family FS , in the communication
complexity model (where no oracle is given). The parties of ΛCom emulate of the random oracle
using their shared public randomness interpreted as (description of a) function from the function
family.

Protocol 3.6 (ΛCom = (ACom,BCom)).

ACom’s input: an `-element set X ⊆ S.

BCom’s input: an `-element set Y ⊆ S.

Public randomness: (description of a) function f ∈ FS .

Operation:
ACom and BCom interact in an execution (A(X , f(X )),B(Y, f(Y))) of Π, taking the roles of A

and B respectively: ACom acts as A with queries X and answers f(X ), and BCom as B with queries
Y and answers f(Y). At the end of the interaction, ACom and BCom output the outputs of A and B
respectively.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We compare the above protocol to a protocol that emulates a run of Π without using the shared
oracle; each party sets the answers of the oracle using its private randomness, and acts accordingly.

The private-oracle emulation. In this protocol, each party sample a random function using
private randomness. The parties then interact according to ΛCom, while treating the private function
as the shared oracle.

Protocol 3.7 (ΛDist = (ADist,BDist)).

ACom’s input: an `-element set X ⊆ S.
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BCom’s input: an `-element set Y ⊆ S.

Public randomness: none.

Operation:

1. ADist samples g
R←FS .

2. BDist samples f
R←FS .

3. ADist and BDist interact in protocol (A(X , g(X )),B(Y, f(Y))) taking the roles of A and B
respectively: ADist acts as A with queries X and answers g(X ), and BDist as B with queries Y
and answers f(Y). At the end of the interaction, ADist and BDist output the outputs of A and
B respectively.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let (X,Y) be distributed as the queries of parties A and B respectively in Π (that is, uniform
sets in S of size `), and recall that ΛDist(X,Y) and ΛCom(X,Y) denote the parties’ joint view in a
random execution of ΛDist and ΛCom respectively, with inputs drawn from (X,Y). We first show
that ΛDist(X,Y) is far from ΛCom(X,Y). Indeed, since ΛDist is a no-oracle protocol (and has no
common randomness), Fact 2.2 yields that there is an algorithm E such that

Pr
v

R←ΛDist(X,Y)

[
E(trans(v)) = outADist(v)

]
= Pr

v
R←ΛDist(X,Y)

[
outBDist(v) = outADist(v)

]
(1)

In contrast, since ΛCom is an emulation of the protocol Π with a random oracle, the secrecy of
Π and the fact that E sees not the common randomness, yields that

Pr
v

R←ΛCom(X,Y)

[
E(trans(v)) = outACom(v)

]
= Pr

f
R←F,v R←Πf

[
Ef (trans(v)) = outA(v)

]
≤ γ (2)

Finally, since the joint distribution of the outputs of the parties in ΛCom is exactly as in Π, it
holds that

Pr
v

R←ΛCom(X,Y)

[
outBCom(v) = outACom(v)

]
= Pr

f
R←F,v R←Πf

[
outA(v) = outB(v)

]
≥ 1− α (3)

It follows that at least one of the two equations below holds:

Agreement gap: (4)

Pr
v

R←ΛCom(X,Y)

[
outBCom(v) = outACom(v)

]
− Pr
v

R←ΛDist(X,Y)

[
outBDist(v) = outADist(v)

]
≥ (1− α− γ)/2

Secrecy gap: (5)

Pr
v

R←ΛDist(X,Y)

[
E(trans(v)) = outADist(v)

]
− Pr
v

R←ΛCom(X,Y)

[
E(trans(v)) = outA(v)

]
≥ (1− α− γ)/2

Namely, wither ΛCom is significantly more accurate than ΛDist, or ΛCom is significantly more
secure than protocol ΛDist (or both). We claim that without loss of generality one can assume that
Equation (4) holds (i.e., there is agreement gap). Assuming otherwise (i.e., Equation (5) holds), we
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build a new protocol with inaccurate no-oracle emulation, and then continue the proof assuming
Equation (4) holds.

Consider protocols Λ′Com = (A′Com,B
′
Com) and Λ′Dist = (A′Dist,B

′
Dist), in which the parties interact

according to ΛCom and ΛDist respectively, but parties B′Com and B′Dist output ¬E(trans). By the
secrecy gap assumption,

Pr
v

R←ΛDist(X,Y)

[
E(trans(v)) = outADist(v)

]
− Pr
v

R←ΛCom(X,Y)

[
E(trans(v)) = outACom(v)

]
≥ (1− α− γ)/2

(6)

Hence,

Pr
v

R←Λ′Com(X,Y)

[
outB

′
Com(v) = outA

′
Com(v)

]
− Pr
v

R←Λ′Dist(X,Y)

[
outB

′
Dist(v) = outA

′
Dist(v)

]
= (1− Pr

v
R←ΛCom(X,Y)

[
E(trans(v)) = outBCom(v)

]
)− (1− Pr

v
R←ΛDist(X,Y)

[
E(trans(v)) = outADist(v)

]
)

= Pr
v

R←ΛDist(X,Y)

[
E(trans(v)) = outADist(v)

]
− Pr
v

R←ΛCom(X,Y)

[
E(trans(v)) = outACom(v)

]
≥ (1− α− γ)/2.

That is, protocol Λ′Dist is less accurate than Λ′Com by (1 − α − γ)/2. Namely, we are exactly in
the same situation as if Equation (4) holds, but with respect to protocols Λ′Dist and Λ′Com. From
hereafter, we assume for concreteness that Equation (4) holds with respect to the original protocols
ΛCom and ΛDist.

3.1 From Agreement Gap to Set Disjointness

Since, by assumption, ΛDist is less accurate than ΛCom in (i.e., Equation (4) holds), it is less accurate
for some specific intersection size; when the parties have no common query, ΛDist behaves just like
ΛCom, and thus ΛDist is (perfectly) accurate in this case. We exploit this observation to show that
the accuracy difference between the protocols enables us to distinguish between disjoint inputs and
intersecting inputs, yielding a protocol that solves set intersection over certain distributions.

For z ∈ {Com,Dist} and a joint view v = (X , rA,Y, rB, rP) ∈ Supp(Λz), let x(v) = X and
y(v) = Y. For i ∈ [`], let Accz (i) be the accuracy of Λz on inputs with intersection size i. Namely,

Accz (i) := Pr
v

R←Λz(X,Y)

[
outBz(v) = outAz(v) | |x(v) ∩ y(v)| = i

]
.

Let AccGap (i) be the accuracy advantage of ΛCom over ΛDist on inputs with intersection size i.
That is,

AccGap (i) := AccCom (i)−AccDist (i)

A key observation is that for some intersection size, protocol ΛCom is more accurate than ΛDist.

Claim 3.8. ∃d < 4`2

|S|(1−α−γ) such that AccGap (d) ≥ (1− α− γ)/4.

Proof. Let t := E
(X ,Y)

R←(X,Y)
[|X ∩ Y|] be the expected intersection size. We show below that

b4t/(1−α−γ)c∑
i=0

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] ·AccGap (i) ≥ (1− α− γ)/4 (7)
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It will then follows that ∃d ≤ 4t/(1−α−γ) such that AccGap (d) ≥ (1−α−γ)/4. We conclude
the proof by showing that t = `2/ |S|, and therefore d ≤ 4`2/ |S| (1 − α − γ). By linearity of
expectation,

t = E
(X ,Y)

R←(X,Y)

[|X ∩ Y|] =
∑̀
i=1

E
(X ,Y)

R←(X,Y)

[Xi ∈ Y] = `2/ |S| .

So it is left to prove Equation (19). We first show that the expected value of AccGap (i) is at
least (1− α− γ)/2.

E
(X ,Y)

R←(X,Y)

[AccGap (|X ∩ Y|)] (8)

= E
(X ,Y)

R←(X,Y)

[
Pr

v
R←ΛCom(X,Y)

[
outBCom(v) = outACom(v) | |x(v) ∩ y(v)| = |X ∩ Y|

]]

− E
(X ,Y)

R←(X,Y)

[
Pr

v
R←ΛDist(X,Y)

[
outBDist(v) = outADist(v) | |x(v) ∩ y(v)| = |X ∩ Y|

]]
= Pr

v
R←ΛCom(X,Y)

[
outBCom(v) = outACom(v)

]
− Pr
v

R←ΛDist(X,Y)

[
outBDist(v) = outADist(v)

]
≥ (1− α− γ)/2.

It follows that

b4t/(1−α−γ)c∑
i=0

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] ·AccGap (i)

= E
(X ,Y)

R←(X,Y)

[AccGap (|X ∩ Y|)]−
∑̀

i=b4t/(1−α−γ)c+1

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] ·AccGap (i)

≥ (1− α− γ)/2−
∑̀

i=b4t/(1−α−γ)c+1

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] ·AccGap (i) (Equation (20))

≥ (1− α− γ)/2−
∑̀

i=b4t/(1−α−γ)c+1

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] (AccGap (i) ≤ 1)

≥ (1− α− γ)/2− Pr
X R←X,Y R←Y

[|X ∩ Y| ≥ 4t/(1− α− γ)]

≥ (1− α− γ)/4., (Markov inequality)

and the the proof of the claim follows. �

In contrast to the above claim, if the inputs are disjoint then there is no agreement gap. That
is, we have the following fact.

Claim 3.9. AccGap (0) = 0.
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Proof. It is clear that for (F,G)
R← F2

S and pair of sets X ⊆ S,Y ⊆ S with X ∩ Y = ∅, the
distributions of (X ,Y,F(X ),F(Y)) and of (X ,Y,F(X ),G(Y)) are the same. It follows that the
distribution ΛDist|x∩y=∅ is identical to that of ΛCom|x∩y=∅, meaning that the protocols act the same.

�

Combining Claims 3.8 and 3.9 yields there exists some constant 0 < c ≤ d such that

AccGap (c)−AccGap (c− 1) ≥ AccGap (d) /d ≥ (1− α− γ)2 · |S|
16`2

(9)

Hence,

(1− α− γ)2 |S|
16`2

≤ AccGap (c)−AccGap (c− 1) (10)

= (AccCom (c)−AccDist (c))− (AccCom (c− 1)−AccDist (c− 1))

= AccCom (c)−AccCom (c− 1) + AccDist (c− 1)−AccDist (c).

Therefore, either

(11)

AccCom (c)−AccCom (c− 1) ≥ (1− α− γ)2 |S|
32`2

,

or

(12)

AccDist (c− 1)−AccDist (c) ≥ (1− α− γ)2 |S|
32`2

.

Namely, at least, one of protocols ΛCom and ΛDist can be used to distinguish between input of
intersection of size c and input of c− 1 with good probability. We conclude the proof showing how
to use this ability to solve set-disjointness on the hard distribution D`.

The set intersection protocol. In the following we assume for concreteness that Equation (11)
holds, where the proof assuming Equation (12) holds follows analogously by replacing ΛCom with
ΛDist. Consider the following protocol for solving set intersection (in the standard communication
complexity model). For simplicity, we assume that ` is a multiple of 4, and that S = {1, . . . , |S|}.

Protocol 3.10 (ΛSet = (ASet,BSet)).

Parameter: k ∈ N .

ASet’s input: an `/4-element set X ⊆ [`].

BSet’s input: an `/4-element set Y ⊆ [`].

Public randomness: (description of) k permutations σ1, ..., σn over S.

Operation:

1. ASet sets X ′ = X ∪ {`+ 1, `+ 2, ..., `+ c− 1} ∪ {2`, 2`+ 1, ..., 3`− `/4− c+ 1} and BSet sets
Y ′ = Y ∪ {`+ 1, `+ 2, ..., `+ c− 1} ∪ {3`, 3`+ 1, ..., 4`− `/4− c+ 1}.
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2. ASet sets counter = 0.

3. For j = 1 to k:

(a) ASet and BSet interact in random execution of (ACom(σj(X ′)),BCom(σj(Y ′))), with fresh
randomness, taking the roles of ACom and BCom respectively. Let outACom and outBCom be
the parties outputs in the execution.

(b) BSet sends outBCom to ASet.

(c) If outACom = outBCom, ASet increases counter by one.

4. ASet informs BSet whether counter/k > (AccCom (c) + AccCom (c− 1))/2. If positive, both
parties output zero; otherwise, they output one.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the following we analyze the success probability and communication complexity of protocol

ΛSet for k = k∗ := 213`4 log 1/ε

|S|2(1−α−γ)4
.

Success probability of ΛSet. We show that for k = k∗ it holds that

Pr
(X ,Y)

R←D`

rA
R←{0,1}∗,rB

R←{0,1}∗,rp
R←{0,1}∗

[(ASet(X ; rA),BSet(Y; rB))(rP) = (X ∩ Y = ∅,X ∩ Y = ∅)] ≥ 1− ε (13)

We prove that Equation (13) holds for any fixed (X ,Y) ∈ Supp(D`). Fix such a pair (X ,Y), and
assume without loss of generality that |S| > 3`/(1−α− γ) (as otherwise the proof of Theorem 3.4
is immediate). By this assumption, it holds that c ≤ d ≤ 3/4`. By construction, the sets X ′ and
Y ′ set by the parties in Step 1 of the protocol, are both of size `. Since, by definition, (X ,Y) have
at most one shared element, it holds that

∣∣X ′ ∩ Y ′∣∣ =

{
c X ∩ Y 6= ∅
c− 1, otherwise.

(14)

It follows that if |X ′ ∩ Y ′| = c and counter/k > (AccCom (c) + AccCom (c− 1))/2, then the protocol
outputs the right answer. Similarly, this is the case if |X ′ ∩ Y ′| = c−1 and counter/k < (AccCom (c)+
AccCom (c− 1))/2. Given these observations concerning the protocol correctness, we conclude the
proof by bounding the probability that counter/k is far from AccCom (|X ∩ Y|).

Claim 3.11. Let Counter be the value of counter in a random execution of ΛSet on inputs (X ,Y).
Then for every ε > 0, δ > 0 and k =

⌈
log(1/ε)/2δ2

⌉
, it holds that

Pr [Counter/k −AccCom (|X ′ ∩ Y ′|) > δ] < ε and Pr [AccCom (|X ′ ∩ Y ′| − Counter/k) > δ] < ε.

Proof. Since the parties randomly permute their inputs, for every j ∈ [k] it holds that σj(X ′) and
σj(Y ′) are random sets drawn (independently of other iteration) from the distribution (X,Y)||X∩Y|=|X ′∩Y ′|.
Therefore, the probability of the parties to have the same output in each run of Π is exactly
AccCom (|X ∩ Y|). The stated bound thus follows by by Hoffeding inequality (Fact 2.15). �

Let δ = (1−α−γ)2|S|
27`2

. By Equation (11), it holds that δ < (AccCom (c)−AccCom (c− 1))/2. Hence,
Claim 3.11 yields that protocol ΛSet error probability on the input pair (X ,Y) for parameter k = k∗

is less than ε, and Equation (13) follows.
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Communication complexity. In each iteration of protocol ΛSet, the parties run protocol ΛCom

and send one additional bit. Since CC(ΛCom) = CC(Π), for k = k∗ we get that

CC(ΛSet) ≤ k(CC(ΛCom) + 1) + 1 ≤ 4k · CC(Π) =
215`4 log 1/ε

|S|2 (1− α− γ)4
· CC(Π) (15)

Proving Theorem 3.4. The proof of Theorem 3.4 immediately follows that above observations.

Proof of Theorem 3.4. Fix k = k∗ = 213`4 log 1/ε

|S|2(1−α−γ)4
. Equation (13) yields that protocol ΛSet solves

set-disjointness over D` with error ε, and Equation (15) yields that CC(ΛSet) ≤ 215`4 log 1/ε

|S|2(1−α−γ)4
·CC(Π).

�

4 Two-Messages Non-Adaptive Protocols

In this section we prove a lower bound on the communication complexity of any non-adaptive key
agreement protocol that uses only two messages. We consider protocols with respect to the family
Fn of all functions from {0, 1}n to {0, 1}n.

Theorem 4.1 (Main theorem for two-message, non-adaptive protocols). For any n ∈ N, the
communication complexity of a two-message, non-adaptive, `-query (q, α, γ)-key-agreement protocol
relative to Fn is at least

(1− α− γ)2q

502`
− 6.

Fix a two-message, non-adaptive, `-query protocol Π = (A,B). Each execution of the protocol
specifies the following:

• X and Y, the queries made by A and B, respectively;

• M1,M2, the messages sent in the two rounds;

• outA and outB, the outputs of the parties.

Where M1 is a function (not necessarily deterministic) of X and F(X), and M2 is a function of
Y,F(Y) and M1. We define an eavesdropper Eve = Eveδ, where δ is a parameter we will specify
later, and show that Eve violates the secrecy of Π if CC(Π) is too small. Loosely speaking, the
eavesdropper, which is described below, queries all “heavy” queries and outputs what B would
output given these queries.

Algorithm 4.2 (The eavesdropper Eve).

Oracle: f ∈ Fn.

Parameter: δ > 0.

Operation: Let m = m1,m2 be the messages exchanged in the protocol.
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1. Query f on all elements in E0 ∪ E1 defined as

E0 = {q ∈ {0, 1}n : Pr [q ∈ X ∪ Y ] ≥ δ} .

and
E1 =

{
q ∈ {0, 1}n : Pr

[
q ∈ X ∪ Y

∣∣∣M1 = m1,F
∣∣
E0 = f

∣∣
E0

]
≥ δ
}
.

2. Sample and output
k

R← outB |
M≤2=m≤2,F

∣∣
E0∪E1

=f
∣∣
E0∪E1

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It does not matter if Eve asks her queries during the protocol’s run or afterwards. It is convenient
to assume that Eve asks the queries Ei−1 after observing M≤i−1 and before the next message is sent.
In particular, E0 denotes the queries that are heavy before the messages are sent. These queries are
a function of Π itself.

4.1 Simplifying the Structure of the Protocol

For our lower bound it is convenient to assume that the protocol has two structural properties:

(1) There are no queries that a priori heavy, that is, E0 = ∅.

(2) The secret key chosen by the players is the first bit in B’s last query; that is, if B’s queries are
Y1, . . . ,Ys, then the secret key is the first bit of Ys.

We show that any key agreement protocol can be transformed into one that has these properties,
with minor loss in the parameters.

Eliminating the a priori heavy queries. First we show that if E0 6= ∅, we can fix the answers
to E0 in advance, eliminating the need for the players and for Eve to ask these queries.

Lemma 4.3. Let Π be any `-query (q, α, γ)-key-agreement protocol. Then there is an `-query
(q−|E0|, α, γ)-protocol Θ with the same communication complexity as Π, such that Θ has no queries
that are heavy a priori, that is, for each q ∈ {0, 1}n, and for any oracle f ∈ Fn,

Pr
θf

[q ∈ X ∪Y] ≤ δ.

Proof. For a mapping R : E0 → {0, 1}n representing the answers to the queries in E0, let

FR =
{
f ∈ Fn : f

∣∣
E0 = R

}
.

In words, it is the set of oracles whose answers on E0 agree with R.
We show that there is R so that the protocol ΠF

R
, where the answers to E0 are fixed to agree

with R, is a (q− |E0|, α, γ)-key agreement protocol. We then define Θ to be the simulation of ΠF
R

where for each query in E0, instead of querying the oracle the players use the answer from R.
In Θ, the queries in E0 are never asked, so they are no longer heavy. Moreover, no new heavy

queries are created, because the protocol is non-adaptive; the queries X,Y asked by the players do
not change when we fix the answers in E0.
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Now let us choose R. First, observe that consistency is maintained for any setting of R: for
each f ∈ Fn,

Pr
v

R←Πf

[
outA(v) = outB(v)

]
≥ 1− α.

In particular this holds for f ∈ FR for any R.
As for secrecy, assume for the sake of contradiction that there is no R under which Π is (q −

|E0|, γ)-secure with respect to FR; that is, for each R : E0 → {0, 1}n there exists an attacker EveR
that asks q − |E0| queries such that

Pr
f

R←FR,v
R←Πf

[
EvefR(trans(v)) = outA(v)

]
≥ γ.

Define an attacker Eve that breaks the original protocol Π as follows: First, Eve queries E0; let R
be the answers she receives. Next, Eve simply runs EveR. We have:

Pr
f
R←Fn,v

R←Πf

[
Evef (trans(v)) = outA(v)

]
≥ γ.

This contradicts the secrecy of Π.
�

The key can be B’s last query. Next we show that we can transform any protocol into one
where the secret key is the first bit of B’s last query.

Lemma 4.4. Let Π be an `-query (q, α, γ)-key-agreement protocol with two messages and commu-
nication complexity C. Then there is an (` + 1)-query (q, α, γ)-protocol Θ with two messages and
communication complexity C + 1, in which the secret key is the first bit of Y`+1.

Proof. In Θ, the players execute the original protocol Π, but with the following changes:

• In the beginning of the protocol, B asks one additional query Y`+1. This query is chosen
uniformly at random and independently of his other queries (and is not used by Π).

• A then sends her message M1 just as she would under Π, and B computes his message M2

under Π, and the secret key outB that he would output in Π.

• B sends A the message M2,b, where b = outB⊕(Y`+1)1 is an additional bit B appends to the
message.

• B outputs (Y`+1)1 as his secret key.

• A computes outA as in Π, and outputs outA⊕b.

Whenever outA = outB, A’s output agrees with B’s. The consistency of the new protocol, therefore,
is the same as Π’s.

For secrecy, let F be the random oracle, and assume there is EveF that breaks the secrecy of
Θ. Namely, EveF can guess the output of A with probability at least γ. Note that (Y`+1)1 is a
uniform random bit independent of M1,M2 and F. Thus, we can think that in Θ, B chooses the
value of outB⊕(Y`+1)1 after M2 was sent.
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• Given a transcript M1 and M2, the eavesdropper Êve
F

chooses a uniform random bit b.

• Êve
F

runs EveF(M1,M2,b). Let outEve be EveF’s output.

• Êve
F

outputs b⊕ outEve.

Since M1,M2, b are distributed exactly as in Θ, we have that Êve
F

breaks Π with the same proba-
bility EveF does, and with the same number of queries. �

4.2 Proof of the Main Theorem

We are now ready to prove Theorem 4.1. Given a (q, α, γ)-protocol, we showed in the previous
section that we can construct a (q − |E0|, α, γ)-protocol with one extra query and one extra bit
of communication, which has the two properties we need. Henceforth, we assume that the two
structural properties hold.

The heart of the lower bound is the following lemma, which asserts that the eavesdropper Eve
defined above is able to ask enough queries so that B has very little advantage over Eve when it
comes to outputting a secret key shared with A.

Let ΠF
Eve denote the distribution of Eve’s view under ΠF . Namely, it is the joint distribution

of (M1,M2,F(E1)). We use vE to denote a view of Eve drawn from this distribution.

Lemma 4.5.
E

vE
R←ΠF

Eve

[SD ((X,F(X),Y|vE ) , (X,F(X)|vE )× (Y|vE ))] ≤ 25
√
δ(CC(Π) + 5). (16)

simplicity of notation, here and below we use X,F(X),Y|vE to denote
(
X,F(X),Y

)
|vE (we

condition all the three random variables not just Y), and similarly in other cases. We prove
Lemma 4.5 below, but let us first use it to prove Theorem 4.1.

Proof of Theorem 4.1. First, let us fix δ such that Eve does not ask more than q queries. Let5

δ = 4`/q. Since both A and B ask together at most 2` queries,

2` ≥ E
ΠF

[|X ∪Y|] =
∑

q∈{0,1}n
Pr
ΠF

[q ∈ X ∪Y] .

Since every heavy-query contributes to the sum at least δ, the size6 of E0 is at most 2`/δ = q/2.
Similarly, for every m1 and f

∣∣
E0 ,

2` ≥
∑

q∈{0,1}n
Pr
ΠF

[
q ∈ X ∪Y | M1 = m1,F

∣∣
E0 = f

∣∣
E0

]
.

So, the size of E1 is also at most q/2. Overall, Eve asks no more than q queries.

5In general, for an r-message protocol, we would set δ = 2r`/q.
6Recall that we assumed that E0 = ∅. This assumption caused a loss in parameters, so here we need to bound the

size of E0.
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Now, recall that outB is assumed to be the first bit of B’s last query. In particular, outB is a
deterministic function of Y. From Equation (16) and Fact 2.12,

E
vE

R←ΠF
Eve

[
SD

((
X,F(X), outB|vE

)
, (X,F(X)|vE )×

(
outB|vE

))]
≤ 25

√
δ(CC(Π) + 5).

A’s output is a function of her view (X,F(X),M1,M2), so conditioned on vE = (M1,M2,F(E1)), it
is a function of (X,F(X)). Using the data processing inequality again, we obtain

E
vE

R←ΠF
Eve

[
SD

((
outA, outB|vE

)
,
(

outA|vE
)
×
(

outB|vE
))]
≤ 25

√
δ(CC(Π) + 5).

Eve samples her output outEve from outB|vE . Therefore,

Pr
ΠF

[
outA = outB

]
− Pr

ΠF

[
outA = outEve

]
= E

vE
R←ΠF

Eve

[
Pr

ΠF|vE

[
outA = outB

]
− Pr

ΠF|vE

[
outA = outEve

]]
≤ 25

√
δ(CC(Π) + 5). (17)

In words, Eve’s probability of guessing A’s output is close to B’s when CC(Π) is small.
On the other hand, we know that Π is α-consistent and γ-secure, so Eve cannot have a success

probability too close to B’s: By the α-consistency of Π, we have PrΠF

[
outA = outB

]
≥ 1 − α. By

the γ-secrecy, we have PrΠF

[
outA = outEve

]
≤ γ. Together,

Pr
ΠF

[
outA = outB

]
− Pr

ΠF

[
outA = outEve

]
≥ 1− α− γ. (18)

Combining (17) and (18) we see that we must have

CC(Π) ≥ (1− α− γ)2

252δ
− 5.

�

4.3 Proving Lemma 4.5

We prove Lemma 4.5 by considering each message separately. We start with an informal exposition
of the proof. The advantage the players obtain over Eve is encapsulated by the difference between

• what A and B learn about the intersection X∩Y of their query sets given the transcript and
their queries X or Y; and

• what Eve knows about the intersection X ∩Y given the transcript and her queries F(E1).

To bound this advantage, we argue that

I. After the first message (A’s message), all the knowledge that B has about A’s queries X comes
from her first message M1. Any advantage he has over Eve comes from what he has learned
about the intersection X∩Y of their query sets. Because M1 is short, B cannot learn too much
about this intersection. From his point of view, the posterior distribution of the intersection
given M1 remains close to the prior (which is known to Eve).

To establish this part of the argument we use the language of mutual information.
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II. Similarly, after the second message (B’s message), all the knowledge that A has gained about
B’s queries Y comes from M2 and what B already learned about the intersection X ∩Y from
M1. In particular, there is a small probability that after seeing M1, B has learned too much
about the intersection, and can use this knowledge to communicate with A securely (as Eve
does not know the intersection).

To deal with this low-probability bad event, we need to switch to the language of statistical
distance, and use Lemma 4.6 below.

The following technical lemma is useful in the analysis of the second message, as it allows to ignore
the knowledge B gained about the intersection in the first message. This lemma can be useful in
other contexts as well. Its proof appears in Appendix B.

Lemma 4.6. Let A = A1, . . . ,An, let T ⊆ [n] and let B be random variables. Let Z be a random
variable taking values in the set Z, and let g : Z → P([n]) be a function mapping the domain of Z
to subsets of [n]. Let

ε = E
z
R←Z

[
E

t
R←T|z

[
I(At; B|Ag(z), z)

]]
and δ = E

z
R←Z

[SD ((A,B,T|z) , (A,B|z)× (T|z))] .

Then

E
z,ag(z)

R←Z,Ag(z)

[
SD

((
AT,T,B|z,ag(z)

)
,
(

(AT,T|z,ag(z))× B|z,ag(z)
))]
≤ 2
√
ε+ 2δ.

Analyzing the first message.

We start by proving that in expectation, the first message does not create too much dependence
between the players’ views:

Claim 4.7. The following statements hold after seeing A’s message:

1. A’s view remain independent of B’s queries: I(X,F(X); Y|M1) = 0.

2. The same holds conditioned on Eve’s queries: I(X,F(X); Y|M1,F(E1)) = 0.

3. Not much dependence is created between B’s view and A’s queries: I(Y,F(Y); X|M1) ≤ δ|M1|.

Proof for Claim 4.7. The proof of the first item:

0 ≤ I(X,F(X); Y|M1) ≤ I(X,F(X),M1; Y) (Chain rule)

= I(X,F(X); Y) (Since M1 is a function of X,F(X))

= 0. (Because Y⊥(X,F(X)))

The proof of the second item:

0 ≤ I(X,F(X); Y|M1,F(E1)) ≤ I(X,F(X),M1,F(E1); Y) (Chain rule)

= I(X,F(X),F(E1); Y) (Since M1 is a function of X,F(X))

≤ I(X,F; Y) (Data processing)

= 0. (Because Y⊥(X,F))
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To prove the third item, we first show that all the “secret information” B has about X after seeing
M1 — that is, the dependence between his view and X given M1 — comes from the intersection
between A and B’s sets.

Let T := {i : Xi ∈ Y} be the indexes of the intersection queries.

Claim 4.8. I(Y,F(Y); X|M1) ≤ I(M1; F(XT)|T,X).

Proof.
I(Y,F(Y); X|M1) = I(Y,F(Y); X|M1)− I(Y,F(Y); X) (Because X⊥(Y,F(Y)))

≤ I(M1; Y,F(Y)|X) (Lemma 2.9)

≤ I(M1; T,F(XT),Y,F(Y)|X)

= I(M1; T,F(XT)|X) + I(M1; Y,F(Y)|X,T,F(XT)). (Chain rule)

The second term is 0: because M1 is a function of X,F(X), we have

I(M1; Y,F(Y)|X,T,F(XT))

≤ I(F(X); Y,F(Y)|X,T,F(XT)) (Data processing)

= I(F(X); Y|X,T,F(XT)) + I(F(X); F(Y)|X,T,F(XT),Y) (Chain rule)

≤ I(F(X),F(XT); Y|X,T) + I(F(X); F(Y)|X,T,F(XT),Y) (Chain rule)

= 0 + I(F(X); F(Y)|X,T,F(XT),Y) ((X,Y,T)⊥F)

= I(F(X \XT); F(Y \XT)|X,T,F(XT),Y)

= 0. (Since F is a random function and (X \XT) ∩ (Y \XT) = ∅)

Bound the first term:

I(M1; T,F(XT)|X)

= I(M1; T|X) + I(M1; F(XT)|T,X) (Chain rule)

≤ I(M1; Y|X) + I(M1; F(XT)|T,X) (Data processing: T is a function of Y given X)

= I(M1; F(XT)|T,X). (M1⊥Y|X)

�

Next, we bound the information M1 conveys about F(XT), using the fact that every element in
X is in the intersection only with small probability (less than δ). The proof of the claim is similar
to the proof of Shearer’s inequality.

Claim 4.9. I(M1; F(XT)|T,X) ≤ δ|M1|.

Proof. Recall that we denote by Xt,<i the restriction of X to coordinates in t that are less than i.
Write

I(M1; F(XT)|T,X)

= E
x

R←X

[
E

t
R←T|X=x

[I(M1; F(Xt)|T = t,X = x)]

]

= E
x

R←X

[
E

t
R←T|X=x

[∑
i∈t

I(M1; F(Xi)|T = t,X = x,F(Xt,<i))

]]
. (Chain rule)
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For fixed x, t, i, by the chain rule,

I(M1; F(Xi)|T = t,X = x,F(Xt,<i))

≤ I(M1,F(X{1,...,i−1}\t); F(Xi)|T = t,X = x,F(Xt,<i))

= I(F(X{1,...,i−1}\t); F(Xi)|T = t,X = x,F(Xt,<i)) + I(M1; F(Xi)|T = t,X = x,F(X<i))

= 0 + I(M1; F(Xi)|T = t,X = x,F(X<i)).

Conditioned on X, A’s message M1 and the oracle F are independent of B’s queries Y and therefore
also from the intersection T. Therefore,

I(M1; F(XT)|T,X) ≤ E
x

R←X

[
E

t
R←T|X=x

[∑
i∈t

I(M1; F(Xi)|T = t,X = x,F(X<i))

]]

= E
x

R←X

[
E

t
R←T|X=x

[∑
i∈t

I(M1; F(Xi)|X = x,F(X<i))

]]

= E
x

R←X

[∑
i

Pr [i ∈ T | X = x] I(M1; F(Xi)|X = x,F(X<i))

]
.

From the assumption that no queries are heavy a priori, Pr [i ∈ T | X = x] ≤ δ for all i. Finally,

I(M1; F(XT)|T,X) ≤ δ
∑
i

I(M1; F(Xi)|X,F(X<i))

= δ I(M1; F(X)|X) (Chain rule)

≤ δ|M1|. (Fact 2.5)

�

The proof of the third item is complete. �

Analyzing the second message.

We now want to show that the second message also does not create much dependence between A
and B’s views. As with Claim 4.7 for the first message, we first want to show that all the dependence
between A’s view and B’s queries comes from B’s message, and that this dependence goes through
the intersection between A and B’s queries and what the players learn about the intersection from
the transcript. This is done by the next claim. Let

T1 := {i : Yi ∈ X \ E1} .

In words, it is the set of the indices of B’s queries in the intersection that were not queried by
Eve. Recall that ΠF

Eve is the distribution of Eve’s view, which includes M1,M2 and F(E1). Let
BE = (M1,Y,F(Y ∩ E1)).

Claim 4.10.

E
vE

R←ΠF
Eve

[SD ((X,F(X),Y|vE ) , (X,F(X)|vE )× (Y|vE ))]

≤ 4 E
bE

R←BE

[SD ((T1,F(YT1),M2|bE ) , (T1,F(YT1)|bE )× (M2|bE ))] .
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The proof for the claim appears in Appendix B.
Now we left to show that on average, B’s message cannot convey too much information about

the intersection queries and their answers, as we did in Claim 4.9 for the first message. Specifically,
we want to bound

E
bE

R←BE

[SD ((T1,F(YT1),M2|bE ) , (T1,F(YT1)|bE )× (M2|bE ))] .

It would be easier if B knew nothing about the intersection (i.e. M2 was independent of T1 given
M1). But this is not the case, as B can learn some info from A’s message. However, from Claim 4.7,
we know that he does not learn a lot, and his message does not strongly depend on the intersection.
Formally,

Claim 4.11.
E

bE
R←BE

[SD ((T1,F(YT1),M2|bE ) , (T1,F(YT1)|bE )× (M2|bE ))] ≤ 6
√
δ(|M1|+ |M2|+ 5).

The two claims above complete the proof of Lemma 4.5.

Proof. By definition of BE ,

E
bE

R←BE

SD ((T1,F(YT1),M2|bE ) , (T1,F(YT1)|bE )× (M2|bE ))

= E
bE

R←BE

SD(
(
T1,F(YT1),M2|m1,y,f(e1∩y)

)
,(

T1,F(YT1)|m1,y,f(e1∩y)

)
×
(
M2|m1,y,f(e1∩y)

)
).

By Lemma 4.6, it is enough to show:

(1) E
m1,y

R←M1,Y
[SD ((F(Y),M2,T1|m1,y) , (F(Y),M2|m1,y)× (T1|m1,y))] ≤ 2

√
δ|M1|.

(2) E
m1,y

R←M1,Y

[
E
t
R←T1|m1,y

[I(F(yt); M2|m1, y,F(e1 ∩ y))]
]
≤ δ(|M1|+ |M2|+ 5).

The proof of the first item is (which is similar to the analysis of the first message):

E
m1,y

R←M1,Y

[SD ((F(Y),M2,T1|m1,y) , (F(Y),M2|m1,y)× (T1|m1,y))]

≤ 2
√

I(F(Y),M2; T1|M1,Y) (Fact 2.8)

= 2
√

I(F(Y); T1|M1,Y) (M2 is a function of Y,F(Y),M1)

≤ 2
√

I(F(Y); X|M1,Y) (T1 is a function of X,Y and M1)

≤ 2
√

I(Y,F(Y); X|M1) (Chain rule)

≤ 2
√
δ|M1|. (Claim 4.7)

To bound the second item we use a similar argument to the proof of Claim 4.9. The proof is
more complicated here, because when we condition on M1 and on Eve’s queries, the answers of the
oracle F are no longer independent of each other (e.g., A could send the XOR of the answers to
her queries). Nevertheless, because not much information was revealed about the oracle’s answers,
not much dependence is created between them. The proof consists of two steps. First, we show
that this term is bounded by δ |M2|, plus the dependency between the answers, created by the first
message and Eve’s queries (Claim 4.12). Next, we bound this dependency (Claim 4.13).
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Claim 4.12.

E
m1,y

R←M1,Y

[
E

t
R←T1|m1,y

[I(F(yt); M2|m1, y,F(e1 ∩ y))]

]

≤ δ|M2|+ δ E
y

R←Y

[∑
i

I(F(yi); F(y<i)|M1, y,F(E1 ∩ y))

]
.

The proof for Claim 4.12 is similar to the proof of Claim 4.9 and appears in Appendix B.

Claim 4.13.

E
y

R←Y

[∑
i

I(F(yi); F(y<i)|M1, y,F(E1 ∩ y))

]
≤ |M1|+ 5.

Proof. For every m ∈ Supp(M1), let E(m) be the set of queries Eve asks after seeing the message
m. By Lemma 2.11 (recall that Jm is the indicator for the event M = m),

E
y

R←Y

[∑
i

I(F(yi); F(y<i)|M1, y,F(E1 ∩ y))

]

≤ E
y

R←Y

∑
i

∑
m∈M1

[
I(F(yi); F(y<i)|y,F(E(m) ∩ y)) + I(F(yi); Jm|y,F(E(m) ∩ y),F(y<i))

]
(Lemma 2.11)

For every m, y, i, by the structure of F, and since F(E(m) ∩ y) is a fixed set, we have
I(F(yi); F(y<i)|y,F(E(m) ∩ y)) = 0. Thus,

E
y

R←Y

∑
i

∑
m∈M1

[
I(F(yi); F(y<i)|y,F(E(m) ∩ y)) + I(F(yi); Jm|y,F(E(m) ∩ y),F(y<i))

]
= E

y
R←Y

∑
i

∑
m∈M1

I(F(yi); Jm|y,F(E(m) ∩ y),F(y<i))


= E

y
R←Y

 ∑
m∈M1

I(F(y); Jm|y,F(E(m) ∩ y))

 (Chain rule)

≤
∑
m∈M1

H(Jm). (Fact 2.5)

There is at most one m′ such that Pr [M1 = m′] ≥ 1/2, hence,∑
m∈M1

H(Jm)

≤ 1 +
∑
m∈M1

Pr [M1 = m] (− log (Pr [M1 = m]) + 4) (Lemma 2.10)

= H(M1) + 5.

�

The proof of Claim 4.11 is complete. �
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4.4 Remarks

Adaptive Protocols. While we believe that the eavesdropper Eve we defined above should allow
us to prove lower bounds for every non-adaptive protocol, Eve will not work for adaptive protocol,
even if she can choose the sets adaptively as well. Protocol 4.14 is an example of a one-message
protocol with only O(log(`)) communication, but without any heavy query (for every δ > 1/`).
Specifically, Eve will not make any query, and can not, therefore, break the protocol. Notice,
however, that every one-message protocol can be broken trivially by simulating B, so this protocol
is not secure.

Protocol 4.14.

Parameters: n, ` = 2n/2

Common functions: f, g : {0, 1}n → {0, 1}n

1. A choses a random string x ∈ {0, 1}n and queries x, f(x), ..., f `−1(x) and g(f i−1(x)) for
a random index i ∈ [`].

2. B choses a random string y ∈ {0, 1}n and queries y, f(y), ..., f `−1(y) and g(y), ..., g(f `−1(y)).

3. A sends M1 = g(f i−1(x)) to B, and outputs f i−1(x).

4. If there is j ∈ [`] so that g(f j−1(y)) = M1 then B outputs f j−1(y). Otherwise, B aborts.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Constant Rounds Protocols We failed to continue the proof for multi-message protocol. The
main reason is that we were not able to deal with the dependency caused by Eve’s queries. In
two-message protocol, Eve’s only asks queries after the first message, which depends only on A’s
view. We show here that conditioning on Eve’s view in this case, cannot add too much dependency
between A and B. However, in protocols with more messages, the queries of Eve depend on the
view of both sides, and conditioning on Eve’s view can potentially make the dependency more
significant.

Acknowledgement

We thank Yuval Ishai for challenging us with this intriguing question, and Omer Rotem for very
useful discussions.

References

[1] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence.
In stoc29, pages 284–293. See also ECCC TR96-065.

[2] B. Barak and M. Mahmoody. Merkle puzzles are optimal - an O(n2)-query attack on any key
exchange from a random oracle. In Advances in Cryptology – CRYPTO ’09, pages 374–390,
2009.

[3] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM Journal on Discrete
Mathematics, 4(1):36–47, 1991.

28



[4] G. De Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira. On the energy cost of commu-
nication and cryptography in wireless sensor networks. In Networking and Communications,
2008. WIMOB’08. IEEE International Conference on Wireless and Mobile Computing,, pages
580–585. IEEE, 2008.

[5] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

[6] I. Haitner, E. Omri, and H. Zarosim. Limits on the usefulness of random oracles. Technical
Report 2012/573, Cryptology ePrint Archive, 2012. http://eprint.iacr.org/2012/573.

[7] I. Haitner, J. J. Hoch, O. Reingold, and G. Segev. Finding collisions in interactive protocols
- tight lower bounds on the round and communication complexities of statistically hiding
commitments. SIAM Journal on Computing, 44(1):193–242, 2015. Preliminary version in
STOC’07.

[8] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

[9] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages
44–61. ACM Press, 1989.

[10] M. Mahmoody, H. K. Maji, and M. Prabhakaran. Limits of random oracles in secure compu-
tation. arXiv preprint arXiv:1205.3554, 2012.

[11] R. J. McEliece. A public-key cryptosystem based on algebraic. Coding Thv, 4244:114–116,
1978.

[12] R. C. Merkle. Secure communications over insecure channels. In SIMMONS: Secure Commu-
nications and Asymmetric Cryptosystems, 1982.

[13] R. C. Merkle. A digital signature based on a conventional encryption function. In Advances
in Cryptology – CRYPTO ’87, pages 369–378, 1987.

[14] M. O. Rabin. Digitalized signatures and public-key functions as intractable as factorization.
Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COM-
PUTER SCIENCE, 1979.

[15] A. A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106(2):385–390, 1992.

[16] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

29

http://eprint.iacr.org/2012/573


A Merkle’s Puzzles

For completeness, we briefly describe here the Merkle Puzzles protocol [13]. Let S be a set of size

`2, and FS =
{
f : S 7→ {0, 1}2 log |S|

}
be the family of all functions from S to binary strings of

length 2 log |S|.

Protocol A.1 (Merkle’s Puzzles protocol Π = (A,B)).

Oracle: f ∈ FS .

Operation:

1. A samples uniformly and independently ` elements x1, ..., x` ∈ S, and sets a1 = f(x1), ..., a` =
f(x`).

B samples uniformly and independently ` elements y1, ..., y` ∈ S, and set b1 = f(y1), ..., b` =
f(y`).

2. A sends a1, ..., a` to B.

3. B looks for indices i, j ∈ [`] with ai = bi. If no such indices exists, it aborts.

4. B sends i to A.

5. A outputs xi and B outputs yj.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Since each party samples ` =
√
|S| uniform random element from S, by the birthday paradox

they have a common element (i.e., collision) with constant probability. By construction, the parties
out the same collision, if such exists. On the other hand, from an attacker point of view the collision
is a random element of S, and therefore she cannot find it with good probability without querying
a constant fraction of the element of S, namely by making Θ(`2) queries.

Note that Merkle Puzzless non-adaptive, uniform-queries, two-message protocol with near linear
communication, and therefore shows that our two lower bounds (Theorems 1.1 and 1.2) are tight.

B Missing Proofs

Proof of Lemma 2.17.
E
c
R←C

[SD ((A,B|C=c) , (A|C=c × B|C=c))]

≤ E
c
R←C

[SD ((A,B|C=c) , (A|C=c × B)) + SD ((A|C=c × B) , (A|C=c × B|C=c))]

(Triangle inequality)

= E
c
R←C

[SD ((A,B|C=c) , (A|C=c × B)) + SD ((B) , (B|C=c))] (Fact 2.14)

≤ E
c
R←C

[SD ((A,B|C=c) , (A|C=c × B)) + SD ((A|C=c × B) , (A,B|C=c))] (Data procesing)

= 2 E
c
R←C

[SD ((A,B|C=c) , (A|C=c × B))]

= 2SD ((A,C,B) , (A,C)× (B))
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Proof of Lemma 2.18.
SD ((M×A) , (M,A))

≤ SD ((M,B)× (A) , (M,B,A)) (Data processing)

= E
b
R←B

[SD ((M|B=b ×A) , (A,M|B=b))] (Fact 2.13)

≤ E
b
R←B

[SD ((M|B=b ×A) , (M|B=b ×A|B=b)) + SD ((M|B=b ×A|B=b) , (A,M|B=b))]

(Triangle inequality)

= E
b
R←B

[SD ((A) , (A|B=b)) + SD ((M|B=b ×A|B=b) , (A,M|B=b))] (Fact 2.14)

= SD ((A× B) , (A,B)) + E
b
R←B

SD ((M|B=b ×A|B=b) , (A,M|B=b)) (Fact 2.13)

�

Proof of Lemma 2.19.
E

m
R←M

[
SD ((A,B|M=m) , (A|M=m × B|M=m))

]
= E

m,b
R←M,B

[[
SD ((A|M=m,B=b) , (A|M=m))

]]
(Fact 2.13)

≤ E
m,b

R←M,B

[SD ((A|M=m,B=b) , (A|B=b)) + SD ((A|B=b) , (A)) + SD ((A) , (A|M=m))]

(Triangle inequality)

= E
b
R←B

[[
SD ((A,M|B=b) , (M|B=b ×A|B=b))

]
+ SD ((A,B) , (B×A)) + SD ((M×A) , (A,M))

]
(Fact 2.13)

≤ 2 E
b
R←B

[
SD ((A,M|B=b) , (M|B=b ×A|B=b))

]
+ 2SD ((A,B) , (A× B)) (Lemma 2.18)

�

Proof. Let t := E
(X ,Y)

R←(X,Y)
[|X ∩ Y|] be the expected intersection size. We show below that

b4t/(1−α−γ)c∑
i=0

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] ·AccGap (i) ≥ (1− α− γ)/4 (19)

It will then follows that ∃d ≤ 4t/(1−α−γ) such that AccGap (d) ≥ (1−α−γ)/4. We conclude
the proof by showing that t = `2/ |S|, and therefore d ≤ 4`2/ |S| (1 − α − γ). By linearity of
expectation,

t = E
(X ,Y)

R←(X,Y)

[|X ∩ Y|] =
∑̀
i=1

E
(X ,Y)

R←(X,Y)

[Xi ∈ Y] = `2/ |S| .
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So it is left to prove Equation (19). We first show that the expected value of AccGap (i) is at
least (1− α− γ)/2.

E
(X ,Y)

R←(X,Y)

[AccGap (|X ∩ Y|)] (20)

= E
(X ,Y)

R←(X,Y)

[
Pr

v
R←ΛCom(X,Y)

[
outBCom(v) = outACom(v) | |x(v) ∩ y(v)| = |X ∩ Y|

]]

− E
(X ,Y)

R←(X,Y)

[
Pr

v
R←ΛDist(X,Y)

[
outBDist(v) = outADist(v) | |x(v) ∩ y(v)| = |X ∩ Y|

]]
= Pr

v
R←ΛCom(X,Y)

[
outBCom(v) = outACom(v)

]
− Pr
v

R←ΛDist(X,Y)

[
outBDist(v) = outADist(v)

]
≥ (1− α− γ)/2.

It follows that
b4t/(1−α−γ)c∑

i=0

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] ·AccGap (i)

= E
(X ,Y)

R←(X,Y)

[AccGap (|X ∩ Y|)]

−
∑̀

i=b4t/(1−α−γ)c+1

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] ·AccGap (i)

≥ (1− α− γ)/2−
∑̀

i=b4t/(1−α−γ)c+1

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] ·AccGap (i) (Equation (20))

≥ (1− α− γ)/2−
∑̀

i=b4t/(1−α−γ)c+1

Pr
(X ,Y)

R←(X,Y)

[|X ∩ Y| = i] (AccGap (i) ≤ 1)

≥ (1− α− γ)/2− Pr
X R←X,Y R←Y

[|X ∩ Y| ≥ 4t/(1− α− γ)]

≥ (1− α− γ)/4., (Markov inequality)

and the the proof of the claim follows. �

Proof of Lemma 4.6. For z ∈ Z, let (T′|z) be distributed as the marginal distribution of (T|Z=z).
From the triangle inequality for statistical distance, we get:

E
z,ag(z)

R←Z,Ag(z)

[
SD

((
AT,T,B|z,ag(z)

)
,
(

(AT,T)|z,ag(z) × B|z,ag(z)
))]

≤ E
z,ag(z)

R←Z,Ag(z)

[
SD

((
(AT,T,B)|z,ag(z)

)
,
(

(AT′ ,T
′,B)|z,ag(z)

))]
+ E
z,ag(z)

R←Z,Ag(z)

[
SD

((
(AT′ ,T

′,B)|z,ag(z)
)
,
(

(AT′ ,T
′)|z,ag(z) × B|z,ag(z)

))]
+ E
z,ag(z)

R←Z,Ag(z)

[
SD

((
(AT′ ,T

′)|z,ag(z) × B|z,ag(z)
)
,
(

(AT,T)|z,ag(z) × B|z,ag(z)
))]

.
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We bound each term above separately: the first term is bounded by δ, because by Fact 2.13 and
the data processing inequality, we have

E
z,ag(z)

R←Z,Ag(z)

[
SD

((
(AT,T,B)|z,ag(z)

)
,
(

(AT′ ,T
′,B)|z,ag(z)

))]
= E

z
R←Z

[
SD

((
AT,Ag(z),T,B)|z

)
,
(
AT′ ,Ag(z),T

′,B)|z
))]

≤ E
z
R←Z

[
SD

(
((A,T,B)|z) ,

(
(A,T′,B)|z

))]
= E

z
R←Z

[SD ((A,B,T|z) , (A,B|z)× (T|z))] = δ.

Similarly, the third term is also bounded by δ, as by data processing,

E
z,ag(z)

R←Z,Ag(z)

[
SD

((
(AT′ ,T

′)|z,ag(z) × B|z,ag(z)
)
,
(

(AT,T)|z,ag(z) × B|z,ag(z)
))]

= E
z,ag(z)

R←Z,Ag(z)

[
SD

((
(AT′ ,T

′)|z,ag(z)
)
,
(

(AT,T)|z,ag(z)
))]

= E
z
R←Z

[
SD

((
(AT′ ,Ag(z),T

′)|z
)
,
(
(AT,Ag(z),T)|z

))]
≤ E

z
R←Z

[SD ((A,B,T|z) , (A,B|z)× (T|z))] = δ.

Finally, for the second term, we can write

E
z,ag(z)

R←Z,Ag(z)

[
SD

((
(AT′ ,T

′,B)|z,ag(z)
)
,
(

(AT′ ,T
′)|z,ag(z) × B|ag(z),z

))]

= E
z
R←Z,ag(z)

R←Ag(z)

[
E

t
R←T|z

[
SD

((
At,B|ag(z),z

)
,
(

At|ag(z),z
)
×
(

B|ag(z),z
))]]

(Fact 2.13)

≤ E
z
R←Z,ag(z)

R←Ag(z)

[
E

t
R←T|z

[
2
√

I(At; B|z, ag(z))
]]

(Fact 2.8)

≤ 2

√√√√ E
z
R←Z

[
E

t
R←T |z

[
I(At; B|z,Ag(z))

]]
(Fact 2.16)

= 2
√
ε.

�

Proof of Claim 4.10. From Claim 4.7 and Corollary 2.20 we get that:

E
vE

R←ΠF
Eve

[SD ((X,F(X),Y|vE ) , (X,F(X)|vE )× (Y|vE ))]

≤ 2 E
m1,f(e1),y

R←M1,F(E1),Y

SD(
(
X,F(X),M2|m1,f(e1),y

)
,(

(X,F(X)|m1,f(e1),y)× (M2|m1,f(e1),y)
)
).
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For every bE = (y,m1, f(e1 ∩ y)),

E
f(e1)

R←F(e1)|BE=bE

SD
((

X,F(X),M2|bE ,f(e1)

)
,
(
(X,F(X)×M2)|bE ,f(e1)

))
≤ 2SD ((X,F(X),F(e1),M2|bE ) , (X,F(X),F(e1)|bE ×M2|bE )) (Lemma 2.17)

= 2 E
x,f(x)

R←X,F(X)|bE

[
SD

((
F(e1),M2|bE ,x,f(x)

)
,
(
F(e1)|bE ,x,f(x) ×M2|bE

))]
(Fact 2.13)

Alice’s message M1 is only a function of X,F(X), and Eve’s queries E1 are a function of M1.
Thus, since F is a random function, F(E1 \ Y) is independent from F(Y \ E1) conditioned on
M1,Y,F(E1 ∩ Y),X,F(X). Next, because M2 is a function of M1,Y and F(Y), we have that M2 is
independent from F(E1 \Y) under the same conditioning.

We get that the distribution (F(e1),M2|bE ,x,f(x)) is equal to

F(e1)|bE ,x,f(x) ×M2|bE ,x,f(x),

and therefore,

E
x,f(x)

R←X,F(X)|bE

[
SD

((
F(e1),M2|bE ,x,f(x)

)
,
(
F(e1)|bE ,x,f(x) ×M2|bE

))]
= E

x,f(x)
R←X,F(X)|bE

[
SD

((
F(e1)|bE ,x,f(x) ×M2|bE ,x,f(x)

)
,
(
F(e1)|bE ,x,f(x) ×M2|bE

))]
= E

x,f(x)
R←X,F(X)|bE

[
SD

((
M2|bE ,x,f(x)

)
, (M2|bE )

)]
(Fact 2.14)

= SD ((X,F(X),M2|bE ) , ((X,F(X)×M2)|bE )) . (Fact 2.13)

Now we can show all the dependence comes from the intersection. Since T1 is a function of Y,
X and E1, and E1 is a function of M1, we get that

SD ((X,F(X),M2|bE ) , ((X,F(X)×M2)|bE ))

= SD ((X,T1,F(yT1),F(X),M2|bE ) , (X,T1,F(yT1),F(X)|bE ×M2|bE ))

= E
t,f(yt)

R←T1,F(yT1
)|bE

[
SD

((
X,F(X),M2|bE ,t,f(yt)

)
,
(
X,F(X)|bE ,t,f(yt) ×M2|bE

))]
(Fact 2.13)

Again, M2 is a function of Y,F(Y) and M1, and X,F(X) are independent from F(Y) conditioned
on M1,Y,F(E ∩Y),T1,F(YT1). Thus, the distribution (X,F(X),M2|bE ,t,f(yt)) is equal to

X,F(X)|bE ,t,f(yt) ×M2|bE ,t,f(yt),

and we get:

E
t,f(yt)

R←T1,F(yT1
)|bE

[
SD

((
X,F(X),M2|bE ,t,f(yt)

)
,
(
X,F(X)|bE ,t,f(yt) ×M2|bE

))]
= E

t,f(yt)
R←T1,F(yT1

)|bE

[
SD

((
X,F(X)|bE ,t,f(yt) ×M2|bE ,t,f(yt)

)
,
(
X,F(X)|bE ,t,f(yt) ×M2|bE

))]
= E

t,f(yt)
R←T1,F(yT1

)|bE

[
SD

((
M2|bE ,t,f(yt)

)
, (M2|bE )

)]
(Fact 2.14)

= SD ((T1,F(yT1),M2|bE ) , ((T1,F(yT1)×M2)|bE )) . (Fact 2.13)
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To conclude the proof, we take the expectation over BE , and the claim follows by the mono-
tonicity of expectation. �

Proof of Claim 4.12.
E

m1,y
R←M1,Y

E
t
R←T1|m1,y

[I(F(yt); M2|m1, y,F(e1 ∩ y))]

= E
m1,y

R←M1,Y

E
t
R←T1|m1,y

[∑
i∈t

I(F(yi); M2|m1, y,F(e1 ∩ y),F(yt,<i))

]
(Chain rule)

= E
m1,y

R←M1,Y

E
t
R←T1|m1,y

[∑
i∈t

I(F(yi); M2|m1, y,F(e1 ∩ y),F(y<i))

]

+ E
m1,y

R←M1,Y

E
t
R←T1|m1,y

[∑
i∈t

I(F(yi); M2|m1, y,F(e1 ∩ y),F(yt,<i))

− I(F(yi); M2|m1, y,F(e1 ∩ y),F(y<i))

]
≤ E

m1,y
R←M1,Y

E
t
R←T1|m1,y

[∑
i∈t

I(F(yi); M2|m1, y,F(e1 ∩ y),F(y<i))

]
+ E
m1,y

R←M1,Y

E
t
R←T1|m1,y

[∑
i∈t

I(F(yi); F(y<i)|m1, y,F(e1 ∩ y))

] (Lemma 2.9)

= E
m1,y

R←M1,Y

E
t
R←T1|m1,y

∑
i∈t

[
I(F(yi); M2|m1, y,F(e1 ∩ y),F(y<i))

+ I(F(yi); F(y<i)|m1, y,F(e1 ∩ y))

]
= E

m1,y
R←M1,Y

∑
i∈[`]

Pr [i ∈ T1|m1, y]

[
I(F(yi); M2|m1, y,F(e1 ∩ y),F(y<i))

+ I(F(yi); F(y<i)|m1, y,F(e1 ∩ y))

]
Since we excluded the heavy queries E1 from T1, and yi is some fixed query, and since X is inde-
pendent from Y conditioned on M1 we have

Pr [i ∈ T1|m1, y] = Pr [yi ∈ (X \ E1)|m1, y] ≤ Pr [yi ∈ (X \ E1)|m1] ≤ Pr [yi ∈ ((X ∪Y) \ E1)|m1] ≤ δ.
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Therefore,

E
m1,y

R←M1,Y

∑
i∈[`]

Pr [i ∈ T1|m1,y]

[
I(F(yi); M2|m1, y,F(e1 ∩ y),F(y<i))

+ I(F(yi); F(y<i)|m1, y,F(e1 ∩ y))

]
≤ E

m1,y
R←M1,Y

∑
i

δ

[
I(F(yi); M2|m1, y,F(e1 ∩ y),F(y<i))

+ I(F(yi); F(y<i)|m1, y,F(e1 ∩ y))

]
≤ δ E

y
R←Y

[
I(F(y); M2|M1, y,F(E1 ∩ y))

+
∑
i

I(F(yi); F(y<i)|M1, y,F(E1 ∩ y))

] (Chain rule)

≤ δ E
y

R←Y

[
|M2|+

∑
i

I(F(yi); F(y<i)|M1, y,F(E1 ∩ y))

]
(Fact 2.5)

�
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