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This paper makes progress on the problem of explicitly constructing a binary tree

code with constant distance and constant alphabet size.
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alphabet size poly(log n), where n is the depth of the tree. This is the first improvement

over a two-decade-old construction that has an exponentially larger alphabet of size

poly(n).

As part of the analysis, we prove a bound on the number of positive integer roots a

real polynomial can have in terms of its sparsity with respect to the Newton basis—a
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1 Introduction

This paper makes progress on the problem of explicitly constructing a binary tree code with

constant distance and constant alphabet size.

Tree codes are a powerful but so-far elusive combinatorial structure, defined and proven to

exist in [50, 52] in order to serve as a key ingredient for achieving a constant rate interactive

coding scheme. Tree codes are the central object for encoding information in the interactive

coding theory which developed from the initial papers. They remain a crucial building block

in almost all interactive coding schemes [46, 11, 10, 22, 5, 7, 4, 6, 25, 26, 38, 1, 23, 9,

33, 53]. The absence of an explicit construction that is also efficiently decodable is the only

reason why most of these schemes are computationally inefficient, requiring exponential-time

computations. Other works have invested significant effort in avoiding the use of (large) tree

codes, often at a considerable loss in the fraction or generality of errors that can be tolerated

[23, 5, 7, 8, 36, 28, 32, 6, 25]. We refer to the excellent survey by Gelles [21] for an in-depth

account of the role tree codes hold in the area of interactive coding theory.

In addition, tree codes have important uses as streaming codes for both Hamming er-

rors [18] and synchronization errors [29, 31, 10, 30]. In control theory, although mostly

unknown to the computer science community, tree codes are closely connected to anytime

reliable codes that are necessary to controlling and stabilizing systems over unreliable chan-

nels [47, 48, 49, 57, 58, 27, 35]; there, too, the absence of explicit constructions of tree

codes was the motivation for an elaborate work-around for certain control applications [42].

Tree codes have also found surprising application in metric embeddings [37] and complexity

theory [15, 14].

Let us define tree codes and explain why one should think of them as an online version

of a regular error correcting block code. A tree code consists of a complete rooted binary

tree (either infinite or of finite depth n) in which each edge is labeled by a symbol from an

alphabet Σ. There is a natural one-to-one mapping assigning each binary string s to a path

starting at the root, where s simply indicates which child is taken in each of the steps. For

a tree code, such a path naturally maps to a string over the alphabet Σ, which is formed by

concatenating the symbols along the path. This way a tree code T encodes any binary string

s into an equally long string T (s) over Σ. This encoding has the online property because

the encoding of any prefix does not depend on later symbols: any two distinct strings that

agree in their first k symbols also have encodings that agree in their first k symbols. A tree

code is said to achieve distance δ ≥ 0 if the encodings of any two strings differ in at least a

δ-fraction of the positions after the strings first disagree. The rate of a tree code is 1
log2 |Σ|

.

(More generally, a tree code may be a d-ary tree, with s in the above definition ranging

over an alphabet of cardinality d; in this case for finite d the rate is 1
logd |Σ|

; we will use such

larger-degree trees as a stepping stone but ultimately will construct a binary tree code.) A

tree code is said to be asymptotically good if it achieves both constant distance δ > 0 and
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a constant rate, namely, the alphabet size |Σ| is O(1) in n.

Three different proofs were provided in [50, 52], showing that for any δ < 1 there exists

a binary tree code with a constant-size alphabet achieving distance δ. All of these proofs, as

well as a later quantitative improvement by Peczarski [43], rely on the probabilistic method.

Interestingly however, in contrast to conventional error correcting block codes, a constant-

size-alphabet random tree code is not asymptotically good and has a distance of zero, with

high probability.

The problem of giving an explicit construction of asymptotically good tree codes has

drawn substantial attention, but has endured as a difficult challenge.1 Technically, for a

depth n tree code to be explicit, we require that there exist a deterministic algorithm running

in time poly(n) which on input s ∈ {0, 1}n′ (n′ ≤ n), outputs the label of the last edge on the

path s. We remark that one of the existence proofs is based on the Lovász local lemma [17]

but the algorithmic LLL [41, 12] does not yield explicit tree codes as it must construct the

entire exp(n)-size tree. In fact, for explicit constructions not much has been known beyond

a construction of Evans, Klugerman and Schulman [51] (dating to 1994) that provides a

tree code with alphabet size poly(n). Pudlák [45] studies sufficient and necessary structural

results for linear (MDS) tree codes and provides a construction with large arity. Moore

and Schulman gave a candidate construction [40], but its distance property relies on an

open conjecture about certain exponential sums. A tree code construction which reduces the

brute-force time of encoding and decoding from exponential, i.e., exp(n), to sub-exponential,

i.e., exp(nε), at the cost of an alphabet size exp(1/ε), was given by Braverman [8].

1.1 Our Results

In this work we obtain the first proven improvement over the two-decade-old construction

of [51] by giving an explicit binary tree code with constant distance and an exponentially

smaller, i.e., polylogarithmic, alphabet size.

Theorem 1.1. For every constant δ < 1 and integer n ≥ 1 there exists an explicit binary

tree code TC : {0, 1}n → Σn with distance δ and |Σ| = (log n)O(1).

Put differently, Theorem 1.1 gives a binary tree code with rate Ω(1/ log log n) and distance

δ. We point out that our techniques readily yield a depth n tree code that can be constructed

in time exp(nε) with alphabet size poly(1/ε). This improves on the alphabet size exp(1/ε)

that was obtained by Braverman [8] under the same running-time restriction.

We prove Theorem 1.1 in two steps. First, we construct a tree code over the integers as

given in Theorem 1.2 below. This tree code has the advantage of being of infinite depth. We

then reduce the input alphabet to Boolean.

1Wigderson in his new book “Mathematics and Computation” calls it “the most elegant open problem of

[the] theory [of interactive coding]” [61, page 202, Open Problem 15.34].
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Theorem 1.2. For every constant δ < 1 there exists an explicit tree code2 TCZ : ZN → ZN

with distance δ. Further, for every z = (zt)t∈N ∈ ZN and t ∈ N,

|TCZ(z)t| ≤ 2O(t2) · (max (|z0|, . . . , |zt|))O(1) .

Our construction is at its cleanest when δ = 1/2. In this case, the dependence on t is

also better. Throughout this section we focus on this tree code whose parameters are given

in the following theorem.

Theorem 1.3. There exists an explicit tree code TCZ : ZN → ZN with distance 1/2. Further,

for every z = (zt)t∈N ∈ ZN and t ∈ N, |TCZ(z)t| ≤ 2t ·max ((z0 log z0)2, . . . , (zt log zt)
2). 3

We wish to give some remarks regarding the bound on |TCZ(z)t| that is guaranteed by

Theorem 1.3. Assume that |zt| ≤ m for all t. Theorem 1.3 gives a bound of 2t(m logm)2 ≤
2tm3 on the t’th output symbol. This should be compared with the trivial bound of mt and

with the bound mO(log t) that is obtained by adapting the technique of [51] to tree codes over

the integers. Although our bound has an exponential dependence on t, the two parameters m

and t are decoupled and so one can take t super-constant while keeping the bound polynomial

in m. In the second step of our construction, we show that this property suffices to obtain the

improved binary tree code claimed by Theorem 1.1 with distance 1/2. The same argument

shows how Theorem 1.2 implies Theorem 1.1 for any constant distance δ < 1.

The proof of Theorem 1.3 is obtained by adapting the Reed Solomon polynomial inter-

polation framework to the online setting. We give an overview of the proof in Section 2 and

the formal proof is the content of Section 5. To analyze the distance, we prove a bound on

the number of distinct integral roots a real polynomial can have in terms of its sparsity in a

certain basis–a result of independent interest on which we elaborate on in Section 1.1.1 be-

low. The alphabet reduction technique we use to deduce Theorem 1.1 is covered in Section 6.

Finally, in Section 7, we prove Theorem 1.2.

1.1.1 A Bound on the Number of Integral Roots via Sparsity

The fundamental theorem of algebra asserts that a degree d > 0 polynomial with complex

coefficients has exactly d complex roots when counted with multiplicities. More generally,

over any field F, a degree d > 0 polynomial f ∈ F[x] has at most d roots in F (and exactly

d roots in the algebraic closure of F).

The sparsity of a polynomial, however, cannot be used to bound the number of its distinct

roots. There are natural examples of sparse polynomials with many roots even in the base

2Throughout the paper, it will be convenient to use the notation N = {0, 1, 2, . . .}.
3If one has in advance a bound on the |zt|’s in the form of a function b : N → N with |zt| ≤ b(t) then

the log-factors in the statement of the theorem can be avoided. This is the case in our application of the

theorem for the proof of Theorem 1.1. Nevertheless, we state the result in this more general form.

3



field, e.g., xp − x in Fp[x]. Nevertheless, for the analysis of our tree code construction, we

provide a meaningful bound on the number of positive integer roots (that is, roots in N) a

real polynomial can have in terms of its sparsity.

Unlike the notion of degree, sparsity is, of course, basis dependent. The basis for which

our bound holds is not the standard basis {1, x, x2, . . .} but rather the Newton basis which

consists of polynomials of the form
(
x
k

)
∈ R[x] for k ∈ N, where(

x

k

)
=
x(x− 1) · · · (x− (k − 1))

k!
.

It is easy to verify that for every d ∈ N, the set {
(
x
k

)
| k = 0, 1, . . . , d} forms a basis for the

space of univariate real polynomials of degree at most d.

Of course, with respect to this basis, the sparsity cannot be taken as a bound on the

number of distinct roots a polynomial can have. Indeed, for any d ∈ N, consider the degree

d polynomial
(
x
d

)
which has sparsity s = 1 in the Newton basis. Evidently,

(
x
d

)
has d distinct

roots at x = 0, 1, . . . , d− 1. Thus, one cannot hope to prove a general bound on the number

of roots in terms of sparsity even when restricting to integral roots and not accounting for

multiplicities.

Consider a polynomial with sparsity s = 2 in the Newton basis. Such a polynomial has

the form

f(x) = γ

(
x

c

)
+ δ

(
x

d

)
,

where 0 ≤ c < d are integers and γ, δ are nonzero real numbers. Clearly, 0, 1, . . . , c − 1 are

all roots of f , and c can be taken much larger than 2 – the sparsity of f . More generally,

if f is a polynomial with sparsity s and c = c(f) is the least integer such that
(
x
c

)
appears

in the expansion of f in the Newton basis then f will surely have 0, 1, . . . , c− 1 as its roots.

Again, it may be the case that c� s.

We prove that but for these c “trivial” integral roots, f has at most s − 1 roots in N.

This holds regardless of the degree of f . More precisely, we prove the following lemma which

can be interpreted as an additive uncertainty principle for the Newton basis.

Lemma 1.4. Let f ∈ R[x] be a nonzero polynomial of sparsity s ≥ 1 in the Newton basis.

Let c ≥ 0 be the least integer such that f(c) 6= 0. Then, f has at most s− 1 distinct roots in

[c,∞) ∩ Z.

Observe that the restriction to integral roots is necessary, that is, one cannot strengthen

the result by arguing about non-integral roots in [c,∞). To see this, take any integer d > 1

and consider the polynomial with integral coefficients fC(x) = (−1)d−1
(
x
1

)
+ C

(
x
d

)
, where

C ∈ N is chosen sufficiently large. The polynomial fC has sparsity 2, degree d and, with the

notation above, c(fC) = 1. However, for C large enough, fC ≈ C
(
x
d

)
(away from 0) and has

d − 1 distinct roots in [1,∞). This is as compared with our bound of at most one root in

{1, 2, . . .}.
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An equivalent statement of the lemma considers f ∈ R[[x]] as a formal power series in the

Newton basis: f(x) =
∑

k≥0 fk
(
x
k

)
. This is well defined at nonnegative integers (regardless

of whether there is an open set in which the series converges). The lemma states that if the

nonzero coefficients fk are fκ1 , fκ2 , . . . for some (finite or infinite) series κ1 < κ2 < . . ., then

for all s, f has at most s− 1 distinct roots in [κ1, κs) ∩ Z.

We prove Lemma 1.4 in Section 4. The proof makes use of the beautiful Gessel-Viennot

Lemma (see Lemma 3.9). Given the usefulness of the degree bound on the number of

roots, we believe that Lemma 1.4 should find further applications. The only existing result

that it resembles, to our knowledge, is Chebotarëv’s oft-rediscovered theorem (answering

a question of Ostrovskĭı) that every minor of the Fourier transform over Z/n, n prime, is

nonsingular [55]. We comment incidentally on the relationship of the latter property with

maximum-distance-separability (MDS). A k×n matrix is the parity-check matrix of an MDS

code if every k × k minor is nonsingular. In this sense, any collection of rows of the Fourier

matrix qualifies as the parity check matrix of an MDS code, but this is not what is normally

useful in coding theory since the underlying field is large (at least the n’th cyclotomic field).

2 Overview of the Construction

The polynomial interpolation framework is at the heart of several important constructions

of error correcting block codes such as the Reed Solomon code. Our construction is based

on identifying a suitable adjustment of the polynomial interpolation framework to the online

setting. To motivate our construction, we start by highlighting the difficulties in pursuing

such an approach. To this end, we recall the definition of the Reed Solomon code. Let n

be an integer. Assume, for simplicity, that n is prime, and let F be the field of n elements.

For an integer k ≤ n, the Reed Solomon code RS : Fk → Fn is defined as follows. Define

the polynomial fm(x) =
∑k−1

i=0 mix
i ∈ F[x]. The encoding of m is defined by RS(m) =

(fm(0), fm(1), . . . , fm(n− 1)).

As fm is linear in m, the analysis of the distance of RS proceeds by proving an upper

bound on the number of zero entries of a codeword that corresponds to a nonzero message.

By construction, these entries correspond to the number of distinct roots of fm in F. Here

is where the degree bound on the number of roots of fm is invoked.

An obvious difficulty in adapting the above idea to the construction of tree codes arises

from the latter’s online nature. As we do not have the entire message available to us up

until the very end, there is no clear sense as to which polynomial we should work with.

However, the challenge is more significant. Even given the entire message, one still needs

to gain nonzero output symbols starting from the index of the first nonzero entry of the

message. That is, not only that one has to work with partial information, a tree code must

also gain distance as soon as a disagreement, or “split,” occurs and to keep the distance

above a certain threshold from that point on. Restricting to the Reed Solomon construction,
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this means that even given the message m, the polynomial fm defined above should somehow

be evaluated on a carefully chosen sequence of points in the field. We do not know how to

implement such an approach or even if it is possible in principle. Anyhow, one does not have

the message in its entirety.

Having these difficulties in mind motivates our construction which we present next. Al-

though our construction is based on polynomial interpolation, and so it is inherently al-

gebraic, it can be motivated both using a combinatorial reasoning and from an algebraic

perspective. We start by presenting the combinatorial point of view in Section 2.1. We then

discuss the algebraic perspective in Section 2.2. The formal proof, given in Section 5, is

presented and analyzed only via the algebraic perspective, nevertheless, we believe that the

combinatorial point of view gives a natural motivation for our construction.

2.1 The Combinatorial Perspective

In this section we motivate and describe the tree code construction TCZ : ZN → ZN from

Theorem 1.3. Let z = (zt)t∈N ∈ ZN be a message that we want to encode. For t ∈ N, define

ft ∈ R[x] to be the polynomial of least degree such that ft(i) = zi for all i ∈ {0, 1, . . . , t}. Note

that ft is fully determined by z0, . . . , zt. Further, observe that ft is linear in z. Therefore,

so long as we define TCZ(z)t as a linear combination of the evaluation of the polynomials

f0, . . . , ft on fixed points, it will follow that TCZ(z)t = TCZ(z′)t if and only if TCZ(z− z′)t =

TCZ(0̄)t = 0; i.e., for purposes of distance analysis, it suffices to compare every nonzero

message z against the all-zeros message.

To recap, while the Reed Solomon code interprets the message as a polynomial, in our

construction (which has not yet been presented) every prefix of the message is interpreted as a

polynomial, and so z, chosen by the “adversary,” induces an infinite sequence of polynomials

f0, f1, f2, . . ..

Consider a scenario in which the adversary makes it so that ft = ft+1 = · · · = ft+`.

Intuitively, such a scenario is favorable for us. Indeed, one can imagine how useful it would

be if the adversary is committed to a single polynomial f for a long interval of time while

(just as in Reed Solomon) outputting evaluations of f in the interval. In some sense, it

is as if the tree code is only required to work against an off-line input on that interval;

the fundamental theorem of algebra can come into play and prevent having many 0s in the

output during this interval. Thus, a natural idea is to penalize the adversary when switching

to a new polynomial from time t − 1 to time t. This can be done by outputting, at time t,

the value

δt = ft(t)− ft−1(t).

In control theory, one would call δt the “innovation.” A complexity-theoretic point of

view would interpret δt as a consistency checking procedure. Indeed, unless the adversary

sticks to his polynomial ft−1 at time t, he pays in distance as then δt 6= 0. This consistency

6



checking symbol at time t is concatenated with ft(t), i.e., zt. To summarize, we define

TCcomb : ZN → (Z2)N by 4

TCcomb(z)t = (zt, δt).

It is not immediately clear from this representation why δt should be an integer but as it

turns out, that is the case and |δt| can be bounded as we discuss at the end of Section 2.2.

How large is the distance of TCcomb? It seems that an adversary that sticks to a poly-

nomial for not-too-long intervals may pay very little as we do not gather sufficient amount

of information during a short interval. On the other hand, it is intuitive that something is

gained by this approach. How would an adversary work against TCcomb?

A potential attack. One attack might work as follows. Fix some d ≥ 1. The adversary

will choose z0, . . . , zd such that the degree d polynomial fd has roots at d + 1, . . . , 2d. Now

by choosing just one new nonzero value z2d+1, the adversary obtains a new polynomial f2d+1

of degree 2d + 1 which shares the already-recorded d roots but also has d + 1 new roots,

potentially at 2d+2, . . . , 3d+2; the adversary then uses z2d+2 = . . . z3d+2 = 0 and in this case

we have δ2d+2 = . . . = δ3d+2 = 0. The adversary can again use a nonzero z3d+3, obtaining

a new polynomial f3d+3 with d + 2 new roots, potentially at 3d + 4, . . . , 4d + 5, and the

adversary then makes the choice z3d+4 = . . . = z4d+5 = 0. If this process can be repeated in

this manner (i.e., if the described polynomials exist), the result will be a branch of the tree

code which at depth ` has weight only O(
√
`).

Even if there are no polynomials that perfectly interpolate as required by the above

attack, it is not obvious that one can rule out a quantitatively-relaxed version of such an

attack. What one can see however, is that the adversary cannot beat Ω(
√
`): after the s’th

nonzero value, say it is zt, there cannot be a run of zeros 0 = ft(t + 1) = ft(t + 2) = . . . =

ft(t + s) as this would contradict Lemma 3.9, which establishes that the relevant minor in

the linear transformation is nonsingular.

Though certainly a nontrivial bound, an Ω(1/
√
`) distance is far from the constant dis-

tance that we are shooting for. Interestingly, TCcomb has, in fact, distance 1/2 ! In particular,

the above attack is far from feasible. To prove that, we consider an algebraic point of view

on the construction of TCcomb. Taking the algebraic perspective, we can prove that the

adversary has a budget of roots that is bounded by the sparsity (with respect to a certain

basis) of the polynomials rather than by their degree.

2.2 The Algebraic Perspective

So far, when working with the polynomials (ft)t, we did not pay attention to the basis in

which the polynomials are represented. Generally, the polynomial interpolation framework

4Note that the output symbols are pairs of integers rather than integers as stated in Theorem 1.3. This,

of course, is a non-issue and is only meant for a cleaner presentation.
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works over any basis as the degree, which is typically used in the analysis, is basis invariant.

However, for our purpose, the standard basis {1, x, x2, . . .} has the following drawback. Let

y0, . . . , yn ∈ R. Let f(x) =
∑n

i=0 aix
i be the least degree polynomial that interpolates on the

points (0, y0), (1, y1), . . . , (n, yn). Then generally, given a new point (n + 1, yn+1), the least

degree polynomial, g(x) =
∑n+1

i=0 bix
i, that interpolates on (0, y0), . . . , (n+ 1, yn+1) will have

a completely different sequence of coefficients (i.e., ai 6= bi).

By contrast, using the Newton basis, the coefficients that were already “recorded” stay

intact given the new point (n + 1, yn+1). More precisely, if f(x) =
∑n

i=0 γi
(
x
i

)
then g(x) =

f(x) +γn+1

(
x

n+1

)
for some γn+1 ∈ R. Classically, this fact makes the Newton basis attractive

for numerical stability and was used for obtaining structural results for polynomials [20, 54,

13]. For constructing tree codes, this property is attractive as it means that for every t, the

coefficient γt is determined by y0, y1, . . . , yt.

The above discussion suggests a second construction of tree codes over Z. Let γt be the

coefficient of
(
x
t

)
in the expansion of ft, as defined in Section 2.1. We define the tree code

TCalg : ZN → (Z2)N by

TCalg(z) = (zt, γt),

where we postpone in this informal discussion the technical (and simple) aspect involved in

encoding the two integers to a single binary string in a decodable way.

Interestingly, one can show that γt = δt for every t and so TCcomb and TCalg are one and

the same! The algebraic point of view on the tree code will allow us to prove a bound of 1/2

on the distance as we now explain.

Let c be the least integer such that zc 6= 0. Let ` ≥ 1 and set t = c + ` − 1. Observe

that the number of non-zeros in the sequence γ0, γ1, . . . , γt is precisely the sparsity of ft in

the Newton basis. This, together with the fact that for every i ≤ t, zi = ft(i), implies that

to “break” the construction TCalg, the adversary must come up with a sparse polynomial ft
that has many roots in I = {c, c + 1, . . . , t}. Indeed, if ft is not sparse, then many of the

γ-entries of (TCalg(z)i)i∈I will be nonzero. On the other hand, if ft has only few roots in I

then many of the z-entries are nonzero.

To give the quantitative bound we invoke Lemma 1.4 which implies that if the sparsity

of ft is s then there can be at most s − 1 zeros among the z-entries of {TCalg(z)i}i∈I . So

the combined number of nonzero integers among the 2` integers in (TCalg(z)i)i∈I is at least

`+ 1. Thus, at least half of the pairs are nonzero pairs, establishing a distance of 1/2.

Another issue that can be handled via the algebraic perspective is related to the integrality

of the output symbols. The symbol zt is clearly an integer. However, it is not a priori clear

that γt = δt is an integer. The Newton basis has another useful property we use—if z0, . . . , zt
are all integers, so are the coefficients γ0, . . . , γt. Note that this property does not hold for

the standard basis. Moreover, there is a closed formula for γt as a function of z0, . . . , zt (see

Lemma 3.8) which allows us to prove the desired bound on |γt|.
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2.3 Tree Codes for any Distance δ < 1

It is fairly straightforward to adapt the ideas described above to obtain any distance δ < 1.

A natural strategy is to use more evaluation points. This idea, however, should be executed

with some care. In this section we sketch how to obtain distance δ = 2/3. The idea can be

easily generalized to yield any distance δ < 1 (Section 7).

Let us suggestively denote the input message by z = (z0, z2, z4, . . .) ∈ Z2N. As before, we

define a sequence of real polynomials f0, f1, f2, . . .. However, to obtain the improved distance,

we also define a sequence of integers z1, z3, z5, . . . inductively on t ∈ N, as follows. For even

t we define ft, as before, to be the least degree real polynomial such that ∀i ∈ {0, 1, . . . , t},
ft(i) = zi. We then define ft+1 = ft and compute zt+1 = ft+1(t+ 1).

For t ∈ N, let γt be the coefficient of
(
x
t

)
in the expansion of ft. We define TC

2/3
alg : Z2N →

(Z3)N by

TC
2/3
alg (z0, z2, z4, . . .)t = (γ2t, z2t, z2t+1).

One can show that TC
2/3
alg is a linear online function. To argue about the distance,

let c be the least integer such that z2c 6= 0. Let ` ≥ 1. Set t = c + ` − 1 and denote

I = {c, c+ 1, . . . , t}. Observe that γi = 0 for every odd i, and so the number of non-zeros in

the sequence γ0, γ2, . . . , γ2t is the sparsity of f2t in the Newton basis. By Lemma 1.4, among

the evaluation points {2c, 2c + 1, . . . , 2t, 2t + 1}, at most s − 1 are roots of f2t. Thus, the

number of nonzero triplets among (TC
2/3
alg (z)i)i∈I is at least

s+ 2`− (s− 1)

3
≥ 2

3
`,

proving that the distance is 2/3.

One concern that must be addressed is the bound on the γ symbols. Unlike the 1/2

distance construction, now γt depends on the computed value zt−1 which, in turn, depends

on γt−2. Thus, potentially, the γ symbols can grow much faster and, indeed, the bound we

give for distance 2/3 is weaker than the corresponding bound for distance 1/2. Nevertheless,

as it turns out, for deducing Theorem 1.1, the weaker bound suffices. Further, the bound

does not degrade substantially when considering any constant distance 2/3 < δ < 1.

3 Preliminaries

Let n ≥ 1 be an integer and Σ some (finite or infinite) set. For a string x = (x1, . . . , xn) ∈ Σn

and integers 1 ≤ a ≤ b ≤ n, we let x[a,b] denote the substring (xa, . . . , xb). If σ ∈ Σ then σn

denotes the string (σ, . . . , σ) ∈ Σn. Given x, y ∈ Σn, we write dist(x, y) for their Hamming

distance.

For an integer n ≥ 1 write [n] for {1, 2, . . . , n}. We use the conventions that the natural

numbers are N = {0, 1, 2, . . .}, and that
(
a
b

)
= 0 for integers 0 ≤ a < b.
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3.1 Error Correcting Block Codes

Definition 3.1. A function ECC : Σk
in → Σn

out is an error correcting block code with distance

δ if for every distinct x, y ∈ Σk
in, dist(ECC(x),ECC(y)) ≥ δn. The rate of ECC is given by

(k log2 |Σin|)/(n log2 |Σout|).

For the proof of Theorem 1.1, it is convenient to consider error correcting block codes

whose output length is shorter than their input length and with output alphabet consisting

of binary strings of a certain length. We make use of the following construction of error

correcting block codes. The construction and its proof are given in Appendix A.

Lemma 3.2. For every constant 0 < δ < 1 and constant integer t ≥ 1 there exists an integer

c = c(t, δ) such that for every large enough integer n there exists an explicit error correcting

block code ECC : {0, 1}n → ({0, 1}c)n/t with distance δ.

3.2 Tree Codes

Tree codes, as their name suggest, are trees with certain distance properties. However, in this

paper, we use an equivalent definition of tree codes that more directly specifies their online

characteristic compared to the one given in the original papers [50, 52] and, in particular,

does not involve trees. This will be more convenient for presenting our construction.

Definition 3.3. A function f : Σn
in → Σn

out is said to be online if for every i ∈ [n] and

x ∈ Σn
in, f(x)i is determined by x1, . . . , xi.

Definition 3.4. For a pair of distinct x, y ∈ Σn, we define split(x, y) as the least integer

s ∈ [n] such that xs 6= ys.

Definition 3.5 ([50, 52]). An online function TC : Σn
in → Σn

out is a tree code with distance

δ if for every distinct x, y ∈ Σn
in, with s = split(x, y), and every ` ∈ {0, 1, . . . , n− s},

dist
(
TC(x)[s,s+`],TC(y)[s,s+`]

)
≥ δ(`+ 1).

We refer to n as the depth of TC. We refer to Σin,Σout as the input alphabet and output

alphabet, respectively.

We remark that the terms depth and split are coming from the original point of view of

tree codes as trees with certain distance properties. The depth is simply the depth of the

tree and the split is the level at which the pair of paths diverge. We borrow this terminology

even though we do not explicitly view tree codes as trees in this work. We are interested in

some further properties of tree codes.

Definition 3.6. Let TC : Σn
in → Σn

out be a tree code.

10



• We say that TC is a binary tree code if Σin = {0, 1}.

• Assume Σin,Σout are rings. TC is said to be linear if for every t ∈ [n], TC(x)t is a

linear function of x.

• We say that TC is explicit if it can be evaluated on every input m ∈ Σn
in in polynomial

time in the bit complexity of m.

We also consider the stronger notion of infinite tree codes, as was done in the original

papers [50, 52]. For a set Σ, we denote the set of all sequences (xi)i∈N, where xi ∈ Σ, by

ΣN. One can extend the notion of a split and of online functions to functions of the form

f : ΣN
in → ΣN

out in the natural way.

Definition 3.7 ([50, 52]). An online function TC : ΣN
in → ΣN

out is a tree code with distance

δ if for every distinct x, y ∈ ΣN
in, with s = split(x, y), and every integer ` ≥ 0,

dist
(
TC(x)[s,s+`],TC(y)[s,s+`]

)
≥ δ(`+ 1).

Note that an infinite tree code with distance δ yields, for every integer n ≥ 1, a tree

code of depth n with distance δ. We extend, in the natural way, the property of linearity

for infinite tree codes. We say that an infinite tree code is explicit if for every t ∈ N, the

restriction of TC to its first t coordinates is explicit as a finite tree code. Such a restriction

is well-defined as TC is an online function.

3.3 The Newton Basis

For k ∈ N, the Newton polynomial
(
x
k

)
∈ R[x] is defined by(

x

k

)
=
x(x− 1) · · · (x− (k − 1))

k!
.

As mentioned, {
(
x
k

)
}nk=0 is a basis for the space of polynomials of degree at most n, over R.

In fact any function f : N→ R can be expanded as a pointwise-converging power series over

this basis. The following lemma gives a formula for the coefficients of the expansion.

Lemma 3.8. Let f : N→ R. Then, for x ∈ N,

f(x) =
x∑
k=0

γk

(
x

k

)
=
∑
k≥0

γk

(
x

k

)
(3.1)

where

γk =
k∑
i=0

(−1)k−i
(
k

i

)
f(i) =

∑
i≥0

(−1)k−i
(
k

i

)
f(i).

Furthermore, if f ∈ R[x] is a polynomial of degree n then it equals the sum of the first n+ 1

terms of expansion (3.1).
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This is simply the inversion formula for a triangular matrix; for a proof see, e.g., Appendix

A in [13].

3.4 The Gessel-Viennot Lemma

Gessel and Viennot (1985) proved a result with the following corollary, which is generally

associated with their names:

Lemma 3.9 ([24], Corollary 2). Let 0 ≤ a1 < a2 < · · · < an and 0 ≤ b1 < b2 < · · · < bn be

integers. Define the n× n matrix M = M(a, b) by Mi,j =
(
ai
bj

)
. Then ai ≥ bi for each i ∈ [n]

iff detM 6= 0.

(For more recent treatments see [2], Chapter 5.4 or [3], Chapter 25.)

As it happens, this lemma is much older. It appears explictly in Zia-uddin (1933) [62],

and can be easily derived from a result of Pólya (1931) [44]. In Appendix C we explain this

and reconnect a few articles in the literature.

4 A Bound on the Number of Integral Roots via Spar-

sity

Proof of Lemma 1.4. The proof is by contradiction. Let s ≥ 1 be least integer such that

there is a counterexample: a polynomial f ∈ R[x] with sparsity s, specified by integers

0 ≤ c1 < · · · < cs and non-zero real numbers γ1, . . . , γs such that

f(x) =
s∑
i=1

γi

(
x

ci

)
(note that c = c1), and such that there exist integers ti with c ≤ t1 < · · · < ts such that all

f(ti) = 0. Necessarily s > 1 as the case s = 1 merely reflects that
(
x
c

)
6= 0 for x ≥ c.

Now we claim that all tj > cj; this clearly holds for j = 1 as f(c1) = γ1 6= 0. By way

of contradiction, let j ≥ 2 be a counterexample. Then, tj−1 < tj ≤ cj. By Lemma 3.8, the

polynomial
∑j−1

i=1 γi
(
x
ci

)
agrees with f on {0, . . . , cj − 1}, so it has distinct roots t1, . . . , tj−1

(all > c1 since the claim holds for j = 1) and sparsity j − 1; since j − 1 ≤ s − 1 < s, this

contradicts the minimality of f .

Finally, consider the s× s matrix A with entries Ai,j =
(
ti
cj

)
for i, j ∈ [s]. Let γ ∈ Rs be

the vector with entries γj. Then f(ti) = (Aγ)i so, all ti being roots, Aγ = 0̄. However, since

c1 < · · · < cs, t1 < · · · < ts, and all cj < tj, the hypothesis of Lemma 3.9 is met for A and

so detA 6= 0, a contradiction to γ 6= 0̄.
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5 Infinite Tree Codes over the Integers

In this section we prove Theorem 1.3. We start by defining the construction of TCZ.

The construction of TCZ. Define the function TCZ : ZN → (Z2)N as follows. For z =

(zt)t∈N ∈ ZN let f : N → N be such that f(t) = zt for all t ∈ N. By Lemma 3.8, one can

expand f in the Newton basis

f(x) =
∑
t∈N

γt

(
x

t

)
.

For t ∈ N, define TCZ(z)t = (zt, γt) .

Analysis. By Lemma 3.8, for all t ∈ N, γt is a Z-linear combination of z0, . . . , zt and

so TCZ is a linear online function with the asserted range. For t ∈ N, define mt =

max (|zi| : i ∈ {0, 1, . . . , t}). By Lemma 3.8,

|γt| ≤
t∑
i=0

(
t

i

)
|zi| ≤ 2tmt.

Finally, since in the Theorem statement the output alphabet is Z, one must reencode the pair

(zt, γt) as a single, not too large integer. In the lower-order bits, encode zt using, say, Elias’s

prefix-free γ-encoding of the integers [16]; this requires no more than 1 + 2 lgb2|zt|+ 1c bits.

Then write γt in the higher-order bits. The total number bits required is therefore bounded

by t+2 lg |zt|+c for some constant c. This proves the asserted bound on the output symbols.

We turn to analyze the distance of TCZ. As TCZ is linear, it suffices to consider a nonzero

sequence z = (zt)t∈N. Assume that c ∈ N is the least integer such that zc 6= 0. Let ` ≥ 0.

Set t = c+ ` and define I = {c, c+ 1, . . . , t}. Let ft ∈ R[x] be the polynomial

ft(x) =
t∑
i=0

γi

(
x

i

)
.

Observe that for every i ∈ I, the first entry of the pair TCZ(z)i equals zi = f(i) = ft(i). Let

s be the sparsity of ft in the Newton basis. Note that precisely s of the pairs (TCZ(z)i)i∈I
have a nonzero second entry. On the other hand, by Lemma 1.4, ft has at most s− 1 roots

in I. Hence, the number of indices i ∈ I for which the first entry of TCZ(z)i is 0 is bounded

above by s− 1. Thus, the number of indices i ∈ I for which TCZ(z)i is nonzero (as a pair)

is bounded below by

max (s, `+ 1− (s− 1)) ≥ `+ 1

2
.

This completes the proof of Theorem 1.3.

We remark that obtaining a construction with output symbols that are bounded by

poly(t) rather than the exponential dependence that was obtained above, would yield asymp-

totically good binary tree code.
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6 Binary Tree Codes with Polylogarithmic Size Alpha-

bet

In this section we prove Theorem 1.1. We do so for distance δ = 1/3 based on Theorem 1.3.

In Section 7, we explain how to achieve any distance δ < 1 based on Theorem 1.2. We start

by deducing the following corollary from Theorem 1.3.

Corollary 6.1. For every integer ` ≥ 1 there exists an explicit tree code

TC` :
(
{0, 1}`

)` → (
{0, 1}3`

)`
with distance 1/2.

We remark that by using Pudlák’s construction ([45], Lemma 6.1), one can obtain an

explicit tree code TC : ({0, 1}`3)` → ({0, 1}O(`3))` with constant distance. This construc-

tion too would have sufficed in place of Gessel-Viennot as a starting point for the proof of

Theorem 1.1, albeit with weaker parameters.

Proof of Corollary 6.1. The tree code TC` is obtained by restricting TCZ, defined in Sec-

tion 5, to its first ` coordinates where, for an integer b, we identify {0, 1}b with {0, 1, . . . , 2b−
1}.

It will be more convenient to start the index set of TC` from 1 rather than 0 as was done

in TCZ. Note that the input symbols, when represented as integers, are bounded by 2` − 1.

Therefore, by Theorem 1.3 for every t ∈ [`], the t’th output symbol is bounded in absolute

value by

2t−1(2` − 1)2 ≤ 2`−1(2` − 1)2 ≤ 23`−1 − 1,

and so, using the fact that we have a bound on the magnitude of the input integers in

advance, 3` bits suffice to represent the output symbols of TCZ, including the sign of γt.

Thus TC` inherits the distance 1/2 bound from TCZ.

For the proof of Theorem 1.1, it will be convenient to introduce a relaxed notion of tree

codes which we call lagged tree codes. Roughly, these are tree codes that are only required

to gain distance after some lag from the split.

Definition 6.2. An online function TCLag : Σn
in → Σn

out is a lagged tree code with distance δ

and lag L if for every distinct x, y ∈ Σn
in, with s = split(x, y), and every integer L ≤ ` ≤ n−s,

dist
(
TCLag(x)[s,s+`],TCLag(y)[s,s+`]

)
≥ δ(`+ 1).

We borrow the terminology used for tree codes for lagged tree codes. That is, we refer

to n as the depth of TCLag and to Σin,Σout as the input alphabet and output alphabet,

respectively. We also extend Definition 3.6 to lagged tree codes in the natural way. Note
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that a tree code is a lagged tree code with lag L = 0. At the other extreme, using error

correcting block codes, it is not hard to obtain explicit binary lagged tree codes with a trivial

lag of ` (that is, the guarantee on the distance holds only after reading the entire codeword),

constant distance, and |Σout| = O(1). In the following claim, we obtain explicit binary lagged

tree codes with a constant distance, |Σout| = O(1), and depth that is quadratic in the lag.

Claim 6.3. There exists a constant clag ≥ 1 such that for every integer ` ≥ 1 there exists an

explicit lagged tree code TCLag` : {0, 1}` → ({0, 1}clag)` with distance 1/3 and lag L = 16
√
`. 5

Proof. First, note that we may assume ` ≥ `0 for any desired constant `0. Indeed, based

on the probabilistic proof for the existence of tree codes [50] one can efficiently find, via a

brute force search, a tree code of any constant size and distance 1/3 thus proving the claim

for `0. From here on we assume ` ≥ `0 for a large enough constant `0 and so we may ignore

immaterial technical issues such as rounding.

For the construction of TCLag` we make use of the following building blocks:

• Let TC√` :
(
{0, 1}

√
`
)√`
→
(
{0, 1}3

√
`
)√`

be the tree code from Corollary 6.1. Recall

that TC√` has distance 1/2.

• Let ECC : {0, 1}3
√
` → ({0, 1}clag)

√
` be the error correcting block code from Lemma 3.2

set with distance 5/6. By Lemma 3.2, clag is a constant.

Let m ∈ {0, 1}`. Partition m to
√
` consecutive blocks each consisting of

√
` bits, namely,

m = (m1, . . . ,m√`) where mi ∈ {0, 1}
√
`. Similarly, for t ∈ [

√
`], we write TCLag`(m)t for

TCLag`(m) projected to the t’th block, where each block consists of
√
` elements of {0, 1}clag .

Formally, TCLag`(m)t = TCLag`(m)[(t−1)
√
`+1,t

√
`] ∈ ({0, 1}clag)

√
`. We define TCLag`(m)1 =

(0clag)
√
`. For t ∈ {2, . . . ,

√
`}, define

TCLag`(m)t = ECC
(
TC√`(m)t−1

)
,

where we interpret m as an element of ({0, 1}
√
`)
√
` when passing it to TC√`.

Observe that TCLag` is online. We turn to show that TCLag` has distance 1/3 and lag

16
√
`. Let x, y ∈ {0, 1}` be distinct strings with s = split(x, y). Let d ∈ [16

√
`, ` − s]. Let

i1 ∈ [
√
`] be the index for which the blocks xi1 , yi1 ∈ {0, 1}

√
` contain the split s. That is, i1 is

the split of x, y when interpreted as elements of ({0, 1}
√
`)
√
`. Note that i1 = b(s−1)/

√
`c+1.

Set b = bd/
√
`c−1 and observe that block numbers i1 +1, . . . , i1 +b−1 are all fully contained

in [s, s+ d]. Hence, by construction, the codeword TCLag`(x) projected to [s, s+ d] contains

(TCLag`(x)i1+1, . . . ,TCLag`(x)i1+b−1) =
(
ECC

(
TC√`(x)i1

)
, . . . ,ECC

(
TC√`(x)i1+b−2

))
5One can achieve distance 1/2 − ε for any constant ε > 0. This will effect the value of the constant clag

and the constant multiplying
√
` in the lag L.
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as a substring. Similarly, the codeword TCLag`(y) projected to [s, s+ d] contains

(TCLag`(y)i1+1, . . . ,TCLag`(y)i1+b−1) =
(
ECC

(
TC√`(y)i1

)
, . . . ,ECC

(
TC√`(y)i1+b−2

))
as a substring in the corresponding indices.

As TC√` is a tree code with distance 1/2 and i1 is the split of x, y when considered as

elements of ({0, 1}
√
`)
√
`, at least (b − 1)/2 of the indices i1, . . . , i1 + b − 2 are such that

TC√`(x)i 6= TC√`(y)i. As ECC has distance 5/6, each such index i contributes 5
√
`/6 to the

total distance. Thus, the number of disagreements between TCLag`(x), TCLag`(y) projected

to [s, s+ d] is bounded below by
b− 1

2
· 5

6

√
` ≥ d

3
,

where the last inequality follows as d ≥ 16
√
`.

Let ` ≤ n be integers. Let clag be the constant from Claim 6.3. Define the function

TCLagn` : {0, 1}n → ({0, 1}2clag)n as follows. Let m ∈ {0, 1}n. Write6 m = (m1, . . . ,m2n/`)

where each mi ∈ {0, 1}`/2. For i = 1, . . . , n/` define

oi = TCLag`(m2i−1,m2i),

ei = TCLag`(m2i,mmin(2i+1,2n/`)).

(In the second equation the minimum with 2n/` is taken only to make sure that we do not

go out of the index set of the message.)

Note that each of oi, ei is an element of ({0, 1}clag)`. Let ci = (oi, ei) of which we think of

as an element of ({0, 1}2clag)`. Define

TCLagn` (m) = (c1, c2, . . . , cn/`).

Claim 6.4. Let x, y be distinct n-bit strings and let s = split(x, y). Assume that s ≤ n−`/2.

Then, for every integer 16
√
` ≤ d ≤ `/2,

dist
(
TCLagn` (x)[s,s+d],TCLag

n
` (y)[s,s+d]

)
≥ d/3.

Proof. Let i ∈ [2n/`] be the index of blocks xi, yi that contain the split s. Assume i is odd and

let t = s− (i−1)`/2 be the index within block i of the split. Then TCLagn` (x)[s,s+d] contains,

as a substring, TCLag`(xi, xi+1)[t,t+d], where we have used the fact that t+ d ≤ ` as implied

by the hypothesis d ≤ `/2 and since, by construction, t ≤ `/2. Similarly, TCLagn` (y)[s,s+d]

contains TCLag`(yi, yi+1)[t,t+d] in the corresponding indices. The proof follows as TCLag` is a

lagged tree code with distance 1/3 and lag 16
√
`. A similar argument holds for even i’s.

We are now ready to prove Theorem 1.1 (for distance δ = 1/3).

6For the sake of clarity, we ignore issues of divisibility that can be easily handled.
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Proof of Theorem 1.1. First, observe that it suffices to construct a lagged tree code with

distance 1/3 and lag L = O(1). Such a lagged tree code can be efficiently converted to a tree

code with distance 1/3 and only a constant overhead in alphabet size by including the last

L inputs in the encoding at any point of time. Set j = log2 log2 n and define the sequence

of integers `1, . . . , `j recursively as follows: `1 = 220 and for i ≥ 1, `i+1 = `2
i /2

10. One can

verify that `i = 210(2i−1+1) and so for every integer 214 ≤ d ≤ n there exists i ∈ [j] such that

16
√
`i ≤ d ≤ `i/2.

We define TC : {0, 1}n → Σn as follows. Let m ∈ {0, 1}n. For i ∈ [j] define ti =

TCLagn`i(m) ∈ ({0, 1}2clag)n. Define

TC(m) = (t1, t2, . . . , tj) ∈ ({0, 1}2clagj)n.

Note that Σ = {0, 1}2clagj is an alphabet of size (log n)O(1). TC is an online function as each

of the functions TCLagn`1 , . . . ,TCLag
n
`j

is online. We turn to show that TC is a lagged tree

code with lag 214 and distance 1/3. Let x, y ∈ {0, 1}n be distinct with s = split(x, y). Let

214 ≤ d ≤ n − s. By the above, there exists i ∈ [j] such that 16
√
`i ≤ d ≤ `i/2. Hence,

TCLagn`i guarantees that the fraction of disagreements between TC(x) and TC(y) projected

to [s, s+ d] is at least 1/3.

7 Tree Codes for any Distance δ < 1

In this section we prove the following theorem which readily implies Theorem 1.2.

Theorem 7.1. For every integer r ≥ 1 there exists an explicit tree code TCrZ : ZN → (Zr+1)N

with distance 1− 1/(r+ 1). Further, for every z = (zt)t∈N ∈ ZN and t ∈ N, each of the r+ 1

integers in TCrZ(z)t is bounded, in absolute value, by 2O(t2r) ·max (|z0|, . . . , |zt|) .

Proof. Let rN = {0, r, 2r, . . .} be the set of all natural numbers that are divisible by r, and

let r̄N = N \ rN. Formally, the tree code TCrZ defined next has domain ZrN but, for ease of

readability, we identify ZrN with ZN in the natural way.

The construction of TCrZ. Define the function TCrZ : ZN → (Zr+1)N as follows. Given

z = (zt)t∈rN, we define a sequence of real polynomials (ft)t∈N and a sequence of integers

(zt)t∈r̄N inductively with respect to t ∈ N as follows:

1. Define ftr to be the least degree real polynomial such that ∀i ∈ {0, 1, . . . , tr}, ftr(i) =

zi.

2. Define the real polynomials ftr+1, · · · , ftr+r−1 to equal ftr.

3. For i = 1, . . . , r − 1, set ztr+i = ftr+i(tr + i).
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By Lemma 3.8, there exists a sequence of integers (γi)i∈N such that for every t ∈ N,

ft(x) =
∑t

i=0 γi
(
x
i

)
. For t ∈ N, define

TCrZ(z)t = (γtr, ztr, ztr+1, ztr+r−1) .

Analysis. Observe that the γt’s as well as zt for t ∈ r̄N are all Z-linear combination of the

input sequence (zt)t∈rN, and so TCrZ is a linear function with range Zr+1. Further, TCrZ is

online.

We turn to analyze the distance of TCrZ. As TCrZ is linear, it suffices to consider a nonzero

sequence z. Assume that c ∈ N is the least integer such that zcr 6= 0. Let ` ≥ 0. Set t = c+`

and define I = {c, c + 1, . . . , t}. Recall that ftr(x) =
∑tr

i=0 γi
(
x
i

)
. By (2), γi = 0 for every

i ∈ r̄N and so

ftr(x) =
t∑
i=0

γir

(
x

ir

)
.

Denote the sparsity of ftr by s. Note that s of the γ-entries in (TCrZ(z)i)i∈I are nonzero.

By Lemma 1.4, ftr has at most s − 1 roots in [cr,∞) ∩ Z and, in particular, at most s − 1

roots among {cr, cr + 1, . . . , tr + r − 1}. As the evaluation of ftr on these (` + 1)r points

appear as entries in (TCrZ(z)i)i∈I , we have that at least

s+ (`+ 1)r − (s− 1) = (`+ 1)r + 1

of the (`+ 1)(r + 1) integers in ((TCrZ)i)i∈I are nonzero. Thus, at least

(`+ 1)r + 1

r + 1
>

(
1− 1

r + 1

)
(`+ 1)

of the indices i ∈ I are such that TCrZ(z)i is nonzero as an (r + 1)-tuple, establishing the

desired bound on the distance.

We turn to bound the output symbols. We start by bounding the γ symbols. Recall that

γi = 0 for every i not divisible by r. For t ∈ N, let Γt = max (|γi| : i ∈ {0, 1, . . . , t}) and

define mtr = max (|zi| : i ∈ rN ∩ [0, tr]). By Lemma 3.8, for every t ≥ 1 we have that

γtr =
tr∑
i=0

(−1)tr−i
(
tr

i

)
zi

= ztr +
tr−1∑
i=0

(−1)tr−i
(
tr

i

) i∑
j=0

γj

(
i

j

)
,
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and so

|γtr| ≤ |ztr|+
tr−1∑
i=0

(
tr

i

) i∑
j=0

|γj|
(
i

j

)

≤ |ztr|+
tr−1∑
i=0

(
tr

i

)
Γi2

i

≤ |ztr|+ Γtr−1

tr∑
i=0

(
tr

i

)
2i

= |ztr|+ 3trΓtr−1.

As Γtr−1 = Γ(t−1)r and since, being an input symbol, |ztr| ≤ mtr, we have that Γtr ≤
3trΓ(t−1)r +mtr, which implies Γtr ≤ mtr · 3t

2r.

As for the computed z values, by (2) and (3), for t ∈ N and k ∈ {1, 2, . . . , r − 1},

ztr+k = ftr+k(tr + k)

= ftr(tr + k)

=
t∑
i=0

γir

(
tr + k

ir

)
≤ mtr · 3t

2r · 2tr+k,

which completes the proof of Theorem 7.1.

Corollary 7.2. There exists a universal constant c ≥ 1 such that for every ζ > 0 and every

integer ` ≥ 1 there exists an explicit tree code

TC` :
(
{0, 1}`2

)`
→
(
{0, 1}

c
ζ2
·`2
)`

with distance δ = 1− ζ.

Proof. The tree code TC` is obtained by restricting TCrZ, set with r = d1/ζe, to its first `

coordinates where, as in the proof of Corollary 6.1, for an integer b, we identify {0, 1}b with

{0, 1, . . . , 2b − 1}. Note that the input symbols, when represented as integers, are bounded

by 2`
2
. Therefore, by Theorem 7.1, there exists a universal constant c ≥ 1 such that every

output symbol is bounded in absolute value by 2c(1/ζ)
2`2 and so c(1/ζ)2`2 bits suffice to

represent the output symbols of TCrZ. Clearly, TC` inherits the 1−1/(r+1) ≥ 1−ζ distance

bound from TCrZ.

The reduction in Section 6, instantiated with Corollary 7.2 instead of Corollary 6.1, and

when executed with a suitable choice of parameters, yields a binary tree code with distance

δ = 1− ζ and alphabet size (log n)O(1/ζ2).

19



Acknowledgments

Thanks to David Zuckerman and Klim Efremenko for illuminating Pólya’s work; and thanks
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A Proof of Lemma 3.2

For the proof of Lemma 3.2, we make use of algebraic-geometric codes.
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Theorem A.1 ([19]. See also [56]). Let p be a prime number and m ∈ N even. Set q = pm.

For every 0 < ρ < 1 and a large enough integer n, there exists an explicit rate ρ linear error

correcting block code ECC : Fnq → Fn/ρq with distance

δ ≥ 1− ρ− 1
√
q − 1

.

Proof of Lemma 3.2. Let ` be the least integer such that 2` ≥ 2/ε + 1 and let q = 22`. Let

m be the least integer such that 1/m ≤ ε/2. By Theorem A.1, there exists an explicit error

correcting block code ECC′ : Fnq → Fmnq with distance 1− ε. Identify Fq = F22` with {0, 1}2`

by fixing a representation for Fq. Note that q = O(1/ε2) = O(1) and so such a representation

can be computed in constant time. Set c = 2`tm. Define, ECC : {0, 1}n → ({0, 1}c)n/t as

follows. Given x ∈ {0, 1}n, identify x with an element of Fn2 ⊆ Fnq . For i ∈ [n/t], define

ECC(x)i =
(
ECC′(x)(i−1)mt+1, ECC

′(x)(i−1)mt+2, . . . , ECC
′(x)imt

)
.

Note that c = O((t/ε) log(1/ε)).

Consider distinct x, y ∈ {0, 1}n and, as before, identify {0, 1}n with Fn2 ⊆ Fnq . Then, the

codewords ECC′(x), ECC′(y) agree on at most ε-fraction of the coordinates. This readily

implies that ECC(x), ECC(y) agree on at most ε-fraction of the coordinates.

B Strongly Palindrome-Avoiding Labelings

Here is a variation on the tree code construction problem. For w = w1 . . . wn, wi ∈ Σ a word,

let w = wn . . . w1 be its reversal.

Definition B.1. DPal(w) = 1
n
dHamming(w,w).

Consider a mapping α from the edges of the infinite (rooted) 3-ary tree into Σ. For

vertices u, v let α(u, v) be the word one reads along the simple path from u to v. For δ < 1,

say α is (1 − δ)-palindrome avoiding if for all u, v separated by distance greater than 1,

DPal(w) ≥ 1− δ.
It is a consequence of the Lovász local lemma that for any δ > 0 there is a |Σ| < ∞

so that such labelings α exist. One would like to construct one, in the sense that the label

of any edge at distance n from the root can be computed in time polynomial in n. This is

essentially a generalization of the tree code problem, in that one now also cares about pairs

of vertices x, y that are not at the same level of the tree.

(The construction problem is easy for the weaker requirement that every α(u, v) of length

at least 2 not be a palindrome.)
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C Lemma 3.9 and Pólya’s Two-Point Interpolation

C.1 Background

The proofs by Zia-uddin and by Gessel and Viennot (using an idea of Lindström [39]) of

Lemma 3.9 are entirely combinatorial.

Pólya, on the other hand, gave an analytic proof—which we thank David Zuckerman for

explaining to us—of the following result in interpolation theory:

Theorem C.1 (Pólya [44]). For g a real univariate polynomial of degree at most n, let g(k)

denote its k’th derivative. Let x and y be any two distinct reals, and let S, T ⊆ {0, . . . , n}.
Then g is determined by the pair of sequences (g(k)(x))k∈S, (g(k)(y))k∈T if and only if for

every 0 ≤ n′ ≤ n, |S ∩ {0, . . . , n′}|+ |T ∩ {0, . . . , n′}| ≥ n′ + 1.

(The “only if” is immediate; the “if” is not, and fails for instance for the analogous

statement for three interpolation points.)

As noted by Kersey [34], Theorem C.1 implies Lemma 3.9; we explain this below.

Gessel and Viennot were unaware of Zia-uddin’s work or that their corollary could be

obtained from Pólya’s work; Kersey was unaware of the work of Gessel-Viennot or Zia-

uddin; and Whittaker, who used Zia-uddin’s result to obtain consequences for two-point

interpolation [59], was unaware (even in the monograph [60]) of Pólya’s result on two-point

interpolation which implies the result of Zia-uddin. We are confident that we are unaware

of very much more.

C.2 Proof of Lemma 3.9 from Theorem C.1

Let x = 0, y = 1, and let ai be the index of the ith “missing evaluation” at 0, that is,

ai = the least n′ such that |S ∩ {0, . . . , n′}| = n′ + 1 − i, up until there is no such n′ ≤ n.

Let bi be the index of the ith “present evaluation” at 1, that is, bi = the least n′ such that

|T ∩ {0, . . . , n′}| = i.

Let ā1 ≤ . . . be the complement of S in {0, . . . , n′}. The map g → ((g(k)(0))k∈S,

(g(k)(1))k∈T ) is linear; in order to write it down explicitly we specify g by the values g(k)(0).

Let us permute these values into the order (ā1, . . .) followed by (a1, . . .), that is, into the vec-

tor (g(ā1)(0), . . . , g(a1)(0), . . .). The map carries this to the vector (g(ā1)(0), . . . , g(b1)(1), . . .).

In matrix form (acting on row vectors) the map is(
I M(ā, b)

0 M(a, b)

)
This matrix is nonsingular if and only if M(a, b) is nonsingular. It remains to verify that

the condition “∀i ai ≥ bi” of Lemma 3.9 is the same as the condition “∀n′ . . . ≥ n′ + 1” of

Theorem C.1. For the⇐ direction, suppose to the contrary there is an i s.t. ai < bi. Then set
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n′ = ai and note that |S∩{0, . . . , n′}| = n′+1−i while |T∩{0, . . . , n′}| < |T∩{0, . . . , bi}| = i,

so |S∩{0, . . . , n′}|+|T ∩{0, . . . , n′}| ≤ n′. For the⇒ direction, suppose to the contrary there

is an n′ s.t. |S ∩ {0, . . . , n′}|+ |T ∩ {0, . . . , n′}| ≤ n′. Then in particular |S ∩ {0, . . . , n′}| ≤
n′, so a1 ≤ n′; let i be greatest s.t. ai ≤ n′. Then |S ∩ {0, . . . , n′}| = n′ + 1 − i, so

|T ∩ {0, . . . , n′}| ≤ i− 1, and consequently bi > n′. Therefore bi > ai.
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