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Abstract

Unique Games Conjecture (UGC), proposed by [24], lies in the center of many inapprox-
imability results. At the heart of UGC lies approximability of MAX-CUT, which is a special
instance of Unique Game. [25, 29] showed that assuming Unique Games Conjecture, it is NP-
hard to distinguish between MAX-CUT instance that has a value 1 − ε vs. 1 − Ω(

√
ε). [14]

then showed a matching polynomial time algorithm using Semi-Definite Programming. Towards
resolving UGC, it has been long conjectured that inapproximability of MAX-CUT and UGC are
equivalent. Assuming the equivalence, it suffices to exhibit lower bounds on MAX-CUT towards
resolving UGC.

Towards showing the equivalence of the hardness of MAX-CUT and UGC, we initiate the
study of symmetric parallel repetition, which is parallel repetition without coordinate. In par-
ticular, we show that symmetric parallel repetition beats strong parallel repetition in certain
regimes, that is the value decays (1− εc)Ω(r) with c < 2, exhibiting the first separation between
symmetric parallel repetition and usual parallel repetition. This is in sharp contrast to the usual
parallel repetition as shown by [21, 30] where the best upper bound known for the value of the
game G⊗r is (1 − ε2/2)Ω(r) for projection games. The counterexample shown by [32] gives a
lower bound of val(G⊗r) ≥ (1 − ε2)O(r) for r = Ω(n2) where n is the size of the graph. This
also implies that the odd cycle game is not a counterexample for symmetric parallel repetition.

The main technical tool is the analysis of the Birthday Repetition in high intersection regime
first introduced in [1] subsequently improved in [27]. From a technical perspective we show that
(a) if the set size is slightly larger than

√
n, then the value decays strong exponentially (i.e.

(1− ε)Ω̃(r)) in the expected intersection size; (b) if the set becomes large as in the whole vertex
set, then the value decays strong exponentially in the number of edges that are checked by the
verifier. Then we use prove a translation lemma to translate these technical results to corollaries
in symmetric parallel repetition.

This exhibits a dichotomy between the usual parallel repetition and symmetric parallel rep-
etition. In particular, it shows that the avenue of attack for showing the equivalence between
the hardness of MAX-CUT and the Unique Games Conjecture using some model of repetition
is still open.
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1 Introduction

Two Prover game (G) is a key concept in computational complexity defined by underlying (bipartite)
graph G = (X,Y,E), alphabets A and B respectively for Prover 1 (Alice) and Prover 2 (Bob) and
a verification function V : X × Y × A × B → {0, 1} for the verifier. In particular, computing the
value of two prover games i.e.

val(G) := max
f,g

E
(x,y)∈E

[V (x, y, f(x), g(y))]

where f : X → A and g : Y → B are Alice and Bob’s respective answering strategy, is used as
a starting point for the hardness of approximation for various problems. The original hardness of
two prover game [4, 5] and subsequently [16] show that there is some constant ε such that it is
NP-hard to distinguish between val(G) = 1 and val(G) < 1 − ε instead of any constant or any
super-constant hardness.

The key technique to amplifying the hardness of two prover game is Parallel Repetition,
repeating the game in parallel r-times. More precisely, the verifier, instead of picking a single edge,
picks r random edges from G, (x1, y1), . . . , (xr, yr), then let Alice and Bob give assignment to all
r-edges. The verifier then returns

∧r
i=1 V (xi, yi, fi(~x), gi(~y)), where fi(~x) is the assignment to xi

and similarly for gi(~y), and ~x = (x1, . . . , xr) and similarly for ~y.
At a first glance, it seems that if val(G) < 1 − ε, then the value should decay as (1 − ε)r.

However, this is not true, since one can correlate the answer between different coordinates and
perform better than (1− ε)r. (note that fi has the whole ~x as the input.)

Still Parallel Repetition does hold. [39] first showed that the value converges to 0 as r goes
to infinity. A major breakthrough by Raz [31] showed first exponential decay (as in (1 − εc)Ω(r)

where c depends on the answer length) followed by subsequent simplifications and improvements
by [21]. Rao improved Holenstein’s proof for the case of projection games (i.e. games where Bob’s
assignment forces an assignment on Alice) upper-bounding the value by (1−ε2/2)Ω(r) [30, 18]. The
proof was later generalized by [9] for games with small value as well.

Then a natural question is, “can we improve this bound” In particular, can we prove a value
decay of (1−εc)Ω(r) where c < 2 ? Indeed, one might argue that achieving c = O(1) suffices for many
hardness amplification applications. But apart from just curiosity, this has a deep connection to the
Unique Games Conjecture, first proposed by [24], which lies as one of the fundamental conjectures
in the hardness of approximation. In particular, if the upper bound of (1−εc)Ω(r) for some constant
c < 2 holds, then NP-hardness of distinguishing between the two cases of MAXCUT: (YES) there
exists a cut that cuts 1−ε-fraction of the edges; (NO) any cut can only cut at most 1−ε1/c-fraction
of the edges, implies the full Unique Games Conjecture, giving a potential attack route for resolving
UGC.

To partially answer this question, since [31], parallel repetition under various special settings
were studied. These include free games where Alice (Prover 1)’s input and Bob (Prover 2)’s input
are independent [8], projection games on expanders [34, 38], entangled games [23, 22, 13, 19, 40],
fortified games [28], multiplayer games [17]. Some of these games indeed obtain the decay rate of
(1 − ε)Ω(r), i.e. strong parallel repetition. For instance [34] obtains strong parallel repetition for
expanding projection games. But none of these results achieve bound of (1− εc)Ω(r) with c < 2 in
full generality.

If we cannot prove parallel repetition in full generality, then the next question to ask is whether
there is a “hard” instance that satisfies such special conditions, or transforming any instances to
an instance that obeys better parallel repetition as in [28], which are not ruled out by upper bound
results. Fortification transformation introduced by [28] indeed achieves strong parallel repetition
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but does not preserve uniqueness mainly due to its asymmetric property. It only preserves projection
property of the game. For example, we know that unique games on expander has polynomial time
algorithm [3], implying that there is no hard instance that satisfies the expander condition.

However, [33] showed a game (the odd-cycle game) where the upper bound is tight. If r = Ω(n2)
where n is the size of the graph, the value of the game is at least (1− ε2)Ω(r), showing that [30] is
tight upto some constant. This implies that the statement is false in full generality.

Further generalizing this impossibility result, this has been later generalized to all “hard” unique
games for SDP [7, 37] and games with low information cost protocols [10]. Specifically, [7] rules out
the parallel repetition approach to the Unique Games Conjecture. It implies that any game that
decays at (1− ε)Ω(r)-rate will be easy under SDP.

These counterexamples to parallel repetition depend heavily on the fact that we put coordinates
for each copy of the game. To avoid these technical complications, symmetric parallel repetition
has been suggested as an alternative to parallel repetition, that is to sample sets of edges with no
coordinates attached. More precisely, instead of playing r independent copies of the game, the
verifier samples edges at random then sends the set of vertices {x1, . . . , xr} and {y1, . . . , yr} to
Alice and Bob, instead of tuples of vertices indexed by the coordinates.1 This is indeed at least as
strong as the usual parallel repetition, since any strategy for symmetric parallel repetition can be
translated to a strategy for usual parallel repetition.

However, it is not clear whether this is strictly stronger than the usual parallel repetition. Indeed
the arguments from [33, 7] no longer applies to symmetric parallel repetition. Thus it might be the
case that strong parallel repetition indeed holds for symmetric parallel repetition and is the way to
attack UGC. But all known methods in proving parallel repetition seem to fail for symmetric parallel
repetition since the proofs argue about extracting a strategy on a single coordinate conditioned on
winning some subset of coordinates. This strategy becomes “too good to be true” strategy leading
to a contradiction if the probability of winning some subset of coordinates is too high.

Independent of the developments in parallel repetition, there have been developments on set-
based reductions on two prover games. Birthday Repetition, first introduced in [1], converts any
game to a free game. In Gk×`, the verifier independently chooses k-sized random set from X for
Alice and `-sized random set from Y for Bob, and checks all the edges that lie between those two
sets. [1] showed that if val(G) = 1 − ε and k = ` = O(

√
n/ε), val(Gk×`) ≈ val(G). This was

then used to show that free games are hard to approximate in quasi-polynomial time and has seen
numerous applications in showing quasi-polytime hardnesses [12, 11, 35, 36, 26, 15]. It was later
shown with improved bound in [27].

An interesting observation on Birthday Repetition is that it is the only known set-based hardness
amplification. In fact, the whole reduction relies on the fact that it is set-based (Birthday Paradox
on the set of n elements), since otherwise the value will not be preserved. We use the intuitions
developed through series of paper on Birthday Repetition to first show tighter bounds for Birthday
Repetition with larger set sizes or higher degree. Then we show that these bounds can be translated
to obtain result on symmetric parallel repetition as a corollary using the translation lemma.

1.1 Our Technical Results

Instead of the original Birthday Repetition presented in [1], we redefine it with “Refined” Birthday
Repetition, first observed in [15] to prove tighter bounds for the best approximate Nash Equilibria.
The main difference is instead of choosing fixed sized random sets, we flip coins independently for
each x ∈ X and y ∈ Y and consider the corresponding random sets S ⊂ X and T ⊂ Y .

1There are many suggested definitions to symmetric parallel repetition. But note that this is one option since the
size of the reduction is at most nΩ(r), and the verification function is well defined
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Though it does not give the same distribution over the challenges as in the original Birthday
Repetition, “Refined” Birthday Repetition indeed makes Alice’s distribution independent of Bob’s
distribution, thereby making the game a “free game.” Yet, it is easier to analyze the value and
requires a smaller subset size due to a stronger concentration property. While [1] required a set size
of Ω(

√
n/ε) for ε-additive approximation of the value, Ω(

√
n log(1/ε)) sized set (in expectation)

suffices for “Refined” Birthday Repetition. In particular, we prove the following theorem:

Theorem 1.1 (Refined Birthday Repetition). Suppose k = ` = Ω(
√
n log(1/ε)), and val(G) <

1− ε. Then
val(Gk×`) ≤ 1− ε

2
.

This not only improves the required set size in [1], but also substantially simplifies the proof.
With a condition on the degree of two prover game (d), we can also obtain the following.

Theorem 1.2 (High Degree Refined Birthday Repetition). Suppose d = Ω(n log n/k), k = ` and
val(G) < 1− ε. Then

val(Gk×`) ≤ 1− ε

2
.

With Theorem 1.1 and results from [8], it is straightforward to prove a naive parallel repetition
for “Refined” Birthday Repetition:

Theorem 1.3. Suppose k = ` = Ω(
√
n log(1/ε)), and G is a projection game, that is for every

(x, y) ∈ E, there exists a function p(x,y) : B → A such that V (x, y, a, b) = 1 iff p(x,y)(b) = a. Then
if val(G) < 1− ε

val(Grk×r`) ≤ val((Gk×`)⊗r) ≤
(

1− ε

2

)Ω(r)
.

As a quick remark, though it is not fully exponential in r, if one focuses on achieving hardness of
any constant, this is a quantitatively better bound compared to [27], whose bound in this language
is comparable to (1 − εc)Ω(r2) for some constant c > 2 thereby achieving a simpler proof of [27].
Unfortunately Theorem 1.3 is not tight enough to obtain corollaries for symmetric parallel repetition
for our application. We can further tighten the bound:

Theorem 1.4. Suppose k = ` = Ω(
√
n log(1/ε)), and G is a projection game. Further, suppose

r ≤ min {
√
n/2, εn/320}. Then if val(G) < 1− ε,

val(Grk×r`) ≤ (1− ε/2)Ω(r2).

For “high” degree regime, that is with a lower bound condition on d, we get the following

Theorem 1.5. Suppose k = `, and G is a projection game, and d = Ω(n logn
k ). Further, suppose

r ≤ min {
√
n/2, εn/320, d/2}. Then if val(G) < 1− ε,

val(Grk×r`) ≤ (1− ε/2)Ω(r2).

Fortunately, Theorem 1.4 and Theorem 1.5 suffice to obtain bounds for symmetric parallel
repetition that beats the bounds for usual parallel repetition in some regime.
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1.2 Symmetric Parallel Repetition

First, we give a general definition of Symmetric Parallel Repetition. To the best of our knowledge,
this has not yet been precisely defined in prior works. Define GD as the following two prover game,
where D is a distribution over 2E .

• The referee pick a subset of edges C ⊆ E according to D

• Send CX = {x|(x, y) ∈ C} to Alice and CY = {y|(x, y) ∈ C} to Bob.

• Alice and Bob returns the assignment to ZX and ZY respectively.

• The referee replies with
∧

(x,y)∈C V (x, y, ax, by), where ax is assignment to x and by is assign-
ment to y.

Observe that if |CX |, |CY | < r over D then the size of D is at most nr.
Under this definition, we prove the following translation lemma which translates results on

Birthday Repetition to results on symmetric parallel repetition:

Lemma 1.6 (Translation Lemma). If the degree of the original Two Prover game d = Ω(n log n/k),
with k = ` then there exists Dk,` that is supported only on sets of size at most O(k) such that

|val(GDk,`)− val(Gk×`)| = o(1)

Combining theorems from Section 1.1 and Lemma 1.6, we obtain the main theorem on symmetric
parallel repetition as a corollary:

Theorem 1.7 (Main). Let G be a projection game where the underlying constraint graph is a d-
regular graph. Let val(G) < 1 − ε. Set k = ` = 4n log n/d. If k = ` = Ω(

√
n log(1/ε)) and

k2

n log(1/ε) ≤ min {
√
n/2, εn/320} then there exists a distribution on Dk,` on 2E that is only supported

on the sets of size O(k) such that

val(GDk,`) ≤ (1− ε/2)
Ω( k2

n log(1/ε)
)
.

Else, for any r > 0 that satisfies r ≤ min {
√
n/2, εn/320, d/2}, there exists a distribution on Drk,r`

on 2E that is only supported on the sets of size O(rk) such that

val(GDrk,r`) ≤ (1− ε/2)Ω(r2).

As a complementary result for amplifying the gaps with imperfect completeness (for example
MAXCUT with completeness 1− ε and soundness 1− δ), we also prove the following lower bound
on the value, which along with Lemma 1.6, gives a lower bound on val(GDk,`).

Theorem 1.8 (Lower Bound). If G is a projection game where the underlying constraint graph is
d-regular graph. Let val(G) > 1− ε, k, ` = o(n) and εdk`

n ≤ 1/8. Then

val(Gk×`) ≥ e−O( εdk`n ).

Unfortunately Theorem 1.4, Theorem 1.5 and therefore Theorem 1.7 does not handle the case
where r is too large. But observe that if r becomes too large, then rk = r` = n. In that case,
it essentially becomes a game with only two vertices, one for Alice and one for Bob, but with
exponentially sized alphabet. The analysis becomes extremely simple in that regime and does
not require the underlying game to be a projection game. The analysis in that regime gives the
following theorem as a corollary:
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Theorem 1.9 (High repetition regime). Let G be a two prover game (not necessarily a projection
game) with val(G) < 1− ε. If r = Ω(n log(1/ε)) then there exists Dr on 2E that is only supported
on edge sets of size at most 2r such that val(GDr) = (1− ε)Ω(r). Similarly, if val(G) > 1− ε, then
val(GDr) = (1− ε)O(r)

Theorem 1.9 exhibits an interesting dichotomy with the usual parallel repetition. Recall the
bound in [33] in the case of projection games. For usual parallel repetition limr→∞ log(val(G⊗r))/r =
Θ(−ε2) (and this is tight by [30]), while for symmetric parallel repetition limr→∞ log(val(GDr))/r ≤
−Θ(ε) from Theorem 1.9.

1.3 Further Directions

Connections to the Unique Games Conjecture Recall that the Unique Games Conjec-
ture is phrased as following.

Conjecture 1.10 (Unique Games Conjecture (UGC), [24]). For every ε, δ > 0, there exists n =
n(ε, δ), such that there exists unique game instance G such that it is NP-hard to distinguish between
(YES) val(G) ≥ 1− ε; (NO) val(G) ≤ δ.

Rao’s parallel repetition theorem for projection games [30] implies that if it is “hard” to distin-
guish between two instances where at least 1− ε fraction of the edges are cut (completeness) and
at most 1 −

√
ε fraction of the edges are cut (soundness), which we abbreviate as (1 − ε, 1 −

√
ε)

MAX-CUT, then one can amplify the gap to obtain hardness result for the Unique Games with a
blow up size of n1/ε. By applying parallel repetition 1/ε-times, completeness and soundness both
becomes some arbitrary constants, as in UGC.

In particular, the following approach has been suggested to show that there is no polynomial
time algorithm for Unique Games under Exponential Time Hypothesis2 : (i) reduction from 3SAT
to (1− ε, 1−

√
ε) MAX-CUT of size s(n); (ii) apply parallel repetition to obtain hardness for any

constant (c, s) which blows up the instance size to s(n)1/ε. In particular, note that if one have
s(n) = 2O(

√
n), ε = ω(1/

√
n), it then implies that there is no polynomial time algorithm for the

Unique Games Conjecture.
Unfortunately, this proof outline has been undermined by impossibility results in both (i) and

(ii). [14] showed a polynomial time algorithm based on Semi Definite Programming for (1−ε, 1−
√
ε)

MAX-CUT. Therefore, there is no base “hard” instance that works for (i). Then a natural question
is whether we can improve (ii), that is whether we can obtain (1− εc)r with c < 2. By improving
[30], one can hope to relax the condition for (i), thereby bypassing the upper bound result by
[14]. Whether such bound is achievable has been addressed by [33], and generalized in [7, 37] and
[10]. The bottom line is that games that have improved bounds in (ii) cannot be a hard
instance to begin with if we are using the usual parallel repetition.

The main motivation for proving bounds for symmetric parallel repetition is to avoid these
impossibility results. By improving bounds on (ii), one can have relaxed conditions for (i), bypassing
[14], and instead requiring hardness result for (1− ε, 1− εα) MAX-CUT with α < 1/2.

Our result on symmetric parallel repetition shows that resolving the following conjectures would
result in runtime lower bound for Unique Games, that is there is no polynomial time algorithm for
Unique Games assuming Exponential Time Hypothesis as further elaborated in Section B.

Conjecture 1.11. There exists a reduction for some 2/3 < c < 3/4 from 3SAT (of size n) to
MAX-CUT (1−N−c, 1−N1−2c) of size N where N = O(n1/c) with degree d = Θ(N1−c logN).

2Any algorithm for 3SAT requires 2Ω(n)-time
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Conjecture 1.12. There exists a reduction from 3SAT (of size n) to MAX-CUT (1−d−1N1−2c, 1−
d−2N2−2c) of size N where N = O(n1/c) with degree d = Ω̃(N1− 2c

3 ) for some c < 3/4.

Unfortunately, it has been pointed out that these conjectures are false due to upper bound
results in low ε regimes. If ε is too small (as in less than 1/poly log(N)), then the MAX-CUT
instance becomes easy to begin with. Therefore, to start from a conjecture that is not known to
be false, we need improvements in the following explicit two directions.

Extension to Low Repetition Regime Analyzing the curve log(val(G⊗̃r))/r in terms of
r is a fundamental open question. Via limit the lower bound of −Ω(ε) holds while [30] the upper
bound of −Ω(ε2) exists for all r, since symmetric parallel repetition is by definition stronger than
the usual parallel repetition. The question is the speed of convergence to −Ω(ε). For practical
purposes, r needs to be much smaller than n. Current bounds from Theorem 1.9 do not say
anything about r much smaller than n. In particular, can we show val(G⊗̃2r) ≥ val(G⊗̃r)2? Note
that this is trivial for usual parallel repetition. We suspect that the graph expansion must come
into the picture, since the statement is false for disjoint copies of odd cycle game. This can also be
a candidate approach to improve bounds for symmetric repetition under constant d.

Extension to Constant Degree Regime One caveat to our results is that we require
d = n logn

k , instead of d = O(1), as in many hardness results. Intuitively, higher degree regime
should be easier than constant degree regime due to subsampling lemmas [2, 6]. These subsampling
lemmas give randomized algorithms for distinguishing between YES and NO case that run in time
nO(n/d). Since d = o(n), this only gives super-polynomial time algorithm. Thus, there is still hope
for obtaining a hard MAX-CUT instance with d = o(n). But we suspect that it would be easier to
obtain hard instances with d = O(1). It would be nice to extend results on symmetric repetition
to d = O(1) towards resolving the Unique Games Conjecture.

2 Preliminary

2.1 Two Prover Game and Parallel Repetition

In this section, we formally define Two Prover One Round game and its repetition. Two Prover
game consists of one verifier and two provers, Alice and Bob. The verifier draws (x, y) from some
distribution over X × Y where X is the question set for Alice and Y the question set for Bob.
Without loss of generality, one could view it as a bipartite graph where left set of vertices is X and
right set of vertices is Y , and the distribution is a uniform distribution over some edge set E. Alice
and Bob, depending on their respective input x and y answers a ∈ A and b ∈ B, i.e. a = f(x) and
b = g(y). Verifier then checks via a verification function V : X × Y ×A×B → {0, 1} which checks
whether a and b are correct assignments for the edge (x, y). Value of the game G = (X,Y, V,E) is
then defined as

val(G) = max
f,g

1

|E|
∑

(x,y)∈E

V (x, y, f(x), g(y))

For two prover games, we are interested projection games and unique games. G is a projection
game if for each (x, y) ∈ E, there exists a function p(x,y) : A → B such that V (x, y, a, b) = 1 iff
p(x,y)(a) = b. Furthermore, we say G is a unique game if all p(x,y)’s are permutations.

We formally define what it means to repeat the game in parallel r-times:
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Definition 2.1 (Parallel Repetition). Let G = (X,Y, V,E) be a two-prover game. Then define G⊗r
as the following game. Pick r random edges : e1 = (x1, y1), . . . , er = (xr, yr). The referee sends
~x = (x1, . . . , xr) to Alice and ~y = (y1, . . . , yr) to Bob. Alice answers ~a = f(~x) and Bob answers
~b = g(~y). The referee replies with

∧r
i=1 V (xi, yi, ai, bi).

One weakness of the parallel repetition is that the verification is coordinate dependent.
Alice and Bob can somehow exploit this structure. In particular, [10] asked about the amortized
behavior of the game and showed that this in tied to “how much information” you need to win one
copy. [32] indeed exhibited such game. [7] and [37] extended [32] to show that only games that are
“easy” in terms of Semi-definite programming obeys strong parallel repetition, ruling out attempts
to prove the Unique Games Conjecture via amplifying the gap in MAX-CUT.

To overcome these impossibility results, we introduce a new notion of generalized parallel rep-
etition which is set-based and coordinate free:

Definition 2.2 (Symmetric Parallel Repetition). Define GD as the following two prover game,
where D is a distribution over 2X × 2Y where Supp(D) ⊆ 2E and can be efficiently sampled.

• The referee pick a subset of edges C ⊆ E according to D

• Send CX = {x|(x, y) ∈ C} to Alice and CY = {y|(x, y) ∈ C} to Bob.

• Alice and Bob returns the assignment to ZX and ZY respectively.

• The referee replies with
∧

(x,y)∈C V (x, y, ax, by), where ax is assignment to x and by is assign-
ment to y.

It is easy to check that the uniqueness and projection property of the game is preserved under
this transformation. With the two prover game defined, we can also define val(GD). Observe that
the size of GD depends on D, in particular Supp(D). If for all C ∈ Supp(D), |C| ≤ r, or similarly
|CX |, |CY | ≤ r then the size of GD is O(nr). With Note that for “strong parallel repetition” to
hold, one needs to exhibit that there exists D such that val(GD) = val(G)Θ(r).

Remark 2.3 (“Folklore” symmetric parallel repetition). In “folklore” definition of symmetric par-
allel repetition, D is a distribution where C is distributed uniformly over r-sized subsets of E.

Remark 2.4 (Check all edges). We can strengthen the verification function without any penalty
on the size by following: instead of

∧
(x,y)∈C V (x, y, ax, by), check

∧
(x,y)∈E∩(CX×CY ) V (x, y, ax, by).

Since C ⊂ E∩ (CX ×CY ), the later verification is stronger. But for our purpose, these two notions
are equivalent.

It has been long conjectured that if val(G) < 1− ε and G is a projection game, then val(GD) ≤
(1 − εc)Ω(r) where c < 2 for some D where for all C ∈ Supp(D), |C| ≤ r, beating the bound of
[30]. Also odd cycle game in [32] fails to be a counterexample for such repetition. We show that
Theorem 1.9 implies that this is indeed the case for large r.

2.2 Birthday Repetition

To analyze the behavior of symmetric parallel repetition, we introduce the Birthday Repetition.
This was first introduced in [1] as a tool to transform any general game into a free-game, that is a
game where E = X × Y , or Alice’s input x and Bob’s input y are independent. (It is not hard to
see that these two descriptions are equivalent without loss of generality)
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Definition 2.5 (‘Original’ Birthday Repetition [1]). Define Gk×` as the following game. The referee
chooses k-sized random subset S ⊂ X, and `-sized random subset T ⊂ Y . The referee sends S to
Alice, T to Bob. Alice and Bob gives assignment to S and T respectively. The referee checks all
edges in E(S, T ) := E ∩ (S × T ).

Note that Gk×` is a free-game by design, since S and T are chosen independently at random. Also
note that this is a set-based repetition of the game by design. [1] showed that if k = ` = O(

√
n/ε),

val(Gk×`) is indeed upper-bounded by val(G). [27] asked the behavior of val(Gk×`) if k and `
becomes larger than O(

√
n/ε), and indeed showed that the value decays exponentially (1− εc)Ω(r)

where c is some constant and r = k`/n.
With an abuse of notation, we redefine Gk×` as following, which was first observed in [15] as a

useful replacement for the original Birthday Repetition due to its concentration property.

Definition 2.6 (“Refined” Birthday Repetition [15]). Define Gk×` as the following game with a
parameter δ > 0. The referee picks a random subset S from X, picked via following process. Each
variable i ∈ X is added to S with probability 1− e−k/|X|. Similarly, the referee picks T from Y by
adding each j ∈ Y with probaiblity 1− e−`/|Y |. If |S| < (1 + δ)E[|S|] and |T | < (1 + δ)E[|T |], then
referee sends S to Alice, T to Bob and checks E(S, T ).

‘Refined’ Birthday Repetition could be viewed as having different independent distribution for
S and T for S ∈ 2X and T ∈ 2Y . In [1] definition of Birthday Repetition, the distribution is
uniform over S ∈ 2X and T ∈ 2Y such that |S| = k and |T | = `, while in our new definition, each
element in x ∈ X and y ∈ Y are randomly picked to be included in S and T respectively. This
new distribution simplifies proof steps in [1] and [12]. Indeed, in [15], the probability is k/|X| and
`/|Y | respectively. But it is easy to check that these two probabilities are the same upto constant
factor. This change is essentially made to make the analysis in Section E simpler.

3 Main Results

First, we reprove the main lower bound in [1] through “Refined” Birthday Repetition.

Theorem 1.1. If val(G) < 1− 2ε, then val(Gk×`) < 1− ε for k = ` = Ω(
√
n log(1/ε)).

For high degree regime, we prove

Theorem 1.2. Suppose d = Ω(n log n/k), k = ` and val(G) < 1− ε. Then

val(Gk×`) ≤ 1− ε

2
.

The proof of Theorem 1.1 and Theorem 1.2 is simple and straightforward. We append the full
proof in Section F.

3.1 Repeated Birthday Repetition

With Theorem 1.1, we are ready to restate two technical theorems about repeated Birthday Rep-
etition.

Theorem 1.3. Suppose k = ` = Ω(
√
n log(1/ε)), and G is a projection game. Then if val(G) <

1− ε
val(Grk×r`) ≤ val((Gk×`)⊗r) ≤

(
1− ε

2

)Ω(r)
.
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The proof of Theorem 1.3 is rather immediate from [8] which we attach in Section F. The main
observation is that block-projection property is preserved in Birthday Repetition. It it clear from the
definition that even if G is a projection game, Gk×` is not necessarily a projection game. The main
observation is that the satisfying assignments still have a projection function on some coordinates.
In fact, the pair S and T are satisfied if and only if for all (x, y) ∈ E(S, T ) p(x,y)(by) = ax where
by is the assignment to y ∈ T and ax is the assignment to x ∈ S. This suffices for modifying the
proof of [8] to show that if the underlying game is a projection game, repeating the game r times
in parallel obeys strong parallel repetition.

But note that repeating the game r-times will make the input set size S and T bigger by a factor
of r, while the expected number of edges that will be checked by the verifier actually increase by a
factor of r2. Thus the expected number of edges grows quadratically in the number of repetition.
Indeed this might suffice for many applications. Unfortunately, we need the exponent to be linear
in the expected number of edges checked by the verifier to have desired consequences in symmetric
parallel repetition. But we can improve the analysis to obtain a tighter bound.

Theorem 1.4. Suppose k = ` = Ω(
√
n log(1/ε)), and G is a projection game. Further, suppose

r ≤ min {
√
n/2, εn/320}. Then if val(G) < 1− ε,

val(Grk×r`) ≤ (1− ε/2)Ω(r2).

We avoid this square loss by the following observation: if we repeat r-copies in parallel, we get a
tuple of length r, where each entry is set Si and Ti for Alice and Bob respectively with i ∈ [r]. For
each i, we are expected to check an edge with at least (1− ε)-probability, since Si and Ti have an
edge between them with at least (1− ε)-probability. If we consider the ordering given by the index
i, and only compare (Si, Ti) pairs, this corresponds to 1.3. But in the actual Birthday Repetition,
since it has no ordering inside the set, we also check (Si, Tj) pairs as well where i 6= j.

We wish to argue how these pairs lowers the value of the game. The main technical challenge is
that (Si, Tj)-pairs are not r2 independently chosen sets. For instance, (Si, Tj) pair and (Si′ , Tj′) pair
are no longer independently distributed if i = i′ or j = j′ while it is crucial that each coordinate is
distributed independently at random in all parallel repetition proofs.

More precisely, in parallel repetition proofs initiated by [31], we condition on a subset of co-
ordinates (the assignment and challenges) to extract too good to be true strategy. In our setting,
we would like to condition on Ω(r2)-pairs, since the size of the subset corresponds to the exponent
of the value of the game for parallel repetition proofs. But naively conditioning on the challenges
is problematic for our instance. In an extreme case, for example, if we condition on all (Si, Ti)
for i ∈ [r], all Si and Ti’s become fixed for i ∈ [r]. Here, we only conditioned on r-pairs, but
this already fix the edges that will be checked between Si and Tj is already determined from the
conditioning. We cannot therefore extract any too good to be true single pair strategy.

Instead, we exploit the property of Birthday Repetition. We condition on an edge that will be
checked by the (Si, Tj) pair, that is the event x(i,j) ∈ Si and y(i,j) ∈ Tj where (x(i,j), y(i,j)) ∈ E.
For (i, j) ∈ [r] × [r], we do not condition on the whole (Si, Tj) but only on the edge that will
be conditioned on being checked, and the assignment to such x(i,j) and y(i,j) (i.e. this
is where we use the inherent structure of the game created by Birthday Repetition). Indeed even
conditioning on these events will tilt the distribution, since Si and Tj must contain those vertices as
an element, thereby tilting the distributions on the other entries of the grids. But we show that this
cannot tilt the distribution too much in terms of the divergence, if the edges are chosen carefully.

Now observe that in order to win the whole game in the Birthday Repetition, Alice and Bob
must win all the edges that are conditioned to be in the sets. That is, satisfying the conditioned
edges is a sub-event of winning all the edges. Since the probability of satisfying all the edges that
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are conditioned is low, the probability of winning the whole Birthday Repetition must be low as
well. We append the full proof in Section F. Also with an analogous, we can also prove the following
for high degree regime.

Theorem 1.5. Suppose k = `, and G is a projection game, and d = Ω(n logn
k ). Further, suppose

r ≤ min {
√
n/2, εn/320, d/2}. Then if val(G) < 1− ε,

val(Grk×r`) ≤ (1− ε/2)Ω(r2).

3.2 Translation Lemma and Corollaries

Lemma 1.6. If the degree of the original Two Prover game d ≥ (1+δ)n log n/k with δ = Ω(1/ log n)
and k = `, then

|val(GDk,`)− val(Gk×`)| = o(1).

The main difference between the Birthday Repetition and the symmetric parallel repetition is
that while for symmetric parallel repetition, all the vertices included in the set are checked by the
verifier, it is not the case for the Birthday Repetition. There are “dummy” vertices that are not
checked, thus it is not clear how well the strategy for the symmetric parallel repetition will perform
in the Birthday Repetition and vice versa.

We translate the strategy for the symmetric parallel repetition to a strategy for the Birthday
Repetition. The main observation is that if d, the degree of the graph, is large enough compared
to k and `, the expected size of the input sets, all of the vertices in the set even for the Birthday
Repetition must be checked by the verifier. Conditioned on all the vertices being used, the game
essentially becomes equivalent to symmetric parallel repetition. Then we obtain bound on the
symmetric parallel repetition as a corollary of the bound on the Birthday Repetition. We attach
the full proof in Section G.

Now combining Theorem 1.4 and Lemma 1.6, we get the following corollaries on the symmetric
repetition.

Theorem 1.7. Let G be a projection game where the underlying constraint graph is a d-regular
graph. Let val(G) < 1 − ε. Set k = ` = 4n log n/d. If k = ` = Ω(

√
n log(1/ε)) and k2

n log(1/ε) ≤
min {

√
n/2, εn/320} then there exists a distribution on Dk,` on 2E that is only supported on the

sets of size O(k) such that

val(GDk,`) ≤ (1− ε/2)
Ω( k2

n log(1/ε)
)
.

Else, for any r > 0 that satisfies r ≤ min {
√
n/2, εn/320, d/2}, there exists a distribution on Drk,r`

on 2E that is only supported on the sets of size O(rk) such that

val(GDrk,r`) ≤ (1− ε/2)Ω(r2).

3.3 High Repetition Regime

Recall the high repetition regime version of the theorem.

Theorem 1.9. Let G be a two prover game (not necessarily a projection game) with val(G) < 1−ε.
If r = Ω(n log(1/ε)) then there exists Dr on 2E that is only supported on edge sets of size at most
2r such that val(GDr) = (1− ε)Ω(r). Similarly, if val(G) > 1− ε, then val(GDr) = (1− ε)O(r)

10



We append the full proof in Section H. The main idea is to take Dr as the following distribution
on 2E . We choose the set of edges C by picking each e ∈ E with probability 1− e−r/|E|. Indeed, it
might be the case that the number of edges picked might be too large. We prune the cases where
|C| > 2r, and call such distribution Dr. This distribution will satisfy the condition in Theorem 1.9.

Note that if the set size becomes exactly n, the usual Birthday Repetition will give a value 0
game, since the verifier checks all the edges, unless the original game was completely satisfiable.
Suppose the verifier checks r random edges instead. It is easy to check that the value of such game is
at most (1−ε)r because the input does not give any information. We show that if sufficiently many
edges are picked, a naive guess by Alice and Bob will guess the actual vertices that are checked
by the verifier correctly (note that the entropy converges to 0). And if they guess correctly, the
setting becomes exactly the same as symmetric parallel repetition. We show that conditioned on
guessing the actual inputs correctly, the strong parallel repetition holds as well. Using an analogous
arguments from Lemma 1.6, we show bounds for val(GDr).

The interesting consequence of this theorem is a dichotomy between symmetric parallel rep-
etition and the conventional parallel repetition which can be summarized as the following table.

Repetition Model Repeated Value

Projection Game [30, 33] G⊗r (1− ε2)Θ(r)

General Game [21, 9, 20] G⊗r (1− ε3)r/ log(|A|+|B|)

Theorem 1.9 GDr (1− ε)Θ(r)

Table 1: Amortized Values

Not only GDr improves the bound for the projection case, it also removes the dependence on the
alphabet size in the general case as seen in [21, 9, 20]. It would be interesting to see whether such
bound holds for smaller r, instead of r = Ω(n log(1/ε)).
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A Information Theory

In this section, we provide backgrounds on information theory that will be used to prove main
results but not necessary to understand the statement of the result. We remark that throughout
the paper, log is of base 2 and ln is of base e.

First we describe the notion of amount of information needed to describe a random variable.

Definition A.1. Let X be a random variable. Then the entropy of X is

H(X) =
∑
x

Pr[X = x] · log
1

Pr[X = x]

Note that the following naive upper bound on the entropy holds.

Fact A.2. Let X be t he support set of X. Then

H(X) ≤ log |X |

In particular, this implies that the uniform distribution has the highest entropy.
Since we will be mainly talking about X on different distributions, we introduce the following

notion of distance between two different distributions.

Definition A.3 (Kullback-Leiber Divergence). Given two probability distributions µ1 and µ2 on
the same sample space Ω such that (∀ω ∈ Ω)(µ2(ω) = 0 ⇒ µ1(ω) = 0), the Kullback-Leibler
Divergence between is defined as (also known as relative entropy)

D(µ1||µ2) =
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

One nice property of the divergence is the chain rule:

Fact A.4 (Chain Rule). Consider two distributions P (x, y) and Q(x, y). Then

D(P (x, y)||Q(x, y)) = D(P (x)||Q(x)) + E
x∼P

[D(P (y|x)||Q(y|x))]

We will use the following corollary of Fact A.4.

Fact A.5. Consider two distributions P and Q, where Q is a product distribution, that is Q(x1, . . . , xn) =
Q(x1) . . . Q(xn). Then

D(P (x1, . . . , xn)||Q(x1, . . . , xn)) ≥
n∑
i=1

D(P (xi)||Q(xi))

We also use the following fact from [8].

Fact A.6 (Corollary 3.4 of [8]). Let P and Q be probability distribution. If D(P ||Q) < δ and
P (T ) < δ, then Q(T ) < 4δ.
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B Implications for the Unique Games Conjecture

Recall that the Unique Games Conjecture is stated as following.

Conjecture B.1 (Unique Games Conjecture, [24]). For every ε, δ > 0, there exists n = n(ε, δ),
such that there exists a unique game instance G such that it is NP-hard to distinguish between
(YES) val(G) ≥ 1− ε; (NO) val(G) ≤ δ.

Instead of trying to prove the full conjecture, we instead focus on the runtime lower bound.

Conjecture B.2 (Weak Unique Games Conjecture). For every ε, δ > 0, there exists n = n(ε, δ),
such that there exists a unique game instance G such that there is no polynomial time algorithm
that distinguishes between (YES) val(G) ≥ 1− ε; (NO) val(G) ≤ δ.

Towards showing runtime lower bound (assuming Exponential Time Hypothesis) the following
approach has been suggested.

3SAT
(	of	size	𝑛	)

MAX-CUT
(	1 − 𝜖, 1	 − 𝜖(	)

Unique	Game
(	𝑐, 𝑠	)(1) (2)

Conjecture	

Reduction	of	size	𝑁 = 𝑛
.
/

Our	result
Blow	up	of	size	21/	

Figure 1: Overview of an approach towards Conjecture B.2

In this section, we show how our technical results imply bounds on the second part of this
approach, that is amplifying the MAX-CUT hardness to achieve required hardness for Unique
Games, that is (1− ε, δ) for any constant ε, δ > 0.

For completeness part of the reduction, we prove the following theorem whose proof we attach
in Section G.

Theorem 1.8. If G is a projection game where the underlying constraint graph is d-regular graph.
Let val(G) > 1− ε, k, ` = o(n) and εdk`

n ≤ 1/8. Then

val(GDk,`) ≥ e
−O( εdk`n ).

We show two theorems that follow immediately from our technical results.

Theorem B.3. For 2/3 < c < 3/4, there exists a 2Õ(nc)-sized reduction from MAX-CUT (1 −
n−c log−1 n, 1− n1−2c log n) to Unique Game (1− ε, δ) for any constant ε and δ.

Proof. Let G be the original MAX-CUT instance. Then consider GDk,` and its value with k = ` = nc.
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For completeness, we use Theorem 1.8. Recall that d = αn logn
nc for some constant α. In (YES)

case,

val(GDk,`) ≥ e
−O
(
n−c(log−1 n)(dk`)

n

)
= e−O(1)

For soundness, we use Theorem 1.7. In (NO) case, since c < 3/4,

val(GDk,`) ≤ (1− n1−2c log n)
Ω( n2c

(2c−1)n logn
)

= e−Ω( 1
2c−1

) ≤ e−Ω(1)

where the last inequality holds since we assume c > 2/3.

Theorem B.4. There exists a 2Õ(nc)-sized reduction from MAX-CUT (1− 1
dn2c−1 , 1− n2−2c log2 n

d2 )

to Unique Game (1− ε, ε) for any constant ε if d < n4/3−c log n.

Proof. The proof is similar to that of Theorem B.3, but instead uses the second part of Theorem
1.7. Note that the completeness follows from design. For soundness,

val(GDk,`) ≤ (1− n2−2c log2 n

d2
)
Ω(
(

dnc

4n logn

)2
) ≤ e−Ω(1)

where the inequality holds since we assume d < n4/3−c log n.

C Proof of Theorem 1.1

In this section, we simplify and improve the parameter given in lower bound in [1] using ‘Refined’
Birthday Repetition which first appeared in [15]. In particular, we prove Theorem 1.1

Claim C.1. Consider ‘Refined’ Birthday Repetition Gk×`. If k = ` = Ω
(√

n log(1/ε)
)

. then

PrS,T [E ∩ (S × T ) = ∅] < ε

Proof.

Pr
S,T

[E ∩ (S × T ) = ∅] = E
S

[
Pr
T

[E ∩ (S × T ) = ∅]
]
≤ E

S

[
(e−`/|Y |)|N (S)|

]
+ e−Θ(δ2)

√
n

≤ E
S

[
e−`·|S|/|Y |

]
+ e−Θ(δ2)

√
n ≤ e−`(1−δ)ES [|S|]/|Y | + e−Θ(δ2)

√
n

The first inequality holds by `1 norm bound from conditioning on the size of S and T . The second
inequality holds by assuming that any set of size k on one side has at least k neighbors which we
can assume without loss of generality, and the third inequality is the assumption on the size of S.
Now we bound ES [|S|] :

E
S

[|S|] = |X| · (1− e−k/|X|) ≥ |X| · Ω(k/|X|) = Ω(k) = k/α

for some constant α. Plugging this bound and setting k = ` =
√

2αn log(1/ε)
1−δ , we have

Pr
S,T

[E ∩ (S × T ) = ∅] ≤ e−
(1−δ)k`
α|Y | = e−

αn log(1/ε)
αn = ε.
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Now we restate and prove Theorem 1.1.

Theorem 1.1. If val(G) < 1− 2ε, then val(Gk×`) < 1− ε for k = ` = Ω(
√
n log(1/ε)).

Proof. We prove by decomposing PrS,T [ satisfy (S, T )] :

Pr
S,T

[ satisfy (S, T )] = Pr
S,T

[E ∩ (S × T ) = ∅] · Pr
S,T

[ satisfy (S, T ) | E ∩ (S × T ) = ∅]

+ Pr
S,T

[E ∩ (S × T ) 6= ∅] · Pr
S,T

[ satisfy (S, T ) | E ∩ (S × T ) 6= ∅]

≤ ε · 1 + Pr
S,T

[ satisfy (S, T ) | E ∩ (S × T ) 6= ∅]

≤ ε+ (1− 2ε) = 1− ε.

The first inequality holds by Claim C.1. Now the second probability holds by our assumption on
val(G), that is

Pr
S,T

[ satisfy (S, T ) | E ∩ (S × T ) 6= ∅] ≤ val(G) < 1− 2ε.

since the distribution over a single edge in E ∩ (S × T ) is uniform.

It is noteworthy that k = ` = Ω(
√
n log(1/ε)) which is smaller than Ω(

√
n/ε) as in [1].

D Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which is Birthday Repetition in high degree regime. It is
noteworthy that there is no lower bound restriction on k and ` unlike in Theorem 1.1.

Claim D.1. Consider ‘Refined’ Birthday Repetition Gk×`. If k = ` and d = Ω(n log n/k), then
PrS,T [E ∩ (S × T ) = ∅] < ε

Proof.

Pr
S,T

[E ∩ (S × T ) = ∅] = E
S

[
Pr
T

[
∧
i∈S

E ∩ ({i} × T ) = ∅]

]

≤ E
S

[
Pr
T

[E ∩ ({i} × T ) = ∅]
]
≤ (e−`/n)d + e−Θ(δk) ≤ ε

The second inequality holds by `1 norm bound from conditioning on the size of S and T . The last
inequality holds by setting δ = Ω(log(1/ε)).3

Theorem 1.2. Suppose d = Ω(n log n/k), k = ` and val(G) < 1− ε. Then

val(Gk×`) ≤ 1− ε

2
.

Proof. Again we prove by decomposing PrS,T [ satisfy (S, T )] :

Pr
S,T

[ satisfy (S, T )] = Pr
S,T

[E ∩ (S × T ) = ∅] · Pr
S,T

[ satisfy (S, T ) | E ∩ (S × T ) = ∅]

+ Pr
S,T

[E ∩ (S × T ) 6= ∅] · Pr
S,T

[ satisfy (S, T ) | E ∩ (S × T ) 6= ∅]

3Note that δ = O(logn) since the number of edges is at most n2.
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≤ ε · 1 + Pr
S,T

[ satisfy (S, T ) | E ∩ (S × T ) 6= ∅]

≤ ε+ (1− 2ε) = 1− ε.

The first inequality holds by Claim D.1. Now the second probability holds by our assumption on
val(G), that is

Pr
S,T

[ satisfy (S, T ) | E ∩ (S × T ) 6= ∅] ≤ val(G) < 1− 2ε.

since the distribution over a single edge in E ∩ (S × T ) is uniform.

E Proof of Theorem 1.3

The main technical challenge is that Birthday Repetition does not preserve the projection property
of the game, i.e. Alice’s answer does not no longer force a single correct answer to Bob. One might
consider using parallel repetition for general games. However, note that Birthday Repetition blows
up the size of the alphabet as well. In particular, since k = ` = Ω(

√
n log(1/ε)), the alphabet size

also becomes sΩ(
√
n log(1/ε)) where s is the alphabet size of the original projection game.

However, we note that the edge and vertices that actually matter preserves the projection
property, i.e. it maintains “block projection property”. It can be formally stated as following.

Definition E.1 (Block Projection Game). G is a block projection game if for every (x, y) ∈ E,
there exists a partition over A and B, say PA = {A1, . . . , Ap} and PB = {B1, . . . Bp} and p(x,y) :
PB → PA such that V (x, y, a, b) = 1 iff p(x,y)(PB(b)) = PA(a) where PA(a) is Ai such that a ∈ Ai
similarly for PB(b).

Being a block projection game suffices for the proof of parallel repetition for projection game to
avoid log s factor in the exponent. It is easy to observe that Birthday Repetition preserves “block
projection,” though it does not preserve projection. Let ca(S, T ) denote the partition on A with
the input (S, T ). Similarly let cb(S, T ) denote the partition on B. With an abuse of notation, we
denote aca(S,T ) as the assignment by Alice on ca(S, T ) and Aca(S,T ) as the corresponding random
variable. We similarly define bcb(S,T ) and Bcb(S,T ). We prove the following claim which replaces
Proposition 3.8 and Corollary 3.9 of [8].

Claim E.2. Let W be the event where Alice and Bob win all the games in the last k coordi-
nates. Define E as the set of blocks ((bcb(S1,T1), . . . , bcb(Sk,Tk)), (S1, . . . , Sk), (T1, . . . , Tk)) such that

Pr[(bcb(S1,T1), . . . , bcb(Sk,Tk)) | Sk = Sk, T k = T k] ≥ 2−ε(n−k)/16. With an abuse of notation, define

E as the event that lies in the set. Then Pr[W ′] > Pr[W ]− 2−ε(r−k)/16 where W ′ = W ∧ E

Proof. We generalize the argument in Corollary 3.9 of [8]. Note that we can rewrite the winning
probability for a single copy of Birthday Repetition as

Pr[W ] = E
S,T

 ∑
bcb(S,T )

Pr[Aca(S,T ) = p(S,T )(bcb(S,T ))|S] · Pr[Bcb(S,T ) = bcb(S,T )|T ]

 .
where pS,T refers to the projection function on the set (S, T ). Similarly, for repeated game, we can
rewrite as

Pr[W ] = E
Sr,T r

∑
~b∈B⊗r

Pr[B1
cb(S1,T1) = b1cb(S1,T1), . . . , B

r
cb(Sr,Tr)

= brcb(Sr,Tr)|T
r]

19



· Pr[A1
ca(S1,T1) = p(S1,T1)(b

1
cb(S1,T1)), . . . , A

r
cb(Sr,Tr)

= p(Sr,Tr)(b
r
cb(Sr,Tr)

)|Sr]

where Aks refers to the assignment on k-th copy of the game. Now for E, we can write the probability
as

Pr[W ∧ E] = E
Sr,T r

∑
~b∈B⊗r

Pr[B1
cb(S1,T1) = b1cb(S1,T1), . . . , B

r
cb(Sr,Tr)

= brcb(Sr,Tr)|T
r]

· Pr[A1
ca(S1,T1) = p(S1,T1)(b

1
cb(S1,T1)), . . . , A

r
cb(Sr,Tr)

= p(Sr,Tr)(b
r
cb(Sr,Tr)

)|Sr]

< E
Sr,T r

 ∑
~b∈B⊗r

Pr[B1
cb(S1,T1) = b1, . . . , B

r
cb(Sr,Tr)

= br|T r] · 2−ε(r−k)/16


≤ 2−ε(r−k)/16

First equality holds since Alice’s answer only depends on Sr and vice versa. The inequality follows
from the property of E.

Remark E.3. Proposition 3.8 and Corollary 3.9 of [8] is the only place where projection property
is used. Thus Claim E.2 shows that block projection property suffices for strong parallel repetition.
Thus if G is a free, block projection game with val(G) < 1− ε then val(G⊗r) ≤ (1− ε)Ω(r).

Proof of Theorem 1.3. First we show val(Grk×r`) ≤ val((Gk×`)⊗r). Consider answering (Gk×`)⊗r
in a following manner: Take union of S0 =

⋃r
i=1 Si. Similarly take union of T0 =

⋃r
i=1 Ti. Then

take the strategy from Grk×r` to answer (Gk×`)⊗r. Then note that the distributions match since

1− (1− (1− e−k/n))r = 1− e−rk/n

Thus val(Grk×r`) ≤ val((Gk×`)⊗r).
The second inequality holds by Remark E.3 along with val(Gk×`) ≤ 1 − ε/2 via Theorem 1.1

Thus we have val((Gk×`)⊗r) ≤ (1− ε/2)Ω(r) �

Corollary E.4. If k = ` > Ω(
√
n log(1/ε)),

val(Gk×`) ≤ (1− ε)Ω(
√

k`
n log(1/ε)

)

Proof. Let k = ` = r ·
√
n log(1/ε). Then r =

√
k`

n log(1/ε) . Then apply Theorem 1.3.

This is practically stronger than [27], since to achieve any constant gap, we require
√

k`
n log(1/ε) =

Ω(1/ε), i.e. k = ` =
√
n log(1/ε)/ε instead of k`

n = Ω(1/εc) where c > 6 for [27]. But we can
further improve this by coming up with the sub-distribution that the verifier checks in the birthday
repetition.

Also for high degree regime, we get the following corollary

Corollary E.5. If k = `, d = Ω(n logn
K ) and val(G) < 1− ε then

val(Gk×`) ≤ (1− ε)Ω(k/K)

Proof. Let r = k/K. Note that val(GK×K) ≤ 1− ε/2 Then apply Theorem 1.3.
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F Proof of Theorem 1.4

In this section, we prove lemmas necessary towards proving (1 − ε)r2
upper bound for the value

of symmetric parallel repetition. Towards this goal, first we improve the bound in Section E from

(1− ε)Ω(r) to (1− ε)Ω(r2) where r =
√

k`
n log(1/ε) for the low degree regime. Using similar technique

we also improve the bound for d = Ω(n logn
K ) (i.e. the high degree regime) where K = Ω(log n) to

(1− ε)(k/K)2
.

F.1 Overview

Recall that towards proving Theorem 1.3, for k = ` > Ω(
√
n log(1/ε)), we viewed it as a parallel

repetition r-times, that is S1, . . . Sr and T1, . . . Tr. But this is not tight since we only check the
clauses between Si, Ti but not Si, Tj where i 6= j. To analyze the contribution of Si, Tj ’s, instead

S1, … , Sr

T 1, 
…

 , 
T r

(Si , Ti)

Figure 2: Overview of Theorem 1.3 : the verifier only checks blue grids

of viewing it as r-copies of (Si, Ti), we view it as a r× r grid where each row corresponds to Si and
each column corresponds to Tj . For each (i, j) ∈ [r]× [r], the verifier checks (Si, Tj) pair.

Unlike in the usual parallel repetition, challenges in each cell are not picked independently at
random anymore. For instance, Si, Tj and Si′ , Tj′ are not independent if i = i′ or j = j′, since we
are recycling Si and Tj ’s. Suppose we follow the approaches in proving the usual parallel repetition
i.e. [31], which conditions on a subset of coordinates. Then conditioning on any linear number
of Si, Tj ’s makes the divergence between the original distribution huge. In an extreme setting,
consider conditioning on all Si, Ti’s for i ∈ [r]. Note that we only conditioned on 1/r-fraction of
the coordinates, but this already fixes all the challenges.

Instead of conditioning on the actual challenges and the correct block, we actually exploit further
the fact that these games are formed by Birthday Repetition, which indeed is not the case for [8].
We say conditioning on a grid (i, j) as conditioning with an edge that would be checked between
Si, Tj pair. In other words, instead of fixing whole Si and Tj , we just condition (x, y) ∈ E(Si, Tj)
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or equivalently x ∈ Si and y ∈ Tj . Indeed, we must condition on the assignments as well. In case
of the assignments, we only consider the assignments to x and y, which is along the lines of
the proof of Theorem 1.3.

For high degree regime, the proof is essentially the same. But instead of breaking the set size
down to E [|Si|] =

√
n log(1/ε), we break it into E [|Si|] = K if d = Ω(n logn

K ).

Notation Let R denote the subset of coordinates i.e. R ⊂ [r] × [r]. X(i,j), Y(i,j) denote the
elements in X and Y that is conditioned in (i, j). B(i,j) denote the assignment on Y(i,j) and
similarly A(i,j) for X(i,j). Let R′ be the set of edges and the block for Alice on such R, that is
B(i,j)∈R,

{
X(i,j), Y(i,j)

}
(i,j)∈R. Let W be defined as the event of winning all the cells in R. That is

for all (i, j) ∈ R, px(i,j),y(i,j)
(b(i,j)) = a(i,j). Let W ′ be defined as W ∧L where L is the event where

Pr
[
B(i,j)∈R = b(i,j)∈R |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
≥ 2−ε(r

2−|R|)/80. W(i,j) refers to the event of winning

the cell (i, j) that is satisfying the edge (X(i,j , Y(i,j)). U denotes the uniform distribution over the
edges in the original projection game. PX denotes the distribution of random variable X when the
underlying distribution is P .

F.2 Distribution

In this section, we define a distribution on the grids such that each grid (i, j) and its entry
X(i,j), Y(i,j) corresponds to the challenge that will be checked by Si, Tj . Note that this is equivalent
to conditioning X(i,j) ∈ Si and Y(i,j) ∈ Si. Also observe that in order to win all pairs, one must
then satisfy all (X(i,j), Y(i,j)).

For all i, j ∈ [r], Si and Tj are picked randomly in the same procedure as in Section E. That
is each x ∈ X is in Si with probability 1 − e−k/n, similarly for Tj . Now if we pick X(i,j), Y(i,j)

according to U but with Pr[X(i,j), Y(i,j) = ∅] = PrSi,Tj [E(Si, Tj) = ∅], we have that

E
X(i,j),Y(i,j)

[
DSi,Tj |X(i,j)∈Si,Y(i,j)∈Tj

]
= DSi,Tj .

where DSi,Tj conditioned on X(i,j), Y(i,j) is DSi,Tj |X(i,j)∈Si,Y(i,j)∈Tj .
Now we are ready to further define DX(i,j),Y(i,j)|{X(i,j),Y(i,j)}(i,j)∈R

as a uniform distribution over

the edges with the following constraint: X(i0,j0) 6= X(i1,j1) if i0 = i1; and Y(i0,j0) 6= Y(i1,j1) if j0 = j1.
The probability of null is defined as

Pr
D

[X(i,j), Y(i,j) = ∅|
{
X(i,j), Y(i,j)

}
(i,j)∈R] := Pr

Si,Tj

[
E(Si\Si, Tj\T j) = ∅|

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
where Si0 :=

{{
X(i,j)

}
(i,j)∈R |i = i0

}
and Sj0 :=

{{
X(i,j)

}
(i,j)∈R |j = j0

}
. Intuitively, we would

like to select “fresh” edges to condition on, where “fresh” edges are defined as the set of edges that
has none of its vertices conditioned to be in Si or Tj . Then one can verify that

E
{X(i,j),Y(i,j)}(i,j)∈R

[
DSi,Tj |{X(i,j)∈Si,Y(i,j)∈Tj}(i,j)∈R

]
= DSi,Tj .

Recall that DSi,Tj = DSi × DTj by definition. Now we show that for this distribution, condi-
tioning maintains the product distribution between Alice and Bob’s input. This is necessary later
to extract a strategy for a single copy of Birthday Repetition and obtain a contradiction.

First we remark the following observation on product distribution:
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Observation F.1 (Observation 3.10 in [8]). Let γ be event solely determined by a. Then if Pa,b =
Pa × Pb then Pa,b|γ = Pa|γ × Pb|γ = Pa|γ × Pb.

Now we are ready to show that D{Si}i∈[r],{Tj}j∈[r]|R′,U is indeed a product distribution.

Proposition F.2 (Product Distribution). Let U be the event that is determined solely by R′ =
{X(i,j), Y(i,j), A(i,j)}(i,j)∈R and B(i,j)∈R. Then for every R′ and (i, j) /∈ R ,

D{Si}i∈[r],{Tj}j∈[r]|R′,U = D{Si}i∈[r]|R′,U ×D{Tj}j∈[r]|R′,U

Proof. By the definition of the distribution, we have

D{Si}i∈[r],{Tj}j∈[r]|{X(i,j),Y(i,j)}(i,j)∈R = D{Si}i∈[r]|{X(i,j),Y(i,j)}(i,j)∈R ×D{Tj}j∈[r]|{X(i,j),Y(i,j)}(i,j)∈R .

Note that
{
A(i,j)

}
(i,j)∈R only depends on Si for i ∈ [r] since it is a two-prover game and Alice’s

answer only depends on Alice’s input. Applying Observation F.1, we get full R′:

D{Si}i∈[r],{Tj}j∈[r]|R′ = D{Si}i∈[r]|R′ ×D{Tj}j∈[r]|R′ .

Now U only depends on R′ and
{
B(i,j)

}
(i,j)∈R, which only depends on Tj for j ∈ [r]. Applying

Observation F.1 again we get

D{Si}i∈[r],{Tj}j∈[r]|R′,U = D{Si}i∈[r]|R′,U ×D{Tj}j∈[r]|R′,U .

We bound the null probability for each grid (i, j) ∈ [r] × [r], that is Pr[X(i,j), Y(i,j) = ∅] under
any conditioning.

Proposition F.3 (Null Probability). For any R ⊂ r × r, if r <
√
n/2 then

Pr
D

[
X(i,j), Y(i,j) = ∅ |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
≤ ε/160

Proof. We can bound the probability as in Claim C.1:

Pr
D

[
X(i,j), Y(i,j) = ∅ |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
≤ E

Si

[
e−

`|N (Si\S
i)\Tj |

n

]
≤ E

Si

[
e−

`(|Si|−2r)

n

]
≤ e−

`((1−δ) ESi [|Si|]−2r)

n + e−Θ(δ2)k < ε/160

where the first inequality follows from Chernoff bound and we lose 2r since we remove at most 2r
vertices from participating and the last bound holds by our assumption on r and setting k = ` with
an appropriately large constant factor.

For high degree regime, we instead use the following proposition.

Proposition F.4 (Null Probability for High Degree). For any R ⊂ r × r, if r < d/2 then

Pr
D

[
X(i,j), Y(i,j) = ∅ |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
≤ ε/160
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Proof. We can bound the probability as in Claim D.1 :

Pr
D

[
X(i,j), Y(i,j) = ∅ |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
≤ E

Si

[
e−

`|N (Si\S
i)\Tj |

n

]
≤ E

Si

[
e−

`(d−r)
n |Si\Si 6= ∅

]
+ Pr[Si\Si = ∅] ≤ e−

`(d−r)
n + e−

k(n−r)
n = 1/poly(n) < ε/160.

where the first inequality follows from Chernoff bound. Now since `(d−r)
n = Ω(log n), and k = ` =

Ω(log n), we have bound.

Remark F.5. Note that the distribution over S and T ’s are product distributions after conditioning
on R′ and U for D. This property is necessary to extract a matching protocol for free game on
distribution DSi,Tj |R′,U for any fixed R′ via Proposition F.2. By the property of Birthday Repetition,
the probability of winning free game under distribution DSi,Tj |R′,U is at most the probability of
strategy satisfying edge sampled from DX(i,j),Y(i,j)|R′,U since winning the birthday repetition is a
sub-event.

F.3 Dependency Breaking Lemmas

First we show that the modified version of Lemma 3.7 of [8] holds. This shows that the divergence
between the uniform distribution over the edges and distribution conditioned on R′ and event U
must be small. This holds for both low degree and high degree regime.

Lemma F.6. For any event U and R ⊂ [r]×[r] with |R| = s. Also let U be the uniform distribution
over the edges with the following property where

Pr
U

[X(i,j), Y(i,j) = ∅] := max
R,{X(i,j),Y(i,j)}(i,j)∈R

Pr
D

[
X(i,j), Y(i,j) = ∅ |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
that is it is a uniform distribution with some probability of null. Then

E
D{X(i,j),Y(i,j),B(i,j)}(i,j)∈R

|U

[
D

(
D{X(i,j),Y(i,j)}(i,j)/∈R|{X(i,j),Y(i,j),B(i,j)}(i,j)∈R,U

||U⊗(r2−s)
)]

≤ log

(
1

PrD[U ]

)
+ E
D{X(i,j),Y(i,j)}(i,j)∈R

|U

[
H(DB(i,j)∈R|{X(i,j),Y(i,j)}(i,j)∈R,U

)

]

+ (r2 − s) log

(
1

1− 2r
n

· 1

1− ε
160

)
Proof. We can expand the divergence expression as

E
D{X(i,j),Y(i,j),B(i,j)}(i,j)∈R

|U

[
D

(
D{X(i,j),Y(i,j)}(i,j)/∈R|{X(i,j),Y(i,j),B(i,j)}(i,j)∈R,U

||U⊗(r−k)

)]

= E
D
X,Y,{B(i,j)}(i,j)∈R

|U

log

PrD

[{
X(i,j), Y(i,j)

}
(i,j)/∈R |

{
X(i,j), Y(i,j), B(i,j)

}
(i,j)∈R , U

]
PrU⊗(r2−s)

[{
X(i,j), Y(i,j)

}
(i,j)/∈R

]


= E
D
X,Y,{B(i,j)}(i,j)∈R

|U

log

PrD

[{
X(i,j), Y(i,j)

}
(i,j)/∈R |

{
X(i,j), Y(i,j), B(i,j)

}
(i,j)∈R , U

]
PrD

[{
X(i,j), Y(i,j)

}
(i,j)/∈R |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
 (1)
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+ E
D
X,Y,{B(i,j)}(i,j)∈R

|U

log

 PrD

[{
X(i,j), Y(i,j)

}
(i,j)/∈R |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
PrU⊗(r2−s)

[{
X(i,j), Y(i,j)

}
(i,j)/∈R |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
 (2)

First we bound (2). Observe that

PrD

[
X(i,j), Y(i,j)|

{
X(i′,j′), Y(i′,j′)

}
(i′,j′)6=(i,j)

]
PrU

[
X(i,j), Y(i,j)

] ≤ 1

1− 2r
n

· 1

1− ε
160

.

If X(i,j), Y(i,j) is a pair that is prohibited by the choice of
{
X(i′,j′), Y(i′,j′)

}
(i′,j′)6=(i,j)

, note that the

probability is 0, therefore the above bound holds. If X(i,j), Y(i,j) is null, the ratio must be less than
1, thus the above bound holds as well.

Now suppose X(i,j), Y(i,j) is an edge that is not prohibited. Recall that X(i,j), Y(i,j) is uniform
over the entries that are not prohibited by the entries in the same row or column. This removes
at most 2dr edges from the support. Rest of the mass is evenly distributed among other edges,
conditioned on not being null. We can formally then bound the term as

PrD

[
X(i,j), Y(i,j)|

{
X(i′,j′), Y(i′,j′)

}
(i′,j′)6=(i,j)

]
PrU

[
X(i,j), Y(i,j)

]
=

PrD

[
X(i,j), Y(i,j)|X(i,j), Y(i,j) 6= ∅,

{
X(i′,j′), Y(i′,j′)

}
(i′,j′) 6=(i,j)

]
PrU

[
X(i,j), Y(i,j)|X(i,j), Y(i,j) 6= ∅

]
·

PrD

[
X(i,j), Y(i,j) 6= ∅|

{
X(i′,j′), Y(i′,j′)

}
(i′,j′) 6=(i,j)

]
PrU

[
X(i,j), Y(i,j) 6= ∅

] ≤ 1

1− 2r
n

· 1

1− ε
160

.

where the last inequality holds by Proposition F.3 (Proposition F.4 for the high degree case) and
the observation on the size of the support. We get

PrD

[
X(i,j), Y(i,j)|

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
PrU

[
X(i,j), Y(i,j)

] ≤ 1

1− 2r
n

· 1

1− ε
160

. (3)

Applying (3) exactly r2 − s times to (2), we get

log

PrD

[{
X(i,j), Y(i,j)

}
(i,j)/∈R |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
PrU⊗(r2−s)

[{
X(i,j), Y(i,j)

}
(i,j)/∈R

]
 ≤ (r2 − s) log

(
1

1− 2r
n

1

1− ε
160

)
.

Bounding (1) follows from Lemma 3.7 from [8] which we add for the completeness of the proof.

(1) = E
D
X,Y,{B(i,j)}(i,j)∈R

|U

log

PrD

[{
X(i,j), Y(i,j)

}
(i,j)/∈R ,

{
X(i,j), Y(i,j), B(i,j)

}
(i,j)∈R , U

]
PrD

[{
X(i,j), Y(i,j)

}
(i,j)/∈R ,

{
X(i,j), Y(i,j)

}
(i,j)∈R

]


+ E
D
X,Y,{B(i,j)}(i,j)∈R

|U

log

 PrD

[{
X(i,j), Y(i,j)

}
(i,j)∈R

]
PrD

[{
X(i,j), Y(i,j), B(i,j)

}
(i,j)∈R , U

]

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≤ E
D
X,Y,{B(i,j)}(i,j)∈R

|U

log

 PrD

[{
X(i,j), Y(i,j)

}
(i,j)∈R

]
PrD

[{
X(i,j), Y(i,j), B(i,j)

}
(i,j)∈R , U

]


= E
D
X,Y,{B(i,j)}(i,j)∈R

|U

log

 1

PrD

[{
B(i,j)

}
(i,j)∈R , U |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]


= E
D{X(i,j),Y(i,j),B(i,j)}(i,j)∈R

|U

log

 1

PrD

[{
B(i,j)

}
(i,j)∈R , U |

{
X(i,j), Y(i,j)

}
(i,j)∈R

]
 (4)

Now we can decompose (4) as

(4) = E
D{X(i,j),Y(i,j),B(i,j)}(i,j)∈R

|U

log

 1

PrD

[
U |
{
X(i,j), Y(i,j)

}
(i,j)∈R

]


+ E
D{X(i,j),Y(i,j),B(i,j)}(i,j)∈R

|U

log

 1

PrD

[{
B(i,j)

}
(i,j)∈R |

{
X(i,j), Y(i,j)

}
(i,j)∈R , U

]


≤ log

(
1

PrD [U ]

)
+ E
D{X(i,j),Y(i,j)}(i,j)∈R

|U

H

(
D{B(i,j)}(i,j)∈R|{X(i,j),Y(i,j)}(i,j)∈R,U

)
where the inequality follows from the concavity of log. Therefore, we have

(1) ≤ log

(
1

PrD[U ]

)
+ E
D{X(i,j),Y(i,j)}(i,j)∈R

|U

[
H(DB(i,j)∈R|{X(i,j),Y(i,j)}(i,j)∈R,U

)

]

Combining the bound for (1) and (2) completes the proof.

We then proceed to bound ED{Xi,Yj}(i,j)∈R
|W ′

H
(
DB(i,j)∈R|{Xi,Yj}(i,j)∈R,W ′

)
.

Proposition F.7.

E
D{Xi,Yj}(i,j)∈R

|W ′

H
(
DB(i,j)∈R|{Xi,Yj}(i,j)∈R,W ′

)
≤ ε(r2 − s)/80

Proof. This follows directly the argument of [8] and the definition of W ′. Recall that∣∣∣Supp(DB(i,j)∈R|{Xi,Yj}(i,j)∈R,W ′
)∣∣∣ ≤ 2ε(r

2−s)/80

by the definition of W ′. The bound on the entropy term then follows since

H
(
DB(i,j)∈R|{Xi,Yj}(i,j)∈R,W ′

)
≤ log

∣∣∣Supp(DB(i,j)∈R|{Xi,Yj}(i,j)∈R,W ′
)∣∣∣ .

Corollary F.8. For R′ and W ′ where |R| = s, if r < 4n,

E
(i,j)/∈R

E
DR′|W ′

[
D
(
DXi,Yj |R′,W ′ ||U

)]
≤ 1

r2 − s

(
ε(r2 − s)/80− log

(
Pr
D

[W ]− 2−ε(r
2−s)/80

))
+

4r

n
+ ε/80
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Proof. By taking the expectation over the remaining grids to Lemma F.6 and setting U = W ′ with
Proposition F.7, the following bound then follows from Fact A.5 and the property log 1

1−x < 2x if
x < 1/2.

E
(i,j)/∈R

E
DR′|W ′

[
D
(
DXi,Yj |R′,W ′ ||U

)]
≤ 1

r2 − s

(
ε(r2 − s)/80− log

(
Pr
D

[W ′]

))
+

4r

n
+ ε/80

Then observe that PrD[W ′] ≥ PrD[W ]−2−ε(r
2−s)/80 since PrD [W ∧ ¬L] is bounded by 2−ε(r

2−s)/80

from definition of L. Plugging in the bound for PrD[W ′] we get the desired bound for PrD[W ′].

F.4 Proof of Theorem 1.4

Now we combine lemmas and propositions from Section F.2 and Section F.3 to prove the main
lemma of this section:

Lemma F.9. If PrD[W ] ≥ 2−ε(r
2−s)/320, r2− s ≥ (320/ε) log(320/ε), r < min{

√
n/2, εn/320} (for

high degree, r < d/2 as well) and val(G) < 1− 2ε, then there exists (i, j) /∈ R such that

Pr
D

[W(i,j)|W ] ≤ 1− ε

160
(5)

Proof. First, we show that PrD[W(i,j)|W ′] < 1 − ε/80 for some coordinate (i, j). Assume by
contradiction for any coordinate (i, j), PrD[W(i,j)|W ′] ≥ 1 − ε/80. Then observe that we can
rewrite PrD[W(i,j)|W ′] as

Pr
D

[W(i,j)|W ′] = E
DR′|W ′

Pr[W(i,j)|R′,W ′] ≥ 1− ε/80.

An equivalent assumption is

E
DR′|W ′

Pr[¬W(i,j)|R′,W ′] < ε/80

Recall that there exists a matching strategy for Si, Tj via Proposition F.2, which indeed gives an
assignment for X(i,j), Y(i,j) conditioned on R′,W ′. X(i,j), Y(i,j) is indeed checked by definition of the
Birthday Repetition. Now from Corollary F.8,

E
(i,j)/∈R

E
R′|W ′

[
D
(
DXi,Yj |R′,W ′ ||U

)]
≤ 1

r2 − s

(
ε(r2 − s)/80− log

(
Pr
D

[W ]− 2−ε(r
2−s)/80

))

+
4r

n
+

ε

80
≤ ε/80 +

4r

n
−

log
(

PrD[W ]− 2−ε(r
2−s)/80

)
r2 − s

+
ε

80

≤ ε/80 + ε/80 +
4r

n
+ ε/80 ≤ ε/20

where the second to last inequality holds by our assumption on r that is

Pr
D

[W ]− 2−ε(r
2−s)/80 ≥ 2−ε(r

2−s)/160 − 2−ε(r
2−s)/80 = 2−ε(r

2−s)/80
(

2ε(r
2−s)/160 − 1

)
≥ 2−ε(r

2−s)/80

and the last inequality holds by our assumption r < εn/320. Thus we have

E
(i,j)/∈R

E
R′|W ′

[
D
(
DXi,Yj |R′,W ′ ||U

)]
≤ ε/20
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By Markov argument, there exists a fixing of R′ and (i, j) such that satisfies all of following.

D
(
DX(i,j),Y(i,j)|R′,W ′ ||U

)
≤ ε/4 (6)

Pr
D

[¬W(i,j)|R′,W ′] ≤ ε/16 (7)

Combining these conditions with Fact A.6, one can win a copy of the original game under U
with probability ≥ 1− ε which is indeed a contradiction. U is null with at most 1/2 probability by
Proposition F.3 (for high degree case Proposition F.4) while by assumption val(G) < 1− 2ε.

Now we have that there exists (i, j) such that

Pr
D

[W(i,j)|W ′] = E
DR′|W ′

Pr[W(i,j)|R′,W ′] < 1− ε/80

while we want to bound PrD[W(i,j)|W ]. This is implied by the above inequality. Since W ′ is a
subset event of W

Pr
D

[W(i,j)|W ] ≤ Pr
D

[W(i,j)|W ′] + Pr[¬W ′|W ]

≤ Pr
D

[W(i,j)|W ′] + 2−ε(r
2−s)/80/Pr

D
[W ] ≤ 1− ε/80 + 2−

ε(r2−s)
80

+
ε(r2−s)

320

= 1− ε/80 + 2−
ε(r2−s)

320 ≤ 1− ε/320

where the last bound holds by our assumption on r, that is (r2 − s) ≥ 320/ε log(320/ε).

Now we apply Lemma F.9 recursively to prove Theorem 1.4 which is our main technical theorem,
which we restate for readability.

Theorem 1.4. Suppose k = ` = Ω(
√
n log(1/ε)), and G is a projection game. Further, suppose

r ≤ min {
√
n/2, εn/320}. Then if val(G) < 1− ε,

val(Grk×r`) ≤ (1− ε/2)Ω(r2).

Proof of Theorem 1.4. Let R be the set of coordinates of size k and let W be the event of
winning on all the coordinates in R. Suppose r2 ≥ 1600 log(320/ε)

ε , and k < r2/5. Then note that

r2− s > 320 log(320/ε)
ε , thus we can apply Lemma F.9. We prove by induction on k, that is for every

k, there exists a subset R of size k such that

Pr
D

[W ] ≤ (1− ε/320)k

If k = 0, the statement holds trivially. Suppose it is true for k, we show then it is also true for
k + 1 if k ≤ r2/5− 1. If PrD[W ] ≤ (1− ε/320)k+1, we are done. Suppose otherwise, that is

Pr
D

[W ] ≥ (1− ε/320)k+1 ≥ 2−ε(k+1)/160 ≥ 2−ε(r
2−k)/320.

where the last inequality holds by our assumption on r and k. Then we apply Lemma F.9 to add
a coordinate to R. By Lemma F.9, there exists (i, j) such that PrD[W(i,j)|W ] < 1 − ε/320. If we
add (i, j) to R, then note that

Pr
D

[W ∧W(i,j)] = Pr
D

[W ] · Pr
D

[W(i,j)|W ] ≤ (1− ε/320)k · (1− ε/320) ≤ (1− ε/320)k+1.
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Thus the probability of
∧

(i,j)∈[r]×[r]W(i,j) is indeed bounded by 2−Ω(εr2).4 Since this is a sub-event
of winning Si and Tj pairs for all (i, j) ∈ [r] × [r], the probability of winning all Si and Tj ’s is

upper-bounded by 2−Ω(εr2). �
Recall that high degree regime theorem can be written as

Theorem 1.5. Suppose k = `, and G is a projection game, and d = Ω(n logn
k ). Further, suppose

r ≤ min {
√
n/2, εn/320, d/2}. Then if val(G) < 1− ε,

val(Grk×r`) ≤ (1− ε/2)Ω(r2).

We leave the proof to the reader since Lemma F.9 applies to the high degree regime as well,
that is d = Ω(n logn

k ).
Indeed a natural question to ask is whether the statement is true for small r, since we assumed

r2 ≥ 1600 log(320/ε)
ε in the proof. [30] pointed out that the parallel repetition for large r should imply

for small r with the same parameters. Now we give an analogous argument on the grid. Suppose
the statement is false for some small r, r0. That is there exists a strategy that obtains the value
of 2−o(εr

2
0). Then one can copy this strategy multiple times for a bigger sized grid, which achieves

the value of 2−o(εr
2). This is indeed a contradiction.

G Proof of Lemma 1.6

In this section, we prove Lemma 1.6 which translates bounds for the Birthday Repetition to bounds
for symmetric parallel repetition. In particular, we exhibit bound for val(G′Dk,`) via bound on

val(Gk×`).
Let Dk,`, the distribution on 2E ⊂ 2X×2Y parameterized by k and ` defined as the distribution

on (S, T ) formed by the following process. (which is induced from the Birthday Repetition)

• The referee selects S by adding each x ∈ X with probability 1−e−k/n and selects T by adding
each y ∈ Y with probability 1− e−`/n.

• Consider E(S, T ). Let S0 := {x|(x, y) ∈ E(S, T )} and T0 := {y|(x, y) ∈ E(S, T )}.

• If S = S0 and T = T0, that there exists a matching between S and T in E(S, T ), then the
referee sends S to Alice and T to Bob. The referee selects E(S, T ) as C. Otherwise, repeat
the above process.

Lemma 1.6. If the degree of the original Two Prover game d ≥ (1+δ)n log n/k with δ = Ω(1/ log n)
and k = `, then

|val(GDk,`)− val(Gk×`)| = o(1)

Proof. Let Uk,` denote the distribution on 2X and 2Y in Gk×`. We give a protocol to transform
the strategy for GDk,` into a strategy for Gk×`. Alice, given S, and Bob, given T , simply look up
strategy for S and T respectively in GDk,` then give the answer.

For such strategy, it suffices to bound ‖Dk,` − Uk,`‖1. Then observe that

‖Dk,` − Uk,`‖1 = 2 · Pr[S 6= S0 ∨ T 6= T0]

4This property is used in the proof of Theorem 1.7. But for the purpose of proving result for Birthday Repetition,
this observation is not necessary.
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since Dk,` is simply Uk,` conditioned on S = S0 and T = T0. Then

Pr[x /∈ S0] =
(
e−`/n

)d
= e−`d/n = 1/n1+δ

From union bound, since |S|, |T | ≤ O(k), we have

Pr[S 6= S0] ≤ |S| · e−`d/n ≤ 1/nδ

Pr[T 6= T0] ≤ |T | · e−kd/n ≤ 1/nδ.

since |S|, |T | ≤ n. Combining the bounds, we get

‖Dk,` − Uk,`‖1 ≤ o(1).

Indeed we have not used the fact that the actual chosen sets (S, T ) must be of size O(k) and
O(`) respectively. However, this does not change the proof by much since `1 norm difference from
pruning is at most O(e−Ω(k)) if k = `. Since k = ` = Ω(log n), again this `1 norm is at most
1/poly(n). Thus, Pr[S 6= S0∨T 6= T0] under the pruned distribution is again at most o(1), and the
size for GDk,` is at most nO(k).

Lemma 1.6 along with Theorem 1.4 (or Theorem 1.5) gives the desired bound on val(GDk,`) as
a direct corollary, which we restate for completeness.

Theorem 1.7. Let G be a projection game where the underlying constraint graph is a d-regular
graph. Let val(G) < 1 − ε. Set k = ` = 4n log n/d. If k = ` = Ω(

√
n log(1/ε)) and k2

n log(1/ε) ≤
min {

√
n/2, εn/320} are satisfied then there exists a distribution on Dk,` on 2E that is only supported

on the set of size O(k) such that

val(G′Dk,`) ≤ (1− ε/2)
Ω( k2

n log(1/ε)
)
.

Else, for any r > 0 that satisfies r ≤ min {
√
n/2, εn/320, d/2}, there exists a distribution on Drk,r`

on 2E that is only supported on the set of size O(rk) such that

val(G′Dk,`) ≤ (1− ε/2)Ω(r2).

We leave the proof for the reader, since the proof follows from rearranging the variables.

Theorem G.1 (Lower Bound). Let G be a projection game where the underlying constraint graph
is d-regular graph. Let val(G) > 1− ε, k, ` = o(n) and εdk`

n ≤ 1/8. Then

val(Gk×`) ≥ e−O( εdk`n ).

Proof. We prove by union bound. Consider the strategy for G that wins with probability > 1 − ε
say f : X → A and g : Y → B. Consider its natural extension in Gk×`, which is Alice, when given
S as an input, for each x ∈ S, answers f(x), similarly for Bob with g. Note that this strategy wins
whenever E(S, T ) does not contain an edge that is not satisfied by f and g.

Then recall that the probability of picking an edge is (1−e−k/n)(1−e−`/n) ≤ 4k`/n2. Applying
union bound over all edges that are not satisfied, the probability of picking an edge that is not
satisfied by f and g is

ε|E| · 4k`/n2 ≤ 4εdk`

n

Thus we have a strategy for Gk×` that wins with probability 1− 4εdk`
n ≥ e−

8εdk`
n where the inequality

holds from our assumption on εdk`
n ≤ 1/8.
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H Proof of Theorem 1.9

Let Dr be defined as the following distribution on 2E . We choose the set of edges C by picking
each e ∈ E with probability 1 − e−r/|E|. Indeed, the size of the reduction may not be nO(r), since
|C| > r. But we avoid this issue by conditioning on the cases where |C| < 2r, which indeed contains
most of the mass due to Chernoff Bound. We denote the “pruned” distribution as Dr, though the
difference in the value of the game in terms of `1 norm is at most 2 · e−Ω(r).

In the rest of this section, we prove Theorem 1.9 without using complicated machineries devel-
oped in Section F for the Birthday Repetition. The main observation is to analyze the behavior
of the game when the set S and T becomes large so that |S| = |T | = n. It is easy to check that
if val(G) < 1, the value of this new game becomes 0, since the verifier will check all the edges.
Instead, suppose that the verifier does not check all the edges, but chooses random edges in E
according to some distribution. In particular, suppose the referee picks each edge with probability
1 − e−r/dn and accepts iff all picked edges are satisfied, that is Dr. But the difference with GDr is
that while Alice and Bob gets CX = {x|(x, y) ∈ C} and respectively CY = {y|(x, y) ∈ C} as input
for GDr , this is not case for this new game. Denote this new prover game as Grall. Also note that
we do not assume G to be a projection game.

Remark H.1. Indeed Grall is not useful for practical purposes. Though the number of vertex is 2
in the bipartite graph, the alphabet size blows up exponentially to An and Bn, thus the size of the
game is 2Ω(n) if the original game had constant sized alphabet. Also it does not preserve uniqueness
nor projection.

We show upper bound for val(Grall) which is relatively straightforward.

Claim H.2. If val(G) < 1 − ε, then val(Grall) < 2−Ω(εr). Similarly, if val(G) > 1 − ε, then
val(Grall) = 2−O(εr)

Proof. Let a be the strategy for Alice and b be the strategy for Bob. Indeed a and b could be
randomized. However, note that there is always a deterministic strategy that performs at least
as good as randomized strategy. Thus without loss of generality, let a and b be a deterministic
strategy. Note that our assumption on the game implies that a and b can satisfy at most (1− ε)-
fraction of the edges. Thus the fraction of the edges that are not satisfied is at least ε. Denote such
edges as Ebad. The referee accepts iff all no edges from Ebad is picked, the probability of which is(

1− (1− e−r/dn)
)|Ebad|

≤ e−εr = 2−Ω(εr)

For the second part of the claim, if val(G) > 1− ε,(
1− (1− e−r/dn)

)|Ebad|
≥ e−εr = 2−O(εr)

Now we transform the bound for val(Grall) to a bound for val(GDr). First we prove the following
simple claim that has been stated before:

Claim H.3.
‖Dr −Dr‖1 = e−Θ(r).
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Proof. Recall that Dr is simply Dr conditioned on the set of having size < 2r. Thus

‖Dr −Dr‖1 ≤ 2 Pr
c∼Dr

[|c| > 2r] ≤ 2e−Θ((1−e−r/dn)dn) ≤ 2e−Θ(r)

where the bound follows from Chernoff Bound.

We can without loss of generality argue on Dr since the value only differs by 2e−Θ(r).

Lemma H.4.
val(GDr) < 2−Ω(εr) (8)

for r = Ω(n log(1/ε)).

Proof. We translate the strategy for GDr to strategy for Grall. Let L denote the random binary
string in {0, 1}X such that lx = 1 iff x is checked by the referee, 0 otherwise. Define R as random
binary string in {0, 1}Y similarly on Bob’s side.

H(L) =
∑
x∈X

H(Lx) =
∑
x∈X

H

((
e−

r
dn

)d)
= nH

(
e−r/n

)
where first equality holds since Lx’s are all independent. Similarly,

H(R) = nH
(

2−Θ(r/n)
)

Consider following strategy by Alice and Bob. Alice and Bob, pick L and R independently at
random according to the same distribution as the verifier. Compare the guessed copy with actual
L and R picked by the verifier. Then let E denote the event where Alice and Bob guess L and R
correctly. Note that under this protocol,

Pr[E] =
∑
l,r

Pr[L = l, R = r] · Pr[L = l] · Pr[R = r] ≥
∑
l,r

Pr[L = l, R = r]3

≥ 2−3H(L,R) ≥ 2−3(H(L)+H(R))

Suppose they guessed correctly. Now note that conditioned on E, the distribution becomes skewed.
In particular,

Pr[Lx = 0|E] =
Pr[Lx = 0]2

Pr[Lx = 1]2 + Pr[Lx = 0]2

=
Pr[Lx = 0]2

(1− Pr[Lx = 0])2 + Pr[Lx = 0]2
=

Pr[Lx = 0]2

1− 2 Pr[Lx = 0] + 2 Pr[Lx = 0]2

And same for Bob’s side as well. Let r′ be such that
(
e−

r′
dn

)d
= Pr[Lx = 0|E]. Note that r′ = Θ(r).

Then now we apply the strategy for GDr′ . Note that the distribution of the input exactly
matches by our choice or r′. Thus

val(Grall) ≥ val(GDr′ ) · Pr[E] ≥ val(GDr′ ) · 2
−6nH(2−Θ(r/n)) (9)

Combining with Claim H.2 we have

val(GDr′ ) < 2−Ω(εr)+Θ(r·2−Θ(r/n)) (10)

Choosing r = Ω(n log(1/ε)), we get

val(GDr′ ) < 2−Ω(εr) = 2−Ω(εr′) (11)
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The fact that each edge is picked independently is crucial in bounding the probability Lx = 0
conditioned on E. It would be interesting to show similar bound for picking an edge r-times at
random.

Lemma H.5. If val(G) > 1− ε then

val(GDr) ≥ 2−O(εr)

Proof. Recall the proof of Claim H.2. Suppose Alice and Bob ignores the inputs and just follows
strategy for Grall. Then the probability that the referee does not choose any bad edge is(

1− (1− e−r/dn)
)|Ebad|

≥ e−εr = 2−O(εr)

which proves our claim.

Proof of Theorem 1.9. We combine all the claims to prove the theorem. First note that val(GDr)
and val(GDr) can deviate by at most e−Θ(δ2r) due to `1 norm bound in the underlying distribution.

val(GDr) ≤ val(GDr) + e−Θ(δ2r) ≤ 2−Ω(εr) + 2e−Θ(r)

Having since r = Ω(1/ε) we get the desired inequality. And similarly

val(GDr) ≥ val(GDr)− e−Θ(δ2r) ≥ 2−O(εr) − 2e−Θ(r) = 2−O(εr).

�
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