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Abstract

We show that for the blackbox polynomial identity testing (PIT) problem it suffices
to study circuits that depend only on the first extremely few variables. One only need
to consider size-s degree-s circuits that depend on the first log◦c s variables (where c is a
constant and we are composing c logarithms). Thus, hitting-set generator (hsg) manifests a
bootstrapping behavior— a partial hsg against very few variables can be efficiently grown to
a complete hsg. A boolean analog, or a pseudorandom generator property of this type, is
unheard-of. Our idea is to use the partial hsg and its annihilator polynomial to efficiently
bootstrap the hsg exponentially wrt variables. This is repeated c times in an efficient way.

Pushing the envelope further we show that: (1) a quadratic-time blackbox PIT for 6913-
variate degree-s size-s polynomials, will lead to a “near”-complete derandomization of PIT,

and (2) a blackbox PIT for n-variate degree-s size-s circuits in sn
δ

-time, for δ < 1/2, will
lead to a “near”-complete derandomization of PIT (in contrast, sn-time is trivial).

Our second idea is to study depth-4 circuits that depend on constantly many variables.
We show that a polynomial-time computable, O(s1.49)-degree hsg for trivariate depth-4
circuits bootstraps to a quasipolynomial time hsg for general poly-degree circuits, and implies
a lower bound that is a bit stronger than Kabanets-Impagliazzo (STOC 2003).

2012 ACM CCS concept: Theory of computation– Algebraic complexity theory, Fixed pa-
rameter tractability, Pseudorandomness and derandomization; Computing methodologies– Al-
gebraic algorithms; Mathematics of computing– Combinatoric problems.
Keywords: hitting-set, tiny, depth-3, depth-4, derandomization, identity testing, lower bound,
VP, VNP, E, #P/poly, SUBEXP, NW design, circuit factoring, approximative, tetration.

1 Introduction

Polynomial identity testing (PIT) problem is to decide whether a multivariate polynomial is
zero, where the input is given as an algebraic circuit. An algebraic circuit over a field F is a
layered acyclic directed graph with one sink node called output node; source nodes are called
input nodes and are labeled by variables or field constants; non-input nodes are labeled by ×
(multiplication gate) and + (addition gate) in alternate layers. Sometimes edges may be labeled
by field constants. The computation is defined in a natural way. The complexity parameters of
a circuit are: 1) size- number of edges and vertices (including the variables), 2) depth- number
of layers, and 3) degree- maximum degree among all polynomials computed at each node. Note–
The degree of the computed polynomial may be much smaller than the degree of its circuit.

The polynomial computed by a circuit may have, in the worst-case, an exponential number
of monomials compared to its size. So, by computing the explicit polynomial from input circuit,
we cannot solve PIT problem in polynomial time. However, evaluation of the polynomial at a
point can be done, in time polynomial in the circuit size, by assigning the values at input nodes.
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This helps us to get a polynomial time randomized algorithm for PIT by evaluating the circuit at
a random point, since any nonzero polynomial evaluated at a random point gives a nonzero value
with high probability [DL78, Zip79, Sch80]. However, finding a deterministic polynomial time
algorithm for PIT is a long-standing open question in algebraic complexity theory. It naturally
appears in the algebraic-geometry approaches to the P 6=NP question, eg. [Mul17, GMQ16,
Gro15, Mul12b, Muk16]. The famous algebraic analog is the VP 6=VNP question [Val79]. The
PIT problem has applications both in proving circuit lower bounds [HS80, KI03, Agr05] and in
algorithm design [MVV87, AKS04, KSS14, DdOS14]. For more details on PIT, see the surveys
[Sax09, Sax13, SY10] or review articles [Wig17, Mul12a].

PIT algorithms are of two kinds: 1) whitebox - use the internal structure of the circuit, and
2) blackbox - only evaluation of the circuit is allowed at points in a ‘small’ extension K ⊇ F.
Blackbox PIT for a set of polynomials P ⊂ K[x] is equivalent to efficiently finding points
H ⊂ Kn, called a hitting-set, such that for any nonzero P ∈ P, the set H contains a point at
which P 6= 0. For us a more functional approach would be convenient. We think in terms of
an n-tuple of univariates f(y) = (f1(y), . . . , fn(y)), in K[y], whose set of evaluations contain an
H. Such an f(y) can be efficiently obtained from a given H (using interpolation) and vice-versa.
Clearly, if H is a hitting-set for P then P (f(y)) 6= 0, for any nonzero P ∈ P. This tuple of
univariates is called a hitting-set generator (hsg) and its degree is maxi∈[n] deg(fi), which is
≤ |H|.
Our work. We study the phenomenon of bootstrapping: converting an hsg for size-s degree-s
n-variate circuits to hsg for size-s degree-s L(n)-variate circuits with L(n) > n. In the boolean
settings, this phenomenon is well understood. The analog of hsg is pseudo-random generator
(prg) that stretches a seed by several bits, or, the s-extender that stretches n by a single bit.
By [NW94, Sec.2-3] it is known that an extender for size-s (log s)-variate boolean circuits can
be converted to an optimal prg for size-s circuits with L(n) = 2n. No further “reduction” in
number of variables is possible since the size of a (ǫ log s)-variate circuit can be reduced to < s
if ǫ < 1.

The situation is less clear in algebraic settings. On one hand, n-variate polynomials requiring
circuits of size s exist for every n and s (due to the fact that polynomials can have arbitrarily
large degrees unlike boolean settings where every function is multilinear). On the other hand,
bootstrapping from O(log s) variables to s variables is not studied explicitly in the literature.

We close this gap in knowledge by showing that an hsg for size-s degree-s (log◦c s)-variate
circuit can be efficiently converted to an hsg for size-s degree-s s-variate circuit; where log◦c s :=
log · · · (c times) · · · log s. Furthermore, at the cost of making the final hsg slightly superpolyno-
mial = sexp ◦ exp(O(log⋆ s)), we show that bootstrapping can be done from even a constant number
of variables! Our results can also be viewed as a powerful amplification of derandomization: a
“slight” derandomization (= sn

δ
time hsg for size-s degree-s n-variate circuits, for a constant

δ < 1/2) implies “nearly” complete derandomization (= sexp ◦ exp(O(log⋆ s)) time hsg for size-s

degree-s s-variate circuits). Compare the required sn
δ
-time PIT with the trivial sn-time PIT.

We prove an additional result for shallow circuits: poly(s)-time computable andO
(

sn/2/ log2 s
)

degree hsg for size-s n-variate depth four circuits (for some constant n ≥ 3) implies quasipoly-
nomial time blackbox PIT for size-s degree-s s-variate circuits (& strong exponential lower
bounds). See Theorems 1–4 for more formal statements.

We see our results as a positive development; since, they reduce PIT to cases that are special
in an unprecedented way. Such special-case PIT algorithms are waiting to be discovered.

Existing deterministic algorithms solving PIT for restricted classes have been developed
by leveraging insight into their weaknesses. For example, deterministic PIT algorithms are
known for subclasses of depth-3 circuits [KS07, Sax08, SS12], subclasses of depth-4 circuits
[ASSS12, BMS13, SSS13, For15, KS16a, KS16b, PSS16], read-once algebraic branching pro-
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grams (ROABP) and related models [FS12, ASS13, FSS14, AGKS15, GKST16, GKS17, MV17],
certain symbolic determinants [FGT16, GT16, ST17, GTV17], as well as non-commutative mod-
els [LMP16, GGOW16, LLS17]. An equally large number of special models have been used to
prove lower bounds, see for example the ongoing online survey of Saptharishi [Sap16]. Also,
blackbox PIT relates to conjectures that bar certain algebraic circuit lower bound methods
[FSV17].

Our notation. [n] refers to {1, 2, . . . , n}. Logarithms are wrt base 2. Iterated logarithm log⋆ s
is the least number of iterated applications of log that gives a result ≤ 1. When we say that a
circuit is of size-s (resp. depth-∆, or degree-d) we use the parameters as an upper bound.

Field: To appreciate the most important aspects of this work keep in mind the “practical”
fields F = Q or Fq. Interestingly, our main theorems (Thms. 1–4) hold for any field. However,
the other theorems require field characteristic to be zero or large. Common examples are:
complex C, reals R, algebraic numbers Q, local fields Qp or their extensions, or finite fields Fq

of characteristic p > degree of the input.
Finally, one can generalize our work to the field K = F(ǫ) with ǫ → 0 in a certain way.

This leads to approximative complexity size of polynomials in F[x] [Bür01, Defn.3.1]. Efficient
hitting-sets wrt size are equivalent to explicit system of parameters (esop) of the invariant ring of
a related variety ∆[det(X), s] with a given group action [Mul17, Thm.4.9]. Our work (Theorem
4) will imply that to prove the existence of such a (quasi-)esop it suffices to study esop wrt
X that depend on ‘constantly few’ variables (also see the reduction of derandomized Noether
Normalization problem NNL to blackbox PIT in [Mul17, Sec.4.3]).

A basic algebraic algorithm used in our results is circuit factoring, that relies on field prop-
erties. A classic result is [Kal89] that constructs small circuits for factors that have multiplicity
coprime to the characteristic (see [DSS17] for recent factoring results and the related rich back-
ground).

Hitting-set generator (hsg): Let P be a set of n-variate polynomials. We call an n-
tuple of univariates f(y) = (f1(y), . . . , fn(y)) a (t, d)-hsg for P if: (1) for any nonzero P ∈ P,
P (f(y)) 6= 0, and (2) f has time-complexity t and the degree of each fi is less than d. By t-time
hsg or t-time hitting-set or t-time blackbox PIT, we always mean a (t, t)-hsg.

The computational problem of designing and verifying an hsg for size-s circuits family is in
PSPACE; however, that for size-s circuits family is in EXPSPACE (recently brought down to
PSPACE [GSS18, FS17]). The major open question is to bring this complexity down to P; this is
christened ‘GCT Chasm’ in [Mul17, Sec.11] and has since then become a fundamental difficulty
common to geometry and complexity theories. It means that we have to discover algebraic
properties that are specific to only those polynomials that have small circuit representation.
We will investigate such properties closely in this work.

Variables: A polynomial P computed by a size-s algebraic circuit C can have at most
{x1, . . . , xs} variables. For k < s, if we say that C depends only on the first k variables, then it
is meant that the computed polynomial P ∈ F[x1, x2, . . . , xk].

Multi-δ-ic: A polynomial family {fn(x1, . . . , xn)}n≥1 over a field F is called multi-δ-ic, if
degree of each variable in fn is less than δ. For eg. when δ = 2, {fn}n≥1 is multilinear.

E-computable polynomial family: For constant δ, a multi-δ-ic polynomial family {fn}n
with integer coefficients is called E-computable if: there exists a 2O(n)-time algorithm that on
input e, outputs the coefficient of xe in fn in binary; say the leading bit will denote the sign
of the coefficient, with 0 implying a positive coefficient and 1 implying negative. This makes
coeff(·)(fn) a boolean function ({0, 1}∗ → {0, 1}∗) whose bits are E-computable as well.
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1.1 Our motivation and main results

Pseudorandom generator (prg) is a well studied object in boolean circuit complexity theory
and cryptography [Yao82] & [AB09, Chap.10]. One of the main motivations of studying prg
is to efficiently derandomize all randomized algorithms. Indeed one can show that if we have
an optimal prg against BPP, then BPP=P. By optimal prg, we mean a prg which stretches an
n-length string to 2n-length and is computable in 2O(n) time. Interestingly, an optimal prg is
closely related to strong circuit lower bound. It is a celebrated result that designing optimal prg
against P/poly is equivalent to finding an E-computable boolean function which has boolean
circuit complexity 2Ω(n) [NW94, Secs.2.5 & 3.1].

Naturally, an algebraic analog of the latter property would be to identify an E-computable
polynomial family which has algebraic circuit complexity 2Ω(n). By Valiant’s criterion [Bür13,
Prop.2.20] if one replaces E by #P/poly then we are directly talking about a strong version of
VNP 6=VP. As a first challenge, we can pose the following reasonable complexity conjecture.

Conjecture 1. There is an E-computable polynomial which has algebraic complexity 2Ω(n).
Thus, either E * #P/poly or VNP has a polynomial family of algebraic circuit complexity
2Ω(n).

In the world of algebraic circuits, hitting-set generator (hsg) is in direct analogy with prg.
So one can naturally ask about the relation between hsg and algebraic circuit lower bound.
Heintz and Schnorr [HS80, Thm.4.5] introduced the concept of an efficient annihilator of the
hsg. They showed that if we can efficiently compute an hsg for a set of polynomials P, then
we can also efficiently compute a polynomial (namely, annihilator) which does not belong to
P. This technique can be easily extended to get the following circuit lower bound result. Like
boolean world, our hard polynomial is also E-computable but has algebraic circuit complexity
2Ω(n).

Theorem 0 (Connection). If we have poly(s)-time blackbox PIT for size-s degree-s circuits Ps,
then Conjecture 1 holds. (Proof sketched in Section A.)

A weak converse of the above theorem, i.e. hardness to hsg, is well-known due to [KI04,
Thm.7.7]. We state a revised version of it as Lemma 9. If we have an exponentially hard but
E-computable polynomial family, then by using Lemma 9 we can efficiently reduce the number
of variables in any circuit, from s to O(log s), preserving the nonzeroness. Next, one applies
a “trivial” hitting-set on the O(log s) variables, which gives a quasipolynomial time hsg for Ps
[CDGK91]. This suggests that the ‘hardness vs randomness’ connection here is less satisfactory
than the boolean world. Nonetheless, one wonders whether the conclusion in Theorem 0 can
be strengthened in a different way, so that we get a perfect equivalence. In this work, we
answer this question by introducing the concept of partial hsg. Indeed, we give infinitely many
different-looking statements that are all equivalent to the hypothesis in Theorem 0.

Partial hsg. For all s ∈ N, let gs = (gs,1(y), . . . , gs,s(y)) be an hsg of Ps. Suppose we can
efficiently compute only the first “few” polynomials of the hsg. Can we bootstrap it, i.e. recover
the whole hsg efficiently? Formally, we can describe this as follows. For any m ∈ [s − 1], the
partial hsg gs,m is defined as (gs,1, . . . , gs,m). The partial hsg gs,m can be seen as the hsg of those
polynomials in Ps which depend only on the first m variables. Suppose that for m≪ s, we can
compute gs,m in poly(s)-time. Then, using this partial hsg, can we also design a complete hsg
for Ps in poly(s)-time?

If m = s1/c for some c ∈ N, then the answer is ‘Yes’ and it follows from the definition. The
set Ps can be thought of as a subset of those polynomials in Psc which depend only on the
first s variables. So gsc,s = (gsc,1, . . . , gsc,s) is a hsg for Ps. Clearly, gsc,s can be computed
in poly(s)-time. However, for m ≤ so(1), we cannot use the same argument for the following
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reason. To compute the hsg of Ps, we have to compute the partial hsg for Psω(1) , which may
not be computable in poly(s)-time. Naively speaking, there is no reason why a partial hsg
gs,so(1) could be bootstrapped efficiently to gs. The former is a property of the polynomial ring
F[x1, . . . , xso(1) ] compared to that of the latter “much larger” polynomial ring F[x1, . . . , xs]; so
in the underlying algebraic-geometry concepts a terrible blow up is warranted.

For any c ∈ N, let log◦c be defined as c-times application of the base-2 logarithm function
(eg. log◦3 s = log log log s). Somewhat surprisingly, we give a positive answer for m as small as
log◦c s, for any c ∈ N. For smaller values of m (eg. m = log⋆ s), we leave it as an open question.

Theorem 1 (Bootstrap hsg). Suppose, for some c ∈ N, we have a poly(s)-time blackbox PIT
for size-s degree-s circuits that depend only on the first ⌈log◦c s⌉ variables. Then, we have a
poly(sd)-time blackbox PIT for size-s degree-d circuits and Conjecture 1 holds.

Remark– 1) In the boolean world, there is no extender that can stretch 0.99 log s bits and
“fool” size-s circuits. Because boolean functions on that many bits have circuit-size < s.

2) We also study the case when our partial hsg can be computed in subexponential time,
which is far worse than polynomial time. In this case, our result is not as strong as Theorem 1.
However, in the hypothesis we still deal with an m = so(1) and manage to bootstrap that partial
hsg in subexponential time. Also, an E-computable super-polynomially hard polynomial family
is implied (say, weak Conjecture 1). For details see Theorem 13.

The bootstrapping idea brings forth pleasant surprises if we are willing to content ourselves
with a “slightly super”-polynomial time blackbox PIT in the conclusion. Though we do not get
an equivalence result now, we do however weaken the hypothesis very significantly.

Theorem 2. Suppose, for constants e ≥ 2 and 1 > ǫ ≥ (3 + 6 log(128e2))/(128e2), we
have an O(se)-time blackbox PIT for degree-s polynomials computed by size-s circuits that de-
pend only on the first n := ⌈max{192e2 log(128e2)1/ǫ, (64e2)1/ǫ}⌉ variables. Then, we have an
sexp ◦ exp(O(log⋆ s))-time blackbox PIT for size-s degree-s circuits and Conjecture 1 holds.

Remark: If we fix e = 2 and ǫ = 6912/6913, then the hypothesis required is: Quadratic-time
(i.e. O(s2)) blackbox PIT for 6913-variate degree-s size-s polynomials.

In the above theorem, the exponent e in the complexity of PIT is a constant just below√
n/8, where n is the (constant) number of variables. This can be achieved from a “poor”

quality blackbox PIT algorithm (varying both s and n as independent parameters):

Theorem 3. Suppose, for constant δ < 1/2, we have an sn
δ
-time blackbox PIT for size-s degree-

s circuits that depend only on the first n variables. Then, we have an sexp ◦ exp(O(log⋆ s))-time
blackbox PIT for size-s degree-s circuits and Conjecture 1 holds.

Note that in an n-variate degree-s polynomial, there are at most 1+ sn monomials. So, the
above hypothesis is unexpectedly weak. Additionally, the lower bound result that it will give is
truly exponential. Next, we show that bootstrapping can be done even at shallow depths.

Theorem 4 (Depth-4 tiny variables). Suppose, for constant n ≥ 3, we have a
(

poly(sn), O
(

sn/2

log2 s

)

)

-hsg for size-s depth-4 circuits that depend only on the first n variables. Then, we have a
quasipoly(sd)-time blackbox PIT for size-s, degree-d circuits and Conjecture 1 holds.

Remarks– 1) If we fix n = 3, then the hypothesis required is:
(

poly(s), O(s1.5/ log2 s)
)

-hsg for

trivariate size-s depth-4 circuits. While
(

Õ(s3), (s+ 1)3
)

-hsg is trivial to design.
2) Depth-4 circuit is denoted as ΣΠΣΠ to specify the alternating layers starting with the

top addition gate. In older works it had been fruitful to restrict one of the product layer to mere
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powering gates [Sax08, GKKS13]. Indeed, we can prove stronger versions of Theorem 4: for
Σ ∧ ΣΠ (Theorem 21) resp. ΣΠΣ∧ (Theorem 23) circuits in the hypothesis. But, these results
(unlike Theorems 1–4) require the field characteristic to be zero or large.

3) Our conclusion is as strong as those obtained via the well-known ‘constant-depth reduc-
tion’ results in [AV08, GKKS13]. But our hypothesis needs an hsg only slightly better than the
trivial; this cannot be done, not even guessed, using the old methods.

Finally, we want to change the viewpoint and see blackbox PIT for depth-3 circuits through
the lens of fixed parameter tractability (fpt). This is discussed in Section 5.1. Bootstrapping of
variables from log-variate width-2 ABP is done in Section 5.2.

1.2 Proof idea and our techniques

Proof idea of Theorem 1: We have to prove two results; one related to PIT and the other
one related to lower bound. The latter will follow from Theorem 0, so we only describe the
proof idea of PIT part. Suppose that for all s, d, i ∈ N, Ps,d,i is the set of degree-d polynomials
computed by size-s circuits that depend only on the first fi(sd) variables, where fi(s) is intended
to be ω(log◦i s). For all 0 ≤ i ≤ c+1, fi(s) := (log◦i s)2. Using reverse induction, we show that
for 0 ≤ i ≤ c + 1, we have a poly(sd) time hsg for Ps,d,i. First, we design a poly(sd) time hsg
for Ps,d,c+1 using the hypothesis mentioned in the theorem. Next, for all i ∈ [c+ 1], we use the
poly(s′d′) time hsg of Ps′,d′,i to design a poly(sd) time hitting-set of Ps,d,i−1.

Our induction step can be broken into three smaller steps.
1) Hsg of Ps′,d′,i to hard polynomial family: For all s ∈ N, let Ts,i be the s-degree polynomials
computed by size-s circuit that depends only on the first 2c1⌈log◦i s⌉ variables, where c1 is some
constant. Using poly(s′d′) hsg of Ps′,d′,i, we can design a poly(s) time hsg for Ts,i. Applying
Lemma 5, we consider an annihilator, of the hsg, and get a family of hard polynomials which
satisfies the properties mentioned in Lemma 12 (that we need in the next step).
2) Hard polynomial to variable reduction map: Lemma 12 designs an efficient variable reduction
map using a hard polynomial family with certain properties. Thus, we perform a variable
reduction on the polynomials in Ps,d,i−1; significantly reducing variables from fi−1 to fi.
3) The map to poly(sd) time hsg for Ps,d,i−1: The above variable reduction converts every
nonzero polynomial in Ps,d,i−1 to a nonzero one in Ps′,d′,i, where s′, d′ = poly(sd). Thus, on
applying the polynomial time hsg for Ps′,d′,i, we get a polynomial time hsg for Ps,d,i−1.

The crucial technical step is provided by Lemma 12, which is a strict generalization of
Lemma 9. As mentioned earlier, the latter itself is a revised version of [KI04, Thm.7.7] as it
can handle hard non-multilinear polynomials. It designs an efficient variable reduction using an
exponentially hard but E-computable polynomial family. If we have a poly(s) time hsg for Ts,1,
then using Lemma 5, one can get such a polynomial family (as in the proof of Theorem 0 but
now the hard polynomial will be non-multilinear). In Step 1 above, we are working with poly(s)
time hsg for Ts,i, where i > 1. In such an extremely low variate regime, Lemma 5 cannot give
us a polynomial family with constant individual degree. So, we cannot use Lemma 9 ideas if
we desire polynomial time computation.

There are several technical challenges faced in choosing parameters that should lead to a
contradiction in the proof. Since the individual degree of the hard polynomial depends on
the time-complexity se of the hsg of Ts,i, the factor circuits will have a blown up size after
using Kaltofen factoring. Care is needed to counterbalance the size of the Nisan-Wigderson
(NW) design and the hardness of the polynomial family with the circuit complexity of the
factors. The more sophisticated statement of Lemma 12 takes care of all those issues. Why
is this lemma invoked multiple times? The answer lies in the way Kaltofen factoring yields
a contradiction: using the fact that the third-parameter (i.e. set-intersection size) in the NW
design is much smaller than the second-parameter (i.e. set size). This gives a smaller factor of
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the composite circuit after fixing certain variables. So, we need to apply NW design for each
exponential stretch of variables; we do not know how to directly get a hyper-exponential stretch
and save on time.

Proof idea of Theorem 2: Theorem 1 assumes an se-time hsg, where e is a constant, for
log◦c s-variate degree-s size-s polynomials. On the other hand, Theorem 2 assumes an se-time
hsg for n-variate degree-s size-s polynomials, where n := ⌈max{192e2 log(128e2)1/ǫ, (64e2)1/ǫ}⌉
and 1 > ǫ ≥ (3+6 log(128e2))/(128e2) are constants. In both the cases, our hypotheses demand
improved hsgs over the trivial ones (namely, slog

◦c s and sn time respectively). This is the
common strength of both the hypotheses which is exploited in the proofs.

Broadly, the proof of Theorem 2 is similar to the previous one. However, in Theorem 2 we
desire, for a given e, to find the minimum number of constant variables for which we can reach
the conclusion. This imposes more technical challenges and in many steps of the proof we have
to work with much finer parameters. For example, our calculation suggests that for e = 2, the
number of variables that we need is n = 6913 (or, for e = 3, n = 17574 suffices).

Like Theorem 1, in each inductive step, we stretch the number of variables exponentially.
However, here we finally stretch n variables to s variables, where n is a constant. So, we need
around log⋆ s steps, which is non-constant wrt s. We show that if we have an sfi-time hsg, in
the i-th induction step, then in the next step we get an sfi+1-time hsg, where fi+1 := 16f2

i . So,
after log⋆ s steps, we get an hsg of our desired complexity (=slightly super-polynomial).

Like Lemma 12, here Lemma 19 combines all the crucial tools needed in the inductive step of
Theorem 2. Our key ingredients here are again Nisan-Wigderson design and Kaltofen’s factoring.
However, we use them in a more optimized way. It will help us to improve the constants that
underlie. This theorem and the next are very sensitive to these technicalities.

Thus, we show that a significant improvement of blackbox PIT within the polynomial-time
domain itself (from sn to se) would near-completely solve PIT for VP. This reminds us of other
famous algebraic problems in computing where improvements in the time-exponent have been
widely studied (& still open)— integer multiplication [Für09] and matrix multiplication [LG14].

Proof idea of Theorem 3: Suppose we have, for constant δ < 1/2, an sn
δ
-time hsg for size-s

degree-s circuits that depend only on the first n variables. Then, there exists an ǫ ∈ [2δ, 1)
and a large enough constant e such that: there is an se-time hsg for size-s degree-s circuits
that depend only on the first n := ⌈(64e2)1/ǫ⌉ ≥ 192e2 log(128e2)1/ǫ variables. Note that

e ≥ (n − 1)ǫ/2/8 > nδ can be easily ensured, thus, se-time is more than sn
δ
-time. Now we

simply invoke Theorem 2.
In fact, this proof needs the hypothesis only for: infinitely many n and large enough s.

Proof idea of Theorem 4: We argue using two intermediate models. For all s ∈ N, let Ps be
the set of polynomials computed by size-s Σ ∧a ΣΠ circuits, a(s) is an arbitrarily slow growing
function, that depend only on the first n variables. Let Ts be the set of polynomials computed
by size-s ΣΠΣ∧ circuits that depend only on the first n variables.

To prove Theorem 4, first we show that (poly(s), O(sn/2/ log2 s))-hsg for Ps resp. Ts gives an
efficient variable reduction and Conjecture 1 (see Theorems 21 resp. 23). This variable reduction
converts a d-degree nonzero polynomial computed by a size-s circuit to a O(log(sd))-variate
poly(sd)-degree nonzero polynomial. For O(log(sd))-variate and poly(sd)-degree polynomials,
we have a (sd)O(log(sd)) time hitting-set. This completes the proof of PIT part. Next, we give
the proof sketch of the variable reduction part.

First, we discuss the variable reduction part assuming the O(sn/2/ log2 s)-degree hsg of
Ps. We do it via an intermediate multilinear model. For all s ∈ N, let P ′

s be the set of
n
2 log s degree multilinear polynomials computed by size-s Σ ∧a ΣΠ circuits, that depend only
on the first n log s variables. Next we describe how to get a hard polynomial family from an
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(poly(s), O(sn/ log2 s))-hsg of P ′
s.

Since the number of n
2 log s degree multilinear monomials over m := n log s variables is

(

m
m/2

)

≥ 2m/
√
2m = sn/

√
2m > O(sn/ log2 s) · m (for large enough s), we get an m-variate

and (m/2)-degree multilinear homogeneous polynomial (annihilator) qm /∈ P ′
s and computable

in poly(s) time. The linear algebra is similar to Lemma 5; only difference being that Lemma 5
does not ensure qm multilinear. However, the parameters of P ′

s ensure the latter. Since qm is
m-variate (m/2)-degree multilinear polynomial and is not in P ′

s, qm is not computed by size-s
Σ ∧a ΣΠ circuits. Using depth reduction of [AV08], one can also ensure that qm has circuit
complexity > s ≥ 2Ω(m). This in turn gives the variable reduction using Lemma 9.

Now we show that an efficientO(s′n/2/ log2 s′)-degree hsg of Ps′ gives an efficientO(sn/ log2 s)-
degree hsg for P ′

s, where s and s′ are polynomially related. In P ′
s, divide the n log s variables into

n blocks with each block of length log s. Now take fresh variables y1, . . . , yn, one for each block,
and apply Kronecker map (xu(j)+i 7→ y2

i

j , i ∈ [log s]) within the j-th block {xu(j)+i|i ∈ [log s]}.
Since polynomials in P ′

s are multilinear, the above map preserves nonzeroness. This converts
a nonzero polynomial in P ′

s to a nonzero polynomial in Ps′ , where s′ = O(s2). Now use the
O(s′n/2/ log2 s′)-degree hsg of Ps′ to get one for P ′

s. For details see the proof of Theorem 21.
Second, we discuss the variable reduction part assuming an efficient O(sn/2/ log2 s)-degree

hsg of Ts. Proof idea is similar to the previous one; only difference is in the intermediate model.
Here we consider the following model: for all s ∈ N, let T ′

s be the set of multilinear polynomials
computed by size-s ΣΠΣ circuits that depend only on the first n log s variables. Again, we
show that an efficient O(s′n/2/ log2 s′)-degree hsg of Ts′ gives an O(sn/ log2 s)-degree hsg for T ′

s ,
which in turn gives the variable reduction as above coupled with [GKKS13]. For details see
Theorems 22 & 23.

2 Brushing-up relevant techniques

In this section we will revisit the techniques that have appeared in some form in [HS80, NW94,
KI03, Agr05, AV08, GKKS13].

From a hitting-set generator f(y) of a set of polynomials P, we get an explicit polynomial
outside P simply by looking at an annihilating polynomial of f(y). Previously, this approach
was discussed in [HS80, Theorem 4.5] and [Agr05, Theorem 51]. In the next lemma, we prove
a revised version. Later, it will be used to get hard polynomial from hitting-set generator.

Lemma 5 (Hitting-set to hardness). Let f(y) = (f1(y), . . . , fn(y)) be a (t, d)-hsg for a set of
n-variate polynomial P. Then, there exists an n-variate polynomial g(x) that is not in P, is
computable in poly(tdn)-time, has individual degree less than δ := ⌈d3/n⌉, and is homogeneous
of degree (δ − 1)n/2. (See Appendix B)

Corollary 6 (E-computable). In the proof of Lemma 5, if td = 2O(n) then the polynomial
family gn := g, indexed by the variables, is E-computable. (See Appendix B)

Towards a converse of the above lemma, a crucial ingredient is the Nisan-Wigderson design

[NW94]. To describe it simply, the design stretches a seed from ℓ to m ≥ 2
d
10 as follows,

Definition 7. Let ℓ > n > d. A family of subsets D = {I1, . . . , Im} on [ℓ] is called an (ℓ, n, d)-
design, if |Ii| = n and for all i 6= j ∈ [m], |Ii ∩ Ij | ≤ d.

Lemma 8 (Nisan-Wigderson design, Chap.16 [AB09]). There exists an algorithm which takes
(ℓ, n, d) and a base set S of size ℓ > 10n2/d as input, and outputs an (ℓ, n, d)-design D having
≥ 2d/10 subsets, in time 2O(ℓ). (Lemma 15 improves this.)
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Our next lemma is a revised version of the counterpositive of [KI04, Lemma 7.6]. If we have
an exponentially hard but E-computable polynomial family, then we can efficiently reduce the
variables from n to O(log(sd)), for n-variate d-degree polynomials computed by size-s circuits,
preserving nonzeroness.

Lemma 9 (Hardness to variable reduction). For some constant δ, let {qm}m≥1 be a multi-δ-ic
polynomial family computable in δO(m) time, but it has no δo(m)-size algebraic circuit.

Then, for n-variate d-degree polynomials computed by size-s circuits we have a δO(log(sd))-
time variable-reducing polynomial map, from n to O(log(sd)), that preserves nonzeroness. Fur-
thermore, after variable reduction, the degree of the new polynomial is poly(sd). (See Appendix
B)

Next lemma shows that the existence of an exponentially hard but E-computable polynomial
family has an interesting complexity consequence. It is based on Valiant’s criterion.

Lemma 10 (Valiant class separation). If we have an E-computable polynomial family {fn}n≥1

of algebraic circuit complexity 2Ω(n), then either E 6⊆#P/poly or VNP has polynomials of alge-
braic circuit complexity 2Ω(n). (See Appendix B)

Next lemma converts a monomial into a sum of powers. It is called Fischer’s trick in
[GKKS13]. It requires char F = 0 or large.

Lemma 11 (Fischer’s trick [Fis94]). Over a field F of char(F) = 0 or > r, any expression
of the form g =

∑

i∈[k]
∏

j∈[r] gij with deg(gij) ≤ δ, can be rewritten as g =
∑

i∈[k′] cig
r
i where

k′ := k2r, deg(gi) ≤ δ and ci ∈ F. In fact, each gi is a linear combination of {gi′j |j} for some
i′.

3 Many-fold composition of NW design– Proof of Theorem 1

Lemma 9 gave an efficient variable reduction from an exponentially hard but E-computable
polynomial family. However, while bootstrapping in Theorem 1, we work with a case where
number of variables can be as low as log◦c s compared to s, size of the circuit. In this extremely
low variate regime, we have to deal with hard polynomial family of non-constant individual
degree. There are also technical challenges faced in choosing parameters that should lead to a
contradiction in the proof. So, we cannot use Lemma 9 directly. In Lemma 12, we take care of
those issues. Overall proof strategy will be again to use Nisan-Wigderson combinatorial design
and Kaltofen’s algebraic circuit factoring algorithm. This is done repeatedly in Theorem 1.

Lemma 12 (Tiny variable reduction). Let c3 ≥ 1 be the exponent in Kaltofen’s factoring
algorithm [Bür13, Thm.2.21]. For a constant e ≥ 1 define, c0 := ⌈9√e + 3⌉c3, c1 := ⌈30e +
10
√
e+ 1⌉c3 and c2 := 1+ c21. Let ε be a tiny function say ε(s) := 2⌈log◦k s⌉ for k ≥ 1. Suppose

we have a family {qm,s | s ∈ N, m = c1ε(s)} of multi-δm,s-ic m-variate polynomials that can be
computed in sO(1) time, but has no size-s algebraic circuit, where δm,s := ⌈s3e/m⌉.

Then, there is a poly(sd)-time variable reduction map, reducing n ≤ 2ε((sd)
c0 ) to c2ε((sd)

c0)
and preserving nonzeroness, for degree-d n-variate polynomials computed by size-s circuits. Fur-
thermore, after variable reduction, the degree of the new polynomial will be poly(sd).

Proof. Let s′ := sd. Let P be the set of degree-d polynomials computed by size-s circuits
that depend only on the first n-variables. We intend to stretch c2ε(s

′c0) variables to n. Define
m′ := c1ε((sd)

c0). Note that q := qm′,s′c0 has no algebraic circuit of size s′c0 . Its individual-

degree is ≤ δ := ⌈s′3ec0/m′⌉ = s′o(1).
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Let D = {S1, . . . , Sn} be a (c2ε(s
′c0),m′, 10ε(s′c0))-design on the variable set Z = {z1, . . .,

zc2ε(s′c0 )}. Constants c2 > c1 > 10 will ensure the existence of the design by Lemma 8. Our
hitting-set generator for P is defined as: for all i ∈ [n], xi 7→ q(Si) =: pi with Si as variables.
Then, we show that for any nonzero polynomial P (x) ∈ P, P (p1, . . . , pn) is also nonzero.

For the sake of contradiction, assume that P (p1, . . . , pn) is zero. Since P (x) is nonzero, we
can find the smallest j ∈ [n] such that P (p1, . . . , pj−1, xj , . . . , xn) =: P1 is nonzero, but P1

∣

∣

xj=pj

is zero. Thus, (xj − pj) divides P1. Let a be a constant assignment on all the variables in P1,
except xj and the variables Sj in pj , with the property: P1 at a is nonzero. Since P1 is nonzero,
we can find such an assignment [Sch80]. Now our new polynomial P2 on the variables Sj and xj
is of the form P2(Sj , xj) = P (p′1, . . . , p

′
j−1, xj , aj+1, . . . , an), where for each i ∈ [j − 1], p′i is the

polynomial on the variables Si∩Sj , and ai’s are field constants decided by our assignment a. By
the design, for each i ∈ [j−1], |Si∩Sj | ≤ 10ε(s′c0). Since p′i are polynomials on variables Si∩Sj

of individual degree≤ δ, each p′i has a circuit (of trivial form ΣΠ) of size at most m′δ · δ10ε(s′c0 )
= m′δ · δ10m′/c1 .

Thus, we have a circuit for P2 of size at most s1 := s + nm′δ · δ10m′/c1 , and degree of the
computed polynomial is at most d1 := dm′δ. Since (xj−pj) divides P2, we can invoke Kaltofen’s
factorization algorithm [Kal89] (see [Bür13, Theorem 2.21] for the algebraic circuit complexity
of factors) and get an algebraic circuit for pj of size (s1d1)

c3

≤ (snm′δ · δ10m′/c1 · dm′δ)c3 =

(

s′nm′2δ
2+ 10m′

c1

)c3

< (s′2+o(1) · δ10m′/c1)c3

< s′(3+ 30ec0/c1)c3 . This exponent =
(

3
⌈(9√e+3)⌉ +

30e
⌈30e+10

√
e+1⌉

)

c0 ≤
(

1
(3
√
e+1)

+ 3
√
e

3
√
e+
√

1+1/e

)

c0

< c0. So, pj = q(Sj) has circuit of size smaller than s′c0 , which contradicts the hardness of q.
Thus, C(p1, . . . , pn) is nonzero.

The time for computing (p1, . . . , pn) depends on: (1) computing the design (i.e. poly(2m
′
)-

time), and (2) computing q (i.e. poly(sd)-time). Thus, the variable reduction map is computable
in δO(m′) = poly(sd)-time. After variable reduction, the degree of the new polynomial is <
nd · deg(q) = poly(sd).

Remark. In the case of a finite field F = Frt of prime characteristic r, we have to be careful

while invoking Kaltofen’s factoring. As, the latter outputs a small circuit for pr
t′

j where rt
′
is

the highest power dividing the multiplicity of xj − pj in P2. However, when we raise the output
by rt−t′ we get a circuit that is small and agrees with pj on F-points. This is used, like in [KI04,
Rmk.7.5], to redefine algebraic complexity of q over Frt suitably and the above lemma works.

Proof of Theorem 1. Consider the following two statements. S1: we have a poly(s)-time hsg
for size-s degree-s circuits that depend only on the first ⌈log◦c s⌉ variables, and S2: we have a
poly(s)-time hsg for degree-s polynomials computed by size-s circuits that depend only on the
first ⌈log◦c s⌉ variables. S1 is our given hypothesis. However, in this proof, we work with S2
which is stronger than S1, as in the former case circuits may have degree larger than s. So we
first argue that they are equivalent up to polynomial overhead. S2 trivially implies S1. For the
other direction, we invoke (the proof of) the ‘log-depth reduction’ result for arithmetic circuits.
For any size-s circuit C computing a degree-s polynomial, we have an se0-size s-degree circuit
C ′ computing the same polynomial, for some constant e0 (see [Sap16, Thm.5.15]). Now apply
S1 for se0-size s-degree and get poly(s)-hsg for C. Next, we focus on designing poly(sd)-hsg for
degree-d polynomials computed by size-s circuits, using our stronger hypothesis S2.

Suppose that for all s, d, i ∈ N, Ps,d,i is the set of degree-d polynomials computed by size-s
circuits that depend only on the first fi(sd) variables, where fi(s) := (log◦i s)2. We prove that
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for all 0 ≤ i ≤ c + 1, we have a polynomial time hitting set for Ps,d,i. We will use reverse
induction on i. Define function εi(s) := 2⌈log◦i s⌉.
Base case– Poly(sd)-hsg for Ps,d,c+1: Let t := max{s, d}. Then Ps,d,c+1 is a subset of Pt,t,c+1.
For all s ∈ N, let Ts be the set of degree-s polynomials computed by s-size circuits that depend
only on the first ⌈log◦c s⌉ variables. Using the hypothesis S2, we have a poly(s) time hsg for Ts.
Since fc+1(t) ≤ ⌈log◦c t⌉ for large t, Pt,t,c+1 is a subset of Tt. So Pt,t,c+1 also has a poly(t)-time
hsg. This gives a poly(sd)-time hsg for Ps,d,c+1.

Induction step– From poly(s′d′)-hsg of Ps′,d′,i to poly(sd)-hsg of Ps,d,i−1: We divide this step
into three smaller steps, for i ∈ [c+ 1].

1) Hsg of Ps′,d′,i to hard polynomial family: For some constant e, we have ((s′d′)e/2, (s′d′)e/2)-
hsg for Ps′,d′,i. Let for all s, i ∈ N, Ts,i be the set of degree-s polynomials computed by size-s
circuits that depend only on the first c1εi(s) variables, where c1 is a constant as defined in
Lemma 12 using the e. Note that m := c1εi(s) is smaller than fi(s

2) for large enough s. So,
polynomial time hsg for Ps′,d′,i gives a (se, se)-hsg for Ts,i. Then using Lemma 5, we get an m-
variate polynomial qm,s such that 1) individual degree is less than δm,s = ⌈s3e/m⌉, 2) qm,s /∈ Ts,i,
and 3) computable in sO(1)-time.

Suppose qm,s has a circuit C of size less than s. Since the degree (m · δm,s) is also less than
s, the polynomial qm,s is in Ts,i, which is a contradiction. So using (se, se)-hsg for Ts,i, for all
s ∈ N, we get a polynomial family {qm,s | s ∈ N, m = c1εi(s)} of multi-δm,s-ic that can be
computed in sO(1) time, but has no size-s algebraic circuit.

2) Hard polynomial to variable reduction map: Note that fi−1(sd) ≤ 2εi((sd)
c0 ), where c0

is a constant defined in Lemma 12 using the e. Using the lemma (for ε = εi), any nonzero
polynomial P ∈ Ps,d,i−1 can be converted, in poly(sd)-time, to another poly(sd)-degree nonzero
polynomial P ′ computed by poly(sd)-size circuit which depends only on the first c2εi((sd)

c0)
variables.

3) The map to poly(sd) time hsg for Ps,d,i−1: Since, in P ′, the number of variables c2εi((sd)
c0)

is less than fi(sd), using poly-time hsg of Ps′,d′,i we get a poly-time hsg for P ∈ Ps,d,i−1.

Repetition– After applying the induction step c+1 times, we have a poly(sd)-time hsg for Ps,d,0.
In other words, we have a poly(sd)-time hsg for size-s degree-d circuits.

Now we show that Conjecture 1 holds. We just obtained a poly(s)-time hsg for Ts,1. Let
m = ⌈log s⌉. Then applying Lemma 5, we get a family of polynomials {qm}m≥1 such that 1)
it is multi-δ-ic, for some constant δ, and 2) computable in δO(m)-time, but has no δo(m)-size
algebraic circuit. Now, applying Lemma 10, we get Conjecture 1.

Remark. In the case of a finite field F = Frt of prime characteristic r, we have to redefine the
hardness of the polynomial qm,s in Step (1) of the induction step above. As remarked before, we
can define Ts,i to be the set of polynomials f(x1, . . . , xc1εi(s)), such that for some e, f re agrees
on all F-points with some nonzero degree-s polynomial computed by a size-s circuit. It can be
seen that an hsg for Ts,i gives a hard qm,s (via the annihilator approach of Lemma 5) that can
be used in Step (2).

Next, we relax the hypothesis of Theorem 1 by allowing a subexponential time hitting-set.
In the following discussion, we use a constant e0. It is the exponent of ‘log-depth reduction’
algorithm ([Sap16, Thm.5.15]), i.e. for every size-s circuit computing a degree-d n-variate poly-
nomial, we also have an (sdn)e0-size d-degree circuit computing the same polynomial. We recall
the following standard definition.

subexp: A function f(s) is in subexp if f(s) = exp(so(1)). Eg. 2
√
s /∈ subexp, but exp(2

√
log s) ∈

subexp. One can recall the standard complexity class, SUBEXP := ∩ǫ>0DTIME(exp(nǫ)).
Basically, these are decision problems whose time-complexity is a subexp function.
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Theorem 13 (Subexp bootstrap). Let f be a function in subexp. Suppose that we have a
poly(f(s)) time blackbox PIT for size-s degree-s circuits that depend only on the first 10⌈log f(s)⌉
variables. Then, we have blackbox PIT for size-s degree-d circuits in subexponential, exp((sd)o(1)),
time. Furthermore, either E * #P/poly or VNP 6=VP.

Remark. As an fpt-algorithm the hypothesis requires a blackbox PIT, for size-s degree-s
n-variate circuits, of time complexity potentially as large as exp(so(1) +O(n)).

Proof. Our proof is divided into three parts. First, we show how to construct a hard polynomial
family using subexponential time partial hsg. Next, we show a nontrivial variable reduction for
circuits using the hard polynomial family. Finally, we apply the hsg due to trivial derandomiza-
tion of low-variate PIT [Sch80] and get a subexponential hsg. For lower bound part, we show
that our hard polynomial family satisfies the required conditions.

Define the function ε(s) := 10⌈log f(s)⌉. For all s ∈ N, let Ps be the set of polynomials
computed by size-s degree-s circuits that depend only on the first ε(s) variables. We have, for
some constant e, an (f(s)e, f(s)e)-hsg for Ps from the hypothesis. Using Lemma 5, we get an
m-variate polynomial qm,s, where m := ε(s), such that: 1) it is multi-δ-ic, for some constant δ,
2) computable in poly(f(s)) time, and 3) qm,s /∈ Ps. Now we prove that qm,s is not computable
by circuits of size less than s1/2e0 .

For the sake of contradiction assume that qm,s has a circuit of size s1 < s1/2e0 . Since f ∈
subexp, the number of variables m = ε(s) = so(1). Similarly, the degree bound d := mδ of qm,s

is also so(1). Now applying ‘log-depth reduction’ algorithm (see [Sap16, Theorem 5.15]), we get
a d-degree circuit C of size (s1dm)e0 for qm,s. Since m, d = so(1), the size of C is < s. This
implies that qm,s ∈ Ps , which is a contradiction. So qm,s is not computed by circuits of size less
than s1/2e0 . This gives us a family of hard polynomial F := {qm,s | s ∈ N,m = ǫ(s)} such that
it is: 1) m-variate and multi-δ-ic for some constant δ, and 2) computable in poly(f(s)) time
but no circuits of size less than s1/2e0 can compute it.

In the following claim, we describe how to reduce variables nontrivially using F ’s hardness.
Claim 14 (Subexp var.reduction). Using F , for some constant c, we have an exp(ε((sd)c)2/ log s)-
time computable variable reduction map, from n to ⌈ε((sd)c)2/ log s⌉, that preserves nonzeroness
for degree-d n-variate polynomials computed by size-s circuits. Furthermore, after variable re-
duction, the degree of the new polynomial will be poly(sd). (See Appendix C)

Define ε′ = ε′(s, d) := ⌈ε((sd)c)2/ log s⌉. Using the above claim, any degree-d nonzero
polynomial P computed by a size-s circuit can be converted to a ε′-variate nonzero polynomial
P ′ of degree (sd)O(1). P ′ has (sd)O(ε′) time hsg. Total time taken (variable reduction + hsg
complexity) is exp(O(ε′)) + exp(O(ε′) log(sd)). Since f ∈ subexp, ε′ = (sd)o(1). So the total
time is also in subexp. In terms of f , our time complexity is exp(log(sd) · log2 f(s′)/ log s),
where s′ := (sd)c.

Now we discuss the hardness of {qm,s | s ∈ N, m = ε(s)} wrt m, the number of variables of
qm,s. We know that qm,s requires circuit size ≥ s1/2e0 . Since m = ε(s) = so(1), the circuit size
is mω(1). On the other hand, qm,s is poly(f(s)) = 2O(m) time computable and is a multi-δ-ic
polynomial, for some constant δ. So F is an E-computable polynomial family and like Lemma
10, we get our lower bound result. The lower bound for qm,s directly in terms of f can also be
calculated: Since m = ε(s) = 10⌈log f(s)⌉ and f is an increasing function, so s = f−1(2Ω(m)).
This implies that qm,s requires circuit size (f−1(2Ω(m)))Ω(1).

12



4 Bootstrap constant-variate PIT– Proof of Theorems 2 & 3

The overall strategy is similar to the last section. However, the details would now change
drastically. Some of the technical proofs of this section have been moved to Appendix D.

First, we describe an optimized version of the Nisan-Wigderson (NW) design, where the
parameters are different from that in Lemma 8. Later, it will help us improve the constants.

Lemma 15 (NW design). There exists an algorithm which takes (ℓ, n, d), with ℓ ≥ 100 and
d ≥ 13, and a base set S of size ℓ := ⌈4n2/d⌉ as input, and outputs an (ℓ, n, d)-design D having
≥ 2d/4 subsets, in time O((4ℓ/n)n).

Exponent vs variables. In this section, to describe the complexity parameters of the
circuits and the hsg, we use two families of functions {fi}i≥0 (“exponent of time”) and {mi}i≥0

(“number of variables”). They are defined as follows: f0 ≥ 2 and m0 ≥ 1024 are constants and
for all i ≥ 1,

fi := 16f2
i−1 and mi := 2mi−1/(64f

2
i−1) .

Our strategy is to use an NW (mi,
mi
8fi

, mi

16f2
i
)-design to stretch mi variables to mi+1. We

want to show that mi grows much faster in contrast to fi. In particular, we need mi to be a
tetration in i (i.e. iterated exponentiation), while fi is “merely” a double-exponentiation in i.
Seeing this needs some effort and we will do this in the next two propositions.

From now on we will assume that ǫ is a constant fraction satisfying 1 > ǫ ≥ (3+6 log(128f2
i ))/(128f

2
i ),

for i = 0. Since fi increases with i, the fraction (3+6 log(128f2
i ))/(128f

2
i ) decreases. Thus, the

constant ǫ remains larger than the latter, for all i ≥ 0.

Proposition 16. If, for some i ≥ 0, mi ≥ 192f2
i · 1ǫ log(128f2

i ), then the same relation holds
between mi+1 and fi+1.

Proposition 17 (mi is a tetration). Suppose that m0 ≥ max{(8f0)
2
ǫ , 192f2

0 · 1ǫ log(128f2
0 )}.

Then for all i ≥ 0: 1) mi+1 ≥ 2m
1−ǫ
i and 2) mi+1 ≥ 2mi > 3456f2

i .

Once we know thatmi grows extremely rapidly, we want to estimate the number of iterations
before which it reaches s.

Proposition 18 (Iteration count). The least i, for which mi ≥ s, is ≤ 3
1−ǫ log

(

3
1−ǫ

)

+ 2 log⋆ s.

Now we describe the i-th step of bootstrapping.

Lemma 19 (Induction step). Let s be the input size parameter, i ≥ 0, mi = so(1) and
m′ := min{mi+1, s}. Suppose that we have an sfi-time hsg for mi-variate degree-s polynomials
computed by size-s circuits. Then, we have an sfi+1-time hsg for m′-variate degree-s polynomials
computed by size-s circuits.

Proof. Although i might grow (extremely) slowly wrt s, it helps to think of i and s as two
independent parameters. Suppose that for all s ∈ N, Ps,i is the set of mi-variate degree-s
polynomials computed by size-s circuits, and Ps,i+1 is the set of m

′-variate degree-s polynomials
computed by size-s circuits. Our proof can be broken into three main steps. First, using the
hsg of Ps,i we construct a hard polynomial family. Next, using that hard polynomial family
we do variable reduction on the polynomials in Ps,i+1. This variable reduction is relatively
“low”-cost and it reduces a nonzero polynomial in Ps,i+1 to some nonzero polynomial in Ps9fi ,i,
for sufficiently large value of s. Finally, we apply the hsg of Ps9fi ,i to get the desired hsg for
Ps,i+1. The challenge is to analyze this; which we do now in detail. Keep in mind the properties
of the functions mi, fi that we proved before.
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Hard polynomial family construction: We describe the construction of a hard polyno-
mial family from the hsg of Ps,i. Let di(s) := sfi and for all s ∈ N, let Ts be the set of mi

8fi
-variate

degree-s polynomials computed by size-s circuits. The di(s)-time hsg of Ps,i also gives an hsg
for Ts with same time complexity. Like Lemma 5, the annihilator of the hsg of Ts gives a poly-
nomial qs such that: 1) qs /∈ Ts, 2) it is computable in d4i -time by linear algebra, and 3) it is

multi-δs-ic, where δs := 1 + di(s)
8fi+1

mi = 1 + sfi(8fi+1)/mi . Here, the main difference is that the
individual degree bound δs is smaller than what Lemma 5 ensures. It will help us reduce the
initial constants in our calculations. We give a brief sketch of how we get an annihilator with
this individual degree.

The number of monomials on mi
8fi

variables with individual degree < δs is at least m :=

d
1+ 1

8fi
i = sfi+

1
8 . After evaluating an mi

8fi
-variate multi-δs-ic polynomial on the hsg of Ts, we get

a univariate polynomial of degree at most d := mi
8fi
·
(

di + d
1+

8fi+1

mi
i

)

≤ mi
8fi
· 2sfi+

8f2i +fi
mi . To

make the linear algebra argument of Lemma 5 work, we need m > d. This holds as mi = so(1)

and as by Proposition 17 we have mi ≥ 1728f2
i .

Now we argue that qs has no circuit of size≤ s. For the sake of contradiction, assume that

qs has a circuit of size≤ s. The degree of qs is at most mi
8fi
· 2d

8fi+1

mi
i ≤ mi

8fi
· 2s

fi(8fi+1)

mi . Applying

mi = so(1) and mi ≥ 1728f2
i , we get that qs has degree < s. This implies that qs ∈ Ts, which is

a contradiction. Thus, qs has no circuit of size≤ s. So we have a multi-δs-ic polynomial family
{qs | s ∈ N} such that, 1) qs is computable in d4i = s4fi time but has no circuit of size≤ s, 2) it
has individual degree δs = 1 + sfi(8fi+1)/mi and number of variables mi

8fi
.

Variable reduction map: Now we convert every non-zero polynomial in Ps,i+1 to a non-
zero polynomial in Ps12fi ,i. Consider a slightly larger size parameter s0 := s7. Let {S1, . . . , Sm′}
be an NW (mi,

mi
8fi

, mi

16f2
i
)-design on the variable set {z1, . . . , zmi}. The growth properties of mi,

togetherwith Lemma 15, ensures that such a design exists. Define for all j ∈ [m′], pj := qs0(Sj).
Next, we show that for any non-zero P ∈ Ps,i+1, P (p1, . . . , pm′) is also non-zero.

For the sake of contradiction, assume that P (p1, . . . , pm′) is zero. Since P (x) is nonzero,
we can find the smallest j ∈ [m′] such that P (p1, . . . , pj−1, xj , . . . , xm′) =: P1 is nonzero, but
P1

∣

∣

xj=pj
is zero. Thus, (xj − pj) divides P1. Let a be a constant assignment on all the variables

in P1, except xj and the variables Sj in pj , with the property: P1 at a is nonzero. Since
P1 is nonzero, we can find such an assignment [Sch80]. Now our new polynomial P2, on the
variables Sj and xj , is of the form P2(Sj , xj) := P (p′1, . . . , p

′
j−1, xj , aj+1, . . . , am′), where for

each i ∈ [j − 1], p′i is the polynomial on the variables Si ∩ Sj , and ai’s are field constants
decided by our assignment a. By the design, for each i ∈ [j − 1], |Si ∩ Sj | ≤ mi

16f2
i
. Since pis are

polynomials on variables Si of individual degree≤ δs0 , each p′i has a circuit (of trivial form ΣΠ)
of size at most

mi

16f2
i

δs0 · δ
mi

16f2
i

s0 .

Thus, we have a circuit for P2 of size at most s1 and the degree of P2 is at most d1, where

s1 := s+
m′miδs0
16f2

i

· δ
mi

16f2
i

s0 and d1 := s · miδs0
16f2

i

.

Since (xj − pj) divides P2, we can invoke Kaltofen’s factorization algorithm [Kal89] (see [Bür13,
Thm.2.21] for the improved complexity of factors) and get an algebraic circuit for pj of size
s′0 := s1Õ(d21). Now we prove that s′0 < s0, for large enough s. This implies that qs0 has a
circuit of size≤ s0 which contradicts the hardness of qs0 .
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Recall that δs0 = 1 + s
fi(8fi+1)/mi

0 . Let us upper bound s′0 =

s1Õ(d21) ≤
(

s +
m′mi

16f2
i

· δ
1+

mi
16f2

i
s0

)

· Õ
(smiδs0

16f2
i

)2

≤ s3+o(1)δ2s0
f2
i

+
s3+o(1)δ

3+
mi

16f2
i

s0

f4
i

(

∵ mi = so(1),m′ ≤ s
)

≤ s3+o(1)s
2fi(8fi+1)

mi
0 + s3+o(1)s

(

3+
mi

16f2
i

)

fi(8fi+1)

mi

0

≤ s3+o(1)s
14fi(8fi+1)

mi + s3+o(1)s

(

3+
mi

16f2
i

)

7fi(8fi+1)

mi

≤ s3+o(1)s
112f2i +14fi

mi + s3+o(1)s
21fi(8fi+1)

mi
+

7(8fi+1)

16fi

≤ s3+o(1)s
112fi+14

1728fi + s3+o(1)s
21(8fi+1)

1728fi
+

7(8fi+1)

16fi

(

∵ mi > 1728f2
i

)

≤ s3+o(1)+ 112
1728

+ 7
1728 + s3+o(1)+ 168

1728
+ 21

3456
+ 56

16
+ 7

32 (∵ fi ≥ 2)

≤ s3.1+o(1) + s6.83+o(1)

< s7 = s0 .

This gives a contradiction for sufficiently large s. So P ′ := P (p1, . . . , pm′) is non-zero.

Using the given hsg: The above variable reduction converts P to a mi-variate degree-d′

non-zero polynomial P ′ computable by s′-size circuit, where

d′ :=
smi

8fi
· δs0 and s′ := s+

m′miδs0
8fi

· δ
mi
8fi
s0 .

Now we give an upper bound of s′:

s′ = s +
m′miδs0

8fi
· δ

mi
8fi
s0

= s +
m′mi

8fi
·
(

1 + s
fi(8fi+1)

mi
0

)(
mi
8fi

+1)

≤ s +
m′mi

8fi
· (1 + s)

7fi(8fi+1)

mi
(
mi
8fi

+1)

≤ s + s
1+o(1)+7(fi+

1
8
)(1+

8fi
mi

)

< s + s1+o(1)+7(fi+
1
8
)(1+ 8

3456
) (∵ mi > 1728f2

i , fi ≥ 2)

< s9fi .

Since d′, s′ < s9fi =: s1, P
′ is mi-variate degree-s1 polynomial that is computable by size-s1

circuit. So P ′ has an hsg of time complexity sfi1 = s9f
2
i .

Final time complexity: First, let us review our overall algorithm: It takes (1s, 1i+1) as
input, and in sfi+1-time, outputs an s9f

2
i -time hsg of Ps,i+1, under the assumption that for all

t ≥ s, there is a tfi-time hsg for Pt,i.

a. s0 ← s7.
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b. By linear algebra, compute an annihilator qs0 (in dense representation) of the given hsg
of mi

8fi
-variate degree-s0 size-s0 polynomials.

c. Compute NW design (by the greedy algorithm sketched in Lemma 15) {S1, . . . , Sm′} on
the variable set {z1, . . . , zmi}.

d. Compute anmi-input andm′-output circuit C (in the form ΣΠ) on the variables {z1, . . . , zmi}
such that: for all j ∈ [m′], the j-th output is pj = qs0(Sj).

e. Compute the hsg a = (a1, . . . , ami) of Ps9fi ,i. Then, the above proof shows that an hsg
for Ps,i+1 is C(a).

The total time complexity of hsg for P has four components:

1. Computing qs0 (step b): It takes (sfi0 )
4 = s7×fi×4 = s28fi ≤ s14f

2
i .

2. Nisan Wigderson design from Lemma 15 (step c): It takes time O (4mi/(mi/8fi))
mi/8fi

= O(32fi)
mi/8fi . If mi > 64f2

i log s then we will run the i-th induction step only for

(relabelled) mi := 64f2
i log s, as the stretch obtained will already be to 2mi/64f

2
i = s

variables. Note that at that point, i would be non-constant and hence fi > 4. In this
regime, (32fi)

mi/8fi = (32fi)
8fi log s = s8fi log(32fi) < s12f

2
i .

3. Computing C (step d): Essentially, compute m′ copies of qs0 (in dense representation).
As seen before, the total time-complexity is s9fi .

4. Computing hsg of Ps9fi ,i. Then, computing hsg of Ps,i+1 by composition (step e): It takes

s9f
2
i + s9f

2
i · s9fi < s14f

2
i time.

So, the total time is smaller than s16f
2
i = sfi+1 and we have an hsg for m′-variate P .

Proof of Theorem 2. In the hypothesis of the theorem statement we are given constants e ≥ 2
and n ≥ 1024. Let us define the mi, fi polynomial family with the initialization f0 := e and
m0 := n. The idea is to simply use the induction step (Lemma 19) several times to boost m0

variables to an arbitrary amount.
Let P be a degree-s polynomial computed by size-s circuit. Then, it can have at most s

variables. Let k be the smallest integer such that mk ≥ s (k is an extremely slow growing
function in s as described in Proposition 18). By Proposition 17, we have that mk−1 ≤ so(1).

For i ∈ N≥0 and large enough parameters t > t′ > s, let Pt,i denote the set of mi-variate
degree-t polynomials computed by size-t circuits. From the hypothesis, we have a tf0-time hsg
for Pt,0. Now for each i < k, we apply Lemma 19, to get the t′fi+1-hsg for Pt′,i+1. After k such
applications of Lemma 19, we get an sfk -time hsg for s-variate degree-s polynomials computed
by size-s circuits.

Note that fk = (16f0)
2k/16 = 2O(2k) = 22

O(log⋆ s)
. Thus, we have an sexp ◦ exp(O(log⋆ s))-time

blackbox PIT for VP circuits.
Since f0 < m0/2 one can see that the hypothesis of Theorem 4 is easily satisfied. This gives

us an E-computable polynomial family {qm}m≥1 with hardness 2Ω(m).

Proof of Theorem 3. Suppose we have, for constant δ < 1/2, an sn
δ
-time hsg for size-s degree-s

circuits that depend only on the first n variables. Wlog (using depth-reduction proofs), we can

assume that we have an sn
δ
-time hsg for degree-s polynomials computed by size-s circuits that

depend only on the first n variables.
Then, there exists an ǫ ∈ [2δ, 1) and a large enough constant e such that: there is an se-

time hsg for degree-s polynomials computed by size-s circuits that depend only on the first
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n := ⌈(64e2)1/ǫ⌉ ≥ 192e2 log(128e2)1/ǫ variables. Note that e ≥ (n− 1)ǫ/2/8 > nδ can be easily

ensured, thus, se-time is more than sn
δ
-time. Now we simply invoke Theorem 2.

Remarks– 1) The NW (ℓ, n, d)-design that we are using, in the i-th iteration (Lemma 19), has
its respective parameters in the “ratio” f2

i : fi : 1 (roughly). This seems to be the reason why
we need second-exponent δ slightly less than 1/2. We leave it as an open question to improve
this.

2) We can give a more refined analysis in the above proofs by “decoupling” the time-complexity
from the degree of the hsg. For example, we can begin with a much weaker hypothesis— for
constant δ < 1/2 and an arbitrarily large function µ(·), an

(

sµ(n), sn
δ)

-hsg for size-s degree-
s circuits that depend only on the first n variables —and still get the same conclusion as
in Theorem 3. This will require analysing the bit complexity (i.e. time) and the algebraic
complexity (i.e. degree of the hsg) separately in the proof of Lemma 19. We skip the details for
now.

5 Shallow depths, tiny variables– Proof of Theorem 4

Shallow circuits. Diagonal depth-4 circuits compute polynomials of the form
∑

i∈[k] cif
ai
i

where fi’s are sparse polynomials in F[x1, . . . , xn] of degree ≤ b, ai ≤ a and ci’s in F. A
standard notation to denote this class is Σ ∧a ΣΠb(n). This is a special case of the depth-4
ΣkΠaΣΠb(n) model that computes polynomials of the form

∑

i∈[k]
∏

j∈[a] fi,j where fi,j ’s are
sparse polynomials in F[x1, . . . , xn] of degree ≤ b. The superscripts k, a, b on the gates denote
an upper bound on the respective fanin (whenever it needs to be emphasized).

We denote ΣΠΣΠ1 circuits by ΣΠΣ and call them depth-3. We also study a model quite
close to it– ΣΠΣ∧b –we call it preprocessed depth-3 because, in this work, this model will appear
on simply substituting univariate monomials in the variables of a depth-3 circuit. It degenerates
to depth-3 again if b = 1.

We prove Theorem 4 in two different ways. First, by assuming an efficient O(sn/2/ log2 s)-
degree hsg for polynomials computed by size-s Σ∧aΣΠ circuits that depend only on the first n
variables (a(s) is an arbitrarily slow growing function), we get to the conclusion of Theorem 4.
Second, by assuming an efficient O(sn/2/ log2 s)-degree hsg for polynomials computed by size-s
ΣΠΣ∧ circuits that depend only on the first n variables, we get to the conclusion of Theorem 4.
Both the models seem weaker than general depth-4 circuits. So one would expect that solving
PIT for these models would be easier.

Our proofs will go via a plethora of intermediate models. Theorems 20 & 21 together give the
proof of our first approach. Theorems 22 & 23 together give the proof of the second approach.
One can notice that in all these theorems we prove the existence of an efficient variable reduction
map for circuits that preserves nonzeroness. It is stronger than proving quasipolynomial hsg
for size-s degree-d circuits. However, after the variable reduction, if we apply hsg of the trivial
PIT derandomization [Sch80], we get an (sd)O(log(sd)) time hsg.

Theorem 20 (Σ∧aΣΠ computing multilinear). Suppose that for some constant n ≥ 2 and some
arbitrarily slow growing function a(s), we have a

(

poly(s), O(sn/ log2 s)
)

-hsg for multilinear
polynomials computed by size-s Σ ∧a ΣΠ circuits that depend only on the first n log s variables.

Then, for N -variate d-degree size-s circuits, we have a poly(sd)-time nonzeroness preserving
variable reducing polynomial map (N 7→ O(log(sd))) and Conjecture 1 holds. Furthermore, after
variable reduction, the degree of the new polynomial will be poly(sd).

Proof sketch. The proof is along the lines of [AV08, Thm.3.2] and is described in Appendix E.

17



For all s ∈ N, let Ps be the set of multilinear polynomials computed by size-s Σ ∧a ΣΠ
circuits that depend only on the first n log s variables. First, using the O(sn/ log2 s)-degree hsg
we can construct a family of multilinear polynomials {qm}m which is E-computable (Lemma 5)
but not computable by 2o(m)-size circuits (by ‘depth-4 chasm’).

Using this hard polynomial family we get both the variable reduction and Conclusion 1.
Invoking Lemma 9, in poly(sd) time, we can convert a nonzero d-degree N -variate polyno-
mial computed by a size-s circuit to a nonzero O(log(sd))-variate poly(sd)-degree polynomial.
Conjecture 1 follows from Lemma 10.

Remarks– 1) Note that a
(

Õ(sn), sn
)

-hsg for multilinear n log s variate polynomials is trivial.
As one can simply use {0, 1}n log s as the hitting-set.

2) An efficient sn/ω(log s) degree hsg in the hypothesis would also suffice.
3) Can we get a conclusion as strong as in Theorem 1? In the proof above we get a variable

reduction map to log-variate; but this map when applied on a general circuit results in a non-
multilinear polynomial. So, we cannot use the hsg provided in the hypothesis and have to do
poly(s)-time PIT on the log-variate Σ∧a ΣΠ circuit by some other means (currently unknown).

Theorem 21 (Tiny variate Σ∧aΣΠ). Suppose that for some constant n ≥ 3 and some arbitrarily
slow growing function a, we have a

(

poly(s), O(sn/2/ log2 s)
)

-hsg for size-s Σ∧aΣΠ circuits that
depend only on the first n variables. Then, we get all the conclusions of Theorem 20.

Proof. For all s ∈ N, let Ps be the set of multilinear polynomials computed by size-s Σ ∧a ΣΠ
circuits that depend only on the first n log s variables. For all s ∈ N, let Ts be the set of
polynomials computed by size-s Σ ∧a ΣΠ circuits that depend only on the first n variables. By
the hypothesis, we have an efficient O(sn/2/ log2 s)-degree hsg for Ts. Next, we convert every
nonzero polynomial in Ps to a nonzero polynomial in TO(s2) in poly(s) time. Now applying the

given hsg for TO(s2), we get an efficient O(sn/ log2 s)-degree hsg for Ps. Next invoking Theorem
20, we get our conclusion.

We describe the reduction from Ps to TO(s2). Let P be a nonzero polynomial in Ps. Let
m := n log s. Partition the variable set {x1, . . . , xm} into n blocks Bj , j ∈ [n], each of size log s.
Let Bj := {xu(j)+1, xu(j)+2, . . . , xu(j)+log s}, for all j ∈ [n] and u(j) := (j−1) log s. Consider the

variable-reducing “local Kronecker” map ϕ : xu(j)+i 7→ y2
i

j . Note that ϕ(P ) ∈ F[y1, . . . , yn], and
its individual-degree is at most 2s. It is easy to see that ϕ(P ) 6= 0 (basically, use the fact that
P computes a nonzero multilinear polynomial and ϕ keeps the multilinear monomials distinct).
Finally, ϕ(P ) becomes an n-variate Σ ∧a ΣΠ circuit of size at most s+ s · 2log s = O(s2). Thus,
(

poly(s), O(sn/ log2 s)
)

-hsg for TO(s2) gives a
(

poly(s), O(sn/ log2 s)
)

-hsg for P .

In next two lemmas, we describe our second approach to prove Theorem 4.

Theorem 22 (Depth-3 computing multilinear). Suppose that for some constant n ≥ 2, we have
a
(

poly(s), O(sn/ log2 s)
)

-hsg for multilinear polynomials computed by size-s depth-3 circuits that
depend only on the first n log s variables. Then, we get all the conclusions of Theorem 20.

Proof. Proof will be similar to proof of Theorem 20. Main difference is that there we were
dealing with depth-4 circuits, but here we have depth-3 circuits. So we need ‘depth-3-reduction’
result [GKKS13] with ‘depth-4-reduction’ result [AV08]. We only sketch the main points here.

First, we construct a hard polynomial family from the hsg. According to the hypothe-
sis, for n log s-variate multilinear polynomials computed by size-s depth-3 circuits we have an
O(sn/ log2 s)-degree hsg. For all s ∈ N, let Ps be the set of n log s-variate multilinear polynomi-
als computed by size-s depth-3 circuits. Letm := n log s. Let f(y) be the

(

poly(s), O(sn/ log2 s)
)

-
hsg of Ps. Now we consider the annihilator of f(y) to get a hard polynomial. Let k be the num-
ber of m-variate m/2-degree multilinear monomials. Then k =

(

m
m/2

)

≥ 2m/
√
2m = sn/

√
2m >
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O(sn/ log2 s) ·m (for large enough s). Thus, by linear algebra similar to Lemma 5, we get an m-
variate m/2-degree multilinear homogeneous annihilating polynomial qm /∈ Ps and computable
in poly(s)-time. Importantly qm /∈ Ps, thus, no depth-3 circuit of size < s = 2Θ(m) can compute
it. Next we show that it is also not computable by any 2o(m)-size algebraic circuit.

For the sake of contradiction, assume that qm has a 2o(m)-size circuit. Repeat the depth-
reduction arguments, as in the proof of Theorem 20, after cutting at some depth t = ω(1). Let
a := 5t and b := m/2t+1. Here, we can also ensure a, b = o(m) = o(log s), a = ω(1), and we
have a 2o(m)-size shallow circuit for qm of the form ΣΠaΣΠb.

It was shown in [GKKS13] that any size-s′ n-variate ΣΠaΣΠb circuit can be transformed
to a poly(s′2a+b)-size n-variate ΣΠΣb circuit. Applying it here, we get a depth-3 circuit C ′,
computing qm, of the form ΣΠΣ and size 2o(m) · 2a+b = 2o(m). This gives a contradiction, since
no depth-3 circuit of size < s = 2Θ(m) can compute it.

Thus, we have an E-computable family of multilinear polynomials {qm}m≥1 that has no
circuit of size 2o(m). Using this hard polynomial family we get both the variable reduction and
Conjecture 1 as before.

Theorem 23 (Tiny variate ΣΠΣ∧). Suppose that for some constant n ≥ 3, we have a
(

poly(s), O(sn/2/ log2 s)
)

-
hsg for polynomials computed by size-s ΣΠΣ∧ circuits that depend only on the first n variables.
Then, we get all the conclusions of Theorem 20.

Proof. The proof is similar to that of Theorem 21. For all s ∈ N, let Ps be the set of multilinear
polynomials computed by size-s depth-3 circuits that depend only on the first n log s variables.
For all s ∈ N, let Ts be the set of polynomials computed by size-s ΣΠΣ∧ circuits that depend
only on the first n variables. According to the hypothesis, we have an O(sn/2/ log2 s)-degree hsg
for Ts. Next, we convert every nonzero polynomial in Ps to a nonzero polynomial in TO(s2) in

poly(s) time. Now applying O(sn/ log2 s)-degree hsg for TO(s2), we get an efficient O(sn/ log2 s)-
degree hsg for Ps. Next invoking Theorem 22, we get our conclusion.

Now we describe the reduction from Ps to TO(s2). Let P be a nonzero polynomial in Ps. Let
m := n log s. Partition the variable set {x1, . . . , xm} into n blocks Bj , j ∈ [n], each of size log s.
Let Bj := {xu(j)+1, xu(j)+2, . . . , xu(j)+log s}, for all j ∈ [n′] and u(j) := (j−1) log s. Consider the
variable-reducing “local Kronecker” map ϕ : xu(j)+i 7→ y2

i

j . Note that ϕ(P ) ∈ F[y1, . . . , yn], and
its individual-degree is at most 2s. It is easy to see that ϕ(P ) 6= 0 (basically, use the fact that
P computes a nonzero multilinear polynomial and ϕ keeps the multilinear monomials distinct).
Finally, ϕ(P ) becomes an n-variate ΣΠΣ∧ circuit of size at most s + s · 2log s = O(s2). Thus,
using the O(sn/ log2 s)-degree hsg for TO(s2), we get a

(

poly(s), O(sn/ log2 s)
)

-hsg for P .

Remark. Can we get a result like the above with depth-3 circuits in the hypothesis? At this
point it is not clear how to get to arbitrarily tiny variate ΣΠΣ because: 1) the above trick of
applying local-Kronecker map, to reduce variables from n log s to n, increases the circuit depth
to 4. Moreover any such map has to be non-linear, otherwise the resulting monomials are too
few, and 2) in the tiny variate regime we need degree ≥ Ω(s) so that the hsg of the model can
be used to get a ‘hard’ polynomial. With such a high degree we cannot apply [GKKS13] to
transform depth-4 (say in Theorem 21) to depth-3 in polynomial-time.

Proof of Theorem 4. Let a be an arbitrarily slow growing function. For all s ∈ N, let Ps be the
set of polynomials computed by size-s Σ∧aΣΠ circuits that depend only on the first n variables.
For all s ∈ N, let Ts be the set of polynomials computed by size-s ΣΠΣ∧ circuits that depend
only on the first n variables. We show that

(

poly(s), O(sn/2/ log2 s)
)

-hsg for Ps or Ts gives the
conclusion of Theorem 4.

Using the hsg for Ps, Theorem 21 gives an efficient variable reduction and Conjecture 1.
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Using the hsg for Ts, Theorem 23 gives an efficient variable reduction and Conjecture 1.
After the variable reduction, if we apply hsg of the trivial PIT derandomization [Sch80], we

get an (sd)O(log(sd)) time hsg.
To see that the original statement could be proved for any field F: Observe that ‘depth-4

reduction’ [AV08, Thm.3.2] works for any field. Similarly, we get versions of Theorems 20 & 21
using ΣΠaΣΠ in the respective hypothesis. Also, see the remarks after the proofs of Lemma 12
and Theorem 1.

5.1 Depth-3 fpt-blackbox PIT

In this section, we show that we merely need an fpt-algorithm (wrt parameters n, d) for poly-
nomials computed by depth-3 circuits. In fpt-algorithm, one provides input with multiple pa-
rameters, with the intention that the running time will be polynomial in input size but possibly
exponential (or worse) in other parameters [DF13]. We show that to get the same conclusion
as Theorem 4, we merely need a fpt-blackbox PIT for depth-3 circuits computing multilinear
polynomials. These polynomials have three important complexity parameters: 1) s, the size
of the depth-3 circuit computing the polynomial, 2) m, the number of variables, and 3) d, the
degree of the polynomial which is upper bounded by m. Here, circuit is the input. So, the
running time of the fpt-blackbox PIT must depend polynomially on s. We consider m and d
as the extra parameters of the fpt-blackbox PIT. Next, we describe the desired dependence on
them.

Theorem 24 (Depth-3 tiny variables & degree). Suppose that we have a poly(2m+d, s)-time
computable

(

2m + 4d + s2
)

/ log2 s degree hsg for m-variate, degree-d multilinear polynomials
computed by size-s depth-3 circuits.

Then, we get all the conclusions of Theorem 20.

Remark– 1) Since exponential dependence on m, d is allowed, one can hope that designing
such an hsg would be easier than the numerous unsolved PIT cases that the community has
attempted till date.

2) Another width-2 ABP version is stated in Theorem 25 (with a worse dependence on m).
3) The number of monomials is 2m. Thus, the hsg design challenge in the hypothesis of

Theorem 24 is barely “above” triviality!

Proof. The proof strategy is identical to that of Theorem 22. So, we only sketch the main
points here. Pick a constant n ≥ 2. First, we construct a hard polynomial family from the
hsg. According to the hypothesis, for n log s-variate and n

2 log s-degree multilinear polynomials
computed by size-s depth-3 circuits, we have a

(

poly(s), O(sn/ log2 s)
)

-hsg.
From this point onwards the proof of Theorem 22 is identical and we are done.
In poly(sd)-time, the variable reduction map reduces any d-degree nonzero polynomial com-

puted by a size-s circuit to a poly(sd)-degree and O(log sd)-variate nonzero polynomial. Now,
trivial PIT derandomization [Sch80] gives an (sd)O(log(sd))-time hsg easily.

5.2 Log-variate width-2 ABP or depth-3 circuit

A polynomial f ∈ F[x1, . . . , xn] has a size-s width-2 algebraic branching program (ABP) if it is
the (1, 1)-th entry in the product of s 2× 2 matrices (having entries in F ∪ {xi|i}).
Theorem 25 (Log-variate width-2 ABP). Suppose that for some constant e ≥ 1, we have
a
(

poly(s), O(se)
)

-hsg for polynomials (resp. 2e+1 log s-degree polynomials) computed by size-s
width-2 upper-triangular ABP (resp. depth-3 circuit) that depend only on the first log s variables.
Then, we get all the conclusions of Theorem 20.
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Proof. In [SSS09, Thm.3] an efficient transformation was given that rewrites a size-s depth-3
circuit, times a special product of linear polynomials, as a poly(s)-size width-2 upper-triangular
ABP. Thus, an hsg for the latter model gives a similar hsg for the former. So, from the hypothesis
for some constant e, we have a

(

poly(s), O(se)
)

-hsg for 2e+1 log s-degree polynomials computed
by size-s depth-3 circuits that depend only on the first log s variables.

For all s ∈ N, let Ps be the set of log s-variate, 2e+1 log s-degree polynomials computed by
size-s depth-3 circuits. Let d := 2e+1 log s. Let f(y) be the (poly(s), O(se))-hsg of Ps. Now we
consider the annihilator of f(y) to get a hard polynomial. Let k be the number of m := log s-
variate d-degree monomials. Then k =

(

m+d−1
m

)

> 2(e+1) log s = se+1. Since k > O(se) · d, we get
an m-variate d-degree homogeneous annihilating polynomial qm /∈ Ps and computable in sO(1)

time. The analysis is similar to Lemma 5. Importantly qm /∈ Ps, thus no depth-3 circuit of size
< s = 2Θ(m) can compute it.

From this point onwards the proof of Theorem 22 is identical and we are done.

6 Conclusion

We discover the phenomenon of ‘efficient bootstrapping’ a partial hitting-set generator to a
complete one for poly-degree circuits. This inspires a plethora of circuit models. In particular,
we introduce the tiny variable diagonal depth-4 (resp. tiny variants of depth-3, width-2 ABP and
preprocessed depth-3) model with the motivation that its poly-time hitting-set would: (1) solve
VP PIT (in quasipoly-time) via a poly-time variable-reducing polynomial map (n 7→ log sd), and
(2) prove that either E 6⊆#P/poly or VNP has polynomials of algebraic complexity 2Ω(n).

Since now we could focus solely on the PIT of VP circuits that depend only on the first
sub-log (or even constant!) many variables, we need to initiate a study of properties that are
useful in that regime. Furthermore, we only need to optimize the size of the hitting-set (&
not its time). This work throws up a host of tantalizing models and poses several interesting
questions:

• Could the bootstrapping property in Theorem 1 be improved (say, to the function log⋆ s)?

• Could the constant parameters in Theorems 2 & 3 be improved? In particular, does
so(n)-time blackbox PIT suffice in the latter hypothesis?

• Could we show that the g in Corollary 6 is in VNP and not merely E-computable? This
would tie blackbox PIT tightly with the question VNP 6=VP (& we can drop ‘E 6⊆#P/poly’).
This will require starting with a more structured hsg, so that its annihilator g is a poly-
nomial whose coefficient bits are (#P/poly)-computable. Numerous examples of such
polynomials, arising from basic hitting-set designs, can be found in [Agr11, KP11] and
[Koi11, Sec.4].

• Could we solve whitebox PIT for log⋆ s variate (or degree) models? Could it be boot-
strapped?

• Could we prove nontrivial lower bounds against the tiny variable (or degree) models?

• Could we solve PIT for n-variate degree-s size-s circuits in sO(
√
n)-time?

• Is there a poly(s)-time computable, O(s3)-size hitting-set for 6-variate size-s ΣΠΣ∧ poly-
nomials?

• An sexp(n)-time computable, O(sn/2)-size hitting-set for size-s ΣΠΣ(n) ?
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• Could we do blackbox PIT for tiny variable ROABP? For instance, given oracle C =
∑

i∈[k]
∏

j∈[n] fi,j(xj) of size≤ s, we want a poly(s, µ(n))-hsg, for some µ. It is known

that diagonal depth-3 blackbox PIT reduces to this problem if we demand µ(n) ≤ 2O(n)

[FSS14].

Note that for n-variate size-s ROABPs, sO(logn)-time hsg is already known [AGKS15].
But, we can ask the following open questions:

• Efficient blackbox PIT for size-s, log s-variate, individual-degree-(log⋆ s) ROABPs?

• Blackbox PIT for size-s, (log⋆ s) log s-variate, multilinear ROABPs?

• Blackbox PIT for size-s, (log⋆ s) log s-variate, log s-degree, diagonal depth-3 circuits?
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A Proofs from Section 1

Theorem 0 (restated). If we have poly(s)-time blackbox PIT for size-s degree-s circuits,
then Conjecture 1 holds.

Proof sketch. For all s ∈ N, let Ps be the set of polynomials computed by size-s degree-s
circuits. Using basic linear algebra, we can construct an m-variate multilinear annihilator qm,
where m = O(log s), for the hsg of Ps in 2O(m)-time. This qm cannot lie in Ps, otherwise
qm evaluated at hsg would be a nonzero polynomial (contradicting the annihilation property).
For details, see the proof of [Agr05, Thm.51]. For the sake of contradiction, assume that it
has a circuit of size so(1). Since the degree of qm is O(log s), we can invoke the structural
log-depth reduction property (see [Sap16, Thm.5.15]) and get a so(1)-size O(log s)-degree circuit
computing qm. Whence qm ∈ Ps, which is a contradiction. So we have the polynomial family
{qm}m≥1 such that its coefficients are computable in 2O(m)-time (thus E-computable) but the
algebraic circuit complexity is > sΩ(1) = 2Ω(m).

Wlog we assume qm to be a multilinear polynomial family with 0/1 coefficients; as, indexing
a bit of a coefficient requires O(m) bits and one can use the variable-increasing transformation
from the proof of [KP09, Lem.3.9]. Also, if the coefficient function of a polynomial family is
in #P/poly, then the polynomial family is in VNP [Bür13, Prop.2.20]. So, if we assume E ⊆
#P/poly, then {qm}m is in VNP. Thus, either E * #P/poly or VNP has a polynomial family
{qm}m of algebraic circuit complexity 2Ω(m).

B Proofs from Section 2– Preliminaries

Lemma 5 (restated). Let f(y) = (f1(y), . . . , fn(y)) be a (t, d)-hsg for a set of n-variate
polynomial P. Then, there exists an n-variate polynomial g(x) that is not in P, is computable
in poly(tdn)-time, has individual degree less than δ := ⌈d3/n⌉, and is homogeneous of degree
(δ − 1)n/2.
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Proof. A natural candidate for g(x) is any annihilating polynomial of the n polynomials f(y) =
(f1(y), . . . , fn(y)), since for every nonzero h ∈ P, h(f) is nonzero. Define δ ≥ 2 as the smallest
integer such that δn/3 > d. Consider g(x) as a n-variate polynomial with individual degree less
than δ and homogeneous of degree (δ − 1)n/2. Then, g(x) can be written as:

g(x) =
∑

|e|=(δ−1)n/2 , 0≤ei<δ

cex
e (1)

where, ce’s are unknown to us. Note that the number of summands is at least (δ/2)n/2 ·
(

n
n/2

)

>

δn/2 (for n ≥ 4). The former estimate can be obtained by picking a subset S ∈
( [n]
n/2

)

and

considering all monomials in xS of individual-degree < δ/2. For every such monomial in xS we
can pick a (complementary) monomial x[n]\S with exponents from {δ/2, . . . , δ − 1} such that
the product of these two monomials has degree exactly (δ − 1)n/2.

We can fix all the ce’s to zero except the ones corresponding to an index-set I of size
δ0 := dn(δ − 1)/2 + 2 < δn/3n(δ − 1)/2 + 2 ≤ δn/2. This way we have exactly δ0 unknown ce’s.
To be an annihilating polynomial of f(y), we need g(f) = 0. By comparing the coefficients of
the monomials in y, both sides of Equation 1, we get a linear system in the unknowns.

Suppose that δ1 is the degree of y in g(f). Then, g(f) can be written as g(f) =
∑δ1

i=0 pi · yi,
where pi’s are linear polynomials in ce’s. The constraint g(f) = 0 gives us a system of linear
equations with the number of unknowns δ0 and the number of equations δ1 + 1. The value of
δ1 can be at most d · n · (δ − 1)/2, which means that the number of unknowns δ0 is greater
than the number of equations δ1. So, our system of homogeneous linear equations always has a
nontrivial solution, which gives us a nonzero g as promised.

Computing f(y) takes t time and a solution of the linear equations can be computed in
poly(tdn)-time. So, g(x) can be computed in poly(tdn)-time.

Lemma 9 (restated). For some constant δ, let {qm}m≥1 be a multi-δ-ic polynomial
family computable in δO(m) time, but it has no δo(m)-size algebraic circuit.

Then, for n-variate d-degree polynomials computed by size-s circuits we have a δO(log(sd))-
time variable-reducing polynomial map, from n to O(log(sd)), that preserves nonzeroness. Fur-
thermore, after variable reduction, the degree of the new polynomial is poly(sd).

Proof. Note that there is a constant c0 > 0 such that qm requires Ω(δc0m)-size algebraic circuits.
Otherwise {qm}m≥1 will be in ∩c>0Size(δ

cm), and hence in Size(δo(m)).
Let P be the set n-variate and d-degree polynomials computed by size-s circuits. Let n′ :=

sd ≥ n. Let D = {S1, . . . , Sn′} be a (c2 log n
′, c1 log n′, 10 logn′)-design on the variable set

Z = {z1, . . . , zc2 logn′}. Constants c2 > c1 > 10 will be fixed later (guided by Lemma 8). Our
hitting-set generator for P is defined as: for all i ∈ [n], xi = qc1 logn′(Si) =: pi with Si as
variables. Then, we show that for any nonzero polynomial P (x) ∈ P, P (p1, . . . , pn) is also
nonzero.

For the sake of contradiction, assume that P (p1, . . . , pn) is zero. Since P (x) is nonzero, we
can find the smallest j ∈ [n] such that P (p1, . . . , pj−1, xj , . . . , xn) =: P1 is nonzero, but P1

∣

∣

xj=pj

is zero. Thus, (xj − pj) divides P1. Let a be an assignment on all the variables in P1, except xj
and the variables Sj in pj , with the property: P1 at a is nonzero. Since P1 is nonzero, we can
find such an assignment. Now our new polynomial P2 on the variables Sj is of the form:

P2(Sj , xj) = P (p′1, . . . , p
′
j−1, xj , aj+1, . . . , an)

where, for each i ∈ [j − 1], p′i is the polynomial on the variables Si ∩ Sj , and ai’s are field
constants decided by our assignment a. By the design, for each i ∈ [j − 1], |Si ∩ Sj | ≤ 10 log n′.
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Since p′i are polynomials on variables Si ∩ Sj of individual-degree < δ, each p′i has a circuit (of
trivial form ΣΠ) of size at most nδ10 logn

′ ≤ δ11 logn
′
. Then we have a circuit for P2 of size at

most s1 := s + n · δ11 logn′
, and degree at most d1 := d · δc1 log n′. Since (xj − pj) divides P2,

we can invoke the Kaltofen’s factorization algorithm [Kal89] (see [Bür13, Theorem 2.21] for the
algebraic circuit complexity of factors) and get an algebraic circuit for pj of size (s1d1)

c3 , for
some absolute constant c3 (independent of c1, c2).

Now we fix constants c1, c2. Pick c1 such that δc0·c1 logn
′
is asympotically larger than

(2snδ11 logn
′ · dδc1 logn′)c3 > (s1d1)

c3 . Since sd = n′ and δ ≥ 2, the absolute constant
c1 := 15c3/c0 (independent of c2) satisfies the above condition.

Pick c2, following Lemma 8, such that c2 log n
′ > 10 · (c1 log n′)2/(10 log n′). So, c2 := 1+ c21

works. With these values of c1, c2, we have a design that ‘stretches’ c2 log n
′ variables to n

subsets with the required ‘low’ intersection property. It is computable in poly(n′)-time.
Moreover, if P (p1, . . . , pn) is zero then, by the above discussion, pj = qc1 logn′(Sj) has a circuit

of size (s1d1)
c3 = o(δc0·c1 logn

′
). This violates the lower bound hypothesis. Thus, P (p1, . . . , pn)

is nonzero.
The time for computing (p1, . . . , pn) depends on: (1) computing the design (i.e. poly(n′)-

time), and (2) computing qc1 logn′ (i.e. δO(logn′)-time). Thus, the nonzeroness-preserving variable-
reducing polynomial map is computable in δO(logn′) time. After variable reduction, the degree
of the new polynomial is ≤ nd · deg(qc1 log n′) = (sd)O(1).

Corollary 6 (restated). In the proof of Lemma 5, if td = 2O(n) then the polynomial
family gn := g, indexed by the variables, is E-computable.

Proof. The linear system that we got can be solved in poly(tdn)-time. As it is homogeneous
we can even get an integral solution in the same time-complexity. Thus, assuming td = 2O(n),
the time-complexity of computing coefxe(g) is poly(tdn)=poly(2n) and g is multi-δ-ic (∵ δ =
⌈d3/n⌉ = O(1)). In other words, if we consider the polynomials gn := g, indexed by the variables,
then the family {gn}n is E-computable.

Lemma 10 (restated). If we have an E-computable polynomial family {fn}n≥1 of al-
gebraic circuit complexity 2Ω(n), then either E 6⊆#P/poly or VNP has polynomials of algebraic
circuit complexity 2Ω(n).

Proof. Say, for a constant δ ≥ 1, we have an E-computable multi-δ-ic polynomial family {fn}n≥1

with algebraic circuit complexity 2Ω(n). Clearly, the coefficients in fn have bitsize 2O(n). By
using a simple transformation, given in [KP09, Lem.3.9], we get a multilinear polynomial family
{hn}n≥1, that is E-computable and has algebraic complexity 2Ω(n), such that its coefficients are
{0, 1}.

Assume E⊆#P/poly. Since each coefficient of hn is 0 or 1 that is computable in E, we
deduce that the coefficient-function of hn is in #P/poly. Thus, by [Bür13, Prop.2.20], {hn}n≥1

is in VNP and has algebraic circuit complexity 2Ω(n).

C Proofs from Section 3– Subexp bootstrapping

Claim 14 (restated). Let f(s) be a function in Ω(s). Let ε be a function defined as
ε(s) := 10⌈log f(s)⌉. Suppose that we have a family F := {qm,s | s ∈ N, m = ε(s)} of multi-δ-
ic, where δ is a constant, m-variate polynomials such that qm,s is computable in poly(f(s)) time
but has no size < s1/2e0 circuit.
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Then, for some constant c, we have a exp(O(ε((sd)c)2/ log s))-time computable variable
reduction map, from n to ⌈ε((sd)c)2/ log s⌉, that preserves nonzeroness for degree-d n-variate
polynomials computed by size-s circuits. Furthermore, after variable reduction, the degree of the
new polynomial will be poly(sd).

Proof. Idea is the same as in the proof of Lemma 9. Technical difference is due to the parameters
of the Nisan-Wigderson design. Here we provide the details.

Let P be the set of degree-d polynomials computed by size-s circuits that depend only on
first n variables. The number of variables n ≤ s. Let ε′ = ε′(s, d) := ⌈ε((sd)c)2/ log s⌉. Constant
c will be fixed later. Next we describe how to reduce number of variables for every P ∈ P, from
n to ε′.

Let s′ := (sd)c. Let D := {S1, . . . , Sn} be an (ε′, ε(s′), 10⌈log s⌉)-design on the variable set
Z := {z1, . . . , zε′} (Lemma 8). Our hitting-set generator for P is defined as: for all i ∈ [n],
xi = qε(s′),s′(Si) =: pi on variables Si. For pi, we do not have circuits of size < s′1/2e0 . Then,
we show that for any nonzero polynomial P (x) ∈ P, P (p1, . . . , pn) is also nonzero.

For the sake of contradiction, assume that P (p1, . . . , pn) = 0. Since P (x) is nonzero, we can
find the smallest j ∈ [n] such that P (p1, . . . , pj−1, xj , . . . , xn) =: P1 is nonzero, but P1

∣

∣

xj=pj
is

zero. Thus, (xj − pj) divides P1. Let a be an assignment on all the variables in P1, except xj
and the variables Sj in pj , with the property: P1 at a is nonzero. Since P1 is nonzero, we can
find such an assignment. Now our new polynomial P2 on the variables Sj and xj is of the form:

P2(Sj , xj) = P (p′1, . . . , p
′
j−1, xj , aj+1, . . . , an)

where, for each i ∈ [j − 1], p′i is the polynomial on the variables Si ∩ Sj , and ai’s are field
constants decided by our assignment a. By the design, for each i ∈ [j − 1], |Si ∩Sj | ≤ 10⌈log s⌉.
Since p′is are polynomials on variables Si ∩ Sj of individual-degree < δ, each p′i has a circuit (of
trivial form ΣΠ) of size at most 10⌈log s⌉δ · δ10⌈log s⌉ ≤ sc0 for some constant c0. Then we have a
circuit for P2 of size at most s1 := s+n ·sc0 , and the degree of P2 is at most d1 := nd ·10⌈log s⌉δ.
Since (xj − pj) divides P2, we can invoke Kaltofen’s factorization algorithm [Kal89] (see [Bür13,
Thm.2.21] for the algebraic circuit complexity of factors) and get an algebraic circuit for pj
of size (s1d1)

c1 , for some absolute constant c1. Consequently, we have a circuit for pj of size
≤ (sd)c

′
1 for some constant c′1 (independent of c). On the other hand, pj has no circuit of

size < (sd)c/2e0 . Pick c greater than 2e0c
′
1. Then we get a contradiction. So, for c > 2e0c

′
1,

P (p1, . . . , pn) remains nonzero.
The time for computing (p1, . . . , pn) depends on: (1) computing the design (i.e. 2O(ε′)-time),

and (2) computing pi’s (i.e. 2
O(ε(s′))-time). Thus, the variable reduction map is computable in

exp(O(ε′)) time, as ε(s′) > log f(s′) > log s.
After variable reduction, the degree of the new polynomial will be < dn · deg(qε(s′),s′) =

(sd)O(1).

D Proofs from Section 4– Constant variate

Lemma 15 (restated). There exists an algorithm which takes (ℓ, n, d), with ℓ ≥ 100 and
d ≥ 13, and a base set S of size ℓ := ⌈4n2/d⌉ as input, and outputs an (ℓ, n, d)-design D having
≥ 2d/4 subsets, in time O((4ℓ/n)n).

Proof. Proof is similar to that of Lemma 8 (see Chap.16 [AB09]). We describe a greedy algo-
rithm to construct D.
D ← ∅;
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while |D| < 2d/4 do
Find the first n-subset D of S such that ∀I ∈ D, |I ∩D| ≤ d;
D ← D ∪ {D};

end while

What is the running time? In each iteration, we go through all n-subsets of S and for every
n-subset D, we have to check whether ∀I ∈ D, |I ∩D| ≤ d. So, every iteration takes at most
(

ℓ
n

)

· 2d/4 · ℓ2 time. (Note– the while loop can run at most 2d/4 times.) So, the total running
time is (4ℓ/n)n, for ℓ ≥ 100, n > d ≥ 13. Next, we give the proof of correctness of the algorithm.

Using probabilistic method, we show that for |D| < 2d/4, we can always find an n-subset
D of S such that ∀I ∈ D, |I ∩ D| ≤ d. Let D be a random subset of S, constructed by the
following procedure: For all s ∈ S, s will be in D with probability 2n/ℓ. So, Exp[|D|] = 2n and
for each I ∈ D, Exp[|I ∩ D|] = 2n2/ℓ ≤ d/2. Using ‘Chernoff bounds’ [AB09, Thm.A.14] we
have that:

Pr [|D| < n] = Pr

[

|D| <
(

1− 1

2

)

2n

]

≤
(

2

e

)n

and

Pr [|D ∩ I| > d] ≤ Pr

[

|D ∩ I]| ≥ 4n2

ℓ

] (

∵ d ≥ 4n2

ℓ

)

≤
(e

4

)
2n2

ℓ
(applying Chernoff bound)

≤
(e

4

)
d
2
(1− 1

ℓ
)
(

∵ ℓ ≤ 4n2

d
+ 1

)

.

Let E denote the event that |D| < n. For all I ∈ D, let EI denote the event that |D∩I| > d.
Then,

Pr [E or ∃I ∈ D, EI ] ≤ Pr[E] + |D| · Pr[EI ] (Union bound)

≤
(2

e

)d
+ 2

d
4

(e

4

)
d
2
(1− 1

ℓ
)

< 1 (∵ ℓ > d ≥ 13) .

Thus, an n-subset D does exist and the algorithm will grow the collection D.

Proposition 16 (restated). If, for some i ≥ 0, mi ≥ 192f2
i · 1ǫ log(128f2

i ), then the
same relation holds between mi+1 and fi+1.

Proof. From the definition,

mi+1 = 2
mi

64f2
i

≥ 2

192f2i · 1ǫ log(128f2i )

64f2
i (from hypothesis)

= 2
3
ǫ
log(128f2

i )

= 2
21
ǫ f

6
ǫ
i

and 192f2
i+1 · 1ǫ log(128f2

i+1) = 3 × 214f4
i · 1ǫ log(215f4

i ). Since mi+1 ≥ 221/ǫf
6/ǫ
i > 221f6

i ≥
3× 214f4

i · 1ǫ log(215f4
i ), we prove the required statement.
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Proposition 17 (restated). Suppose that m0 ≥ max{(8f0)
2
ǫ , 192f2

0 · 1ǫ log(128f2
0 )}.

Then for all i ≥ 0: 1) mi+1 ≥ 2m
1−ǫ
i and 2) mi+1 ≥ 2mi > 3456f2

i .

Proof. (1) Proving mi+1 ≥ 2m
1−ǫ
i is equivalent to proving mi ≥ (8fi)

2
ǫ . So, at i = 0, the

hypothesis implies that m1 ≥ 2m
1−ǫ
0 .

For i ≥ 1, to prove mi ≥ (8fi)
2
ǫ , it is sufficient to prove that mi−1 ≥ 64f2

i−1 · 2ǫ log(8 ×
16f2

i−1) = 128f2
i−1 · 1ǫ log(128f2

i−1). The latter relation is true for i = 1. Using Proposition
16, we can claim that for all i ≥ 0, mi ≥ 192f2

i · 1ǫ log(128f2
i ). Consequently, for all i ≥ 0,

mi+1 ≥ 2m
1−ǫ
i .

(2) From mi ≥ 192f2
i · 1ǫ log(128f2

i ) we get that mi > 192f2
i × 9 = 1728f2

i .
Proving mi+1 ≥ 2mi is equivalent to proving mi ≥ (8fi)

2 log(2mi). Note that it holds at
i = 0 because of the hypothesis on m0 and since m0/ log(2m0) increases as m0 increases.

For i ≥ 1, proving mi ≥ (8fi)
2 log(2mi), is equivalent to proving that 2mi−1/(64f

2
i−1) ≥

(8× 16f2
i−1)

2
(

1 + mi−1

64f2
i−1

)

. Equivalently, we need to show that

mi−1 ≥ 64f2
i−1

(

2 log(128f2
i−1) + log

(

1 +
mi−1

64f2
i−1

))

. (2)

Note that if we substitute mi−1 7→ α := (128f2
i−1 − 1)64f2

i−1 then RHS becomes 192f2
i−1·

log (128f2
i−1) =: β. Recall that, using the hypothesis, we have shown the claim: mi−1 ≥

192f2
i−1 · 1ǫ log(128f2

i−1) > β.
Now, we consider three cases: (i) If mi−1 < α then in Eqn.2 RHS ≤ β, in which case we

are done by the claim. (ii) If mi−1 = α then the inequality in Eqn.2 holds as α > β. (iii) If
mi−1 > α then the inequality will continue to hold as the difference function LHS-RHS increases
with mi−1.

Proposition 18 (restated). The least i, for which mi ≥ s, is ≤ 3
1−ǫ log

(

3
1−ǫ

)

+

2 log⋆ s.

Proof. By Proposition 17 we know that mi more than doubles as i 7→ i + 1. Thus, at i0 :=
3

1−ǫ log
(

3
1−ǫ

)

, we have mi0 > 2i0 . Note that 2i0(1−ǫ) > i0
1−ǫ . Thus, m1−ǫ

i0
>

logmi0
1−ǫ , and

2
(1−ǫ)m1−ǫ

i0 > mi0 .

Also, from the same proposition we have that mi+1 ≥ 2m
1−ǫ
i . Hence,

mi+2 ≥ 22
(1−ǫ)·m1−ǫ

i .

Since, for i ≥ i0, we have mi ≥ mi0 . The above inequality gives us mi+2 ≥ 2mi . Consequently,
beyond i = i0 + 2 log⋆ s, we have mi ≥ s.

E Proofs from Section 5– Shallow depths

Theorem 20 (restated). Suppose that for some constant n ≥ 2 and some arbitrarily
slow growing function a(s), we have a

(

poly(s), O(sn/ log2 s)
)

-hsg for multilinear polynomials
computed by size-s Σ ∧a ΣΠ circuits that depend only on the first n log s variables.

Then, for N -variate d-degree size-s circuits, we have a poly(sd)-time nonzeroness preserving
variable reducing polynomial map (N 7→ O(log(sd))) and Conjecture 1 holds. Furthermore, after
variable reduction, the degree of the new polynomial will be poly(sd).
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Proof. The proof is along the lines of [AV08, Theorem 3.2]. For all s ∈ N, let Ps be the
set of multilinear polynomials computed by size-s Σ ∧a ΣΠ circuit that depend only on the
first n log s variables. First, using the

(

poly(s), O(sn/ log2 s)
)

-hsg we show how to construct a

family of multilinear polynomial which is E-computable but not computable by 2o(n)-size circuit.
Using this hard polynomial family we get both the nonzeroness-preserving variable-reducing
polynomial map and Conclusion 1. Invoking Lemma 9, in poly(sd) time, we can convert a d-
degree N -variate polynomial computed by a size-s circuit to O(log(sd))-variate poly(sd)-degree
polynomial. Conjecture 1 follows from the Lemma 10.

Now, we discuss how to construct that hard polynomial family from the hsg f(y) of Ps. Let
m := n log s. Now we consider the annihilator of f(y) to get a hard polynomial. Let k be
the number of m-variate m/2-degree multilinear monomials. Since k =

(

m
m/2

)

≥ 2m/
√
2m =

sn/
√
2m >O(sn/ log2 s)·m (for large enough s), we get anm-variate andm/2-degree multilinear

homogeneous annihilating polynomial qm /∈ Ts and computable in sO(1) time. The analysis is
similar to Lemma 5. Importantly qm /∈ Ps, so, no Σ ∧a ΣΠ circuit of size < s = 2Θ(m) can
compute it. Next we show that it is also not computable by any 2o(m)-size algebraic circuit.

For the sake of contradiction, assume that qm has a 2o(m)-size circuit. From log-depth
reduction result [Sap16, Chapter 5] we get a circuit C, of dm = Θ(logm)-depth and sm = 2o(m)

size, with the additional properties:

1. alternative layers of addition/multiplication gates with the top-gate (root) being addition,

2. below each multiplication layer the related polynomial degree at least halves, and

3. fanin of each multiplication gate is at most 5.

Now we cut the circuit C at the t-th layer of multiplication gates from the top, where
t = t(dm) will be fixed later, to get the following two parts:

Top part: the top part computes a polynomial of degree at most 5t and the number of variables

is at most sm. So it can be reduced to a trivial ΣΠ circuit of size
(

sm+5t

5t

)

= s
O(5t)
m (Stirling’s

approximation, see [Sap16, Proposition 4.4]).

Bottom part: in the bottom part, we can have at most sm many top-multiplication gates that
feed into the top part as input. Each multiplication gate computes a polynomial of degree
at most m/2 · 2−t and the number of variables is at most m. So each multiplication gate

can be reduced to a trivial ΣΠ circuit of size
(m+m/2t+1

m/2t+1

)

= 2O(mt/2t).

From the above discussion, we have a ΣΠ5tΣΠm/2t+1
circuit C ′, computing qm, that has size

s
O(5t)
m + sm · 2O(mt/2t).

Now we fix t. The second summand becomes 2o(m) if we pick t = ω(1) (recall that sm =
2o(m)). To get a similar upper bound on the first summand we need to pick 5t log sm = o(m).
Finally, we also want 5t ≤ a(s), to satisfy the fanin bound of the top multiplication layer. A
function t = t(dm), satisfying the three conditions, exists as log sm = o(m) and a(·) is an
increasing function. Let us fix such a function t. (As C has super-constant depth, we can also
assume that the cut at depth t will be possible.) Thus the circuit C ′, computing qm, has size
s′m = 2o(m).

Relabel a := 5t. The condition 5t log sm = o(m) also ensures that a = o(m). So now we have
a shallow circuit for qm of the form ΣΠaΣΠ. Applying Lemma 11, we get a circuit computing
qm of the form Σ ∧a ΣΠ and size s′m · 2a = 2o(m) · 2o(m) = 2o(m) which is < s. This contradicts
the hardness of qm. Thus, there is no algebraic circuit for qm of size 2o(m).

Now we have a family of multilinear polynomials {qm}m≥1 such that is 2O(m) time com-
putable but has no 2o(m) size circuit.
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