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Abstract
This paper studies lower bounds for arithmetic circuits computing (non-commutative) polyno-
mials. Our conceptual contribution is an exact correspondence between circuits and weighted
automata: algebraic branching programs are captured by weighted automata over words, and
circuits with unique parse trees by weighted automata over trees.

The key notion for understanding the minimisation question of weighted automata is the
Hankel matrix: the rank of the Hankel matrix of a word or tree series is exactly the size of the
smallest weighted automaton recognising this series. For automata over words, the correspond-
ence we establish allows us to rephrase Nisan’s celebrated tight bounds for algebraic branching
programs. We extend this result by considering automata over trees and obtain the first tight
bounds for all circuits with unique parse trees.
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1 Introduction

Arithmetic circuits is the algebraic analogue of boolean complexity. Boolean functions
are replaced by multivariate polynomials, and the computation models are arithmetic cir-
cuits, which compute polynomials through additions and multiplications. The measure of
complexity of a circuit is the number of such operations. As in boolean complexity, obtain-
ing tight bounds for general circuits is hard. For instance, we do not know of any explicit
polynomial with super polynomial lower bounds. The best lower bounds were given by Baur
and Strassen [2] for the polynomial

∑n
i=1 x

d
i , which requires Ω(n log d) operations. We refer

to [13] for a recent survey on arithmetic circuits.

Non-commutative polynomial computation was initiated by Nisan [10]. In this set-
ting the variables do not commute, and therefore xy and yx are considered two distinct
monomials. Non-commutative computations arise in different scenarios, for instance when
performing matrix multiplication. Another interesting aspect is that the non-commutativity
constraints make the computation of a polynomial harder than its commutative counterpart
and therefore the quest for lower bounds is easier. In his seminal paper Nisan [10] showed
exponential lower bounds for the non-commutative permanent computed by formulas or
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2 Tight bounds for arithmetic circuits using Hankel matrix

algebraic branching programs (ABPs). Later, Limaye, Malod and Srinivasan [9] proved
exponential lower bounds for a generalisation of ABPs called skew circuits where each mul-
tiplication gate has at most one argument which is not an input.

Circuits with unique parse trees were introduced by Malod, Perifel, and the second
author [8] as an orthogonal generalisation of ABPs. A non commutative monomial can be
computed in different ways: for example the monomial x1x2x3 can be computed either as
x1(x2x3) or (x1x2)x3. These decompositions yield the notion of parse trees (we refer to
Section 3 for a formal definition) that are allowed to appear in the circuits.

One of the main motivation for studying UPT circuits is to see them as building blocks.
To obtain lower bounds for more general circuits one may decompose them into UPT circuits
and prove lower bounds for these. This is the approach taken for instance in [7].

The paper [8] provides an algebraic characterisation of the size of circuits with unique
parse trees (known as unambiguous circuits or UPT circuits) in canonical form together
with exponential lower bounds for polynomials such as the permanenent. Later, Limaye,
Srinivasan and the second author [7] extended these results to obtain exponential lower
bounds for polynomials computed by circuits with up to 2d1/4 different parse trees.

Saptharishi and Tengse [12] consider circuits with parse tree restrictions and give quasi-
polynomial hitting sets for them implying algorithms for polynomial identity testing. In
the same fashion, Arvind and Raja [1] show lower bounds for restricted commutative set-
multilinear circuits, where a given monomial can be computed inside the circuit by a unique
parse tree but two distinct monomials may have different parse trees.

Correspondence with weighted automata. In this paper we build a bridge between
automata theory and arithmetic complexity. The correspondence is summarised in this
table.

Arithmetic complexity Weighted automata
variable letter
monomial word
polynomial word or tree series

algebraic branching program layered weighted automaton over words
circuit with unique parse trees layered weighted automaton over trees

In Section 2, we show that Nisan’s results about algebraic branching programs follow
from theorems coming from automata theory. We introduce weighted automata (WA) over
words, and show the following correspondence:

any ABP can be seen as a WA,
under some syntactic restriction called layered, a WA can be seen as an ABP,
for a given word series f , the size of the minimal WA recognising f is the rank of the
Hankel matrix of f ,
if the word series f represents a homogeneous polynomial P , then the minimal WA
recognising f is an ABP computing P .

This gives an alternative approach to state and prove Nisan’s result about minimal ABPs.

Our main technical contribution is to extend this result from ABPs to UPT circuits in
Section 3. To this end we show a more subtle and involved correspondence between UPT
circuits and weighted automata over trees. Our main result is to obtain tight bounds on the
size of a UPT circuit computing a given polynomial.
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A similar result was obtained in [8] for UPT circuits in canonical form; here we remove
this assumption, leading to an exponential improvement in some examples as explained in
Section 4.

Throughout the paper X is a finite set of non-commuting variables. We consider ho-
mogeneous polynomials over X: all monomials have the same degree d. For instance,
xyx + 4x2y + 2y3 is a homogeneous polynomial of degree 3 over the variables {x, y}. In
all examples we use real numbers, but all of our results are valid for any field.

2 Tight bounds for algebraic branching programs

I Definition 1. An algebraic branching program (ABP) is a directed acyclic graph with a
distinguished source vertex s. The vertices are partitioned into d + 1 layers, starting with
layer 0 which contains only the vertex s, and ending in layer d. Each edge is between two
consecutive layers and is labeled by a homogeneous linear function over the variables X and
real-valued constants. Each vertex in the last layer has a real output value.

A path from s to a vertex in layer d induces a homogeneous polynomial of degree d
obtained by multiplying all the labels of the edges and the output value. An algebraic
branching program C computes a homogeneous polynomial PC defined by summing the
polynomials over all paths from s to vertices of the layer d.

The size of an ABP is its number of vertices.

One of the motivations for studying algebraic branching programs is that they capture
matrix multiplication. They can be proved to be equivalent to left skew circuits (i.e. circuits
for which the left argument of any multiplication gate is an input).

Figure 1 An example of an ABP with 4 layers and of size 8.

Nisan’s theorem
Nisan’s theorem gives for a homogeneous polynomial P the size of the smallest ABP com-
puting P . Let d be the degree of P , for each i ∈ {0, . . . , d}, we define a matrix MP,i as
follows. The rows are indexed by monomials of degree i, and the columns by monomials of
degree d − i (there are |X|i rows and |X|d−i columns). Then for u a monomial of degree i
and v of degree d− i, define MP,i(u, v) to be the coefficient of uv in P .

I Theorem 2 (Nisan’s theorem). Let P be a homogeneous polynomial of degree d, and

n =
d∑
i=0

rank(MP,i).
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Any ABP computing P has size at least n,
There exists an ABP computing P of size exactly n.

In this section, we give an alternative proof of this theorem using a correspondence
with weighted automata over finite words. The number n will appear as the rank of a single
matrix called the Hankel matrix, which will in the case at hand consists of d+1 independent
blocks, hence the summation in Nisan’s theorem.

The point of this section is to serve as an introduction to our main result in Section 3.
Indeed, we will prove a theorem extending Nisan’s theorem to a wider class of arithmetic
circuits, namely circuits with unique parse trees, following the same schema. In this section
we deal with weighted automata over words, in the next section we will consider weighted
automata over trees.

Weighted automata over words
An element of X∗ can be seen either as a monomial over the variables X, as in ABPs, or as
a (finite) word over the alphabet X. A word series is a function f : A∗ → R.

A polynomial P with variables in X can be seen as a word series X∗ → R which we also
write P , such that P (w) is the coefficient of w in P .

I Definition 3. A weighted automaton over words (WA) is given by
a finite set of states Q,
an initial state q0 ∈ Q,
a transition function ∆ : Q×X ×Q→ R,
an output function F : Q→ R.

The usual definition proceeds with introducing runs, explaining that along a run the weights
of the transitions are multiplied, and that the value of a word is the sum of the values of
its accepting runs. We use here a more algebraic equivalent definition. Equivalently, we see
the transition function as ∆ : X → RQ×Q, i.e., ∆(x) is a matrix defined by ∆(x)(p, q) =
∆(p, x, q). The initial state q0 (seen as an element of RQ) and the transition function induce
∆∗ : X∗ → RQ defined by ∆∗(ε) = q0 and ∆∗(wx) = ∆∗(w) · ∆(x), where · is matrix
multiplication. Similarly, we see F as a vector in RQ.

The weighted automaton A recognises the word series fA : X∗ → R defined by

fA(w) = ∆∗(w) · F,

where · is the dot product in RQ.
The size of a WA is its number of states.

Algebraic branching programs as weighted automata over words
ABPs form a subclass of WA over words that we define now.

I Definition 4. A weighted automaton A = (Q, q0,∆, F ) is d-layered if Q can be parti-
tionned into d+ 1 subsets Q0, . . . , Qd such that

(1) Q0 = {q0},
(2) for all x ∈ X, q, q′ ∈ Q, if ∆(q, x, q′) 6= 0 then there exists i ∈ {0, . . . , d− 1} such that

q ∈ Qi and q′ ∈ Qi+1,
(3) for all q ∈ Q, if F (q) 6= 0 then q ∈ Qd.

I Lemma 5.
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For all ABP C, there exists a WA over words A of the same size such that fA = PC.
For all WA over words A which is layered, there exists an ABP C of the same size such
that PC = fA.

Proof. Both claims are syntactic easy transformations. We explicit the construction to help
the reader’s intuitions.

Let C be an ABP. We define a WA over words A as follows. The set of states is the
set of vertices of C, the initial state of A is the source vertex of C, and the output function
F : Q → R is defined by F (v) is the output value of v if v is on the last layer, and 0
otherwise. For the transition function, let ∆(v, x, v′) be the coefficient of x in the linear
function labeling the edge (v, v′) if (v, v′) ∈ E, and 0 otherwise. We have fA = PC .

For the second claim, the definition of d-layered WA over words exactly says that the
above construction can be reverted. J

Figure 2 An example of 3-layered WA on the left, and its corresponding ABP on the right.

Fliess’ theorem
The key notion in this paper is the Hankel matrix of a series.

I Definition 6. Let f : X∗ → R, we define the (infinite) Hankel matrix H(f) ∈ RX∗ ×RX∗ ,
whose rows and columns are indexed by words, by

H(f)(u, v) = f(u · v).

The notion of Hankel matrix and the rank of a formal non-commutative series were
introduced by Carlyle and Paz [5]. One of the main results of Fliess’ PhD thesis was the
following theorem [6].

I Theorem 7. Let f : X∗ → R be a word series such that rank(H(f)) is finite.
Any WA recognising f has size at least rank(H(f)).
There exists a WA recognising f of size exactly rank(H(f)).

This article is in French. However, one can find great exposition of the ideas in the
handbooks of Berstel and Reutenauer [3] and Sakarovitch [11]. The proof of the second
item gives a construction of the WA recognising f that we detail now as we will need it to
prove Theorem 2.

Recall that the rows of H(f) are indexed by words in X∗. For u ∈ X∗, let H(f)
u be

the row corresponding to u in H(f), which we see as H(f)
u ∈ RX∗ . Let Q ⊆ X∗ such that
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{
H

(f)
u | u ∈ Q

}
is a basis of Span

{
H

(f)
u | u ∈ X∗

}
. We furthermore assume that ε ∈ Q,

which is possible since H(f)
ε 6= 0 unless f is the constant zero function.

We now construct the WA recognising f . The set of states is Q, the initial state is ε,
and the output function is defined by F (u) = f(u) for u ∈ Q. We now define the transition
function. For u ∈ Q, there is a unique decomposition of H(f)

ux on the basis
{
H

(f)
u | u ∈ Q

}
:

H(f)
ux =

∑
v∈Q

λ(u, x, v)H(f)
v ,

we define ∆(u, x, v) = λ(u, x, v).

Proof of Nisan’s theorem
I Lemma 8. Let P be a homogeneous polynomial of degree d. The automaton constructed
above for recognising P is d-layered.

Proof. Let A = (Q, ε,∆, F ) be the automaton described in the previous subsection.
Since for u of length larger than d we have H(f)

u = 0, it implies that Q ⊆ X≤d. For
i ∈ {0, . . . , d}, we let Qi = Q ∩Xi. The conditions (1) and (3) are clearly satisfied, so we
focus on (2).

For i ∈ {0, . . . , d}, let Vi denote the vector space spanned by
{
H

(P )
u | u ∈ Qi

}
. Note

that for u ∈ Qi and v of length j, if i+ j 6= d then H(P )
u (v) = P (u · v) = 0, hence the same

is true for any L ∈ Vi: if v has length j such that i+ j 6= d, then L(v) = 0.
We claim that the subspaces V0, V1, . . . , Vd are in direct sum. Indeed, assume that∑d
i=0 Li = 0 with Li ∈ Vi. Let j ∈ {0, . . . , d} such that Lj 6= 0, and consider a word

v ∈ Xd−j . For i 6= j we have Li(v) = 0 thanks to the remark above. It follows that Lj(v) = 0
for all v ∈ Xd−j , implying again with the remark above that Lj = 0, a contradiction. Thus
the subspaces V0, V1, . . . , Vd are in direct sum.

Let u ∈ Q and x ∈ X. By definition

H(P )
ux =

∑
v∈Q

∆(u, x, v)H(P )
v =

d∑
i=0

∑
v∈Qi

∆(u, x, v)H(P )
v .

But since H(P )
ux ∈ V|u|+1 and the vector spaces V0, . . . , Vd are in direct sum, it follows that

for v ∈ Q of length i 6= |u| + 1 we have
∑
v∈Qi

∆(u, x, v)H(P )
v = 0. Since the vectors{

H
(P )
v | v ∈ Qi

}
are linearly independent, this implies that ∆(u, x, v) = 0. Thus the prop-

erty (2) is satisfied. J

We now explain how to obtain the proof of Nisan’s theorem (Theorem 2) from the
correspondence. Let P be a homogeneous polynomial of degree d. Thanks to the first item
of Theorem 7 any WA recognising P has size at least rank(H(P )), and thanks to the first item
of Lemma 5 this implies that any ABP computing P has size at least rank(H(P )). Thanks
to the second item of Theorem 7, there exists a WA recognising P of size rank(H(P )), and
thanks to Lemma 8, it is d-layered. Thanks to the second item of Lemma 5, it induces an
ABP computing P of size rank(H(P )).

Let us have a closer look at the Hankel matrix of P for a homogeneous polynomial P of
degree d. Most of the matrix is filled with zeros, except for d+ 1 independent blocks, which
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Figure 3 The Hankel matrix of P consists of d + 1 independent blocks.

are precisely the matrices MP,i for i ∈ {0, . . . , d}. This explains the summation in Nisan’s
statement of the theorem, since rank(H(P )) =

∑d
i=0 rank(MP,i).

As we shall see in the next section, when considering UPT circuits the blocks will no
longer be independent, allowing to share the result of partial computations.

3 Tight bounds for circuits with unique parse trees

I Definition 9. A circuit is a directed acyclic graph whose vertices, called gates, are of four
different types.

The input gates have indegree zero and are labeled with variables x ∈ X.
The addition gates have unbounded fan-in and perform a linear combination of their
inputs, with the associated coefficients α in R given on the edges.
The multiplication gates have fan-in two, their arguments are ordered and the multiplic-
ation is interpreted according to this order (the left argument is multiplied before the
right argument).
The output gates have outdegree zero and are labeled with a real output value.

The size of an algebraic circuit is its number of addition gates.

While this definition allows multiple output gates, the circuits we construct only have
one single output.

The reason for not taking the multiplication gates into account is an easy lemma from [8]
proving that for UPT circuits (which are the only circuits we consider), if s is the number
of addition gates, then the number of multiplication gates can always be bounded by s2.
Therefore, the number of addition gates gives a pretty good idea on the total size of UPT
circuits. Observe also that the situation is similar in Nisan’s work for ABPs as the vertices
of an ABP correspond exactly to addition gates when this ABP is converted into circuits.

We also normalise the circuits by requiring that all paths alternate between addition
gates and multiplication gates and start and finish with an addition gate, which increases
the size by at most a linear factor.

I Definition 10. Given a circuit C, we define its set of parse trees by induction on C:
if C has size 1 it has only one parse tree: itself.
if the output gate of C is an addition gate g, then for each gate g′ which is an argument
of g and each parse tree of the subcircuit rooted at g′, we obtain a parse tree of C by
adding an edge from g′ to g.
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if the output gate of C is a multiplication gate g whose arguments are the gates g1 and
g2, the parse trees of C are obtained by taking a parse tree of the subcircuit rooted at
g1, a parse tree of a disjoint copy of the subcircuit rooted at g2, and the edges from g1
and g2 to g.

The shape of a parse tree is the binary tree obtained by contracting the addition gates
and removing all labels. Two parse trees C1, C2 are said to be equivalent, written C1 ∼ C2,
if their shapes are identical.

I Definition 11. A circuit with unique parse tree (UPT circuit) is a circuit where all parse
trees are equivalent. The shape of a UPT circuit is the shape shared by all parse trees.

Figure 4 An example of a UPT circuit computing x2 + y2 + z2. The circuit is on the left hand
side, the set of parse trees in the middle, and the unique shape on the right hand side.

UPT circuits can be seen as circuits for which each monomial is computed in the same
way given by the underlying shape. One can observe that ABPs also have this property.
ABPs are exactly UPT circuits with the shape of a comb. Thus, UPT circuits subsume
ABPs, and are more expressive. For instance, the palindrome polynomial over a set of n
variables (defined in [9] or [8] for example) is computed by a UPT circuit of polynomial
size, while the smallest ABP is of size Ω(nn/2), as witnessed for instance by the rank of the
Hankel matrix. The importance of UPT circuits comes from the fact we can decompose less
restricted circuits as sum of UPT circuits (see [7]). Having a good understanding of them
can therefore help to get lower bounds for more expressive circuits.

Statement of the result
Shapes are binary trees without any labels, we use T, T ′, . . . for shapes. They can be built
inductively: a leaf is a shape, and given two shapes T1, T2, we construct the shape T1 · T2.

We also consider labeled trees (later refered to as trees), which are binary trees whose
leaves are labeled by variables x ∈ X. We let Tree(X) denote the set of trees, and use
t, t′, . . . for them. Trees can be built inductively similarly as shapes, except that the basic
trees are variables x ∈ X. A tree series is a function f : Tree(X)→ R.

For t ∈ Tree(X), we let t̃ be the underlying shape of t, and for a shape T , we let
Tree(X,T ) denote the set of trees t such that t̃ = T . For instance for the shape T represented
in Figure 4, Tree(X,T ) has 9 elements obtained by labeling each of the two leaves by one
of the three variables x, y, z.
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We define the Hankel matrix for tree series. We first need the notion of contexts: a
context C is an element of Tree(X ∪ {�}) with a unique leaf labeled �. We let Context(X)
denote the set of contexts, and use C,C ′, . . . for them. A context C and a tree t can be
composed into a tree C ◦ t by replacing the placeholder � by the tree t.

I Definition 12. Let f : Tree(X) → R, we define the (infinite) Hankel matrix H(f) ∈
RTree(X) × RContext(X) by H(f)(t, C) = f(C ◦ t).

Our main theorem gives tight bounds on the size of UPT circuits. More precisely, we
consider a homogeneous polynomial P of degree d and a shape T , and find the size of the
smallest UPT circuit with shape T computing P .

A necessary condition for the existence of such a circuit is that the number of leaves of
T is d. Under this condition a homogeneous polynomial of degree d and a shape T induce a
function fP,T : Tree(X)→ R: for t ∈ Tree(X,T ), we see t as a monomial and define fP,T (t)
as the coefficient of this monomial in P , the function fP,T is zero outside of Tree(X,T ). We
refer to Figure 5 for an illustration of this definition.

Figure 5 Given the shape T displayed on the left hand side, the polynomial P = xyx+4x2y+2y3

can be seen as the tree series P : Tree(X) → R associating with these three trees the values indicated
below and zero to all other trees.

For the sake of simplicity we use H(P,T ) instead of H(fP,T ).

I Theorem 13. Let P be a homogeneous polynomial of degree d, and T be a shape with d
leaves.

Any UPT circuit with shape T computing P has size at least rank(H(P,T )),
There exists a UPT circuit with shape T computing P of size exactly rank(H(P,T )).

Weighted automata over trees
I Definition 14. A weighted automaton over trees (WA) is given by

a finite set of states Q,
an initial function ι : X ×Q→ R,
a transition function ∆ : Q×Q×Q→ R,
an output function F : Q→ R.

Equivalently, we write the transition function as a bilinear function ∆ : RQ × RQ → RQ
defined by ∆(p, q)(r) = ∆(p, q, r).

The initial and transition functions induce ∆∗ : Tree(X) → RQ defined by ∆∗(x) =
ι(x) ∈ RQ and ∆∗(t1 · t2) = ∆(∆∗(t1),∆∗(t2)).

The weighted automaton A recognises the tree series fA : Tree(X)→ R defined by

fA(t) = ∆∗(t) · F,

where · is the dot product in RQ.
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UPT circuits as weighted automata over trees
UPT circuits form a subclass of WA over trees that we define now.

Let T be a shape and v a node of T , we let Tv be the subshape of T rooted in v. We let
[T ] denote {Tv | v node of T}.

I Definition 15. A weighted automaton A = (Q, ι,∆, F ) is T -layered if there exists a map
m : Q→ [T ] such that

(1) for all x ∈ X, if ι(x, q) 6= 0 then m(q) is the shape reduced to a single leaf,
(2) for all q, q1, q2 ∈ Q, if ∆(q, q1, q2) 6= 0, then m(q) = m(q1) ·m(q2),
(3) for all q ∈ Q, if F (q) 6= 0 then m(q) = T .

I Lemma 16.
For all UPT C with shape T , there exists a T -layered WA over trees A of the same size
such that fA = PC.
For all WA over trees A which is T -layered, there exists a UPT C with shape T of the
same size such that PC = fA.

Proof. Let C be a UPT circuit. We define a WA over trees as follows. The set of states is
the set of addition gates of C. The initial function is defined by ι(g, x) is the label of the
edge coming from an input gate with label x to g, and 0 if there is no such edge. The output
function is defined by F (g) is the label of g if g is an output gate, and 0 otherwise. The
transition function is defined as follows: ∆(g1, g2, g) is the label of (the unique) multiplication
gate g′ using g1 and g2 as arguments and g′ argument of g. Then fA = PC .

For the second claim, the definition of layered WA over trees exactly says that the above
construction can be reverted. J

Minimisation of weighted automata over trees
The following theorem extends Fliess’ theorem.

I Theorem 17 ([4]). Let f : Tree(X)→ R be a tree series such that rank(H(f)) is finite.
Any WA recognising f has size at least rank(H(f)).
There exists a WA recognising f of size exactly rank(H(f)).

We detail the construction for the second item as we will need it to prove Theorem 13.
Recall that the rows of H(f) are indexed by trees in Tree(X). For t ∈ Tree(X), let H(f)

t

be the row corresponding to t in H(f), which we see as H(f)
t ∈ RContext(X). Let Q ⊆ Tree(X)

such that
{
H

(f)
t | t ∈ Q

}
is a basis of Span

{
H

(f)
t | t ∈ Tree(X)

}
. We furthermore assume

that Q contains at least one tree reduced to a single variable x ∈ X, which is possible since
H

(f)
x 6= 0 for some x ∈ X unless f is the constant zero series.
We now construct the WA recognising f . The set of states is Q. The initial function

is defined by ι(x, t) = 1 if t is the variable x ∈ X, and 0 otherwise. We now define the
transition function. For t1, t2 ∈ Q, there is a unique decomposition of H(f)

t1·t2 on the basis{
H

(f)
t | t ∈ Q

}
:

H
(f)
t1·t2 =

∑
t∈Q

λ(t1, t2, t)H(f)
t ,

we define ∆(t1, t2, t) = λ(t1, t2, t). The output function is defined by F (t) = f(t) for t ∈ Q.
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Proof of Theorem 13
I Lemma 18. Let P be a homogeneous polynomial of degree d and T a shape with d leaves.
The automaton constructed above for recognising P is T -layered.

Proof. Let A = (Q, ι,∆, F ) be the automaton described in the previous subsection.
We define m : Q→ [T ] by m(t) = t̃. To see that indeed t̃ ∈ [T ], we remark that if t̃ /∈ [T ]

then H(P,T )
t = 0, hence t cannot be in Q. The conditions (1) and (3) are clearly satisfied,

so we focus on (2).
For T ′ ∈ [T ], let VT ′ denote the vector space spanned by

{
H

(P,T )
t | t̃ = T ′

}
.

We claim that the subspaces VT ′ for T ′ ∈ [T ] are in direct sum. It follows from the fact
that if L ∈ VT ′ , then for a context C ′ such that C ′ ◦ T ′ 6= T , we have L(C ′) = 0.

Let t1, t2 ∈ Q. By definition

H
(P,T )
t1·t2 =

∑
t∈Q

∆(t1, t2, t)H(P,T )
t =

∑
T ′∈[T ]

∑
t∈Q | t̃=T ′

∆(t1, t2, t)H(P,T )
t

︸ ︷︷ ︸
∈VT ′

.

Since H(P,T )
t1·t2 ∈ Vt̃1·t̃2 and the vector spaces VT ′ for T ′ ∈ [T ] are in direct sum, it follows that

for T ′ ∈ [T ] such that t̃1 · t̃2 6= T ′ we have∑
t∈Q | t̃=T ′

∆(t1, t2, t)H(P,T )
t = 0.

Since the vectors
{
H

(P,T )
t | t ∈ Q

}
are linearly independent, this implies that ∆(t1, t2, t) = 0.

Thus the property (2) is satisfied. J

We now prove our main result, Theorem 13. Let P be a homogeneous polynomial of
degree d and T a shape with d leaves. Thanks to the first item of Theorem 17 any WA recog-
nising P has size at least rank(H(P,T )), and thanks to the first item of Lemma 16 this implies
that any UPT circuit with shape T computing P has size at least rank(H(P,T )). Thanks to
the second item of Theorem 17, there exists a WA recognising P of size rank(H(P,T )), and
thanks to Lemma 18, it is T -layered. Thanks to the second item of Lemma 5, it induces a
UPT circuit with shape T computing P of size rank(H(P,T )).

4 Applications

In this section, we apply our main theorem to concrete polynomials. The first example
illustrates the difference between general UPT circuits and UPT circuits in canonical form
as studied in [8], witnessing an exponential gap between the two models. Our second example
is the permanent.

An exponential gap between UPT circuits and their canonical
restrictions
Consider the polynomial P (x1, x2, x3, x4) = x1x2x3x4 + x3x4x1x2 and let T be a complete
binary tree with 4 leaves. Figure 6 shows the smallest UPT circuit with shape T computing
P given by the construction of Theorem 13. It witnesses an interesting phenomenon: both
computations x1x2 and x3x4 are shared and used twice each. This is captured in the Hankel
matrix by observing that two blocks contribute only by one to the rank since the two rows
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are identical. Informally they correspond to isomorphic subshapes. This circuit is not in
the canonical form studied in [8], which does not allow such shared computations.

Figure 6 On the left hand side, the smallest UPT circuit computing x1x2x3x4 + x3x4x1x2. We
have not depicted some addition gates to keep the figure simple. On the right hand side a sample
of the corresponding Hankel matrix. The blue rectangle corresponds to an interaction between two
different type of contexts.

We push this further to obtain an exponential gap between UPT circuits and UPT
circuits in canonical form. Let n ∈ N and T the complete binary tree with 2n leaves.
Consider the polynomial P (x) = x2n . Inspecting the Hankel matrix (see Figure 7) yields
rank(H(P,T )) = n. Thus thanks to Theorem 13 the smallest UPT circuit with shape T
computing P has exactly n addition gates, illustrated in Figure 8. The characterisation
obtained in [8] shows that the smallest UPT circuit with shape T in canonical form has
2n+1 − 1 addition gates, yielding an exponential gap. Note however that such a large gap
can only be obtained for circuits with large degrees.

The permanent
We look at the permanent polynomial

P =
∑
σ∈Sn

n∏
i=1

xi,σ(i)

over the n2 variables X = {xi,j | u, j ∈ [n]}. We examine the Hankel matrix H(P,T ) for any
shape T with n leaves and obtain the size of the smallest UPT circuit of shape T which
computes the permanent.

For v a node of T , let dv be the number of leaves in Tv.

I Lemma 19.

rank(H(P,T )) =
∑
v∈T

(
n

dv

)
.



N. Fijalkow, G. Lagarde, and P. Ohlmann 13

Figure 7 The Hankel matrix for the polynomial x2n

and the shape T being the full binary tree.
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Figure 8 An example of a UPT circuit computing x2n

. The circuit is on the left hand side and
its shape on the right hand side, it is the complete binary tree of height n.

Proof. Let T be a shape with n leaves {`1, . . . , `n} and v ∈ T be a node in T . We let iv
denote the leftmost index of a leaf in Tv, i.e. Tv has leaves `iv , `iv+1, . . . , `iv+dv−1. Moreover,
let S be a subset of {1, . . . , n} of size dv.

We argue that in the Hankel matrix there are
∑
v∈T

(
n
dv

)
independent blocks, and that

the set of these blocks is in bijection with pairs (v, S) where v is a node of T and S a subset
of size dv.

Let S = {s1, . . . , sdv} and its complement {1, . . . , n}\S = {q1, . . . , qn−dv}. Let USv be the
set of labelings of the leaves `iv , . . . , `iv+dv−1 of Tv by variables xiv,σ(s1), . . . , xiv+dv−1,σ(sdv )
in this order, ranging over permutations σ of S.

Likewise, we let C denote the unlabeled context obtained by removing Tv from node v
in T and replacing it by a placeholder �, and put BSv to be the set of labelings of all leaves
but those in Tv of C by variables

x1,τ(q1), . . . , xiv−1,τ(qiv−1), xiv+dv,τ(qiv ), . . . , xn,τ(qn−dv ),

ranging over permutations τ of the complement of S.
For any σ, τ , the corresponding labeled tree tσ ∈ USv and labeled context cτ ∈ BSv are

such that fP (cτ [tσ]) = H(P,T )(tσ, cτ ) = 1, inducing a block of 1’s indexed by USv × BSv in
H(P,T ).

Conversely, we see that any (t, c) ∈ Tree(X)× Context(X) such that H(P,T )(t, c) = 1 is
in some USv × BSv , and that for any two distinct (S, v), (S′, v′), both USv and US′v′ and BSv
and BS

′

v′ are disjoint, hence the blocks cover all 1’s in H(P,T ) and are independent. This
concludes. J

We instantiate this result for two shapes:
If T is a comb, this yields that the smallest ABP computing the permanent has size∑n
i=1
(
n
i

)
+
∑n
i=1
(
n
0
)

= 2n + n,



N. Fijalkow, G. Lagarde, and P. Ohlmann 15

If T is a full binary tree of depth k = log(n), this yields that the smallest UPT circuit
with this shape computing the permanent has size

∑k
i=0 2i

( 2k

2k−i

)
= Θ( 2n

√
n

).
Hence the latter UPT circuit is more efficient.

However, recall that in our model circuits have unbounded fan-in on addition gates. In
this setting a natural and a more accurate estimation of the size if the circuit (or number
of operations that are performed) is to count directly the total number of arguments of
addition gates. Examining more closely the automata and the circuits we construct, we
obtain the following formula that gives the number of such edges for a UPT circuit with
shape T computing the permanent∑

v∈T

(
dv
fv

)(
n

dv

)
,

where fv is the number of leaves in Tv′ , with v′ an argument of v (indeed, it does not depend
upon which argument is chosen). Note that our optimality result does not apply to this new
measure, but we can still consider the size of the circuits constructed by Theorem 13. It
yields an ABP of size n2n−1 + n, which asymptotically matches the well known optimal
ABP for the permanent constructed using the Ryser formula. For the case of the full binary
tree, we obtain a UPT circuit of size Θ(2 3

2n/ log(n)), a bit worse than the ABP.
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