
The Subgraph Testing Model∗

Oded Goldreich† Dana Ron‡

February 11, 2020

Abstract

We initiate a study of testing properties of graphs that are presented as subgraphs of a fixed
(or an explicitly given) graph. The tester is given free access to a base graph G = ([n], E), and
oracle access to a function f : E → {0, 1} that represents a subgraph of G. The tester is required
to distinguish between subgraphs that possess a predetermined property and subgraphs that are
far from possessing this property.

We focus on bounded-degree base graphs and on the relation between testing graph properties
in the subgraph model and testing the same properties in the bounded-degree graph model. We
identify cases in which testing is significantly easier in one model than in the other as well as
cases in which testing has approximately the same complexity in both models. Our proofs are
based on the design and analysis of efficient testers and on the establishment of query-complexity
lower bounds.

Keywords: Property testing, graph algorithms,

∗This research was partially supported by the Israel Science Foundation (grants No. 671/13 and 1146/18). A
preliminary version was posted on ECCC (as TR18-045), and an extended abstract has appeared in the 10th ITCS.
†Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.

oded.goldreich@weizmann.ac.il
‡School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel. danaron@tau.ac.il

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 45 (2018)

Contents

1 Introduction 1
1.1 The model . 1
1.2 Results . 4

1.2.1 Downward-monotone properties . 4
1.2.2 Other properties (i.e., non downward-monotone properties) 6

1.3 Techniques . 7
1.3.1 Algorithms . 8
1.3.2 Lower bounds . 8

1.4 Some additional open problems . 9
1.5 Related models . 11

1.5.1 Testing under a promise . 11
1.5.2 The orientation model . 11

1.6 Organization . 12

2 Algorithms 12
2.1 General bounded-degree base graphs . 12

2.1.1 Testing downward-monotone properties . 12
2.1.2 Testing monotone properties . 13

2.2 Hyperfinite base graphs . 14
2.2.1 A special case of interest . 14
2.2.2 Greater generality at larger cost . 15

2.3 Local properties and base graphs with small separators 16

3 Testing in the subgraph model may not be easier than in the BDG model 19
3.1 Testing bipartiteness . 19

3.1.1 A lower bound construction for testing generalized 2-colorability 20
3.1.2 The subgraph-model construction: using a routing network 20
3.1.3 Refining the construction and removing the congestion 22
3.1.4 A precise definition of the distribution over subgraphs 24
3.1.5 A process for answering queries according to the distribution on subgraphs . 25
3.1.6 Revising the process for answering queries . 27
3.1.7 Completing the lower bound . 28
3.1.8 An open problem . 29

3.2 Testing 3-Colorability . 29

4 Testing in the subgraph model may be harder than in the BDG model 35
4.1 Proving the main claim of Theorem 4.1 . 36
4.2 Proving the secondary (“furthermore”) claim of Theorem 4.1 40
4.3 Testing whether subgraphs of the grid are Eulerian 41
4.4 Open problems . 42

References 42

i

1 Introduction

Property testing refers to probabilistic algorithms with sub-linear complexity for deciding whether
a given object has a predetermined property or is far from any object having this property. Such
algorithms, called testers, obtain local views of the object by performing queries and their perfor-
mance guarantees are stated with respect to a distance measure that (combined with a distance
parameter) determines what objects are considered far from the property.

In the last couple of decades, the area of property testing has attracted significant attention
(see, e.g., [Gol17]). Much of this attention was devoted to testing graph properties in a variety of
models ranging from the dense graph model [GGR98], to the bounded-degree graph model [GR02],
and to the sparse and general graph models [PR02, KKR04].1 These models differ in two main
parameters: the types of queries that potential testers can make, and the distance measure against
which their performance is measured.

In all aforementioned models, the input graph is arbitrary, except for its size (and possibly its
degree, in the case of the bounded-degree graph model). The same holds with respect to the graphs
that have the property, which determine the distance of the input from the property. While some
prior works (see, e.g., [BSS10, HKNO09, CSS09, GR10, Ele10, EHNO11, NS13, CMOS19]) restrict
the input graph in certain natural ways, the restrictions considered so far were expressed in terms
of general (“uniform”) graph properties (such as degree bound, hyperfiniteness, planarity, etc). See
further discussion in Section 1.5.1.

In contrast, we envision circumstances in which the input is restricted to be a subgraph of some
fixed graph that is known beforehand. For example, the fixed graph may represent an existing (or
planned) network, and the subgraph represents the links that are actually in operation (or actually
constructed). Alternatively, the graph may represent connections between data items that may
exist under some known constraints, and the edges of the subgraph represent connections that
actually exist. Either way, the input is a subgraph of some fixed graph, and the distance to having
the property is measured with respect to subgraphs of the same fixed graph.

1.1 The model

In accordance with the foregoing discussion, in the subgraph testing model, there is a fixed base
graph, denoted G = ([n], E), and the tester is given oracle access to a function f : E → {0, 1} that
represents a subgraph of G in the natural manner (i.e., f represents the subgraph ([n], {e ∈ E :
f(e)=1})). Alternatively, the base graph G is not fixed, but the tester is given free access to G.

Definition 1.1 (subgraph tester): Fixing G = ([n], E) and ΠG ⊆ FG
def
= {f : E → {0, 1}}, a

subgraph tester for ΠG is a probabilistic oracle machine, denoted T , that, on input a (proximity)
parameter ε, and oracle access to a function f : E→{0, 1}, outputs a binary verdict that satisfies
the following two conditions.

1. T accepts inputs in ΠG: For every ε > 0, and for every f ∈ ΠG, it holds that Pr[T f (ε)=1] ≥
2/3.

2. T rejects inputs that are ε-far from ΠG: For every ε > 0, and for every f : E→{0, 1} that is
ε-far from ΠG it holds that Pr[T f (ε)=0] ≥ 2/3, where f is ε-far from ΠG if for every h ∈ ΠG

it holds that |{e∈E : f(e) 6= h(e)}| > ε · |E|.
1These models are surveyed in Chapters 8, 9, and 10 of the textbook [Gol17].

1

If the first condition holds with probability 1 (i.e., Pr[T f (ε)=1] = 1 for f ∈ ΠG), then we say that
T has one-sided error; otherwise, we say that T has two-sided error.

In the alternative formulation, the subgraph tester is given G as an explicit input (along with ε).
In this case, the random variable being considered is T f (G, ε).

Definition 1.1 falls within the framework of massively parameterized property testing (cf. [New10]).
The massive parameter is the base graph G = ([n], E), and the actual input is a function f : E →
{0, 1} (which represents a subgraph of G).

(The subgraph testing model is syntactically identical to the orientation model [HLNT12], but
semantically these models are fundamentally different; see further discussion in Section 1.5.2.)

As usual in the area, our primary focus is on the query complexity of such testers, and our
secondary focus is on their time complexity. Both complexities are stated as a function of the
proximity parameter ε and the base graph G. Indeed, the dependency of these complexities on G,
or rather on some parameters of G, will be of major interest.

As an illustration, consider the problem of testing whether the subgraph is bipartite. If the
base graph is bipartite, then this problem is trivial (since every subgraph is bipartite). If the base
graph isM-minor free2, for any fixed family of graphsM, then testing (with distance parameter ε)
can be done in poly(1/ε)-time (see Proposition 2.2). Lastly, if the base graph is of bounded-degree,
then testing can be done in poly(1/ε) · Õ(

√
n)-time (see Theorem 1.2), and this result is optimal

in general (i.e., for arbitrary bounded-degree base graphs, see Part 1 of Theorem 1.4).
Our main focus will be on the case that the base graph is sparse (e.g., of bounded-degree).

Furthermore, we shall be interested in cases in which the subgraph testing model is different from
other testing models. Still, let us make a couple of comments regarding cases in which the subgraph
testing model coincides with other testing models.

The dense graph model is a special case of subgraph testing. For the base graph G = Kn

(i.e., the n-vertex clique), the subgraph testing model coincides with the dense graph model. This
is the case since adjacency queries (as in the dense graph model) correspond to edges of the base
graph G, and the distance measure used in both models is the same.

General property testing (of Boolean functions) as a special case of subgraph testing.
If the base graph G has cn edges for a constant c ≥ 1, then the subgraph testing model captures
property testing (for Boolean functions) at large. This is shown as follows.

Consider in particular the case that G = ([n], E) is a cycle with an edge between i and i + 1,
for every 1 ≤ i ≤ n − 1, as well as an edge between n and 1. Then, any function h : [n] → {0, 1}
can be represented by a subgraph Gh of G that contains the edge between i and i+ 1. (similarly,
(i, 1) for i = n) if and only if h(i) = 1. In such a case, any query to Gh can be answered by a single
query to h. For any property P of Boolean functions over [n], let ΠPG = {Gh : h ∈ P}. Hence, for
any h : [n]→ {0, 1}, the distance of h to P equals the distance of Gh to ΠPG. Essentially the same
argument can be applied to any base graph G = ([n], E), provided that |E| ≥ n and |E| = O(n)
(the lower bound on E allows to associate each i ∈ h−1(1) with an edge in G, and the upper bound
ensures that distances are maintained up to a constant).

2Recall that a graph M is a minor of graph G if M can be obtained from G by vertex deletions, edge deletions
and edge contractions; a graph G is M-minor free for a family of graphs M, if no graph in M is a minor of G.

2

Testing graph properties in the subgraph model. In general, a property of subgraphs of a
base graph G (i.e., a property ΠG ⊆ FG as in Definition 1.1) is not a graph property (i.e., it is not
closed under graph isomorphism).3 Still we shall be interested in the case that ΠG corresponds to
the set of all subgraphs of G that has some graph property Π. One reason for this restriction is
that it allows comparing the task of testing whether a subgraph is in ΠG to the task of testing Π in
some other model (e.g., testing Π in the bounded-degree graph model). Abusing notation, in these
cases, we may write ΠG = FG ∩Π, and sometimes refer to ΠG using the term graph property.

The focus on the case that ΠG = FG ∩ Π, for some graph property Π, calls for revisiting the
claim that any property of Boolean functions can be represented in the subgraph testing model.
The issue is that the property ΠG presented above cannot be written as FG ∩ Π, for some graph
property Π. Still, a variant of it will do.

n−2 n−1n−3321 n

Figure 1: For n ≥ 6, the n-vertex path is “oriented” by the additional edge {n− 3, n− 1} (which
breaks the symmetry between vertex 1 and vertex n, and more generally between j and n− j+ 1).

Specifically, for n ≥ 6, consider an n-vertex graph G′ consisting of an n-vertex long path
augmented with the edge {n − 3, n − 1} (see Figure 1). Observe that the only automorphism of
this graph is the identity permutation, and augment G′ with self-loops on each of the n vertices,
deriving a base graph G with 2n edges. (We note that the construction can be modified so that
self-loops are avoided, by replacing them with disjoint cycles of length 3.) We can associate any
function h : [n] → {0, 1} with a subgraph Gh of G that contains G′ as well as the self-loop on
vertices in h−1(1). Note that, by the asymmetry of G′, there is a bijection between the set of
Boolean functions over [n] and the subgraphs of G that contain G′. Hence, for each property P of
Boolean functions, there exists a graph property Π such that there is a bijection between P and
the set FG ∩ Π = {Gh : h ∈ P} (e.g., Π may all graphs that are isomorphic to some graph in
{Gh : h ∈ P}).

A simplifying assumption. Throughout this paper, we assume that G contains no isolated
vertices. This can be assumed without loss of generality, because, for every graph G′ that is
obtained from the graph G = ([n], E) by adding isolated vertices, it holds that FG = FG′ , since in
both cases the subgraphs are represented by Boolean functions on the same edge-set (i.e., E).

3In fact, ΠG is a graph property only in pathological cases that include the case of ΠG = ∅ and the case that G
is either the complete graph or the empty graph. Otherwise, the property ΠG ⊆ FG is not a graph property, since
it is not closed under isomorphism (because G is not invariant under all possible relabelings of its vertex set). Note
that the n-vertex complete graph and the empty (n-vertex) graph are the only n-vertex graphs that are invariant
under all possible relabelings of [n]. In contrast, if G is neither empty nor complete, then it contains a vertex w that
has degree in [n− 2]; that is, w’s neighbor set, denoted ΓG(w), is neither empty nor contains all other vertices in G.
Picking u ∈ ΓG(w) and v 6∈ ΓG(w), observe that the permutation π that switches u and v, while keeping all other
vertices intact, does not preserve the graph G (i.e., π(G) 6= G).

3

1.2 Results

Throughout this paper, the base graph G is viewed as a varying parameter, which may grow when
other parameters (e.g., the degree bound d) are fixed. We focus on bounded-degree base graphs
and on the relation between testing graph properties in the subgraph model and testing the same
properties in the bounded-degree graph (BDG) model.

Recall that in the BDG model [GR02], the tester is explicitly given three parameters: n, d, and
ε. Its goal is to distinguish with probability at least 2/3 between the case that a graph G = ([n], E)
(of maximum degree bounded by d) has a prespecified property Π, and the case that G is ε-far from
having the property Π. In this model a graph is said to be ε-far from having Π if more than ε · d ·n
edge modifications (additions or removals) are required in order to obtain a graph (of maximum
degree bounded by d) that has Π. To this end the tester can perform queries of the form “who
is the ith neighbor of vertex v?”, for v ∈ [n] and i ∈ [d].4 Unless stated explicitly otherwise, the
degree bound d is a constant.

Obviously, the relationship between the subgraph model and the BDG model depends on the
property being tested as well as on the base graph used in the subgraph model. We identify cases in
which testing is significantly easier in one model than in the other as well as cases in which testing
has approximately the same complexity in both models.

More specifically, we distinguish downward-monotone graph properties from other graph prop-
erties, where a graph property is said to be downward monotone if it is preserved under omission
of edges (i.e., if G = ([n], E) has the property, then so does G′ = ([n], E′) for every E′ ⊂ E).

1.2.1 Downward-monotone properties

We first observe that, for every bounded-degree graph G = ([n], E) and any downward-monotone
graph property Π, testing Π ∩ FG in the subgraph model (w.r.t. the base graph G) reduces to
testing Π in the BDG model.

Theorem 1.2 (a general upper bound on the complexity of testing downward-monotone proper-
ties (see Section 2.1)): Let Π be a downward-monotone graph property that is testable with query
complexity Qd(·, ·) in the bounded-degree graph model, where d ≥ 2 denotes the degree bound, and
Qd is a function of the proximity parameter and (possibly) the size of the graph. Then, for every
base graph G = ([n], E) of degree d, testing whether a subgraph of G satisfies Π (with proximity
parameter ε) can be done with query complexity d ·Qd(ε′, n), where ε′ = ε/d. The same holds with
respect to the time complexity. Furthermore, one-sided error is preserved.

(Note that, for constant d, it holds that ε′ = Ω(ε).) Properties covered by Theorem 1.2 include
bipartiteness, cycle-freeness, and all subgraph-freeness and minor-freeness properties. Hence, testers
known for these properties in the BDG model (see [Gol17, Chap. 9]) get translated to testers of
similar complexity for the subgraph testing model.

While Theorem 1.2 asserts that testing downward-monotone graph properties in the subgraph
model is not harder than testing these properties in the BDG model, it gives rise to the question
of whether the former task may be easier.

4If v has less than i neighbors, then a special symbol is returned. It is sometimes assumed that the algorithm can
also query the degree of any vertex of its choice, but this assumption saves at most a multiplicative factor of log d in
the complexity of the algorithm.

4

Testing in the subgraph model may be trivial. A trivial positive answer holds in case the
base graph itself has the property (i.e, G ∈ Π). In this case, by the downward-monotonicity of Π,
every subgraph of G has the property Π, which means that testing Π ∩ FG in the subgraph model
(w.r.t. the base graph G) is trivial.

Testing in the subgraph model may be easier (than in the BDG model). A more
interesting case in which testing in the subgraph model may be easier than in the BDG model
occurs when the base graph is not in Π, but has some suitable property Π′ that is not related to
Π. In particular, if the base graph is M-minor free, for some fixed set of graphs M, then, for
any downward-monotone graph property Π, testing Π∩FG in the subgraph model has complexity
that is independent of the size of the tested graph, whereas testing Π in the BDG model may
require query complexity that depends on the size of the tested graph. More generally, we consider
hyperfinite families of graphs [Ele06], where an n-vertex graph G is t-hyperfinite for t : (0, 1)→ N if,
for every ε > 0, removing at most εn edges from G results in a graph with no connected component
of size exceeding t(ε). We mention that minor-free (bounded-degree) graphs are hyperfinite (with
t(ε) = O(1/ε2)).

Theorem 1.3 (on the complexity of testing downward-monotone properties of subgraphs of hy-
perfinite base graphs (see Section 2.2)): Let Π be a downward-monotone graph property and G be
a family of t-hyperfinite graphs. Then, for every bounded-degree base graph G = ([n], E) in G,
testing whether a subgraph of G satisfies Π can be done in time that depends only on the proximity
parameter ε. Furthermore, if Π is additive (i.e., a graph is in Π if and only if all its connected
components are in Π), then its query complexity is O(t(ε/4)/ε) and the tester has one-sided error.5

Note that by Theorem 1.3, testing bipartiteness of subgraphs of any (bounded-degree) planar graph
G has complexity poly(1/ε), whereas (by [GR02]) testing bipartiteness of n-vertex graphs in the
BDG model has complexity Ω(

√
n).6

Testing in the subgraph model may not be easier (than in the BDG model). On the
other hand, there are cases in which the testers provided by Theorem 1.2 are essentially the best
possible. Indeed, these cases correspond to base graphs that are not hyperfinite.

Theorem 1.4 (testing c-colorability of subgraphs of general bounded-degree base graphs (see Sec-
tions 3.1 and 3.2)):

1. There exist explicit bounded-degree graphs G = ([n], E) such that testing whether a subgraph
of G is bipartite, with proximity parameter 1/poly(log |E|), requires Ω̃(

√
|E|) queries.

2. There exist bounded-degree graphs G = ([n], E) such that testing whether a subgraph of G is
3-colorable, with constant proximity parameter, requires Ω(|E|) queries.

Item 2 asserts that the complexity of testing 3-Colorability in the subgraph model may be linear,
just as in the BDG model. Item 1 should be contrasted with the tester obtained by applying

5In general, the tester has two-sided error and the query complexity is at most exponential in O(t(ε/4)2).
6As discussed in Section 1.5.1, weaker results may be obtained by using testers for the BDG model that work

under the corresponding promise.

5

Theorem 1.2 to the known tester for the BDG model [GR99]. The derived tester has complexity
poly(1/ε) · Õ(

√
|E|), where ε denotes the proximity parameter, whereas Item 1 implies that one

cannot obtain better complexity in terms of ε and |E|; for example, complexity poly(1/ε) ·Q(|E|)
is possible only for Q(n) = Ω̃(

√
n). Needless to say, we leave open the question of whether there

exist bounded-degree graphs G = ([n], E) such that testing whether a subgraph of G is 2-colorable,
with constant proximity parameter, requires Ω̃(

√
n) queries (see Problem 3.2).

1.2.2 Other properties (i.e., non downward-monotone properties)

When turning to graph properties that are not downward monotone, the statement of Theorem 1.2
no longer holds. There exist graph properties that are significantly harder to test in the subgraph
model than in the BDG model. Specifically:

Theorem 1.5 (testing in the subgraph model may be harder than in the BDG model (see Sec-
tion 4)): There exists a property of graphs Π for which the following holds. On the one hand, Π is
testable in O(1/ε)-time in the bounded-degree graph model. On the other hand, there exist explicit
graphs G = ([n], E) of constant degree such that testing whether a subgraph of G satisfies Π requires
Ω(log logn) queries. Furthermore, the property Π is (upwards) monotone, and the family of base
graphs is hyperfinite.7

The first part of the furthermore-clause implies that a result analogous to Theorem 1.2 does not
hold for monotone (rather than downward-monotone) graph properties. The second part of the
furthermore-clause implies that also a result analogous to Theorem 1.3 does not hold for monotone
graph properties. While Theorem 1.2 establishes a gap between testing in the subgraph and BDG
models, it leave open the question of whether a larger gap can be shown between these two models
(see Problem 4.3).

We comment that the property Π used in Theorem 1.5 is related to being Eulerian, and the base
graphs are related to a cyclic grid. Hence, it is interesting to note that testing whether subgraphs of
a cyclic grid are Eulerian can be done in complexity that only depends on the proximity parameters
(see Proposition 4.2).

Turning back to monotone graph properties, we first note the trivial case in which the base graph
G does not have the property (which implies that all its subgraphs lack this property as well). A
non-trivial case is that of testing minimum degree (see Proposition 2.1). A more interesting case is
that of connectivity.

Proposition 1.6 (testing connectivity in the subgraph model – see Section 2.1): For every base
graph G = ([n], E), testing whether a subgraph of G is connected can be done in poly(1/ε)-time.

We mention that even the case of 2-edge connectivity, which has an efficient tester in the BDG
model, seems challenging in the subgraph testing model (see Problem 1.9).

A relatively general positive result. We next state a result for a class of properties that
are not downward-monotone (and not necessarily monotone either). This result is of the flavor of
Theorem 1.2, but introduces an overhead that is logarithmic in the number of vertices. Specifically,
we refer to the class of all graph properties that have proximity-oblivious testers of constant query

7See the definition of hyperfinite graphs preceding Theorem 1.3.

6

complexity (in the BDG model) [GR11, Sec. 5]. We mention that such properties are “local”
in the sense that satisfying them can be expressed as the conjunction of conditions that refer to
constant-distance neighborhood in the graph (see Definition 2.4).

Theorem 1.7 (testing local properties in the subgraph model (see Section 2.3)): Let Π be a local
property and suppose that the base graph G is outerplanar and of bounded degree. Then, testing
whether a subgraph of G = ([n], E) has property Π can be done using O(ε−1 log n) queries.

The result stated in Theorem 1.7 extends to every graph having constant-size separating sets (the
dependence on the size of the separating sets is given explicitly in Theorem 2.5).

Testing in the subgraph model may be easier than in the BDG model. Lastly we note
that moving from the BDG model to the subgraph testing model makes the testing task potentially
easier, since the subgraph tester knows a priori the possible locations of edges. This is reflected by
the following result, which refers to any (bounded-degree) base graph.

Theorem 1.8 (a property that is extremely easier in the subgraph model): For every constant d,
there exists a graph property Πd that requires linear query complexity in the bounded-degree model
but can be tested using O(1/ε) queries in the subgraph model w.r.t. every base graph of maximum
degree d.

Since the proof of Theorem 1.8 is short and simple, we provide it next.

Proof: Fixing d, let Πd be a set of d-regular graphs such that testing Πd in the BDG model (with
degree bound d) requires a linear number of queries (e.g., Πd is the set of 3-colorable d-regular
graphs [BOT02]). To establish the upper bound in the subgraph model, observe that for any base
graph G that has maximum degree d, the only subgraph of G that may be d-regular is G itself.
Therefore, if the base graph G is not in Πd, then the subgraph-tester can reject without performing
any queries. If G ∈ Πd, then the subgraph-tester simply tests whether the subgraph of G is G itself
(by performing O(1/ε) queries).

The proof of Theorem 1.8 raises the question of whether the upper bound in the theorem holds
for downward-monotone properties, and more generally, which properties Πd can be tested using
O(1/ε) queries in the subgraph model w.r.t. every base graph of maximum degree d? Alternatively,
one may reverse the order of quantifiers and ask whether there exists a graph property Π that
satisfies the conclusion of Theorem 1.8 for any constant d.

1.3 Techniques

Some of the testers presented in this paper (e.g., those referred to in Theorems 1.3 and 1.7) are
based on structural properties of the base graph. In some cases (e.g., Theorem 1.3) these structural
properties, which are inherited by the subgraphs, make the testing task (in the subgraph model)
easier than in the BDG model. The proofs of the lower bounds constitute the more technically
challenging part of the paper. Typically, the challenge is emulating lower bounds obtained for other
testing models on the subgraph testing model. The brief overviews, especially those referring to
the lower bounds, are merely intended to give a flavor of the techniques (and are not supposed to
convince the reader of the validity of the claims).

7

1.3.1 Algorithms

The tester used in proving Theorem 1.2 is a simple emulation of the BDG-model tester by the
subgraph tester, and its analysis is based on the observation that the distance between a graph G′

and a downward-monotone graph property Π equals the number of edges that should be omitted
from G′ in order to place the resulting graph in Π. Proposition 1.6 is also proved by a simple
emulation of the BDG-model tester, but the analysis of the resulting tester relies on special features
of connectivity (and does not extend to 2-connectivity; see Problem 1.9).

The proofs of Theorems 1.3 and 1.7 are more interesting. In both cases we reduce testing
subgraphs of the base graph G to testing subgraphs of a fixed subgraph G′ of G such that G′ is
close to G and testing subgraphs of G′ is (or seems) relatively easier. Such a reduction is valid since
the property that we test is downward monotone, and the subgraph G′ is found without making
any queries.

In the proof of Theorem 1.3 the fixed subgraph G′ consists of small connected components.
Hence, in the special case of Theorem 1.3 (i.e., properties that are determined by their connected
components), it suffices to test that the subgraphs induced by the connected components of the
base graph have the relevant property. In the general case, we follow Newman and Sohler [NS13]
in estimating the frequency of the various graphs that are seen in these induced subgraphs. We
stress that, unlike in [NS13], we do not use a partition oracle of the tested graph (which may
be implemented based on standard queries (following Hassidim et al. [HKNO09])), but rather
determine such a partition of the base graph (without making any queries).

Theorem 1.7 is proved by applying a recursive decomposition of the base graph using constant-
size separating sets. Essentially, in addition to checking the local neighborhood of random vertices,
we also check the local neighborhoods of the vertices in the separating sets that correspond to the
path in the recursion tree (i.e., the tree of recursive decomposition) that isolates the chosen vertices.
Actually, we check that all these local neighborhoods are consistent with some subgraph that has
the property. These additional checks are used in the analysis in order to establish the consistency
of the various local neighborhoods (i.e., not only those examined in the same execution).

We highlight the fact that the foregoing testers are non-adaptive. This is remarkable, because
the corresponding testers for the BDG model (which in some cases are actually emulated by our
testers) are inherently adaptive. However, these “BDG-model testers” utilize their adaptivity only
for conducting local searches in the input graph, whereas in the subgraph testing model the input
is a subgraph of a fixed (or a priori known) graph, and so the queries that support these local
searches can be determined non-adaptively.

1.3.2 Lower bounds

The lower bound on testing 3-colorability of a subgraph (asserted in Part 2 of Theorem 1.4) is
proved by observing that the proof of Bogdanov, Obata, and Trevisan [BOT02] asserting that,
in the bounded-degree graph model, testing 3-coloring requires linear query complexity can be
extended to the subgraph model.8 This assertion is based on two main observations. The first
observation is that, while [BOT02, Thm. 14] asserts a local gap-preserving reduction from 3SAT to
3-Colorability (for bounded degree graphs), the reduction is actually from a set of 3CNF formulae

8This replaces a flawed argument, presented in a preliminary version of this work, that supposedly showed a local
reduction from the problem of testing whether an input assignment satisfies a fixed 3CNF formula, for which a linear
query complexity lower bound was established by Ben-Sasson, Harsha, and Raskhodnikova [BSHR05].

8

that have the same clause-structure (i.e., which variables appear in each of the clauses) and only
differ in the negation-pattern (i.e., which literal of each variable is used in each of the foregoing
occurrences),9 whose hardness is established in [BOT02, Sec. 6]. The second observation is that,
for a fixed clause-structure, the reduction applied in the proof of [BOT02, Thm. 14] can be adapted
to produce subgraphs of the same fixed graph. Specifically, the negation-pattern of the given 3CNF
determines a sequence of binary choices such that each binary choice determines one edge out of a
fixed pair of edges (which is included in the tested subgraph).

The proof of Item 1 of Theorem 1.4 (which refers to testing 2-colorability (bipartiteness) of a
subgraph) is more complicated. The basic idea is to emulate the lower bound on bipartite testing
established in the BDG model [GR02]. The obvious question is what should be the base graph. It
is natural to pick a base graph that allows an embedding of any bounded-degree graph in it such
that edges of the embedded graph are mapped to short vertex-disjoint paths. Furthermore, the
mapping of edges to paths should be determined in a local manner. We use a base graph that is
related to a routing network of logarithmic depth, and employ (randomized) oblivious routing on
it. This allows us to map bipartite graphs (of the BDG model) to bipartite subgraphs of the base
graph, while mapping graphs that are far from bipartite (in the BDG model) to subgraphs that
are far from bipartite (in the subgraph testing model). The actual analysis of this construction is
quite complicated (as evident from the length of Section 3.1), because we have to locally emulate a
subgraph of the base graph (by making few queries to the input graph in the BDG model).

The proof of Theorem 1.5 uses a reduction from testing Eulerian orientations of cyclic grids in
the orientation model (defined in Section 1.5.2). As discussed in Section 1.5.2, the orientation model
(presented by Halevy et al. [HLNT12]) is related but different from the subgraph testing model.
Our reduction maps the (cyclic) grid, used in the lower bound of Fischer et al. [FLM+12], to a base
graph that looks like such a grid, except that edges are replaced by small gadgets. The orientations
of edges in the orientation model are mapped to choices of subgraphs of the corresponding gadgets.
In this case, it is easy to locally emulate a subgraph of the base graph by making queries to the
orientation oracle, and the claimed Ω(log log n) lower bound follows (from the analogous lower
bound of [FLM+12]). On the other hand, the property at the image of the reduction is local, and
so it is testable within poly(1/ε) queries in the BDG model.

1.4 Some additional open problems

Moving from the BDG model to the subgraph testing model makes the testing task potentially
easier, since the subgraph tester knows a priori the possible locations of edges. But, when dealing
with properties that are not downward monotone, there is an opposite effect that arises from the
fact that the distance to the set of subgraphs (of G) that have graph property Π may be much
bigger than the distance to the set of (bounded-degree) graphs that have property Π. This may
require the subgraph tester to reject the input (since its distance to Π ∩ FG is large), whereas the
BDG model tester may be allowed to accept the input (since its distance Π is small). This difficulty
is reflected in the following open problems.

Problem 1.9 (testing 2-connectivity of subgraphs): Is the query complexity of testing 2-edge-
connectivity in the subgraph testing model independent of the size of the graph? What about c-edge-
connectivity for any constant c ∈ N?

9The partition of 3SAT instances to clause-structure versus negation-pattern follows the more general framework
of “factor graphs” of CSPs introduced by Feige and Jozeph [FJ12].

9

Figure 2: A subgraph of the 2-by-8 grid that misses 4 edges. The subgraph is marked by solid lines,
the missing edges by dashed lines, and an external edge that makes this subgraph 2-connected is
dotted.

Recall that c-connectivity is testable in the BDG model within complexity that depends only on
the proximity parameter [GR02]. We note that a straightforward emulation of the BDG-model
tester (for 2-connectivity) calls for trying to find a small 2-connected component that has a cut of
size at most 1 to the rest of the graph. But this approach fails when considering a base graph that
is a 2-by-n grid (since, as illustrated in Figure 2, any subgraph that misses at most one horizontal
edge of each vertex (of degree 4) is O(1/n)-close to being 2-connected but may be far from any
2-connected subgraph of the 2-by-n grid).

The straightforward emulation of the BDG-model tester also fails for testing whether a subgraph
of the n-cycle is a perfect matching (i.e., is 1-regular), but a tester that considers the locations of
edges in the subgraph does work (we discuss this shortly at the very end of Section 4). Testers of
complexity that does not depend on the graph size do exist for this property when the base graph
is a tree (since each tree has at most one perfect matching)10, but we do not know if they exist
when the graph is outerplaner.

Problem 1.10 (testing whether the subgraph is a perfect matching): What is the complexity of
testing 1-regularity when the base graph is outerplanar? What about the case that the base graph is
planar (e.g., a grid)? And what about testing degree-regularity?

Note that c-connectivity, degree-regularity, and Eulerianity are the only properties covered in [Gol17,
Chap. 9] that are not downward monotone. Also note that Proposition 4.2 refers to the complexity
of testing the Eulerian property for a base graph that is a grid, and it is clear that the underlying
ideas apply to base graphs of “similar structure” (as arising in the proof of Proposition 4.2). But
what about going beyond that?

Problem 1.11 (testing whether the subgraph is Eulerian): What is the complexity of testing the
Eulerian property in any base graph of bounded degree?

The foregoing problems are all rooted in the difficulties that are introduced by the fact that distances
under the subgraph model may be significantly larger than under the BDG model, which makes
the task of the tester potentially harder. On the other hand, the fact that the base graph is known
to the tester makes its task potentially easier. Recalling that only the latter effect is relevant in
the case of downward monotone properties, gives rise to the following question.

10This perfect matching is determined by a pruning process (started at the leaves), and the tester just checks that
the subgraph equals this perfect matching (if it exists). Note that, also in this case, the tester does not emulate the
BDG-model tester (which just samples vertices and checks their degree); such an emulation will fail poorly (even
when the base graph is a path).

10

Problem 1.12 (a property that is always easier in the subgraph model): Does there exist a
downward-monotone graph property Π such that testing Π in the bounded-degree model has higher
query complexity than testing Π in the subgraph model w.r.t. every base graph of bounded-degree?

Recall that Theorem 1.8 refers to an upward-monotone property (which depends on the degree
bound).

The foregoing problems are aimed at concretizing the abstract challenge of making better use
of the knowledge of the base graph that is available to the tester. Although Theorem 1.4 indicates
that this extra knowledge is not always helpful, other results point out to cases in which it is helpful.
We would like to see more such cases and more substantial use of the knowledge of the base graph.

1.5 Related models

1.5.1 Testing under a promise

As mentioned earlier, testing graph properties under the promise that the tested graph has some
(other) property was considered before (see discussion in [Gol17, Sec. 12.2]). In fact, the bounded-
degree graph model itself may be viewed as postulating such a promise. More conspicuous cases
include the study of testing under the promise that the graph is hyperfinite [NS13] or more specif-
ically planar [BSS10], or with bounded tree-width [EHNO11]. In continuation to Theorem 1.2, we
observe that testing downward-monotone graph properties in the subgraph model can be reduced
to testing the same property under a promise that contains the base graph.

Theorem 1.13 (a generalization of Theorem 1.2): Let G and Π be downward-monotone graph
properties such that G contains graphs of degree at most d. Suppose that, when promised that the
tested graph is in G, the property Π is testable (in the bounded-degree graph model) with query
complexity QG(·, ·), where QG is a function of the proximity parameter and (possibly) the size of
the graph. Then, for every base graph G = ([n], E) in G, testing whether a subgraph of G satisfies
Π (with proximity parameter ε) can be done with query complexity d ·QG(ε′, n), where ε′ = ε/d.

Hence, results weaker than Theorem 1.3 may be obtained by combining Theorem 1.13 with the
tester provided in [NS13] (see discussion in Section 2.2). Indeed, the improved results are due to
the fact that in the subgraph model the tester is given the base graph for free. In the current case
(of hyperfinite graphs), the tester does not need to query the tested graph in order to obtain a
partition oracle of the tested graph; it may just use an adequate partition of the base graph. In
general, a main challenge in the study of the subgraph model is in how to utilize the knowledge of
the base graph in order to improve the complexity of testing.

1.5.2 The orientation model

A property testing model that is related to the subgraph model is the orientation model , which
was introduced by Halevy et al. [HLNT12]. Similarly to the subgraph model, in the orientation
model there is a fixed (undirected) base graph G = ([n], E). However, the goal in the latter model
is to test properties of directed graphs (digraphs) that are defined by orientations of the edges of
G. That is, for each edge {u, v} ∈ E, either the edge is directed from u to v, or from v to u, and
the algorithm may perform queries in order to obtain the orientation of edges of its choice. For a
property Π of digraphs, the algorithm should distinguish (with probability at least 2/3) between

11

the case that the tested orientation ~G has the property Π and the case in which the orientation of
more than ε · |E| edges should be flipped in order to obtain the property.

While the subgraph model and the orientation model are syntactically identical, the semantics
are very different, as we explain next. Similarly to the subgraph model, an orientation ~G = ([n], ~E)
of G is defined by a function f : E → {0, 1}. Here, f(e) = 1 indicates that in ~G the edge e is
directed from its smaller (id) endpoint to its larger endpoint. Querying the orientation of an edge
hence corresponds to querying f , and distance between two functions f and f ′ (representing two
different digraphs) is simply the Hamming distance between the functions.

The fundamental difference in the semantic between the two models is reflected in the fact that
natural properties of digraphs in the orientation model do not correspond to natural properties of
graphs in the subgraph testing model, and vice versa. For example, the functions f that define
Eulerian orientations of an undirected graph G = ([n], E) (as described above) do not necessarily
define subgraphs of G (i.e., in which f(e) = 1 indicates that e belongs to the subgraph) that are
Eulerian. Hence, natural properties in one model do not necessarily translate to natural properties
in the other model. Still, it may be possible to emulate or reduce testing properties in one model
to testing properties in the other model, as we do in the proof of Theorem 1.5.

1.6 Organization

Following the structure of Section 1.3, we distinguish the presentation of algorithmic results from
the presentation of results that have a dominant lower-bound aspect. The former are presented in
Section 2, whereas the latter appear in Sections 3 and 4. Specifically, Section 2 contains the proofs
of Theorems 1.2, 1.3, and 1.7 as well as Proposition 1.6. The proof of the two parts of Theorem 1.4
is provided in Section 3, which can be read independently of one another, since they use unrelated
techniques. The proof of Theorem 1.5 appears in Section 4.

2 Algorithms

In this section we prove Theorems 1.2, 1.3, and 1.7, as well as Proposition 1.6. These results
refer to different types of base graphs and different classes of properties. We have organized them
according to the type of the base graph. Recall that G is assumed to have no isolated vertices, so
that |E| ≥ n/2.

2.1 General bounded-degree base graphs

In this section d ≥ 2 is a fixed constant, and the base graph G is an arbitrary graph in which each
vertex has degree at most d (and at least 1).

2.1.1 Testing downward-monotone properties

We first consider any graph property Π that is preserved under edge omission. Such properties
are said to be downward monotone. We prove Theorem 1.2, which asserts that for every graph
G = ([n], E) of degree at most d and any downward-monotone graph property Π, testing Π∩FG in
the subgraph model (w.r.t. the base graph G) is not harder than testing Π in the bounded-degree
graph (BDG) model.

12

Proof of Theorem 1.2. Given oracle access to f : E → {0, 1}, the subgraph tester invokes the
tester of the BDG model, and emulates an incidence oracle for the subgraph of G represented by f
in the natural manner. That is, the query (v, i) ∈ [n]× [d] is answered with the ith vertex in the set
Γf (v) = {u : {u, v}∈E & f(u, v)=1}, where vertices are ordered arbitrarily (e.g., by lexicographic
order), and the answer is ⊥ if |Γf (v)| < i. This means that each query (v, i) of the BDG model
tester, denoted T , in answered by first retrieving Γf (v), which in turn amounts to making at most
d queries to f (i.e., querying all edges incident to v in G). Hence, the subgraph tester emulates the
execution of T on the graph Gf = ([n], {e ∈ E : f(e)=1}).

In the analysis, downward monotonicity is used to associate distance from Π in each of the
two models with the number of edges that should be omitted from the subgraph. Specifically, in
both cases, the distance from the property reflects the number of edges that should be omitted in
order to make the graph satisfy the property (because adding edges never decreases that distance).
Specifically, if f ∈ Π ∩ FG, then Gf ∈ Π, and T accepts (with probability at least 2/3 in general,
and with probability 1 if T has one-sided error). On the other hand, if f : E → {0, 1} is ε-far from
Π ∩ FG, then (by downward monotonicity of Π) any graph in Π that is closest to Gf must be a
subgraph of Gf (i.e., is in Π ∩ FG and so differs from Gf on more than ε · |E| edges). It follows

that Gf is ε′-far from Π for ε′ = ε·|E|
dn/2 ≥

ε
d .

Proof of Theorem 1.13. The proof is identical to the proof of Theorem 1.2, except that here
we rely on the hypothesis that G is downward monotone.

2.1.2 Testing monotone properties

Theorem 1.2 does not apply to monotone properties (i.e., properties that are either downward
monotone or upward monotone, where a property is upward monotone if it is closed under edge
additions). Still, several such properties are quite easy to test in the subgraph testing model. One
simple example is the property of having a specified minimal degree.

Proposition 2.1 (testing minimal degree in the subgraph model): For d′ ≥ 1, testing whether all
vertices in the subgraph have degree at least d′ can be done in time O(d/ε).

Proof: If d′ is bigger than the minimum degree of the base graph G = ([n], E), then the tester
rejects without performing any queries. Otherwise, the tester selects Θ(1/ε) vertices, uniformly at
random, and computes their degrees in the tested subgraph Gf , by querying all their incident edges
in G. The tester accepts if and only if all sampled vertices have degree at least d′.

Hence, the tester makes O(d/ε) queries, and always accepts subgraphs that have the property.
To prove that it rejects subgraphs that are ε-far from having the property with probability at
least 2/3, we establish the contrapositive statement. Consider a graph Gf that is accepted with
probability at least 1/3. This implies that the number of vertices in Gf whose degree is smaller
than d′ is at most (ε/2) · n. Since in G every vertex has degree at least d′, it is possible to add
edges to Gf in order to obtain a subgraph that has the property, whereas the number of required
added edges is at most (εn/2) · d′ ≤ ε · |E|.

Proof of Proposition 1.6. We now turn to the proof of Proposition 1.6, which asserts a
poly(d/ε)-time tester for connectivity in the subgraph model. If the base graph G = ([n], E) is

13

not connected, then testing is trivial (since all subgraphs of G are disconnected). Otherwise (i.e.,
the base graph G is connected), connectivity of the input f ∈ FG can be tested by emulating
the tester used for the BDG model [GR02]. This tester samples vertices and explores their local
neighborhood in search of small connected components.

The analysis is even simpler than the original (bounded-degree) one since we can add edges
without worrying about the degree bound (similarly to the analysis of testing connectivity in the
sparse (unbounded-degree) model [PR02]). Specifically, we use the fact that if f represents a
subgraph with t connected components, then by modifying f at one entry we can obtain a function
that represents a subgraph with t− 1 connected components. (This relies on the fact that G must
contain edges between the connected components of Gf .)

As noted in the introduction (see Section 1.4), the argument does not extend to 2-connectivity.
The reason is that in that case the known tester for the BDG model [GR02] does not search for
arbitrary 2-connected components but rather for 2-connected components that are connected to
the rest of the graph by at most one edge. The problem with that tester is that its analysis requires
the ability to add edges between any given pair of such 2-connected components, whereas we can
only add edges that exist in the base graph.

2.2 Hyperfinite base graphs

A graph G = ([n], E) is said to have an (ε, t)-partition if its vertex set can be partitioned into
connected components of size at most t such that the number of edges between these components
is at most εn.

Recall that a graph M is called a minor of a graph G if M is isomorphic to a graph that can
be obtained by (zero or more) edge contractions on a subgraph of G. A graph G is M -minor free
if M is not a minor of G. If G has degree at most d and is minor-free (i.e., G is M -minor free for
some fixed subgraph M), then it has an (ε, O((d/ε)2))-partition, for every ε > 0 (the size of M is
“hidden” in the O(·) notation – see [AST90, HKNO09]).

More generally, Theorem 1.3 refers to any family of hyperfinite graphs, where a family of graph
G is hyperfinite if there exists a function t : (0, 1)→ N such that, for every ε > 0, every graph in the
family has an (ε, t(ε))-partition. We shall first prove the second clause in the theorem, which refers
to downward-monotone properties that are additive (i.e., determined by the connected components
of the graph).

2.2.1 A special case of interest

We say that a graph property Π is additive if it holds that a graph is in Π if and only if all its
connected components are in Π. We note that if a property is downward monotone and additive,
then it is closed under the removal of edges and vertices, but the converse is not necessarily true.
In particular this means that not every downward-monotone graph property is additive. For ex-
ample, consider the graph property Π that consists of all graphs that either constitute of a single
(Hamiltonian) cycle or consist of a collection of isolated paths and vertices. Note that Π is closed
under omission of edges and vertices, but a graph that consists of several isolated cycles is not in
Π (i.e., Π is not additive).11

11Indeed, if a graph is in (this) Π, then all its connected are in Π, but the converse does not hold.

14

Proposition 2.2 (testing downward-monotone properties that are additive): Let Π 6= ∅ be a
downward-monotone graph property that is additive. Let G = ([n], E) be a graph of maximum
degree d, and t : (0, 1) → N be such that, for every ε > 0, the graph G has an (ε, t(ε))-partition.
Then, testing whether a subgraph of G is in Π can be done by performing O(d2 · t(ε/4)/ε) queries.
Furthermore, the tester is non-adaptive and has one-sided error.

In particular, Proposition 2.2 implies that, for every fixed graph M , testing bipartiteness of a sub-
graph of G, when G is M -minor free, can be done in poly(d/ε)-time, when given an (ε/4, O((d/ε)2))-
partition of G.12 This is much more efficient than testing bipartiteness in the bounded-degree model,
for which the query complexity is Ω(

√
n) [GR02]. It is also more efficient than testing bipartite-

ness of bounded-degree graphs under the promise that the graph is minor-free, let alone under
the weaker promise that the graph is t-hyperfinite. Indeed, under these promises, the tester may
implement an (ε/4, t(ε/4))-partition oracle of the tested subgraph, but such an implementation re-
quires more than poly(t(ε/4)) queries. Specifically, in the special case of minor-free graphs the best
implementation known uses O(d/ε)O(log(1/ε)) queries [LR15], whereas in the general (t-hyperfinite)
case the best implementation known uses exp(dO(t(poly(1/ε)))) queries [HKNO09],

Proof: Let (C1, . . . , Cr) be an (ε/4, t(ε/4))-partition of G. Given query access to f : E → {0, 1},
which represents the subgraph Gf = ([n], {e ∈ E : f(e) = 1}), we select at random Θ(d/ε) vertices,
and for each selected vertex v we inspect all edges in the subgraph of G = ([n], E) induced by the
part Ci that contains v (i.e., we query all pairs (u,w) ∈ E ∩ (Ci × Ci)). We accept if and only if
all the observed subgraphs are in Π; that is, we accept if and only if for each inspected Ci it holds
that the subgraph of Gf induced by Ci is in Π.

In what follows we use the premise of the proposition that Π is downward monotone and
additive, so that it is preserved under the omission of edges and connected components (and hence
under the omission of edges and vertices). Observe that if Gf is in Π, then so are the subgraphs of
Gf induced by the Ci’s. Hence, our tester accepts Gf ∈ Π with probability 1. On the other hand,
if Gf is ε-far from Π, then the subgraph of Gf obtained by omitting all edges between the Ci’s
is (ε/2)-far from Π (since (ε/4)n ≤ (ε/2)|E|). Denoting the latter subgraph by Ĝf , we claim that
at least (ε/4)n/d of its vertices reside in connected components that are not in Π. Conditioned
on this claim, and since each connected components of Ĝf corresponds to a subgraph of Gf that
is induced by a part Ci, it follows that the tester rejects Gf with probability at least 2/3 (for an
appropriate constant in the Θ(·) notation for the size of the vertex sample).

Assume, contrary to the claim, that less than (ε/4)n/d vertices reside in connected components
of Ĝf that are not in Π. Recall that Π is preserved under the omission of edges and vertices (so that
in particular Π contains the graph consisting of a single vertex). Therefore, by omitting less that
d·(ε/4)n/d

2 = (ε/4)n < (ε/2)|E| edges (at most all edges the belong to connected components that
are not in Π), we obtain a graph in which all connected components belong to Π. By additivity of
Π, the resulting graph belongs to Π. But this contradicts the hypothesis that Ĝf is (ε/2)-far from
Π.

2.2.2 Greater generality at larger cost

A more general result refers to graph properties that are downward monotone but not necessarily
additive, i.e., that are only preserved under edge omissions (and to hyperfinite base graphs G). The

12Such a partition can be found in polynomial-time [AST90].

15

cost of this generalization is an increase in the query complexity of the tester, as asserted next.

Proposition 2.3 (testing general downward-monotone properties): Suppose that Π is a downward-
monotone graph property and that, for some t : [0, 1]→ N and every ε > 0, the graph G = ([n], E)
has an (ε, t(ε))-partition. Then, we can test whether a subgraph of G is in Π with query complexity
O(d2 · exp(t(ε/4)2)/ε2).

We mention that the exponential dependence on t of the query complexity of the foregoing tester is
unavoidable (in the general case of downward-monotone graph properties). Consider, for example,
the case that the base graph is an

√
n-by-

√
n grid augmented by diagonal edges in each grid cell.

Next consider the following downward-monotone property Π: A graph is in Π if there exists a k
such that the graph consists of connected components that are each a k-by-k grid augmented by
some of the foregoing diagonal edges such that at most half of the possible patterns (created by the
diagonal edges) occur in these small grids. Now, on proximity parameter ε > 0, consider the task
of distinguishing the case that the subgraph consists of 0.1/ε-by-0.1/ε grids in which half of the
possible patterns occur from the case in which all patterns occur. A lower bound that is a square
root of the number of patterns follows from a birthday paradox argument (and a lower bound that
is almost linear follows from [VV17, Val12]).

Proof: By the premise of the proposition, for every ε > 0, the base graph G has an (ε/4, t(ε/4))-
partition. Let g ∈ FG denote the all-ones function, and let g′ be ε/2-close to g and define a subgraph
Gg
′

of G in which each connected component has size at most t(ε/4). Hence, Gg
′

is a subgraph of
G that is obtained from G by removing the at most (ε/4)n ≤ (ε/2)|E| edges between parts in the
(ε/4, t(ε/4))-partition.

By the closure of Π to edge omissions, each function f ∈ FG ∩ Π is (ε/2)-close to the function
f ′ ∈ FG ∩ Π such that f ′(e) = f(e) ∧ g′(e). Let Π′G denote the set of graphs obtained in this way;
that is, Π′G = {f ∧ g′ : f ∈ FG ∩ Π}. Since Π is a graph property, it follows that Π′G = FG ∩ Π′,
where Π′ is the set of all graphs that are isomorphic to graphs that belong to Π′G. Hence, the set
Π′G is closed under all automorphisms of the graph G.

Recalling that Π′G and likewise Π′ contain only graphs that consist of connected components of
size at most t = t(ε/4), it follows that Π′ is characterized by the frequencies in which the various
graphs of size at most t appear as connected components. Hence, f ∈ FG describes a graph in Π if
and only if f ′ = f ∧ g′ is in FG ∩Π′, where Π′ is characterized in terms of the number of connected
component that are isomorphic to each of the graphs with at most t(ε/4) vertices (and contain
no smaller connected components). It follows that testing with proximity parameter ε whether
subgraphs of G satisfy Π can be performed by estimating these numbers in the subgraph described
by f ∧ g′, where f is the tested function.

Lastly, we note that estimating the frequencies in which the various t(ε/4)-vertex graphs ap-
pear as connected components can be done using O(d2 · exp(t(ε/4)2)/ε2) queries, where the term
exp(t(ε/4)2) accounts for the number of t(ε/4)-vertex graphs.

2.3 Local properties and base graphs with small separators

Loosely speaking, a graph property is called local if satisfying it can be expressed as the conjunction
of local conditions, where each local condition refers to a constant-distance neighborhood of one of
the graph’s vertices. A precise definition is given next.

16

Definition 2.4 For a constant ` ∈ N, the `-neighborhood of a vertex v in a graph G is the subgraph
of G induced by all vertices that are at distance at most ` from v. A property Π of n-vertex graphs is
called `-local if there exists a graph property Π′ such that G is in Π if and only if the `-neighborhood
of each vertex is G is in Π′. (Actually, Π′ is a set of rooted graphs, where the root corresponds
to the “center” of the `-neighborhood.)13 A graph property Π =

⋃
n Πn is local if there exists a

constant ` such that Πn is an `-local property of n-vertex graphs.

We mention that this definition coincides with [GR11, Def. 5.2], and that (in the bounded de-
gree graph model) every graph property that has a proximity-oblivious tester of constant query
complexity is local [GR11, Sec. 5].

For s : N → N we say that a graph G = ([n], E) has separating sets of size s if for every set of
vertices U ⊆ [n] there exists a subset S ⊆ U of at most s(|U |) vertices such that the subgraph of G
induced by U \ S has no connected component of size greater than 2

3 · |U |. For example, every tree
has separating sets of size 1, every outerplanar graph has separating sets of size 2 [Hea87, Lem. 3],
and n-vertex planar graphs have separating sets of size O(

√
n) [LT79].

Theorem 2.5 (Theorem 1.7, generalized): Let Π be an `-local property and let s : N→ N. Suppose
that the base graph G is of bounded degree d and has separators of size s. Then, testing whether a
subgraph of G = ([n], E) has property Π can be done by performing O(ε−1s(n) log n · d`+1) queries.
Furthermore, the tester is non-adaptive and has one-sided error.

Proof: We first note that we may assume that s(n) = O(n/ log n), or else the upper bound
on the number of queries holds trivially. We consider a recursive decomposition of the graph G,
obtained by applying the guaranteed separators, and a tree that corresponds to these applications.
Specifically, the root of the tree corresponds to the separating set, denoted Sλ, that disconnects the

graph Gλ
def
= G. Collecting the resulting connected components into two subgraphs, each containing

at most two-thirds of G’s vertices, we proceed to obtain separating sets, denoted S0 and S1, for
each of these two subgraphs, denoted G0 and G1, respectively. In general, an internal node in the
tree is labeled by a string α and corresponds to the subgraph Gα as well as to a separating set Sα
for Gα. The children of this node correspond to subgraphs Gα0 and Gα1 that result from removing
Sα from Gα (where the number of vertices in each of these subgraphs is at most two-thirds of
the number of vertices in Gα). When the subgraph reaches some constant size, the process stops.
Hence, the leaves of the tree correspond to subgraphs of constant size. For a leaf labeled by α, we
let Sα be the set of vertices of the subgraph Gα.

For the sake of clarity, we reserve the term ‘node’ for nodes in the tree (describing the recursive
decomposition), and the term ‘vertex’ for the vertices of G. We shall never talk of edges of the
(rooted) tree, but only of the descendance and ancestry relations induced by it. Recall that each
node in the tree is associated with a set of vertices of G, and note that these sets form a partition
of the vertex set of G. We say that vertex v resides in a node labeled by α if v ∈ Sα. Observe that
edges of the graph G can connect vertices that reside in the same node and vertices that reside in
nodes that are in an ancestry relation, but cannot connect vertices that reside in nodes that are
not in an ancestry relation (equiv., reside in nodes α′0α′′ and α′1α′′′ for any α′, α′′, α′′ ∈ {0, 1}∗).

We are now ready to describe the tester for Π, which is an `-local property for some constant
` ∈ N. Given a fixed based graph G = ([n], E) and oracle access to a subgraph represented by

13Marking the root is important only in case that the center of the graph of radius ` cannot be uniquely determined.

17

f : E → {0, 1}, the tester repeats the following procedure Θ(d/ε) times, where if no invocation of
the procedure causes rejection, then it accepts.

1. Uniformly select a vertex that resides in one of the leaves of the decomposition tree. Recall
that we may assume that s(n) = O(n/ log n), so that a constant fraction of the vertices of G
resides in leaves of the tree.

2. For each vertex v of G that resides in a node on the path from the selected leaf to the root
(including both the leaf and the root), explore the `-neighborhood of v in G (i.e., query f on
each of the edges in that neighborhood).

3. If the subgraph discovered in the previous step is not consistent with any n-vertex subgraph
of G that has property Π, then reject.

Note that the aforementioned discovered subgraph includes not only the explored edges but
also indication that certain edges do not exist in the subgraph (i.e., the latter include all
non-edges of G as well as some edges of G that were queried by the procedure and answered
by the value 0).

The query complexity of this procedure is O(s(n) log n · d`), where d is the degree-bound of G.
Clearly, the tester always accepts subgraphs of G that have the property Π. It remains to show
that if the subgraph is ε-far from Π, then the probability that a single invocation of the procedure
causes rejection is Ω(ε/d).

We establish the contrapositive statement. Suppose that the foregoing procedure rejects with
probability ρ < 1. We show that it suffices to modify an O(ρ · d) fraction of the edges in G in
order to obtain a graph that satisfies Π. We say that a leaf of the tree is good if the procedure
does not reject when it selects a vertex that resides in this leaf. We say that an internal node of
the tree is good if it appears on the path from some good leaf to the root. Note that ρ < 1 implies
that there exist good leaves, and hence the root of the tree is good. More generally, if a node is
good, then all its ancestors are good. Also note that each vertex that resides in a good node has
an `-neighborhood in Gf that satisfies the local condition (i.e., the `-neighborhood is in Π′), where
recall that Gf denotes the subgraph of G defined by f .

Hence, we only need to modify the neighborhoods of vertices residing in bad nodes, and we
should do so without harming the neighborhoods of vertices that reside in good nodes. But before
explaining how this is done, we note that the number of vertices that reside in internal nodes
belonging to the subtree rooted in node α is only a constant factor larger than the number of
vertices that reside in the leaves of this subtree. On the other hand, considering the set of bad
nodes that have good parents, we note that ρ equals the fraction of vertices that reside in leaves of
the subtrees rooted at these bad nodes.

Consider an arbitrary bad node, denoted ασ, that has a good parent, denoted α. Then, the
`-neighborhoods of the vertices residing in node α satisfy the local condition (in the subgraph Gf).
We claim that the `-neighborhoods of vertices in Gασ can be modified so that they satisfy the
local conditions as well without modifying the `-neighborhoods of any vertex that resides in a good
node. To verify this claim observe the intersection of the `-neighborhoods of vertices in Gασ and
the `-neighborhoods of vertices that reside in good nodes is contained in the intersection of the
`-neighborhoods of vertices in Gασ and the `-neighborhoods of vertices that reside either in node α
or in one of its ancestors. The reasoning is that if vertex v in Gασ is adjacent in G to a vertex u,
then either u is in Gασ or u is in Sα′ such that α′ is a (not necessarily proper) prefix of α.

18

Recall that by Item 3 of the procedure (based on which the notion of good node is defined) the
fact that node α is good, implies that the `-neighborhoods of vertices in Gασ can be modified to
satisfy Π′ in a manner that is consistent with the `-neighborhoods of all vertices that reside in node
α and its ancestors, and so with the `-neighborhoods of all vertices that reside in good nodes. It
follows that by modifying f on Gασ, while maintaining the `-neighborhoods of vertices in Sα (as
well as Sα′ for each α′ that is an ancestor of α) intact, we can “fix” the `-local neighborhood of all
vertices in Gασ.

The foregoing process modifies f into a function that describes a subgraph of G that is in Π,
while modifying O(ρ · d · n) = O(ρ · d · |E|) edges. The theorem follows.

3 Testing in the subgraph model may not be easier than in the
BDG model

As observed in Theorem 1.2, testing downward-monotone graph properties in the subgraph model
(w.r.t. any bounded-degree base graph) can be reduced to testing the same property in the BDG
model. Here we show that there exist base graphs for which the result obtained by the reduction
cannot be significantly improved. Specifically, we prove Theorem 1.4, which refers to the complexity
of testing c-colorability (of n-vertex graphs) in the subgraph model, for c = 2 and c = 3.

The case of c = 2 is proved in Section 3.1, and the case of c = 3 is proved in Section 3.2.
The proof presented in Section 3.1 is far more complex than the one in Section 3.2. The results
proved are incomparable: The lower bound presented in Section 3.1 (for the case of c = 2) refers
to a testing problem of intermediate complexity (i.e., Θ̃(

√
n)) in the bounded-degree model, and

it refers to an explicit base graph, but only to proximity parameter value of 1/poly(log n)). In
contrast, the lower bound presented in Section 3.2 (for the case of c = 3) refers to a testing problem
of extreme complexity (i.e., Ω(n)) in the bounded-degree model, and it refers to a constant value
of the proximity parameter, but to a non-explicit base graph.

3.1 Testing bipartiteness

In this section we prove Part 1 of Theorem 1.4, which is restated next.

Theorem 3.1 (testing bipartiteness in the subgraph model): There exist explicit graphs G =
([n], E) of constant degree such that testing with proximity parameter 1/poly(log n) whether a sub-
graph of G is bipartite requires Ω̃(

√
n) queries.

Recalling that testing bipartiteness of n-vertex graphs in the BDG model with distance parameter
ε can be done in poly(1/ε) ·Õ(

√
n)-time [GR99], it follows that the bipartite tester for the subgraph

model obtained by invoking Theorem 1.2 is the best possible (for the case that the proximity
parameter equals 1/poly(log n)).

We establish Theorem 3.1 in several stages, as detailed in the following subsections. For the
ease of readability, some of the stages present simpler, preliminary constructions and arguments,
which are then corrected/refined in later stages.

The underlying strategy is to reduce the problem of testing bipartiteness in the bounded-degree
model to testing the same property in the subgraph model, and to apply the lower bound established
in [GR02]. Due to some technical difficulties, it is simpler to emulate, in the subgraph model, the

19

lower bound of [GR02] (or rather of [KKR04]), which refers to testing bipartiteness in the bounded-
degree model. The key idea is to embed an arbitrary bounded-degree graph as a subgraph of a
routing network such that edges of the original graph are represented by vertex-disjoint paths in
the routing network.

3.1.1 A lower bound construction for testing generalized 2-colorability

We start by recalling the lower bound of [GR02, KKR04]; actually, we shall present a small variation
on the original argument. Specifically, we consider a generalized notion of 2-colorability, where the
edges of the graph are labeled by 6= and =, and the 2-coloring has to satisfy the corresponding
constraint. That is, if the edge is labeled 6= (resp., =), then its endpoints should be assigned opposite
(resp., equal) colors. An algorithm for testing this property (of edge-labeled graphs), receives the
label of each queried edge (in addition to the unknown endpoint). (We mention that testing this
generalized property can be locally reduced to testing bipartiteness by replacing =-labeled edges
with paths of length two; hence, the testing problem is no harder than testing bipartiteness.) From
this point on we refer to this generalized notion of 2-colorability simply as 2-colorability.

We consider two distributions over d-regular n-vertex graphs with such labeling, where we may
use any constant d ≥ 3. In both distributions a graph is selected by combining d random perfect
matchings (while allowing parallel edges). The two distributions differ by the edge labels.

1. In the first distribution the edge labels are selected uniformly at random.

2. In the second distribution the edge labels are determined by selecting a random 2-partitioning
of the n vertices and setting the edge-labels so that this 2-partition is a valid 2-coloring; that
is, if both endpoints are assigned to the same part (resp., to different parts), then the edge is
labeled = (resp., 6=).

By the definition of the second distribution, its support consists of edge-labeled graphs that are
all 2-colorable. The arguments in [GR02, KKR04] can be readily adapted to show that, with
overwhelmingly high probability, the edge-labeled graphs of the first distribution are Ω(1)-far from
being 2-colorable, Furthermore, similarly to what is shown in [GR02, KKR04], an algorithm that
makes q queries to a graph drawn from one of the two distributions can distinguish between the two
cases with probability O(q2/n). The reasoning is that the answers to these queries are identically
distributed as long as no cycle is observed (and the latter event occurs with probability O(q2/n)).

3.1.2 The subgraph-model construction: using a routing network

Turning to the emulation in the subgraph model, we first describe the base graph G that we use.
To be precise, we present an initial construction that will later be refined. Let g : [n]× [d]→ [n] be
the incidence function of the graph that we wish to emulate (i.e., a graph drawn according to the
foregoing distribution over graphs) and let L : [n] × [d] → {6=,=} denote the labeling of its edges
(i.e., as chosen according to one of the foregoing distributions over edge labels). Actually, it will be
more convenient to use {1, 2} instead of {6=,=}, where 1 corresponds to 6=; this allows treating an
edge labeled σ ∈ {1, 2} as a σ-long path. We assume, w.l.o.g., that g(g(v, i), i) = v; that is, we use
the ith “port” of each vertex for connecting the edge of the ith matching (i.e., if an edge between
v and u is selected in the ith random matching (for i ∈ [d]), then the edge connects port i of v to
port i of u (such that g(v, i) = u and g(u, i) = v)).

20

The base graph. The base graph G that we use is related to a Benes̆ routing network [Ben65]
with n · d sources and n · d sinks. The main idea is to represent the n · d edges of g by paths in
such a routing network. The network supports “randomized oblivious routing” (see below) from
the first layer (of sources) to the last layer (of sinks). In addition, there is a special “zero layer”
of size n, corresponding to the vertices of G. The vertices in this layer are connected both to the
first layer of the routing network and to the last layer (so as to allow edges in the emulated graph
to correspond to paths in the routing network). Details follow.

Let ` = dlog2(nd)e, and consider a fixed injective mapping bin from [n] × [d] to {0, 1}`. The
network, denoted R`, has 2` + 1 layers. For each layer j ∈ [2` + 1], and α ∈ {0, 1}`, there is an
associated vertex (j, α) (belonging to layer j). The edges between the layers are defined as follows.
For each j ∈ [2`] and α ∈ {0, 1}`, there is an edge between (j, α) and (j + 1, α). In addition,
for j ∈ [`] there is also an edge between (j, α) and (j + 1, α ⊕ ej) where ej = 0j−110`−j , and for
j ∈ [` + 1, 2`] there is an edge between (j, α) and (j + 1, α ⊕ e′j), where e′j = 0j−`−1102`−j . These
edges are called routing edges.

In addition, the base graph G has a zero layer, which consists of n vertices. Each vertex v ∈ [n]
in this layer is connected to d distinct vertices in layer 1, and to d distinct vertices in layer 2`+ 1.
Specifically, each v ∈ [n] in the zero layer is connected by paths of length two (with distinct
intermediate vertices) to the vertices (1, bin(v, 1)), . . . , (1, bin(v, d)) in layer 1, and is connected
by edge-label gadgets to the vertices (2`+ 1, bin(v, 1)), . . . , (2`+ 1, bin(v, d)) in layer 2`+ 1. Each
edge-label gadget consists of a direct edge and a path of length two. For an illustration of the
construction – see Figure 3.

In what follows, we shall use the shorthand 2-path for a length-2 path. We stress that all the
2-paths, both for connecting layer zero to layer 1 and for connecting layer 2`+ 1 to layer zero, use
distinct intermediate vertices.

Randomized routing. For each v ∈ [n] and i ∈ [d], we shall route (1, bin(v, i)) to (2` +
1, bin(g(v, i), i)), by selecting r ∈ {0, 1}` uniformly at random, and using the unique path that
leads from (1, bin(v, i)) to (` + 1, r) and from (` + 1, r) to (2` + 1, bin(g(v, i), i)). This path
is defined as follows. For j ∈ [`] (resp., j ∈ [` + 1, 2`]) in the jth step, if the current vertex
in the path is (j, α), then we take the edge to (j + 1, α′), where α′ = α ⊕ 0j−1rj0

`−j (resp.,
α′ = α ⊕ 0`−j−1rj0

2`−j). Hence, the edge {v, g(v, i)} is mapped to a 2`-long path that leads from
(1, bin(v, i)) to (2`+ 1, bin(g(v, i), i)) (via (`+ 1, r)), called a routing path.

We augment this routing path by a 2-path leading from vertex v in the zero layer to (1, bin(v, i))
and by the adequate part of the edge-label gadget that connects (2` + 1, bin(g(v, i), i)) to g(v, i);
that is, if L(v, i) = 1, then we use the corresponding edge, and otherwise we use the 2-path, which
means that we always use an L(v, i)-long path. Combining the routing path with these edges, we
obtain a (2+2`+L(v, i))-long path from v to g(v, i) (both residing in layer 0), called an augmented
routing path. For an illustration of such an augmented routing path, see Figure 3.

Now, suppose that we select such a random routing path for each (v, i) ∈ [n]× [d], and condition
on the event that these routing paths are vertex-disjoint (which is highly unlikely to be the case).14

Relying on the vertex-disjointness of the routing-paths, it follows that if (g, L) is 2-colorable, then
the subgraph that consists of all the augmented routing paths is bipartite. This relies on the
fact that a legal 2-coloring of an augmented routing path from v to g(v, i), which has length
2 + 2`+L(v, i), assigns these two vertices colors that satisfy the (generalized) 2-coloring condition.

14We shall deal with the collisions later on, while capitalizing on the fact that their number can be bounded.

21

Figure 3: The routing network for ` = 4 and its augmentation for n = 5 and d = 3 (i.e., g :
[5]× [3]→ [5]). The zero layer is drawn twice, once on the left and once on the right. The vertices
in this later are connected by 2-paths to vertices in layer one, and by edge-label gadgets (a direct
edge and a 2-path) to layer 2` + 1 = 9. The wide dashed line depicts an augmented routing-path
from vertex 2 to vertex 4 = g(2, 3).

On the other hand, if (g, L) is not 2-colorable, then the subgraph consisting of all the augmented
routing paths is not bipartite. Furthermore, relying on the edge-disjointness of the routing paths,
any 2-coloring of the (vertices of the) latter subgraph that has t monochromatic edges, yields a
2-coloring of g with at most t violating edges (i.e., edges that violate the constraints of L). This
is the case because a legal 2-coloring of the augmented routing path from v to g(v, i), which has
length 2 + 2`+ L(v, i), yields a legal 2-coloring of the edge {v, g(v, i)} with respect to L.

3.1.3 Refining the construction and removing the congestion

The problem with the foregoing description is that the randomized routing (suggested by Valiant [Val82,
VB81]) is unlikely to be congestion-free; that is, the random routing paths are unlikely to be vertex-
disjoint (as long as intermediate layers have o(n2) vertices). Nevertheless, with very high probability
(e.g., with probability at least 1− 2−10`), randomized routing has congestion O(`), where the con-
gestion is the maximum number of routing-paths that use a single routing-vertex.

To get rid of this congestion, we replace each vertex of the routing network R` by a cloud
(independent set) of `′ = Ω(`) vertices; we shall set `′ = poly(`), where `′ is a power of 2, in order
to facilitate the analysis. (We stress that we replace the vertices at layers 1, . . . , 2` + 1, but the
vertices of layer zero remain intact.)15

It would have been simplest to replace each routing-edge of the network R` by a complete
bipartite graphs between the corresponding clouds (of size `′ each), but we aim at having a constant-
degree graph. Hence, we connect each pair of clouds by a routing network of size quadratic in `′

15In an alternative construction, the vertices of layer 1 and layer 2` + 1 also remain intact (and only the vertices
of layers 2 through 2` are replaced by clouds of size `′ (as above)).

22

1 1

2

3

4 4

3

2

Figure 4: The quadratic routing network for `′ = 4. The wide line depicts a routing-path from
source 2 (on the left) to sink 3 (on the right).

such that this (sub-)network supports deterministic oblivious routing between any `′ sources and
`′ sinks. Specifically, we construct such a network by using 2`′ balanced binary trees, each with
`′ leaves. We use a tree rooted at each source, and a tree rooted at each sink such that the trees
are disjoint except that, for every source i ∈ [`′] and sink j ∈ [`′], the jth leaf of the former tree is
identified with the ith leaf of the latter tree. For an illustration, see Figure 4.

The vertices of the zero layer of the base graph remain intact, and we connect them to each
of the d corresponding clouds in the first and last layer by using balanced binary trees as above.
Specifically, when connecting vertex v ∈ [n] in the zero layer to the cloud that replaces (1, bin(v, i))
(for i ∈ [d]), we use a binary tree rooted at v whose leaves are the vertices in the cloud corresponding
to (1, bin(v, i)). Likewise, when connecting the cloud (2`+1, bin(u, i)) to vertex u in the zero layer
we use a binary tree with leaves in (2` + 1, bin(u, i)), and connect the root of this tree to u by
the edge-label gadget described above. (We stress that the latter binary tree is not rooted at u
but rather at a distinct auxiliary vertex, and that this auxiliary vertex is connected to u by an
edge-label gadget, which consist of a direct edge and a two-edge path running in parallel to it.)16

This results in our final base graph, denoted G.
Note that G has O(` · n · (`′)2) = Õ(n) vertices, since the routing network has 2` · n · 2 routing

edges and each routing edge is replace by a small routing (sub-)network having O((`′)2) vertices.
Each vertex in G has degree O(d), where vertices of layer zero have degree d · 2 + d · 2 and all other
vertices have degree at most 4.

A central observation is that any routing with congestion at most `′ (on R`) can be mapped
to a set of vertex-disjoint paths in G. Actually, the mapping can be selected at random (but not
obliviously). Specifically, given a routing on R`, we assign to the different routing-paths that pass
through each vertex in R`, distinct vertices in the corresponding cloud. The specific assignments
are selected at random (i.e., uniformly conditioned on distinctness).17 Hence, the routing-paths are

16Hence, letting h = log2 `
′, the total length of the (shortest) path from v to the auxiliary vertex connected to

g(v, i) by an edge-label gadget is h+ 2` · 2h+ h.
17Indeed, the routing on G is not oblivious, since the vertices used in each cloud are selected in a dependent manner.

23

assigned disjoint sequences of vertices (in the various clouds), and the actual paths in the graph G
are uniquely defined by using the corresponding paths on the corresponding trees.

3.1.4 A precise definition of the distribution over subgraphs

Let us spell out the distribution over subgraphs (of the base graph G) that is associated with the
graph represented by g and L. First, we select a random routing of the edges of g (i.e., routing
(1, bin(v, i)) to (2`+ 1, bin(g(v, i), i)) for each (v, i) ∈ [n]× [d]), obtaining n · d ≤ 2` routing-paths
that go from the first layer to the last layer. We assume that this set of routing-paths has congestion
at most `′ (otherwise the process is aborted). Next, we select a random sequence of vertices for
each of these routing-paths such that a single vertex is chosen in each cloud of each routing-path
and each vertex is chosen for at most one routing-path.

Specifically, let h = dlog2 `
′e denote the height of the binary trees connecting the clouds. For

a routing-path (1, α(1)), . . . , (2`+ 1, α(2`+1)), a selection of vertices (w(1), . . . , w(2`+1)) in the corre-
sponding clouds yields a path of length 2` · 2h. This path consists of the unique paths through the
corresponding pairs of binary trees that connect w(i) to w(i+1), for every i ∈ [2`]. This defines a set
of n ·d vertex-disjoint paths from the first layer to the last layer such that, for every (v, i) ∈ [n]× [d],
a distinct vertex of the cloud (1, bin(v, i)) is connected by a concatenation of paths (through binary
trees) to a distinct vertex of the cloud (2` + 1, bin(g(v, i), i)). We call these paths actual routing
paths.

Next, we augment these paths by using the relevant edges that connect them to the zero layer.
Specifically, for every (v, i) ∈ [n] × [d], we pick the tree-path connecting v (in layer zero) to the
vertex in layer 1 that is used to route (v, i), and the tree-path connecting the relevant vertex in
layer 2`+1 to the vertex g(v, i) in the zero layer. In the latter tree-path (or rather when moving from
the root of this tree to g(v, i)), we pick the adequate part of the corresponding edge-label gadget;
that is, we pick the L(v, i)-path of this gadget. We call these edges the L-selected gadget edges, and
refer to the path going from v to g(v, i) (via a vertex of cloud (1, bin(v, i)) and a vertex of cloud
(2`+1, bin(g(v, i), i))) as a full routing path. That is, a full routing path consists of an actual routing
path between clouds 1 and 2`+ 1 and paths that connect its endpoint to corresponding vertices in
layer zero. The random subgraph contains a collection of full routing paths that corresponds to the
randomized routing of g, where these paths are vertex-disjoint except for their endpoints (which
are all at layer zero).

Distance from being bipartite. Note that if the graph defined by g is 2-colorable (in a gen-
eralized sense) with respect to the labeling L, then the subgraph defined by the foregoing full
routing paths is bipartite. This is the case since the foregoing paths are vertex-disjoint (except
for their endpoints which are in layer zero), and the full routing path from v to g(v, i) has length
h + 4` · h + h + L(v, i) = (4` + 2) · h + L(v, i), Recalling that the edge {v, g(v, i)} satisfies the
corresponding L-constraint (i.e., v and g(v, i) are assigned the same color if and only if L(v, i) = 2),
we can use the generalized 2-coloring of g to obtain a 2-coloring of our subgraph. On the other
hand, if g is ε-far from being 2-colorable with respect to L in the bounded-degree model, then the
latter subgraph is (ε/poly(`))-far from being bipartite. This relies on the foregoing observation
by which the number of L-violating edges in a 2-coloring of g is upper-bounded by the number

However, the various routing-paths in R` are independent of one another. Ditto for the choices of the vertex-sets
used for routing in the different clouds. These facts will be used in our analysis.

24

of monochromatic edges in the best 2-coloring of the subgraph of G that corresponds to g and L,
while recalling that the number of edges in G is poly(`) times larger than in g.

The final distributions. So far we have described the distribution of subgraphs associated
with each instance (g, L) of the 2-coloring problem. Combining this distribution with the two
distributions defined in Section 3.1.1, we obtain two distributions of subgraphs that differ only in
the distribution of edges chosen in the edge-label gadgets. Note that the subgraphs of the second
distribution are bipartite, whereas (with overwhelmingly high probability) the subgraphs of the
first distribution are (1/poly(`))-far from being bipartite.

3.1.5 A process for answering queries according to the distribution on subgraphs

Our goal is to show that any algorithm that makes less than
√
n/c queries (for a sufficiently large

constant c) to a random subgraph selected from one of the two distributions cannot distinguish (with
sufficiently high constant probability) between the case that the subgraph is drawn from the first
distribution and the case that it is drawn from the second distribution. Following [GR02, KKR04],
we observe that as long as the algorithm observes no cycle in the subgraph, the two distributions
look identical, since the subgraphs differ only in the part of the edge-label gadgets used and these
parts reveal no information about the identity of the distribution used unless a cycle is formed.18

Hence, we will focus on upper-bounding the probability that such a cycle is observed.
Intuitively, a cycle in the subgraph corresponds to a sequence of full routing-paths, which in turn

correspond to edges of the underlying graph defined by g (i.e., the graph consisting of d random
perfect matching).19 Our plan is to construct, on-the-fly and in response to queries of the algorithm,
a random subgraph (according to each of the two distributions) and show that Ω(

√
n) queries are

required in order to observe a cycle in this subgraph. A first attempt proceeds as follows.
We start by selecting upfront a single vertex in each cloud of layer 1 and of layer 2` + 1, and

connecting them to the corresponding vertex of the zero layer, while revealing all corresponding
tree-paths (not including the choices for the part of the edge-label gadgets in use). Hence, we
may assume that the algorithm never queries these tree-paths (which do not include the edge-label
gadgets). Queries to edges of the edge-label gadgets are handled by selecting uniformly at random
which part of the queried gadget to use, and answering accordingly. (Recall that as long as no cycle
is seen, this choice is consistent with both distributions.) Hence, our focus is on the queries of the
algorithm that refer to edges in the trees that correspond to routing-edges.

Consider such a generic query to an edge e in some tree that corresponds to a routing-edge,
denoted {(j, α), (j + 1, α′)}, where j ∈ [2`]. If we have already determined whether or not e is in
the subgraph, then we answer accordingly. Otherwise, we proceed as follows, where we assume that
j ∈ [`], while treating the case of j ∈ [`+ 1, 2`] analogously (as detailed later).

1. Conditioned on the random choices made so far, we decide at random whether or not e is
in the emulated subgraph. We stress that, here and in the sequel, such conditional random
choices refer to the marginal distribution of the choice in question.

18In this case, determining the selected edge-label gadgets according to a random 2-coloring yields the same
distribution as determining these edge-label gadgets uniformly at random.

19Indeed, a cycle in the subgraph yields a cycle in the underlying graph defined by g, but the converse does not
necessarily hold since the corresponding edge-gadget were not necessarily queried.

25

2. We answer the query according to the value determined in Step 1, and continues to the
following steps if and only if the answer is 1 (i.e., the edge e is in the subgraph).

3. Conditioned on the random choices made so far, we select at random a routing-path that uses
the routing-edge {(j, α), (j + 1, α′)}. This is done as follows.

(a) We select at random an unused cloud in layer 1 (equiv., a pair (v, i) ∈ [n] × [d] such
that the value of g at (v, i) is still undetermined) and a random (not necessarily unused)
cloud in layer `+ 1, denoted (`+ 1, r), such that the routing-path from (1, bin(v, i)) to
(`+ 1, r) passes through the routing-edge {(j, α), (j + 1, α′)}.

(b) We select at random a vertex u ∈ [n] such that the value of g at (u, i) is still undeter-
mined, and set g(v, i) = u and g(u, i) = v.

The selected routing-path is the unique routing-path that goes from (1, bin(v, i)) to (2` +
1, bin(u, i)), while passing through (`+ 1, r).

4. Conditioned on the random choices made so far, we select a random path of actual edges (in
G) that is consistent with the selected routing-path and uses the edge e. That is, we select, for
each cloud on the routing-path, a random vertex that was not used by previous routing-paths
such that the path determined by the choice for the jth and j+ 1st clouds passes through the
edge e. Specifically:

(a) For every p ∈ [2, 2`] \ {j, j + 1}, we select w(p) uniformly among all unused vertices that
reside in the pth cloud determined in Step 3.

(b) We set w(j) in the jth cloud and w(j+1) in the j + 1st cloud such that the edge e resides
on the unique 2h-long path that leads from w(j) to w(j+1); that is, if e is on the path
that leads to the τ th leaf of the σth tree, then we use the σth vertex in the jth cloud
and the τ th vertex in the j + 1st cloud. (Note that in case j = 1, the choice of w(j) is
consistent with the choice of vertices for the clouds of layer 1 (i.e., by the very fact that
we reached the current step).)

The choice of these vertices determines an actual path from layer 1 to layer 2`+ 1, and this
path avoids the vertices used in prior paths.

Although the random choices made in Steps 3 and 4 are not revealed to the actual algorithm, we
consider them as if they were revealed since we condition on them later. (Indeed, the reader may
consider the case that the actual paths that correspond to the selected routing-path are revealed to
the algorithm for free.) The case of j ∈ [` + 1, 2`] is handled analogously, where the routing-path
is selected by first selecting a path between the middle layer and the last layer, and determining a
cloud in the first layer later.

Consider the process of responding to the first query, which is an edge that corresponds to a
routing-edge between two neighboring clouds. Observe that a positive answer to this query results
in selecting uniformly a routing-path that goes through this routing-edge. It is tempting to think
that an analogous statement holds also with respect to subsequent queries, except that routing-
paths that connect used endpoints (in layers 1 and 2` + 1) are now avoided. Unfortunately, this
is not accurate, since the fact that a routing-edge was used by previous routing-paths conditions
its use in subsequent routing-paths (because the number of routing-paths that go through a cloud

26

is bounded). Likewise and actually more acutely, negative answers to previous queries (i.e., de-
termining that certain edges are not in the subgraph) also conditions the subsequent choices of
routing-paths. At the extreme, if the algorithm queries all edges that correspond to a specific
routing-edge, then this routing-edge cannot be used by any subsequent routing-path (regardless of
the answers provided). Lastly, the foregoing conditioning of the choice of the routing-paths does
condition the choice of the (“routed”) edges of g. Consequently, wishing to treat the edges of g as
if they are selected uniformly requires bounding the effect of the aforementioned conditioning.

3.1.6 Revising the process for answering queries

In light of the above, we revise the process of constructing the subgraph on-the-fly. The key
observation is that determining the use of an actual edge (both in case it is not in the subgraph and
in case it is used for some determined routing-path) eliminates its a priori potential use by other
routing-paths. Specifically, the determining of an edge that corresponds to a routing-edge from
layer j ∈ [`] to layer j + 1 restricts each of the 2`−j clouds of the middle layer that could have used
it for routing to any of 2j−1 clouds of the first layer. (Ditto for j ∈ [` + 1, 2`] and restrictions on
clouds of the last layer.) This restriction becomes significant if many actual edges that correspond
to the same routing-edge were determined, but the restriction is not so significant otherwise (i.e.,
when only few edges that correspond to this routing-edge were determined).

Fixing a threshold t = Θ(`3), we say that a routing-edge is problematic if more than t of its
actual edges were determined. Note that actual edges are determined not only when they are
queried explicitly but also when they are chosen for a routing-path (see Step 4 in Section 3.1.5).
Hence, each query may increase the number of determined edges by Õ(`) units (since each of the
2` routing-edge uses 2 log2 `

′ = O(log `) actual edges for the actual routing of a path through the
two corresponding binary trees).

Each problematic edge contributes 2`−1 restrictions, which correspond to the 2`−1 possible
routing-paths that go through this routing-edge in the half of R` to which it belongs. These
restrictions are “charged” to the middle layer so that each cloud in that layer is charged with
all routing-paths that reach it after passing through a problematic routing-edge. Specifically, a
problematic edge from layer j ∈ [`] to layer j + 1 contributes 2j−1 restrictions to each of the 2`−j

clouds of the middle layer that have a routing-path that passes through this routing-edge; these
2j−1 restrictions correspond to the clouds in the first layer that are reachable via such routing-paths.
Analogous restrictions arise from problematic edges in the second part of R` (i.e., connecting layer
j and layer j + 1 for j ∈ [` + 1, 2`]). Hence, the sum of restrictions that apply to a cloud in the
middle layer is due to both the first and the last layers. Next, we define the restriction level of a
cloud in the middle layer as the sum of all restrictions it accumulates from problematic edges, and
consider such a level to be high if it exceeds η · 2`, where η > 0 is a sufficiently small constant (e.g.,
η = 0.001).

We augment the process of constructing the subgraph on-the-fly (described in Section 3.1.5) so
that, after answering each query, we determine routing-paths for all clouds that reached a high
restriction level. Specifically, conditioned on the random choices made so far, for each cloud that
reached a high level, we determine the number of routing-paths that go through this cloud, the
routing-paths themselves, and the actual paths (as in Step 4) that correspond to them. (Effectively,
this determines also all the edges of the tree that correspond to the routing-edges incident to this
cloud.)

We stress that we treat the clouds that reach a high restriction level iteratively, and that this

27

treatment may cause additional clouds to reach a high restriction level. The number of clouds
that may reach a high level due to the response to a single query may be very large (and we
upper-bound it in Section 3.1.7). Yet, with overwhelmingly high probability, throughout the entire
iterative process (of answering a query), the number of actual edges that are determined in each
routing-edge that is not incident to a cloud that reaches a high level is O(`). This is the case
because, with overwhelmingly high probability, the number of routing-paths that pass through any
routing edge is O(`). It follows that routing-edges that became problematic during the interactive
process are not “really problematic” since the number of actual edges determined in each of them
only exceeds the threshold t = Θ(`3) by O(`). The same holds for the routing-edges that became
problematic due to the last query; actually, the number of actual edges that are determined in each
of these problematic routing-edges is exactly t + 1 (since the move from a non-problematic state
to problematic state is due to a single path). Consequently, when we select a random routing-
path, at least one of its endpoints (i.e., the endpoint that is on the side opposite to the currently
handled cloud) is almost uniformly distributed in [n] (just as would be the case if there would be
no restrictions at all). This is the case because (as shown next) the number of clouds that reach
a high restriction level is smaller that the number of queries, and since routing-edges that are not
really problematic behave almost as if none of their actual edges was determined. Details follow.

3.1.7 Completing the lower bound

Turning to the analysis of the revised construction, we first note that when answering q queries we
directly determined q ·Õ(`) actual edges, but in addition we might have determined additional edges
due to the selection of routing-paths for clouds that exceeded the restriction level of η · 2`, where
each such cloud may determine O(`) routing-paths (which determine Õ(`) edges each). Denoting
the set of clouds that reached a high level by X, we claim that

|X| < q · Õ(`) + |X| · Õ(`2)

t
· 2`−1

η2`
. (1)

The first factor represents an upper bound on the number of problematic routing-edges (to be
established next), 2`−1 upper-bounds the number of restrictions introduced by each problematic
edge, and η · 2` lower-bounds the restriction level that causes a cloud to be included in X. As for
the justification of the upper bound on the number of problematic routing-edges, the numerator
accounts for the Õ(`) edges that are determined directly by each query as well as the number of
edges determined by handling clouds in X. (Recall that the latter handling amounts to determining
O(`) routing-paths, and each determines Õ(`) actual edges.) Indeed, the edges that are determined
not to be in the subgraph when dealing with a cloud of high restriction level are not counted,
since the corresponding cloud was already counted in X. Turning back to Equation (1) and using
t� Õ(`2)/η, we get |X| � q.

We now turn to the analysis of the distribution of routing-paths used when answering individual
queries and handling the clouds that reach a high restriction level. Note that the number of such
routing-paths is at most q+|X|·O(`), since each query yields at most a single routing-path, whereas
a cloud that reaches a high level yields O(`) routing-paths. Hence, at most q + |X| · O(`) clouds
in the first (resp., last) layer are ruled out (by previous routing-paths), and the other clouds have
almost all their routing-paths intact. This is the case because a cloud (in the middle layer) that has
restriction level below η · 2` can reach at least 1− η fraction of the first (and last) layer clouds by
routing-paths that have no problematic routing-edges. (Recall that clouds (in the middle level) that

28

reach a high level during the process of answering a single query may have additional problematic
routing-edges, but these edges are not really problematic towards the analysis that follows.) Hence,
conditioned on the choice of the first endpoint (for the routing-path), the second endpoint is selected

with probability that is (η′ + (1− η′)η′′)-close to uniform, where η′ = q+|X|·O(`)
n + η represents the

fraction of discarded clouds, and η′′ = 1−
(

1− t+O(`)
`′

)`
represents the deviation caused by routing-

edges that are not really problematic (i.e., have less than t+O(`) determined edges). Lastly, observe
that η′ = o(1) + η and η′′ = 1− (1− o(1/`))` = o(1).

To summarize, we answers q queries by revealing to the querying algorithm at most q+|X|·(`) =
O(q`) routing-paths, where each route reveals an edge of the underlying random graph g. Each
revealed edge is determined by first determining a cloud in the middle layer, and then determining
a random cloud in the last layer (assuming that the edge in the first half of R`; otherwise a random
cloud in the first layer is revealed). As shown above, the random choice of the latter cloud is almost
uniform, which means that the corresponding value of g is selected almost uniformly. It follows
that, when answering q queries, a cycle is formed with probability O(q2/n). This completes the
proof of Theorem 3.1.

3.1.8 An open problem

Recalling that Theorem 3.1 only lower-bounds the query complexity of testing whether a subgraph
is bipartite in the case that the proximity parameter is the reciprocal of a polylogarithmic function
(in the size of the base graph). We believe that the same lower bound holds also for constant values
of the proximity parameter, but the current strategy used in proving Theorem 3.1 fails to prove it.
For starters, we propose the following challenge.

Problem 3.2 (more on testing bipartiteness in the subgraph model): Prove that there exist explicit
graphs G = ([n], E) of constant degree such that testing, with proximity parameter O(1), whether
a subgraph of G is bipartite requires nΩ(1) queries.

3.2 Testing 3-Colorability

In this section we prove Part 2 of Theorem 1.4, which is restated next.

Theorem 3.3 (testing 3-Colorability in the subgraph model): There exist graphs G = ([n], E) of
constant degree such that testing whether a subgraph of G is 3-colorable for a constant ε requires
Ω(n) queries.

Theorem 3.3 is proved by observing that the proof of Bogdanov, Obata, and Trevisan [BOT02] as-
serting that, in the bounded-degree graph model, testing 3-coloring requires linear query complexity
can be extended to the subgraph model.20 This assertion is based on two main observations.

1. The first observation is that, while [BOT02, Thm. 14] asserts a local gap-preserving reduction
from 3SAT to 3-Colorability (for bounded degree graphs), the reduction is actually from a set
of 3CNF formulae that have the same clause-structure (i.e., which variables appear in each of

20This replaces a flawed argument, presented in a preliminary version of this work, that supposedly showed a local
reduction from the problem of testing whether an input assignment satisfies a fixed 3CNF formula, for which a linear
query complexity lower bound was established by Ben-Sasson, Harsha, and Raskhodnikova [BSHR05].

29

the clauses) and only differ in the negation-pattern (i.e., which literal of each variable is used
in each of the foregoing occurrences),21 whose hardness is established in [BOT02, Sec. 6].

2. The second observation is that, for a fixed clause-structure, the reduction applied in the
proof of [BOT02, Thm. 14] can be adapted to produce subgraphs of the same fixed graph.
Specifically, the negation-pattern of the given 3CNF determines a sequence of binary choices
such that each binary choice determine one edge out of a fixed pair of edges (which is included
in the tested subgraph).

We mention that the reduction used in the proof of [BOT02, Thm. 14] is a variant on a rather
standard approximation-preserving reduction (of Petrank [Pet94]), and we will present yet another
variant of it.

In continuation to the foregoing discussion, we define a massively parameterized problem that
refers to testing the satisfiability of a 3CNF formula that is represented by a negation-pattern to be
applied to a fixed clause-structure. That is, the massive parameter, which is fixed per each length,
is a function of the form f : [m] × [3] → [n], and the input is a negation parameter of the form
p : [m] × [3] → {0, 1} such that the 3CNF formula specified by f and p consists of m clauses such
that for every j ∈ [m] and k ∈ [3] the variable f(j, k) appears unnegated (resp., negated) as the
kth literal of clause j if p(j, k) = 0 (resp., p(j, k) = 1). Following [BOT02], we focus on the case
that m = Θ(n), and furthermore on the case that each variable appears in a constant number of
clauses (i.e., |{(j, k) : f(j, k) = i}| = O(1) for each i ∈ [n]).

Claim 3.3.1 (implicit in [BOT02, Sec. 6]): For some universal constant c the following holds. For
every n ∈ N, there exists a function f : [m]× [3]→ [n] such that

1. For each i ∈ [n], it holds that |{(j, k) ∈ [m]× [3] : f(j, k) = i}| ≤ c.

2. Given query access to p : [m] × [3] → {0, 1}, distinguishing (with success probability 2/3)
between the case that the formula specified by f and p is satisfiable and the case that any
assignment satisfies less that 90% of the clauses, requires Ω(n) queries to p.

For the sake of completeness, we next give the high level idea of the proof of Claim 3.3.1.
The main step is establishing an analogous result for 3LIN, which refers to linear equations over
GF(2) with three variables in each equation and each variable occurring in a constant number of
equations. Here we consider a fixed m-by-n matrix A over GF(2), with three 1-entries per row and a
constant number of 1-entries per each column. For a fixed matrix A, given query access to a vector
b ∈ GF(2)m, the testing question refers to whether Ax = b has a solution. By [BOT02, Lem. 19],
there exist (explicit) matrices A such that distinguishing the case that Ax = b is solvable and the
case that any assignment satisfies at most 51% of the equations requires making Ω(n) queries. As
noted in [BOT02], using the standard gadget reduction of 3LIN to 3SAT, the claim follows.

21The partition of 3SAT instances to clause-structure versus negation-pattern follows the more general framework
of “factor graphs” of CSPs introduced by Feige and Jozeph [FJ12]. Specifically, the factor graph of a CSP instance
determines which variables appear in each of the constraints, and [FJ12] consider fixing such a factor graph for each
input length, where the input itself only determines which predicate (in a fixed family) is applied in each constraint.
In case of 3SAT, the factor graph corresponds to the clause-structure and the actual input only determines the
negation-pattern. We mention that Feige and Jozeph [FJ12] showed that approximating Max3SAT (to within a
certain constant factor), for some fixed factor graphs, is NP-Hard.

30

Specifically, each equation is replaced by four out of the eight possible clauses that refer to the
corresponding variables, where the choice of negation pattern is determined by the corresponding
bit in b (i.e., if the jth equation is xa(j,1) + xa(j,2) + xa(j,3) = bj , where a(j, k) is the kth 1-entry in
row j of A, then we set f(4j + d, j) = a(j, k) for each d ∈ [4] and determine p(4j + d, k) according
to bj only).22 Hence, for a fixed A and varying b, we obtain a fixed clause-structure f and varying
negation-pattern p. Lastly, note that if an assignment violates at least 49% of the equations, then
it does not satisfy at least 0.49/4 > 0.1 of the clauses in the corresponding 3CNF.

Proof of Theorem 3.3: In order to prove the theorem, we take a closer look at the rather standard
approximation-preserving reduction of 3SAT to 3-Colorability, when applied to the problem referred
to in Claim 3.3.1. This reduction is merely a small variant of the standard reduction of 3SAT to
3-Colorability (cf. [Gol08, Prop. 2.27]), which uses gadgets for each clause and each variable. The
point (which is fully formalized below), is that these gadgets are fixed, and only the connections
between them depend on the input 3CNF formula. Furthermore, if the kth literal in clause j contains
an occurrence of variable f(j, k), then the jth clause-gadget is connected to the f(j, k)th variable-
gadget, independently of the value of the negation pattern p. The value of p(j, k) determines only to
which of the two vertices in the variable-gadget we connect the relevant edge (i.e., the kth outgoing
edge of the clause-gadget). Hence, we place all (actually both) possibilities in the base graph (i.e.,
connect to both vertices), and make the actual choice in the subgraph of the base graph. Details
follow.

The base graph Gf and its subgraphs. For a fixed clause-structure f : [m] × [3] → [n], we consider
the base graph Gf that is obtained by a slight variant of the standard reduction of 3SAT to 3-
Colorability, which will contain a subgraph (denoted Gpf) that corresponds to each negation-pattern
p : [m]×[3]→ {0, 1}. We shall then show that if the 3CNF formula specified by f and p is satisfiable,
then Gpf is 3-colorable, whereas if every assignment to this formula fails to satisfy a certain constant

fraction of its clauses, then Gpf is far from being 3-colorable. The base graph Gf consists of a tri-
partite graph G′ with s = max(n,m) vertices on each of the three sides, a gadget per each of the n
variables of the formula, a gadget per each of the m clauses of this formula, and edges connecting
some of these components, as described in detail next.

• We call the three sets in the tri-partite graph G′, ground, true and false, and denote
the vertices in them by {g`}s`=1, {t`}s`=1 and {f`}s`=1, respectively. Each pair of these sets
is connected by a regular bipartite expander graph of constant degree. Specifically, these
bipartite expander graphs satisfy the mixing property with (constant) error ε0 which means
that the fraction of edges that connect any two subsets equals the product of the densities
of these subsets up-to a deviation of ε0. (Namely, if we let ground = V1, true = V2 and
false = V3, then for any two subsets S ⊂ Vk and T ⊂ Vk′ (where k, k′ ∈ [3]), we have that∣∣∣ |E(S,T)|
|E(Vk,Vk′)|

− |S||Vk| ·
|T |
|Vk′ |

∣∣∣ ≤ ε0, where E(X,Y) denotes the set of edges between a pair of subsets

X and Y .) The constant ε0 will be picked to be sufficiently small, and this will mean that
the expander will be poly(1/ε0)-regular. Furthermore, at least half of the edges of Gf reside
in these three expanders.

All subgraphs of Gf that we shall consider contain all the foregoing (expander) edges. This
implies that in any 3-coloring of the vertices of Gpf that has few monochromatic edges, a large

22For example, if bj = 1, then we use the clauses xa(j,1) ∨ xa(j,2) ∨ xa(j,3), ¬xa(j,1) ∨ ¬xa(j,2) ∨ xa(j,3), xa(j,1) ∨
¬xa(j,2) ∨ ¬xa(j,3), and ¬xa(j,1) ∨ xa(j,2) ∨ ¬xa(j,3), and otherwise we use the four remaining clauses.

31

majority of the vertices in each of these three sets will be assigned a distinct color, which may
be thought of as having the name of this set. We note that the reason for introducing these
sets is that the graphs we construct must have a bounded (constant) degree. If we didn’t
have this constraint, then each of these sets could be replaced by a single vertex (with degree
(at most) s).

• The gadget associated with ith variable (i.e., xi) consists of a pair of vertices, associated with
the two literals of this variable (i.e., xi and ¬xi) and an edge that connects these pair of
vertices. We also refer to the corresponding vertices as xi and ¬xi, respectively. In addition,
each of these two vertices is connected to a corresponding vertex in ground; that is, for each
i ∈ [n], both xi and ¬xi are connected to gi.

All subgraphs of Gf that we shall consider contain all the foregoing edges. This implies that
for any legal 3-coloring of Gpf in which gi is colored ground, if xi (resp., ¬xi) is colored true,
then its neighbor ¬xi (resp., xi) is colored false.

• The gadget associated with the jth clause contains six designated vertices such that one of
these vertices, called the head vertex and denoted by hj , is connected by edges to gj and fj .
(Indeed, vertex g` in the ground set is connected to both the `th variable-gadget (if such exists)
and the `th clause-gadget (if such exists).) In addition, the jth clause-gadget is connected by
edges to the six vertices, called its terminals. These vertices belong to the variable-gadgets
that are associated with the literals that may appear in the jth clause (i.e., the two literals
of each of the variables xf(j,1), xf(j,2) and xf(j,3)). Recall that the clause-structure f only
determines the variables that appear in the clause, whereas the actual corresponding literals
are determined by the negation-pattern p.

All subgraphs that we shall consider contain all the edges of the gadget and three of the edges
going to its terminals. Specifically, the subgraph Gpf will contain edges going from the jth

clause-gadget to the three literals indicates by the three pairs (f(j, 1), p(j, 1)), (f(j, 2), p(j, 2))
and (f(j, 3), p(j, 3)). For an illustration, see Figure 5.

The clause-gadget has the following property, when it appears as part of a subgraph Gpf . In

each legal 3-coloring of the vertices of the jth clause-gadget in which hj is colored true, at
least one of the three terminals to which it is connected in Gpf is colored true. This is the case
since, as detailed in the caption of Figure 5, a legal 3-coloring of the gadget in which these
three terminals are colored false forces the head vertex to be colored false. On the other
hand (also as detailed in the caption of Figure 5), for any coloring of these three terminals
in which at least one of them is colored true, there exists a legal 3-coloring of the vertices of
the clause-gadget in which hj is colored true.

Using the fact that each variable in the formula described by f and any p occurs in a constant
number of clauses, it follows that Gf has O(s) = O(n+m) vertices and constant degree.

The local reduction. For a fixed clause-structure f , we spell out the mapping of the negation-pattern
p to a subgraph of the base graph Gf . The subgraph, denoted Gpf , contains all the edges of the
large bipartite expanders as well as all edges of all the gadgets. In addition, it contains both edges
connecting each variable-gadget to the corresponding vertex in ground, and three of the edges
connecting each clause-gadget to its terminals. Specifically, for each j ∈ [m] and k ∈ [3], the
subgraph Gpf contains the edge going from the jth clause-gadget to the literal indicated by the pair
(f(j, k), p(j, k)) (i.e., it is connected to xf(j,k) if p(j, k) = 0, and to ¬xf(j,k) otherwise).

32

1

2

3

a

b

h
j

x

x

x

1

2

3

Figure 5: The clause-gadget and its connections to terminal vertices. The l.h.s depicts a clause-
gadget that is connected to the vertices (terminals) x1,¬x2 and x3 (that belong to the vertex
gadgets of variables 1, 2 and 3, respectively). Note than in Gf there are connections to all six
vertices: x1,¬x1, x2,¬x2, x3,¬x3, and here we depict only the edges in Gpf . The head vertex hj
is indicated, and the gadget itself (together with its terminals) combines two “sub-gadgets” that
share one vertex. The sub-gadget and a generic legal 3-coloring of it are depicted on the r.h.s,
where this generic coloring uses the colors 1, 2, 3 and generic a, b ∈ {1, 2, 3}. Note that if a = b,
then a = b = 1 must hold. This implies that for any legal 3-coloring of the clause-gadget and its
terminals, it holds that if the three terminals of the gadget are assigned the same color, c, then the
head vertex is also assigned the color c. On the other hand, it is always possible to set a = 1 (by
setting b ∈ {2, 3}), and so for every k ∈ [3] there exists a legal 3-coloring of the clause-gadget that
assigns xk the same color as the head vertex.

This mapping is local in the sense that each query to the subgraph Gpf can be answered by
making at most one query to p. Hence, if the mapping is gap-preserving (as shown next), then a
tester for 3-colorability of subgraphs of Gf yields a tester of similar complexity for satisfiability of
formulas that are described by the fixed clause-structure f and the varying negation-patter (which
serves as input). Recall that a mapping is gap-preserving if it maps yes-instances to yes-instance
while mapping “far away” instances to far-away instances. We establish both features next.

Satisfying formula are mapped to 3-colorable subgraphs. Let φ be the formula described by f and p,
and suppose that φ is satisfiable by the assignment τ : [n] → {true, false}. To show that Gpf is
3-colorable, we introduce the following legal 3-coloring.

1. Each vertex in the tri-partite graph is given the color corresponding to its set (i.e., for each
` ∈ [s], the vertex t` is colored true, f` is colored false, and g` is colored ground).

Hence, there are no monochromatic edges between these vertices.

2. For each i ∈ [n], the vertex xi (which belongs to the ith variable-gadget) is colored τ(i) and
the vertex ¬xi is colored ¬τ(i).

Hence, the edge {xi,¬xi} is not monochromatic, and neither are the edges {xi, gi} and
{¬xi, gi}.

3. For each j ∈ [m], the head vertex hj is colored true. Hence, the edges {hj , fj} and {hj , gj} are
not monochromatic. Since the assignment τ is a satisfying assignment, for each clause-gadget
there is at least one terminal vertex that is colored true. Therefore, by the aforementioned

33

property of the clause-gadgets, there exists a 3-coloring of the other gadget vertices that does
not introduce any monochromatic edges.

Formula that are far from being satisfiable are mapped to subgraphs that are far from being 3-colorable.
We say that a formula φ is ε′-far from being satisfiable, if every assignment to the variables of φ
satisfies less than (1− ε′)-of its clauses (otherwise it is ε′-close to being satisfiable). Again, let φ be
the formula described by f and p, and suppose that φ is far from being satisfiable. We shall show
that the subgraph Gpf is far from being 3-colorable, by showing that if Gpf is ε-close to being 3-
colorable, then φ is O(ε+ε0)-close to being satisfiable, where ε0 is the mixing error of the expander.
Suppose that χ : Vf → {ground, true, false} is a 3-partition of the vertices of Gpf that has at most
µ = ε · |Ef | monochromatic edges, where (Vf , Ef) = Gf .

Without loss of generality, assume that the plurality of the χ-values within each set of the
tri-partite graph G′ equals the name of this set. Since at most µ of the edges between the parts of
the tri-partite graph G′ = (V ′, E′) are monochromatic (and |E′| ≥ |Ef |/2), it follows that all but at
most B = 3 · (6ε+ ε0) · |V ′| < 6µ+ ε0 · |Ef | of the vertices in the three set are assigned the plurality
(i.e., majority) color of their set, where the inequality uses |V ′| < |Ef |/3. This is shown by using
the mixing property of the expanders that connect the three parts. Specifically, observe that if one
of these parts contains ε′ · |V ′|/3 vertices that are not assigned the plurality color, then there must
be at least (ε′− ε0) · |E′|/3 ≥ (ε′− ε0) · |Ef |/6 monochromatic edges between these vertices and the
plurality vertices of some other part. Hence, (ε′ − ε0)/6 ≤ ε, which implies ε′ ≤ 6ε+ ε0.

Now consider the vertices {xi}ki=1 and {¬xi}ki=1 of the variable-gadgets. For each i ∈ [n],
if χ(gi) = ground and there are no monochromatic edges among the edges {xi,¬xi}, {xi, gi} and
{negxi, gi} (so that either χ(xi) = true and χ(¬xi) = false or χ(xi) = false and χ(¬xi) = true).
We say in such a case that i is a consistent index. Since at most µ of the edges within and incident
to the variable-gadgets are monochromatic, all but at most B′ = B + µ < 7µ + ε0 · |Ef | of the
indices i ∈ [n] are consistent indices.

Based on the coloring χ we define a truth assignment σ : [n]→ {true, false} as follows. If i is a
consistent index, then σ(i) = χ(xi), and otherwise we set σ(i) (arbitrarily) to true. We claim that σ
violates O(µ) of the clauses of φ. To verify this, suppose that j ∈ [m] is such that (1) χ(gj) = ground

and χ(fj) = false, (2) there are no monochromatic edges incident to the vertices of the jth clause-
gadget, and (3) its terminals correspond to consistent indices. By combining (1) and (2), it holds
that χ(hj) = true, and by the aforementioned property of the clause-gadgets, at least one of the
terminal vertices connected to this clause-gadget must be colored true as well. This implies that
σ satisfies the jth clause in φ.

Letting c denote the constant that upper-bounds the number of occurrences of a variable in the
formula, we upper-bound the number of indices j ∈ [m] for which one of the foregoing requirements
does not hold by B+µ+c ·B′, where the first term is due to χ(gj) 6= ground or χ(fj) 6= false, the
second term is due to monochromatic edges incident to vertices of the clause-gadget, and the third
terms is due to inconsistent indices (since each inconsistent index affects only the clauses in which
the corresponding variable appears). Recalling that B′ = B + µ < 7µ + ε0 · |Ef | and µ = ε · |Ef |,
we get B + µ+ c ·B′ = (c+ 1) ·B′ < (c+ 1) · (7ε+ ε0) · |Ef |), and the claim follows.

Conclusion. Lastly, we show how a tester T for 3-colorability of subgraphs of Gf can be used to
obtain an algorithm (“distinguisher”) D for the following task. Given query access to a negation-
pattern p, the algorithm D distinguishes (with probability at least 2/3) between the case that a
3CNF formula φ described by (the fixed clause-structure) f and p is satisfiable and the case in

34

which it is ε-far from being satisfiable. The distinguisher D invokes T and answers its edge-queries
in the natural manner; that is, all queries are answered 1, except for the queries that correspond to
the edges between the clause-gadgets and their terminals. That is, for edge-queries that correspond
to an edge between the jth clause-gadget and one of its terminals, denoted y, the distinguisher
D queries p, and responds accordingly. More specifically, if y is an unnegated (resp., negated)
form of the kth variable occurring in the clause, then D answers 1 if and only if p(j, k) = 0 (resp.,
p(j, k) = 1). Hence, on input p such that f and p describe a satisfiable formula (resp., a formula that
is ε-far from being satisfiable), D invokes T while providing it with oracle access to a 3-colorable
subgraph of Gf (resp., a subgraph of Gf that is Ω(ε − ε0)-far from being 3-colorable). Recalling
that Claim 3.3.1 applies to ε = 0.1 and letting ε0 = ε/2, Theorem 3.3 follows.

4 Testing in the subgraph model may be harder than in the BDG
model

An indication that testing in the subgraph model may be harder than testing in the BDG model
is given by analogy to the orientation model of Halevy et al. [HLNT12]. Specifically, Fischer
et al. [FLM+12] proved that testing whether the orientation of an k-by-k cyclic grid is Eulerian
(i.e., the indegree of each vertex equals its outdegree, where the digraph is not necessarily connected)
requires Ω(log log k) queries.23 In contrast, in the bounded-degree (directed) graph model, testing
whether a directed graph is Eulerian can be done by sampling Θ(1/ε) vertices and comparing
their in-degree to their out-degree.24 Actually, this analogy can be transformed into a proof of the
following result, which is essentially a restatement of Theorem 1.5

Theorem 4.1 (testing in the subgraph model may be harder than in the BDG model): There
exists a property of graphs Π for which the following holds. On the one hand, Π is testable in
O(1/ε)-time in the bounded-degree graph model. On the other hand, there exist explicit graphs
G = ([n], E) of constant degree such that testing whether a subgraph of G satisfies Π requires
Ω(log logn) queries. Furthermore, the property Π is (upwards) monotone, and the base graph G
has (ε, O(1/ε2))-partitions for every ε > 0.

The hardness result is presented by a reduction that preserves non-adaptivity and one-sided error,
and consequently stronger lower bounds hold for classes of restricted testers for Π in the subgraph
model. Specifically, any non-adaptive tester must make Ω̃(log n) queries, and a lower bound of
Ω(n1/4) queries holds for non-adaptive testers that have one-sided error.

23The cited bound is for two-sided error adaptive testers. The lower bounds for restricted testers are higher. In
fact, Fischer et al. [FLM+12, Sec. 9] proved that that a two-sided (resp., one-sided) error non-adaptive tester must

make Ω̃(log k) (resp., Ω(
√
k)) queries.

24This claim is proved by showing that if the fraction of violating vertices is ρ, then the digraph is O(ρ)-close to
being Eulerian. First observe that if the number of edges in the graph is at most 2d2 (where d is the constant degree
bound), then we can get an Eulerian graph by removing all (constant number of) edges. Otherwise, we can apply the
following iterative process. First, we pick a pair (u, v) such that u has a deficit of in-coming edges and v has a deficit
of out-going edges. Next, we pick a directed edge x → y such that x 6→ u and v 6→ y, and x, y 6∈ {u, v} (where such
an edge must exist given the lower bound on the number of edges). Then, we omit the edge x→ y from the digraph
and insert the edges x→ u and v → y. Note that the number of edges can only increase in each iteration (so that it
is always greater than 2d2) and the total (incoming and outgoing) deficit degreases in each iteration, where initially
it is at most dρn.

35

vu

u v

edge

gadget

Figure 6: The (edge) gadget and the representation of the orientation of the edge {u, v}. The main
vertices are depicted as squares.

4.1 Proving the main claim of Theorem 4.1

We first establish the main claim of the theorem, while using a property Π that is neither monotone
nor downward monotone. The furthermore claim is established in Section 4.2 by considering a
monotone closure of a variant of Π.

We start with establishing the lower bound for the subgraph testing model, by reducing the
testing problem considered in [FLM+12, Sec. 9] to the testing problem considered here. Fischer
et al. [FLM+12] proved that testing whether the orientation of a k-by-k cyclic grid is Eulerian
requires Ω(log log k) queries. We shall replace each edge of this cyclic grid Gk by a gadget consisting
of two parallel paths of length two, each using a distinct auxiliary vertex, and an edge connecting
these two auxiliary vertices (see Figure 6). The resulting graph, denoted G, will serve as our base
graph. Note that G has k2 vertices of degree eight, called its main vertices, and 4k2 (auxiliary)
vertices of degree three. Furthermore, the set of main vertices is an independent set in G. Also
observe that G has (ε, O(1/ε2))-partitions for every ε > 0. In particular, each part corresponds to
a (c/ε)× (c/ε) sub-grid (for a constant c > 1).

Fischer et al. [FLM+12] viewed the orientation of vertical (resp., horizontal) edges in the cyclic
grid as either up or down (resp., right or left). An edge directed up (resp., down) is outgoing
(resp., in-coming) at its lower endpoint and in-coming (resp., outgoing) at its higher endpoint, and
ditto for the horizontal edges. Such an orientation is Eulerian if each vertex has two in-coming
edges and two out-going edges. We represent an orientation of an edge from u to v in the cyclic
grid by assigning the value 1 to all but one of the edges of the corresponding gadget such that the
missing edge is (one of the two edges) incident to u (see Figure 6).

Hence, there is a one-to-two mapping between orientations of Gk and subgraphs of G in which
each (edge) gadget has exactly one missing edge. It is tempting to let Π simply be the subset of
subgraphs of G that are obtained when the orientation of Gk is Eulerian. As we shall see in the
proof of Claim 4.1.1, this definition of Π allows to prove that testing Π in the subgraph model with
base graph G requires Ω(log log n) queries. However, we also need to show that testing Π in the
BDG model can be done by performing O(1/ε) queries. To facilitate this upper bound we define

36

Π differently (in a slightly more cumbersome way) so that it includes a larger subset of graphs.
However, this definition still satisfies that the subgraphs of G in Π ∩ FG are exactly those that
correspond to Eulerian orientations of Gk.

The basic observation is that each Eulerian orientation of Gk corresponds to a subgraph of G
in which each main vertex has degree six (since the corresponding vertex in Gk has indegree two
and outdegree two), and in each connected pair of auxiliary vertices, one of them has degree two
and one has degree three. This suggests defining Π as the set of graphs that satisfy the following
conditions:

1. Each vertex in the graph has degree six, three, or two.

2. Each vertex of degree two is connected to one vertex of degree three and to one vertex of
degree six. Furthermore, these two neighbor are connected.

3. Each vertex of degree three is connected to one vertex of degree two and to two vertices of
degree six.

4. Each vertex of degree six is connected to four vertices of degree three and to two vertices of
degree two.

In other words, a graph in Π consists of vertices of degree six that are connected between them by
subgraphs that contain (in addition to these two vertices) one vertex of degree two and one vertex
of degree three (where the latter two vertices are connected by an edge). These subgraphs can be
viewed as having an orientation, which is determined by the missing edge (i.e., by which of the two
degree 6 vertices misses an edge in the subgraph connecting them), and each vertex of degree six
participates in two subgraphs of each of the two orientations.

Hence, if a subgraph G̃ of G belongs to Π, then it corresponds to a orientation of Gk in which
each vertex has indegree two and outdegree 2 (so that this orientation is Eulerian). The converse
is also true: if a subgraph G̃ of G is such that the orientation of Gk corresponding to G̃ is Eulerian,
then G̃ belongs to Π. Observe though that not every graph in Π necessarily corresponds to an
orientation of Gk (for some k), but it corresponds to some Eulerian directed graph.

Claim 4.1.1 (reducing testing Eulerianity to testing Π in the subgraph model): Testing whether
the orientation of Gk is Eulerian (with proximity parameter ε) is reducible to testing whether the
subgraph of the base graph G satisfies property Π (with proximity parameter 0.4 · ε). The reduction
preserves the number of queries.

Proof: In accordance with the foregoing discussion, we represent (or emulate) an orientation of Gk
by a subgraph of G as follows. Each edge {u, v} of Gk that is directed from u to v is represented
by a subgraph of the corresponding gadget in which an edge incident to vertex u is missing (since
there are two such possible edges, the choice of which edge is missing, may be arbitrary).

Let T be a tester for Π in the subgraph model. We derive a tester T ′ for Eulerianity in the
orientation model as follows. Given oracle access to an orientation of Gk, the tester T ′ invokes
T and answers its (i.e., T ’s) queries regarding edges in G by making queries to the corresponding
directed edges of Gk. Specifically, when T queries an edge in the gadget that corresponds to the
edge {u, v} of Gk, tester T ′ queries the orientation of {u, v} and answers accordingly. (Actually,
since only two of the edges of the gadget are used to represent the orientation, queries to the other
three edges can be answered (by 1) without making any query to the base graph.)

37

By the construction of the subgraph of G, if the orientation of Gk is Eulerian, then T ′ answers
in a manner that is consistent with a subgraph that satisfies Π. On the other hand, we claim that if
the orientation H of Gk is ε-far from being Eulerian, then T ′ answers in a manner that is consistent
with a subgraph GH of G that is 0.4ε-far from Π.

To verify this, let G̃ be a subgraph of G that belongs to Π and is closest to GH . Let ε̃ denote
the distance between GH and G̃. Since G̃ belongs to Π, it defines an orientation H̃ of Gk that
is Eulerian. Furthermore, the number of edges that are oriented differently in H̃ as compared to
H is exactly one-half the symmetric difference between the edge set of GH and the edge set of
G̃. To verify the latter statement, consider any pair of main vertices u, v in G that correspond to
neighboring vertices in Gk and the pair of auxiliary vertices x, y by which they are connected in G.
Observe that both in GH and in G̃ one of these vertices has degree two and one has degree three,
and one of them is connected to both u and v, and the other to only one of them. If the subgraph
induced by {u, v, x, y} differs between GH and G̃, then it differs in exactly two edges, implying that
the orientation of the edge between u and v differs between H and H̃. Finally, as the number of
edges in Gk is smaller by a factor of five than the number of edges in G (i.e., 2k2 versus 10k2), the
distance between the orientations H and H̃ is 5ε̃/2, which must be greater than ε, implying that
ε̃ > 0.4ε. The claim follows.

Hence, the Ω(log log k) lower bound on testing Eulerianity in the orientation model yields a
corresponding lower bound for testing Π the subgraph model, with respect to an explicit 8-regular
O(k2)-vertex graph. It is left to show that, in the BDG model, testing Π is easy. In fact, we show
that (in the BDG model) Π has a proximity oblivious tester, a notion we recall after the claim.

Claim 4.1.2 (testing Π in the BDG model): Property Π can be tested in the bounded-degree graph
model, with distance parameter ε, using O(1/ε) queries. Actually, Π has a one-sided error proximity
oblivious tester that makes a constant number of queries and has a linear detection probability
function.

Recall that a (one-sided error) proximity oblivious tester (see [GR11]) is a tester-like algorithm
that does not get a proximity parameter, but rejects objects that do not have the property with
probability that is lower-bounded by a function of their distance from the property. This function
is called the detection probability function, and is denoted ρ. Note that a constant-query proximity
oblivious tester with detection probability function ρ implies a standard tester of query complexity
O(1/ρ(ε)).
Proof: Note that the number of vertices in graphs in Π must be a multiple of five, since there are
two vertices of degree two (resp., three) per each vertex of degree six. Hence, the tester rejects if the
number of vertices in the input graph, which is given as explicit input, is not a multiple of five.25

Otherwise, the tester selects uniformly a vertex s in the input graph, and explores its depth-three
neighborhood.

1. If s has degree six and its depth-three neighborhood is consistent with a graph in Π, then the
tester accepts.

To spell out the consistency condition, it means that s has four neighbors of degree three and
two neighbors of degree two, and that these neighbors belong to four subgraphs that connect

25Alternatively, one may redefine Π such that, for every n ∈ N, it contains all n-vertex graphs that consist of a
5 · bn/5c-vertex graph and n mod 5 isolated vertices.

38

s to four distinct degree-six vertices such that each subgraph contains two degree-six vertices,
one degree-two vertex and one degree-three vertex (and all edges of this 4-vertex subgraph
are incident to the latter two vertices).

2. If s has degree two such that one of its neighbors has degree three and the other has degree
six, then the tester accepts.

3. If s degree three such that one of its neighbors has degree two and the other two neighbors
have degree six, then the tester accepts.

4. Otherwise, the tester rejects.

By the definition of Π, this tester always accepts graphs in Π. It remains to show that if a graph
is ε-far from Π, then it is rejected with probability at least 2/3. We establish the contrapositive
statement. Namely, consider any graph that is rejected by the tester with probability ρ. We shall
prove that the graph is at distance O(ρ) from Π (by showing that it is possible to add/remove
O(ρn) edges and obtain a graph in Π).

Denoting the input graph by ([n], E), let Di denote the set of vertices of degree i, and A ⊆
D6 ∪D2 ∪D3 denote the set of initial choices (of the vertex s) under which the tester accepts (i.e.,
|A| = (1 − ρ) · n). Let E′ ⊆ E be the subset of edges that are incident to vertices in A, and note
that |E \E′| ≤ d · ρn, where d denotes the degree bound (with respect to which testing is defined).
Letting Ai = Di ∩ A, we note that each of the edges in E′ is incident to A2 ∪ A3 (since each edge
with one endpoint in A6 must have its other endpoint in A2 ∪ A3). Furthermore, the edges in E′

can be partitioned among edge-disjoint oriented gadgets. Specifically, each oriented gadget consists
of two vertices of D6, one vertex of A2 and one vertex of A3 such that the latter vertex is connected
to all other vertices in the subgraph and the degree-two vertex is connected to one of the vertices
of D6. Let D′6 denote the subset of vertices in D6 that participate in oriented gadgets, and note
that D′6 ⊇ A6. Also note that the number of such gadgets, denoted m, satisfies m = |A2| = |A3|
and 3m = 6 · |D′6|. It follows that 2.5 ·m = |A2|+ |A3|+ |D′6| ≥ |A|, so that m ≥ |A|/2.5, and hence
|D′6| = 0.5m ≥ 0.2 · |A| ≥ 0.2 · (1− ρ)n.

We now define an auxiliary digraph G′ over the vertex set D′6 such that there is a directed edge
from u to v in G′ if these two vertices are connected (in E′) by an oriented gadget that misses an
edge incident to u. We observe that, in G′, each vertex in A6 has two incoming edges and two
outgoing edges, and so the set of vertices that violate this condition equals D′6\A6 = D′6\A ⊆ [n]\A,
which means that their number is at most ρn.

If |D′6| < 0.2 ·n, then we augment G′ with 0.2 ·n−|D′6| ≤ 0.2ρn vertices (which initially have no
incident edges), and denote this set of vertices by D′′6 . If |D′6| > 0.2 ·n, then we remove |D′6| − 0.2n
vertices that belong to D′6 \ A6 from G′, and denote this set of vertices by D′′′6 . In either case,
let the resulting digraph be denoted by G′′. Since |D′′6 | ≤ 0.2ρn and |D′′′6 | ≤ ρn, in either case,
the total number of vertices in G′′ that either do not have two incoming edges or do not have two
outgoing edges is at most ρn. This implies that G′′ is O(ρ)-close to an Eulerian digraph (over 0.2n
vertices) in which all vertices have in-degree two (see Footnote 24).

Finally, we perform the corresponding modifications on the original undirected graph G =
([n], E) to obtain a graph in Π. To be precise, recall that we let E′ denote the edges incident to
vertices in A (so we have already removed all O(ρn) edges that are not incident to any vertex in A).
If D′′6 6= ∅, then we can associate each vertex in D′′6 with some vertex in [n]\A (which currently has
no incident edges), and if D′′′6 6= ∅, then we remove all (O(ρn)) edges incident to D′′′6 as well as to

39

their neighbors in A2∪A3 (so that we have removed all edges in the gadgets that they participated
in). Now, each removal of a directed edge from the digraph G′ in the process of obtaining the
Eulerian digraph G′′ corresponds to the removal of all edges from the corresponding gadget in the
undirected graph we are modifying. Similarly, each addition of a directed edge corresponds to the
addition of a corresponding gadget (since the number of vertices in G′ and G′′ is exactly 0.2n, we
do not lack vertices that can serve as auxiliary vertices in the gadgets). Hence, the total number of
modifications performed in the process of obtaining a graph in Π from G is O(ρn), as claimed.

We have thus completed the proof of the main part of Theorem 4.1. Recall that since the base
graph we used is planar (and has maximum degree 8), it has (ε, O(1/ε2))-partitions for every ε > 0.
This establishes the second part of the furthermore claim of the theorem.

4.2 Proving the secondary (“furthermore”) claim of Theorem 4.1

We establish the first part of the furthermore claim (i.e., upwards monotonicity of the property) by
using the same base graph G and a variant of the property Π, whereas Π itself is neither monotone
nor downward monotone.

We first introduce a graph property Π′ that contains both Π and the set of all graphs having
an edge that connects two vertices of degree at least four. Note that the base graph G contains
no subgraph in Π′ \ Π, since the only vertices of degree at least four in G are not connected in G.
Hence, the move from Π to Π′ has no effect on the subgraph testing model, but it makes testing in
the BDG model almost trivial (since each n-vertex graph is O(1/n)-close to Π′).26

Next, we consider the (upwards) monotone closure of Π′, denoted Π′′; that is, an n-vertex graph
is in Π′′ if and only if it contains an n-vertex subgraph in Π′. Needless to say, the triviality of testing
Π′ in the BDG model extends to Π′′ ⊇ Π′ (since distances to Π′′ are not larger than distances to
Π′). Hence, we focus on verifying that Claim 4.1.1 extends to Π′′. Towards this end, we use the
same mapping (of directed graphs to subgraphs of G) that was presented in the original proof. We
show that this mapping constitutes a reduction of testing whether an orientation of Gk is Eulerian
to testing whether subgraph of G are in Π′′.

First note that Eulerian orientations of Gk are mapped to subgraphs of G that are in Π ⊆ Π′′.
Next note that, in each subgraph of G that is in Π (or rather in Π ∩ FG), each gadget misses a
single edge (out of four designated ones), whereas in each subgraph of G that is in Π′′ (or rather
in Π′′ ∩ FG) each gadget misses at most one edge (out of four designated ones). However, the
subgraphs that are at the image of the reduction always miss a single edge (out of four designated
ones) in each gadget. Hence, if a missing edge in the subgraph in the image of the reduction
indicates an orientation that should be changed, then this edge must be added to the subgraph.
(Indeed, unlike in Π, correcting the wrong indication does not mandate omitting a different edge
from the same gadget; but the former addition suffices towards proving the claim, and we loose
only a factor of two in the number of edge modifications as compared to Claim 4.1.1.)

26Formally, on input n and ε, and oracle access to a tested graph, the tester accepts if ε > 10/n, while making no
queries. Note that in this case, the tested graph is ε-close to Π′, since it suffices to add at most nine edges (and omit
at most one). Otherwise (i.e., ε ≤ 10/n), the tester explores the entire tested graphs and decided accordingly, when
in this case its query complexity is O(1/ε).

40

4.3 Testing whether subgraphs of the grid are Eulerian

Needless to say, Theorem 4.1 does not refer to the Eulerian property (of undirected graphs) but
rather to a property that results from emulating directed Eulerian graphs by certain gadgets.
Actually, it is easy to test whether a subgraph of the (plain or cyclic) grid is Eulerian.

Proposition 4.2 (testing whether a subgraph of a grid is Eulerian): For any k < n, let G =
([n], E) be either the k-by-n/k grid or the k-by-n/k cyclic grid. Then, testing whether a subgraph
of G is Eulerian with distance parameter ε can be done in time poly(1/ε).

Proof: Consider a partition of the grid into sub-grides of side-lengths Θ(1/ε), which we refer to
as squares, with a Θ(1)-unit wide intermediate grid between them (e.g., a 3-unit wide intermediate
grid will do). The construction is illustrated in Figure 7. The tester selects Θ(1/ε) such squares
uniformly at random, and accepts if and only if all vertices that reside in the sampled squares have
an even degree (where edges with one endpoint in the square are counted too). This tester has
query complexity O(ε−3), and it always accepts Eulerian subgraphs.

Figure 7: A grid with six squares depicted as dashed boxes and the 3-unit wide intermediate grid.
Two connections are shown in solid lines.

To complete the analysis of this tester, suppose that the subgraph is ε-far from being Eulerian,
and let ρ denote the fraction of the squares that contain a vertex that has an odd degree in the
subgraph. Our goal is to show that ρ = Ω(ε). This is established by showing that the subgraph is
(ρ+ 0.5ε)-close to being Eulerian. Specifically, to modify it into an Eulerian graph we first omit all
edges that are incident to vertices that reside in bad squares (i.e., squares that contain vertices of
odd degree) as well as all edges that are incident to the intermediate grid. (The fraction of edges
internal to bad squares is at most ρ, whereas the fraction of edges incident to the intermediate grid
is Θ(1)

Θ(1/ε) ≤ ε/4.)
Next, we use the intermediate grid in order to connect vertices that lie on the boundary of a

good square and have an odd number of neighbors in the square (and had a single neighbor in the
intermediate grid, before we omitted all edges incident to the intermediate grid). Such connections
can be made by vertex-disjoint paths that go along the sides of the square (and at distance 1 from

41

it), since the connected vertices all lie on the boundary of the same square (see Figure 7). The
total fraction of edges used for these connections is ε/4, and so the claim follows.

4.4 Open problems

Theorem 4.1 shows that a property that, for some constant ε, is testable in in a constant number
of queries in the BDG model but requires a double-logarithmic number of queries in the subgraph
model. We wonder whether a larger gap can be established.

Problem 4.3 (a larger gap between the subgraph and the BDG models): For a function q : N→ N
such that q(n) = ω(log log n), does there exist a graph property Π such that Π is testable in poly(1/ε)-
time in the bounded-degree model, although there exist graphs G = ([n], E) of constant degree such
that testing whether a subgraph of G satisfies Π requires Ω(q(n)) queries.

Recall that such results are know for restricted testers; specifically, for non-adaptive testers we can
establish the claim for q(n) = Ω̃(log n), and q(n) = Ω(n1/4) holds for one-sided error non-adaptive
testers.

On the other hand, we wonder about the complexity of testing degree regularity in the subgraph
model, while recalling that this property is testable with O(1/ε) queries in the BDG model. Note
that testing 1-regularity of a subgraph of the cycle does not reduce to checking the degrees of
random vertices, and one needs to take into account the location of edges. Details follow.

Consider a 2n-vertex cycle and a random subgraph of it that consists of n − 1 edges (i.e.,
exactly two vertices have degree 1). Then, with high probability the subgraph is Ω(1)-far from
being 1-regular, but one cannot distinguish this subgraph from a 1-regular subgraph by making
o(n) degree queries. (On the other hand, making two random edge queries, and taking into account
the locations of these edges, yields a POT with linear detection probability.)

References

[AST90] N. Alon, P.D. Seymour, and R. Thomas. A separator theorem for graphs with an
excluded minor and its applications. In Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing (STOC), pages 293–299, 1990.

[Ben65] V. E. Benes̆. Mathematic theory of connecting networks and telephone traffic. Mathe-
matics in Science and Engineering, 17, 1965.

[BOT02] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability
in bounded-degree graphs. In Proceedings of the Forty-Third Annual Symposium on
Foundations of Computer Science (FOCS), pages 93–102, 2002.

[BSHR05] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. 3CNF properties are hard to test.
SIAM Journal on Computing, 35(1):1–21, 2005.

[BSS10] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse
graphs is testable. Advances in mathematics, 223:2200–2218, 2010.

[CMOS19] A. Czumaj, M. Monemizadeh, K. Onak, and C. Sohler. Planar graphs: Random walks
and bipartiteness testing. Random Structures and Algorithms, 55(1):104–124, 2019.

42

[CSS09] A. Czumaj, A. Shapira, and C. Sohler. Testing hereditary properties of nonexpanding
bounded-degree graphs. SIAM Journal on Computing, 38(6):2499–2510, 2009.

[EHNO11] A. Edelman, A. Hassidim, H. N. Nguyen, and K. Onak. An efficient partitioning oracle
for bounded-treewidth graphs. In Proceedings of the Fifteenth International Workshop
on Randomization and Computation (RANDOM), pages 530–541, 2011.

[Ele06] G. Elek. The combinatorial cost. ArXiv Mathematics e-prints, 2006.

[Ele10] G. Elek. Parameter testing with bounded degree graphs of subexponential growth.
Random Structures and Algorithms, 37:248–270, 2010.

[FJ12] U. Feige and S. Jozeph. Universal factor graphs. In Automata, Languages and Pro-
gramming: Thirty-Ninth International Colloquium (ICALP), pages 339–350, 2012.

[FLM+12] E. Fischer, O. Lachish, A. Matsliah, I. Newman, and O. Yahalom. On the query
complexity of testing orientations for being eulerian. ACM Transactions on Algorithms,
8(2):15:1 – 15:41, 2012.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

[Gol08] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Uni-
versity Press, 2008.

[Gol17] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[GR99] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded-degree graphs.
Combinatorica, 19(3):335–373, 1999.

[GR02] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,
32(2):302–343, 2002.

[GR10] M. Gonen and D. Ron. On the benefit of adaptivity in property testing of dense graphs.
Algorithmica, 58(4):811–830, 2010.

[GR11] O. Goldreich and D. Ron. On proximity oblivious testing. SIAM Journal on Computing,
40(2):534–566, 2011.

[Hea87] L.S. Heath. Embedding outerplanar graphs in small books. SIAM Journal on Algebraic
and Discrete Methods, 8(2):198–218, 1987.

[HKNO09] A. Hassidim, J. Kelner, H. Nguyen, and K. Onak. Local graph partitions for approxi-
mation and testing. In Proceedings of the Fiftieth Annual Symposium on Foundations
of Computer Science (FOCS), pages 22–31, 2009.

[HLNT12] S. Halevy, O. Lachish, I. Newman, and D. Tsur. Testing orientation properties. ACM
Transactions on Algorithms, 8(2):15:1–15:41, 2012.

[KKR04] T. Kaufman, M. Krivelevich, and D. Ron. Tight bounds for testing bipartiteness in
general graphs. SIAM Journal on Computing, 33(6):1441–1483, 2004.

43

[LR15] R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Transactions on Algorithms, 11(3):24:1–24:13, 2015.

[LT79] R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM Journal
on Discrete Math, 36(2):177–189, 1979.

[New10] I. Newman. Property testing of massively parametrized problems – a survey. In
O. Goldreich, editor, Property Testing: Current Research and Surveys, pages 142–157.
Springer, 2010. LNCS 6390.

[NS13] I. Newman and C. Sohler. Every property of hyperfinite graphs is testable. SIAM
Journal on Computing, 42(3):1095–1112, 2013.

[Pet94] E. Petrank. The hardness of approximation: Gap location. Computational Complexity,
4:133–157, 1994.

[PR02] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and
Algorithms, 20(2):165–183, 2002.

[Val82] L.G. Valiant. A scheme for fast parallel communication. SIAM Journal on Computing,
11(2):350–361, 1982.

[Val12] G. Valiant. Algorithmic Approaches to Statistical Questions. PhD thesis, University of
California at Berkeley, 2012.

[VB81] L.G. Valiant and G.J. Brebner. Universal schemes for parallel communication. In Pro-
ceedings of the Thirteenth Annual ACM Symposium on Theory of Computing (STOC),
pages 263–277, 1981.

[VV17] G. Valiant and P. Valiant. Estimating the unseen: Improved estimators for entropy and
other properties. Journal of the ACM, 64(6):37:1–37:41, 2017.

44

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

