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Abstract

We present two main results regarding the complexity of counting the number of t-cliques
in a graph.

1. A worst-case to average-case reduction: We reduce counting t-cliques in any n-vertex graph
to counting t-cliques in typical n-vertex graphs that are drawn from a simple distribution
of min-entropy Ω̃(n2). For any constant t, the reduction runs in Õ(n2)-time, and yields a
correct answer (w.h.p.) even when the “average-case solver” only succeeds with probability
1/poly(log n).

2. A direct interactive proof system: We present a direct and simple interactive proof system
for counting t-cliques in n-vertex graphs. The proof system uses t− 2 rounds, the verifier
runs in Õ(t2n2)-time, and the prover can be implemented in Õ(tO(1) ·n2)-time when given

oracle access to counting (t− 1)-cliques in Õ(tO(1) · n)-vertex graphs. This result extends
also to varying t = t(n), yielding alternative interactive proof systems for sets in #P.

The results are both obtained by considering weighted versions of the t-clique problem, where
weights are assigned to vertices and/or to edges, and the weight of cliques is defined as the
product of the corresponding weights. These weighted problems are shown to be easily reducible
to the unweighted problem.
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1 Introduction

We study two (seemingly unrelated) aspects of the complexity of counting t-cliques. The first study
refers to the relation between the worst-case complexity of problems in P and their average-case
complexity. The second study seeks (direct and intuitive) doubly-efficient interactive proof system
for problems in P. Indeed, both studies are related to the recently emerging theory of “hardness
within P” [34], and counting t-cliques in graphs is a good test case for both studies for several
reasons:

1. Counting t-cliques in (n-vertex) graphs is a natural candidate for “hardness within P” (i.e.,
it is in P and is assumed to have worst-case complexity nΘ(t));

2. Counting t-cliques is a well-studied and natural problem; and

3. Counting t-cliques has an appealing combinatorial structure (which is indeed capitalized upon
in our work).

In Sections 1.1 and 1.2 we discuss each study seperately, whereas Section 1.3 reveals the common
themes that lead us to present these two studies in one paper.

1.1 Worst-case to average-case reductions

1.1.1 Background

While most research in the theory of computation refers to worst-case complexity, the importance
of average-case complexity is widely recognized (cf., e.g., [17, Chap. 1–10.1] versus [17, Sec. 10.2]).
Worst-case to average-case reductions, which allow for bridging the gap between the two theories,
are of natural appeal (to say the least). Unfortunately, worst-case to average-case reductions are
known only either for “very high” complexity classes, such as E and #P (see [5] and [26, 11, 19]1,
resp.), or for “very low” complexity classes, such as AC0 (cf. [3, 4]). In contrast, presenting a
worst-case to average-case reduction for NP is a well-known open problem, which faces significant
obstacles as articulated in [15, 10].

In the context of fine-grained complexity. A recent work by Ball, Rosen, Sabin, and Vasude-
van [6] initiated the study of worst-case to average-case reductions in the context of fine-grained
complexity.2 The latter context focuses on the exact complexity of problems in P (see, e.g., the
survey by V. Williams [34]), attempting to classify problems into classes of similar polynomial-time
complexity (and distinguishing, say, linear-time from quadratic-time and cubic-time). Needless to
say, reductions used in the context of fine-grained complexity must preserve the foregoing classifi-
cation, and the simplest choice – taken in [6] – is to use almost linear-time reductions.

The pioneering paper of Ball et al. [6] shows that there exist (almost linear-time) reductions
from the worst-case of several natural problems in P, which are widely believed to be “somewhat

1The basic idea underlying the worst-case to average-case reduction of the “permanent” is due to Lipton [26], but
his proof implicitly presumes that the field is somehow fixed as a function of the dimension. This issue was addressed
independently by [11] and in the proceeding version of [19]. In the current work, we shall be faced with the very same
issue.

2In retrospect, as will be discussed shortly below, some prior results can be reinterpreted as belonging to this
setting.
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hard” (i.e., have super-linear time complexity (in the worst case)), to the average-case of some
other problems that are in P. In particular, this is shown for the Orthogonal Vector problem, for
the 3-SUM problem, and for the All Pairs Shortest Path problem. Hence, the worst-case complexity
of problems that are widely believed to be “somewhat hard” is reduced to the average-case com-
plexity of problems in P. Furthermore, the worst-case complexity of the latter problems matches
(approximately) the best algorithms known for the former problems (although the actual worst-case
complexity of these problems may in fact be lower).

In our prior work [21], we tighten the foregoing result by defining, for each polynomial p, a
worst-case complexity class C(p) that is a subset of Dtime(p1+o(1)), and showing, for any problem
Π in C(p), an almost linear-time reduction from solving Π in the worst-case to solving a different
problem Π′ ∈ C(p) in the average-case. Furthermore, we showed that C(p) contains problems whose
average-case complexity almost equals their worst-case complexity.

Loosely speaking, the class C(p) consists of counting problems that refer to p(n) local conditions
regarding the n-bit long input, where each local condition refers to no(1) bit locations and can be
evaluated in no(1)-time. In particular, for any constant t > 2 and pt(n) = nt, the class C(pt) contains
problems such as t-CLIQUE and t-SUM.

We emphasize that the foregoing results present worst-case to average-case reductions for classes
of problems (i.e., reducing the worst-case complexity of one problem to the average-case complexity
of another problem). Hence, the foregoing results leave open the question whether there exists
an almost linear-time worst-case to average-case reduction for a problem in P, let alone a natural
problem of conjectured high worst-case complexity.

Worst-case to average-case reductions for individual problems. As stated in Footnote 2,
some prior results can be reinterpreted as worst-case to average-case reductions for seemingly hard
problem in P. In particular, this holds for problems shown to be random self-reducible. An
archetypical case, presented by Blum, Luby, and Rubinfeld [9], is that of matrix multiplication: the
product AB is computed as (A + R)(B + S) − (A + R)S − R(B + S) + RS, where R and S are
random matrices. Note, however, that in this case the potential hardness of the problem is quite
modest (since the product of n-by-n matrices can be computed in time o(n2.373)).

A far less known case was presented by Goldreich and Wigderson [22], who considered the
problem of computing the function fn(A1, ..., A`(n)) =

∑
S⊆[`(n)] DET(

∑
i∈S Ai), where the Ai’s are

n-by-n matrices over a finite field and `(n) = O(log n). They conjectured that this function cannot
be computed in time 2`(n)/3, and showed that it is random self-reducible (by O(n) queries).3 Note,
however, that the foregoing problem is not as well-studied as any of the problems considered
in [6, 21], including counting t-cliques. In contrast, here we show a worst-case to average-case
reduction for the problem of counting t-cliques.

1.1.2 Our results

In contrast to the results of [6, 21], which reduce the worst-case complexity of one problem in
a subclass of P to the average-case complexity of a different problem in the same class, here we
reduce the worst-case complexity of counting t-cliques to the average-case complexity of counting

3They also showed that it is downwards self-reducible when the field has the form GF (2m(n)) such that m(n) =
2dlog2 ne (or m(n) = 2 · 3dlog3 ne).
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t-cliques. Doing so, we show that the worst-case and average-case complexity of counting t-cliques
are essentially equal.

Theorem 1.1 (worst-case to average-case reduction for counting cliques of given size): For any
constant t, there exists a simple distribution on n-vertex graphs and a Õ(n2)-time worst-case to
average-case reduction of counting t-cliques in n-vertex graphs to counting t-cliques in graphs gen-
erated according to this distribution such that the reduction outputs the correct value with probability
2/3 provided that the error rate (of the average-case solver) is a constant smaller than one fourth.
Furthermore, the reduction makes poly(log n) queries, and the distribution Gn can be generated in
Õ(n2)-time and is uniform on a set of exp(Ω̃(n2)) graphs.

We obtain a similar reduction for the problem of counting (simple) t-cycles (for odd t ≥ 3).
The notion of average-case complexity that underlies the foregoing discussion (and Theorem 1.1)

refers to solving the problem on at least a 0.76 fraction of the instances. This notion may also be
called typical-case complexity. A much more relaxed notion, called rare-case complexity, refers to
solving the problem on a noticeable4 fraction of the instances (say, on a 1/poly(log n) fraction of
the n-bit long instances).

Theorem 1.2 (worst-case to rare-case reduction for counting cliques): For any constant t, there
exists a simple distribution on n-vertex graphs and a Õ(n2)-time worst-case to rare-case reduction
of counting t-cliques in n-vertex graphs to counting t-cliques in graphs generated according to this
distribution such that the reduction outputs the correct value with probability 2/3 provided that the
success rate (of the rare-case solver) is at least 1/poly(log n). Furthermore, the reduction makes
Õ(n) queries, and the distribution Gn can be generated in Õ(n2)-time and is uniform on a set of
exp(Ω̃(n2)) graphs.

1.2 Doubly-efficient interactive proof systems

1.2.1 Background

The notion of interactive proof systems, put forward by Goldwasser, Micali, and Rackoff [24], and
the demonstration of their power by Lund, Fortnow, Karloff, and Nisan [27] and Shamir [31] are
among the most celebrated achievements of complexity theory. Recall that an interactive proof
system for a set S is associated with an interactive verification procedure, V , that can be made
to accept any input in S but no input outside of S. That is, there exists an interactive strategy
for the prover that makes V accepts any input in S, but no strategy can make V accept an input
outside of S, except with negligible probability. (See [17, Chap. 9] for a formal definition as well
as a wider perspective.)

The original definition does not restrict the complexity of the strategy of the prescribed prover
and the constructions of [27, 31] use prover strategies of high complexity. This fact limits the
applicability of these proof systems in practice. (Nevertheless, such proof systems may be actually
applied when the prover knows something that the verifier does not know, such as an NP-witness
to an NP-claim, and when the proof system offers an advantage such as zero-knowledge [24, 18].)

4Here a “noticeable fraction” is the ratio of a linear function over an almost linear function. We stress that this
is not the standard definition of this notion (at least not in cryptography).

3



Doubly-efficient proof systems. Seeking to make interactive proof systems available for a
wider range of applications, Goldwasser, Kalai and Rothblum put forward a notion of doubly-
efficient interactive proof systems (also called interactive proofs for muggles [23] and interactive
proofs for delegating computation [30]). In these proof systems the prescribed prover strategy can
be implemented in polynomial-time and the verifier’s strategy can be implemented in almost-linear-
time. (We stress that unlike in argument systems, the soundness condition holds for all possible
cheating strategies, and not only for feasible ones.) Restricting the prescribed prover to run in
polynomial-time implies that such systems may exist only for sets in BPP, and thus a polynomial-
time verifier can check membership in such sets by itself. However, restricting the verifier to run
in almost-linear-time implies that something can be gained by interacting with a more powerful
prover, even though the latter is restricted to polynomial-time.

The potential applicability of doubly-efficient interactive proof systems was demonstrated by
Goldwasser, Kalai and Rothblum [23], who constructed such proof systems for any set that has log-
space uniform circuits of bounded depth (e.g., log-space uniform NC). A recent work of Reingold,
Rothblum, and Rothblum [30] provided such (constant-round) proof systems for any set that can
be decided in polynomial-time and a bounded amount of space (e.g., for all sets in SC).

Towards algorithmic design of proof systems. In our prior work [20], we proposed to develop
a more “algorithmic” understanding of doubly-efficient interactive proofs; that is, to identify struc-
tures and patterns that facilitate the design of efficient proof systems. Specifically, we identified a
natural class of polynomial-time computations, and constructed simpler doubly-efficient proof sys-
tems for this class.5 The aforementioned class consists of all sets that can be locally-characterized by
the conjunction of polynomially many local conditions, each of which can be expressed by Boolean
formulae of polylogarithmic size. The class of locally-characterizable sets is believed not to be in
Dtime(p) for any fixed polynomial p, and contains natural problems of interest such as determining
whether a given graph does not contain a clique of constant size t.

The proof system presented in [20] capitalizes on the fact that membership in a locally char-
acterizable set can be cast as satisfying polynomially many low-degree equations. Hence, anal-
ogously to [27, 31], the first step is recasting membership in a locally-characterizable set as an
algebraic problem, which consists of computing the sum of polynomially many evaluations of a
low-degree polynomial (where the particular polynomial is derived from the description of the
locally-characterizable set). The interactive proof uses the sum-check protocol [27] to verify the
correctness of the sum, and the same applies to counting versions of locally charcatizeable sets.
Hence, the intuitive appeal of the problem of counting t-cliques is lost at the first step (in which
we consider an algebraic version or extension of the original problem).

1.2.2 Our results

In the current work, we present a new (doubly-efficient) interactive proof for counting t-cliques in
a graph. The proof system proceeds in iterations, where in the ith iteration verifying the number of
(t− i+ 1)-cliques in a graph is reduced to verifying the number of (t− i)-cliques in a related graph.
Hence, the claims made in these iterations, whose complexity gradually decreases from one iteration
to the next, all have a clear intuitive meaning that is similar to the original problem (counting the

5Indeed, the aforementioned class (of locally-characterizable sets) is a sub-class of NC ∩ SC, yet the interactive
proofs presented in [20] are significantly simpler than those in [23, 30].
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number of cliques in a graph).
Beyond its conceptual appeal, this proof system has the concrete advantage that the (honest)

prover’s complexity is directly related to the complexity of the statement being proved: the prover
can be implemented in linear time given an oracle for counting t-cliques. The proof system extends
to varying t = t(n), yielding an alternative interactive proof system for #P; in particular, we note
that this proof system does not use the sumcheck protocol.

Theorem 1.3 (interactive proof systems for counting cliques of given size): For an efficiently
computable function t : N→ N, let St denote the set of pairs (G,N) such that the graph G = ([n], E)
has N distinct t(n)-cliques. Then, St has a (t− 2)-round (public coin) interactive proof system (of
perfect completeness) in which the verifier’s running time is Õ(t(n)2 ·n2), and the prover’s running
time is Õ(t(n)2 · n1+ωmm·d(t(n)−1)/3e), where ωmm is the matrix multiplication exponent. Furthermore,
the prover can be implemented in poly(t(n))·Õ(n2)-time, when given access to an oracle for counting
(t(n)− 1)-cliques in poly(t(n)) · Õ(n)-vertex graphs.

High-level structure of the new interactive proof system. As discussed above, the interac-
tive proof proceeds in iterations. The ith iteration is a (doubly efficient and interactive) reduction
from verifying the number of (t− i+ 1)-cliques in a graph to verifying the number of (t− i)-cliques
in a related graph. This proceeds in two conceptual steps.

First, we reduce verifying the number of t′-cliques in G′ = ([n′], E′) to verifying, for each vertex
j ∈ [n′], the number of t′-cliques in G′ that contain the vertex j, which equals the number of (t′−1)-
cliques in the graph induced by the neighbors of j. Next, we let the parties reduce the latter n′

claims to a single claim regarding the number of (t′−1)-cliques in a new graph, which has the same
number of vertices as G′, where the reduction is via a single-round randomized interaction. That
is, while the first step employs downwards reducibility, where the decreased parameter is the size
of the counted cliques, the second step employes batch verification (cf., [30]), where the verification
of n′ claims is reduced to a verification of a single claim of the same type.

Essentially, the foregoing batch verification is performed by considering an error correcting
encoding of the n′ graphs by a sequence of poly(n′) graphs, each having n′ vertices. The prover
sends a succinct description of the number of (t′ − 1)-cliques in these poly(n′) graphs, and the
verifier verifies that the sum of the values associated with the n′ former graphs equals the claim
regarding the number of t-cliques in G′. If so, then the verifier select one of the poly(n′) graphs
at random for the next iteration (in which it verifiers the number of (t′ − 1)-cliques in the selected
graph). Indeed, the crucial point is finding a suitable encoding scheme, and this is discussed in
Section 1.3.1.

We stress that the foregoing procedure does not use the sum-check protocol, and that each
iteration starts and ends with an intuitive combinatorial claim to be verified. (Algebra “raises its
ugly head” only in the encoding scheme, which utilizes a so-called multiplication code [28], and in
the fact that cliques are indicated by products of all corresponding “edge indicators”.) As noted
above, A concrete advantage of the current interactive proof system over the one in [20] is that
the prover’s complexity is proportional to the complexity of counting t-cliques (which is lower than
n2.373·dt/3e) rather than being proportional to nt. The foregoing procedure works also for varying
t = t(n), yielding an alternative interactive proof system for #P.

Application to proofs of work. Proofs of work were introduced by Dwork and Naor [14] as
a method for certifying, in an easily verifiable way, that an untrusted party expended non-trivial
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computational resources. This may be useful, for example, in fighting denial of service attacks.
A proof of work usually consists of a procedure for generating puzzles that are moderately hard
to solve, and a procedure for verifying the correctness of solutions. Our results immediately yield
proofs of work based on the problem of counting t-cliques. Puzzles can be generated by sampling
graphs from the hard distribution of Theorem 1.1, where the solution is the number of t-cliques
in the graph. Solutions can be verified using the interactive proof system of Theorem 1.3. In
particular, this yields an appealing proof of useful work system (cf. [7]). Moreover, our results
imply that the work needed to solve puzzles and to prove the correctness of solutions is closely
related to the complexity of counting t-cliques in worst-case graphs.

1.3 Techniques

One common theme in the two parts of this work is that we find it beneficial to consider “weighted
generalizations” of the problem of counting t-cliques. Specifically, we consider graphs with either
vertex or edge weights, and define the weight of the clique as the product of the corresponding
weights (where arithmetic is performed over a finite field). Our definition stands in contrast to
the standard practice of defining the weight of a set as the sum of its elements (cf. [2]), but in the
case of vertex-weights it has a very appealing interpretation (see Section 1.3.1). In any case, after
working with the weighted problems, we present reductions from the weighted problems back to
the original problem (of counting t-cliques). The reduction for the case of weighted edges is more
complex than the one for weighted vertices.

A second common theme is the manipulation of graphs via the manipulation of their vertex (or
edge) weights. Encoding a sequence of weighted graphs is performed by encoding the corresponding
sequences of weights (see Section 1.3.1), and performing self-correction is possible by considering
sequences that extend each of the weights (see Section 1.3.2). These comments will hopefully
become more clear when we get to the specifics.

1.3.1 For the direct interactive proof systems

Here it is useful to consider vertex-weighted graphs. A n-vertex graph with vertex weights (w1, ..., wn)
such that vertex i ∈ [n] is assigned the weight wi may be thought of as a succinct representation of a
larger graph consisting of n independent sets such that the ith independent set has wi vertices and
edges represented complete bipartite graphs between the corresponding independent sets. From
this perspective, it is natural to define the weight of the clique S as

∏
i∈S wi.

Given such a weighted graph G = ([n], E), the set of sum of the weights of the t-cliques that
contain a specific vertex j ∈ [n] equals wj times the sum of the weighted (t − 1)-cliques in the
graph induced by the neighbors of j. The latter graph is obtained by resetting the weights of non-
neighbors of j to 0 and keeping the weights of the neighbors of j intact. Note that the topology of
the graph (i.e., its vertex and edge sets) remain intact, only the weights are updated; that is, the

weights w = (w1, ..., wn) are replaced by the weights w(j) = (w
(j)
1 , ..., w

(j)
n ) such that w

(j)
i = wi if

{i, j} ∈ E and w
(j)
i = 0 otherwise. Next, we encode the resulting sequence of weighted graphs, all

having the same topology G, by encoding the n weights of each vertex such that the kth codeword,

denoted ck, encodes the weights of k ∈ [n] in each of the n graphs (i.e., w
(1)
k , ..., w

(n)
k ). Specifically,

using the Reed-Solomon code (which is a “good” linear “multiplication code” [28]), we obtain n
codewords such that multiplying any t of them (in a coordinatewise manner) yields an (m-long)
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encoding of the weights of the corresponding t-subset in the n graphs.6

In the corresponding iteration of the interactive proof system, the prover will send a codeword,
denoted c = (c1, ..., cm), that represents the sum of the

(
n
t

)
codewords that encode the weights of

all t-subsets of [n]. The verifier will decode this (m-long) codeword, check that the sum of the
resulting n values equals the value claimed in this iteration, and send the prover a random position
in the codeword (i.e., a random r ∈ [m]). The next iteration will refer to the weighted graph G
with weights that are determined by the rth coordinate of the codewords c1, ..., cn (i.e., the weights
are c1[r], ..., cn[r]), and the claimed value will be cr (i.e., the rth coordinate of the codeword sent
by the prover).

Note that we capitalize on the fact that the sum of the weights of t-cliques in a weighted graph
is expressed as a sum of t-way products of vertex weights. A crucial feature of the Reed-Solomon
code, which enables the foregoing manipulation, is that multiplying together t codewords of the
original code that has large distance (i.e., 1 − ε) yield a codeword of a code that has sufficiently
large distance (i.e., 1 − tε). And we also use the fact that the code is linear, but c’est tout. In
particular, unlike Meir [28], we do not use tensor codes. Furthermore, unlike most work in the area,
we do not use the sum-check protocol nor refer to objects (like low-degree extensions of Boolean
functions) that have no direct intuitive meaning.

The foregoing description refers to vertex weights that reside in a finite field of polynomial (in
n) size. To get back to the unweighted problem of counting t-cliques, we first reduce the weighted
problem over GF(p) to O(t2 log p) weighted problems over smaller fields, each of size O(t2 log p).
Next, we reduce each of these problems to an unweighted problem using the reduction outlined in
the first paragraph of this section (i.e., replacing the vertices by independent sets of size that equals
the vertex’s weight and connecting vertices that reside in different independent sets if and only if
the original vertices were connected). Since the weights are currently small, this blows-up the size
of the graph by a small amount.

1.3.2 For the worst-case to average-case reductions

Here it is useful to considered edge-weighted graphs. In fact, we may ignore the graph and just
consider weights assigned to all edges of the complete graph, since the non-existence of an edge can
be represented by a weight of zero. Hence, we consider a symmetric matrix W = (wj,k), and allow
non-zero diagonal entries as representations of vertex-weights (as in Section 1.3.1).7 We define the
weight of the set of vertices S as a product of the weights of all edges that are incident at S (i.e.,∏
j≤k∈S wj,k). Similarly to Section 1.3.1, we show that the sum of the weights of all t-subsets of [n]

is proportional to the number of t-cliques in a (much) larger graph, but the reduction in this case
is more complex than in Section 1.3.1. Before discuss this reduction, we outline the ideas used in
the worst-case to average-case and rare-case reductions of the edge-weighted problems.

The worst-case to average-case reduction. We first observe that the problem of computing
the sum of the weights of t-subsets of vertices in an edge-weighted graph, when defined over a finite
field, is random self-reducible. Specifically, given a n-by-n matrix W = (wj,k) such that all wj,k’s

reside in {0, 1, ..., b}, we pick a prime field of size p = O(ntbt
2
), select uniformly a random matrix

6Note that if all original weights are in {0, 1, ..., b}, then we can work with a prime field of size p = O(ntbt), since
the weight of each t-subset resides in [0, bt]. In subsequent iterations, the claims will refer to the value modulo p.
Recall that in this case m = p.

7Alternatively, one may consider the weights of the diagonal entries as weights of the corresponding self-loops.
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R ∈ GF(p)n×n, and obtain the values of the sum of weighted t-subsets for the matrices W + iR,
for i = 1, ..., t2. Note that we are interested in val(W ), where val(X) is the sum over all t-subset
S of

∏
j≤k∈S xj,k (reduced modulo p). Hence, val(W + ζR) is a polynomial of degree

(
t
2

)
+ t < t2

in ζ, and its value at 0 can be determined based on its value at 1, ..., t2. Furthermore, for every
i ∈ GF(p) \ {0}, the matrix W + iR is uniformly distributed in GF(p)n×n. Using O(t2) non-zero
evaluation points (for this polynomial) and employing the Berlekamp–Welch algorithm, we obtain
a worst-case to average-case reduction for computing val modulo p.

The foregoing presentation refers to a fixed prime p > nt, whereas it is not known how to
determine such a prime in time Õ(n2). Instead, we pick primes of the desired size at random,
apply the self-correction process in each of the corresponding fields, and combine the results using
Chinese Remaindering with error [19]. for details, see Section 3.3.2.

The worst-case to rare-case reduction. Turning from average-case to rare-case targeted re-
ductions, we employ a methodology heralded by Impagliazzo and Wigderson [25], and stated explic-
itly in our prior work [21]. The methodology is pivoted at the notion of sample-aided reductions,
which is extended in the current work. In the following definition (which is taken from [21]), a task
consists of a computational problem along with a required performance guarantee (e.g., “solving
problem Π on the worst-case” or “solving Π with success rate ρ under the distribution D”). For
sake of simplicity, we consider the case that the first task is a worst-case task.

Definition 1.4 (sample-aided reductions): Let `, s : N → N, and suppose that M is an oracle
machine that, on input x ∈ {0, 1}n, obtains as an auxiliary input a sequence of s = s(n) pairs
of the form (r, v) ∈ {0, 1}n+`(n). We say that M is an sample-aided reduction of solving Π in the
worst-case to the task T if, for every procedure P that performs the task T, it holds that

Prr1,...,rs∈{0,1}n
[
Pr[∀x∈{0, 1}n MP (x; (r1,Π(r1)), ..., (rs,Π(rs))) = Π(x)] ≥ 2/3]

]
> 2/3, (1)

where the internal probability is taken over the coin tosses of the machine M and the procedure P .

Note that a sample-aided reduction implies an ordinary non-uniform reduction. Furthermore,
coupled with a suitable downwards self-reduction for Π, a sample-aided reduction of solving Π in
the worst-case to solving Π on the average (resp., in the rare-case) implies a corresponding standard
reduction (of worst-case to average-case (resp., to rare-case)).

In this work we extend Definition 1.4 by allowing the sample to be drawn from an arbitrary
distribution over ({0, 1}n)s(n); in particular, the s(n) individual samples need not be independently
and identically distributed. We note that both the foregoing implications hold also under this
extension, where for the second implication we also require that the sample distribution be efficiently
sampleable.

Our worst-case to rare-case reduction utilizes the worst-case to rare-case reduction of Sudan,
Trevisan, and Vadhan [33], which applies to low-degree polynomials. We first observe that this
reduction yields a sample-aided reduction, and then apply it to the edge-weighted clique-counting
problem, while presenting a downwards self-reduction for the latter problem (where this reduction
is analogous to the one used in Section 1.3.1). We stress that our sample-aided reduction utilizes
correlated random samples (and the extension of Definition 1.4 is used here); specifically, in our
application, the samples correspond to pairs of objects and we need multiple samples that coincide
on the first element of the pair, for multiple choices of such first element.
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Back to the unweighted problem. Having shown the (average-case and) rare-case hardness of
the edge-weighted clique-counting problem, we seek to establish this result for the original count-
ing problem (which refers to simple unweighted graphs). An adequate reduction is presented in
Section 3.2; it is more complex than the reduction employed to the vertex-weighted problem, and

it involves increasing the number of vertices in the graph by a factor of O(log n)Õ(t2). (In contrast,
the reduction employed to the vertex-weighted problem increases the number of vertices by a fcator
of O(t3 log n).)

Given that our reductions increase the number of vertices in the graph, and seeking to main-
tain that number, we present a reduction of counting t-cliques in Õ(n)-vertex graphs to counting
t-cliques in n-vertex graphs (see Section 3.3.3). Lastly, given that our worst-case to rare-case
reduction reduces to several instance lengths, we also present a reduction from the rare-case prob-
lem of counting t-cliques under several distributions to counting them under one distribution (see
Section 3.4.3).

1.4 Other related work

Several works have constructed interactive (and non-interactive) proof systems for clique-counting,
where the interactive proof system of Thaler [32, Apdx] is most related to our work.8 Specialized
to the problem counting t-cliques, this interactive proof system uses t − 2 rounds, with Õ(n)
communication, O(|E| + n) verification time, and O(|E| · nt−2) proving time. However, his proof
system uses the sum-check protocol as well as the arithmetization approach of [27], which is also
followed in [20]. In contrast, our proof system (of Theorem 1.3) has the salient feature of deviating
from the arithmetization approach of [27], and maintaining the combinatorial flavor of the original
problem throughout interaction. Furthermore, the complexity of our prover strategy is directly
related to the complexity of counting the number of t-cliques in a graph. In particular, for fixed
t ≥ 3, known algorithms for this problem give a prover runtime of Õ(n1+ωmm·d(t−1)/3e)� |E| · nt−2,
where ωmm is the matrix multiplication exponent.

While it is unknown whether non-deterministic algorithms (equiv., non-interactive proof sys-
tems) can outperform the best algorithm known for counting t-cliques, Williams [35] showed that
such an improvement is possible when allowing randomization; that is, non-interactive and ran-
domized proof systems (as captured by the complexity class MA) can outperform algorithms.
Specifically, his (single-message) proof system for counting the number of t-cliques has proof length
and verification time Õ(nbt/2c+2) � n2/3. Subsequent improvement by Björklund and Kaski [8]
yields anMA proof system with length and verification time Õ(n(ωmm+ε)·t/6), where ε > 0 is an arbi-
trarily small constant. The time to construct proofs in their system is Õ(n(ωmm+ε)t/3), matching the
best algorithm known for solving the problem. Recall, however, that we construct interactive proof
systems: using interaction lets us reduce the verification time (as well as the total communication)
to Õ(n2).

1.5 Notation and organization

For a natural number n, we let [n] = {1, ..., n} and [[n]] = {0}∪ [n]. For a set U , we let
(
U
t

)
= {S ⊆

U : |S|= t}. For a prime p, we let GF(p) denote the finite field of cardinality p.

8We remark that the protocol of [32] operates in a more challenging streaming setting, which we do not consider
or elaborate on in this work.
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We often conduct our discussion with reference to a seemingly fixed number of vertices (denoted
n), clique size (denoted t), and prime p; the reader should think of n as varying (or generic), and
of t and p as possibly depending on n.

Organization. In Section 2 we present direct interactive proof systems for counting t-cliques in
graphs, using the notion of vertex-weighted t-cliques as a methodological vehicle. In Section 3 we
present worst-case to average-case (and to rare-case) reductions for counting t-cliques in graphs,
using the notion of edge-weighted t-cliques as a methodological vehicle. The worst-case to average-
case reduction for counting t-cycles (mentioned right after Theorem 1.1) is presented in Section 3.5.

2 Vertex-weighted t-Clique

We consider a generalization of the t-clique counting problem, in which one is given a graph G =
([n], E) along with vertex-weights, and is required to output the sum of the weights of all t-cliques in
G, where the weight of a set S ⊆ [n] is defined as the product of the weights of its elements.9 That
is, for a (simple) graph G = ([n], E) and a sequence of vertex weights, w = (w1, ..., wn) ∈ (N∪{0})n,
we let CWCGt (w) (standing for count weighted cliques) denote the sum of the weights of all t-cliques
in G; that is,

CWCGt (w)
def
=

∑
S∈([n]t ):CL(GS)

∏
j∈S

wj (2)

where GS is the subgraph of G induced by S and CL(G′) holds if G′ is a clique. Indeed, CWCGt (1n)
equals the number of t-cliques in G. In general, as shown in Section 2.2, CWCGt (w) equals the number
of t-cliques in a graph G′ that is obtained by a blow-up of G in which the ith vertex is replaced by
an independent set of size wi (and the edge {i, j} is replaced by a complete bipartite graph between
the ith and jth sets).

2.1 A direct interactive proof for counting weighted cliques

Towards presenting an interactive proof system for the value of CWCGt (1n), we first observe that (for
every w ∈ (N ∪ {0})n) it holds that

t · CWCGt (w) =
∑
i∈[n]

wi · CWCGt−1(w(i)) (3)

where w
(i)
j = wj if {i, j} ∈ E, and w

(i)
j = 0 otherwise. (4)

(This is the case since each pair (S, i) such that S is a t-subset of [n] and i ∈ S contributes
equally to each side of Eq. (3), where the contribution equals wi ·

∏
j∈S\{i}wj if GS is a clique

and equals 0 otherwise. In particular, note that if all vertices in S \ {i} are neighbors of i, then∏
j∈S\{i}w

(i)
j =

∏
j∈S\{i}wj and otherwise

∏
j∈S\{i}w

(i)
j = 0.)

Indeed, Eq. (3) reduced the evaluation of CWCGt to n evaluations of CWCGt−1; equivalently, it
reduces the verification of the value of CWCGt at one point to the verification of the value of CWCGt−1

9Our definition stands in contrast to the standard practice of defining the weight of a set as the sum of its elements
(cf. [2]).
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at n points. Wishing to reduce these n value-verifications to a single one, we seek an error correcting
code by which these n values can be encoded by a sequence of Ω(n) values such that verifying one
of the values in the sequence suffice. As usual, the code of choice is the Reed-Solomon code (i.e.,
univariate polynomials of degree n − 1), which calls for embedding the values in a finite field.
Recalling that we are actually interested in the value of CWCGt (1n) ≤ t! ·

(
n
t

)
< nt, we embed all

values in a finite field F = GF(p), for a prime p > nt, and reduce all wj ’s modulo p. Now, we
consider the following n polynomials (fj : F → F)j∈[n]:

fj(z)
def
=
∑
i∈[n]

EQi(z) · w
(i)
j (5)

where EQi : F → F is a (degree n − 1) polynomial such that EQi(i) = 1 and EQi(k) = 0 for

every k ∈ [n] \ {i} (i.e., EQi(z) =
∏
j∈[n]\{i}(z − j)/(i − j)). Note that fj(i) = w

(i)
j for every

i ∈ [n], and that each fj can be computed in O(n) field operations when given w (by using Eq. (4)

and EQi(z) =
∏
j∈[n]\{i}(z − j)/(i − j)).10 Letting CWC

G,p
t (w)

def
= CWCGt (w) mod p, this leads to

the following interactive reduction of the verification of the value of CWC
G,p
t at one point to the

verification of the value of CWCG,pt−1 at one (other) point.

Construction 2.1 (a generic iteration of the interactive proof system for counting cliques): The
iteration starts with a claim of the form CWC

G,p
t (w) = v, where w ∈ Fn and v ∈ F are determined

before (by the previous iteration or by the main protocol).11

1. The prover computes the (t− 1) · (n− 1) degree polynomial Pt−1 : F → F , where

Pt−1(z)
def
=

∑
S∈( [n]

t−1):CL(GS)

∏
j∈S

fj(z), (6)

where the arithmetic is over F = GF(p), and sends Pt−1 to the verifier.

Note that Pt−1(z) can be computed by interpolation, using the values of Pt−1 at less than tn
points, and that (as shown below) for every k ∈ F it holds that Pt−1(k) = CWC

G,p
t−1(w(k)), where

w
(k)
j = fj(k) for every j ∈ [n].

2. Upon receiving a polynomial P̃ of degree (t − 1) · (n − 1), the verifier checks whether t · v ≡∑
i∈[n]wi · P̃ (i) (mod p), and rejects if equality does not hold. If equality holds, the verifier

selects uniformly r ∈ F , and sends it to the prover.

The iteration ends with the claim that CWCG,pt−1(w′) = v′, where v′ = P̃ (r) and w′j = fj(r) for every
j ∈ [n].

10Note that, for any k ∈ [n] it holds that (EQ1(k), ..., EQn(k)) = 0k−110n−k, whereas for k ∈ F \ [n] \ [n] it holds

that EQi(k) =
∏

j∈[n](k−j)
(k−i)·

∏
j∈[n]\{i}(i−j)

. Hence, computing (EQ1(k), ..., EQn(k)) reduces to computing
∏
j∈[n](k − j) and

computing all
∏
k∈[m] k for m = 1, ..., n− 1, which in turn means that (EQ1(k), ..., EQn(k)) can be computed in O(n)

field operations.
11Indeed, as hinted in the title of this construction, it will be applied iteratively by the main interactive proof

systems, which contains little beyond these iterations (see the proof of Theorem 2.3).
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Recall that both parties can compute each of the fj ’s using O(n) field operations, which implies

that the verifier strategy can be implemented in Õ(t ·n2)-time (assuming the field has size O(nt)).12

In addition, the prover needs to construct the polynomial Pt−1, and a straightforward way of doing
so can be implemented using tn · (O(n2) +

(
n
t−1

)
) = O(nt) field operations. We shall later see that

the complexity can be improved to O(t · n1+ωmmd(t−1)/3e), where ωmm is the matrix multiplication
exponent, by using the ideas that underlie the best algorithm known for deciding t-Clique (which
also suffices for counting t-cliques). But before getting to this improvement, we analyze the effect
of Construction 2.1.

Proposition 2.2 (analysis of Construction 2.1): Let w, v, w′ and v′ be as in Construction 2.1.

1. If CWCG,pt (w) = v and both parties follow their instructions, then CWC
G,p
t−1(w′) = v′ holds.

2. If CWC
G,p
t (w) 6= v and the verifier follows its instructions, then either the verifier rejects or

CWC
G,p
t−1(w′) = v′ holds with probability at most tn/|F|.

Proof: Using Eq. (6), Eq. (5), and Eq. (2), we get for every i ∈ [n]

Pt−1(i) =
∑

S∈( [n]
t−1):CL(GS)

∏
j∈S

fj(i)

=
∑

S∈( [n]
t−1):CL(GS)

∏
j∈S

w
(i)
j

= CWC
G,p
t−1(w(i)),

and so t · CWCGt (w) ≡
∑

i∈[n]wi · Pt−1(i) (mod p). More generally (by the same argument), for

every k ∈ F , it holds that Pt−1(k) = CWC
G,p
t−1(w(k)), where w

(k)
j = fj(k) for every j ∈ [n].

Under the hypothesis of Item 1, v = CWC
G,p
t (w) and the polynomial P̃ received by the verifier

equals Pt−1, which implies that the verifier does not reject (since t · v =
∑

i∈[n]wi · P̃ (i) over

F = GF(p)). Furthermore, in this case v′ = P̃ (r) equals Pt−1(r) = CWC
G,p
t−1(w′), where w′j = fj(r)

for every j ∈ [n].
Under the hypothesis of Item 2, the polynomial Pt−1 does not satisfy the equation t · v =∑
i∈[n]wi · Pt−1(i) over F . If the prover sets P̃ = Pt−1, then the verifier rejects, and otherwise P̃

and Pt−1 may agree on at most (t − 1) · (n − 1) points. In the latter case, unless r is one of the
agreement points, it follows that CWCG,pt−1(w′) = Pt−1(r) 6= P̃ (r), where w′j = fj(r) for every j ∈ [n].

The interactive proof system. Iteratively invoking Construction 2.1 yields an interactive proof
system for the claim CWC

G,p
t (w) = v, where w ∈ Fn and v ∈ F . In the ith iteration we start with a

claim of the form CWC
G,p
t−i+1(w(i−1)) = v(i−1), and end with a claim of the form CWC

G,p
t−i(w

(i)) = v(i).

Hence, after t − 2 iterations, we reach a claim of the form CWC
G,p
2 (w(t−2)) = v(t−2), which the

verifier can verify by itself. To apply this procedure to the problem of counting t-cliques in an
n-vertex graph, we initiate it by selecting a field of prime cardinality greater than nt, and setting
w(0) = (1, ..., 1) ≡ 1n. Hence, we get –

12Note that P̃ can be evaluated using O(tn) field operations.
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Theorem 2.3 (interactive proof systems for counting cliques of given size): For an efficiently
computable function t : N→ N, let St denote the set of pairs (G,N) such that the graph G = ([n], E)
has N distinct t(n)-cliques. Then, St has a (t− 2)-round (public coin) interactive proof system (of
perfect completeness) in which the verifier’s running time is Õ(t(n)2 ·n2), and the prover’s running

time is dominated by O(t(n)2 · n) calls to the oracle CWC
G,p
t(n)−1, where p is a prime number in

[nt(n), 2nt(n)], and CWC
G,p
t answers the query (i, w) ∈ [t]×GF(p)n with CWC

G,p
i (w).

Indeed, this suggests an alternative construction of interactive proof systems for sets in coNP.
The fact that this construction is different from the celebrated construction of [27] is manifested by
the (reduced) running time of the prover. Specifically, as shown in Section 2.2, the computation of
CWC

G,p
t is O(t2|w|)-time reducible to counting the number of t-cliques in Õ(t2n)-vertex graphs, which

in turn has complexity O(nωmmdt/3e), where ωmm is the matrix multiplication exponent (see [29]).

Proof: On input G = ([n], E) and N (which is supposed to equal the number of t(n)-cliques in
G), the parties pick a finite field F of prime candinality greater than nt(n), and initialize w = 1n

and v = N . (This prime can be selected at random in [nt(n), 2nt(n)] by either parties.) Next,
they iteratively invoke Construction 2.1 for t(n) − 2 times (with decreasing clique-size parameter
(starting at size t(n) and ending at size 3)). In case the verifier did not reject (in any iteration),
it is left with a claim of the form CWCG2 (w) = v, which it can verify by itself in O(n2) time (since
CWCG2 (w) equals

∑
{j,k}∈E wj · wk). For sake of clarity, we spell out the protocol.

1. On input G = ([n], E) and N ≤
(
n
t(n)

)
, the verifier selects uniformly a prime number p in

[nt(n), 2nt(n)], and sends it to the prover. Both parties set F = GF(p), and initiate w(0) ← 1n

and v(0) ← N .

2. For i = 1, ..., t(n) − 2, the parties invoke Construction 2.1, while setting t ← t(n) − i + 1,
w ← w(i−1) and v ← v(i−1). Once Construction 2.1 terminates, they set w(i) ← w′ and
v(i) ← v′. (In all invocations, F is as set in Step 1.)

3. The verifier checks whether CWCG2 (w(t(n)−2)) = v(t(n)−2) by direct computation.

All claims of the theorem follow quite immediately. In particular, in the ith iteration, the verifier
performs O((t(n)− i) · n2) field operations, whereas the prover’s computation is dominated by less
than t(n) · n invocations of the oracle CWC

G,p
t(n)−i.

Remark 2.4 (implementing CWCt′−1 using CWCt′): We comment that, for any G = ([n], E), the

oracle CWCGt′−1 (resp., CWCG,pt′−1) can be implemented using two oracle calls to CWCG
′

t′ (resp., CWCG
′,p

t′ ),

where G′ = ([n + 1], E′) such that E′ = E ∪ {{j, n + 1} : j ∈ [n]}. Specifically, CWCGt′−1(w) =

CWCG
′

t′ (w1)− CWCG
′

t′ (w0).

Hence, CWC
G
t is O(2tn)-time reducible to CWCG

′
t , where G′ has t more vertices than G. Specifically,

CWCGt−i(w) is a linear combination (with coefficients in {±1}) of the values (CWCG
′

t (wα0t−i))α∈{0,1}i .

Observing that f(β)
def
= CWCGt (wβ) depends only on the Hamming weight of β ∈ {0, 1}t, we can

write CWCGt−i(w) as a linear combination of the values (CWCGt (w0j1i−j0t−i))j∈[[i]]. Hence, we obtain

an O(tn)-time reduction of CWC
G
t to CWCG

′
t . A alternative (O(tn)-time) reduction is presented next.
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Remark 2.5 (implementing CWCt−i using CWCt): For any G = ([n], E), the oracle CWCGt−i (resp.,

CWC
G,p
t−i) can be implemented using one oracle call to CWCG

(i)

t (resp., CWCG
(i),p

t ), where G(i) consists
of t− i independent sets of size n that are connected by a double-cover of G, and augmented by an
i-clique that is connected to all these (t− i) ·n vertices.13 That is, G(i) = ([(t− i)n+ i], E′∪A) such
that E′ = {{(a − 1)n + j, (b − 1)n + k} : {j, k} ∈ E& a 6= b ∈ [t − i]} and A = {{j, (t − i)n + k} :

j ∈ [(t− i)n] & k ∈ [i]}. Specifically, (t− i)! · CWCGt−i(w) = CWCG
(i)

t (wt−i1i). Seeking to use the same

number of vertices in all graphs G(i), we may augment G(i) with i · n− i isolated vertices.

Discussion: Our proof system for #P versus the standard one

The standard interactive proof system for #SAT starts with a full arithmetization of the Boolean
problem [27], which yields an arithmetic problem that has no clear intuitive meaning. This is done
by writing the CNF formula as an arithmetic formula over GF(2), and then considering it as an
Arithmetic formula over a larger field. Alternatively, given a Boolean formula over n variables,
viewed as a function from {0, 1}n to {0, 1}, we write the low-degree extension of this function.

In contrast, we present an interactive proof system for counting the number of cliques in a
graph that proceeds in iteration such that in each iteration the clique counting problem is reduced
to itself. Hence, the claim made at the beginning (and the end) of each iteration has a clear
intuitive meaning. (As noted upfront and elaborated in Section 2.2, the sum of weighted t-cliques
in a graph G equals the number of t-cliques in a corresponding graph obtained by a suitable blow-
up of G.) Furthermore, each iteration consists of a natural downwards reduction, which decreases
the size parameter by one unit, and a batch verification that reduces n claims to a single one.
Both reductions have an intuitive appeal, although the batch verification relies on a suitable error
correcting code, which is a “multiplication code” in a sense akin to the sense used in Meir’s work [28].
To simplify the exposition, we use the Reed-Solomon code, but any code supporting a sufficient
number of multiplications will do.

The difference between our construction and the standard one may be articulated using Meir’s
observation [28] that the standard construction uses the fact that Reed-Muller codes are tensor
codes (and that one can use arbitrary tensor (of multiplication) codes). Specifically, the standard
construction uses a codeword that encodes the 2n values of the Boolean formula over all assignments
to the n variables. In contrast, we do not use tensor codes, and in each iteration we encode n
values that correspond to n instances of the problem. (Indeed, like in the standard interactive
proof systems for coNP, we actually refer to the counting problem.)

2.2 Reducing counting vertex-weighted cliques to the unweighted case

Recall that the prover strategy underlying the interactive proof system presented in the proof of
Theorem 2.3 can be implemented in O(t(n)2n2) time when given oracle access to CWC

G,p
t , where p

is a prime in [nt(n), 2nt(n)]. In fact, the prover uses O(t(n) · n) calls to each of oracles CWC
G,p
i for

i = 2, ..., t(n)−1. We first observe that each such oracle can be implemented by using O(t(n)2 log n)
oracle calls to a corresponding oracle that is defined for weights that reside in [O(t(n)2 log n)]. Next,
we show that each of these queries can be implemented by counting cliques is a simple Õ(t(n)2n)-
vertex graph (with no weights). These two reductions are summarized in the following result.

13The double-cover of G = ([n], E) is a bipartite graph B with n vertices on each side such that 〈1, u〉 and 〈2, v〉
are connected in B if and only if {u, v} ∈ E.
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Proposition 2.6 (reducing CWCGt to counting t-cliques in graphs): For a graph G = ([n], E) and

a prime p ∈ [nt, 2nt], let CWC
G,p
t (w)

def
= CWCGt (w) mod p, where CWCGt be as in Eq. (2). Then, the

computation of CWCG,pt (w) can be reduced in Õ(t2|w|)-time to computing the number of t-cliques in
an unweighted graph having Õ(t2n) vertices. Furthermore, the reduction uses O(t2 log n) queries.

Proof: We may assume, without loss of generality, that w ∈ [p]n, since otherwise we reduce each
coordinate of w modulo p. Observe that the value of CWCGt (w) is a non-negative integer that is
smaller than t!

(
n
t

)
· pt < (np)t < n2t2 . For m = O(t2 log n), it holds that the product of all primes

in [m] is larger than n2t2 , and so we may compute CWCGt (w) by computing CWCGt (w) modulo each
of these primes. Hence, for each prime pi in [m], we first reduce the weights modulo pi, obtaining

w
(i)
j = wj mod pi for each j ∈ [n], and then compute CWC

G,pi
t (w(i)), which equals CWC

G,pi
t (w). That

is, CWCGt (w) is computed using the Chinese Remainder Theorem based on the values of CWCG,pit (w)
for each prime pi ∈ [m].

Next, we efficiently reduce the computation of CWC
G,p′

t (w′), where p′ is a prime in [m] and
w′ ∈ [p′]n, to the standard problem of counting t-cliques. Actually, we reduce the computation of
CWCGt (w′) to counting the number of t-cliques in a related graph G′. The reduction just maps the
graph G = ([n], E) with weights w′ = (w′1, ..., w

′
n) ∈ [m]n to the graph G′ = (V ′, E′) in which each

vertex j of G is replaced by an independent set of size w′j , and edges are replaced by complete
bipartite graphs between the corresponding independent sets; that is

V ′ = ∪j∈[n]Vj where the Vj ’s are disjoint and |Vj | = w′j (7)

E′ = ∪{j,k}∈E{{u, v} : u ∈ Vj & v ∈ Vk}. (8)

Indeed, the value of CWCGt (w′) equals the number of t-cliques in G′.
Combining the two reductions, we obtain a Õ(t2|w|)-time reduction of computing CWC

G,p
t (w),

where p = O(nt), to counting t-cliques in O(t2n log n)-vertex graphs. Indeed, the reduction makes
O(t2 log n) calls, where in the ith call we obtain the number of t-cliques in the graph G(i) in which

vertex j of G is replaced by an independent set of size w
(i)
j ∈ [pi] such that w

(i)
j ≡ wj (mod pi).

Proof of Theorem 1.3: Combining Theorem 2.3 with Proposition 2.6 yields Theorem 1.3.
Specifically, the proof system asserted in Theorem 2.3 is almost as asserted in Theorem 1.3, except
that the prover strategy in the former system relies on O(t(n)2 · n) calls to the oracle CWC

G,p
t(n)−1,

where p is a prime number in [nt(n), 2nt(n)], and CWC
G,p
t answers the query (i, w) ∈ [t]×GF(p)n with

CWC
G,p
i (w). Proposition 2.6 implies that each of these O(t(n)2 ·n) queries can be answered by mak-

ing O(t(n)2 log n) queries to an oracle that on input a Õ(t(n)2 · n)-vertex graph G′ and an integer
i ∈ [t(n) − 1] returns the number of i-cliques in G′. Lastly, using Remark 2.4 (and the discussion
following it), we can implement each of these queries by t(n) queries to an oracle that returns the
number of (t(n)− 1)-cliques in Õ(t(n)2 ·n)-vertex graphs. Alternatively, using Remark 2.5, we can
implement each of the i-clique queries by a single query to an oracle that returns the number of
(t(n)− 1)-cliques in Õ(t(n)3 · n)-vertex graphs.
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3 Edge-weighted t-Clique

Here we consider edge weights in addition to the vertex weights that were considered in the previous
section. For simplicity of exposition, we consider vertex weights as if they are the weights of the
corresponding self-loops. Given that we use edge weight, there is no need to specify a graph since
non-edges can be represented as edges with weight zero. Indeed, the weight of a t-subset of vertices
will be defined as equal the product of the weights of all edges in the induced graph (including the
self-loops). Hence, for a symmetric (and possibly reflexive) n-by-n matrix W = (wj,k)j,k∈[n], we let
CWCt(W ) denote the sum of the weights of all t-subsets of vertices; that is,

CWCt(W )
def
=

∑
S∈([n]t )

∏
j≤k:j,k∈S

wj,k (9)

Indeed, for a simple graph G = ([n], E) and w ∈ (N∪{0})n, the quantity CWCGt (w) equals CWCt(W ),
where wj,j = wj for every j ∈ [n], and wj,k = 1 if {j, k} ∈ E and wj,k = 0 otherwise (i.e., if

{j, k} ∈
(

[n]
2

)
\E). As in Section 2, we shall show how to reduce the computation of CWCt to counting

t-cliques in graphs, alas the current reduction (presented in Section 3.2) is less straightforward and
incurs a larger overhead.

As in Section 2, we shall also consider the restriction and reduction of CWCt to prime fields; that

is, abusing notation, for a prime p, we let CWC
p
t (W )

def
= CWCt(W ) mod p. (We believe that in doing

so we risk no confusion, because in the current section a graph will never be used as a superscript
to CWCt.)

Our motivation for the current generalization is that it supports a worst-case to average-case
reduction, which will be used to prove Theorem 1.1. But before describing this reduction, we show
that the results of the previous section extend to the current generalization. First, note that

t · CWCt(W ) =
∑
i∈[n]

wi,i · CWCt−1(W (i)), where W (i) = (w
(i)
j,k) satisfies (10)

w
(i)
j,k =


0 if j = k = i
wi,j · wj,j if j = k ∈ [n] \ {i}
wj,k otherwise (i.e., j 6= k)

(11)

(This is the case since each pair (S, i) such that S is a t-subset of [n] and i ∈ S contributes
equally to each side of Eq. (10), where the contribution is

∏
j∈S wi,j ·

∏
j≤k∈S\{i}wj,k, which equals

wi,i ·
∏
j≤k∈S\{i}w

(i)
j,k.) Note that W (i) and W differ only on the self-loops (i.e., w

(i)
j,k = wj,k for every

j 6= k), where w
(i)
i,i = 0 and w

(i)
j,j = wi,j · wj,j for every j ∈ [n] \ {i}.

Organization. In Section 3.1 we present an interactive proof system for the problem of “count-
ing” edge-weighted t-cliques (i.e., the set of pairs (W, CWCt(W ))). This result is presented for the
sake of elegancy, and is not used anywhere else in this work; it is actually subsumed by combining
the results of Sections 2.1 and 3.2. Sections 3.2–3.4 are the core of the current section (i.e., Sec-
tion 3). In Section 3.2 we show that computing CWCt (i.e., “counting” edge-weighted t-cliques) can
be reduced to computing the number of t-cliques in unweighted graphs. In Section 3.3 (resp., Sec-
tion 3.4) we present a worst-case to average-case (resp., rare-case) reduction for the edge-weighted
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clique counting problem, establishing Theorem 1.1 (resp., Theorem 1.2). Lastly, in Section 3.5,
we employ the ideas developed in Sections 3.2–3.3 in order to present a worst-case to average-case
reduction for the problem of counting t-cycles (in unweighted graphs).

3.1 The interactive proof system

As in Section 2.1, we shall reduce the evaluation of CWC
p
t to a single evaluation of CWC

p
t−1, by

considering the following polynomials over F = GF(p) (for j, k ∈ [n]):

fj,k(z)
def
=
∑
i∈[n]

EQi(z) · w
(i)
j,k (12)

where EQi : F → F is (a degree n − 1 polynomial) as in Section 2.1. Recall that fj,k(i) = w
(i)
j,k for

every i ∈ [n], and that each fj,k can be computed using O(n) field operations (when given W ).

Construction 3.1 (Construction 2.1, revised): The iteration starts with a claim of the form
CWC

p
t (W ) = v, where W ∈ Fn×n and v ∈ F are determined before.

1. The prover computes the
((
t
2

)
+ t
)
· (n− 1) degree polynomial Pt−1 : F → F , where

Pt−1(z)
def
=

∑
S∈( [n]

t−1)

∏
j≤k∈S

fj,k(z), (13)

and sends it to the verifier.

Note that Pt−1(z) can be computed by interpolation, using the values of Pt−1 at less than t2n

points, and that for every ` ∈ F it holds that Pt−1(`) = CWCt−1(W (`)), where w
(`)
j,k = fj,k(`)

for every j, k ∈ [n].

2. Upon receiving a polynomial P̃ of degree at most t2n, the verifier checks whether t · v ≡∑
i∈[n]wi,i · P̃ (i) (mod p), and rejects if equality does not hold. If equality holds, the verifier

selects uniformly r ∈ F , and sends it to the prover.

The iteration ends with the claim that CWC
p
t−1(W ′) = v′, where v′ = P̃ (r) and w′j,k = fj,k(r) for

every j, k ∈ [n].

Recall that both parties can compute each of the fj,k’s using O(n) field operation, which implies that

the verifier strategy can be implemented using Õ(n3 + t2n2) field operations. (Actually, the verifier
can be implemented using O(t2n2) field operations; see Proposition 3.3.) In addition, the prover
needs to construct the polynomial Pt−1, and a straightforward way of doing so can be implemented
using O(nt) field operations. As in the previous section, we shall see that the complexity can be
improved to O(t · n1+ωmmd(t−1)/3e), where ωmm is the matrix multiplication exponent. But again, we
first state the effect of a single iteration.

Proposition 3.2 (analysis of Construction 3.1): Let W, v,W ′ and v′ be as in Construction 3.1.

1. If CWCpt (W ) = v and both parties follow their instructions, then CWC
p
t−1(W ′) = v′ holds.

2. If CWC
p
t (W ) 6= v and the verifier follows its instructions, then either the verifier rejects or

CWC
p
t−1(W ′) = v′ holds with probability at most t2n/|F|.
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The proof of Proposition 3.2 is analogous to the proof of Proposition 2.2. The key observation here
is that, for every i ∈ [n], it holds that

Pt−1(i) =
∑

S∈( [n]
t−1)

∏
j≤k∈S

fj,k(i)

=
∑

S∈( [n]
t−1)

∏
j≤k∈S

w
(i)
j,k

= CWC
p
t−1(W (i)),

and so t · CWCt(W ) ≡
∑

i∈[n]wi,i · Pt−1(i) (mod p). More generally, for every ` ∈ F , it holds that

Pt−1(`) = CWCt−1(W (`)), where w
(`)
j,k = fj,k(`) for every j, k ∈ [n].

Proposition 3.3 (implementing the verifier of Construction 3.1): The mapping (W, `) 7→ (fj,k(`))j,k∈[n]

can be computed in O(n2) field operations.

Proof: We rewrite Eq. (12) as

fj,k(z)
def
= wj,k ·

∑
i∈[n]

EQi(z) +
∑
i∈[n]

EQi(z) · E
(i)
j,k (14)

where E
(i)
j,k = w

(i)
j,k − wj,k. The key observation is that E

(i)
j,k = 0 for j 6= k, so we need to compute

E
(i)
j,k only for n2 values of i, j, k ∈ [n], and each E

(i)
j,k can be computed in a constant number of field

operations (see Eq. (11)). Computing all the EQi’s can be done in O(n2) field operations, which

allows to compute n+1 linear combinations of these values (i.e.,
∑

i∈[n] EQi(z) and
∑

i∈[n]E
(i)
j,j ·EQi(z)

for j ∈ [n]) in O(n2) field operations.

Theorem 3.4 (Theorem 2.3, slightly revised): For an efficiently computable function t : N → N,
let St denote the set of pairs (W, CWCt(n)(W )) such that W is a symmetric n-by-n Boolean matrix.
Then, St has a (t − 2)-round (public coin) interactive proof system (of perfect completeness) in
which the verifier’s running time is Õ(t(n)3 · n2), and the prover’s running time is dominated by
O(t(n)3 · n) calls to the oracle CWC

p
t(n)−1, where p is a prime number in [nt(n), 2nt(n)], and CWC

p
t

answers the query (i,W ) ∈ [t]×GF(p)n×n with CWC
p
i (W ).

Proof: We proceed as in the proof of Theorem 2.3. On input W and N (which is supposed to equal
CWCt(n)(W )), the parties pick a finite field F = GF(p) such that p ∈ [nt(n), 2nt(n)], and iteratively
invoke Construction 3.1. In case the verifier did not reject (in any of the t(n)−2 iterations), it is left
with a claim of the form CWC

p
2(W ′) = v′, which it can verify by itself using O(n2) field operations

(since CWC2(W ′) equals
∑

j<k∈[n]w
′
j,j · w′j,k · w′k,k).

Digest. Constructions 2.1 and 3.1 combine a downward reduction of the (clique size) parameter
t with a batch verification of many claims to the verification of a single claim of similar type. Such
batch verification is implicit in the celebrated sum-check protocol [27] and the notion was made
explicit and applied in a wider context in [30]. Nevertheless, the current constructions catch the eye
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in applying batch verification to a more natural problem and doing so in a more intuitive manner.
Specifically, in Construction 2.1 numerous instances of counting (t−1)-cliques in weighted versions
of a graph are reduced to such a single instance, whereas in Construction 3.1 numerous instances of
a generic problem (with no fixed parameter) are reduced to a single instance of the same problem.

3.2 Reducing counting edge-weighted cliques to the unweighted case

Analogously to Proposition 2.6, we show that computing CWCt can be reduced to counting the
number of t-cliques in simple unweighted graphs. We present the reduction in two explicit steps,
which correspond to the two steps in the proof of Proposition 2.6, first reducing the magnitude of
the weights in the matrix, and then reducing to the case of simple graphs (with no weights).

Proposition 3.5 (reducing the weights in the computation of CWCt): The computation of CWCt for
matrices with entries in [[m]] can be reduced in Õ(t2n2 logm)-time to computing CWC

p
t for primes

p ∈ [t2 log(nm), 2t2 log(nm)]. The reduction makes less than t2 log(nm) queries, each referring to
an n-by-n matrix.

Proof: As in the first part of the proof of Proposition 2.6, we merely use the Chinese Remainder
Theorem, while relying on the fact that CWCt(W ) resides in the interval [0, nt ·mt2 ]. Specifically,
given a matrix W ∈ [[m]]n×n, for each prime p ∈ [t2 log(nm), 2t2 log(nm)], we query CWC

p
t on

W (p) = W mod p (i.e., W (p) = (wj,k mod p)j,k∈[n]).

While the overhead of the foregoing reduction is polynomial in t and logm, the overhead of the
following reduction is exponential in these values. Hence, the following reduction is applied only
for small values of t (e.g., t = O(1)) and small weights (i.e., small p’s).

Theorem 3.6 (reducing CWCpt to counting t-cliques in graphs): The computation of CWCpt : GF(p)n×n →
GF(p) can be reduced in Õ(pt

2
n2)-time to computing the number of t-cliques in an unweighted

graph having n′′
def
= Õ(2t

2dlog2 pe · n) vertices. Furthermore, CWCt(W ) = CWCt(T (W ))/t!, where
T : GF(p)n×n → {0, 1}n′′×n′′ is a Õ(pt

2
n2)-time computable one-to-one mapping and T (W ) is an

n′′-by-n′′ symmetric and reflexive Boolean matrix (which represents an n′′-vertex graph).

(Note that n′′ is intentionally defines as a function of dlog2 pe rather than as a function of p; hence,
the problems of computing CWC

p
t , for all p ∈ [2`(n)−1, 2`(n)] are reduced to the same clique counting

problem.)

Proof: Viewing the (symmetric) matrix W ∈ GF(p)n×n as an n-vertex (complete) graph G =
([n],

(
[n]
2

)
) with vertex and edge weights, we first get rid of the vertex weights. This is done exactly

as in (the second part of the proof of) Proposition 2.6; that is, by replacing each vertex (of G) by
an independent set of size that equals its weight, which is in [p], and placing complete bipartite
graphs between these independent sets with edge weights that equal the weight of the corresponding
edge. (That is, the vertex v is replaced by an independent set of size wv,v, denoted Iv, and the edge
between u and v is replaced by a complete bipartite graph between Iu and Iv such that each edge in

this bipartite graph has weight wu,v.) Hence, we derive a graph with ñ
def
=
∑

v∈[n]wv,v ≤ n′
def
= n · p

vertices. Augmenting this graph with n′− ñ isolated vertices, we obtain an n′-vertex graph G′ with
edge weights in [p]. We denote the weight of edge e = {u, v} by we (whereas all vertex weights are
set to 1).
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Next, we construct a graph G′′ that consists of p(
t
2) isolated copies of graphs of the form G′′

i
,

where i = (ij,k)j<k∈[t] ∈ [p](
t
2), and each graph G′′

i
consists of t independent sets such that each

pair of sets is connected by a subgraph of the double-cover of G′. (Recall that the double-cover of
G′ = ([n′], E′) is a bipartite graph B′ with n′ vertices on each side such that 〈1, u〉 and 〈2, v〉 are

connected in B′ if and only if {u, v} ∈ E′.) Specifically, for each i = (ij,k)j<k∈[t] ∈ [p](
t
2), the graph

G′′
i

consists of the vertex-set {〈i, j, v〉 : j ∈ [t] & v ∈ [n′]} such that vertices 〈i, j, v〉 and 〈i, k, u〉 are
connected if and only if (j 6= k and) w{v,u} ≥ ij,k. We stress that the crux of the construction is

that, for j 6= k, the vertices 〈i, j, v〉 and 〈i, k, u〉 are connected if and only if ij,k ∈ [w{v,u}].
Note that in the case that all weights equal p (i.e., w{v,u} = p for every {u, v} ∈ E′), each graph

G′′
i

consists of t independent sets that are connected by double-covers of G′. In this case, each
t-clique in G′ yields t! cliques of size t in each G′′

i
, where these t! cliques correspond to all possible

permutations over [t]; specifically, for each clique {v1, ..., vt} in G′ and each permutation π over [t],
the set {〈i, π(1), v1〉, ..., 〈i, π(t), vt〉} is a clique in G′′

i
. On the other hand, the only t-cliques in G′′

i

are t-subsets of the form {〈i, 1, v1〉, ..., 〈i, t, vt〉} such that {v1, ..., vt} is a t-clique in G′.
In the general case (of arbitrary edge weights (we)e∈E′ ∈ [p]|E

′|), for each permutation π over
[t], each t-clique {v1, ..., vt} in G′, yields the clique {〈i, π(1), v1〉, ..., 〈i, π(t), vt〉} in G′′

i
if and only if

for all j < k ∈ [t] it holds that iπ(j),π(k) ∈ [w{vj ,vk}]. Hence, for each permutation π, an “image” of
this t-clique appears in

∏
j<k w{vj ,vk} of the graphs G′′

i
. On the other hand, the only t-cliques in

G′′ have the form {〈i, 1, v1〉, ..., 〈i, t, vt〉} such that {v1, ..., vt} is a t-clique in G′ and ij,k ∈ [w{vj ,vk}]
holds for all j 6= k ∈ [t].

To summarize, denoting by W ′ = (w′j,k) the matrix that corresponds to the edge weights in
G′ (i.e., w′j,j = 1 and w′j,k = w{j,k} if {j, k} is an edge of G′ (and wj,k = 0 otherwise)), we have
CWCt(W ) = CWCt(W

′) and t! · CWCt(W ′) equals the number of t-cliques in G′′.

Remark 3.7 (reducing CWC
p
i to counting t-cliques, where i ∈ [t − 1]): Generalizing Theorem 3.6,

for every i ∈ [t], we obtain a mapping T (i) : GF(p)n×n → GF(2)n
(i)×n(i)

such that CWCi(W ) =
CWCi(T

(i)(W ))/i! and n(i) = Õ(2i
2dlog2 pe · n), where indeed T (t) = T and n(t) = n′′. Wishing to

reduce all CWCi’s to counting t-cliques, we augment the graph produced by T (i) with n′′−n(i)−2(t−i)
isolated vertices and a clique of size t−i that is connected by a complete biparitite graph to all original
vertices (in the graph produced by T (i)). Observing that the original graph produced by T (i) has
no cliques of size greater than i, it follows that there is a one-to-one correspondance between the
i-cliques in the original graph and the t-cliques in the augmented graph. We denote the augmented
graph derived from W when wishing to compute CWCi(W ) by T ′(i,W ), and note that T ′(i,W ) has
n′′ − (t− i) vertices.

Corollary 3.8 (on implementing the prover of Theorem 3.4): For every fixed t and p = O(nt), the
computation of CWCpt : GF(p)n×n → GF(p) can be reduced in Õ(n2)-time to computing the number
of t-cliques in unweighted graphs having Õ(n) vertices.

(Indeed, the Õ notation hides factors that are exponential in t2.)

Proof: The reduction of Proposition 3.5 reduces the computation of CWCpt to few computations
of CWC

q
t for primes q = O(t2 log(np)) = O(log n). The reduction of Theorem 3.6 reduces each

such computation to counting t-cliques in a graph with Õ(qt
2 · n) = Õ(n) vertices. Analogously,

computing CWC
p
i is reduced to counting t-cliques in Õ(n)-vertex graphs (by using Remark 3.7).
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3.3 The worst-case to average-case reduction

We focus on the worst-case and average-case problems of computing CWC
p
t : GF(p)n×n → GF(p),

while allowing t and p to vary with n. While it is natural to assume that t = t(n) is easily determined
given n, we cannot make this assumption regarding the determination of a prime p = p(n) of size
Θ(nt), since determining such a prime may take time Ω(nt), whereas our focus here is on reductions
that run much faster (i.e., they must be certainly faster than the complexity of computing CWCt).

14

Indeed, we can resolve the problem by adopting some form of Cramer’s conjecture (which asserts
that the interval [m,m+O(log2m)] contains a prime), but prefer not to make such assumptions.15

For starters, we shall ignore the foregoing issue, and consider the problem Πp
n of computing

CWC
p
t : GF(p)n×n → GF(p), where n, p and t are viewed as generic (and are given to all algorithms

as auxiliary inputs). We shall later consider the problem Πn in which the instances are pairs of
the form (p,W ) such that p is an `(n)-bit long prime and W ∈ GF(p)n×n, and the problem is to
compute CWC

p
t(n)(W ).

3.3.1 The reduction of CWCpt for fixed t and p

For sake of asymptotic presentation, we let t = t(n) and p = p(n) be functions of n. Recall that we
assume that the reductions asserted next are given n, t and p as auxiliary inputs.

Theorem 3.9 (worst-case to average-case reduction for Πp
n): Fixing functions t : N → N and

p : N→ N such that p(n) is a prime number in [ω(t(n)2), nO(t(n))], we let Πp
n denote the problem of

computing CWC
p(n)
t(n) (W ) for n-by-n matrices W over GF(p(n)). Then, Πp

n is randomly self-reducible

in Õ(t(n)3 · n2) time with t(n)2 queries.16 Furthermore, there is a worst-case to average-case
reduction of Πp

n to itself that makes O(t(n)2) queries, runs in Õ(t(n)3 · n2) time, and outputs the
correct value with probability 2/3 provided that the error rate of the average-case solver is a constant
smaller than one half.

Note that Theorem 3.4 extends to the set of tuples (n, p(n),W, CWC
p(n)
t(n) (W )) such that n ∈ N and

W ∈ GF(p(n))n×n. Recall that (by Corollary 3.8), for every fixed t, the computation of CWCpt can
be reduced in Õ(n2)-time to computing the number of t-cliques in unweighted Õ(n)-vertex graphs.
Alternatively, CWCpt can be computed in time Õ(nωmmdt(n)/3e)), where ωmm is the matrix multiplication
exponent (by extending the ideas of [29]; see Appendix).

Proof: Fixing t = t(n) > 1 and p = p(n), we let F = GF(p(n)). For any W,R ∈ Fn×n, consider
the univariate polynomial Pt(z) = CWC

p
t (W + zR), where the arithmetic is over F . Recalling

Eq. (9), observe that Pt has degree t+
(
t
2

)
< t2, and so for every W and R, the value of CWCpt (W )

can be obtained by querying Pt at t2 points. Hence, given W , the random self-reducibility process

14Indeed, this issue is less acute in the context of interactive proofs, since we may instruct the parties to select such
a prime at random (rather than determine it).

15Indeed, for our purposes, it suffices to assume that interval [m,m+ poly(logm)] contains a prime. Actually, we
can get meaningful results even when only assuming that interval [m,m+mo(1)] contains a prime.

16Recall that a problem is is randomly self-reducible in time t with q queries if there exists an oracle machine of time
complexity t and query complexity q that solves the problem (in the worst-case) by making uniformly distributed
queries to the problem itself. (We stress that the queries may depend on one another; it is only required that
each query is uniformly distributed among the problem’s instances.) Indeed, such a reduction yields a worst-case to
average-case reduction that supports average-case error rate of 1/3t.
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select R ∈ Fn×n uniformly at random, and queries the corresponding polynomial at the points
1, ..., t2. Note that these queries correspond to t2 queries to CWC

p
t such that each query is uniformly

distributed in Fn×n (by virtue of the random R).
Recovery under error rate of 1/9 is possible by picking a random R, querying the corresponding

polynomial on 3t2 (non-zero) points, and employing the Berlekamp–Welch algorithm. In this case,
with probability at least 2/3, at least a 2/3 fraction of the queries are answered correctly. (Note
that each of these queries corresponds to a collection of n2 points on n2 random lines that pass
through W at their origin.) To support an error rate of η < 1/2 (equiv., a success rate of 0.5+ ε for
ε = 0.5−η), we pick a random collection of n2 curves of degree two, denoted Ci,j : F → F , that pass
(at their origin) through the n2 corresponding entries of W (i.e., Ci,j(0) = wi,j), and consider the
polynomial (of degree at most 2t2) that represents the value of CWCpt (C(z)), where C(z) = (Ci,j(z)).
In this case, letting ε = 0.5− η, with probability at least 2/3, at least a 0.5 + 0.5 · ε fraction of the
O(t2/ε) queries are answered correctly, which suffices for correct decoding.

3.3.2 The reduction of Πn

Here, for efficiently computable functions t, ` : N → N, we consider the problem Πn in which the
instances are pairs of the form (p,W ) such that p is an `(n)-bit long prime and W ∈ GF(p)n×n,
and the problem is to compute CWC

p
t(n)(W ).

Showing a worst-case to average-case reduction for Πn is more complex than doing so for Πp
n,

because when given the input (p,W ) it may be the case that the average-case solver just fails on
all inputs of the form (p, ·). Hence, we shall use Chinese Remaindering (with errors [19]) in order

to obtain the value of CWCpt(n)(W ) (or rather CWCt(n)(W )) from the values of CWCp
′

t(n)(W ) for other

primes p′ ∈ [2`(n)−1, 2`(n)].

Theorem 3.10 (worst-case to average-case reduction for Πn):17 Let ` : N → N be such that
`(n) ∈ [3 log t(n) + log log n + ω(1), O(t(n) log n)]. Then, there exists a worst-case to average-case
reduction of Πn to itself that makes Õ(t(n)5 log n) queries, runs in Õ(t(n)6 · n2) time, and outputs
the correct value with probability 2/3 provided that the error rate of the average-case solver is a
constant smaller than one fourth.

Proof: Denoting the error rate of the average-case solver by η < 1/4, and letting ε = 1/4− η, we

first observe that for at least a 0.5 + ε fraction the primes in In
def
= [2`(n)−1, 2`(n)], the solver has an

error rate of at most 0.5− ε; that is, for each such prime p, hereafter called good, the solver solves
Πp
n correctly on at least a 0.5 + ε fraction of the instances. Hence, for each good prime, we can

apply the reduction presented in the proof of Theorem 3.9, but the problem is that the prime that
is part of the worst-case instance may not be good.

Hence, on input (p,W ), where p ∈ In and W ∈ GF(p)n×n, we first try to obtain the (integer)
value of CWCt(n)(W ), and then reduce the result modulo p. Basically, we shall obtain the value of
CWCt(n)(W ) by selecting m = O(ε−1t(n)3 log n)/`(n) random primes p1, ..., pm in In, hoping that at
least (0.5 + 0.5ε) ·m of them are good, and combining the values (CWCpit(n)(W ))i∈[m] using Chinese

Remaindering with errors [19, Sec. 3]. The analysis of the latter decoding relies on the fact that the
(non-negative) value of CWCt(n)(W ) is bounded above by

(
n
t(n)

)
·(2`(n)+1)t(n)2 < nO(t(n)3), whereas the

17Recall that Πn is defined in terms of of the functions t, ` : N→ N. It refers to instances of the form (p,W ) such
that p is an `(n)-bit long prime and W ∈ GF(p)n×n, and calls for computing CWC

p
t(n)(W ).
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product of the smallest εm primes in In exceeds (2`(n)−1)εm = exp(O(t(n)3 log n)).18 Specifically,
on input (p,W ), we proceed as follows.

1. Select at random m = O(ε−1·t(n)3 logn)
`(n) primes in In.

2. For each selected prime, denoted pi, invoke the worst-case to average-case procedure for Π
(pi)
n

on the instance (pi,W ), and denote the result by vi. (The aforementioned reduction is the one
presented in the proof of Theorem 3.9, except that the error probability should be reduced
to 1/3m.)19

3. Apply Chinese Remaindering with errors (for error rate 0.5− 0.5ε) on v1, ..., vm, and output
the result reduced modulo p.

The theorem follows by using the fact that, with high probability, at least a 0.5 + 0.5ε fraction of
the primes selected in Step 1 are good.

Corollary 3.11 (worst-case to average-case reduction for counting cliques): Let t be a constant
and b(n) = Θ(t3 log n). Let Gn be a distribution on Õ(n)-vertex graphs obtained by selecting a prime
p ∈ [b(n), 2b(n)] and W ∈ GF(p)n×n, and outputting T (W ) where T is the mapping presented in
Theorem 3.6. Then, there exists a worst-case to average-case reduction of counting t-cliques in
n-vertex graphs to counting t-cliques in graphs generated according to Gn such that the reduction
runs in Õ(n2) time, makes Õ(log n)2 queries, and outputs the correct value with probability 2/3
provided that the error rate of the average-case solver is a constant smaller than one fourth.

Proof: Given an n-vertex graph G, using Proposition 3.5, we reduce counting the number of
t-cliques in G to making O(log n) queries to oracles of the form CWC

p
t such that p is a prime in

[b(n), 2b(n)]. Next, setting `(n) = dlog b(n)e (and using Theorem 3.10), we reduce answering each
of these queries to solving the problem Πn on at least 0.75 + ε of the instances, where ε > 0 is an
arbitrary constant. (We do so after reducing the error probility of the reduction to o(1/ log n).)
Lastly, using the mapping T of Theorem 3.6, we map the Õ(t5 log n) random queries made by the
worst-case to average-case reduction to Õ(n)-vertex graphs. We stress that a procedure that counts
t-cliques in Gn correctly with probability 0.75 + ε, yields a procedure that answers Πn correctly
with probability 0.75 + ε.

3.3.3 Length reduction

Corollary 3.11 falls short from establishing Theorem 1.1 only in one aspect: It reduces worst-
case n-vertex graph instances to average-case instances that are n′′-vertex graphs, for n′′ = Õ(n).
Wishing to have a worst-case to average-case reduction that preserves the number of vertices (in
the corresponding instances), we seek a reduction that reduces the number of vertices in the graph.
It seems easiest to present such a reduction in the worst-case setting. Indeed, we show a reduction

18Specifically, if `(n) ≤ c · t(n) logn, then letting m = 2c · (ε−1t(n)3 logn)/`(n) will do, since
(
n
t(n)

)
· (2`(n)+1)t(n)

2

<

n(c+o(1))·t(n)3 , whereas (2`(n)−1)εm = 2(1−o(1))·2c·t(n)3 logn. The unique decoding condition in [19] essentially requires
an error rate of 0.5 − 0.5k

m
, assuming that the product of the smallest k (out of m) primes exceeds the encoded

(non-zero) integer.
19Hence, each invokation generates O(t(n)2 logm) queries, totaling in Õ(m) · t(n)2 queries.
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of counting t-cliques in n-vertex graphs to counting t-cliques in n′-vertex graphs such that n′ =
n/poly(log n). Applying Corollary 3.11 to the resulting n′-vertex graphs, we reduce to n′′-vertex
graphs such that n′′ = Õ(n′) = n.

Proposition 3.12 (reducing the number of vertices in the t-clique counting problem): Let t be
a constant and k : N → N such that k(n) < n. Then, there exists an O((n/k(n))t · k(n)2)-
time reduction of counting t-cliques in n-vertex graphs to counting t-cliques in k(n)-vertex graphs.
Furthermore, the reduction performs O(n/k(n))t queries.

Proof: Consider an arbitrary partition of [n] into m = dt · n/k(n)e sets V1, ..., Vm such that
|Vi| ≤ k(n)/t (for every i ∈ [m]). For every I ⊂ [m] of size at most t, let VI = ∪i∈IVi and GI be
the subgraph of G induced by VI . Next, augment each GI to a k(n)-vertex graph, denoted G′I , by
possiblly adding k(n) − |VI | isolated vertices (and note that the t-cliques in G′I are exactly those
in GI). Observe that for each t-clique of G there exists a unique I (of size at most t) such that
this t-clique appears in GI but does not appear in any GI′ such that I ′ ⊂ I. Letting NI denote the
number of t-cliques that appear in GI but do not appear in any GI′ such that I ′ ⊂ I, it follows that
the number of t-cliques in G equals

∑
i∈[t]

∑
I∈([m]

i )NI . Hence, on input G = ([n], E), the reduction

proceeds as follows.

1. For each I ∈ ∪i∈[t]

(
[m]
i

)
, it queries for the number of t-cliques in G′I , denoting the result by

rI .

2. It computes all NI based on the values obtained in Step 1. Specifically, for i = 1, ..., t, and
for every I ∈

(
[m]
i

)
, it sets NI ← rI −

∑
I′⊂I NI′ , where N∅ = 0.

The reduction outputs the sum of all the NI ’s. Observing that the reduction makes
∑

i∈[t]

(
m
i

)
< mt

queries, the claim follows.

Proof of Theorem 1.1: Combining Corollary 3.11 with Proposition 3.12 yields Theorem 1.1.
Specifically, for a suitable polynomial p, we set k(n) = n/p(log n), and reduce counting t-cliques in
n-vertex graphs to counting them in k(n)-vertex graphs (using Proposition 3.12). Then, we apply
Corollary 3.11 with n replaced by k(n), reducing the worst-case problem for k(n)-vertex graphs
to an average-case problem regarding the distribution Gk(n), which is supported by Õ(k(n))-vertex

graphs. Indeed, a suitable choice of the polynomial p implies that Õ(k(n)) = Õ(n)/p(log n) ≤ n,
and Theorem 1.1 follows (possibly by augmenting the graph with isolated vertices).

3.4 The worst-case to rare-case reduction

In Section 3.3, we considered worst-case to average-case reductions, where average-case refers to a
constant error rate. Specifically, in Theorem 3.9 we required the error rate to be smaller than 1/2,
whereas in Theorem 3.10 the error rate was required to be smaller than 1/4. Here we aim to
increase the error rate to almost 1 (i.e., deal with error rate that is merely bounded away from 1).
Equivalently, we consider solvers that provide the correct answer quite rarely; that is, they answer
correctly on a small fraction of the instances. We shall seek and present worst-case to rare-case
reductions.

For technical convenience, we shall be dealing with a small variant of the problems considered in
Section 3.3. Specifically, we shall first consider the problem Π

p
n in which one is given W ∈ GF(p)n×n
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and 1i such that i ∈ [t(n)], and the task is to compute CWC
p
i (W ), where (again) n, p and t = t(n)

are viewed as generic (and are given to all algorithms as auxiliary inputs).20 Note that the length
of the input (W, 1i) is n2dlog2 pe + i, and that n2dlog2 pe + 1 > (n − 1)2dlog2 pe + t(n − 1), since
t(n − 1) ≤ n − 1 (w.l.o.g.). We shall later consider the problem Πn in which the instances have
the form (p,W, 1i) such that p is an `(n)-bit long prime, W ∈ GF(p)n×n, and i ∈ [t(n)], and the
problem is to compute CWC

p
i (W ). (Here we shall use n2`(n) + 1 > (n− 1)2`(n− 1) + t(n− 1), which

presumes that ` is non-decreasing.)

3.4.1 The reduction of CWC
p
t for fixed t and p

As in Section 3.3, we start by treating p = p(n) as if it are fixed (and waive this postulate later (in
Section 3.4.2).

Theorem 3.9 provides a worst-case to average-case reduction, where average-case refers to error
rate below one half. Here we aim to increase the error rate to almost 1 (i.e., deal with error rate
that is merely bounded away from 1). Equivalently, we consider solvers that provide the correct
answer quite rarely; that is, they answer correctly on a small fraction of the instances. Recall that
we assume that the reductions asserted next are given n, t and p as auxiliary inputs.

Theorem 3.13 (worst-case to rare-case reduction for Π
p
n): Fixing efficiently computable func-

tions t, p : N → N and ρ : N → (0, 1] such that t and 1/ρ are monotonically non-decreasing and

p(n) ≤ npoly(t(n)), there exists a worst-case to rare-case reduction of Π
p(n)
n to itself that makes

poly(t(n)/ρ(n)) · Õ(n) queries, runs in poly(t(n)/ρ(n)) · Õ(n2) time, and outputs the correct value
with probability 2/3 provided that the success rate of the rare-case solver is at least ρ(n) (and
ρ(n) > p(n)−1/3).

Note that Theorem 3.4 extends to the set of tuples (n, p(n),W, 1i, CWC
p(n)
i (W )) such that n ∈ N

and W ∈ GF(p(n))n×n.

Overview of the proof of Theorem 3.13. Fixing n ∈ N, p = p(n) and t ∈ [t(n)], we consider
the formal polynomial CWCpt (Z), where Z = (zj,k) is an n-by-n matrix of formal variables, and note
that this is an n2-variate polynomial of total degree at most t2. Given a rare-case solver, which
solves CWC

p
t correctly on at least a ρ fraction of Fn×n, where ρ = ρ(n) and F = GF(p(n)), we

apply the list decoding result of Sudan, Trevisan, and Vadhan [33, Thm. 29], and obtain an explicit
list of O(1/ρ) oracle machines such that one of these machines (when given oracle access to the
said rare-case solver) computes CWC

p
t correctly on all n-by-n matrices over F . Furthermore, by

employing a low-degree tester, we can discard machines that compute n2-variate functions that are
not close to a polynomial of degree at most t2, and using self-correction all the remaining machines
can be made to compute low-degree polynomials. Moreover, if we can obtain samples of the form
(R, CWCpt (R)), for random R ∈ Fn×n, then we can also discard machines that compute functions
that are far from CWC

p
t , which means that we discard all machines that (after self-correction) do not

compute CWC
p
t .

The question is how do we obtain such a sample (of solved instances). The answer, inspired
by [25], is that we can use the downwards self-reducibility of Π

p
n in order to obtain such a sample.

First, note that Π
p
n is downwards self-reducible by virtue of Eq. (10); in fact, we use Π

p
n rather than

20In other words, we refer to solving CWC
p
t rather than CWC

p
t .
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Πp
n is order to support such a downwards reduction (since the instance (W, 1t) will be reduced to

instances of the form (W ′, 1t−1)). Second, note that we can obtain correct answers to the reduced
instances by using the foregoing worst-case to rare-case reduction. (We stress that the size of the
sample does not grow with the number of queries we need to serve.)

The actual process will go the other way around: For i = 2, ..., t − 1, we generate a sample of
instances of the form (·, 1i+1) and solve them by downward reduction to instances of the form (·, 1i),
which in turn are solved (either directly if i = 2 or) by using the worst-case to rare-case reduction
(which uses a sample for instances of the form (·, 1i)). When we complete the t− 1st iteration, we
have a sample that allows us to solve the original instance (which has the form (·, 1t)) by using the
worst-case to rare-case reduction. (Indeed, at each iteration, the worst-case to rare-case reduction
generates queries that are forwarded to a rare-case solver.)

The actual proof of Theorem 3.13 proceeds as follows. First, we recall the definition of a
sample-aided reduction, which underlies the foregoing discussion. Then, we present a sample-aided
reduction from solving Π

p
n in the worst-case to solving Π

p
n in the rare-case. Next, we show that

Π
p
n is downwards self-reducible, and finally we combine the two reductions (as outlined above) to

derive the claimed result.

A sample-aided reduction. We start by spelling out the notion of a reduction that obtains
uniformly distributed “solved instances” of the problem that it tries to solve. This notion, termed
a sample-aided reduction, is implicit in [25] and was explicitly presented (in greater generality) in
our prior work [21]. Here we specialize the definition of [21] to the case of worst-case to rare-case
reductions.

Definition 3.14 (sample-aided worst-case to rare-case reductions): Let `, s : N→ N, and suppose
that M is an oracle machine that, on input x ∈ {0, 1}n, obtains as an auxiliary input a sequence
of s = s(n) pairs of the form (r, v) ∈ {0, 1}n+`(n). We say that M is an sample-aided reduction of
solving Π′ on the worst-case to solving Π′ on a ρ fraction of the instances if, for every procedure P
that answers correctly on at least a ρ fraction of the instances of length n, it holds that

Prr1,...,rs∈{0,1}n
[
Pr[∀x ∈ {0, 1}n MP (x; (r1,Π

′(r1)), ..., (rs,Π
′(rs))) = Π′(x)] ≥ 2/3]

]
> 2/3, (15)

where the internal probability is taken over the coin tosses of the machine M and the procedure P .
The function s : N→ N is called the sample complexity of the reduction.

Clearly, the error probability of M and of the sample can be decreased by repetitions.
We now turn back to the proof of Theorem 3.13. Noting that the instances of Π

p
n have varying

length, we let Π
p
n,i denote the problem Π

p
n restricted to instances of length n2dlog2 pe + i; that is,

the set of instances of Π
p
n,i is restricted to the instances of Π

p
n that have the form (W, 1i), where

i ∈ [t(n)] and W ∈ GF(p(n))n×n.

Proposition 3.15 (a sample-aided version of Theorem 3.13): Let t, p and ρ be as in Theorem 3.13.
Then, there exists a sample-aided reduction M of sample complexity O(log(1/ρ)) such that, for
every n ∈ N, p = p(n) and i ∈ [t(n)], machine M reduces solving Π

p
n,i on the worst-case to solving

Π
p
n,i on a ρ(n) fraction of the instances, while making poly(t(n)/ρ(n)) queries and running in

poly(t(n)/ρ(n)) · Õ(n2) time.
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Proof: As stated in the overview, the list decoding result of Sudan, Trevisan, and Vadhan [33,
Thm. 29], yields an explicit list of O(1/ρ(n)) oracle machines such that one of these machines (when
given oracle access to a rare-case solver for Π

p
n,i) solves Π

p
n,i in the worst-case. Indeed, this list is

constructed by making making poly(t(n)/ρ(n)) queries (to the rare-case solver) and running in
poly(t(n)/ρ(n)) · Õ(n2) time. By employing a low-degree tester, within similar complexity, we can
discard machines that compute n2-variate functions that are not close to a polynomial of degree
at most t2. Furthermore, by employing a self-corrector (and within similar complexity), we can
augment all machines so that they compute low degree polynomials. (Actually, the complexities
in both augmentations are independent of ρ, and “being close” may mean agreeing on 90% of
the instances.) Hence, each of these (augmented) machines either computes Π

p
n,i or computes a

function (indeed a different low-degree polynomial) that is far from Π
p
n,i. By using the sample of

O(log(1/ρ)) solved instances of Π
p
n,i, we can identify the machines that compute Π

p
n,i, and pick one

of them to handle the actual input (given to our reduction).

A downwards self-reduction reduction. It is convenient to state the downwards self-reducibility
feature of Π

p
n by using the notation Π

p
n,i. (Recall that Π

p
n,i denotes the problem Π

p
n restricted to

instances of length n2dlog2 pe+ i.)

Proposition 3.16 (downwards self-reducibility feature of Πn): Let t, p and ρ be as in Theo-
rem 3.13. Then, there exists a Õ(poly(t(n)) · n2)-time reduction of Π

p
n,i to Π

p
n,i−1 that works

for every n ∈ N and i ∈ [2, t(n)], while making n queries if i > 2 and no queries otherwise.

The time bound presumes a model of computation in which the cost of making the (equal length)
queries q1, ..., qm is |q1|+

∑
j∈[n−1] ∆(qj , qj+1), where ∆(x, y) denotes the Hamming distance between

x and y. This model is justified by the actual cost of composing the reduction with a procedure
that solves the reduced instances.

Proof: As stated in the overview, the reduction is given by Eq. (10), where in the case of i = 2
a direct calculation will do (i.e., on input (W, 12), we just need to compute

∑
j<k∈[n]wj,jwj,kwk,k).

For the case of i > 2, a straightforward implementation of the reduction yield running time that
is related to n3, since we have to compute the matrices W (q) for q = 1, ..., n. Fortunately, these n
matrices are closely related, so each can be derived from the previous matrix by making only 2n
changes, since each W (q) differs from the input matrix W on at most n predetermined entries (i.e.,
on the entries (j, j) for j ∈ [n], see Eq. (11)).

Combining Propositions 3.15 and 3.16. Towards combining the two reductions, note that
each invocation of the sample-aided (worst-case to rare-case) reduction (for Π

p
n,t(n)) generates q =

poly(t(n)/ρ(n)) queries (to the rare-case solver) and requires a solved sample of size O(log(1/ρ)).
Actually, since we generate t(n) − 2 of these solved samples, using the sample-aided reduction
itself, we have to reduce the error probabilities of the reduction so that, with probability at least
1 − (1/6t(n)) (over the choice of the sample), each query is answered correctly with probability
1 − (1/6sn · t(n)), where s is the size of the sample; setting s = Õ(log(1/ρ) · log(t(n))) will do.
To summarize, on input (W, 1t), where W ∈ GF(p)n×n and t ∈ [t(n)], the worst-case to rare-case
reduction asserted in Theorem 3.13 proceeds as follows.

1. First, the reduction generates a sample of s solved instances of Π
p
n,2 by generating s instances

and solving them directly (see the case of i = 2 in Proposition 3.16).
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2. Next, for i = 3, ..., t, the reduction generates a sample of s solved instances of Π
p
n,i by gener-

ating s random instances and solving each of them by using the downwards reduction of Π
p
n,i

to Π
p
n,i−1 (see the main case of Proposition 3.16), and solving the resulting s · n instances by

using the sample-aided reduction of Proposition 3.15 (while using the solved sample generated
for Π

p
n,i−1).

3. Finally, having a solved sample for Π
p
n,t, the reduction solves the (input) instance (W, 1t) by

invoking the sample-aided reduction of Proposition 3.15 (while using the said solved sample).

In all cases, the queries generated by the worst-case to rare-case reduction (of Proposition 3.15)
are forwarded to the rare-case solver for Π

p
n,i for i = 3, ..., t. Theorem 3.13 follows.

3.4.2 The reduction of Πn

We now consider the problem Πn in which the instances have the form (p,W, 1i) such that p is an
`(n)-bit long prime, W ∈ GF(p)n×n, and i ∈ [t(n)], and the problem is to compute CWC

p
i (W ).

Showing a worst-case to average-case reduction for Πn is more complex than doing so for Π
p
n,

because when given the input (p,W, 1i) it may be the case that the rare-case solver just fails on all
inputs of the form (p, ·, 1i). As in Section 3.3.2, we shall obtain the value of CWCpi (W ) (or rather

CWCi(W )) from the values of CWCp
′

i (W ) for other primes p′ ∈ [2`(n)−1, 2`(n)].

Theorem 3.17 (worst-case to average-case reduction for Πn):21 Let ` : N → N be such that
`(n) ∈ [3 log t(n)+ log log n+ω(1), O(t(n) log n)]. Fixing efficiently computable functions t : N→ N
and ρ : N → (0, 1] such that t and 1/ρ are monotonically non-decreasing and ρ(n) ≥ 2`(n)/3, there
exists a worst-case to rare-case reduction of Πn to itself that makes poly(t(n)/ρ(n)) · Õ(n) queries,
runs in poly(t(n)/ρ(n)) · Õ(n2) time, and outputs the correct value with probability 2/3 provided
that the success rate of the rare-case solver is at least ρ(n).

Planning to adapt the proof of Theorem 3.13, analogously to the adaptation presented in Sec-
tion 3.3.2, we face a problem: A sample of (uniformly and independently distributed) instances of
Πn is unlikely to contain an instance that refers to the same prime as the worst-case instance given
to us, let alone contain several instances that refer to the same prime. So such a sample is not
going to help us to identify an oracle machine that solves the problem Π

p
n,i, where p is the prime

in the worst-case instance (which has the form (p, ·, 1i)).

A generalized notion of sample-aided reductions. To overcome this problem, we generalize
the notion of sample-aided reductions so that it is applicable to any sample of solved instances,
where the instances in the sample need not be independent of one another (nor be uniformly
distributed in the relevant domain). For sake of convenience, we reproduce Definition 3.14, while
generalizing it in a single point: The sequence of samples in Eq. (16) is selected from an arbitrary
distribution over ({0, 1}n)s, denoted Dn, rather than from the uniform distribution over ({0, 1}n)s.

Definition 3.18 (Definition 3.14, generalized): Let s : N → N, and suppose that M is an oracle
machine that, on input x ∈ {0, 1}n, obtains as an auxiliary input a sequence of s = s(n) pairs of

21Recall that Πn is defined in terms of of the functions t, ` : N → N. It refers to instances of the form (p,W, 1i)
such that p is an `(n)-bit long prime, W ∈ GF(p)n×n, and i ∈ [t(n)], and calls for computing CWC

p
i (W ).
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the form (r, v) ∈ {0, 1}n+`(n). Let Dn be an arbitrary distribution over ({0, 1}n)s, and D = (Dn).
We say that M is an D-sample-aided reduction of solving Π′ on the worst-case to solving Π′ on a ρ
fraction of the instances if, for every procedure P that answers correctly on at least a ρ fraction of
the instances of length n, it holds that

Pr(r1,...,rs)∼Dn
[
Pr[∀x ∈ {0, 1}n MP (x; (r1,Π

′(r1)), ..., (rs,Π
′(rs))) = Π′(x)] ≥ 2/3]

]
> 2/3, (16)

where the internal probability is taken over the coin tosses of the machine M and the procedure P .
The function s : N→ N is called the sample complexity of the reduction.

Definition 3.14 is obtained as a special case by letting Dn be the uniform distribution over ({0, 1}n)s.

Proposition 3.19 (a sample-aided version of Theorem 3.17): Let t, ` and ρ be as in Theorem 3.13.
Then, there exist distributions D = (Dn,i) such that Dn,i is a distribution of sequences of instances

for Πn,i, and a D-sample-aided reduction M of sample complexity Õ(1/ρ) such that the following
holds: For every n ∈ N and i ∈ [t(n)], machine M reduces solving Πn,i on the worst-case to solving
Πn,i on a ρ(n) fraction of the instances, while making poly(t(n)/ρ(n)) · (log n)/`(n) queries and

running in poly(t(n)/ρ(n)) · Õ(n2) time. Furthermore, there exists a randomized algorithm that on
input (n, i) outputs a sample of Dn,i in time that is almost linear in the sample’s length.

Proof: We first observe that for at least an ρ/2 fraction of the primes p in In
def
= [2`(n)−1, 2`(n)],

the rare-case solver is correct on at least a ρ/2 fraction of the instances in Π
p
n,i. We call such a

prime good. For each good prime p, we can proceed as in the proof of Proposition 3.15, provided
that we are given a sample of (independently distributed) solved instances of Π

p
n,i. Again, as in

Section 3.3.2, it may be that the prime that is part of our worst-case instance is not good, let
alone that the sample Dn,i should be independent of the worst-case instance. So again, we employ
Chinese Remaindering, but this time without error (or rather with erasure faults only, which refer
to the primes for which no oracle machine works). Specifically, on input (p,W, 1i) and a sample of
Dn,i (to be determined later), we proceed as follows.

1. Suppose that the sample of Dn,i contains m different primes (in In) and each prime is coupled
with m′ different matrices.

2. For each selected prime, denoted pj , invoke the sample-aided worst-case to rare-case procedure
for Π

pj
n,i on the instance (pj ,W, 1

i), and let the result be denoted vj if an output was produced.
The aforementioned reduction is the one presented in the proof of Proposition 3.15, and in the
current context (where pj may not be good) this reduction may generate no output (which
happens if all oracle machines were found to fail).

3. Denoting the set of j’s for which an output was generated by J , apply Chinese Remaindering
(without errors) on the pairs (pj , vj) for j ∈ J , and output the result reduced modulo p.

At this point we can specify the distribution Dn,i, by presenting an algorithm that generates it. On
input (n, i), this algorithm first selects m = O(t(n)2/ρ) · (log n)/`(n) uniformly and independent
distributed primes in In. For each selected prime pj , it selects m′ = O(log(1/ρ)) uniformly and
independent distributed n-by-n matrices over GF(pj). The output is the list of m · m′ triples
(pj ,M

′, 1i) such that pj was selected and M ′ ∈ GF(pj)
n×n was selected for it.

29



The proposition follows by noting that, with high probability, the sample contains at least
O(t(n)3 log n)/`(n) good primes, which implies that the Chinese Remaindering is applied with
sufficiently many values (i.e., whose product exceeds

(
n
t(n)

)
· (2`(n))t(n)2).22

Completing the proof of Theorem 3.17. We first note that the downwards self-reduction
presented in Proposition 3.16 applies to Πn; indeed, for every n, i and p ∈ In, this reduction maps
instances of Π

p
n,i to instances of Π

p
n,i−1. The sample-aided reduction of Proposition 3.19 and the

aforementioned downwards self-reduction can be combined just as in Section 3.4.1. Specifically, on
input (p,W, 1t) (where p ∈ In, W ∈ GF(p)n×n and t ∈ [t(n)]), the worst-case to rare-case reduction
asserted in Theorem 3.17 proceeds as follows.

1. First, the reduction generates a sample of solved instances of Πn,2 by taking a sample of Dn,2
and (directly) solving all instances that appear in it.

2. Next, for i = 3, ..., t, the reduction generates a sample of solved instances of Πn,i by taking a
sample of Dn,i and solving each instance that appears in it by using the downwards reduction
of Πn,i to Πn,i−1 (see the main case of Proposition 3.16), and solving the resulting instances by
using the sample-aided reduction of Proposition 3.19 (while using the solved sample generated
for Πn,i−1).

3. Finally, having a solved sample for Πn,t, the reduction solves the (input) instance (p,W, 1t) by
invoking the sample-aided reduction of Proposition 3.19 (while using the said solved sample).

In all cases, the queries generated by the worst-case to rare-case reduction (of Proposition 3.19)
are forwarded to the rare-case solver for Πn,i for i = 3, ..., t. Theorem 3.17 follows.

Corollary 3.20 (worst-case to rare-case reduction for counting cliques): Let t be a constant and

b(n) = Θ(t3 log n). For every i ∈ [t], let G(i)
n be a distribution on (Õ(n) − (t − i))-vertex graphs

obtained by selecting a prime p ∈ [b(n), 2b(n)] and W ∈ GF(p)n×n, and outputting T ′(i,W ) where
T ′ is the mapping presented in Remark 3.7. Then, for every non-increasing ρ : N → (0, 1] such
that ρ(n) ≥ 1/poly(log n), there exists a worst-case to rare-case reduction of counting t-cliques

in n-vertex graphs to counting t-cliques in graphs generated according to the G(i)
n ’s such that the

reduction runs in Õ(n2) time, makes Õ(n) queries, and outputs the correct value with probability
2/3 provided that the success rate of the rare-case solver is at least ρ(n).

Note that the different G(i)
n ’s are distributed over graphs with different number of vertices; that is,

the support of G(i)
n contains n′′ − (t− i) vertices, where n′′ = Õ(n).

Proof: Given an n-vertex graph G, using Proposition 3.5, we reduce counting the number of
t-cliques in G to making O(log n) queries to oracles of the form CWC

p
t such that p is a prime in

[b(n), 2b(n)]. Next, setting `(n) = dlog b(n)e (and using Theorem 3.17), we reduce answering each
of these queries to solving the problem Πn on at least ρ(n) of the instances. (We do so after reducing
the error probility of the reduction to o(1/ log n).) Lastly, using the mapping T ′ of Remark 3.7,
we map the Õ(n) random queries made by the (worst-case to rare-case) reduction to queries about

22This is the case since the product is greater than (2`(n))O(t(n)3 logn)/`(n), which in turn is greater than 2t(n) logn) ·
(2`(n))t(n)

2

.
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the number of cliques in Õ(n)-vertex graphs; that is, the query (p,W, 1i) is mapped to T ′(i,W ),
and the answer is divided by t! and reduced modulo p. (We stress that a procedure that counts

t-cliques in the G(i)
n ’s correctly with probability at least ρ(n), yields a procedure that answers Πn

correctly with probability at least ρ(n).)

3.4.3 Reducing several lengths to one length

Corollary 3.20 falls short from establishing Theorem 1.2 in two aspects: Firstly, it reduces worst-
case n-vertex (graph) instances to rare-case instances that are n(i)-vertex graphs, for t different
values of n(i) = Õ(n), and secondly these lengths are all larger than n. We already saw how to
deal with the second problem in Section 3.3.3, so here we focus on handling the first problem. We
shall show how to reduce counting t-cliques in the rare-case on O(1) different instance lengths to
counting t-cliques in the rare-case for one instance length. More generally, we sho how to reduce
counting t-cliques in the rare-case on O(1) different instance distributions to counting t-cliques in
the rare-case for one instance distribution.

Theorem 3.21 (reducing several rare-case t-clique counting tasks to one): For constants t,m ∈ N,
let G(1), ...G(m) be distributions on graphs such that G(i) is distributed on n(i)-vertex graphs, and
let n = maxi∈[m]{n(i)}. Suppose that each G(i) is sampleable in time T (n). Then, there exists a

distribution G′′ on Õ(n)-vertex graphs that is sampleable in time O(T (n)) such that, for each i ∈ [m],
counting t-cliques in the rare-case on G(i) is Õ(T (n)+n2)-time reducible to counting t-cliques in the
rare-case on G′′. Specifically, for every i ∈ [m] and every ρ such that G(i) has min-entropy ω(ρ−3),
there exists a poly(1/ρ) · (T (n)+ Õ(n2))-time randomized algorithm that, with very high probability,
outputs a deterministic poly(1/ρ) · (T (n) + Õ(n2))-time reduction of counting t-cliques on a Ω(ρ3)
measure of the instances in G(i) to counting t-cliques on a ρ measure of the Õ(n/ρ)-vertex instances
in G′′.

Proof: We proceed in three steps. First, we consider a distribution on n′-vertex graphs produced
as follows: For every i ∈ [m], we take a sample G(i) of G(i), and consider a graph G′ that consists of
isolated copies of blow-ups of the graphs G(1), ..., G(m). Specifically, each vertrex in G(i) is replaced
by an independent set of size ni−1 and edges (of G(i)) are replaced by complete bipartite graphs
between the corresponding sets. Hence, the number of t-cliques in G′ equals N ′ =

∑
i∈[m] n

(i−1)·t·Ni,

where Ni is the number of t-cliques in G(i). Since each Ni is smaller than nt, it is easy to extract
the Ni’s from N ′.

The problem with the foregoing construction is that the graph G′ is way too big (i.e., n′ =∑
i∈[m] n

i−1 · n(i)). Instead (and this is our second step), we set b = O(ρ−1 log(nmt)), select at

random a prime p ∈ [b, 2b], and let G′′ be similar to G′ except that the graph G(i) is blown-up by
a factor of 1 + (ni−1 − 1 mod p) rather than by a factor of ni−1. Hence, the number of t-cliques
in G′′ reduced modulo p equals

∑
i∈[m] n

(i−1)·t ·Ni mod p, whereas the number of vertices in G′′ is

n′′ = O(bn) = Õ(n/ρ). (Indeed G′′ is defined as the result of the foregoing process that generates
G′′.)

We call a seqeuence of graphs (G(1), ...., G(m)) good if, conditioned on its being genertated by
G(1)×· · ·×G(m), with probability at least ρ/2 (on the choice of p), the rare-case solver outputs the
number of t-cliques in the resulting graph G′′. Note that the probability that a sequence is good is
at least ρ/2, since the rare-case solver is correct on at least a ρ measure of the graphs G′′ ← G′′. On
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the other hand, if the generated sequence of graphs is good, then applying Chinese Remaindering
with large error rate [19, Sec. 4] to the values obtained for the corresponding graphs G′′ (obtained
for all primes in [b, 2b]), yields a sequence of O(1/ρ) numbers that includes the currect number of
t-cliques in the corresponding graph G′ (i.e., the large graph we cannot afford to query about). We
shall select a number on the list at random, and output it.

Hence, a random reduction from counting t-cliques under the distribution G(i) works as follows.
On input G(i) ← G(i), it generates at random G(j) ← G(j) for each j ∈ [m] \ {i}, and generates the
corresponding graph G′′, for each prime p ∈ [b, 2b]. It then queries for the number of t-cliques in
each of these O(b/ log b) graphs, and applies Chinese Remaindering with error rate 1 − ρ/2, and
selects uniformly an element in the resulting list (of length O(1/ρ)). (The hope is that this number
equals N ′, the number of t-cliques in the corresponding graph G′.) Finally, the reduction extracts
from this number, a guess for the number of t-cliques in G(i), and outputs it.

Observe that, with probability at least a ρ/4, over the choice of G(i) ← G(i), it holds that with
probability ρ/4 the random augmentation of G(i) into a sequence of m graphs is good. Hence, for
at least a ρ/4 measure of G(i), the randomized reduction answers correctly with probability at least
Ω(ρ2).

Finally (and this is our last step), we consider a randomized algorithm that selects a random
hashing function mapping n′′-vertex graphs to strings of length that equals the number of coins
that is used by the foregoing reduction. Using pairwise independent hashing, it follows that, with
very high probability, the resulting deterministic algorithm answers correctly on a Ω(ρ3) measure
of G(i).

Digest regarding the third step in the foregoing proof. The starting point of this step
is a randomized process (i.e., a randomized reduction coupled with an oracle) that successed with
probability Ω(ρ2) on a Ω(ρ) measure of the instances. In the current context (and surely generically),
we may not be able to recoginize the correct answer, and so it is unclear how to increase the success
probability on the good instances (which constitute a Ω(ρ) measure of all instances). On the
other hand, selecting one random sequence of coin outcomes for all instances may be good for
Ω(ρ) measure of the instances only with probability Ω(ρ2). Selecting a random sequence for each
instance yields good choices for Ω(ρ2) measure of the good instances, and selecting a random
pairwise independent hashing has the same effect.

Proof of Theorem 1.2: Combining Corollary 3.20 with Theorem 3.21 and Proposition 3.12
yields Theorem 1.2. Again (as in Section 3.3.3), we start by setting k(n) = n/p(log n), for a suitable
polynomial p, and applying Proposition 3.12. Next, we apply Corollary 3.20 with n replaced by
k(n), and lastly we apply Theorem 3.21. Note that the polynomial p is chosen such that Õ(k(n)) =
Õ(n)/p(log n) ≤ n, where the polylogarithmic function implicit in the Õ-notation is the product
of the overheads incurred by Corollary 3.20 and Theorem 3.21. Likewise, the function ρ used in
Theorem 3.21 should be set to the success rate claimed by Theorem 1.2, and Corollary 3.20 should
be proved for success rate of Ω(ρ3). Under these choices, G′′ satisfies the claim of Theorem 1.2.
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3.5 On counting simple cycles in simple graphs

In Section 3.2 we reduced the problem of counting weighted t-cliques in graphs with small edge and
vertex weights to the problem of counting t-cliques in unweightred graphs. Here, we first present
a different reduction for the case of t = 3, and then extend it to the case of t-cycles for any odd
t ≥ 3.

The case of triangles. Viewing the (symmetric) matrix pf weights W ∈ GF(p)n×n as an n-
vertex graph with vertrex and edge weights, we first get rid of the vertex weights. This is done
exactly as in Proposition 2.6 (see also Section 3.2). Hence, we derive a graph G′ with n′ ≤ n · p
vertices and edge weights (denoted wi,j ’s) in [p].

Next, we replace each vertex in G′ with an independent set of size p, and place a wi,j-regular
bipartite graph between the ith and jth sets, where wi,j is the weight of the edge {i, j} in G′.
Specifically, identifying each independent set with GF(p), and assuming that i < j, for every
k ∈ [wi,j ], we connect vertex x ∈ GF(p) of the ith independent set to vertex 2x+k mod p of the jth

independent set. Indeed, this defines a wi,j-regular bipartite graph between these two independent
sets. Denoting the resulting graph by G′′, we show that the number of triangles in the subgraph of
G′′ induced by any three sets i1, i2, i3 ∈ [n′] such that i1 < i2 < i3 equals wi1,i2wi2,i3wi3,i1 .

For every k1,2 ∈ [wi1,i2 ], k2,3 ∈ [wi2,i3 ] and k3,1 ∈ [wi3,i1 ], consider the number of triangles that
use the corresponding matching among these sets (i.e., the ist1 , ind

2 , and irds sets). Such a generic
triangle starts at vertex x in the ith1 set, and goes through vertices y = 2x+ k1,2 and z = 2y + k2,3

of the ith2 and ith3 sets, provided that z = 2x+ k1,3 holds. That is, 2 · (2x+ k1,2) + k2,3 = 2x+ k1,3

must hold, which uniquely determines x.

On counting simple odd cycles in simple graphs. The argument extends to counting the
number of t-cycles, for any odd t. To see this, let πk : GF(p) → GF(p) denote the kth mapping
used in the regular bipartite graphs (i.e., πk(x) = 2x + k mod p), and consider a t-cycle that goes
through the independent sets i1, ..., it (and back to i1). Note that in each step, we use either one
of the foregoing mappings or its inverse, where the choice is determined according to the relative
order of the vertices; that is, in the jth step we use the forward mapping if and only if ij < ij+1.
Hence, for every k1,2 ∈ [wi1,i2 ], ..., kt−1,t ∈ [wit−1,it ] and kt,1 ∈ [wit,i1 ], the t-cycle starts at a generic
vertex x in the ist1 set, moves to vertex π

σ1,2
k1,2

(x)) of the ind
2 set, and so on, such that

π
σt,1
kt,1

(π
σt−1,t

kt−1,t
(· · · (πσ1,2k1,2

(x)) · · ·)) = x, (17)

where the σj,j+1’s are determined as above (i.e., σj,j+1 = 1 if ij < ij+1 and σj,j+1 = −1 otherwise).
Note that Eq. (17) simplifies to 2σt,1 ·2σt−1,t · · · 2σ1,2 ·x+b = x, where b is determined by the kj,j+1’s
and the σj,j+1’s. Finally, since the multiplicative order of 2 mod p is larger than t (and t is odd),
the foregoing equation has a single solution.23

Lastly, we observe that the proof of Theorem 3.10 can be adapted to the case of computing
the weight of simple t-cycles in graphs with edge weights (wj,k’s). Denoting the set of simple t-cycles

23The solution is x = b/(2σt,1+σt−1,t+···+σ1,2 − 1). Here we used the fact that 2t < p, which holds for constant t.
We comment that using t = t(n) such that 2t > p (but p� t) may require replacing 2 by an element of order at least
t+ 1 in the multiplicative group (mod p).
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(over [n]) by Ct, the key point is replacing
∑

S∈([n]t )
∏
j≤k:j,k∈S wj,k by

∑
(i1,...,it)∈Ct

∏
j∈[t]wij ,ij+1 ,

where it+1 is viewed as i1. (Indeed, we can set the weights of all self-loops to 1.)24 Hence, we get

Theorem 3.22 (worst-case to average-case reduction for counting cycles in graphs): Let Gn be the
distribution on Õ(n)-vertex graphs that is outlined above, and η be any constant smaller than 1/4.
Then, for every odd constant t ≥ 3, there exists a worst-case to average-case reduction of counting
t-cycles in n-vertex graphs to counting t-cycles in graphs generated according to Gn such that the
reduction runs in Õ(n2) time, makes Õ(log n) queries, and outputs the correct value with probability
2/3 provided that the error rate (of the average-case solver) is at most η.

Note that getting rid of edge weights in [p] has a cost of blowing-up the number of vertices by a

factor of p, whereas the blow-up in Section 3.2 is t · p(
t
2), where p = O(t3 log n) (as per the proof of

Theorem 3.10). This blow-up is hidden in the Õ-notations, which means that Theorem 3.22 holds
also for varying t = t(n) provided t ≤ poly(log n). Furthermore, we acan get appealing results also
in case of larger t(n) (e.g., t(n) = n0.1).

We also mention the counting t-cycles can be reduced to counting t-cliques (in simple graphs)
as follows. Assume that c = (v1, ..., vt) is counted as different from its t cyclic shifts, and its
reverse (i.e., (vt, ..., v1)). Call these 2t cycles the translations of c. Assuming that t is odd, we
first reduce counting t-cycles in G = ([n], E) to counting t-cycles in G′ defined as t double-covers
of G = ([n], E) that are joined in a cycle; that is, the vertex set of G′ is Zt × [n], and the edge
set is ∪i∈[t]{{(i, u), (i + 1 mod t, v)} : {u, v} ∈ E}. Now, the 2t translations of each t-cycle in G
contributes 2t translations of a cycle to G′; that is, (v1, ..., vt) gives rise to ((1, v1), ..., (t, vt)) and its
translations, whereas each t-cycle in G′ must have the form ((1, u1), ..., (t, ut)) (such that {ui, ui+1}
is in E). Next, we reduce counting t-cycles in G′ to counting t-cliques in G′′ that is obtained from
G′ by adding complete bipartite graphs between each pair of non-adjecent independent sets of G′,
where the ith independent set of G′ is {(i, v) : v ∈ [n]}. Note that each t-cycle of G′ contributes a
t-clique in G′′, whereas each t-clique of G′′ must have the form ((1, u1), ..., (t, ut)) and so yields a
t-cycle in G′.
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Appendix: Computing CWC
p
t

We show that the ideas underlying the best known algorithm for deciding the existence of t-cliques
in graphs [16], extend to compute CWCtp. Hence, CWC

p
t can be computed using O(nωmmdt/3e) field

operations, where ωmm is the matrix multiplication exponent.
Let F = GF(p). For any t ∈ N and an n-by-n matrix W ∈ Fn×n, we first reduce computing

CWC
p
3t(W ), to computing CWC3(W ′), where W ′ has dimention n′ =

(
n
t

)
. Specifically, the rows (resp.,

columns) of W ′ = (w′A,B) correspond to t-subsets of rows (resp., columns) of W = (wi,j), and

w′A,B =


0 if |A ∩B| /∈ {0, t}∏
i≤j∈Awi,j if A = B∏
i∈A,j∈B wi,j otherwise (i.e., A ∩B = ∅)

Note that w′ can be constructed in time O(n2t), and that
(

3t
t,t,t

)
· CWC3t(W ) = 6 · CWC3(W ′). (The

cases of CWC3t−1 and CWC3t−2 are easily reduced to CWC3t.)
25

Turning to the computation of CWC3(W ), where W = (wi,j) is an n-by-n matrix, for every
i < j ∈ [n], the sum of the weights of the 3-subsets that contain {i, j} equals

wi,j · wi,i · wj,j ·
∑

k∈[n]\{i,j}

wi,kwk,j · wk,k,

where terms of the latter sum can be written as wi,kw
′
k,j such that w′k,j = wk,j ·wk,k. Hence, these

n2 sums can be computed by multiplying W and W ′, and 3 · CWC3(W ) is obtained as
∑

i<j wi,j ·
wi,i · wj,j · pi,j , where pi,j is the (i, j)th entry of the product matrix WW ′.

25The computation of CWCt is reduced to the computation of CWCt+1 by augmenting the original graph with an
auxiliary vertex x that is conneced to all original vertices and considering two weighting function that assign x
weights 1 and 0, respectively; that is, CWCGt (w) = CWCG

′
t+1(w1)− CWCG

′
t+1(w0), where G′ = ([n+ 1], E′) equals the graph

G = ([n], E) augmented with a vertex (denoted x = n+ 1) that is connected to all verices of G.
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