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Abstract

The GM-MDS conjecture of Dau et al. (ISIT 2014) speculates that the MDS
condition, which guarantees the existence of MDS matrices with a prescribed set of
zeros over large fields, is in fact sufficient for existence of such matrices over small
fields. We prove this conjecture.

1 Introduction

Let S1, . . . , Sk ⊂ [n] be a set system with k ≤ n. A natural question, motivated by the study
of MDS codes, is when does there exist a k × n matrix G over a finite field F, such that all
k × k minors of G are full rank, and such that Gi,j = 0 whenever j ∈ Si.

If there is no limitation on the field size then the answer is well known. Any row can
have at most k − 1 zeros. Any pair of rows at most k − 2 common zeros, and so on. This is
the so-called MDS condition: ∣∣∣∣∣⋂

i∈I

Si

∣∣∣∣∣ ≤ k − |I| ∀I ⊆ [k]. (1)

Concretely, for any set system which satisfies the MDS condition, and for any field of size
|F| >

(
n−1
k−1

)
, there exist matrices G with a prescribed set of zeros given by the set system

(see for example [DSDY13] for details). In fact, if |F| �
(
n
k

)
then one can simply choose a

random matrix G with Gi,j = 0 if j ∈ Si, and Gi,j ∈ F uniformly for all other entries, and
obtain that with high probability all the minors of G are nonsingular.

A much more subtle question is that is the minimum field size for which such a matrix
exists. Dau et al. [DSY14] conjectured that the MDS condition (1) is sufficient for the
existence of a matrix G over much smaller fields.

Conjecture 1.1 (GM-MDS conjecture [DSY14]). Let S1, . . . , Sk ⊂ [n] be a set system which
satisfies the MDS condition. Then for any field F with |F| ≥ n + k − 1, there exists a k × n
matrix G over F with Gi,j = 0 whenever j ∈ Si, such that all k × k minors of G are
nonsingular.

We prove Conjecture 1.1 in this work. First, we describe an algebraic framework intro-
duced by Dau et al. [DSY14] towards proving Conjecture 1.1.
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1.1 The algebraic GM-MDS conjecture

Dau et al. [DSY14] formulated an algebraic conjecture that implies Conjecture 1.1: if
S1, . . . , Sk is a set system that satisfies (1), then there exists a Generalized Reed-Muller code
with zeros in locations prescribed by the set system. Otherwise put, there exists G = AV
where A is an invertible k×k matrix and V a k×n Vandermonde matrix, such that Gi,j = 0
when j ∈ Si. Before we explain these ideas further, we first set up some notations.

Let F be a finite field, and let x, a1, . . . , an be formal variables, where we shorthand
a = (a1, . . . , an). We use the standard notations F[a, x] for the ring of polynomials over F
in the variables a, x; F(a) for the field of rational functions over F[a]; and F(a)[x] for the
ring of univariate polynomials in x over F(a). Given a set S ⊂ [n] define a polynomial
p = p(S) ∈ F[a, x] as follows:

p(a, x) :=
∏
i∈S

(x− ai).

Given a set system S = {S1, . . . , Sk} define P (S) := {p(S1), . . . , p(Sk)}.
Let S = {S1, . . . , Sk} be a set system which satisfies (1). It is possible to assume without

loss of generality that each Si is maximal, namely that |Si| = k − 1 for all i ∈ [k]. For
example, if we are allowed to increase n then we can replace each Si with Si ∪ Ti where
|Ti| = k − 1 − |Si| and T1, . . . , Tk, [n] are pairwise disjoint. An improved reduction is given
in [DSY14] which does not require increasing n.

Either way, under this assumption the polynomials P (S) form a set of k polynomials of
degree k − 1, which we denote by p1, . . . , pk. Define the k × n matrix G as Gi,j = pi(aj).
Note that entries of G are polynomials in F[a]. The condition that all k× k minors of G are
nonsingular is equivalent to the condition that the polynomials P (S) are linearly independent
over F(a) (here, we view the polynomials as elements of F(a)[x] instead of as elements of
F[a, x]). If this is the case, then one can use the Schwartz-Zippel lemma and show that the
formal variables a1, . . . , an can be replaced with distinct field elements from F, while still
maintaining the property that all k×k minors of G are nonsingular. The bound on the field
size |F| ≥ n + k − 1 arises from the degrees of the polynomials obtained in the process. For
details we refer to the original paper [DSY14].

This motivated [DSY14] to propose the following algebraic conjecture, which implies
Conjecture 1.1.

Conjecture 1.2 (Algebraic GM-MDS conjecture [DSY14]). Let S1, . . . , Sk ⊂ [n] be a set
system which satisfies the MDS condition, and where |Si| = k − 1 for all i. Then the set of
polynomials P (S) are linearly independent over F(a).

We remark that given any polynomials p1, . . . , pk ∈ F[a, x] (for example, the polynomials
appearing in P (S)), an equivalent condition to the polynomials being linearly independent
over F(a) is the following: for any polynomials w1, . . . , wk ∈ F[a], not all zero, it holds that

k∑
i=1

wi(a)pi(a, x) 6= 0.
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Following [DSY14], several works [HHYD14,HS17,YH18] attempted to resolve the GM-
MDS conjecture. They showed that Conjecture 1.2 holds in several special cases, but the
general case remained open. In this work we prove Conjecture 1.2, which implies Conjec-
ture 1.1.

1.2 A generalized conjecture

We start by considering a more general condition. Let v ∈ Nn be a vector, where N =
{0, 1, 2, . . .} stands for non-negative integers. The coordinates of v are v = (v(1), . . . , v(n)).
We shorthand |v| =

∑
v(i). Given vectors v1, . . . , vm ∈ Nn define

∧
vi ∈ Nn to be their

coordinate-wise minimum:∧
i∈[m]

vi := (min(v1(1), . . . , vm(1)), . . . ,min(v1(n), . . . , vm(n))).

Note that if v1, . . . , vm ∈ {0, 1}n are indicator vectors of sets S1, . . . , Sm ⊂ [n], then
∧
vi is

the indicator vector of ∩Si.
Given a parameter k > |v| define a set of polynomials in F[a, x]:

P (k, v) :=

∏
j∈[n]

(x− aj)
v(j)xe : e = 0, . . . , k − 1− |v|

 .

Note that P (k, v) consists of k−|v| polynomials of degree ≤ k−1, which form a basis for the
linear space of polynomials of degree ≤ k−1 which have v(j) roots at each aj. Furthermore,
note that if v is the indicator vector of a set S ⊂ [n] of size |S| = k−1, then P (k, v) = {p(S)}.
Given a set of vectors V = {v1, . . . , vm} ⊂ Nn define

P (k,V) := P (k, v1) ∪ . . . ∪ P (k, vm).

We use in this paper the convention that set union can result in a multiset. So for example, if
the same polynomial appears in multiple P (k, vi) then it appears multiple times in P (k,V).
Under this assumption we always have the identity:

|P (k,V)| = |P (k, v1)|+ . . . + |P (k, vm)|.

The following definition is the natural extension of the MDS condition (1) to vectors.

Definition 1.3 (Property V (k)). Let V = {v1, . . . , vm} ⊂ Nn and k ≥ 1 be an integer. We
say that V satisfies V (k) if it satisfies:

(i) |vi| ≤ k − 1 for all i ∈ [m].

(ii) For all I ⊆ [m],
∑

i∈I(k − |vi|) +
∣∣∧

i∈I vi
∣∣ ≤ k.
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Note that when m = k and v1, . . . , vk are indicators of sets S1, . . . , Sk ⊂ [n] of size
|Si| = k − 1, then property V (k) is equivalent to the MDS condition for S1, . . . , Sk.

Observe that in general, if V satisfies V (k) then P (k,V) contains
∑m

i=1(k − |vi|) ≤
k polynomials of degree ≤ k − 1. The following conjecture is the natural extension of
Conjecture 1.2 to vectors.

Conjecture 1.4. Let V ⊂ Nn and k ≥ 1. Assume that V satisfies V (k). Then the polyno-
mials in P (k,V) are linearly independent over F(a).

A clarifying remark: as we view the set P (k,V) as a multiset, Conjecture 1.4 (and
Theorem 1.6 below) imply in particular that the polynomials in P (k,V) are all distinct, so
P (k,V) is in fact a set.

1.3 An intermediate case

We prove Conjecture 1.4 under an additional assumption, which is sufficient to prove Con-
jecture 1.1. It is still open to prove Conjecture 1.4 in full generality.

Definition 1.5 (Property V ∗(k)). Let V = {v1, . . . , vm} ⊂ Nn and k ≥ 1 be an integer. We
say that V satisfies V ∗(k) if it satisfies V (k), and additionally it satisfies:

(iii) vi ∈ {0, 1}n−1 × N for all i ∈ [m]. Namely, all coordinates in vi, except perhaps the
last, are in {0, 1}.

Theorem 1.6. Let V ⊂ Nn and k ≥ 1. Assume that V satisfies V ∗(k). Then the polynomials
P (k,V) are linearly independent over F(a).

Conjecture 1.2 follows directly from Theorem 1.6. If S1, . . . , Sk ⊂ [n] are sets which
satisfy the assumptions of Conjecture 1.2, then their indicator vectors v1, . . . , vk ∈ {0, 1}n
satisfy the assumptions of Theorem 1.6, and hence P ({S1, . . . , Sk}) = P (k, {v1, . . . , vk}) are
linearly independent over F(a).

2 Proof of Theorem 1.6

Let n, k ≥ 1. Let V = {v1, . . . , vm} ⊂ Nn which satisfies V ∗(k). We will prove that the
polynomials P (k,V) are linearly independent over F(a).

To that end, we assume that V is a minimal counter-example and derive a contradiction.
Concretely, the underlying parameters are n, k,m and d = |P (k,V)| =

∑
k − |vi|. We will

assume that if V ′ is a set of vectors with corresponding parameters n′ ≤ n, k′ ≤ k,m′ ≤
m, d′ ≤ d with at least one of the inequalities being sharp, then Theorem 1.6 holds for V ′.
In particular, we assume that m ≥ 2, as Theorem 1.6 clearly holds when m = 1.

To help the reader, we note that the following lemmas construct such V ′ with the following
parameters:

• Lemma 2.2: n, k − 1,m, d.
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• Lemma 2.4: n, k, e, d′ and n, k,m− e + 1, d′′ with 2 ≤ e ≤ m− 1 and d′, d′′ < d.

• Lemma 2.5: n− 1, k,m, d.

• Lemma 2.6: n, k,m, d− 1.

We use the following notation to simplify the presentation:

vI :=
∧
i∈I

vi I ⊆ [m].

We introduce sometimes in the proofs an auxiliary set V ′ = {v′1, . . . , v′m′}, in which case v′I
for I ⊆ [m′] are defined analogously. Below, when we say that V or V ′ satisfy (i), (ii) or (iii),
we mean the relevant items in the definition of V ∗(k).

Given two vectors u, v ∈ Nn we denote u ≤ v if u(i) ≤ v(i) for all i ∈ [n].

Lemma 2.1. There do not exist distinct i, j ∈ [m] such that vi ≤ vj.

Proof. Assume the contrary. Applying (i) to j gives |vj| ≤ k− 1. Applying (ii) to I = {i, j}
gives

(k − |vi|) + (k − |vj|) + |vi ∧ vj| ≤ k.

As vi ≤ vj we have vi ∧ vj = vi, and hence obtain that k − |vj| ≤ 0, a contradiction.

Lemma 2.1 implies in particular that n ≥ 2. This is since if n = 1 then necessarily m = 1,
as otherwise there would be i, j for which vi ≤ vj. So we assume n ≥ 2 from now on.

Lemma 2.2.
∧

i∈[m] vi = 0.

Proof. Assume not. Then there exists a coordinate j ∈ [n] with vi(j) ≥ 1 for all i ∈ [m].
Define a new set of vectors V ′ = {v′1, . . . , v′m} ⊂ Nn as follows:

v′i := (vi(1), . . . , vi(j − 1), vi(j)− 1, vi(j + 1), . . . , vi(n)).

In words, v′i is defined from vi by decreasing coordinate j by 1.
We first show that V ′ satisfies V ∗(k − 1). Note that |v′i| = |vi| − 1. It clearly satisfies

(i),(iii). To show that it satisfies (ii) let I ⊆ [m]. We have∑
i∈I

(k − 1− |v′i|) + |v′I | =
∑
i∈I

(k − |vi|) + |vI | − 1 ≤ k − 1.

As we showed that V ′ satisfies V ∗(k−1), the minimality of V implies that the polynomials
P (k − 1,V ′) are linearly independent over F(a). The lemma follows as it is simple to verify
that

P (k,V) = {p(a, x)(x− aj) : p ∈ P (k − 1,V ′)}.

In particular, the linear independence of P (k − 1,V ′) implies the linear independence of
P (k,V).
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Definition 2.3 (Tight constraint). A set I ⊆ [m] is tight for V if property (ii) holds with
equality for I. Namely if ∑

i∈I

(k − |vi|) + |vI | = k.

Note that if |I| = 1 then I is always a tight constraint. The following lemma is an
extension of Lemma 2(i) in [YH18]. It shows that in a minimal counter-example there are
no tight sets, except for singletons and perhaps the whole set.

Lemma 2.4. If I ⊆ [m] is a tight constraint, then |I| = 1 or |I| = m.

Proof. Assume towards a contradiction that there exist a tight I with 1 < |I| < m. We will
use the minimality of V to derive a contradiction. Assume for simplicity of notation that
I = {e, . . . ,m} for 2 ≤ e ≤ m− 1. Define a new set of vectors V ′ = {v′1, . . . , v′e} given by

v′1 := v1, . . . , v
′
e−1 := ve−1, v

′
e := vI .

We first show that V ′ satisfies V ∗(k). It clearly satisfies (i) and (iii). To see that it
satisfies (ii) let I ′ ⊆ [e]. If e /∈ I ′ then V ′ satisfies (ii) for I ′ as it is same condition as for V ,
so assume e ∈ I ′. Let I ′′ = I ′ ∪ {e + 1, . . . ,m}. Then∑

i∈I′
(k − |v′i|) + |v′I′| =

∑
i∈I′′

(k − |vi|) + |vI′′ | ≤ k,

where the equality holds since k− |v′e| =
∑

i∈I(k− |vi|) since we assume I is tight, and since
by definition of I ′′ we have v′I = vI′′ .

As we assume that V is a minimal counter-example for Theorem 1.6, the theorem holds
for V ′. So, the polynomials P (k,V ′) are linearly independent. Observe that |P (k,V ′)| =
|P (k,V)| since

|P (k,V ′)| =
∑
i∈[e]

(k − |v′i|) =
∑
i∈[m]

(k − |vi|) = |P (k,V)|.

Thus, it will suffice to prove that P (k,V) and P (k,V ′) span the same space of polynomials
over F(a). To that end, it suffices to prove that F := P (k, {ve, . . . , vm}) and F ′ := P (k, v′e)
span the same space of polynomials.

Let us shorthand v = v′e. Define the polynomial p(a, x) :=
∏

j∈[n](x−aj)v(j). Observe that

p divides all polynomials in F, F ′. Moreover, F ′ = {p(a, x)xd : d = 0, . . . , k − 1− |v|} spans
the linear space of all multiples of p of degree ≤ k−1. As |F | = |F ′| it suffices to prove that F
are linearly independent over F(a), as then they must span the same linear space. However,
this follows from the minimality of V , since F = P (k,V ′′) for V ′′ = {ve, . . . , vm}.

The following lemma identifies a concrete vector that must exist in a minimal counter-
example. It is in its proof that we actually use the assumption that V satisfies (iii), namely
V ∗(k) and not merely V (k).

Lemma 2.5. There exists i ∈ [m] such that vi = (1, . . . , 1, 0).
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Proof. Lemma 2.2 guarantees that there exists i∗ ∈ [m] for which vi∗(n) = 0. We will prove
that vi∗ = (1, . . . , 1, 0). If not, then by (iii) there exists j∗ ∈ [n− 1] be such that vi∗(j

∗) = 0.
For simplicity of notation assume that i∗ = m, j∗ = n − 1. Define a new set of vectors
V ′ = {v′1, . . . , v′m} ⊂ Nn−1 as follows:

v′i := (vi(1), . . . , vi(n− 2), vi(n− 1) + vi(n)) .

In words, v′i ∈ Nn−1 is obtained by adding the last two coordinates of vi ∈ Nn.
We first show that V ′ satisfies V ∗(k). Note that |v′i| = |vi|. It clearly satisfies (i),(iii).

To show that it satisfies (ii) let I ⊆ [m]. Note that (ii) always holds if |I| = 1, so we may
assume |I| > 1. We have by definition∑

i∈I

(k − |v′i|) + |v′I | − v′I(n− 1) =
∑
i∈I

(k − |vi|) + |vI | − vI(n− 1)− vI(n). (2)

First, consider first the case where |I| < m. Lemma 2.4 gives that I is not tight, and
hence ∑

i∈I

(k − |vi|) + |vI | ≤ k − 1.

As V satisfies (iii) we have vi(n − 1) ∈ {0, 1} for all i. This implies vI(n − 1) ∈ {0, 1} and
v′I(n− 1) ∈ {vI(n), vI(n) + 1}. So Equation (2) gives∑

i∈I

(k − |v′i|) + |v′I | ≤
∑
i∈I

(k − |vi|) + |vI |+ 1 ≤ k.

Next, consider the case of |I| = m. As vm(n − 1) = vm(n) = 0 we have v′m(n − 1) = 0
and hence vI(n− 1) = vI(n) = v′I(n− 1) = 0. Equation (2) then gives∑

i∈I

(k − |v′i|) + |v′I | =
∑
i∈I

(k − |vi|) + |vI | ≤ k.

As we showed that V ′ satisfies V ∗(k), the minimality of V implies that the polynomials
P (k,V ′) are linearly independent over F(a). We next show that this implies that P (k,V)
are also linearly independent over F(a).

Let si := k − |vi| for i ∈ [m]. We have P (k,V) = {pi,e : i ∈ [m], e ∈ [si]} and P (k,V ′) =
{p′i,e : i ∈ [m], e ∈ [si]} where

pi,e(a, x) := xe−1
∏

j∈[n−2]

(x− aj)
vi(j) · (x− an−1)

vi(n−1)(x− an)v(n) ,

p′i,e(a, x) := xe−1
∏

j∈[n−2]

(x− aj)
vi(j) · (x− an−1)

vi(n−1)+vi(n) .

Observe that p′i,e can be obtained from pi,e by substituting an−1 for an. Namely

p′i,e(a1, . . . , an−1, x) = pi,e(a1, . . . , an−1, an−1, x).
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Assume towards a contradiction that {pi,e} are linearly dependent over F(a). Equivalently,
there exist polynomials wi,e(a), not all zero, such that∑

i∈[m]

∑
j∈[si]

wi,e(a)pi,e(a, x) = 0.

We may assume that the polynomials {wi,e} do not all have a common factor, as otherwise
we can divide them by it. Let w′i,e(a) be obtained from wi,e(a) by substituting an−1 for an.
That is, w′i,e(a1, . . . , an−1) = wi,e(a1, . . . , an−1, an−1). Then we obtain∑

i∈[m]

∑
j∈[si]

w′i,e(a)p′i,e(a, x) = 0.

As the polynomials {p′i,e} are linearly independent over F(a), this implies that w′i,e ≡ 0 for
all i, e. That is, the polynomials wi,e satisfy

wi,e(a1, . . . , an−1, an−1) ≡ 0.

This implies that (an−1−an) divides wi,e for all i, e, which is a contradiction to the assumption
that {wi,e} do not all have a common factor.

Lemma 2.5 implies that the vector (1, . . . , 1, 0) belongs to V . Without loss of generality,
we may assume that it is vm. This implies that vi(n) ≥ 1 for all i ∈ [m− 1], as otherwise we
would have vi ≤ vm, violating Lemma 2.1.

Lemma 2.6. n = k.

Proof. Let vm = (1, . . . , 1, 0). We know by (i) that n− 1 = |vm| ≤ k − 1, so n ≤ k. Assume
towards a contradiction that n < k. Define a new set of vectors V ′ = {v′1, . . . , v′m} ⊂ Nn as
follows:

v′1 := v1, . . . , v
′
m−1 := vm−1, v

′
m := (1, . . . , 1, 1).

In words, we increase the last coordinate of vm by 1.
We claim that V ′ satisfies V ∗(k). It satisfies (i) by our assumption that |v′m| = n ≤ k−1,

and it satisfies (iii) clearly. To show that it satisfies (ii), let I ⊆ [m]. If m /∈ I then it clearly
satisfies (ii) for I, as it is the same constraint as for V , so assume m ∈ I. In this case we
have ∑

i∈I

(k − |v′i|) + |v′I | =

(∑
i∈I

(k − |vi|)− 1

)
+ (|vI |+ 1) ≤ k.

Note that |P (k,V ′)| = |P (k,V)| − 1. As V is a minimal counter-example, we have that
V ′ satisfies V ∗(k). Let p(a, x) :=

∏
j∈[n−1](x− aj). The construction of V ′ satisfies that

P (k,V) = P (k,V ′) ∪ {p}.

Denote for simplicity of presentation the polynomials of P (k,V ′) by p1, . . . , pd−1, where
d = |P (k,V)|. Assume that the polynomials P (k,V) are linearly dependent. As P (k,V ′) are
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linearly independent, it implies that there exist polynomials w,w1, . . . , wd−1 ∈ F[a], where
w 6= 0, such that

w(a)p(a, x) +
d−1∑
i=1

wi(a)pi(a, x) ≡ 0.

Note that by construction, v′i(n) ≥ 1 for all i ∈ [m]. This implies that p1, . . . , pd−1 are all
divisible by (x−an), while p is not. Substituting x = an then gives w ≡ 0, a contradiction.

We can now reach a contradiction to V being a counter-example. We know that vm =
(1, . . . , 1, 0) with |vm| = n−1 = k−1. Let V ′ = {v1, . . . , vm−1}. As it satisfies V ∗(k) we have
that the polynomials P (k,V ′) are linearly independent. Moreover, as |vm| = k − 1 we have
P (k, vm) = {p} where p(a, x) =

∏
j∈[n−1](x− aj). Note that all polynomials in P (k,V ′) are

divisible by (x− an), while p is not. So by the same argument as in the proof of Lemma 2.6,
P (k, vm) cannot be linearly dependent of P (k,V ′). So P (k,V) are linearly independent.
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