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Abstract

An MDS matrix is a matrix whose minors all have full rank. A question arising
in coding theory is what zero patterns can MDS matrices have. There is a natural
combinatorial characterization (called the MDS condition) which is necessary over any
field, as well as sufficient over very large fields by a probabilistic argument.

Dau et al. (ISIT 2014) conjectured that the MDS condition is sufficient over small
fields as well, where the construction of the matrix is algebraic instead of probabilistic.
This is known as the GM-MDS conjecture. Concretely, if a k×n zero pattern satisfies
the MDS condition, then they conjecture that there exists an MDS matrix with this
zero pattern over any field of size |F| ≥ n + k − 1. In recent years, this conjecture was
proven in several special cases. In this work, we resolve the conjecture.

1 Introduction

An MDS matrix is a matrix whose minors all have full rank. These matrices arise naturally
in coding theory, as they are generating matrices for MDS (Maximally Distance Separable)
codes. A question arising in coding theory, motivated by applications in multiple access
networks [HHYD14,DSY15] and in secure data exchange [YS13,YSZ14], is what zero patterns
can MDS matrices have. Namely, how sparse can MDS matrices be?

There is a natural combinatorial characterization on the allowed zero patterns, called the
MDS condition. Let A be a k×n MDS matrix with k ≤ n. We can describe its zero/nonzero
pattern by a set system S1, . . . , Sk ⊂ [n], where Si = {j ∈ [n] : Ai,j = 0}.

There are several restrictions on the structure of such set systems. Clearly, any row of A
can have at most k− 1 zeros, so |Si| ≤ k− 1 for all i. Similarly, any two rows of A can have
at most k − 2 common zeros, so |Si ∩ Sj| ≤ k − 2 for all i 6= j. In general, this is known as
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the MDS condition on the set system:

|I|+

∣∣∣∣∣⋂
i∈I

Si

∣∣∣∣∣ ≤ k ∀I ⊆ [k], I nonempty. (?)

It is known that the MDS condition is also sufficient for the existence of MDS matrices
with zero pattern given by the set system, if the underlying field is large enough. Concretely,
let S1, . . . , Sk ⊂ [n] be a set system which satisfies the MDS condition. Let F be the
underlying field, and assume that |F| >

(
n
k

)
. Let A be a randomly chosen k × n matrix over

F, where Ai,j = 0 if j ∈ Si, and otherwise Ai,j ∈ F is chosen uniformly and independently.
Such a matrix A is an MDS matrix with positive probability. The reason is that the number
of maximal k × k minors of A is

(
n
k

)
, and the MDS condition implies that the determinants

of these minors are not identically zero. So, each minor has a probability of |F|−1 to be
singular, and by the union bound, if |F| >

(
n
k

)
, then with positive probability all minors are

nonsingular. This bound was improved to |F| >
(
n−1
k−1

)
in [DSDY13].

Dau et al. [DSY14] conjectured that the MDS condition is sufficient over small fields as
well. This is known as the GM-MDS conjecture. Concretely, if a k× n zero pattern satisfies
the MDS condition, then there exists an MDS matrix with this zero pattern over any field of
size |F| ≥ n + k − 1. Clearly, if this is true then a different argument than the probabilistic
argument above would be needed.

Conjecture 1.1 (GM-MDS conjecture [DSY14]). Let S1, . . . , Sk ⊂ [n] be a set system which
satisfies the MDS condition. Then for any field F with |F| ≥ n + k − 1, there exists a k × n
MDS matrix A over F with Ai,j = 0 whenever j ∈ Si.

We prove Conjecture 1.1 in this work.

Theorem 1.2. Conjecture 1.1 is correct.

First, we describe an algebraic framework introduced by Dau et al. [DSY14] towards
proving Conjecture 1.1.

1.1 The algebraic GM-MDS conjecture

Dau et al. [DSY14] formulated an algebraic conjecture that implies Conjecture 1.1: if
S1, . . . , Sk is a set system that satisfies the MDS condition, then there exists a General-
ized Reed-Muller code with zeros in locations prescribed by the set system. Otherwise put,
the matrix A can be factored as the product of a k × k invertible matrix and a k × n
Vandermonde matrix. Before explaining these ideas further, we first set up some notations.

Let F be a finite field, and let x, a1, . . . , an be formal variables, where we shorthand
a = (a1, . . . , an). We use the standard notations F[a, x] for the ring of polynomials over F
in the variables a, x; F(a) for the field of rational functions over F[a]; and F(a)[x] for the
ring of univariate polynomials in x over F(a). Given a set S ⊂ [n] define a polynomial
p = p(S) ∈ F[a, x] as follows:

p(a, x) :=
∏
i∈S

(x− ai).
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Given a set system S = {S1, . . . , Sk} define P (S) := {p(S1), . . . , p(Sk)}.
Let S = {S1, . . . , Sk} be a set system which satisfies the MDS condition. It is possible to

assume without loss of generality that each Si is maximal, namely that |Si| = k − 1 for all
i ∈ [k]. For example, if we are allowed to increase n then we can replace each Si with Si ∪Ti

where |Ti| = k − 1− |Si| and T1, . . . , Tk, [n] are pairwise disjoint. An improved reduction is
given in [DSY14] which does not require increasing n.

Either way, under this assumption the polynomials P (S) form a set of k polynomials of
degree k − 1, which we denote by p1, . . . , pk. Define the k × n matrix A as Ai,j = pi(aj).
Note that entries of A are polynomials in F[a]. The condition that all k× k minors of A are
nonsingular is equivalent to the condition that the polynomials P (S) are linearly independent
over F(a) (here, we view the polynomials as elements of F(a)[x] instead of as elements of
F[a, x]). If this is the case, then one can use the Schwartz-Zippel lemma and show that the
formal variables a1, . . . , an can be replaced with distinct field elements from F, while still
maintaining the property that all k× k minors of A are nonsingular. The bound on the field
size |F| ≥ n + k − 1 arises from the degrees of the polynomials obtained in the process. For
details we refer to the original paper [DSY14].

This motivated [DSY14] to propose the following algebraic conjecture, which implies
Conjecture 1.1.

Conjecture 1.3 (Algebraic GM-MDS conjecture [DSY14]). Let S1, . . . , Sk ⊂ [n] be a set
system which satisfies the MDS condition, and where |Si| = k − 1 for all i. Then the set of
polynomials P (S) are linearly independent over F(a).

We remark that given any polynomials p1, . . . , pk ∈ F[a, x] (for example, the polynomials
appearing in P (S)), an equivalent condition to the polynomials being linearly independent
over F(a) is the following: for any polynomials w1, . . . , wk ∈ F[a], not all zero, it holds that

k∑
i=1

wi(a)pi(a, x) 6= 0.

Following [DSY14], several works [HHYD14,HS17,YH18a] attempted to resolve the GM-
MDS conjecture. They showed that Conjecture 1.3 holds in several special cases, but the
general case remained open. In this work we prove Conjecture 1.3, which implies Conjec-
ture 1.1.

1.2 A generalized conjecture

We start by considering a more general condition. Let v ∈ Nn be a vector, where N =
{0, 1, 2, . . .} stands for non-negative integers. The coordinates of v are v = (v(1), . . . , v(n)).
We shorthand |v| =

∑
v(i). Given vectors v1, . . . , vm ∈ Nn define

∧
vi ∈ Nn to be their

coordinate-wise minimum:∧
i∈[m]

vi := (min(v1(1), . . . , vm(1)), . . . ,min(v1(n), . . . , vm(n))).
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Note that if v1, . . . , vm ∈ {0, 1}n are indicator vectors of sets S1, . . . , Sm ⊂ [n], then
∧
vi is

the indicator vector of ∩Si.
Given a parameter k > |v| define a set of polynomials in F[a, x]:

P (k, v) :=

∏
j∈[n]

(x− aj)
v(j)xe : e = 0, . . . , k − 1− |v|

 .

Note that P (k, v) consists of k−|v| polynomials of degree ≤ k−1, which form a basis for the
linear space of polynomials of degree ≤ k−1 which have v(j) roots at each aj. Furthermore,
note that if v is the indicator vector of a set S ⊂ [n] of size |S| = k−1, then P (k, v) = {p(S)}.
Given a set of vectors V = {v1, . . . , vm} ⊂ Nn define

P (k,V) := P (k, v1) ∪ . . . ∪ P (k, vm).

We use in this paper the convention that set union can result in a multiset. So for example, if
the same polynomial appears in multiple P (k, vi) then it appears multiple times in P (k,V).
Under this assumption we always have the identity:

|P (k,V)| = |P (k, v1)|+ . . . + |P (k, vm)|.

The following definition is the natural extension of the MDS condition to vectors.

Definition 1.4 (Property V (k)). Let V = {v1, . . . , vm} ⊂ Nn and k ≥ 1 be an integer. We
say that V satisfies V (k) if it satisfies:

(i) |vi| ≤ k − 1 for all i ∈ [m].

(ii) For all I ⊆ [m] nonempty,
∑

i∈I(k − |vi|) +
∣∣∧

i∈I vi
∣∣ ≤ k.

Note that when m = k and v1, . . . , vk are indicators of sets S1, . . . , Sk ⊂ [n] of size
|Si| = k − 1, then property V (k) is equivalent to the MDS condition for S1, . . . , Sk.

Observe that in general, if V satisfies V (k) then P (k,V) contains
∑m

i=1(k − |vi|) ≤
k polynomials of degree ≤ k − 1. The following conjecture is the natural extension of
Conjecture 1.3 to vectors.

Conjecture 1.5. Let V ⊂ Nn and k ≥ 1. Assume that V satisfies V (k). Then the polyno-
mials in P (k,V) are linearly independent over F(a).

A clarifying remark: as we view the set P (k,V) as a multiset, Conjecture 1.5 (and
Theorem 1.7 below) imply in particular that the polynomials in P (k,V) are all distinct, so
P (k,V) is in fact a set.
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1.3 An intermediate case

We prove Conjecture 1.5 under an additional assumption, which is sufficient to prove Con-
jecture 1.1. It is still open to prove Conjecture 1.5 in full generality.

Definition 1.6 (Property V ∗(k)). Let V = {v1, . . . , vm} ⊂ Nn and k ≥ 1 be an integer. We
say that V satisfies V ∗(k) if it satisfies V (k), and additionally it satisfies:

(iii) vi ∈ {0, 1}n−1 × N for all i ∈ [m]. Namely, all coordinates in vi, except perhaps the
last, are in {0, 1}.

Theorem 1.7. Let V ⊂ Nn and k ≥ 1. Assume that V satisfies V ∗(k). Then the polynomials
P (k,V) are linearly independent over F(a).

Conjecture 1.3 follows directly from Theorem 1.7. If S1, . . . , Sk ⊂ [n] are sets which
satisfy the assumptions of Conjecture 1.3, then their indicator vectors v1, . . . , vk ∈ {0, 1}n
satisfy the assumptions of Theorem 1.7, and hence P ({S1, . . . , Sk}) = P (k, {v1, . . . , vk}) are
linearly independent over F(a).

1.4 General distance

The rows of a k × n MDS matrix generates a linear code in Fn whose minimal distance
is d = n − k + 1. Namely, any vector in the subspace spanned by the rows has at most
n − d = k − 1 zeros. One can ask a more general question: given parameters k ≤ n and
d ≤ n− k + 1, what are the necessary and sufficient conditions on the zero pattern of a code
with minimal distance d.

As it turns out, this more general question reduces to the one about MDS codes.

Corollary 1.8. Let k ≤ n and d ≤ n − k + 1. Let S1, . . . , Sk ⊆ [n]. A necessary condition
for the existence of a k × n matrix A over any field, such that the code spanned by the rows
of the matrix has minimal distance at least d, and such that Ai,j = 0 whenever j ∈ Si, is

|I|+

∣∣∣∣∣⋂
i∈I

Si

∣∣∣∣∣ ≤ n− d + 1 ∀I ⊆ [k], I nonempty.

It is also a sufficient condition over any field F of size |F| ≥ 2n− d.

Proof. We first show that the conditions are necessary. Assume the condition is violated for
some I. Then there are |I| rows with at least n− d+ 2− |I| common zeros. Pick any |I| − 1
other coordinates; there is some linear combination of the rows in I which is zero in these
coordinates. So this linear combination has (n − d + 2 − |I|) + (|I| − 1) = n − d + 1 many
zeros, a contradiction to the minimal distance being at least d.

To show that the conditions are sufficient, consider the set system S1, . . . , Sk, Sk+1 =
. . . = Sn−d+1 = ∅. It satisfies that

|I|+

∣∣∣∣∣⋂
i∈I

Si

∣∣∣∣∣ ≤ n− d + 1 ∀I ⊆ [n− d + 1], I nonempty.

The claim follows by applying Theorem 1.2 to this set system.
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1.5 Related work

As we already discussed, the GM-MDS conjecture was suggested by [DSY14], and par-
tial results were obtained by [HHYD14, HS17, YH18a]. Shortly after posting this result in
arXiv [Lov18], we were informed by Yildiz and Hassibi [YH18b] that they too have found
a proof of the GM-MDS conjecture. Inspecting their proof, it is similar in spirit to our
proof, in the sense that both proofs generalize the original GM-MDS conjecture, in order to
facilitate an inductive argument. More specifically, our approach is to allow multiple roots
at a distinguished point, while their approach is to allow general multiplicities of sets.

1.6 Open problems

We already discussed Conjecture 1.5. A more general open problem is the following. Let
S1, . . . , Sk ⊂ [n] be a set system. Let A be a k×n matrix over some field, such that Ai,j = 0
whenever j ∈ Si. If we make no assumptions on the set system, then some k×k minors of A
are forced to be singular (this happens when the set system, restricted to the minor, violates
the MDS condition). The question is: what is the minimal field size, for which there exists
a matrix where all minors which are not forced to be singular are nonsingular.

This question arises naturally in the study of Maximally Recoverable (MR) codes, where
the minors which are forced to be singular are determined by the underlying topology of
the code. The GM-MDS conjecture which we prove is the special case where no minor
is forced to be singular. In this case, very small fields (of size n + k − 1) are sufficient.
However, in general there is no reason for nice algebraic constructions to exist. Two recent
works [KLR17,GGY17] have shown that in specific situations, exponential field size is needed.
However, the proof techniques are highly specialized to these specific cases.

This raises the following natural conjecture: most set systems require exponential field
size.

Conjecture 1.9. Let S1, . . . , Sk ⊂ [n] be chosen randomly, by including each j ∈ Si inde-
pendently with probability 1/2. Assume that there exists a k×n matrix A over a field F that
satisfies:

(i) Ai,j = 0 whenever j ∈ Si.

(ii) Any k × k minor of A, which is not forced to be singular by (i), is nonsingular.

Then with high probability over the choice of the set system, |F| ≥ c
(
n
k

)c
, where c > 0 is some

absolute constant.

The conjecture basically says that for most set systems, the probabilistic construction
which requires field size

(
n
k

)
cannot be significantly improved.

Acknowledgement. I thank Hoang Dau and Sankeerth Rao for a careful reading of an
earlier version of this paper.
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2 Proof of Theorem 1.7

Let n, k ≥ 1. Let V = {v1, . . . , vm} ⊂ Nn which satisfies V ∗(k). We will prove that the
polynomials P (k,V) are linearly independent over F(a).

To that end, we assume that V is a minimal counter-example and derive a contradiction.
Concretely, the underlying parameters are n, k,m and d = |P (k,V)| =

∑
k − |vi|. We will

assume that if V ′ is a set of vectors with corresponding parameters n′ ≤ n, k′ ≤ k,m′ ≤
m, d′ ≤ d with at least one of the inequalities being sharp, then Theorem 1.7 holds for V ′.
In particular, we assume that m ≥ 2, as Theorem 1.7 clearly holds when m = 1.

To help the reader, we note that the following lemmas construct such V ′ with the following
parameters:

• Lemma 2.2: n, k − 1,m, d.

• Lemma 2.4: n, k, e, d′ and n, k,m− e + 1, d′′ with 2 ≤ e ≤ m− 1 and d′, d′′ < d.

• Lemma 2.5: n− 1, k,m, d.

• Lemma 2.6: n, k,m, d− 1.

We use the following notation to simplify the presentation:

vI :=
∧
i∈I

vi I ⊆ [m].

We introduce sometimes in the proofs an auxiliary set V ′ = {v′1, . . . , v′m′}, in which case v′I
for I ⊆ [m′] are defined analogously. Below, when we say that V or V ′ satisfy (i), (ii) or (iii),
we mean the relevant items in the definition of V ∗(k).

Given two vectors u, v ∈ Nn we denote u ≤ v if u(i) ≤ v(i) for all i ∈ [n].

Lemma 2.1. There do not exist distinct i, j ∈ [m] such that vi ≤ vj.

Proof. Assume the contrary. Applying (i) to j gives |vj| ≤ k− 1. Applying (ii) to I = {i, j}
gives

(k − |vi|) + (k − |vj|) + |vi ∧ vj| ≤ k.

As vi ≤ vj we have vi ∧ vj = vi, and hence obtain that k − |vj| ≤ 0, a contradiction.

Lemma 2.1 implies in particular that n ≥ 2. This is since if n = 1 then necessarily m = 1,
as otherwise there would be i, j for which vi ≤ vj. So we assume n ≥ 2 from now on.

Lemma 2.2.
∧

i∈[m] vi = 0.

Proof. Assume not. Then there exists a coordinate j ∈ [n] with vi(j) ≥ 1 for all i ∈ [m].
Define a new set of vectors V ′ = {v′1, . . . , v′m} ⊂ Nn as follows:

v′i := (vi(1), . . . , vi(j − 1), vi(j)− 1, vi(j + 1), . . . , vi(n)).
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In words, v′i is defined from vi by decreasing coordinate j by 1.
We first show that V ′ satisfies V ∗(k − 1). Note that |v′i| = |vi| − 1. It clearly satisfies

(i),(iii). To show that it satisfies (ii) let I ⊆ [m]. We have∑
i∈I

(k − 1− |v′i|) + |v′I | =
∑
i∈I

(k − |vi|) + |vI | − 1 ≤ k − 1.

As we showed that V ′ satisfies V ∗(k−1), the minimality of V implies that the polynomials
P (k − 1,V ′) are linearly independent over F(a). The lemma follows as it is simple to verify
that

P (k,V) = {p(a, x)(x− aj) : p ∈ P (k − 1,V ′)}.

In particular, the linear independence of P (k − 1,V ′) implies the linear independence of
P (k,V).

Definition 2.3 (Tight constraint). A set I ⊆ [m] is tight for V if property (ii) holds with
equality for I. Namely if ∑

i∈I

(k − |vi|) + |vI | = k.

Note that if |I| = 1 then I is always a tight constraint. The following lemma is an
extension of Lemma 2(i) in [YH18a]. It shows that in a minimal counter-example there are
no tight sets, except for singletons and perhaps the whole set.

Lemma 2.4. If I ⊆ [m] is a tight constraint, then |I| = 1 or |I| = m.

Proof. Assume towards a contradiction that there exist a tight I with 1 < |I| < m. We will
use the minimality of V to derive a contradiction. Assume for simplicity of notation that
I = {e, . . . ,m} for 2 ≤ e ≤ m− 1. Define a new set of vectors V ′ = {v′1, . . . , v′e} given by

v′1 := v1, . . . , v
′
e−1 := ve−1, v

′
e := vI .

We first show that V ′ satisfies V ∗(k). It clearly satisfies (i) and (iii). To see that it
satisfies (ii) let I ′ ⊆ [e]. If e /∈ I ′ then V ′ satisfies (ii) for I ′ as it is same condition as for V ,
so assume e ∈ I ′. Let I ′′ = I ′ ∪ {e + 1, . . . ,m}. Then∑

i∈I′
(k − |v′i|) + |v′I′| =

∑
i∈I′′

(k − |vi|) + |vI′′ | ≤ k,

where the equality holds since k− |v′e| =
∑

i∈I(k− |vi|) since we assume I is tight, and since
by definition of I ′′ we have v′I = vI′′ .

As we assume that V is a minimal counter-example for Theorem 1.7, the theorem holds
for V ′. So, the polynomials P (k,V ′) are linearly independent. Observe that |P (k,V ′)| =
|P (k,V)| since

|P (k,V ′)| =
∑
i∈[e]

(k − |v′i|) =
∑
i∈[m]

(k − |vi|) = |P (k,V)|.
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Thus, it will suffice to prove that P (k,V) and P (k,V ′) span the same space of polynomials
over F(a). To that end, it suffices to prove that F := P (k, {ve, . . . , vm}) and F ′ := P (k, v′e)
span the same space of polynomials.

Let us shorthand v = v′e. Define the polynomial p(a, x) :=
∏

j∈[n](x−aj)v(j). Observe that

p divides all polynomials in F, F ′. Moreover, F ′ = {p(a, x)xd : d = 0, . . . , k − 1− |v|} spans
the linear space of all multiples of p of degree ≤ k−1. As |F | = |F ′| it suffices to prove that F
are linearly independent over F(a), as then they must span the same linear space. However,
this follows from the minimality of V , since F = P (k,V ′′) for V ′′ = {ve, . . . , vm}.

The following lemma identifies a concrete vector that must exist in a minimal counter-
example. It is in its proof that we actually use the assumption that V satisfies (iii), namely
V ∗(k) and not merely V (k).

Lemma 2.5. There exists i ∈ [m] such that vi = (1, . . . , 1, 0).

Proof. Lemma 2.2 guarantees that there exists i∗ ∈ [m] for which vi∗(n) = 0. We will prove
that vi∗ = (1, . . . , 1, 0). If not, then by (iii) there exists j∗ ∈ [n− 1] be such that vi∗(j

∗) = 0.
For simplicity of notation assume that i∗ = m, j∗ = n − 1. Define a new set of vectors
V ′ = {v′1, . . . , v′m} ⊂ Nn−1 as follows:

v′i := (vi(1), . . . , vi(n− 2), vi(n− 1) + vi(n)) .

In words, v′i ∈ Nn−1 is obtained by adding the last two coordinates of vi ∈ Nn.
We first show that V ′ satisfies V ∗(k). Note that |v′i| = |vi|. It clearly satisfies (i),(iii).

To show that it satisfies (ii) let I ⊆ [m]. Note that (ii) always holds if |I| = 1, so we may
assume |I| > 1. We have by definition∑

i∈I

(k − |v′i|) + |v′I | − v′I(n− 1) =
∑
i∈I

(k − |vi|) + |vI | − vI(n− 1)− vI(n). (1)

First, consider first the case where |I| < m. Lemma 2.4 gives that I is not tight, and
hence ∑

i∈I

(k − |vi|) + |vI | ≤ k − 1.

As V satisfies (iii) we have vi(n − 1) ∈ {0, 1} for all i. This implies vI(n − 1) ∈ {0, 1} and
v′I(n− 1) ∈ {vI(n), vI(n) + 1}. So Equation (1) gives∑

i∈I

(k − |v′i|) + |v′I | ≤
∑
i∈I

(k − |vi|) + |vI |+ 1 ≤ k.

Next, consider the case of |I| = m. As vm(n − 1) = vm(n) = 0 we have v′m(n − 1) = 0
and hence vI(n− 1) = vI(n) = v′I(n− 1) = 0. Equation (1) then gives∑

i∈I

(k − |v′i|) + |v′I | =
∑
i∈I

(k − |vi|) + |vI | ≤ k.

9



As we showed that V ′ satisfies V ∗(k), the minimality of V implies that the polynomials
P (k,V ′) are linearly independent over F(a). We next show that this implies that P (k,V)
are also linearly independent over F(a).

Let si := k − |vi| for i ∈ [m]. We have P (k,V) = {pi,e : i ∈ [m], e ∈ [si]} and P (k,V ′) =
{p′i,e : i ∈ [m], e ∈ [si]} where

pi,e(a, x) := xe−1
∏

j∈[n−2]

(x− aj)
vi(j) · (x− an−1)

vi(n−1)(x− an)v(n) ,

p′i,e(a, x) := xe−1
∏

j∈[n−2]

(x− aj)
vi(j) · (x− an−1)

vi(n−1)+vi(n) .

Observe that p′i,e can be obtained from pi,e by substituting an−1 for an. Namely

p′i,e(a1, . . . , an−1, x) = pi,e(a1, . . . , an−1, an−1, x).

Assume towards a contradiction that {pi,e} are linearly dependent over F(a). Equivalently,
there exist polynomials wi,e(a), not all zero, such that∑

i∈[m]

∑
j∈[si]

wi,e(a)pi,e(a, x) = 0.

We may assume that the polynomials {wi,e} do not all have a common factor, as otherwise
we can divide them by it. Let w′i,e(a) be obtained from wi,e(a) by substituting an−1 for an.
That is, w′i,e(a1, . . . , an−1) = wi,e(a1, . . . , an−1, an−1). Then we obtain∑

i∈[m]

∑
j∈[si]

w′i,e(a)p′i,e(a, x) = 0.

As the polynomials {p′i,e} are linearly independent over F(a), this implies that w′i,e ≡ 0 for
all i, e. That is, the polynomials wi,e satisfy

wi,e(a1, . . . , an−1, an−1) ≡ 0.

This implies that (an−1−an) divides wi,e for all i, e, which is a contradiction to the assumption
that {wi,e} do not all have a common factor.

Lemma 2.5 implies that the vector (1, . . . , 1, 0) belongs to V . Without loss of generality,
we may assume that it is vm. This implies that vi(n) ≥ 1 for all i ∈ [m− 1], as otherwise we
would have vi ≤ vm, violating Lemma 2.1.

Lemma 2.6. n = k.

Proof. Let vm = (1, . . . , 1, 0). We know by (i) that n− 1 = |vm| ≤ k − 1, so n ≤ k. Assume
towards a contradiction that n < k. Define a new set of vectors V ′ = {v′1, . . . , v′m} ⊂ Nn as
follows:

v′1 := v1, . . . , v
′
m−1 := vm−1, v

′
m := (1, . . . , 1, 1).
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In words, we increase the last coordinate of vm by 1.
We claim that V ′ satisfies V ∗(k). It satisfies (i) by our assumption that |v′m| = n ≤ k−1,

and it satisfies (iii) clearly. To show that it satisfies (ii), let I ⊆ [m]. If m /∈ I then it clearly
satisfies (ii) for I, as it is the same constraint as for V , so assume m ∈ I. In this case we
have ∑

i∈I

(k − |v′i|) + |v′I | =

(∑
i∈I

(k − |vi|)− 1

)
+ (|vI |+ 1) ≤ k.

Note that |P (k,V ′)| = |P (k,V)|−1. As V is a minimal counter-example, we have that V ′
satisfies V ∗(k). Let p(a, x) :=

∏
j∈[n−1](x− aj). The construction of V ′ satisfies that P (k,V)

and P (k,V ′)∪{p} span the same linear space of polynomials over F(a). This is since v′i = vi
for i = 1, . . . ,m− 1 and since

P (k, {vm}) = {pxe : e = 0, . . . , n− k}

and
P (k, {v′m}) ∪ {p} = {p(x− an)xe : e = 0, . . . , n− k − 1} ∪ {p}

both span the linear space of polynomials which are multiples of p and of degree ≤ k − 1.
Denote for simplicity of presentation the polynomials of P (k,V ′) by p1, . . . , pd−1, where

d = |P (k,V)|. Assume that the polynomials P (k,V) are linearly dependent. As P (k,V ′) are
linearly independent, it implies that there exist polynomials w,w1, . . . , wd−1 ∈ F[a], where
w 6= 0, such that

w(a)p(a, x) +
d−1∑
i=1

wi(a)pi(a, x) ≡ 0.

Note that by construction, v′i(n) ≥ 1 for all i ∈ [m]. This implies that p1, . . . , pd−1 are all
divisible by (x−an), while p is not. Substituting x = an then gives w ≡ 0, a contradiction.

We can now reach a contradiction to V being a counter-example. We know that vm =
(1, . . . , 1, 0) with |vm| = n−1 = k−1. Let V ′ = {v1, . . . , vm−1}. As it satisfies V ∗(k) we have
that the polynomials P (k,V ′) are linearly independent. Moreover, as |vm| = k − 1 we have
P (k, vm) = {p} where p(a, x) =

∏
j∈[n−1](x− aj). Note that all polynomials in P (k,V ′) are

divisible by (x− an), while p is not. So by the same argument as in the proof of Lemma 2.6,
P (k, vm) cannot be linearly dependent of P (k,V ′). So P (k,V) are linearly independent.
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