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Abstract

A curious property of randomized log-space search algorithms is that their outputs are often
longer than their workspace. This leads to the question: how can we reproduce the results of a
randomized log space computation without storing the output or randomness verbatim? Run-
ning the algorithm again with new random bits may result in a new (and potentially different)
output.

We show that every problem in search-RL has a randomized log-space algorithm where the
output can be reproduced. Specifically, we show that for every problem in search-RL, there are
a pair of log-space randomized algorithms A and B where for every input x, A will output some
string tx of size O(log n), such that B when running on (x, tx) will be pseudo-deterministic:
that is, running B multiple times on the same input (x, tx) will result in the same output on all
executions with high probability. Thus, by storing only O(log n) bits in memory, it is possible
to reproduce the output of a randomized log-space algorithm.

An algorithm is reproducible without storing any bits in memory (i.e., |tx| = 0) if and
only if it is pseudo-deterministic. We show pseudo-deterministic algorithms for finding paths in
undirected graphs and Eulerian graphs using logarithmic space. Our algorithms are substantially
faster than the best known deterministic algorithms for finding paths in such graphs in log-space.

The algorithm for search-RL has the additional property that its output, when viewed as a
random variable depending on the randomness used by the algorithm, has entropy O(log n).
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1 Introduction

1.1 Reproducible Outputs

When using a log-space machine to perform a randomized search algorithm with a polynomial-sized
output, the output cannot be fully stored. Running the algorithm again with new random bits may
result in a new (and potentially different) output. Hence, after running the computation, we lose
access to the outputted answer, and are unable to reproduce it.

Consider, for example, the following simple computational problem: Given a (directed) graph
G and two vertices s and t such that a random walk from s hits t quickly with high probability,
output two copies of the same path from s to t. That is, the goal is to output some path P ,
and then output the same path P again. It’s not clear how to perform the above in randomized
log-space, since after outputting some path P , it’s not clear how to reproduce P and be able to
output it again. So, although outputting a single path is easy, or two potentially different paths,
it’s not clear how to output the same path twice.

Another example of this phenomenon in play is that it is known that there is a randomized
reduction from NL to UL (in fact, NL is reducible to UL ∩ coUL) [2, 12]. It follows that if UL
⊆ RL, then NL can be solved by randomized log-space algorithms with two-way access to the
random bits (that is, there is a randomized disambiguation of NL which uses two-way access to
the random bits). However, when assuming UL ⊆ RL, it is not known whether NL can be solved
by a randomized log-space algorithm with one-way access to the random bits. The two-way access
to the random bits is needed so that the output of the reduction (which is an instance of a problem
in UL) can be accessed in a two-way fashion. If the output of the reduction was reproducible, then
one-way access to the random bits would suffice.

One way to achieve reproducibility is through pseudo-determinism. Pseudo-deterministic al-
gorithms are randomized search algorithms which, when run on the same input multiple times,
with high probability output the same result on all executions. Given such an algorithm, it is
possible to reproduce outputs: simply run the algorithm again using new randomness. We manage
to achieve reproducibility using a different and novel approach which does not involve finding a
pseudo-deterministic algorithm for the problem.

1.2 Our Contribution

Our contribution falls into two parts: contributions to reproducibility in the context of log-space,
and contributions to pseudo-determinism in the context of log-space.

Reproducibility: We introduce the notion reproducibility and provide a definition in Section 3.
Our main result shows that every problem in search-RL (see Section 2 for a definition of search-RL)
can be solved so that its output is reproducible. By reproducible, we essentially mean that the
algorithm will be able to generate many identical copies of its output using only O(log n) memory.
Then, it effectively has two-way access to the output, instead of only one-way access, which is the
case with standard search-RL algorithms.

In order to achieve reproducibility, we show that for every problem in search-RL there is some
randomized log-space algorithm A such that with high probability, the output of A only depends
on the first O(log n) random bits A samples. That is, after sampling the first O(log n) random bits,
with high probability for most choices of the rest of the random bits used by the algorithm, the
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same result will be outputted. This property allows the algorithm reproduce the output, as it can
store the first O(log n) random bits it sampled in memory, and use them to recreate the output.
Since the algorithm can find and store the information needed to reproduce the answer, we say
that the output is reproducible.

Our first result is that every problem in search-RL (as defined in [11]) has a randomized log-
space algorithm whose output, with high probability, only depends on its first O(log n) random
bits. This implies that every problem in search-RL has reproducible solutions.

Informal Theorem 1.1. Every problem in search-RL has a randomized log-space algorithm whose
output, with high probability, only depends on its first O(log n) random bits.

A more precise statement is given in Section 3 as Theorem 3.5. The algorithm we present
has several other noteworthy properties, which we discuss in Subsection 3.6. This includes that
the output of the algorithm, when viewed as a random variable depending on the random choices
used by the algorithm, has entropy O(log n). This is significantly lower than a standard search-RL
algorithm, which may have polynomial entropy.

Pseudo-determinism: In later sections, we show faster pseudo-deterministic algorithms for find-
ing paths in undirected and Eulerian graphs. These algorithms are reproducible even without
storing O(log n) bits in memory.

For undirected graphs, a deterministic log-space algorithm has been shown by Reingold [10].
One of the drawbacks of this algorithm is that its runtime, while polynomial, has a very large
exponent, since it requires going over all paths of length O(log n) on a certain graph, with a large
constant hidden in the O (for certain expositions of the algorithm, the polynomial runtime is larger
than O(n109)). This can likely be improved, but we imagine it would be difficult to lower it to
a “reasonable” polynomial time complexity. We show a pseudo-deterministic algorithm for the
problem which runs in the more reasonable time of Õ(mn3):

Theorem 1.2 (Pseudo-deterministic Undirected Connectivity in Õ(mn3) time, O(log n) space).
Let G be a given undirected graph with n vertices and m edges. Given two vertices s and t of
G which are connected, there is a pseudo-deterministic log-space algorithm which outputs a path
from s to t. Furthermore, the algorithm runs in time Õ(mn3).

We then generalize the theorem to Eulerian graphs (directed graphs where each vertex has
indegree equal to its outdegree). Finding paths in such graphs deterministically has been shown
in [11]. Once again, the algorithm given in [11] suffers from a very large polynomial runtime.

Theorem 1.3 (Connectivity in Eulerian graphs in in Õ(m5n3) time, O(log n) space). Let G be a
given Eulerian graph with n vertices and m edges. Given two vertices s and t of G such that there
is a directed path from s to t, there is a pseudo-deterministic log-space algorithm which outputs a
path from s to t. Furthermore, the algorithm runs in time Õ(m5n3).

1.3 Related Work

Pseudo-determinism: The study of pseudo-determinism was initiated by Gat and Goldwasser
[3]. Pseudo-deterministic algorithms have been studied for the problem of finding primitive roots
modulo primes [7], for finding perfect perfect matchings in parallel on bipartite graphs [5], in the
context of sublinear time algorithms [4], and in the context of interactive proofs [6]. Furthermore,
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general theorems regarding the existence of pseudo-deterministic subexponential algorithms have
been shown in [8, 9]. In this work, we initiate the study of pseudo-determinism in the context of
low space computation.

RL vs L: Related to our result on pseudo-deterministic undirected connectivity is the work of
Reingold, which showed that undirected connectivity can be solved deterministically with logarith-
mic space [10]. Later, this result was extended to find pseudo-random walks on Eulerian graphs by
Reingold, Trevisan, and Vadhan [11].

One of our techniques may remind some readers of the work of Saks and Zhou that show that
problems in BPL can be solved deterministically using O(log3/2(n)) space [13]. In [13], the authors
add random noise to certain computed matrices, in order to be able to reuse certain random bits.
In this work, we pick a certain ‘threshold’ at random, and this allows us to reuse randomness (more
accurately, it makes our output be pseudo-deterministic with respect to certain random bits). The
two ideas are similar in that they use randomization in an unconventional way in order to make
the output not depend on certain random bits (for Saks and Zhou, this was helpful since it allowed
those random bits to be reused).

2 Preliminaries

In this section we establish some definitions and lemmas that will be useful in later parts of the
paper. Many of our definitions, especially those related to search problems in the context of log-
space, follow closely to the definitions in [11].

We begin by defining a search problem.

Definition 2.1 (Search Problem). A search problem is a relation R consisting of pairs (x, y). We
define LR = {x|∃y s.t. (x, y) ∈ R}, and R(x) = {y|(x, y) ∈ R}.

The computational task associated with a search problem R is: given x, find a y such that
(x, y) ∈ R. From this point of view, LR corresponds to the set of valid inputs, and R(x) corresponds
to the set of valid outputs on input x.

We now define a pseudo-deterministic algorithm. Intuitively speaking, a pseudo-deterministic
algorithm is a randomized search algorithm which, when run multiple times on the same input
(using different random strings), results in the same output with high probability.

Definition 2.2 (Pseudo-deterministic). A randomized search algorithm A is pseudo-deterministic
if for all valid inputs x,

Pr
r1,r2

(A(x, r1) = A(x, r2)) ≥ 2/3.

We note that through repetition, the 2/3 in the above definition can be amplified.
We now define classes of search problems in the context of log-space. Our definitions follow

closely to those of [11].

Definition 2.3 (Log-space search problem). A search problem R is log-space if there is a polynomial
p such that if y ∈ R(x) then |y| ≤ p(|x|) and there is a deterministic log-space machine can decide
if (x, y) ∈ R with two-way access to x and one-way access to y.
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We now define the class search-L. We remind the reader that a transducer is a Turing machine
with a read-only input tape, a work tape (in our case, of logarithmic size), and a write-only output
tape.

Definition 2.4 (search-L). A search problem R is in search-L if it is log-space and if there is a
logarithmic space transducer A such that A(x) ∈ R(x) for all x in LR.

Definition 2.5 (search-RL). A search problem R is in search-RL if it is log-space and if there is a
randomized logarithmic space transducer A and polynomial p such that Prr[A(x, r) ∈ R(x)] ≥ 1

p(|x|)
for all x ∈ LR.

The following computational problem is complete for search-RL:

Definition 2.6 (Short-Walk Find Path). Let R be the search problem whose valid inputs are
x = (G, s, t, 1k) where G is a directed graph, s and t are two vertices of G, and a random walk of
length k from s reaches t with probability at least 1− 1/|x| (where |x| represents the length of the
input x). On such an x, a valid output is a path of length up to poly(k) from s to t.

Lemma 2.7. Short-Walk Find Path is complete for search-RL.

We prove the above lemma in Appendix B, via a reduction from Poly-Mixing Find Path,
which was shown to be complete for search-RL in [11].

Before going on to the algorithm in Section 3, we make a definition to simplify the explanations.

Definition 2.8. For a graph G with vertices s and t, and a positive integer k, let pk(s, t) denote
the probability that a random walk of length k starting from s goes through t.

One of the key lemmas used by the algorithm is that one can estimate the value of pk(s, t) up
to some polynomial additive error in search-RL. To do so, we simulate polynomially many random
walks starting at s and count the fraction that pass through t. This is made precise in the following
lemma:

Lemma 2.9. Consider a graph G with n vertices, two of which are s and t. Let k be a positive
integer. Then there exists a randomized log-space algorithm that on input (G, s, t, 1k) outputs an
estimate µ for pk(s, t) satisfying |µ− pk(s, t)| ≤ 1

k5n5 with probability at least 1− 2e−2kn.

Proof. To find µ, we simulate many random walks from s of length k, and then output the fraction
which reach t. More precisely, we use the following algorithm: simulate k11n11 random walks of
length k starting at s, and count how many end at t. Say that C of them do. Then output C

k11n11 .
To show that this works, it suffices to note that

Pr

[∣∣∣∣ C

k11n11
− pk(s, t)

∣∣∣∣ ≤ 1

k5n5

]
≥ 1− 2e−2kn

by Hoeffding’s inequality.
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3 An Algorithm for Search-RL with Reproducible Outputs

3.1 Reproducibility

We begin with a formal definition of a problem with reproducible outputs. Essentially, a problem
has reproducible solutions if for every input x we can generate a short string tx so that given both x
and tx we can keep reproducing copies of the same y satisfying (x, y) ∈ R. That is, by memorizing
only the short string tx, we can continue to produce more copies of the same output.

Definition 3.1 (Reproducible). We say that a search problem R has log-space reproducible solu-
tions if there exist randomized log-space algorithms A and B satisfying the following properties:

• On input x, with high probability, A outputs a string tx of length O(log n) such that the
second bullet holds.1

• There exists some y satisfying (x, y) ∈ R such that with high probability B outputs y when
running on input (x, tx).

Reproducibility is closely related to pseudo-determinism. In the case where tx is of size 0, the
algorithm B is a pseudo-deterministic algorithm for the search problem R.

An alternate way to view reproducibility is that a search problem R has log-space reproducible
solutions if there exists some randomized log-space algorithm C such that algorithm C can produce
two copies of an output y satisfying (x, y) ∈ R. Essentially, this alternate view captures the fact
that a problem has log-space reproducible solutions if and only if we can produce some output, and
then produce it again, ensuring that the output was not lost after the first time we computed it.

Lemma 3.2. A search problem R has log-space reproducible solutions if and only if there exists some
randomized log-space algorithm C such that for all valid inputs x (i.e., x ∈ LR), with high probability
C(x) outputs two copies of an output y satisfying (x, y) ∈ R. That is, with high probability C outputs
the tuple (y, y), where (x, y) ∈ R.

Proof. First we show that every search problem R with log-space reproducible solutions has a
randomized log-space algorithm C that given some x, with high probability outputs two copies of
an output y satisfying (x, y) ∈ R. Let A and B be the algorithms for problem R from Definition
3.1. We now show how to amplify algorithm B so that the probability it outputs y is 1 − 1

4n2 .
We do this by determining the i-th bit of the output for all 1 ≤ i ≤ |y|, where |y| denotes the
length of the output y. More specifically, consider the algorithm B′ that loops through all i such
that 1 ≤ i ≤ |y|, and for each index i, runs B at least Ω(log(2n|y|)) times to determine the most
common bit in that position. Because there exists an input y such that Prr[B(x, tx, r) = y] ≥ 2

3 ,
the most common bit in each position will be the same as the bit of y in that position. Therefore,
(after choosing a large enough constant in the Ω) by a Chernoff bound and a union bound over all

bits in y, B′ will output y with probability at least 1− |y|
8n3|y|3 . Now, an algorithm C for R can do

the following: first run A to get tx, and then run algorithm B′ two times. By a union bound, with
high probability, the output will be y both times, as the failure probability is bounded by 2|y|

8n3|y|3 ,

so the success probability is high.

1Via exhaustive search, it can be shown that if for all inputs x there exists a tx such that the second bullet holds,
there also exists a log-space algorithm A that for all x with high probability will output some tx satisfying the second
bullet.
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Now we show the reverse direction. Consider an algorithm C such that with high probability on
input x, C will output two copies of an output y satisfying (x, y) ∈ R. Now we construct algorithms
A and B satisfying the conditions of Definition 3.1. First, let algorithm A simulate algorithm C,
and output the state of the Turing machine corresponding to algorithm C after C has outputted
one copy of y (that is, after it has otputted the comma between the two y’s in (y, y)). This will
be our string tx. The length of tx will be of size O(log n) as C is a log-space algorithm. Now,
algorithm B will continue simulating algorithm C, starting from state tx. With high probability,
C will output another copy of y after reaching state tx, since we know which high probability C
outputs the pair same output twice. Therefore, algorithm B will output y with high probability,
as desired.

We note that if a problem R has reproducible solutions, then for any polynomially bounded
` it has a randomized logspace algorithm D which on valid input x outputs ` copies of a valid
output y. That is, it outputs (y, y, . . . , y), where (x, y) ∈ R. This can be done by first running
the algorithm A (from Definition 3.1) to create an advice string tx, and then running algorithm B
(from Definition 3.1) ` times using the same advice string s on all those ` executions.

A justification for the definition of reproducibility: One may argue that the definition pro-
posed for reproducibility is highly structured, and that there may be ways to construct algorithms
which capture the notion of reproducibility without adhering to the structure of Definition 3.1. To
argue that Definition 3.1 captures the “true” notion of reproducibility, we can consider a “weak”
definition of reproducibility, and show that it is equivalent to the strict Definition 3.1. Since the
“weak” and strict versions of the definition can be shown to be equivalent, we know that we must
have captured the notion of reproducibility which must lie between those two definitions.

We note that the “weakest” possible notion for reproducibility is that an algorithm has re-
producible solutions if there is some randomized logspace algorithm C which outputs the same
valid output y twice. This is since if such an algorithm doesn’t exist, then there is no hope to
achieve any sort of reproducibility, since we essentially can’t even reproduce the output a single
time. Lemma 3.2 shows that this weak notion is equivalent to Definition 3.1, showing that the
seemingly too-strict definition (Definition 3.1) is equivalent to the seemingly too weak definition
(that a problem has reproducible outputs if there exists a C which outputs the same valid output
y twice), demonstrating that the correct notion of reproducibility is captured by Definition 3.1.

3.2 Algorithms with few influential bits

To construct a log-space algorithm whose output is reproducible, we will design an algorithm A
whose output depends on O(log n) of the random bits A samples. Then, the algorithm can store
those O(log n) influential random bits, and using those it can reproduce its output by running
again using the same O(log n) influential random bits. Below we give a precise definition of what
we mean by “influential random bits”.

Definition 3.3 (Influential bits). 2 Let k(n) be a polynomial-time computable function. Say
that a randomized log-space search algorithm A has k(n) influential bits if for all valid inputs x,
with probability at least 1

2 over random strings r1 of length k(n), we have that there exists an

2An algorithm is pseudo-deterministic if it has zero influential bits. In this sense, the above definition is an
extension of pseudo-determinism.
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output y such that y is valid for input x and Prr2 [A(x, r1, r2) = y] ≥ 2
3 . Here, r2 denotes the

remaining randomness (after r1) used by A and A(x, r1, r2) denotes the output of A on input x
with randomness r1 and r2.

We now prove that if a randomized log-space algorithm A has O(log n) influential bits, then its
output is reproducible. Essentially, the idea is that the algorithm A can store its O(log n) influential
random bits in memory and then use these bits to recompute its previous output.

Lemma 3.4. If a search problem R can be solved by a randomized log-space algorithm with O(log n)
influential random bits, then it has log-space reproducible solutions.

Proof. Let C be an algorithm for the search problem R with b = O(log n) influential random bits.
Let m = poly(n) be an upper bound on the output size. We will construct algorithms A and B that
satisfy the conditions of Definition 3.1, i.e., for an input x, A outputs a string tx of length O(log n),
such that with high probability algorithm B running on input (x, tx) will pseudo-deterministically
produce an output y satisfying (x, y) ∈ R.

First, we will show how to amplify the 2
3 from Definition 3.3. We randomly generate b bits

(recall that b is the number of influential random bits used by algorithm C). With probability at
least 1

2 , fixing these b bits will cause algorithm C to produce the same output for at least 2
3 of the

choices for the remaining random bits. We can amplify the 2
3 via repetition. That is, we can create

a new algorithm C ′ where the kth output bit is 0 if after running C a total of cn times (for some
constant c), the majority of times the kth output bit was a 0. Otherwise, we set the kth output bit
to be a 1. If we let c be sufficiently large, then by a Chernoff bound and a union bound over the
coordinates of the output, we have that the whole output of C ′ will be y with probability at least
1− 1

2n .
Now, we describe the algorithms A and B. Algorithm A begins by sampling a random string

s1 of length b bits. Next, algorithm A will test whether s1 is a “good” string. That is, we test
whether with high probability there is some y such that the probability Prr2 [C ′(x, s1, r2) = y] is
large (at least 1− 1

n2 ). This can be done by, for each output bit i, running the algorithm C ′ a total
of Θ(n2) times, and checking if the i-th output bit was the same in all executions (we remark here
that A knows which bits of C ′ are influential because those are the bits that are sampled first). If

Prr2 [C ′(x, s1, r2) = y] is at least 1− 1
2n , then s1 passes this test with probability at least 1− Θ(n2)

2n . If
the string s1 passes, we know that with high probability Prr2 [C ′(x, s1, r2) = y] ≥ 1− 1

n . If it is the
case that for each coordinate, C ′ outputted the same bit on each of the executions, algorithm A can
output s1 as its string tx. Otherwise, if one of the output bits was not the same on all executions
(i.e., s1 did not pass the test for having a high value of Prr2 [C ′(x, s1, r2) = y]), we sample a new
string s1 and repeat. After O(log n) tries for the string s1, with high probability we will find a
good string s1, where C ′ outputs a certain y with high probability. Now, algorithm B can simply
simulate algorithm C ′ on the input (tx, x), where tx is the good string that A outputted. Since
with high probability Prr2 [C ′(x, s1, r2) = y] ≥ 1− 1

n , we know that algorithm B, when run multiple
times on (tx, x), will output the same y with high probability.

In the rest of the section, we prove that every problem in search-RL has an algorithm with
O(log n) influential bits:

Theorem 3.5. Every problem in search-RL has a randomized log-space algorithm that only has
O(log n) influential bits.
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As an immediate corollary of Theorem 3.5 and Lemma 3.4 we have:

Corollary 3.6. Every problem in search-RL has log-space reproducible solutions.

3.3 High Level Proof Idea for Theorem 3.5

At the high level, the idea for the algorithm for Theorem 3.5 is as follows. First, we consider the
problem Short-Walk Find Path from Definition 2.6, which we know is complete for search-RL by
Lemma 2.7. Now, suppose that we wish to find a path from s to t, and we know that pk(s, t) ≥ 1

2 (see
Definition 2.8 for a definition of pk). This implies that there must exist an outneighbor v of s such
that pk−1(v, t) ≥ 1

2 . Therefore, if we could estimate pk−1(v, t) for all outneighbors v of s, we could
pick the lexicographically first neighbor satisfying pk−1(v, t) ≥ 1

2 , and continue recursively from
there. Since v is uniquely determined (it is the lexicographically first outneighbor of s satisfying
pk−1(v, t) ≥ 1

2), if such an algorithm worked, it would be fully pseudo-deterministic (and hence
would have no influential random bits).

Unfortunately, this proposed algorithm of finding an outneighbor will not work. To see why,
consider the situation where for the first outneighbor v of s that we check, pk−1(v, t) is exactly
equal to 1/2. Then no matter how accurately we estimate pk−1(v, t), much of the time our estimate
will be less than 1/2, and other times it will be greater than 1/2. This makes our algorithm not
pseudo-deterministic, as in some runs we will use vertex v in the path, and in other runs we will
not.

Instead, we construct an algorithm that has logarithmically many influential bits in the following
way. We will generate a threshold c (from some distribution) and find the first outneighbor v
satisfying pk−1(v, t) ≥ 1/2− c, and use that vertex v as part of our path. Then, we recurse to find
the next vertex in the path. Of course, this still fails if pk−1(v, t) = 1/2− c (or if pk−1(v, t) is close
to 1/2− c). However, if the value of c is far away from all values of 1/2− pi(u, t) for all u and all
1 ≤ i ≤ k, then our algorithm, for this fixed value of c, will always give the same output. Hence, to
get an algorithm with logarithmically many influential bits for Short-Walk Find Path, we just
need a way to use logarithmically many bits to select a value of c such that for all 1 ≤ i ≤ k, and
vertices v, |1/2− pk−1(v, t)− c| is large (at least 1/n5k5).

We are able to find such a value of c by sampling it at random from some set of polynomial size.
Note that there are kn possible values for an expression of the form 1/2−pi(u, t) (with i ≤ k), since
there are n options for u, and k options for i, and we need c to be far from all kn of these options.
If we were to randomly sample c from the set { 1

k4n4 ,
2

k4n4 , . . . ,
k2n2

k4n4 }, then with high probability
our chosen value of c would be far away from all of the expressions of the form 1/2− pi(u, t) (with
i ≤ k), and hence once we fix such a c, we get the same output with high probability. Because we
can sample c using O(log nk) bits, our output will only depend on the first O(log nk) bits sampled.

3.4 Algorithm and Analysis

Here we will state the algorithm for Theorem 3.5 more precisely and provide a detailed analysis.

Lemma 3.7. Algorithm 1 runs in randomized log-space, has O(log nk) influential bits, and with
high probability it outputs a path from s to t in expected polynomial time.

Proof. We first show the algorithm runs in randomized log-space. Then we show the algorithm out-
puts a path with high probability in polynomial time, and then we show the output has O(log nk)
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Algorithm 1 Randomized algorithm with O(log n) influential bits for Short-Walk Find Path
on input (G, s, t, 1k)

1: Initialize u = s. u is the current vertex.
2: Choose a threshold c from the set { 1

k4n4 ,
2

k4n4 , . . . ,
k2n2

k4n4 } uniformly at random.
3: for d = k, k − 1, . . . , 1 do
4: Print u (on the output tape).
5: for each outneighbor v of u (in lexicographic order) do
6: Estimate 1/2− pd−1(v, t), up to additive error 1

k5n5 (use Lemma 2.9). Call the estimate
µ.

7: if µ ≤ c then set u← v, and continue (i.e., return to line 3).

influential bits.

Runs in randomized log-space: At every point in the algorithm, we must store in memory the
value of c (which requires log(poly(n, k)) = O(log nk) bits), the current value of d, which requires
log k bits, and the current vertex u, which requires log n bits. In addition, in line 6 we estimate the
value of pd−1(v, t), which can be done in log-space by Lemma 2.9. Hence, the total number of bits
needed is O(log nk), which is logarithmic in the input size.

With high probability outputs a path from s to t in polynomial time: Out of the possible
values for c in the set { 1

k4n4 ,
2

k4n4 , . . . ,
k2n2

k4n4 }, at most kn of them could satisfy |1/2− pi(v, t)− c| ≤
1

n5k5
for some value of 1 ≤ i ≤ k and vertex v (since there are kn possible values of pi(v, t)).

We choose such a value with probability at most 1
kn (since there are at most kn such “bad”

choices, out of k2n2 total choices for c). Now, consider the other values of c, which do not satisfy
|1/2−pi(v, t)−c| ≤ 1

n5k5
for any i and v. We now show that with high probability if the if statement

in line 7 is satisfied, it is the case that with high probability 1/2 − pd−1(v, t) ≤ c. This is since
1/2 − pd−1(v, t) is more than 1

k5n5 away from c, and by Lemma 2.9, the estimate for pd−1(v, t)
is within 1

k5n5 of the true value of pd−1(v, t) with high probability. Since with high probability
pd(u, t) ≥ 1/2 − c, vertex u must have an outneighbor v satisfying pd−1(v, t) ≥ 1/2 − c. Since
pd−1(v, t) is further than 1

n5k5
from c, by Lemma 2.9, with high probability when reaching the

vertex v in the for loop of line 5, in line 7 the if statement will be satisfied. Hence, with high
probability, u will change on each iteration of the for loop of line 3, and we maintain that with high
probability throughout the algorithm the values of d and u satisfy pd(u, t) ≥ 1/2− c.

Now we show that the algorithm succeeds with high probability. Once again, the probability
we choose a c satisfying |1/2 − pi(v, t) − c| ≤ 1

n5k5
for some 1 ≤ i ≤ k and vertex v is at most

1
nk . The remaining probabilistic parts of the algorithm come from estimating 1/2 − pi(u, t) to an
additive error of 1

n5k5
. By Lemma 2.9, this has error probability at most 2e−2nk per estimate. As

we make at most nk estimates, the error probability here is bounded by 2nke−2nk, which is low.

Output has O(log nk) influential bits: We claim the influential bits used by the algorithm are

the bits used to pick c. Out of the values c in the set { 1
k4n4 ,

2
k4n4 , . . . ,

k2n2

k4n4 }, at most kn of them
could satisfy |1/2− pi(v, t)− c| ≤ 1

n5k5
for some values of 1 ≤ i ≤ k and vertices v. The probability

that we pick such a c is nk
n2k2

= 1
nk , so with high probability we do not pick such a c.

Now, for the remaining values of c, the algorithm will have the same output with high probability
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over the remaining random bits. We note that the only other place where randomness is used is in
line 6 to estimate µ. Note that if 1/2−pd−1(v, t) ≤ c, we also know that 1/2−pd−1(v, t) ≤ c− 1

n5k5
.

Hence, by Lemma 2.9, the probability that in this case the if statement in line 7 is not satisfied is
at most 2e−2nk. Similarly, if 1/2− pd−1(v, t) ≥ c, we know that 1/2− pd−1(v, t) ≥ c+ 1

n5k5
, and so

the if statement in line 7 is satisfied with probability at most 2e−2nk. Hence, with high probability
(at least 1− 2nke−2nk) the if statement in line 7 is satisfied if and only if 1/2− pd−1(v, t) ≤ c, and
so the output is the same for almost all choices of the remaining random bits.

Lemma 3.7 immediately implies Theorem 3.5, completing the proof.

3.5 Why we cannot try all possible thresholds

One idea to make the algorithm pseudo-deterministic would be to try every possible value of c
(of which there are polynomially many, and therefore can be enumerated), thus removing the
randomization required to sample c. This idea will not immediately provide a pseudo-deterministic
algorithm, as we explain below.

Consider the approach of going over all possible values of c in some set and choosing the first
“good one”, i.e. the first value of c which is far from all values of 1/2− pi(v, t). The problem with
such an algorithm is that for a fixed value of c, it may be hard to tell whether it is a “good” value
of c. Suppose, for example, that we call a value “good” if it is at distance at least 1/n2k2 from any
value of 1/2 − pi(v, t). Then, if the distance is exactly 1/n2k2, it is not clear how one can check
if the value of c is good or not. If we simply estimate the values of 1/2 − pi(v, t) and see if out
estimates are at distance at least 1/n2k2, we will sometimes choose c, and sometimes we will not
(depending on the randomness we use to test whether c is good). Hence, the algorithm will not
be pseudo-deterministic, since this value of c will sometimes be chosen, and sometimes a different
value of c will be chosen.

3.6 Discussion of Algorithm 1

Algorithm 1 has the property that its output, when viewed as a distribution depending on the
random bits chosen by the algorithm, has entropy O(log n). This essentially follows from the fact
that the output of Algorithm 1 with very high probability depends on only its first O(log n) random
bits. Hence, after amplifying the success probability, one can show the entropy of the output would
be O(log n). We note that for a pseudo-deterministic algorithm, the output has entropy less than
1. An arbitrary search-RL algorithm can have polynomial entropy.

Another way to view Algorithm 1 is that with high probability, the output will be one of
polynomially many options (as opposed to a unique option, which would be achieved by a pseudo-
deterministic algorithm). That is, for each input x, there exists a list Lx of polynomial size such
that with high probability, the output is in Lx. This follows from the fact that with high probability,
the output of Algorithm 1 only depends on its first O(log n) random bits. Therefore, with high
probability, the output will be one of 2O(logn) = poly(n) different paths. Another way to see this
is that with high probability the outputted path depends only on the choice of c, and there are
polynomially many (n2k2) possible values for c.
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4 Improved Pseudo-deterministic Algorithms for Connectivity

In this section, we show faster pseudo-deterministic algorithms for both undirected connectivity
and directed connectivity in Eulerian graphs. While both of these problems have been shown to
be in deterministic log-space [10, 11], our algorithms here have a much lower run-time than those
in [10,11].

We note that throughout this section, to compute runtime, instead of dealing with Turing
machines, we assume that we can make the following queries in O(1) time: for a vertex v we can
query the degree of vertex v, and given a vertex v and an integer i we can query the i-th neighbor
of v (if v has fewer than i neighbors, such a query returns ⊥). In the case of an Eulerian graph,
we assume that for a vertex v, we can query the degree of v, its i-th in-neighbor, and its i-th
out-neighbor.

4.1 Undirected Graphs

In this section, we present the algorithm for undirected graphs. Throughout we assume that we
have a graph G (possibly with multiedges or self-loops) with n vertices and m edges, and we wish
to find a path from vertex s to vertex t (assuming such a path exists). We will number the vertices
from 1 to n, and refer to the kth vertex as “vertex k”. The idea for the algorithm is as follows. First,
note that checking connectivity using randomness in undirected graphs is possible [1]: if vertices s
and t are connected, then a random walk starting from s of length Õ(mn) will reach reach t with
high probability:

Lemma 4.1. Given an undirected or Eulerian graph G and two vertices s and t, there exists a
randomized algorithm running in time Õ(mn) that checks whether there exists a path from s to t,
and succeeds with probability 1− 1

n10 .

A version of Lemma 4.1 has been shown in [1]. For completeness, we include a proof in Appendix
A.

Now, we proceed to prove Theorem 1.2, restated here for convenience.

Theorem (Pseudo-deterministic Undirected Connectivity in Õ(mn3) time, O(log n) space). Let
G be a given undirected graph with n vertices and m edges. Given two vertices s and t of G which
are connected, there is a pseudo-deterministic log-space algorithm which outputs a path from s to
t. Furthermore, the algorithm runs in time Õ(mn3).

For our pseudo-deterministic algorithm for undirected connectivity, we use the following ap-
proach. We delete vertices of small ID from the graph one at a time (excluding s and t), and check
if vertex s is still connected to t. Now, suppose that after deleting vertices 1, 2, 3, . . . , k−1, exclud-
ing s and t, (recall that we number the vertices from 1 to n, and refer to the ith vertex as “vertex
i”), s is still connected to t. However, suppose that when we delete vertices 1, 2, . . . , k, vertex s is
no longer connected to t. Then we will recursively find paths s → k and k → t. Repeating this
process, we will get a path from s→ t.

Of course, as described, this algorithm will not run in log-space (since, for example, one must
store in memory which vertices have been removed, as well as the recursion tree, both of which
may require large space). With a few modifications though, one can adapt the algorithm to run in
log-space. For a complete description of the algorithm, see Algorithm 2.
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Algorithm 2 Pseudo-deterministic log-space algorithm for undirected connectivity.

1: Use Lemma 4.1 to test if s and t are connected. If they are not, return “not connected”
2: Set vcur = s.
3: while vcur 6= t do
4: Set vdest = t
5: for k = 1, 2, . . . , n do
6: if vcur is adjacent to vdest then set vcur ← vdest, print vcur (on the output tape), and go

to line 3.
7: if vcur is not connected to vdest in the graph with vertices vcur, vdest, and k+1, k+2, . . . , n

(for a detailed description of the implementation of this step, see the proof of Lemma 4.2) then
set vdest ← k.

We use the variables vcur and vdest to denote the vertex our walk is currently on and the vertex
which is the destination (at the current level of the recursion).

Lemma 4.2. Given a graph G, Algorithm 2 outputs a path from vertex s to t with high probability
(if such a path exists), and runs in pseudo-deterministic log-space and time Õ(mn3).

Proof. We begin by providing a more detailed description of the implementation of line 7. Then,
we will analyze the algorithm in detail. Specifically, we will show that the algorithm returns a path
from s to t with high probability, uses logarithmic space, runs in time Õ(mn3), and is pseudo-
deterministic.

Description of line 7: In order to check if vcur and vdest are connected, we run a random walk on
the graph H with vertices vcur, vdest, and k + 1, k + 2, . . . , n. To do so, in each step of the random
walk, if the walk is currently on v, we pick a random edge (v, u) adjacent to v, and test if the other
endpoint u of the edge is in H (this can be done by testing if the ID of u is larger or smaller than
k). If it is, the random walk proceeds to u. Otherwise, the random walk remains at v. To analyze
the runtime of this walk, we note that such a walk is identical to a random walk on the graph H
which is the graph induced by G on the vertices vcur, vdest, and k + 1, k + 2, . . . , n, along with self
loops, where every edge (v, u) where v ∈ H and u /∈ H is replaced by a self loop at v. Since this
graph has fewer than n vertices, and at most m edges, by Lemma 4.1 Line 7 takes time Õ(mn).

Returns a path from s to t with high probability: The key claim is that the variable vcur
never returns to the same vertex twice, and changes in each iteration of the while loop in line 3.
This implies the success of the algorithm since then after at most n iterations of line 3, vcur must
have achieved the value of t at some point.

To prove that vcur never returns to the same vertex twice, and changes in each iteration of the
while loop, we consider the “destination sequence” of the vertex v = vcur. We define the destination
sequence of v to be the sequence of values the vdest variable takes during the period when v = vcur.
That is, the destination sequence of some vertex v = vcur is (t, c1, c2, . . . , ci) where cj is the value
of k on the jth time that the if statement in line 7 evaluated to True. Note that the destination
sequence is a function of a vertex (i.e., the sequence of values the vdest variable takes during the
period when v = vcur depends only on v, assuming line 7 was implemented successfully). It’s worth
noting that since during the period that vcur = v, the value of k only increases, so for a destination
sequence (t, c1, c2, . . . , ci) we have c1 < c2 < . . . < ci.
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We note that cj+1 is the smallest integer such on the graph G induces on the vertices vcur, cj ,
and cj+1 + 1, cj+1 + 2, cj+1, . . . , n, the vertex vcur is not connected to cj

Consider the following total ordering on sequences. A sequence C = (t, c1, c2, . . . , ci) is larger
than D = (t, d1, d2, . . . , di, . . . , dj) if either c` = d` for all 1 ≤ ` ≤ i (and i < j), or for the first
value of ` for which c` 6= d`, we have c` > d`. Otherwise, if C 6= D, we say that C < D.

We claim that during the algorithm, the destination sequences strictly increase according to the
above ordering whenever the value of vcur changes, which happens every time Algorithm 2 returns
to Line 3. Note that this would imply that vcur never achieves the same vertex v twice (if it does,
that contradicts the fact that the destination sequence of vcur must have increased). Hence, it
will suffice to show that the destination sequence of vcur increases according to the above ordering
whenever Algorithm 2 returns to Line 3.

Suppose that u = vcur. Let the destination sequence of u be (t, c1, c2, . . . , ci, u
′), where the

next value achieved by vcur is u′. By construction, we have that c1 < c2 < · · · < ci < u′.
Also, let the destination sequence of u′ be (t, d1, d2, . . . , di, . . . , dj), where we similarly have that
d1 < d2 < · · · < dj . We will show that the destination sequence of u′ is larger than that of u under
the ordering defined above.

First, we claim that c` = d` for 1 ≤ ` ≤ i. We can show this by induction. We first show that
c1 = d1. Indeed, we have that d1 ≤ c1 because deleting vertices 1, 2, . . . , c1 (which doesn’t include
u′) from the graph will disconnect u′ from t, as u and u′ are adjacent. To show that d1 ≥ c1, we
show that there is a path from u′ to t that doesn’t use any vertices (other than maybe t) with labels
less than c1. Indeed, deleting vertices 1, 2, . . . , u′ disconnected u from ci, but deleting 1, 2, . . . , u′−1
didn’t, so there is a path from u′ to ci that doesn’t use any vertices (other than ci) with labels
less that u′. Similarly, for any 2 ≤ j ≤ i, deleting vertices 1, 2, . . . , cj disconnected u from cj−1,
but deleting 1, 2, . . . , cj − 1 didn’t. Therefore, there is a path from cj to cj−1 that doesn’t use any
vertices (other than cj−1) with labels less than cj . Finally, there is a path from c1 to t that doesn’t
use any vertices (other than maybe t) with labels less than c1. By merging all these paths together
at the endpoints, we get a path from u′ to t doesn’t use any vertices with labels less than c1, as
desired. This implies c1 ≤ d1. Combining this with c1 ≥ d1 which we showed above, we now have
c1 = d1. Now, for some integer p < i, assume by induction that c` = d` for all 1 ≤ ` ≤ p. We
want to show that cp+1 = dp+1. This can be shown using the exact same argument for showing that
c1 = d1, with t replaced by cp. Therefore, we have that dp+1 = cp+1. Now, by the same argument
again (with t replaced by ci), we can show that either di+1 > u′, or di+1 doesn’t exist. The former
occurs when u′ and ci aren’t adjacent, and the latter happens when they are. Thus, the destination
sequence of u′ is larger than that of u under the ordering: all the first i entries stay the same,
and we either delete the last entry, or make it larger. Thus, vcur never returns to the same vertex.
Hence, it must eventually reach t, proving that the algorithm returns a path from s to t.

To show that the algorithm succeeds with high probability, note that the only lines which are
probabilistic are lines 1 and 7. For each execution of these lines, it has failure probability at most

1
n10 by Lemma 4.1. Each of these lines is run at most n3 times, so the total failure probability is
bounded by O

(
1
n7

)
.

Uses O(log n) space: At every point in the algorithm, the following is stored: vcur, vdest, and k
(all of which require space O(log n)). In addition, in line 7 the algorithm will run a random walk,
which will require storing the id of the current vertex, as well as a counter storing how many steps
of the random walk have been executed. Both of these can be stored using logarithmic space.
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Runs in time Õ(mn3): vcur can take at most n different values and with high probability does
not take the same value more than once (see the paragraph above on why the algorithm returns a
path with high probability for a proof of this fact). Since vcur changes its value in each iteration of
the while loop, line 3 executes at most n times. Line 5 runs at most n times. Line 6 is checkable
in O(log n) time, and line 7 runs in time Õ(mn) as shown earlier in the proof (as part of the
description of line 7). Therefore, the total runtime is Õ(n× n×mn) = Õ(mn3), as desired.

Is pseudo-deterministic: Randomness is only used in lines 6 and 7, and this is only for checking
connectivity. Testing connectivity is a pseudo-deterministic protocol since given two vertices, with
high probability when testing for connectivity twice, the same result will be output (namely, if the
two vertices are connected, with high probability the algorithm will output that they are connected
in both runs. If the two vertices are not connected, with high probability the algorithm will
output that they are not connected in both runs). Since all uses of randomization is for checking
connectivity in a pseudo-deterministic fashion, the algorithm as a whole is pseudo-deterministic.

4.2 Eulerian Graphs

In this section, we show an efficient pseudo-deterministic log-space algorithm for finding paths in
Eulerian graphs (directed graphs such that for every vertex v, the indegree and outdegree of v are
equal). Recall that in our model of computation, for a vertex v, we can query either the degree of
v, the i-th in-neighbor of v, or the i-th out-neighbor of v in O(1) time. We will prove Theorem 1.3,
repeated below for convenience:

Theorem (Connectivity in Eulerian graphs in in Õ(m5n3) time, O(log n) space). Given an Eulerian
graphG and two vertices s and t where there exists a path from s to t, there is a pseudo-deterministic
log-space algorithm which outputs a path from s to t. Furthermore, the algorithm runs in time
Õ(m5n3).

The algorithm will be a variation on the algorithm for undirected graphs of Subsection 4.1.
First, note that as in the case with undirected graphs, checking connectivity in Eulerian graphs

can be done efficiently using a randomized algorithm (see Lemma 4.1). We first would like to note
that the algorithm for undirected graphs doesn’t immediately generalize to the Eulerian case. This is
because the algorithm for undirected graphs involves checking for connectivity on the graph G with
some vertices (and their adjacent edges) removed. The reason it is possible to check connectivity in
this modified graph is that after removing vertices, the resulting graph is still undirected. However,
in the Eulerian case, removing vertices along with their edges may result in a non-Eulerian graph.
So, instead of removing vertices from the graph, we instead remove directed cycles in the graph.
One of the key observations is that when deleting a cycle, the resulting graph is still Eulerian, so
we can apply Lemma 4.1 to test for connectivity.

At the high level, the algorithm proceeds as follows: we remove directed cycles from the graph
and check (using randomization) whether vertex t can be reached from vertex s. If it can, we
continue removing cycles. If not, then we recursively try to go from vertex s to some vertex on
the cycle whose deletion disconnects vertex s and t (call this cycle C). After we find a path to
some vertex on the cycle C, note that there exists a vertex v on C such that deleting C does not
disconnect v from t. So we then walk on the cycle to v, and then recursively apply the algorithm
to find a path from v to t.
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As described, this algorithm will not work in log-space, because it is not clear how the algorithm
can store in memory a description of which cycles have been deleted. The following lemma provides
us with a way to delete cycles in a specified way, so we can compute in log-space whether an edge
is part of a deleted cycle or not.

Lemma 4.3. Let E be the set of edges of G. There exists a log-space-computable permutation
f : E → E that satisfies the following property: if e is an inedge of vertex v, then f(e) is an outedge
of v. In particular, this condition implies for any edge e, we have that e, f(e), f2(e), . . . forms a
cycle in G.

Proof. Take a vertex v of indegree d, and take some ordering of its inedges ein
1 , e

in
2 , . . . , e

in
d (say,

in lexicographic order), and some ordering of the outedges eout
1 , eout

2 , . . . , eout
d (say again, in lexico-

graphic order). Then simply set f(ein
i ) = eout

i .

Note that in our model, computing f(e) takes O(n) time for each edge e. In particular, for a
cycle Ci formed by repeatedly applying f to some edges, and an edge e in the cycle, computing the
next edge in the cycle takes time O(n).

The importance of the lemma is that it provides us with a way to delete cycles in some order:
we begin from the “smallest” edge (in whatever ordering) and delete the cycle associated with
that edge. Then, we pick the second smallest edge, and delete its cycle, etc. When executing this
algorithm, we may try to delete a cycle multiple times, since multiple edges correspond to the same
cycle, but this will not be an issue.

See Algorithm 3 for a precise description of the algorithm. As in the undirected case, we use the
variables vcur and vdest to denote the vertex our walk is currently on and the current destination.
We let the set of ei be the edges in G (we denote the set of edges of G as E), and let Ci be the
cycle (ei, f(ei), f

2(ei), . . . , ei) in G. We note that it is possible for Ci and Cj to have the same set
of edges for i 6= j (this will not affect the correctness of the algorithm).

Algorithm 3 Pseudo-deterministic log-space algorithm for connectivity in Eulerian digraphs.

1: Set vcur = s. Write vcur on the output tape.
2: while vcur 6= t do
3: Set vdest = t.
4: for k = 1 . . .m do
5: if vcur and vdest are not connected using only edges in E \ {C1, . . . , Ck} (more details of

the implementation of this step are in the body of the paper in the proof of Lemma 4.4) then
6: if vcur ∈ Ck then
7: Find a vertex v ∈ Ck such that v and vdest are connected using edges only in
E \ {C1, . . . , Ck}.

8: Walk on Ck from vcur until you reach v, print the vertices on this path (on the
output tape).

9: Set vcur ← v, return to top of while loop.
10: else
11: Find a vertex v ∈ Ck such that vcur can get to v in G \ {C1, . . . , Ck}
12: Set vdest ← v.

Lemma 4.4. Algorithm 3 runs in time Õ(m5n3), is pseudo-deterministic, uses logarithmic space,
and outputs a path from s to t with high probability.
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Proof. We first give a more detailed description of the implementation of line 5. Then, we analyze
the algorithm in steps, first showing that it returns a path with high probability, and then showing
that it runs in pseudo-deterministic log-space with runtime Õ(m5n3). The proof closely follows the
approach of the proof in the undirected case.

Implementation of line 5: Below, we describe the details of the implementation of step 5. As
done in the proof of Lemma 4.1 in Appendix A, we check connectivity by making every edge in
the graph G undirected, and then perform a random walk on the undirected graph G. The key
difficulty is to ensure that we can check if an edge is in one of the deleted cycles efficiently in
log-space.

Say that we are on vertex u, and the randomly chosen neighbor which is next in the random
walk is v. Let e be the edge between u and v. We wish to check whether e is in any of the cycles
C1, C2, . . . , Ck. To check whether edge e is on the cycle Ci, we can check whether e is any of the
edges ei, f(ei), f

2(ei), . . . ei, which can all be computed in log-space. To see if e is on any of the
cycles C1, . . . , Ck, we check if e is in each of the Ci. Each such check takes time O(mn) (since
the cycle is of length O(m), and given an edge e, computing the next edge in the cycle takes time
O(n)). Hence, in total it takes time O(kmn).

Now, if e is on one of the cycles, the random walk stays at u, and otherwise the random walk
proceeds to v. It is clear that this is equivalent to taking a random walk on the graph G′, where
G′ is the graph G but with all edges (u′, v′) in at least one of the cycles C1, . . . , Ck replaced with
a self-loop at u′ (since, if such an edge is chosen, the random walk stays at u′. As G′ still has at
most m edges and n vertices, checking connectivity takes Õ(mn) time by Lemma 4.1.

Returns a path with high probability: As in the undirected case, the main claim is that vcur
never repeats a vertex on two different iterations of the while loop of line 2. To prove that vcur is
never repeated, we will use the notion of the “destination sequence”, similar to the undirected case.
We note that our definition here of a destination sequence is different from the definition in the
undirected case. We say that the associated destination sequence to vcur is the sequence of cycles
(Ci1 , Ci2 , . . . , Cik), where we add Cij to the sequence if the if statement of step 5 of the algorithm
was true when k = ij . Note that this implies that i1 ≤ i2 ≤ · · · ≤ ik.

Now, as in the proof of Lemma 4.2, we give a total ordering on all destination sequences.
Consider two destination sequences i = (Ci1 , Ci2 , . . . , Cik) and j = (Cj1 , Cj2 , . . . , Cjk , . . . , Cjm). Say
that i is greater than j if either i` = j` for all 1 ≤ ` ≤ k (and k < m), or for the smallest value of `
such that i` 6= j`, we have that i` > j`. Otherwise, if i 6= j, then say that i < j.

Now, we proceed to prove that vcur never repeats a value. Say that vcur is set to v′cur after
one loop of line 2. Let the destination sequence of vcur be i = (Ci1 , Ci2 , . . . , Cik) and let the
corresponding destination sequence of v′cur be (Cj1 , Cj2 , . . . , Cjm). First, we claim that ip = jp for
all 1 ≤ p ≤ k−1. This is because vcur is connected to v′cur via cycle Cik , so deleting Cip disconnects
vcur and vdest if and only if it disconnects v′cur and vdest. As in the proof of Lemma 4.2, we have two
situations now. One case is that v′cur ∈ Cik−1

, and therefore, m = k − 1 (the destination sequence
for v′cur is one shorter than that of vcur). The other is that v′cur 6∈ Cik−1

, and therefore, jk ≥ ik, as
deleting Cik doesn’t disconnect v′cur and vdest by the condition of line 7 of the algorithm. So the
destination sequence of v′cur is greater than that of vcur under the total ordering described above,
which implies that vcur can never repeat a vertex.

To see that the algorithm succeeds with high probability, note that the only randomness is in
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lines 5, 7, and 11 for checking connectivity between two vertices. We will check connectivity at
most O(nm2) times, so the failure probability is bounded by nm2

n10 by Lemma 4.1, as desired.

Uses O(log n) space: The information our algorithm needs to store is: s, t, vcur, vdest, and k.
After that, by Lemma 4.3, we can compute whether an edge e is part of a cycle Ck is log-space,
and testing whether two vertices are connected in an Eulerian graph can be done in (randomized)
log-space by Lemma 4.1. Therefore, everything can be implemented in log-space.

Runs in time Õ(m5n3): Line 2 repeats at most n times since vcur never repeats, and Line 4
repeats at most m times since there are m possible values for k. Due to Lemma 4.1, each execution
of Line 5 takes Õ(mn) × O(m2n) time, where the O(m2n) comes from having to check whether
each edge we try to use comes from one of the cycles C1, . . . , Ck (a factor m from the fact that
there are up to m cycles Ci, a factor m from the fact that the size of each Ci is at most m, and
a factor O(n) because given some edge e in Ci, computing the next edge in the cycle takes time
O(n)). Line 7 and 11 take time O(m) × Õ(mn) × O(m2n), for the same reason as above, except
with the extra O(m) factor for having to check all vertices on the cycle Ck. Therefore, our runtime
bound is O(n)×O(m)× (Õ(mn)×O(m2) +O(m)× Õ(mn)×O(m2n)) = Õ(m5n3), as desired.

Is pseudo-deterministic: The only randomness is used to check connectivity between pairs
of vertices. As each of these checks succeeds with high probability, this clearly implies that our
randomness used will not affect the output of the algorithm, since if the two vertices tested are con-
nected, with high probability the same result (of “accept”) will be outputted, and if the two vertices
tested are not connected, with high probability the same result (of “reject”) will be outputted.

5 Discussion

The main problem left open is that of search-RL vs pseudo-deterministic-L:

Problem 5.1. Can every problem in search-RL be solved pseudo-deterministically in RL?

A notable open problem in complexity is whether NL equals UL. It is known that under
randomized reductions, with two way access to the random bits, NL is reducible to UL (in fact,
it is reducible to UL ∩ coUL) [12]. It is not known whether NL is reducible to UL when given
one-way access to the random bits. A reproducible reduction from NL to UL would imply such a
result, giving us the following problem:

Problem 5.2. Does there exist a reproducible log-space reduction from NL to UL?

Another interesting problem would be to fully derandomize the pseudo-deterministic algorithms
we present for undirected and Eulerian connectivity, in order to get deterministic log-space algo-
rithms which work in low polynomial time.

Problem 5.3. Does there exists a deterministic log-space algorithm for undirected connectivity
(or connectivity in Eulerian graphs) using low time complexity?

There are several natural extensions of the notion of reproducibility to the time-bounded set-
ting, some which may be worth exploring. A noteworthy extension is that of low-entropy output
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algorithms. Our algorithm for search-RL has the property that its output, when viewed as a ran-
dom variable depending on the random choices of the algorithm, has O(log n) entropy. It may be
interesting to understand such algorithms in the context of time-bounded computation.

Problem 5.4. Let search-BPP(log n) be the set of problems solvable by randomized polynomial
time machines, whose outputs (when viewed as random variables depending on the random choices
of the algorithms) have O(log n) entropy. What is relationship between search-BPP(log n) and
search-BPP? What is the relationship between search-BPP(log n) and pseudo-deterministic-BPP?
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A Testing Connectivity for Undirected and Eulerian graphs in RL

In this section, we prove Lemma 4.1, repeated below for convenience:

Lemma. Given an undirected or Eulerian graph G and two vertices s and t, there exists a ran-
domized algorithm running in time Õ(mn) that checks whether there exists a path from s to t, and
succeeds with probability 1− 1

n10 .

Proof. We begin by showing that for an Eulerian graph G, if there is an edge from vertex u to
vertex v, then there is also a path from vertex v to vertex u. Let Vv be the set of vertices reachable
from v. Note that the number of edges incoming to Vv must be the same as the number of edges
going out of Vv. However, by the definition of Vv, there cannot be edges leaving the set (if there is
a an edge (v′, u′) where v′ ∈ Vv and u′ /∈ Vv, then u′ can be reached from v, and hence u′ ∈ Vv, a
contradiction). Hence, since there are no outgoing edges, there are also no incoming edges. Hence,
since (u, v) has one endpoint in Vv, both endpoints must be in Vv, so u ∈ Vv is reachable from v.

Hence, in order to test reachability in Eulerian graphs, it is enough to test reachability in the
undirected graph defined by making all edges of the Eulerian graph undirected. Hence, it suffices
to prove the lemma for undirected graphs.

The expected number of steps needed to get to vertex t after starting a random walk at vertex
s where there is a path from s to t is bounded by 2mn [1]. By Markov’s inequality, the probability
that a random walk of length 4mn starting at vertex s doesn’t reach vertex t is at most 1

2 . Therefore,
starting at vertex s and repeating O(log n) random walks of length 4mn provides the result. It is
easy to check that in our model, taking one step in a random walk takes time O(log n).

B Short-Walk Find Path is complete for search-RL

In this section, we prove Lemma 2.7, which states that Short-Walk Find Path is complete for
search-RL. We repeat the definition of Short-Walk Find Path below for convenience, and then
we proceed to prove that it is complete for search-RL.

Definition B.1 (Short-Walk Find Path). Let R be the search problem whose valid inputs are
x = (G, s, t, 1k) where G is a directed graph, s and t are two vertices of G, and a random walk of
length k from s reaches t with probability at least 1− 1/|x|. On such an x, a valid output is a path
of length up to poly(k) from s to t.
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We now prove that Short-Walk Find Path is complete for search-RL. The definition of
reductions in the context of search-RL is given in [11].

Proof. First, it is easy to see that Short-Walk Find Path is in search-RL, as we can just take
a random walk starting from s of length k.

Now we show that Short-Walk Find Path is search-RL-hard via a reduction from Poly-
Mixing Find Path. In [11] Section A.3 (proof of Theorem 3.1), it is shown that Poly-Mixing
Find Path with input (G, s, t, 1k) is complete for search-RL. They also state that a path of length
m = 2k log k starting from s reaches t with probability at least 1

2k in the problem Poly-Mixing
Find Path. Now, we amplify this probability of 1

2k by constructing a new graph. To do this,
consider a graph G′ which is made as follows: it has (m+ 1)|V (G)| vertices, each of which is a pair
(i, v) for 0 ≤ i ≤ m and vertex v ∈ G. If the edge u→ v is in G then add edges (i, u)→ (i+ 1, v)
for 0 ≤ i ≤ m− 1 in G′. Finally, create edges (m, v)→ (0, s) for all v 6= t, and add only a self-loop
to the vertex (m, t) (so if a random walk reaches (m, t), the random walk will stay there forever).
Then, it is easy to see that a random walk of length ` = m+ 2(m+ 1)k log x starting at (0, s) will

end at (m, t) with probability at least 1−
(
1− 1

2k

)2k log x ≥ 1− 1
x . Choosing x larger than the length

of the input gives the desired reduction. That is, when choosing such an x, given a solution to the
Short-Walk Find Path, we can output a polynomially long list y1, y2, . . . , yp such that at least
one of the yi is a solution to the Poly-Mixing Find Path instance. Therefore, Short-Walk
Find Path is complete for search-RL.
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