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Abstract

Many dynamic programming algorithms are “pure” in that they only use min or max and
addition operations in their recursion equations. The well known greedy algorithm of Kruskal
solves the minimum weight spanning tree problem on n-vertex graphs using only O(n2 log n)
operations. We prove that any pure DP algorithm for this problem must perform 2Ω(n) operations.
Since the greedy algorithm can also badly fail on some optimization problems, easily solvable
by pure DP algorithms, our result shows that the computational powers of these two types of
algorithms are incomparable.

Keywords: Spanning tree; arborescence; arithmetic circuit; tropical circuit; lower bound

1 Introduction and result

A dynamic programming (DP) algorithm is pure if it only uses min or max and addition operations
in its recursion equations, and the equations do not depend on the actual values of the input
weights. Notable examples of such DP algorithms include the Bellman-Ford-Moore algorithm for the
shortest s-t path problem [8, 15, 1], the Floyd-Warshall algorithm for the all-pairs shortest paths
problem [6, 18], and the Held-Karp algorithm for the Travelling Salesman Problem [9].

It is well known and easy to show that, for some optimization problems, already pure DP
algorithms can be much better than greedy algorithms. Namely, there are a lot of optimization
problems which are easily solvable by pure DP algorithms (exactly), but the greedy algorithm
cannot even achieve any finite approximation factor: maximum weight independent set in a path,
or in a tree, the maximum weight simple s-t path in a transitive tournament problem, etc.

In this note, we show that the converse direction also holds: on some optimization problems,
greedy algorithms can also be much better than pure dynamic programming. So, the computational
powers of greedy and pure DP algorithms are incomparable. We will show that the gap occurs on
the undirected minimum weight spanning tree problem, by first deriving an exponential lower bound
on the monotone arithmetic circuit complexity of the corresponding polynomial.

Let Kn be the undirected graph on {1, . . . , n}. Assume that edges e have their associated weights
xe, considered as formal variables. Let Tn be the family of all |Tn| = nn−2 spanning trees in Kn,
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each viewed as its set of edges. It is well known that Tn is the family of bases of a matroid, known as
graphic matroid ; so, on this family of feasible solutions, both optimization problems (minimization
and maximization) can be solved by standard greedy algorithms. On the other hand, the theorem
below states that the polynomial corresponding to Tn has exponential monotone arithmetic circuit
complexity.

The spanning tree polynomial (known also as the Kirchhoff polynomial of Kn) is the following
homogeneous, multilinear polynomial of degree n− 1:

fn(x) =
∑
T∈Tn

∏
e∈T

xe .

For a multivariate polynomial f with positive coefficients, let L(f) denote the minimum size of a
monotone arithmetic (+,×) circuit computing f . The goal of this note is to prove that L(fn) is
exponential in n.

Theorem.

L(fn) ≥ 1

2n

(
9

5

)n

.

A “directed version” of fn is the arborescences polynomial ~fn. An arborescence (known also as
a branching or a directed spanning tree) on the vertex-set [n] = {1, . . . , n} is a directed tree with
edges oriented away from vertex 1 such that every other vertex is reachable from vertex 1. Let ~Tn
be the family of all arborescences on [n]. Jerrum and Snir [11] have shown that L(~fn) ≥ n−1

(
4
3

)n−1

holds for the arborescences polynomial

~fn(x) =
∑
T∈~Tn

∏
~e∈T

x~e .

Note that here variables xi,j and xj,i are treated as distinct, and cannot both appear in the same
monomial. This dependence on orientation was crucially utilized in the argument of [11, p. 892] to
reduce a trivial upper bound (n− 1)n−1 on the number of monomials in a polynomial computed at
a particular gate till a non-trivial upper bound (3n/4)n−1. So, this argument does not apply to
the undirected version fn (where xi,j and xj,i stand for the same variable). This is why we use a
different argument to handle the undirected case; our argument works also in the directed case.

2 Some consequences

Every pure DP algorithm is just a special (recursively constructed) tropical (min,+) or (max,+) cir-
cuit, that is, a circuit using only min (or max) and addition operations as gates; each input gate of
such a circuit holds either one of the variables xi or a nonnegative real number. So, lower bounds on
the size of tropical circuits yield the same lower bounds on the number of operations used by pure
DP algorithms. For optimization problems, whose feasible solutions all have the same cardinality,
this latter task can be solved by proving lower bounds of the size of monotone arithmetic circuits.

Recall that a multivariate polynomial is monic if all its nonzero coefficients are equal to 1,
multilinear if no variable occurs with degree larger than 1, and homogeneous if all monomials
have the same degree. Every monic and multilinear polynomial f(x) =

∑
S∈F

∏
i∈S xi defines two

optimization problems: compute the minimum or the maximum of
∑

i∈S xi over all S ∈ F .
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Figure 1: Two arborescences A and B on [3] = {1, 2, 3}. The only edges in B \ A are b and b′. But we
cannot add any of them to A \ {a} to get an arborescence. So, the basis exchange axiom fails.

Reduction Lemma ([11, 12]). If a polynomial f is monic, multilinear and homogeneous, then
every tropical circuit solving the corresponding optimization problem defined by f must have at least
L(f) gates.

This fact was proved by Jerrum and Snir [11, Corollary 2.10]; see also [12, Theorem 9] for a
simpler proof. The proof idea is fairly simple: having a tropical circuit, turn it into a monotone
arithmetic (+,×) circuit, and use the homogeneity of f to show that, after removing some of the
edges entering +-gates, the resulting circuit will compute our polynomial f .

Greedy can beat pure DP The (weighted) minimum spanning tree problem MSTn(x) is, given
an assignment of nonnegative real weights to the edges of Kn, compute the minimum weight of a
spanning tree of Kn, where the weight of a graph is the sum of weights of its edges. So, this is
exactly the minimization problem defined by the spanning tree polynomial fn:

MSTn(x) = min
T∈Tn

∑
e∈T

xe .

Since the family Tn of feasible solutions of this problem is the family of bases of the (graphic)
matroid, the problem can be solved by the standard greedy algorithm. In particular, the well known
greedy algorithm of Kruskal [14] solves MSTn using only O(n2 log n) operations. On the other hand,
since the spanning tree polynomial fn is monic, multilinear and homogeneous, our theorem together
with the Reduction lemma implies that any (min,+) circuit solving the problem MSTn must use at
least L(fn) = 2Ω(n) gates and, hence, at least so many operations must be performed by any pure
DP algorithm solving MSTn. This gap between pure DP and greedy algorithms is our main result.

Remark (Directed versus undirected spanning trees). The arborescences polynomial ~fn is also monic,
multilinear and homogeneous, so that the Reduction lemma, together with the above mentioned
lower bound on L(~fn) of Jerrum and Snir [11], also yields the same lower bound on the size of
(min,+) circuits solving the minimization problem on the family ~Tn of arborescences. But this
does not separate DP from greedy, because the downward closure of ~Tn is not a matroid (see
Fig. 1 for a simple counter-example). As observed by Edmonds [4], this family is an intersection
of two matroids, meaning that unlike for MSTn, the greedy algorithm can only approximate the
minimization problem on ~Tn within the factor 2. Polynomial time algorithms solving this problem
exactly were found by several authors, starting from Edmonds [5]. The fastest algorithm for the
problem is due to Tarjan [16], and solves the problem in time O(n2 log n), that is, with the same
time complexity as Kruskal’s greedy algorithm for undirected graphs [14]. But these are no more
greedy algorithms. So, ~Tn does not separate greedy and pure DP algorithms.
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Subtraction can speed up (+,×) circuits There is a well-known determinantal formula, due
to Kirchhoff [13] (see, e.g., [2, Theorem II.12]), known as the (weighted) matrix tree theorem. This
formula provides a way to compute the spanning tree polynomial fn by an arithmetic (+,×,−)
circuit of polynomial size. Together with our theorem, this gives yet another explicit example where
the use of subtraction in arithmetic circuits leads to exponential saving in their size; that already one
subtraction gate can lead to such saving was shown already by Valiant [17] using another polynomial
corresponding to perfect matchings in planar graphs.

Division can speed up (+,×) circuits Fomin, Grigoriev and Koshevoy [7] have recently proved
that the spanning tree polynomial fn can be computed by an arithmetic (+,×,÷) circuit using
only O(n3) gates. Their recursion (given by Lemma 8.3 in [7]) turns to the following procedure for
computing fn: in order to compute fn(x) on the vertex-set {1, . . . , n} with edge-weights xi,j , first
compute the sum Xn := x1,n + · · ·+ xn−1,n of the weights of edges incident to the last vertex n,
then compute fn−1(x′) on the first n− 1 vertices under the new edge-weights

x′i,j := xi,j +
xi,n · xj,n

Xn
.

Lemma 8.3 in [7] shows that then fn(x) = Xn · fn−1(x′) holds. Together with our theorem, this
shows that, like subtraction gates, division gates in monotone arithmetic circuits can also lead to
exponential savings. Actually, it is shown in [7] that also the arborescences polynomial ~fn can be
computed by an arithmetic (+,×,÷) circuit using O(n3) gates. So, the same gap between (+,×,÷)
and (+,×) circuits follows also from the aforementioned lower bound of Jerrum and Snir [11] for ~fn.

Subtraction can speed up pure DP algorithms Since “division” in tropical (min,+) and
(max,+) semirings corresponds to subtraction, the result of [7] also implies that the minimum weight
spanning tree problem can be solved using only O(n3) min,+,− gates. So, subtraction operation
can exponentially speed-up pure DP algorithms: in order to compute MSTn(x) on the vertex-
set {1, . . . , n} with edge-weights xi,j , first compute the minimum Xn := min {x1,n, . . . , xn−1,n} of
weights of edges incident to the last vertex n, then compute MSTn−1(x′) on the first n− 1 vertices
under the new edge-weights

x′i,j := min {xi,j , xi,n + xj,n −Xn} ,

and output MSTn(x) = Xn + MSTn−1(x′).

3 Proof of the theorem

We will use the following well-known decomposition result, first proved by Hyafil [10, Theorem 1]
and Valiant [17, Lemma 3]. A polynomial is nonnegative if it has no negative coefficients.

Decomposition Lemma (Hyafil, Valiant). Let f be a nonnegative homogeneous polynomial of
degree m. If L(f) ≤ t, then f can be written as a sum f = g1 · h1 + · · · + gt · ht of products of
nonnegative homogeneous polynomials, each of degree at most 2m/3.

Proof. (Due to Valiant [17].) Induction on the circuit size t. Since the polynomial f is homogeneous,
the polynomial gv computed at each gate v must be also homogeneous. Starting from the output
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gate, we walk backwards, by always choosing that of two input gates whose polynomial has larger
degree. Proceeding in this way, we will arrive at a gate v with m/3 ≤ deg(gv) ≤ 2m/3. Let fv be
the polynomial computed by the circuit, after the inputs of gate v are replaced by zeroes. Then
f = gv · h + fv for some polynomial h of degree deg(h) = m − deg(gv) ≤ 2m/3. Since the (also
homogeneous) polynomial fv is computable by a circuit of size t − 1 (the need of the gate v is
already eliminated), we can apply the induction hypothesis to fv.

The “combinatorial core” of our argument is the following property of forests, viewed as sets of
their edges. Let A,B be two nonempty families of forests in Kn such that A contains a forest with
a edges, and B contains a forest with b edges.

Forest Lemma. If the intersection of any two forests A ∈ A and B ∈ B is empty, and their union
is a spanning tree of Kn, then the connected components of all forests in A have the same sets of
vertices, and the same holds for forests in B. Moreover, then |A| · |B| ≤ aa · bb and a + b = n− 1
hold.

Proof. To prove the first claim, it is enough to show that every pair of vertices is either connected
in all forests in A, or is disconnected in all forests in A.

To show this, suppose contrariwise that some two vertices x and y are disconnected in one forest
A ∈ A, but are connected in some other forest A′ ∈ A. Take an arbitrary forest B ∈ B. Since A∪B
must be a spanning tree of Kn, and vertices x and y are disconnected in the forest A, there must be
a path between x and y in the forest B. But then the graph A′ ∪ B contains a cycle throughout
vertices x and y, a contradiction with this graph being a tree. This shows the claim for the forests
in A. The argument for the forests in B is the same.

So, let U1, . . . , Up ⊂ [n] be the sets of vertices of the connected components of forests in A,
and V1, . . . , Vq ⊂ [n] be the sets of vertices of the connected components of forests in B. Let also
ui = |Ui| and vi = |Vi| be the numbers of vertices in these components. Then every forest in A has
a =

∑p
i=1(ui − 1) edges, and every forest in B has b =

∑q
i=1(vi − 1) edges. Since the forests are

disjoint and their unions must be spanning trees (with n− 1 edges), we also have that a+ b = n− 1.
Every forest in A consists of spanning trees of complete graphs on the sets U1, . . . , Up, and

similarly for forests in B. By a classical result of Cayley [3], the number of trees on n labeled
vertices is nn−2. This implies that there are only uui−2

i spanning trees of the complete graph on

each Ui, and only v
vj−2
j spanning trees of the complete graph on each Vj . So, using the inequalities

rr−2 ≤ (r − 1)r−1 and rr · ss ≤ (r + s)r+s for integers r, s ≥ 2, we obtain:

|A| · |B| ≤
∏
i

uui−2
i ·

∏
j

v
vj−2
j ≤

∏
i

(ui − 1)ui−1 ·
∏
j

(vj − 1)vj−1

≤
[∑

i

(ui − 1)
]∑

i(ui−1)
·
[∑

j

(vj − 1)
]∑

j(vj−1)
= aa · bb .

Proof of the theorem. Let t = L(fn). The spanning tree polynomial fn is multilinear and homoge-
neous of degree m = n−1: every spanning tree T of Kn has |T | = n−1 edges. By the Decomposition
lemma, we can express this polynomial as a sum of at most t products g · h of nonnegative homoge-
neous polynomials, where the degree of g and of h is at most 2m/3. The polynomial g · h must be a
homogeneous polynomial of degree m. So, if we denote the degrees of g and h by a and b, then
a + b = m and m/3 ≤ a, b ≤ 2m/3 must hold.
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Every monomial of fn is a multilinear monomial of the form
∏

e∈T xe for some spanning tree T .
Since the polynomials g and h in the decomposition of fn are nonnegative, there can be no
cancellations. This implies that all the monomials of g · h must be also monomials of f , that is,
must correspond to spanning trees. So, the monomials of g and h correspond to forests. Let A be
the family of forests corresponding to monomials of the polynomial g, and B the family of forests
corresponding to monomials of the polynomial h.

Since all monomials of g · h must also be monomials of fn, the pair A,B fulfills the conditions of
the Forest lemma for some a between m/3 and 2m/3 (the disjointness property follows from the
multilinearity of g · h). So, the number of monomials in the polynomial g · h cannot exceed

|A| · |B| ≤ aa(m− a)m−a ≤ (m/3)m/3 · (2m/3)2m/3 = mm
(

22/3/3
)m

< mm

(
5

9

)m

,

where the second inequality holds because the function xx(1− x)1−x is convex in the interval (0, 1).
Since the polynomial fn has nn−2 monomials, the desired lower bound on t = L(fn) follows:

t ≥ nn−2

|A| · |B|
≥ mm−1

|A| · |B|
≥ 1

m

(
9

5

)m

=
1

n− 1

(
9

5

)n−1

≥ 1

2n

(
9

5

)n

.

Finally, note that the same argument works also for the arborescences polynomial ~fn: in this
case, the (directed) forests in A and B must fulfill an additional restriction: also the directions of
“docking” edges must be consistent; so, the number |A| · |B| of monomials in each polynomial g · h
can only be smaller.
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