
Greedy Can Beat Pure Dynamic Programming

Stasys Jukna1, Hannes Seiwert

Institute of Computer Science, Goethe-University Frankfurt, Robert-Mayer-Str. 11-15, Frankfurt am Main,

Germany

Abstract

Many dynamic programming algorithms for discrete 0-1 optimization problems are “pure” in
that their recursion equations only use min/max and addition operations, and do not depend
on actual input weights. The well-known greedy algorithm of Kruskal solves the minimum
weight spanning tree problem on n-vertex graphs using only O(n2 log n) operations. We
prove that any pure DP algorithm for this problem must perform 2Ω(

√
n) operations. Since

the greedy algorithm can also badly fail on some optimization problems, easily solvable by
pure DP algorithms, our result shows that the computational powers of these two types of
algorithms are incomparable.

Keywords: Spanning tree; arborescence; arithmetic circuit; tropical circuit; lower bound

1. Introduction and result

A dynamic programming (DP) algorithm is pure if it only uses min or max and addition
operations in its recursion equations, and the equations do not depend on the actual values
of the input weights. Notable examples of such DP algorithms include the Bellman–Ford–
Moore algorithm for the shortest s-t path problem [7, 15, 1], the Floyd–Warshall algorithm
for the all-pairs shortest paths problem [6, 18], the Held–Karp algorithm for the Travelling
Salesman Problem [8], and the Dreyfus–Levin–Wagner algorithm for the weighted Steiner
tree problem [3, 14].

It is well known and easy to show that, for some optimization problems, already pure DP
algorithms can be much better than greedy algorithms. Namely, there are a lot of optimization
problems which are easily solvable by pure DP algorithms (exactly), but the greedy algorithm
cannot even achieve any finite approximation factor: maximum weight independent set in a
path, or in a tree, the maximum weight simple s-t path in a transitive tournament problem,
etc.

In this paper, we show that the converse direction also holds: for some optimization
problems, greedy algorithms can also be much better than pure dynamic programming. So,
the computational powers of greedy and pure DP algorithms are incomparable. We will show
that the gap occurs on the (undirected) minimum weight spanning tree problem, by first

Email addresses: stjukna@gmail.com (Stasys Jukna), seiwert@thi.cs.uni-frankfurt.de
(Hannes Seiwert)

1Affiliated with the Institute of Data Science and Digital Technologies, Faculty of Mathematics and Infor-
matics of Vilnius University, Lithuania. Research supported by the DFG grant JU 3105/1-1 (German Research
Foundation).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 49 (2018)

deriving an exponential lower bound on the monotone arithmetic circuit complexity of the
corresponding polynomial.

Let Kn be the complete undirected graph on [n] = {1, . . . , n}. Assume that edges e have
their associated nonnegative real weights xe, considered as formal variables. Let Tn be the
family of all |Tn| = nn−2 spanning trees T in Kn, each viewed as its set of edges.

It is well known that Tn is the family of bases of a matroid, known as graphic matroid ;
so, on this family of feasible solutions, both optimization problems (minimization and max-
imization) can be solved by standard greedy algorithms. On the other hand, the theorem
below states that the polynomial corresponding to Tn has exponential monotone arithmetic
circuit complexity; due to special properties of this polynomial, the same lower bound also
holds on the number of operations used by pure DP algorithms solving minimization and
maximization problems on Tn (see Lemma 1).

The spanning tree polynomial (known also as the Kirchhoff polynomial of Kn) is the
following homogeneous, multilinear polynomial of degree n− 1:

fn(x) =
∑

T∈Tn

∏

e∈T
xe .

For a multivariate polynomial f with positive coefficients, let L(f) denote the minimum size
of a monotone arithmetic (+,×) circuit computing f . Our goal is to prove that L(fn) is
exponential in n.

Theorem 1.

L(fn) = 2Ω(
√
n) .

A “directed version” of fn is the arborescence polynomial ~fn. An arborescence (known also
as a branching or a directed spanning tree) on the vertex-set [n] is a directed tree with edges
oriented away from vertex 1 such that every other vertex is reachable from vertex 1. Let ~Tn

be the family of all arborescences on [n]. Jerrum and Snir [11] have shown that L(~fn) = 2Ω(n)

holds for the arborescence polynomial

~fn(x) =
∑

T∈~Tn

∏

~e∈T
x~e .

Note that here variables xi,j and xj,i are treated as distinct, and cannot both appear in the
same monomial. This dependence on orientation was crucially utilized in the argument of [11,
p. 892] to reduce a trivial upper bound (n−1)n−1 on the number of monomials in a polynomial
computed at a particular gate till a non-trivial upper bound (3n/4)n−1. So, this argument
does not apply to the undirected version fn (where xi,j and xj,i stand for the same variable).
To handle the undirected case, we will use an entirely different argument.

Relation to pure DP algorithms. Every pure DP algorithm is just a special (recursively con-
structed) tropical (min,+) or (max,+) circuit, that is, a circuit using only min (or max) and
addition operations as gates; each input gate of such a circuit holds either one of the variables
xi or a nonnegative real number. So, lower bounds on the size of tropical circuits yield the
same lower bounds on the number of operations used by pure DP algorithms. For optimiza-
tion problems, whose feasible solutions all have the same cardinality, the task of proving lower
bounds on their tropical circuit complexity can be solved by proving lower bounds on the size
of monotone arithmetic circuits.

2

Recall that a multivariate polynomial is monic if all its nonzero coefficients are equal to 1,
multilinear if no variable occurs with degree larger than 1, and homogeneous if all monomials
have the same degree. Every monic and multilinear polynomial f(x) =

∑

S∈F
∏

i∈S xi defines
two optimization problems: compute the minimum or the maximum of

∑

i∈S xi over all S ∈ F.

Lemma 1 ([11, 12]). If a polynomial f is monic, multilinear and homogeneous, then every

tropical circuit solving the corresponding optimization problem defined by f must have at least

L(f) gates.

This fact was proved by Jerrum and Snir [11, Corollary 2.10]; see also [12, Theorem 9]
for a simpler proof. The proof idea is fairly simple: having a tropical circuit, turn it into a
monotone arithmetic (+,×) circuit, and use the homogeneity of f to show that, after removing
some of the edges entering +-gates, the resulting circuit will compute our polynomial f .

Greedy can beat pure DP. The (weighted) minimum spanning tree problemMSTn(x) is, given
an assignment of nonnegative real weights to the edges of Kn, compute the minimum weight
of a spanning tree of Kn, where the weight of a graph is the sum of weights of its edges. So,
this is exactly the minimization problem defined by the spanning tree polynomial fn:

MSTn(x) = min
T∈Tn

∑

e∈T
xe .

Since the family Tn of feasible solutions of this problem is the family of bases of the (graphic)
matroid, the problem can be solved by the standard greedy algorithm. In particular, the
well-known greedy algorithm of Kruskal [13] solves MSTn using only O(n2 log n) operations.

On the other hand, since the spanning tree polynomial fn is monic, multilinear and ho-
mogeneous, Theorem 1 together with Lemma 1 implies that any (min,+) circuit solving the
problem MSTn must have at least L(fn) = 2Ω(

√
n) gates and, hence, at least so many opera-

tions must be performed by any pure DP algorithm solving MSTn. This gap between pure
DP and greedy algorithms is our main result.

Directed versus undirected spanning trees. The arborescence polynomial ~fn is also monic,
multilinear and homogeneous, so that Lemma 1, together with the above mentioned lower
bound on L(~fn) due to Jerrum and Snir [11], also yields the same lower bound on the size of
(min,+) circuits solving the minimization problem on the family ~Tn of arborescences.

But this does not separate DP from greedy, because the downward closure of ~Tn is not a
matroid: it is only an intersection of two matroids (see Edmonds [4]). So, greedy algorithms
are only able to approximate the minimization problem on ~Tn within the factor 2. Polynomial
time algorithms solving this problem exactly were found by several authors, starting from
Edmonds [5]. The fastest algorithm for the problem is due to Tarjan [16], and solves it
in time O(n2 log n), that is, with the same time complexity as Kruskal’s greedy algorithm
for undirected graphs [13]. But these are not greedy algorithms. So, ~Tn does not separate
standard, matroid based greedy and pure DP algorithms.

2. Proof of Theorem 1

A rectangle is specified by giving two families A and B of forests in the complete graph
Kn on [n] = {1, . . . , n} such that for all forests A ∈ A and B ∈ B (viewed as sets of their

3

edges), we have A∩B = ∅ (the forests are edge-disjoint), and A∪B is a spanning tree of Kn.
The rectangle itself is the family

R = A ∨B := {A ∪B : A ∈ A and B ∈ B}

of all resulting spanning trees. A rectangle R = A ∨ B is balanced if (n − 1)/3 ≤ |A|, |B| ≤
2(n − 1)/3 holds for all forests A ∈ A and B ∈ B; recall that every spanning tree of a graph
on n vertices has n−1 edges. Let τ(n) be the minimum number of balanced rectangles whose
union gives the family of all spanning trees of Kn.

Lemma 2. For the spanning tree polynomial fn, we have L(fn) ≥ τ(n).

Proof. Let t = L(fn). The spanning tree polynomial fn is multilinear and homogeneous of
degree n − 1: every spanning tree T of Kn has |T | = n − 1 edges. Since the polynomial fn
is homogeneous of degree n − 1, and since fn can be computed by a monotone arithmetic
circuit of size t, the well-known decomposition result, proved by Hyafil [10, Theorem 1] and
Valiant [17, Lemma 3], implies that fn can be written as a sum fn = g1 · h1 + · · · + gt · ht
of products of nonnegative homogeneous polynomials, each of degree at most 2(n − 1)/3; a
polynomial is nonnegative if it has no negative coefficients.

Every monomial of fn is of the form
∏

e∈T xe for some spanning tree T . Since the poly-
nomials gi and hi in the decomposition of fn are nonnegative, there can be no cancellations.
This implies that all the monomials of gi · hi must be also monomials of fn, that is, must
correspond to spanning trees. Moreover, since the polynomial fn is multilinear, the forests of
gi must be edge-disjoint from the forests of hi. So, if we let Ai be the family of forests cor-
responding to monomials of the polynomial gi, and Bi be the family of forests corresponding
to monomials of the polynomial hi, then A1 ∨ B1, . . . ,At ∨ Bt are balanced rectangles, and
their union gives the family of all spanning trees of Kn. This shows τ(n) ≤ t = L(fn), as
desired.

So, it is enough to prove an exponential lower bound on τ(n). When doing this, we will
concentrate on spanning trees of Kn of a special form. Let m and d be positive integer
parameters satisfying (d + 1)m = n, m = Θ(

√
n) and m ≤ d/32; we will specify these

parameters later.
A star is a tree with one vertex, the center, adjacent to all the others, which are leaves.

A d-star is a star with d leaves. A spanning star-tree consists of m vertex-disjoint d-stars
whose centers are joined by a path. A star factor is a spanning forest of Kn consisting of
m vertex-disjoint d-stars. Note that each spanning star-tree contains a unique star factor
(obtained by removing edges between star centers).

Let F be the family of all star factors of Kn. For a rectangle R, let FR denote the family
of all star factors F of Kn contained in at least one spanning tree of R; in this case, we also
say that the factor F is covered by the rectangle R.

Lemma 3. There is an absolute constant c > 0 such that for every balanced rectangle R, we

have |FR| ≤ |F| · 2−c
√
n.

Note that this lemma gives a lower bound τ(n) ≥ 2c
√
n on the minimum number of

balanced rectangles containing all spanning trees of Kn. Indeed, let R1, . . . ,Rt be t = τ(n)
balanced rectangles whose union is the family of all spanning trees of Kn. Every star factor
F ∈ F is contained in at least one spanning tree (in fact, in many of them). So, every star

4

factor F ∈ F must be covered by at least one of these t rectangles. But Lemma 3 implies
that none of these rectangles can cover more than h := |F| · 2−c

√
n star factors F ∈ F. So,

we need τ(n) = t ≥ |F|/h ≥ 2c
√
n rectangles. Together with Lemma 2, this yields the desired

lower bound L(fn) ≥ 2c
√
n on the monotone arithmetic circuit complexity of the spanning

tree polynomial fn.
The rest of the paper is devoted to the proof of Lemma 3.

Proof of Lemma 3. We can construct every star factor F ∈ F using the following procedure.

1. Choose a subset of m centers in [n];
(n
m

)
possibilities.

2. Divide the remaining n − m vertices into m blocks of size d, and connect all vertices
of the ith block to the ith largest of the chosen centers; there are

(n−m
d,...,d

)
= (n−m)!

d!m

possibilities to do this.

Since different realizations of this procedure lead to different star factors, we have

|F| =
(
n

m

)
(n−m)!

d!m
. (1)

Fix a balanced rectangle R = A∨B containing at least one spanning star-tree T0 = A0∪B0

with A0 ∈ A and B0 ∈ B, and let c1, . . . , cm be the centers of stars of T0. Every vertex
v ∈ [n] \ {c1, . . . , cm} is connected in T0 by a unique edge ev to one of the centers c1, . . . , cm.
This gives us a partition U ∪ V of the vertices in [n] \ {c1, . . . , cm} into two sets determined
by the forests A0 and B0:

U = {v : ev ∈ A0} and V = {v : ev ∈ B0} .

We will concentrate on the bipartite complete subgraph U × V of Kn, and call the edges of
Kn lying in this subgraph crossing edges. Since our rectangle R is balanced, we know that
both |A0| and |B0| lie between (n − 1)/3 and 2(n − 1)/3. So, since m = o(n), for n large
enough, we have

|U |, |V | ≥ 1
3(n− 1)−m ≥ 1

4n . (2)

The property that every graph A∪B with A ∈ A and B ∈ B must be cycle-free (must be
a spanning tree of Kn) gives the following restriction on the rectangle R = A ∨B.

Claim 1. For all forests A ∈ A and B ∈ B, and vertices u ∈ U and v ∈ V , we have

|A ∩ ({u} × V)| ≤ m and |B ∩ (U × {v})| ≤ m.

That is, no forest A ∈ A can contain more than m crossing edges incident to one vertex in
U , and no forest B ∈ B can contain more than m crossing edges incident to one vertex in V .

Proof. Assume contrariwise that some vertex u ∈ U has l ≥ m+1 crossing edges {u, v1}, . . . , {u, vl}
in the forest A. Since these edges are crossing and u ∈ U , all vertices v1, . . . , vl belong to V .
In the (fixed) spanning star-tree T0 = A0 ∪B0 (determining the partition U ∪V of vertices in
[n] \ {c1, . . . , cm}) each of these l vertices is joined by an edge of the forest B0 to one of the
centers c1, . . . , cm of stars of T0.

Since l > m, some two of these vertices vi and vj must be joined in B0 to the same
center c ∈ {c1, . . . , cm}. Since R is a rectangle, the graph A ∪ B0 must be a (spanning)
tree. But the edges {u, vi}, {u, vj} of A together with edges {vi, c}, {vj , c} of B0 form a cycle
u → vi → c → vj → u in A ∪B0, a contradiction.

5

The proof of the inequality |B∩ (U ×{v})| ≤ m is the same by using the forest A0 instead
of B0.

So far, we only used one fixed spanning tree T0 in the rectangle R to define the subgraph
U × V of Kn. We now use the entire rectangle R = A ∨ B to color the edges of Kn in red
and blue. When doing this, we use the fact that the sets EA :=

⋃

A∈AA and EB :=
⋃

B∈BB
of edges of Kn must be disjoint:

• Color an edge e ∈ Kn red if e ∈ EA, and color e blue if e ∈ EB.

This way, the edges of every spanning tree T ∈ R will receive their colors. The remaining
edges of Kn (if there are any) can be colored arbitrarily.

Recall that an edge e of Kn is crossing if e ∈ U × V . Assume that at least half of the
crossing edges is colored in red ; otherwise, we can consider blue edges. This assumption
implies that the set Ered ⊆ U × V of red crossing edges has |Ered| ≥ 1

2 |U × V | edges. For a
vertex u ∈ U , the set of its good neighbors is the set

Vu = {v ∈ V : {u, v} ∈ Ered}

of vertices that are connected to u by red crossing edges. Claim 1 gives the following structural
restriction on star factors covered by the rectangle R.

Claim 2. For any star factor F ∈ FR, and for any center z of F , if z ∈ U , then |F ∩ ({z} ×
Vz)| ≤ m.

That is, if a star factor F is covered by the rectangle R, then every star of F centered in
some vertex z ∈ U can only have m or fewer (out of all |Vz| possible) red crossing edges.

Proof. Take a star factor F ∈ FR having some star whose center z belongs to U . Since F is
covered by the rectangle R, F ⊆ A ∪ B holds for some forests A ∈ A and B ∈ B. By the
definition of the edge-coloring, we have B ∩ ({z} × Vz) = ∅: all edges in {z} × Vz are red,
while those in B are blue. So, all edges of F ∩ ({z} × Vz) belong to the forest A, and Claim 1
yields |F ∩ ({z} × Vz)| ≤ |A ∩ ({z} × Vz)| ≤ m.

We call a vertex u of Kn rich if u ∈ U and at least one quarter of the vertices in V are
good neighbors of u, that is, if |Vu| ≥ 1

4 |V | holds. By (2), every rich vertex u has |Vu| ≥ n/16
good neighbors. Split the family FR of star factors covered by the rectangle R into the family
F1
R
of star factors F ∈ FR with no rich center, and the family F2

R
of all star factors F ∈ FR

with at least one rich center. We will upper-bound the number of star factors in F1
R
and in

F2
R
separately.
The intuition behind this splitting is that star factors F ∈ F1

R
have the restriction (given

by Claim 3 below) that only relatively “few” potential vertices of Kn can be used as centers
of stars, while the restriction for the star factors F ∈ F2

R
(given by Claim 2) is that at least

one of its stars Sz ⊂ F (centered in a rich center z) has relatively “few” potential vertices of
Kn which can be taken as leaves.

To upper-bound |F1
R
|, let us first show that the set U∗ =

{
u ∈ U : |Vu| ≥ 1

4 |V |
}
of all rich

vertices is large enough.

Claim 3. There are |U∗| ≥ 1
4 |U | ≥ n/16 rich vertices.

6

Proof. The second inequality follows from (2). To prove the first inequality, assume contrari-
wise that there are only |U∗| < 1

4 |U | rich vertices in U . Since |Vu| < 1
4 |V | holds for every

vertex u ∈ U \ U∗, we obtain

1
2 |U × V | ≤ |Ered| =

∑

u∈U∗

|Vu|+
∑

u∈U\U∗

|Vu| < 1
4 |U | · |V |+ |U | · 1

4 |V | = 1
2 |U × V | ,

a contradiction.

Each star factor in F1
R
can be constructed in the same way as we constructed any star

factor F ∈ F above (before (1)), with the difference that centers can only be chosen from
[n] \ U∗, not from the entire set [n]. Thus,

|F1
R
|

|F| ≤
(
n− |U∗|

m

)

·
(
n

m

)−1

≤ e−|U∗|·m/n = 2−Ω(m) . (3)

Here we used Claim 3 together with the second of the two simple inequalities holding for all
b ≤ b+ x < a:

(
a− b− x

a− x

)x

≤
(
a− x

b

)(
a

b

)−1

≤
(
a− b

a

)x

. (4)

To upper bound |F2
R
|, we will use the restriction given by Claim 1. Recall that every

star factor F ∈ F2
R
has at least one rich center. So, consider the following (nondeterministic)

procedure of constructing a star factor F in F2
R
.

1. Choose a rich center z ∈ U∗; there are at most |U∗| ≤ |U | ≤ n possibilities to do this.

2. For the center z, do the following:

(a) choose a subset of i ≤ m vertices from the set Vz of all good neighbors of z, and
connect these vertices to z by (crossing) edges; for each i ≤ m there are

(|Vz |
i

)

possibilities.

(b) choose a subset of d− i vertices in [n] \ (Vz ∪ {z}) and connect them to z; here we

have at most
(n−|Vz |−1

d−i

)
≤

(n−|Vz|
d−i

)
possibilities.

3. Choose a subset of m− 1 distinct centers from the remaining n− d− 1 vertices. There
are at most

(n−d−1
m−1

)
≤

(n−1
m−1

)
= m

n

(n
m

)
possibilities to do this.

4. Choose a partition of the remaining n−m− d vertices into m− 1 blocks of size d, and
connect the ith largest of the m−1 chosen centers to all vertices in the ith block. There
are at most

(n−m−d
d,...,d

)
= (n−m−d)!

d!m−1 possibilities to do this.

Claim 4. Every star factor F ∈ F2
R
can be produced by the above procedure.

Proof. Take a star factor F ∈ FR containing a star Sz ⊂ F centered in a rich vertex z ∈ U∗.
The star z can be picked by Step 1 of the procedure. By Claim 2, the star Sz can only have
i := |F ∩ ({z} × Vz)| ≤ m good neighbors of z (those in Vz) as leaves, and Step 2(a) of our
procedure can pick all these i leaves of Sz. The remaining d − i leaves of the star Sz must
belong to the set [n] \ (Vz ∪ {z}). So, Step 2(b) can pick these d − i leaves of Sz. Since the
remaining two steps 3 and 4 of the procedure can construct any star factor of Kn \ Sz, the
rest of the star factor F can be constructed by these steps.

7

The number of possibilities in Step 2 of our procedure is related to the probability distri-
bution

h(K,n, d, i) := Pr {X = i} =

(
K
i

)(
n−K
d−i

)

(
n
d

)

of a hypergeometric random variable X: the probability of having drawn exactly i white balls,
when drawing uniformly at random without replacement d times, from a vase containing K
white and n − K black balls. The number of possibilities in Step 2 of the procedure (for a
center z picked in Step 1) is then at most H(|Vz|, n, d,m) ·

(
n
d

)
, where

H(K,n, d,m) := Pr {X ≤ m} =
m∑

i=0

h(K,n, d, i) ,

is the probability of having drawn at most m white balls. For fixed n, d and m, the function
H(K,n, d,m) is non-increasing in K, implying that the maximum of H(|Vz |, n, d,m) over all
rich centers z ∈ U∗ is achieved for K := min{|Vz| : z ∈ U∗}. Hence, for every rich center
z ∈ U∗, the number of possibilities in Step 2 is at most

H(|Vz |, n, d,m) ·
(
n

d

)

≤ H ·
(
n

d

)

,

where H := H(K,n, d,m). From the first inequality of (4) (applied with x := m, a := n and

b := d) we have
(n
d

)
≤ C ·

(n−m
d

)
, where C =

(
n−m

n−d−m

)m
≤ exp

(
md

n−d−m

)

is a constant since

md = O(n) and m,d = o(n).
Thus the total number of possibilities in all steps 1–4 and, by Claim 4, also the number

|F2
R
| of star factors in F2

R
, is at most a constant times

n ·H ·
(
n−m

d

)

︸ ︷︷ ︸

Steps 1 and 2

m

n

(
n

m

)

︸ ︷︷ ︸

Step 3

(n−m− d)!

d!m−1
︸ ︷︷ ︸

Step 4

= m ·H ·
(
n

m

)
(n−m)!

d!m
︸ ︷︷ ︸

= |F|

.

Known tail inequalities for the hypergeometric distribution (see Hoeffding [9], or Chvátal [2]
for a direct proof) imply that, if m ≤ (K/n − ǫ)d for ǫ > 0, then

H(K,n, d,m) = Pr {X ≤ m} ≤ e−2ǫ2d . (5)

Remark. In both papers [9] and [2], this upper bound is only stated for the event X ≥
(K/n+ ǫ)d, but using the duality h(K,n, d, i) = h(n−K,n, d, d− i) (count black balls instead
of white), the same upper bound holds also for the event X ≤ (K/n − ǫ)d.

In our case, K = min{|Vz| : z ∈ U∗} ≥ 1
4 |V | ≥ n/16. Recall that, so far, we have only

used the conditions (d+ 1)m = n and m = Θ(
√
n) on the parameters m and d. We now use

the last condition m ≤ d/32. For ǫ = 1/32, we then have m ≤ d/32 ≤ (K/n − ǫ)d, and (5)
yields

H = H(K,n, d,m) ≤ Pr {X ≤ d/32} ≤ e−d/512 = 2−Ω(d) .

By taking d := 6
√
n and m := n/(d+ 1), all three conditions on the parameters m and d are

fulfilled, and we obtain |F2
R
| ≤ m|F| · 2−Ω(d). Together with the upper bound (3), the desired

upper bound on |FR| follows:
|FR|
|F| =

|F1
R
|+ |F2

R
|

|F| ≤ 2−Ω(m) +m2−Ω(d) = 2−Ω(
√
n) .

8

References

[1] Bellman, R., 1958. On a routing problem. Quarterly of Appl. Math. 16, 87–90.
[2] Chvátal, V., 1979. The tail of the hypergeometric distribution. Discrete Math. 25, 285–287.
[3] Dreyfus, S., Wagner, R., 1971. The Steiner problem in graphs. Networks 1 (3), 195–207.
[4] Edmonds, J., 1967. Optimum branchings. J. of Res. of the Nat. Bureau of Standards 71B (4), 233–240.
[5] Edmonds, J., 1973. Edge-disjoint branchings. In: Rustin, B. (Ed.), Combinatorial Algorithms. Academic

Press, pp. 91–96.
[6] Floyd, R., 1962. Algorithm 97, shortest path. Comm. ACM 5, 345.
[7] Ford, L., 1956. Network flow theory. Tech. Rep. P-923, The Rand Corp.
[8] Held, M., Karp, R., 1962. A dynamic programming approach to sequencing problems. SIAM J. on Appl.

Math. 10, 196–210.
[9] Hoeffding, W., 1963. Probability inequalities for sums of bounded random variables. J. of the Amer.

Statistical Association 58 (301), 13–30.
[10] Hyafil, L., 1979. On the parallel evaluation of multivariate polynomials. SIAM J. Comput. 8 (2), 120–123.
[11] Jerrum, M., Snir, M., 1982. Some exact complexity results for straight-line computations over semirings.

J. ACM 29 (3), 874–897.
[12] Jukna, S., 2015. Lower bounds for tropical circuits and dynamic programs. Theory of Comput. Syst.

57 (1), 160–194.
[13] Kruskal, J., 1956. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc.

of AMS 7, 48–50.
[14] Levin, A., 1971. Algorithm for the shortest connection of a group of graph vertices. Sov. Math. Dokl. 12,

1477–1481.
[15] Moore, E., 1957. The shortest path through a maze. In: Proc. Internat. Sympos. Switching Theory. Vol. II.

pp. 285–292.
[16] Tarjan, R., 1977. Finding optimum branchings. Networks 7 (1), 25–35.
[17] Valiant, L., 1980. Negation can be exponentially powerful. Theor. Comput. Sci. 12, 303–314.
[18] Warshall, S., 1962. A theorem on boolean matrices. J. ACM 9, 11–12.

9
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

