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Abstract. We consider probabilistic circuits working over the real numbers, and using arbitrary
semialgebraic functions of bounded description complexity as gates. We show that such circuits
can be simulated by deterministic circuits with an only polynomial blowup in size. An algorith-
mic consequence is that randomization cannot substantially speed up dynamic programming. In
arithmetic circuits, randomization cannot spare even one single gate.
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1. Introduction

A classical result of Adleman [1], extended to the case of two-sided error probability by Bennett
and Gill [7], shows that randomness is useless in boolean circuits: if a boolean function f of n
variables can be computed by a probabilistic boolean circuit of polynomial in n size, then f can
be also computed by a deterministic boolean circuit of polynomial in n size. In the computational
complexity literature, this result is stated shortly as1 BPP ⊆ P/poly. That is, probabilistic boolean
circuits can be derandomized. But the proof of Adleman’s theorem crucially used the fact that the
domain R = {0, 1} of boolean circuits is finite: the proof then follows from a simple finite majority
rule (see Section 3), which itself is an easy application of Chernoff’s bound.

In this paper, we are interested in the derandomization of circuits working over infinite (and
even uncountable) domains R such as N, Z, Q or R, and using any semialgebraic functions of low
description complexity as gates. A function f : Rn → R is semialgebraic if its graph {(x, y) : y =
f(x)} can be obtained by finitely many unions and intersections of sets defined by a polynomial
equality or strict inequality. Simplest examples of such functions are all arithmetic operations
+,−,×,÷, tropical operations min,max, the signum, selection, if-then-else operations, and many
more. Our primary interest in such circuits comes from them being able to simulate dynamic
programming algorithms (DP algorithms).

A probabilistic circuit is a deterministic circuit which is allowed to use additional input variables,
each being a random variable taking real values. The probability distributions of these random
variables can be arbitrary, so that our derandomization results will be distribution-independent.
Such a circuit computes a given function f : Rn → R if, for every input x ∈ Rn, the circuit outputs
the correct value f(x) with probability at least 2/3. (There is nothing “magical” in the choice of
this threshold value 2/3: we do this only for definiteness. One can take any constant larger than
1/2: since we ignore multiplicative constants, all results will hold also then.)

Our motivating question was: does BPP ⊆ P/poly also holds for DP algorithms? That is, if an
optimization problem f : Rn → R can be solved by a probabilistic DP algorithm using s operations,
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1BPP stands for “bounded-error probabilistic polynomial time”, and P/poly for “deterministic non-uniform poly-
nomial time”. Whether BPP ⊆ P holds in the uniform setting (for Turing machines instead of circuits) remains a
widely open problem.
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can then f be also solved by a deterministic DP algorithm using a polynomial in ns number of
operations?

We answer this question in the affirmative.

2. Results

2.1. En route to derandomization. We will derandomize probabilistic circuits in three steps
given by Theorems 2.1–2.3 below.

The Vapnik–Chervonenkis dimension (VC dimension), VCdim(F), of a family F of functions
f : X → Y is the largest natural number v ∈ N for which there exist v functions f1, . . . , fv in
F that are shattered by points in the following sense: for every subset S ⊆ {1, . . . , v} there is a
point (x, y) ∈ X × Y such that fi(x) = y if and only if i ∈ S. That is, the graphs of exactly those
functions fi with i ∈ S must contain this point. If this holds for an arbitrary large v ∈ N, then the
VC dimension is infinite.

The majority vote function of m variables is a partly defined function maj(x1, . . . , xm) which
outputs the majority element of its input x1, . . . , xm, if there is one. That is,

maj(x1, . . . , xm) = y if y occurs > m/2 times among the x1, . . . , xm.

For example, in the case of m = 5 variables, we have maj(a, b, c, b, b) = b whereas maj(a, b, c, a, b)
is undefined.

The following theorem reduces the derandomization of probabilistic circuits to upper-bounding
the VC dimension of deterministic circuits. It holds for any class of circuits computing real-valued
functions f : Rn → R, and for any probability distributions of their random input variables.

Theorem 2.1 (Infinite majority rule). If a function f can be computed by a probabilistic circuit
of size s, then f can be also computed as a majority vote of at most O(v) deterministic circuits of
size at most s, where v is the VC dimension of the family of functions computable by deterministic
circuits of size at most s.

The theorem is a relatively direct consequence of the “uniform convergence in probability” result
of Haussler [24] (see Section 6). A slightly worse upper bound O(v log v) (which is also sufficient
in the context of the BPP vs. P/poly problem) follows also from the original result of Vapnik and
Chervonenkis [47].

By Theorem 2.1, the problem of derandomizing probabilistic circuits reduces to proving upper
bounds on the VC dimension of deterministic circuits of up to a given size. In next two theorems
we do this for circuits whose gates are semialgebraic functions.

Recall that a set S ⊆ Rn is semialgebraic if it can be obtained by finitely many unions and
intersections of sets defined by a polynomial equality or strict inequality. If this can be done using
at most r polynomials of degree at most r, then the set is r-semialgebraic. The smallest r for which
this is possible is the description complexity of the set S. A function f : Rn → R is r-semialgebraic
if its graph S = {(x, y) : y = f(x)} ⊆ Rn+1 is such; see Section 4 for more formal definitions, and
Table 1 for examples of semialgebraic function of small description complexity.

An important consequence of the Tarski–Seidenberg theorem [46, 43]–stating that every quan-
tified algebraic formula has an equivalent quantifier-free formula—is that compositions of semial-
gebraic functions are also semialgebraic functions. In particular, this implies that functions com-
putable by circuits over any base consisting of semialgebraic functions are also semialgebraic. We
are interested in the quantitative aspect of this theorem:

• If the basis functions (gates) have description complexity at most b, how large can then the
description complexity of functions computable by circuits of size up to s be?

The answer is given by the following theorem.
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Theorem 2.2 (Description complexity of circuits). Let B be a basis consisting of b-semialgebraic
functions. Then every function f : Rn → R computable by a circuit over B of size at most s is
r-semialgebraic for r satisfying

log r = O(ns log bs) .

Note that r does not depend on the fanin of gates. We prove this theorem in Section 7 by
first encoding circuits by quantified algebraic formulas (Lemma 7.1), and then using a result of
Renegar [39] to eliminate quantifiers.

By Theorem 2.2, we know that the functions computed by circuits using semialgebraic functions
of bounded description complexity as gates are r-semialgebraic for appropriate description com-
plexity r. So, the following theorem gives a desired (to apply Theorem 2.1) upper bound on the
VC dimension of such circuits.

Theorem 2.3 (VC dimension from description complexity). If F is the family of all r-semialgebraic
functions f : Rn → R, then

log2

(

n+ r

n

)

− 1 6 VCdim(F) = O(n log r) .

In applications to derandomization, important here is that the upper bound is only logarithmic
in the description complexity r. As such, this fact is not new: a “logarithmic shrinkage” was
already observed by several authors, including Goldberg [16], Goldberg and Jerrum [15], Ben-
David and Lindenbaum [6]. The point, however, is that the proofs in [16, 15, 6] were based on
(known at that time) upper bounds of Heintz [25], Milnor [36], Warren [48] on the number of
sign-patterns of polynomials, which themselves were proved using rather heavy techniques from
real algebraic geometry. In contrast, Rónyai, Babai and Ganapathy [40] discovered a surprisingly
simple linear algebra argument leading to an even better upper bound on the number of zero-
patterns of polynomials. Thank to this result, the entire proof of the upper bound of Theorem 2.3
in Section 8 is short, elementary and self-contained. The lower bound of Theorem 2.3 is proved
(also in Section 8) using the dual VC dimension.

2.2. Applications. The following direct consequence of Theorems 2.2 and 2.3 gives a general upper
bound of the VC dimension of semialgebraic circuits.

Corollary 2.4. Let B be a basis consisting of b-semialgebraic functions, and let F be the family of
functions on n variables computable by the circuits over B of size at most s. Then

VCdim(F) = O(n2s log bs) .

Together with Theorem 2.1, Corollary 2.4 yields

Corollary 2.5. Let B be any basis consisting of b-semialgebraic functions. If a function f : Rn → R

can be computed by a probabilistic circuit of size s over B, then f can be also computed as a majority
vote of m = O(n2s log bs) deterministic circuits, each of size at most s.

The deterministic circuits in Corollary 2.5 are just copies (realizations) F (x, r1), . . . , F (x, rm)
of one and the same probabilistic circuit F (x, r), meaning that all these circuits have the same
structure—only the random inputs are fixed to (apparently) different constants.

Note also that, even though the majority vote functions are only partially defined, the deran-
domized circuit in Corollary 2.5 ensures that, on every input x ∈ Rn to the circuit, the sequence
of values given to the last majority vote gate will always contain a majority element. This is an
important aspect guaranteed by the infinite majority rule (Theorem 2.1).

Derandomized circuits in the following corollary require no majority vote gates at all. For a
relation ρ, we will denote by [ρ] the predicate which outputs 1 if the relation ρ holds, and outputs
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0 otherwise. Consider the following four bases of operations:

B1 = {min,max} ,

B2 = {min,+,−} ,

B3 = {+,×, [x = y] , [x > y]} ,

B4 = {+,×,−, sgn} ,

(1)

where sgn(x) = 1 if x > 0, and sgn(x) = 0 otherwise.

Corollary 2.6. Let B be any basis consisting of b-semialgebraic gates. If a function f : Rn → R

can be computed by a probabilistic circuit of size s over B, and if B contains at least one of the bases
B1,B2,B3,B4, then f can be also computed by a deterministic circuit of size S = O(n4s2 log2 bs).

Proof. By Corollary 2.5, it is enough to show that, over any of these four bases, the majority vote
of m inputs can be computed by a circuit of size O(m2): then the resulting circuit without any
majority vote gates will have size at most O(m2 +ms) = O(m2), where now m = O(n2s log bs) is
from Corollary 2.5.

Basis B1: In the first case, we can take the sorting {min,max} network of Ajtai, Komlós and
Szemerédi [3]. This network requires only O(m logm) gates, and computes the sorting function
sort : Rm → Rm which on input string (x1, . . . , xm) ∈ Rm outputs its permutation (y1, . . . , ym) with
y1 6 y2 6 . . . 6 ym. This circuit then also computes the majority vote function maj(x1, . . . , xm):
just take the i-th output gate yi of sort for i := ⌊m/2⌋; it will always contain the majority element
of (x1, . . . , xm), if there is one.

Basis B2: This case reduces to the previous one because max{x, y} = x+ y −min{x, y}.
Basis B3: In order to find the majority element among x1, . . . , xm ∈ R (if there is one), first

compute all m sums yi =
∑m

j=1 [xj = xi]; then
∑m

i=1 xi · [yi > m/2] gives the majority element.

Basis B4: It is enough to simulate the atomic predicates [x = y] and [x > y] using signum oper-
ation: [x = y] = sgn(x− y) · sgn(y − x) and [x > y] = 1− sgn(y − x). �

Motivated by Corollary 2.6, call a basis B majority vote capable, if the majority vote function
of m variables can be computed by a circuit over B of size polynomial in m. In particular, bases
considered in Corollary 2.6 are clearly majority capable.

Corollary 2.7. BPP ⊆ P/poly holds for circuits over any majority vote capable basis B consisting

of semialgebraic functions of description complexity b 6 2n
O(1)

.

Three important examples of bases that are not majority vote capable are: the basis {+,−,×}
of arithmetic circuits, and the bases {min,+} and {max,+} of tropical circuits (see Appendix C).

Most (if not all) DP algorithms in discrete optimization use only several semialgebraic functions
of small description complexity in their recursion equations: min, max, arithmetic operations, and
apparently some additional, but still semialgebraic operations, like the selection operation, or the
“if-then–else” constraint (see Table 1 in Section 4.2). So, Corollary 2.7 implies that randomization
is (almost) useless in dynamic programming algorithms, at least as long as we are allowed to use
different (deterministic) DP algorithms to solve optimization problems on inputs x ∈ Rn from
different dimensions n.

Remark 1 (On “uniformity”). Usually, a DP algorithm is described by giving one set of recursion
equations which can be applied to inputs of any dimension n. In this respect, DP algorithms are
“uniform” (like Turing machines). Probabilistic DP algorithms may use some random parameters
in their recursion equations. However, when derandomizing such algorithms, we do not obtain also
one set of recursion equations valid for inputs of all dimensions. What we obtain is a sequence of
deterministic DP algorithms, one for each dimension n. In the “uniform” setting (with P instead
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of P/poly), the inclusion BPP ⊆ P is not known to hold even for DP algorithms, and even for “pure”
DP algorithms using only (min,+) or (max,+) operations in their recursion equations.

2.3. Recognizing roots. In Theorem 2.1, we require that, on every input x ∈ Rn, the probabilistic
circuit F (x, r) must output the correct value f(x) with probability at least 2/3. One can, however,
relax this and only require that the values F (x, r) must have some properties with this probability.
If we are given a target function f : Rn → R, then such properties may, for example, be:

• output correct values: F (x, r) = f(x) (the property we considered so far);
• have the same roots: F (x, r) = 0 if and only if f(x) = 0;
• have the same sign: F (x, r) > 0 if and only if f(x) > 0;
• have the same integrality: F (x, r) ∈ Z if and only if f(x) ∈ Z,

and many more. Our arguments allow also to derandomize circuits only recognizing some properties
of given functions. To illustrate this, say that a probabilistic circuit F (x, r) recognizes the roots of
a given function h : Rn → R if, for every input x ∈ Rn,

Pr
{

F (x, r)2 + h(x)2 = 0 or F (x, r) · h(x) 6= 0
}

> 2/3 .

That is, if h(x) = 0 then F (x, r) = 0 with probability > 2/3, and if h(x) 6= 0 then F (x, r) 6= 0 with
probability > 2/3.

Theorem 2.8. Let B be a basis consisting of b-semialgebraic functions, and containing the basis
{+,×} or any of the bases listed in Eq. (1). If the roots of a p-semialgebraic function h : Rn → R

can be recognized by a probabilistic circuit over B of size s, then the roots of h can be also recognized
by a deterministic circuit over B of size O(n4s2 log2 max{sb, p}).

The proof of Theorem 2.8 is given in Section 9.

2.4. Randomization in arithmetic circuits is hopeless. Our procedure for derandomizing
semialgebraic circuits consisted of the following three steps:

(1) upper-bound the size of derandomized circuits in terms of VC dimension (Theorem 2.1).
(2) upper-bound the description complexity of semialgebraic circuits (Theorem 2.2).
(3) upper-bound the VC dimension of semialgebraic functions in terms of their description

complexity (Theorem 2.3).

Thank to Rónyai, Babai and Ganapathy [40], the proof for step (3) (in Section 8) is elementary and
self-contained. However, the proofs of steps (1) and (2) are based on a rather involved proofs of
Haussler [24] (on uniform convergence in probability) and Renegar [39] (on quantifier elimination).
Still, in some cases, one can derandomize circuits in more direct ways. In Section 11, we demonstrate
this in the case of tropical (max,+) and (min,+) circuits: here step (2) is not necessary.

In Section 10, we use an elementary argument, avoiding the need of all three steps (1)–(3), to
prove the following optimal derandomization result for arithmetic circuits.

Theorem 2.9. If a rational function f can be computed by a probabilistic circuit of size s over the
basis {+,−,×,÷} with an arbitrarily small success probability ǫ > 0, then f can be also computed
by a deterministic circuit over {+,−,×,÷} of the same size s

That is, randomization in arithmetic circuits cannot spare even one single gate.
Moreover, if F (x, r) is a probabilistic circuit computing f , then the obtained deterministic circuit

is a realization F (x, r) of this circuit obtained by fixing the random inputs to constants.
Note, however, that such a tight derandomization, as in Theorem 2.9, is no more possible if we

relax (as in Theorem 2.8) the requirement on the probabilistic circuits F (x, r) from “compute the
correct values” of a given function f(x) to something like “have the same roots” as f (with positive
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success probabilities). For example, the roots of the polynomial

f(X,Y,Z) =
n
∑

i=1

n
∑

j=1

(

zi,j −
n
∑

k=1

xi,kyk,j

)2

are triples A,B,C of n × n matrices such that AB = C. A naive arithmetic circuit for this
polynomial requires about n3 gates. More sophisticated known matrix multiplication algorithms
still result in circuits of size about nω, where ω = 2.3729.

But already 40 years ago, Freivalds [14] gave a simple probabilistic circuit of size only about
n2 detecting the roots of f with success probability > 1/2: take S = {0, 1, 2, 3, 4}, let r be a
uniformly distributed in Sn random vector, compute u = (XY − Z)r as the difference of matrix-
vector products u = X(Y r) − Zr, and output F = u21 + · · · + u2n. Note that F outputs 0 if and
only if u is the all-0 vector. After a triple of input matrices A,B,C is fixed, F = F (r) turns into
a polynomial of degree d = 2 in random variables. If AB = C (the triple is a root of f), then this
is the zero polynomial and, hence, F (r) = 0 holds with probability 1. If AB 6= C, then F (r) is a
nonzero polynomial, and Lemma 10.1 yields Pr {r ∈ Sn : F (r) = 0} 6 d/|S| = 2/5.

So, Theorem 2.9 does not exclude that randomization can still help, if we do not insist on
computing the actual values of polynomials but are rather satisfied with, say, recognizing whether
they are zero or not. On the other hand, Theorem 2.8 shows that also then the help cannot be
super-polynomial. (Of course, in the special case of Freivald’s polynomial, the upper bound given
by Theorem 2.8 is trivial.)

Organization of the paper. In the next section (Section 3), we recall previous derandomization
results for probabilistic circuits and decision trees. In Section 4, we specify our main concepts:
probabilistic circuits and semialgebraic functions. Our basic derandomization tools are described
in Section 5. The tools are “circuit independent:” they establish some combinatorial properties of
infinite boolean matrices, and could be applied in other contexts. Theorems 2.1–2.3 are proved in
subsequent sections 6-8. Theorem 2.9 (a tight derandomization of arithmetic circuits) is proved in
Section 10.

Our technical contribution is actually minor: modulo deep results of Haussler [24] and Rene-
gar [39], our proofs are fairly simple, and the paper is self-contained. Our contribution we rather
see in a proper application of tools from different fields—combinatorial algebraic geometry (zero-
patterns of polynomials), statistical learning theory (uniform convergence in probability), and quan-
tifier elimination theory over the reals—to derandomize large classes of algorithms working over
infinite domains, including all dynamic programming algorithms, the latter being our main mo-
tivation for this paper. Our main message is that randomization cannot substantially speed-up
dynamic programming algorithms.

3. Previous work

As we mentioned at the beginning, our starting point is the result of Adleman [1] that2 BPP ⊆
P/poly holds for boolean circuits. In fact, Adleman proved this only when one-sided error is allowed.
To prove the two-sided error version, Bennett and Gill [7] used the simple “finite majority rule”, a
direct consequence of Chernoff and union bounds (in a spirit of Claim 10.2 in Section 10):

Lemma 3.1 (Finite majority rule). If a probabilistic circuit computes a given function f : D → R
on a finite domain D with success probability ǫ > 1/2 + c for a constant c > 0, then the majority

2Actually, the result is stronger, and should be stated as “‘BPP/poly = P/poly”: even probabilistic circuits, not
only probabilistic Turing machines (uniform sequences of circuits) can be derandomized. We, however, prefer to use
the less precise but more familiar shortcut “BPP ⊆ P/poly.”
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vote of some m = O(log |D|) realizations of the circuit (deterministic circuits) also computes f on
the entire domain D.

In the boolean case, the domain is D = {0, 1}n, and the majority vote functions turns into
boolean majority functions: output 1 if and only if more than half of the input bits are 1s. Since
the majority function has small boolean circuits, even monotone ones, the resulting deterministic
circuits will then be not much larger than the probabilistic circuits.

There are models of boolean circuits—like constant depth circuits—where the majority function
cannot be computed in polynomial size. Still, using different arguments, Ajtai and Ben-Or [2], were
able to show that BPP ⊆ P/poly holds also for constant-depth circuits.

Morizumi [37] considered another (than size) measure of boolean (∨,∧,¬) circuits—the number
of used NOT gates. A natural question is: can randomness substantially reduce the number of
NOT gates? Markov [34] has found a surprisingly tight characterization of the minimum number
of NOT gates required by deterministic circuits to compute a given boolean functions f in terms a
natural combinatorial characteristic of f . Morizumi [37] observed that this result already gives a
negative answer: random circuits can save at most a constant number of NOT gates; the constant
depends only on the success probability.

The derandomization of circuits working over infinite domains D is a more delicate task: we
have to somehow “cope” with the infinity of the domain: Chernoff’s bounds alone do not help then.
Two general approaches have emerged along this line of research:

(A) Find (or just prove a mere existence of) a finite set X ⊂ D of inputs which is “isolating” in
the following sense: if a (deterministic) circuit computes a given function f correctly on all
inputs x ∈ X, then it must compute f correctly on all inputs x ∈ D. Then use the finite
majority rule on inputs from X.

(B) Use the “infinite majority rule” following from the “uniform convergence in probability”
results in the statistical learning theory: this allows to replace log |D| in the finite majority
rule by the Vapnik–Chervonenkis dimension of the (deterministic) circuits of up to some
given size (see Theorem 2.1).

Approach (A) was used by many authors to show BPP ⊆ P/poly for various types of decision
trees. The complexity measure here is the depth of a tree. These trees work over R, and branch
according to the sign of values of rational functions. In the case when only linear functions are
allowed, the inclusion BPP ⊆ P/poly was proved by Manber and Tompa [33], and Snir [45]. Meyer
auf der Heide [35] proved the inclusion when arbitrary rational functions are allowed. He uses a
result of Milnor [36] about the number of connected components of polynomial systems in Rn to
upper-bound the minimum size of an “isolating” subset X ⊂ Rn. Further explicit lower bounds
on the depth of probabilistic decision trees were proved by Bürgisser, Karpinski and Lickteig [8],
Grigoriev and Karpinski [20], Grigoriev et.al. [21], Grigoriev [19] and other authors.

Approach (B) was used by Cucker et. al. [11] to prove BPP ⊆ P/poly for arithmetic circuits over
the basis {+,−,×,÷, sgn}: if an n-variate polynomial f can be computed by a probabilistic circuit
of size at most s, then f can be also computed as a majority vote of O(ns) deterministic circuits,
each of size s. Our Theorem 2.9 shows that for arithmetic circuits over the basis {+,−,×,÷}
(without signum gates), randomization cannot spare even one single gate!

The BPP vs. P problem in the uniform setting, that is, in terms of Turing machines, is even more
delicate task. Here neither finite nor infinite majority rule can help. The reason for this failure is
that Turing machines are allowed to behave arbitrarily on any finite number of inputs they receive.
So, the Vapnik–Chervonenkis dimension of Turing machines working in even linear time is infinite.

Still, a strong indication that BPP = P should hold also in the uniform setting was given by
Impagliazzo and Wigderson [29]: either BPP = P holds or every decision problem solvable by
deterministic Turing machines in time 2O(n) can be solved by boolean circuits of sub-exponential
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size 2o(n). Goldreich [17] related the BPP vs. P problem with the existence of pseudorandom
generators: BPP = P if and only if there exists suitable pseudorandom generators; the “if” direction
was known for decades—the novelty is in the converse.

4. Preliminaries

4.1. Probabilistic circuits. Let R ⊆ R be some set (a domain), and B some fixed family of
functions g : Rm → R (a basis). A circuit over a given basis B is just a sequence F = (f1, . . . , fs)
of functions fi : Rn → R, called gates, where each fi is obtained by applying one of the basis
operations to functions in R∪{x1, . . . , xn, f1, . . . , fi−1}; scalars a ∈ R are also (constant) functions
a : Rn → R with a(x) = a for all x ∈ Rn, and each variable xi is the projection function of vectors
x ∈ Rn to the i-th coordinate. The size of a circuit is the number s of functions in the sequence,
and the function F : Rn → R computed by the circuit is the function computed by the last gate fs
in the sequence.

One usually views a circuit as a directed acyclic graph; parallel edges joining the same pair
of nodes are allowed. Each indegree-zero node holds either one of the variables x1, . . . , xn or an
element of R. Every other node, a gate, performs one of the operations g ∈ B on the results
computed at its input gates.

A probabilistic circuit over a basis B is a deterministic circuit which, besides the actual variables
x1, . . . , xn, is allowed to use additional variables r1, . . . , rk, each being a random variable taking
its values in R. So, what such circuits compute are random functions F : Rn+k → R whose values
depend on the values of the random input variables. Such a circuit computes a given function
f : Rn → R with a success probability ǫ if, for every input x ∈ Rn, the circuit outputs the correct
value f(x) with probability at least ǫ. We will sometimes call a circuit without random inputs a
deterministic circuit, just to distinguish it from a probabilistic one.

We will say that BPP ⊆ P/poly holds for circuits over a given basis when there are constants a
and b for which the following holds: if a function f of n variables can be computed by a probabilistic
circuit of size s, then there is a deterministic circuit computing f whose size is at most a(ns)b, that
is if the size of derandomized circuits is polynomial in n and s.

4.2. Semialgebraic Functions. We will consider circuits using semialgebraic functions f : Rn →
R as gates. Recall that a set S ⊆ Rn is semialgebraic if it can be obtained by finitely many unions
and intersections of sets defined by a polynomial equality or strict inequality. For us, important
will be not the mere fact that a set S is semialgebraic, but rather “how much semialgebraic” it
actually is: how many distinct polynomials and of what degree do we need to define this set? To
capture this quantitative aspect, we use “algebraic formulas”.

An algebraic formula is an arbitrary boolean combination of atomic predicates, each being of the
form [p(x) ♦ 0] for some polynomial p in R[x1, . . . , xn], where ♦ is one of the standard relations >,
>, =, 6=, 6, <, and the predicate [ρ] for a relation ρ outputs 1 if the relation ρ holds, and outputs
0 otherwise. So, for example, [p(x) = 0] = 1 if and only if p(x) = 0. Note that [p(x) ♦ q(x)] is
equivalent to [p(x)− q(x) ♦ 0], so that we can also make comparisons between polynomials. The
size of a formula is the number of used polynomials, while the degree of the formula is the maximum
degree of these polynomials. It is important to note that the size only counts distinct polynomials:
one and the same polynomial may appear many times, and under different relations ♦.

Note that a set S ⊆ Rn is semialgebraic if and only if it can be recognized by some algebraic
formula Φ : Rn → {0, 1} in that S = {x ∈ Rn : Φ(x) = 1} holds. A function f : Rn → R is
semialgebraic if its graph S = {(x, y) : y = f(x)} ⊆ Rn+1 is such, that is, if there is an algebraic
formula Φ(x, y) such that, for every x ∈ Rn and y ∈ R,

Φ(x, y) = 1 holds precisely when y = f(x).
8



Table 1. Some basic semialgebraic functions f of small description complexity r(f). Here, p(x)
is an arbitrary real multivariate polynomial of degree d; Ψ(x) is a d-semialgebraic formula viewed
as a function Ψ : Rn → {0, 1}; sgn : R → {0, 1} takes value sgn(x) = 1 if x > 0, and sgn(x) = 0
otherwise; maj(x1, . . . , xm) is the majority vote function which outputs the number appearing more
than m/2 times in the string x1, . . . , xm, if there is one; sel(x1, . . . , xm|y) is also a partly defined
function which outputs xi if y = i.

Graph of function f r(f) Algebraic formula Φ

y = p(x) d [y = p(x)]

y = Ψ(x) d+ 2 [y = 1] ∧Ψ(x) ∨ [y = 0] ∧ ¬Ψ(x)

y = sgn(x) 2 [x > 0] ∧ [y = 1] ∨ [x < 0] ∧ [y = 0]

y = |x| 2 [y = x] ∨ [y = −x]

y = x1/k k
[

x = yk
]

(odd k) [x > 0] ∧
[

x = yk
]

(even k)

z = ‖x− y‖ 2 [z > 0] ∧
[

z2 = (x1 − y1)
2 + · · ·+ (xn − yn)

2
]

z = x
y 2 [y 6= 0] ∧ [yz = x]

z = min{x1, . . . , xm} m
∧m

i=1 [z 6 xi] ∧
(
∨m

i=1 [z = xi])

z = max{x1, . . . , xm} m
∧m

i=1 [z > xi] ∧
(
∨m

i=1 [z = xi])

y = maj(x1, . . . , xm) m maj
(

[y = x1] , . . . , [y = xm]
)

z = sel(x1, . . . , xm|y) 2m
∨m

i=1 [y = i] ∧ [z = xi]

z = “if Ψ(x) = 1 then u else v” d+ 2 Ψ(x) ∧ [z = u] ∨ ¬Ψ(x) ∧ [z = v]

Note that this definition makes sense also for partly defined functions: if the value f(x) is undefined,
then it is enough that Φ(x, y) = 0 holds for all y ∈ R.

The description complexity of a semialgebraic function f is the smallest number r such that
the graph of f can be recognized by an algebraic formula of size and degree at most r. An r-
semialgebraic function is a semialgebraic function of description complexity 6 r. Table 1 gives
a sample of some basic semialgebraic functions of small description complexity. Recall that we
only count the number of distinct polynomials used (and their degree); say, in the case of the min
operation, we only use linear polynomials z − xi.

Remark 2. Note also that every boolean function φ : {0, 1}n → {0, 1} of n variables is (2n)-
semialgebraic. Indeed, take an arbitrary boolean formula F (z1, . . . , zm) (say, a DNF) computing
f , where each input literal is either a variable or its negation. If a literal is xi (resp., ¬xi), then
replace it by the atomic predicate [xi − 1 = 0] (resp., by [xi = 0]). The resulting algebraic formula
has size 2n and degree 1: only 2n distinct linear polynomials are used.

As we already mentioned above, one of the most basic facts about semialgebraic sets is the
famous Tarski–Seidenberg theorem [46, 43], implying that projections of semialgebraic sets are
semialgebraic sets. In particular, the sets recognizable by quantified algebraic formulas are also
semialgebraic sets. This gives us a powerful tool to show that many other important (say, in the
context of dynamic programming) operations are r-semialgebraic for relatively small values of r.
We illustrate this (on an example of argmax operation) in Appendix B.
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5. Majority property of infinite boolean matrices

We will consider boolean (not necessarily finite) matrices M : A×B → {0, 1}. We assume that
their rows and columns can be indexed using a finite number of real parameters, that is, there are
integers n, k > 1 such that A ⊆ Rn and B ⊆ Rk. The smallest number n for which such an indexing
is possible is the row-dimension of the matrix.

Definition 1. A boolean matrix has the m-majority property if there are m columns such that
every row has more than m/2 ones in these columns.

Our goal is to ensure this property for m possibly small. The connection of this property with
the derandomization of probabilistic circuits is the following. Let F (x, r) be probabilistic circuit
with n + k input variables (n deterministic and k random variables) computing a given function
f : Rn → R. We can associate with F a boolean matrix M whose rows correspond to vectors
x ∈ Rn, columns to vectors r ∈ Rk, and the entries are defined by: M [x, r] = 1 if and only if
F (x, r) = f(x). Now, if this matrix has an m-majority property, then there exist m assignments
r1, . . . , rm ∈ Rk to the random variables such that maj(F (x, r1), . . . , F (x, rm)) = f(x) holds for all
x ∈ Rn. That is, the majority vote of m deterministic circuits computes our function f correctly
on all inputs.

The matrices arising from probabilistic circuits have an additional property formulated in the
next definition.

Definition 2. A boolean matrix M : A × B → {0, 1} probabilistically dense if there exists a
probability distribution Pr : B → [0, 1] on the set of columns such that3

Pr {b ∈ B : M [a, b] = 1} > 2/3

holds for every row a ∈ A.

Note that the mere existence of at least one probability distribution with this property is sufficient;
so, density is a property of matrices, not of probability distributions on their columns.

The (finite) majority rule (see Section 3) implies that every probabilistically dense boolean matrix
with a finite number |A| of rows has the m-majority property already for m = O(log |A|). This
upper bound is, however, useless for matrices with an infinite number of rows. Still, also then one
can upper bound m in terms of the “algebraic description complexity” of their entries.

Definition 3. A boolean matrix M : A×B → {0, 1} is r-semialgebraic if for every column b ∈ B
there is an algebraic formula Φb(x) of size and degree at most r such that M [a, b] = Φb(a) holds
for every row a ∈ A.

Theorem 5.1. Every probabilistically dense r-semialgebraic boolean matrix of row-dimension n has
the m-majority property for m 6 cn log r, where c is an absolute constant.

This theorem is a direct consequence of Lemmas 5.2 and 5.4 below. The first of these lemmas
(Lemma 5.2) upper-boundsm in terms of the Vapnik–Chervonenkis dimension of matrices, whereas
the second lemma (Lemma 5.4) upper-bounds this dimension in terms of the “algebraic description
complexity” of matrices.

5.1. Majority property and the VC dimension. Recall that the Vapnik–Chervonenkis dimen-
sion (or VC dimension) of a boolean matrix M is the maximum number v of its columns such
that the rows of M take all 2v possible 0-1 patterns from {0, 1}v in these columns (possibly, with
repetitions). If this happens for arbitrarily large vs, then the VC dimension of M is infinite. Note

3Again, there is nothing “magical” in the choice of this threshold value ǫ = 2/3: one can take any constant larger
than 1/2. Only the constant c in Lemma 5.2 depends on the constant ǫ.
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that, if the number |A| of rows is finite, then we always have v 6 log |A|: all possible 2v patterns
must be present.

A result of Haussler [24] in the statistical learning theory implies that any probabilistically dense
boolean matrix with a finite VC dimension v has the majority property already when m = O(v).
To avoid pathological situations when the number of rows is uncountable, a mild measurability
condition, called permissibility of matrices, is required. As shown by Haussler [24, Appendix 9.2], a
boolean matrix M : A×B → {0, 1} is permissible, as long as its rows and columns can be indexed
using a finite number of real parameters. So, since we only consider such boolean matrices, all they
will be automatically permissible.

Lemma 5.2. There is a constant c such that every permissible probabilistically dense boolean matrix
of a finite VC dimension v has the m-majority property for m 6 c · v.

A simple derivation of this lemma form Haussler’s result [24, Corollary 2] is given in Appendix A.

5.2. Zero patterns of polynomials. To upper-bound the VC dimension, we will use the following
upper bound of Rónyai, Babai and Ganapathy [40] on the number of zero patterns of polynomials.

A zero pattern of a sequence ~p = (p1, . . . , pm) of polynomials pi ∈ F[x1, . . . , xn] over a field F is a
subset S ⊆ {1, . . . ,m} for which there exists an input a ∈ Fn, a witness for S, such that pi(a) 6= 0
holds if and only if i ∈ S. Let Z(~p) denote the number of distinct zero patterns of the sequence ~p;
hence, 1 6 Z(~p) 6 2m.

Lemma 5.3 (Rónyai, Babai and Ganapathy [40]). Let ~p = (p1, . . . , pm) be a sequence of n-variate
polynomials of degree at most d over a field F. Then

Z(~p) 6

(

md

n

)

6

(

emd

n

)n

.

For completeness, we include their amazingly simple linear algebra proof of a slightly worse bound
Z(~p) 6

(n+md
n

)

6 (2emd/n)n; since we do not specify the constat c in Theorem 5.1, this bound also
suffices for our purposes. Previous proofs of similar upper bounds by Heintz [25], Milnor [36], and
Warren [48] used heavy techniques from real algebraic geometry.

Proof. Let a1, . . . , at ∈ Fn be witnesses to all t = Z(~p) zero-patterns. Consider the polynomials

fi =
∏

s∈Si

ps ,

where Si = {s : ps(ai) 6= 0} is the zero-pattern witnessed by the i-th vector ai, for i = 1, . . . , t. We
claim that the polynomials f1, . . . , ft must be linearly independent. For this, assume contrariwise
that a nontrivial linear relation

λ1 · f1 + · · · + λt · ft = 0

with not all zero coefficients λi ∈ F exists. Let j be a subscript such that |Sj | is minimal among
the Si with λi 6= 0, and substitute vector aj in the relation. Since

fi(aj) 6= 0 holds if and only if Si ⊆ Sj ,

we have λj ·fj(aj) 6= 0 and λi ·fi(aj) = 0 for all i 6= j, a contradiction. So, the polynomials f1, . . . , ft
are linearly independent. Since each fi has degree at most D = md, and since the dimension of
the space of n-variate polynomials of degree at most D is

(n+D
D

)

=
(n+D

n

)

6 (2eD/n)n, the desired
upper bound on the number t of zero patterns follows. �
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5.3. VC dimension of semialgebraic matrices. The proof of the following lemma is based on
a simple observation (made already by many authors): if Φ : Rn → {0, 1} is an algebraic formula,
then its values Φ(x) on points x ∈ Rn depend not on the actual values taken by the involved in Φ
polynomials, but merely on the signum patterns of these polynomials at these points x. We will
additionally observe that actually only zero patterns of these polynomials do matter.

Lemma 5.4. There is a constant c such that the VC dimension of every r-semialgebraic matrix of
row-dimension n is at most 4n log r + 5n.

Proof. Let M : A × B → {0, 1} be a boolean matrix with A ⊆ Rn and B ⊆ Rk, and suppose
that M is r-semialgebraic. Our goal is to show that then the VC dimension v of M cannot exceed
2n log(2er2) 6 4n log r+5n. For this, recall that, by the definition of the VC dimension of matrices,
there must be v columns b1, . . . , bv ∈ B of matrix M such that

(2)
{(

M [x, b1], . . . ,M [x, bv ]
)

: x ∈ A
}

= {0, 1}v .

Since the matrix M is r-semialgebraic, for every i = 1, . . . , v there must be an algebraic formula
Φ′
i(x) which uses at most r distinct polynomials, each of degree at most r, and satisfies M [x, bi] =

Φ′
i(x) for all x ∈ A.
We can assume that each formula Φ′

i is in a reduced form, meaning that each atomic predicate
is of the form [p < 0], [p = 0] or [p > 0]. For this, just replace each atomic predicate [p 6 0] by
the formula [p = 0] ∨ [p < 0], each [p > 0] by the formula [p = 0] ∨ [p > 0], and each [p 6= 0] by the
formula [p < 0] ∨ [p > 0]. Note that the size of the formula (number of distinct polynomials used)
and its degree remain unchanged when doing these transformations.

Now, replace each predicate [p < 0] by [−p > 0]. The size of the formula can only double when
doing this (if the polynomials −p were not already used). What we achieve by these simple tricks
is that now the value of a predicate defined by a polynomial p only depends on whether p = 0 or
p 6= 0. The size of the resulting formula Φi (the number of used polynomials) is at most 2r. By
(2), the formulas Φ1, . . . ,Φv must satisfy the equality

(3)
{(

Φ1(x), . . . ,Φv(x)
)

: x ∈ A
}

= {0, 1}v .

Let p1, . . . , pm be the polynomials used in at least one of the formulas Φ1, . . . ,Φv. So, we have
a sequence ~p = (p1, . . . , pm) of m 6 2rv n-variate polynomials of degree at most r.

Since atomic predicates [p(x) = 0] and [p(x) > 0] in any of the formulas Φi only depend on
whether p(x) = 0 or p(x) 6= 0, the sequence ~p = (p1, . . . , pm) of polynomials used in any of these
formula must have

(4) Z(~p) > 2v

distinct zero patterns to ensure the equality (3). But, by Lemma 5.3, this sequence can only have

(5) Z(~p) 6
(emr

n

)n

distinct zero patterns. By comparing the lower bound (4) with upper bound (5), we have that the
VC dimension v must satisfy the inequality

2v 6

(emr

n

)n
6

(

2evr2

n

)n

or equivalently 2v/n 6 2er2(v/n). By taking logarithms, we obtain v/n 6 log(2er2) + log(v/n).
If 2er2 > v/n, then v/n 6 2 log(2er2) and, hence, v 6 2n log(2er2). If 2er2 < v/n, then v/n 6

2 log(v/n) implying that v/n 6 4 and, hence, v 6 4n. So, in both cases, we have v 6 2n log(2er2),
as desired. �
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6. Proof of Theorem 2.1: Infinite Majority Rule

Let R ⊆ R be some real domain, and fix some class C of circuits computing functions from Rn

to R. Take any such function f : Rn → R, and a probabilistic circuit F (x, r) of size s in n + k
variables computing f . Let Cs be the family of deterministic circuits in this class of size at most s,
and v be the VC dimension of the family of functions computable by circuits in Cs. Our goal is to
show that then f can be also computed as a majority vote of at most O(v) deterministic circuits
of size at most s.

For this, associate with the circuit F the boolean matrix MF whose rows correspond to points
(x, y) ∈ Rn+1, columns correspond to points r ∈ Rk, and the values are defined by:

MF [(x, y), r] = 1 if and only if F (x, r) = y.

Since for every assignment r ∈ Rk of values to the random inputs r, the circuit F (x, r) belongs to
Cs, the VC dimension of the matrix MF is also at most v.

Consider the boolean matrix M : Rn × Rk → {0, 1} with entries M [x, r] = 1 if and only if
F (x, r) = f(x). This matrix is a submatrix of MF obtained by removing all rows (x, y) with
y 6= f(x), and replacing the label (x, f(x)) of each remaining row by x. Since removal of rows (or
columns) can only decrease the VC dimension of matrices, the VC dimension of M is also at most v.
Since the probabilistic circuit F computes our function f , the matrix M is probabilistically dense.
So, by Lemma 5.2, the matrix M has an m-majority property for some m 6 c · v. That is, there
must be some m columns r1, . . . , rm of M such that maj(F (x, r1), . . . , F (x, rm)) = f(x) holds for
all x ∈ Rn. �

7. Proof of Theorem 2.2: Description complexity of semialgebraic circuits

We will prove this theorem by first encoding circuits by quantified algebraic formulas (Lemma 7.1),
and then eliminating the quantifiers. The quantifier-free algebraic formulas resulting form the
Tarski–Seidenberg theorem [46, 43] may be of extremely large size and degree: towers of exponen-
tials in the size and degree of the original quantified formula.

Fortunately, the so-called critical point method (a method for finding at least one point in every
semi-algebraically connected component of an algebraic set) has led to much smaller blowup factors.
This method was pioneered by Grigoriev and Vorobjov [22, 23], Renegar [39], and later improved
in various ways by several researchers including Canny [9], Heintz, Roy and Solernó [27], Basu,
Pollack and Roy [5] amongst others. For our purposes, the result of Renegar [39] will fit best.

Under an existential algebraic formula with l quantifiers we will understand a formula Ψ(x) of a
form

(6) (∃z1 ∈ R) (∃z2 ∈ R) . . . (∃zl ∈ R) Φ(x, z1, . . . , zl) ,

where Φ is a (quantifier-free) algebraic formula. The size and degree of Ψ is the size and degree
of Φ. Recall that a (quantified or non-quantified) algebraic formula Ψ(x, y) recognizes the graph of
a function f : Rn → R if for every point (x, y) ∈ Rn+1, Ψ(x, y) = 1 holds precisely when y = f(x).

Lemma 7.1 (Circuits as quantified formulas). Let B be basis consisting of b-semialgebraic functions
g : Rk → R. If a function f : Rn → R can be computed by a circuit over B of size s, then the graph
of f can be recognized by an existential algebraic formula of size at most s · b, degree at most b and
with s− 1 quantifiers.

Proof. Recall that a circuit over B is just a sequence F = (f1, . . . , fs) of functions fi : R
n → R,

called gates, where each fi is obtained by applying one of the basis operations gi ∈ B to functions
in R ∪ {x1, . . . , xn, f1, . . . , fi−1}. Since every basis function gi : R

k → R is b-semialgebraic, there
must be an algebraic formula Φi(x, y) of size and degree at most d such that Φi(x, y) = 1 if and
only if y = gi(x).
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Replace now each gate fi in F by a new variable zi. Then every gate fi = gi(f
′
i1
, . . . , f ′

ik
) with

each f ′
ij

in R ∪ {x1, . . . , xn, f1, . . . , fi−1} turns into equation zi = gi(~wi), where ~wi is a vector in

(R ∪ {x1, . . . , xn, z1, . . . , zi−1})
k. So, Φi(~wi, zi) = 1 if and only if zi = gi(~wi), implying that the

existential formula

Ψ(x, y) = ∃z1 . . . ∃zs−1 Φ1(~w1, z1) ∧ . . . ∧ Φs−1(~ws−1, zs−1) ∧ Φs(~ws, y)

= ∃z1 . . . ∃zs−1 [z1 = g1(~w1)] ∧ · · · ∧ [zs−1 = gs−1(~ws−1)] ∧ [y = gs(~ws)]

recognizes the graph {(x, y) : y = fs(x)} of the function f = fs computed by our circuit F . Since
each algebraic formula Φi has size and degree at most d, the formula Ψ has size at most s · b, degree
at most b, and contains only s− 1 quantifiers. �

To apply Theorem 2.3, we have to eliminate quantifiers from the formulas given by Lemma 7.1.
We will use the following general result of Renegar [39, Theorem 1.2]. This result deals with
quantified formulas Ψ(x) of the form

(7) (Q1 ~z1 ∈ Rn1) . . . (Qω ~zω ∈ Rnω) Φ(x, ~z1, . . . , ~zω) ,

where Qi ∈ {∃,∀} are alternating quantifiers, each ~zi is a sequence of ni real variables, and Φ is an
algebraic formula of size m and degree d. The important parameters of the formula (7) are:

n0 = number of free variables (x-variables);
ni = number of z-variables in the i-th block of quantifiers;
m = number of polynomials used in the formula Φ;
d = maximal degree of these polynomials;
ω − 1 = number of alternations between quantifiers ∃ and ∀.

Theorem 7.2 (Renegar [39]). There exists a constant c such that every quantified formula Ψ(x)
of the form (7) can be written as a quantifier free algebraic formula of the form

L
∨

i=1

D
∧

j=1

[pij(x)♦ij 0] with L 6 (md)2
c·ωN and D 6 (md)2

c·ωN/n0 ,

where N =
∏ω

i=0 ni, the pijs are polynomials of degree at most d, and each ♦i,j is one of the relations
>,>,=, 6=,6, <.

Note that L and D are doubly exponential only in the number ω−1 of alternations of quantifiers.
Results of Weispfenning [49], and Davenport and Heintz [12] show that the double exponential
dependence on ω in the upper bound on D cannot be improved in the worst case.

Remark 3. After a very large bound resulting from the Tarski–Seidenberg theorem, the first reason-
able upper bound L 6 (md)E with the exponent E = 2O(n0+···+nω) was proved by Collins [10]. This
bound is still double exponential in the number of variables. The next major complexity break-
through was made by Grigoriev in [18], where he achieved E = O(n0 + · · · + nω)

4ω; the bound on
L is then double exponential only in the alternations of quantifiers. Both Collins’ and Grigoriev’s
results require integer coefficients. For real polynomials, Heintz, Roy and Solernó [26] achieved

E = (n0 + · · ·+ nω)
O(ω). Renagar’s theorem (Theorem 7.2) achieves E = 2O(ω)n0n1 · · ·nω.

Now, in the existential formulas arising in Lemma 7.1 from circuits of size at most s , we have
ω = 1 (no quantifier alternations), d is the description complexity of basis operations, m 6 s · b,
n0 = n (the number of input variables in circuits), and n1 = s − 1. So, in our context, Renegar’s
result gives the smallest exponent E = O(n0n1) = O(ns) in terms of s: the circuit size s is a critical
parameter in derandomization, and we want the size of derandomized circuits be at most sc for as
small constant c as possible. Note, however, that in order to show a mere inclusion BPP ⊆ P/poly,
bounds of [18] and [26] would also suffice.
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Proof of Theorem 2.2. Let B be a basis consisting of b-semialgebraic functions, and let f : Rn → R

be a function computable by a circuit over B of size at most s. Our goal is to show than then f
must be r-semialgebraic for r satisfying log r = O(ns log bs).

Lemma 7.1 implies that the graph of f can be recognized by an existential algebraic formula
Ψ(x, y) of size m 6 s · b, degree at most b, with n1 6 s − 1 quantifiers, and with n0 = n free
variables. Theorem 7.2 yields a quantifier-free algebraic formula Φ(x, y) which does the same,
has size L 6 (md)cn0n1 6 (sb2)cns and degree D 6 (md)cn1 6 (sb2)cs. So, the function f is
r-semialgebraic for r = max{L,D} = L, as desired. �

8. Proof of Theorem 2.3: VC Dimension of Semialgebraic Functions

Let F be the family of all r-semialgebraic functions f : Rn → R. Our goal is to show that then
the VC dimension VCdim(F) of F satisfies

(8) log2

(

n+ r

n

)

− 1 6 VCdim(F) = O(n log r) .

The upper bound follows directly from Lemma 5.4. Namely, consider the boolean matrix M :
Rn+1 × F → {0, 1} whose columns correspond to functions f ∈ F, rows correspond to points
(x, y) ∈ Rn × R, and the entries are defined by: M [(x, y), f ] = 1 if and only if y = f(x). The VC
dimension of this matrix is exactly the VC dimension of the family F. Moreover, since the functions
in F are r-semialgebraic, the matrix M is also r-semialgebraic. So, Lemma 5.4 yields the desired
upper bound O(n log r) on the VC dimension of M and, hence, also on VCdim(F).

8.1. Proof of the lower bound in (8). When proving lower bounds on the VC dimension
VCdim(F) of families F of functions, it is often easier to prove a lower bound on the “dual” VC
dimension, and then translate it to a lower bound on the (primal) dimension VCdim(F).

The dual VC dimension, VCdim∗(F), of a family F of functions f : X → Y is the largest number
v for which there exist v points (x1, y1), . . . , (xv, yv) in X×Y that are shattered by F in the following
sense: for every subset S ⊆ {1, . . . , v} there is a function f ∈ F such that

f(xi) = yi if and only if i ∈ S.

That is, in the definition of the (primal) VC dimension VCdim(F), we shatter functions by points,
whereas in the definition of the dual dimension VCdim∗(F), we shatter points by functions, which
is often an easier task.

Recall that the (primal) VC dimension, VCdim(F), of F is the VC dimension of the graph matrix
M = MF of functions in F. Rows of M correspond to points (x, y) ∈ X × Y , columns correspond
to functions f ∈ F, and the entries are defined by:

M [(x, y), f ] = 1 if and only if y = f(x).

So, the dual VC dimension VCdim∗(F) of F is just the VC dimension of the transpose M t of the
graph-matrix M = MF of F: the rows of M t correspond to functions f ∈ F, columns correspond o
points (x, y) ∈ X × Y , and the entries of M t are defined by:

M t[f, (x, y)] = 1 if and only if y = f(x).

Together with this observation, the following simple lemma immediately yields a useful inequality:

(9) VCdim(F) > log2 VCdim
∗(F)− 1 .

Lemma 8.1 (Assouad [4]). If the transpose of a boolean matrix M has a finite VC dimension v,
then the VC dimension of M is at least log2 v − 1.
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Proof. Let ℓ := ⌊log2 v⌋ > log2 v − 1, and consider the a boolean v × ℓ matrix B whose rows are
binary representations of numbers 0, 1, . . . , 2ℓ − 1. The matrix B has v rows of length ℓ. Since the
VC dimension of the transpose of M is v, there must be v rows of M such that every binary pattern
from {0, 1}v appears as a column in these rows. In particular, this means that every column of
B also appears among these rows. So, B must be a submatrix of M . Since all 2ℓ rows of B are
distinct, this implies that the VC dimension of M is at least ℓ > log2 v − 1, as desired. �

The following proposition can be derived from the standard fact that every m-dimensional vector
space can be written as a direct sum of its m one-dimensional subspaces. For completeness, we
include a simple and direct proof suggested by Igor Sergeev (personal communication).

Lemma 8.2. If V is an m-dimensional vector space of functions f : X → R, then there are m
points a1, . . . , am in X and m functions f1, . . . , fm in V such that fi(ai) = 1 and fi(aj) = 0 for all
j 6= i.

Since V forms a vector space, Lemma 8.2 yields: {(f(a1), . . . , f(am)) : f ∈ V } = Rm .

Proof. We argue by induction on m. The basis case m = 1 is obvious, because then V must contain
at least one nonzero function. For the induction step, take a point a1 and a function f1 ∈ V
such that f1(a1) = 1 (we can do this since V is a vector space of nonzero dimension). Let U be
the one-dimensional vector space spanned by f1. Associate with every function f ∈ V the scalar
λf := f(a1), and consider the family of functions W = {f − λf · f1 : f ∈ V }. This family forms a
subspace of V . Since h(a1) = 0 holds for all h ∈ W , V = U ⊕W is a direct sum of these spaces:
every function f ∈ V can be written as a sum λf ·f1+h, where the function h = f −λf ·f1 belongs
to W . So, dimW = dimV − dimU = m − 1, and the induction hypothesis gives us m− 1 points
a2, . . . , am in X and m− 1 functions f2, . . . , fm in W ⊆ V such that fi(ai) = 1 and fi(aj) = 0 for
all j 6= i. Moreover, fi(a1) = 0 for all i = 2, . . . ,m, since all these functions fi belong to W . �

Proof of the lower bound in Theorem 2.3. Let F be the family of all r-semialgebraic functions f :
Rn → R, and let P be the family of all polynomials of degree at most r in R[x1, . . . , xn]. Then
P ⊂ F, and it is enough to show the desired lower bound VCdim(P) > log2

(

n+r
n

)

− 1 on the VC
dimension of P.

The family P of polynomials forms an m-dimensional vector space of functions p : Rn → R

for m =
(

n+r
n

)

> (1 + r/n)n. By Lemma 8.2, there are m points a1, . . . , am in Rn and m poly-
nomials p1, . . . , pm in P such that pi(ai) = 1 and pi(aj) = 0 for all j 6= i. Consider the points
(a1, 1), . . . , (am, 1) ∈ Rn+1, and take an arbitrary subset S ⊆ {1, . . . ,m}. Take the polynomial
pS(x) =

∑

i∈S pi(x); since the degree does not increase, this polynomial belongs to P. For i ∈ S, we
have pS(ai) = pi(ai) = 1, whereas for j 6∈ S, we have pi(aj) = 0 for all i ∈ S and, hence, pS(aj) = 0.
So, for every i ∈ {1, . . . ,m}, we have

pS(ai) = 1 if and only if i ∈ S.

Since this holds for all subsets S, the points (a1, 1), . . . , (am, 1) are shattered by polynomials in
P. Hence, the dual VC dimension of P is VCdim∗(P) > m. Inequality (9) gives the desired lower
bound VCdim(P) > logm− 1 on the primal VC dimension of P. �

9. Proof of Theorem 2.8: recognizing roots

Recall that a probabilistic circuit F (x, r) recognizes the roots of a given function h : Rn → R if,
for every input x ∈ Rn,

Pr
{

F (x, r)2 + h(x)2 = 0 or F (x, r) · h(x) 6= 0
}

> 2/3 .

That is, if h(x) = 0 then F (x, r) = 0 with probability > 2/3, and if h(x) 6= 0 then F (x, r) 6= 0 with
probability > 2/3.
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Now let B be a basis consisting of b-semialgebraic functions, and containing the basis {+,×} or
any of the four bases listed in Eq. (1) of Section 2.2. Let h : Rn → R be a p-semialgebraic function,
and suppose that the roots of h can be recognized by a probabilistic circuit F (x, r) over B of size
s. Our goal is to show that then the roots of h can be also recognized by a deterministic circuit
over B of size O(n4s2 log2max{sb, p}).

Let k be the number of random inputs in r, and consider the boolean matrixM : Rn×Rk → {0, 1}
with entries M [x, r] = 1 if and only if F (x, r)2+h(x)2 = 0 or F (x, r) ·h(x) 6= 0. Since F recognizes
the roots of h, we know that Pr

{

r ∈ Rk : M [x, r] = 1
}

> 2/3 holds for every x ∈ Rn. So, the matrix
M is probabilistically dense.

Recall (see Definition 3) that a boolean matrix N : A×B → {0, 1} with A ⊆ Rn and B ⊆ Rk is
t-semialgebraic if for every column b ∈ B there is an algebraic formula Φb(x) of size and degree at
most t such that N [a, b] = Φb(a) holds for every row a ∈ A.

Claim 9.1. The matrix M is t-semialgebraic for log t = O(ns log max{sb, p}).

Proof. Fix an arbitrary column of M , and let r ∈ Rk be the vector indexing this column. The
circuit F (x, r) is a deterministic circuit over B of size at most s. By Lemma 7.1, the graph of the
function f : Rn → R computed by F (x, r) can be recognized by an existential algebraic formula
Φr(x, y) of size at most sb, degree at most b and with s−1 existential quantifiers. Since the function
h is p-semialgebraic, there must also be an algebraic formula Φh(x, z) (a quantifier-free formula) of
size and degree at most p recognizing the graph of h, that is, Φh(x, z) = 1 if and only if z = h(x).
Consider the (quantified) formula

Ψ(x) := Φr(x, 0) ∧ Φh(x, 0) ∨ ∃y∃z Φr(x, y) ∧ Φh(x, z) ∧ [y 6= 0] ∧ [z 6= 0] .

Note that, for every row x ∈ Rn ofM , Ψ(x) = 1 if and only if F (x, r)2+h(x)2 = 0 or F (x, r)·h(x) 6= 0
which, by the definition of the matrix M , happens precisely when M [x, r] = 1. So, it remains to
show that the formula Ψ can be written as a quantifier-free formula Ψ′ of size and the degree at
most t.

The formula Ψ has size ℓ 6 2sb + 2p, degree d 6 max{b, p}, and n1 6 (s − 1) + 2 = s + 1
(existential) quantifiers. By Renegar’s theorem (Theorem 7.2), the formula Ψ can be written as a

quantifier-free formula Ψ′ of size and degree at most t = (ℓd)O(ns). So, log t is at most a constant
times ns logmax{sb, p}, as desired. �

Together with Claim 9.1, Lemma 5.4 implies that the VC dimension of the matrix M is at most
v = O(n log t) = O(n2s log max{sb, p}). Since the matrix M is probabilistically dense, Lemma 5.2
implies that it must have the m-majority property for m = O(v). That is, there must be some
m columns r1, . . . , rm of M such that the (deterministic) circuit maj(F (x, r1), . . . , F (x, rm)) also
recognizes the roots of our function h. So, it remains to prove the following claim: the roots of a
majority vote maj function of m variables can be recognized by a circuit over B of size O(m2).

If B contains any of the four bases listed in Eq. (1), then (as shown in the proof of Corollary 2.6)
even the values of the majority vote function can be computed using only O(m2) gates. So, we
only have to prove the claim in the case when B only has addition and multiplication operations,
that is, when we have monotone arithmetic circuits.

We will show a slightly more general fact: for every k = 1, . . . ,m, there is a monotone arithmetic
circuit Fm,k(x) of size O(km) with the property that, for every input x ∈ Rm, Fm,k(x) = 0 precisely
when k or more positions in vector x are zeros. Such a circuit can be easily constructed using
dynamic programming. The basis case k = 1 (at least one zero) is easy: just take Fm,1(x1, . . . , xm) =
x1 · x2 · · · xm. For k > 2, we can use the following recursive construction:

Fm,k(x1, . . . , xm) = Fm−1,k(x1, . . . , xm−1) ·
[

Fm−1,k−1(x1, . . . , xm−1)
2 + x2m

]

.
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The first term is 0 iff there are at least k zeros already among the first m−1 positions, whereas the
second is 0 iff there are at least k − 1 zeros among the first m− 1 positions, and the last position
is also zero; we take squares here just to avoid possible cancellations. �

Remark 4. The fact that the roots of the majority vote functions can be recognized by small
arithmetic {+,×} circuits is interesting: it can be easily shown (see Appendix C) that the values
of these functions cannot be computed by (even non-monotone) arithmetic {+,−,×} circuits at
all.

10. Proof of Theorem 2.9: arithmetic circuits

We will obtain Theorem 2.9 as a simple consequence of Chernoff’s bound and the following
well know extension of the “fundamental theorem of algebra” to multivariate polynomials. This
extension is usually called the “Schwartz–Zippel lemma,” although its various version were earlier
proved by other authors, starting by Ore [38].

Lemma 10.1 (Schwartz [42]). Let f be a nonzero n-variate polynomial of degree at most d 6 |F|
over a field F, and S ⊆ F a finite subset of |S| > d field elements. Then |{x ∈ Sn : f(x) = 0}| 6
d|S|n−1 .

Now let f : Rn → R be a rational function, and suppose that f can be computed by a randomized
arithmetic {+,−,×,÷} circuit F (x, r) of size s with a positive success probability ǫ > 0. Our
goal is to show that some realization F (x, r) of F , a deterministic {+,−,×,÷} circuit, must also
compute f .

Since f is rational, there are two real polynomials p and q such that f(x) = p(x)/q(x). Set

d := max{deg(p),deg(q)} + 2s ,

and take an arbitrary subset S ⊆ R of size |S| > 2d/ǫ.

Claim 10.2. There is a deterministic circuit F (x) of size at most s such that F (a) = f(a) holds
for more than ǫ|S|n/2 inputs a ∈ Sn.

Proof. Let A = Sn, and take m := ⌈4ǫ−2 ln |A|⌉ independent copies of our probabilistic circuit
F (x, r). For a fixed input a ∈ A, let Xa,i be the Bernoulli 0/1-random variable with Xa,i = 1 if and
only if the i-th copy outputs the correct value f(a) on input a. Since Pr {Xa,i = 1} > ǫ holds for
every i, the expected value µ of the sum Xa = Xa,1+ · · ·+Xa,m is µ > ǫm. So, for α := ǫ/2, we have
Pr {Xa 6 αm} 6 Pr {Xa 6 µ− αm}. By the Chernoff bound (see, for example, [13, Theorem 1.1]),

the latter probability is at most p = e−2α2m = e−ǫ2m/2 6 |A|−2. By the union bound, the probability
that Xa 6 αm will hold for at least one input a ∈ A is at most p · |A|, which is strictly smaller
than 1. Thus, the probability that, for every input a ∈ A, more than αm of the m copies of our
probabilistic circuit will output the correct value f(a) is nonzero.

There must therefore exist m assignments r1, . . . , rm of constants to random inputs of F (x, r)
such that, on every input a ∈ A, more that αm of the (deterministic) circuits F (x, r1), . . . , F (x, rm)
will output the correct value f(a). By double counting, at least one of these m deterministic circuits
must then output correct values f(a) on more than α|A| = ǫ

2 |A| inputs a ∈ A. �

By Claim 10.2, there must be a subset X ⊆ Sn of |X| > ǫ|S|n/2 input vectors and a deterministic
arithmetic circuit F of size at most s such that F (a) = f(a) holds for all a ∈ X. The circuit
computes some rational function F (x) = P (x)/Q(x) where P and Q are real polynomials. Since
the circuit has only s gates, the degrees of these two polynomial cannot exceed 2s. So, the degree
of the polynomial

g(x) := p(x) ·Q(x)− q(x) · P (x)
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does not exceed d. We claim that g must be the zero polynomials, which implies that F (a) = f(a)
must hold for all inputs a ∈ Rn, as desired.

So, suppose contrariwise that g is a nonzero polynomial. Then Lemma 10.1 implies that g(a) = 0
can hold for at most d|S|n−1 inputs a ∈ Sn. But we know that F (a) = f(a) and, hence, g(a) = 0
must hold for all inputs a in the set X of |X| > ǫ|S|n/2 inputs. So, ǫ|S|n/2 < d|S|n−1 and, hence,
also |S| < 2d/ǫ must hold, which contradicts our choice of S. �

11. BPP ⊆ P/poly for Tropical Circuits

In this section, we will show that probabilistic tropical (max,+) and (min,+) circuits can be
derandomized without using Theorem 2.2, the proof of which is based on a rather involved quantifier
elimination result of Renegar (Theorem 7.2).

In tropical (max,+) circuits, the domain can be any subset R ⊆ R closed under the sum operation
(like N,Z,R+ or R), and the basis consists of two operations x+ y and max{x, y}. Since addition
distributes over max operation (x + max{y, z} = max{x + y, x + z}), such a circuit solves some
maximization problem with linear objective function:

(10) fA(x) = max{pa(x) : a ∈ A} with pa(x) = a1x1 + · · · + anxn + an+1 ,

where A ⊂ Nn ×R. Here A ⊂ Nn is the set of feasible solutions of this maximization problem, and
inputs x ∈ Rn are assignments of weights to the n items 1, . . . , n. In the (min,+) circuits, we use
min{x, y} instead of the maximum. So, such circuits solve minimization problems.

The following theorem yields BPP ⊆ P/poly for tropical circuits, if we allow deterministic circuits
to use one majority vote gate to output their values. Eliminating the need of this additional gate
is an interesting open problem (see Question 1 in Section 12).

Theorem 11.1. There is a constant c for which the following holds. If an optimization problem
f : Rn → R can be solved by a probabilistic tropical circuit of size s, then f can be solved by a
majority vote of cn2s deterministic tropical circuits of size at most s.

The infinite majority rule (Theorem 2.1) implies that f can be computed as a majority vote of
at most O(v) copies of the probabilistic circuit, where v is the VC dimension of all (deterministic)
tropical circuits of size at most s. So, Theorem 11.1 directly follows from the following lemma.

Lemma 11.2. The VC dimension of tropical circuits of size at most s in n variables is at most a
constant times n2 log(n+ 2s).

Proof. We first consider the case of (max,+) circuits; the case of (min,+) circuits is the same: just
take > instead of 6 in the formula (11) below.

Since circuits (over any semiring) of size at most s can only compute polynomials of degree
at most d = 2s, it is enough to show that the VC dimension of the family F of all max-plus
polynomials (10) of degree at most d is at most a constant times n2 log(n+ d). By Theorem 2.3, it
is enough to show that every tropical n-variate polynomial f of degree at most d is r-semialgebraic
for r 6 (n+ d)n.

So, take such a polynomial f . It has the form (10) for some finite set A ⊂ Nn × R. Since the
degree of the polynomial f does not exceed d, we have that a1+ · · ·+an 6 d must hold for all a ∈ A.
We can clearly assume that every two vectors in A differ in at least one of the first n positions:
if some two coincide in all these positions, then remove the polynomial pa with the smaller “free
coefficient” an+1; since we have a maximization problem, the function computed by the resulting
polynomial will remain the same. So, the number |A| of vectors in A cannot exceed the number

m :=
(n+d

n

)

of nonnegative integer solutions of z1 + · · · + zn 6 d.
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Consider the following algebraic formula over the real field R, where pa(x) are linear polynomials
given in (10):

(11) Φ(x, y) =
∧

a∈A

[pa(x) 6 y] ∧
∨

a∈A

[pa(x) = y] .

It is clear that this formula recognizes the graph of f : the first And ensures that the maximum
does not exceed y, whereas the Or ensures that the value y is achieved. Since only |A| distinct
linear polynomials pa(x)− y are used, the size of Φ is m = |A| and the degree is one. This means

that our polynomial f is r-semialgebraic for r 6 max{1,m} = m =
(n+d

n

)

6 (n+ d)n. �

12. Conclusion and open problems

In this paper, we dealt with the BPP versus P/poly questions for circuits working over infinite
domains, including N, Z, Q, R+ and R. The (unfortunate) message we deliver is that coin flipping
cannot help much, as long as we live in a “non-uniform” world, where it is allowed to use different
algorithms for inputs x ∈ Rn from differen dimensions n. This, in particularly, implies that, in this
“non-uniform world”, randomness is of no big use in dynamic programming.

Besides one ‘big” question—to prove BPP ⊆ P also in the uniform setting (cf. Remark 1), some
more specific but still interesting questions also remain open.

12.1. The rolle of majority vote gates. Strongly speaking, our proof of BPP ⊆ P/poly for trop-
ical circuits (Theorem 11.1) is not fully satisfying: we allow that the derandomized (deterministic)
circuit can use a majority vote function majm(x1, . . . , xm) to output its values. This function is
neither convex nor concave (see Appendix C). So, it cannot be computed by a tropical circuit at
all, and it remains unclear whether such an additional gate can substantially increase the power of
tropical circuits. Note, however, that majm can be simulated by a sorting gate: just sort the input,
and output the ⌈m/2⌉-th entry of the sorted string. Hence, the following interesting question about
the power of sorting; an expected answer is negative, but the point is to prove this.

Question 1. Can one sorting gate substantially decrease the size of tropical circuits?

Let us note that, in this question, the only “dangerous” optimization problems are those, which
require large tropical circuits to solve them, but whose boolean (decision) versions are easy to solve
by monotone boolean circuits. To be more specific, let us consider (min,+) circuits, and assume
that they are constant-free: inputs are only variables x1, . . . , xn (no constant inputs). Each such
circuit solves some minimization problem f(x) = mina∈A

∑n
i=1 aixi with A ⊂ Nn. The boolean

version of this problem is the monotone boolean function f̂(x) =
∨

a∈A

∧

i : ai 6=0 xi . Let T(f) be the

minimal size of a (min,+) circuit solving the problem f , and let Tmaj(f) denote the minimal size
of a (min,+) circuit also solving f , but which can use a majority vote gate to output its values.

Finally, let B(f) be the minimal size of monotone boolean circuit computing the boolean function f̂ .
Then we have B(f) = O(t log t) with t = Tmaj(f).

Proof. Take a (min,+) circuit F of size t = Tmaj(f) which solves a given minimization problem
f by taking a majority vote of (min,+) circuits. Replace each min gate by an OR gate, and
each + gate by an AND gate. Let S = N ∪ {+∞}, and consider the mapping h : S → {0, 1}
given by h(+∞) := 0 and h(x) := 1 for all x ∈ R. This mapping h is a homomorphism from the
tropical semiring (S,min,+) to the boolean ({0, 1},∨,∧) semiring: h(min{x, y}) = h(x)∨h(y) and
h(x + y) = h(x) ∧ h(y) holds for all x, y ∈ S. So, the boolean version F ′(y) of F (x) with inputs

replaced by y1 = h(x1), . . . , yn = h(xn) computes the boolean function f̂(y). Indeed, by letting
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Sa = {i : ai 6= 0}, we have

h(f(x)) = h
(

min
a∈A

∑

i∈Sa

aixi

)

=
∨

a∈A

h
(

∑

i∈Sa

aixi

)

=
∨

a∈A

∧

i∈Sa

h(xi) = f̂(y) ,

where h(aixi) = h(xi) holds because aixi = xi+xi+· · ·+xi (ai times). The circuit F ′ is a monotone
boolean (∨,∧) circuit of size t, whose output gate is a (boolean) majority function of at most t
variables. Using the sorting network of Ajtai, Komlós and Szemerédi [3], the majority function of
t input variables can be computed by a monotone boolean circuit of size O(t log t). �

So, the only “dangerous” in the context of Question 1 are optimization problems f with very
large gaps T(f)/B(f). Such is, for example, the minimum spanning tree problem f for n-vertex
graphs: the Floyd–Warshall DP algorithm for graph connectivity yields B(f) = O(n3), but we have
shown in [32] that T(f) = 2Ω(n). Hence, a specific question (with an expected affirmative answer)
arises.

Question 2. Is also Tmaj(f) exponential for the minimum weight spanning tree problem f?

12.2. Derandomizing tropical circuits without using VC dimension? In Section 11, we
have shown that probabilistic tropical (max,+) and (min,+) circuits can be derandomized without
using deep results in quantifier elimination theory. Still, this proof uses another an (also deep)
result of Haussler [24] from the statistical learning theory reducing the task of derandomization
to upper-bounding the VC dimension (the “infinite majority rule,” Theorem 2.1). Since tropical
circuits can simulate many classical DP algorithms, it would be desirable to have a more direct
derandomization arguments for these circuits.

One possible approach would be to try to only use the much simpler “finite majority rule”
(Lemma 3.1). The point is that, even though tropical circuits work over infinite domain Rn

+, there
are finite sets X ⊂ Rn+ which are isolating in the following sense: if a (deterministic) circuit
computes a given function f correctly on all inputs x ∈ X, then it must compute f correctly on all
inputs x ∈ Rn

+. As shown in [30, Lemma 7], if the function is of the form f(x) = max{a1x1 + · · ·+
anxn : a ∈ A} with A ⊆ {0, 1}n (a 0-1 maximization problem), then already the set X = {0, 1}n

is isolating for f . In the case of minimization problems f , the (also finite) set X = {0, 1, n + 1}n

(see [31, Appendix A]). The proofs of these two facts are direct and elementary. Using these facts,
it is already possible to directly derandomize tropical circuits under the one-sided error scenario
(see Appendix D).

The case of two-sided error is, however, more complicated. If we have a probabilistic tropical
circuit solving a given optimization problem f : Rn → R, then the finite majority rule gives us
m = O(log |X|) = O(n) deterministic tropical circuits F1, . . . , Fm (realizations of the probabilistic
circuit) such that the circuit F = maj(F1, . . . , Fm) solves the problem f correctly on all input
weightings x ∈ X. The problem, however, is that the function maj is neither convex nor concave
(see Appendix C), and so, it cannot be computed by a tropical circuit at all. It remains therefore
not clear whether the same set X remains isolating also for the obtained circuit F , that is, whether
the fact that F (x) = f(x) holds for all x ∈ X (which we know) indeed implies F (x) = f(x) for all
x ∈ Rn.

Question 3. Can probabilistic tropical circuits be derandomized using only the finite majority rule?

12.3. The rolle of rounding gates. Another interesting problem is to show that BPP ⊆ P/poly
holds for DP algorithms also when some non-semialgebraic operations are allowed to be used in their
recursion equations. Of special interest is the rounding operation ⌊x⌋ because it turned out to be
useful in designing efficient approximating DP algorithms, say, for the knapsack problem [28]. This
operations is not semialgebraic because its graph does not fulfill the following necessary condition
for a set to be semialgebraic:
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If a set S ⊆ Rn is semialgebraic, then either the interior of S is nonempty, or some nonzero
polynomial must vanish on all points of S.

Indeed, by observing that a system of equations p1(x) = . . . = pm(x) = 0 is equivalent to one
equation p1(x)

2 + · · · + pm(x)2 = 0, and that p(x) < 0 is the same as −p(x) > 0, we have that
a set S ⊆ Rn is semialgebraic if and only if its is a finite union S = S1 ∪ S2 ∪ · · · ∪ Sm of basic
semialgebraic sets, each being of the form

Si = {x ∈ Rn : pi(x) = 0, qi,1(x) > 0, . . . , qi,ki(x) > 0} ,

where pi and qi,j are real polynomials. So, if some pi is the zero polynomial, then S has a nonempty
interior. Otherwise, p1 · p2 · · · pm is a nonzero polynomial vanishing on all points of S.

Now, the interior of the graph S = {(x, y) ∈ R × Z : y = ⌊x⌋} of ⌊x⌋ is clearly empty, because

y can only take integer values. But the only polynomial p(x, y) =
∑d

i=0 pi(y) · x
i vanishing on all

points of S must be the zero polynomial. Indeed, since p vanishes on S, for every integer m, the
polynomial p(x,m) has an infinite number of roots x ∈ [m,m + 1); so, pi(m) = 0 for all i. Since
this holds for infinitely many numbers m, all polynomials p0, p1, . . . , pd must be zero polynomials.
Similar argument shows that some other functions, like ex and sinx, are also not semialgebraic.
Hence, a specific question (with an expected affirmative answer).

Question 4. Does BPP ⊆ P/poly holds for arithmetic or tropical circuits augmented with rounding
gates ⌊x⌋ and ⌈x⌉?

The question is also interesting when any non-semialgebraic operations are allowed to be used
as gates.

Appendix A. Proof of Lemma 5.2: infinite majority rule

Our goal is to show that any probabilistically dense boolean matrix with finite VC dimension v
has the majority property for m = O(v). We will obtain this as a direct consequence of one result
of Haussler [24] (Theorem A.1 below).

For this result to hold also for matrices whose sets of rows are uncountable, we need a mild mea-
surability condition, called “permissibility”. Matrices with countable sets of rows are permissible.
As shown by Haussler [24, Appendix 9.2], an arbitrary (even uncountable) family H of functions
from some set Z to R is permissible if H can be indexed in the following sense: there is an integer
m > 1 and a function (an indexing function) φ : Rm × Z → R such that H = {φ(t, ·) : t ∈ Rm};
that is, the functions in H can be indexed using a finite number of real parameters.

Recall that a matrix M : A × B → {0, 1} is probabilistically dense if there is a probability
distribution Pr : B → [0, 1] on columns under which

µa := Pr {b ∈ B : M [a, b] = 1} > 2/3

holds for every row a ∈ A. We want to randomly sample (with replacement, according to the
distribution Pr) a possibly small number m of columns b1, . . . , bm so that, with large probability,
the relative frequencies

µ̂a :=
M [a, b1] + · · ·+M [a, bm]

m
of all rows a ∈ A do not deviate much from their densities µa.

By viewing boolean matrices M : A × B → {0, 1} as families F = {fa : a ∈ A} of functions
fa : B → {0, 1} defined by their rows as fa(b) = M [a, b], a special case of Corollary 2 in [24]
translates to the following result. (Haussler’s result is more general, and applies also to non-boolean
matrices.) The matrix M is permissible if the corresponding (to its rows) family of functions is
such.
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Theorem A.1 (Haussler [24]). Let M be a permissible boolean matrix of finite VC dimension v,
and ǫ, δ > 0. It is enough to sample

(12) m >
64

ǫ2

(

2v ln
16e

ǫ
+ ln

8

δ

)

columns of M to ensure that Pr {∀a ∈ A : |µ̂a − µa| 6 ǫ} > δ.

This kind of results are known as “uniform convergence of relative frequencies of events
to their probabilities”. The following version of the above theorem was proved already by
Vapnik and Chervonenkis [47]: for m > 2/ǫ2, the probability of the “bad” event E that

|µ̂a − µa| > ǫ holds for some row a ∈ A does not exceed 4 ·ΠM (2m) · e−ǫ2m/8, where ΠM (m)
is the maximum, over all choices of m columns, of the number of distinct 0-1 patterns from
{0, 1}m appearing as rows in these columns. Hence, the VC dimension ofM is the maximum
m for which ΠM (m) = 2m holds.

At a very high level, the intuition behind this upper bound is that, even if the number
of rows in M is infinite, there is only a finite number ΠM (m) of their classes such that the
rows in each of class have the same values in the sampled columns b1, . . . , bm. The upper
bound on Pr {E} is then obtained by reducing the problem to a finite case, and applying
Hoeffding’s inequality.

We clearly have ΠM (m) 6 2m for all m > 1, and the maximum m for which the equality
holds is the VC dimension of M . This trivial upper bound is, however, exponential in m,
and the above upper bound on Pr {E} is then trivial. Fortunately, if the number m of
sampled columns is only slightly larger than the VC dimension v of M , then we have a
much smaller upper bound

ΠM (m) 6

v
∑

i=0

(

m

i

)

6 mv .

This important result is usually attributed to Sauer [41], but was discovered independently

and almost simultaneously by several authors, including Shelah [44], and Vapnik and Cher-

vonenkis [47]. Thus, if we take m > cv log v, then ΠM (2m) · e−ǫ2m/8 6 ev log 2m−ǫ2m/8 goes

down rapidly. Haussler’s theorem eliminates the logarithmic factor log v in the condition

m > cv log v and, more importantly, holds also for non-boolean matrices.

Proof of Lemma 5.2. We want to show that there is a constant c such that in every permissible
and probabilistically dense boolean matrix M : A × B → {0, 1} of a finite VC dimension v, there
are m 6 c · v columns with the property that every row has more than m/2 ones in these columns.

We are going to apply Haussler’s theorem with ǫ = 1/7 and δ = 1/2. For this, take a constant
c for which the right-hand of the inequality (12) for this choice of ǫ and δ is at most cv. Now pick
independently m = cv columns b1, . . . , bm. According to Theorem A.1, we then have that with
probability at least 1/2, the inequality

∣

∣

∣

∣

∣

1

m

m
∑

i=1

M [a, bi]− 2/3

∣

∣

∣

∣

∣

6 1/7

holds for all rows a ∈ A. Thus, there must be at most m columns b1, . . . , bm such that every row
a ∈ A has

∑m
i=1M [a, bi] > (2/3 − 1/7)m > m/2 ones in these columns. �

Appendix B. Showing that an operation is semialgebraic

When trying to show that a given operation is semialgebraic, one of the most basic facts about
semialgebraic sets—the famous Tarski–Seidenberg theorem [46, 43] that projections of semialgebraic
sets are semialgebraic sets—is often of great help.

When translated to the language of algebraic formulas, this theorem states that every quantified
algebraic formula is equivalent over R to some non-quantified algebraic formula. That is, in order
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to show that a given function is semialgebraic, it is enough to show that its graph can be recognized
by a quantified algebraic formula. We sketch the idea on the argmax operation; the reader can
easily find more examples, and so extend our results to more and more powerful DP algorithms.

Let f : Rn → R be a semialgebraic function, and Φ(x, u) some algebraic formula. An argmax
operation is a (not uniquely defined but with a unique graph) operation argmaxf : Rm → R

with the property that argmaxf (x) = v if and only if v is a point in the maximization domain
{u : Φ(x, u) = 1} (defined by the input x) on which f achieves its maximum. That is,

v = argmaxf (x) if and only if f(v) = max{f(u) : Φ(x, u) = 1}.

Since the function f is semialgebraic, there is an algebraic formula F (u, y) which recognizes the
graph of f , that is, F (u, y) = 1 holds precisely then when y = f(u). Then the following quantified
algebraic formula recognizes the graph {(x, v) : v = argmaxf (x)} of argmax operation:

Ψ(x, v) = ∃y∀u∀w F (v, y) ∧ Φ(x, u) ∧
(

F (u,w) ∧ Φ(x, u) ⇒ [w 6 y]
)

.

The formula F (v, y) ∧ Φ(x, v) ensures that y = f(v) and v lies in the maximization domain
{u : Φ(x, u) = 1} (defined by the input x), while the implication ensures that f(v) is the maxi-
mum value in this domain. So, the argmax operation is semialgebraic. Clearly, the same holds also
for the arg-min operation.

Note that the quantifier-elimination result of Renegar [39] (Theorem 7.2 above) yields the fol-
lowing: if the graph of a function f : Rn → R can be recognized by a quantified algebraic formula
of degree and size at most p using a constant number of quantifiers, then f is r-semialgebraic
for r = pO(n). Recall that our general BPP ⊆ P/poly result (Corollary 2.7) holds also when r-
semialgebraic functions with log r = nO(1) are allowed to be used as gates. So, the inclusion holds
also when argmax and argmin gates are allowed.

Appendix C. Arithmetic and tropical circuits are not majority capable

Recall that a class of circuits is majority vote capable, if the majority vote function maj of m
variables can be computed by a circuit of size polynomial in m. Our goal is to show that arithmetic
and tropical circuits cannot compute the majm at all, not even in exponential size.

Arithmetic circuits. Consider arithmetic circuits over the basis B = {+,−,×}. Suppose we can
express maj(x, y, z) as a polynomial f(x, y, z) = ax+ by + cz + h(x, y, z), where h is either a zero
polynomial or has degree > 1. Then f(x, x, z) = x implies c = 0, f(x, y, x) = x implies b = 0,
and f(x, y, y) = y implies a = 0. This holds because, over fields of zero characteristic, equality of
polynomial-functions means equality of coefficients. We have thus shown that h = maj. So, the
polynomial h cannot be the zero polynomial. But then h has degree > 1, so h(x, x, x) = x for all
x ∈ R is impossible. This simple argument is due to Sergey Gashkov (personal communication). �

Tropical circuits. Tropical basis B = {min,+} (as well as B = {max,+}) is also not majority vote
capable. Indeed, every function f : Rn → R computable by a circuit over {min,+} (a minimization
problem) must be concave. This holds because mina∈A〈a, x + y〉 > mina∈A〈a, x〉 + mina∈A〈a, y〉 .
In particular, f(12a + 1

2b) > 1
2f(a) +

1
2f(b) must hold for all a, b ∈ Rn. But the majority vote

function f(x, y, z) := maj(x, y, z) is not concave. To see this, take two input vectors a = (x, x, z)
and b = (x, y, y) with x < y and z = 2x − y. Then f(12a + 1

2b) = f(x, (x + y)/2, x) = x but
1
2f(a) +

1
2f(b) =

1
2(x+ y) > x since y > x. So, f is not concave. �
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Appendix D. One-sided error

Let (R,⊕,⊗) be a commutative semiring. A circuit over R is a circuit using the semiring
operations ⊕ and ⊗ as gates. Every such circuit computes some polynomial

(13) fA(x) =
∑

a∈A

ca

n
∏

i=1

xaii

in a natural way, where A ⊂ Nn is a finite set of exponent vectors, and ca ∈ R.
In order to investigate the one-sided error scenario, we will use the intrinsic (or “better-than”)

ordering 6R in semirings defined by a 6R b iff a⊕ c = b for some c ∈ R. For example, if R is the
boolean or the tropical (max,+) semiring, then a 6R b iff a 6 b (larger is better). In the tropical
(min,+) semiring, we have a 6R b iff a > b (smaller is better). In the semiring R of integer-division,
we have R = N, a⊕b := lcm(a, b) (least common multiple), and a⊗b := gcd(a, b) (greatest common
divisor). So, then a 6R b iff a divides b.

Note that in idempotent semirings (where x ⊕ x = x holds), we have that a 6R b iff a ⊕ b = b.
Indeed, if a⊕ c = b for some c ∈ R, then a⊕ b = a⊕ a⊕ c = a⊕ c = b; the other direction is trivial.
Thus, we have the following useful property of the intrinsic order in idempotent semirings:

(14) if a1 6R b, . . . , am 6R b and b ∈ {a1, . . . , am}, then a1 ⊕ · · · ⊕ am = b.

A probabilistic circuit F (x, r) over R computes a polynomial f ∈ R[x1, . . . , xn] with one-sided
success probability ǫ (or with one-sided error probability 1− ǫ) if for every input x ∈ Rn,

Pr {F (x, r) 6R f(x)} = 1 and Pr {F (x, r) = f(x)} > ǫ.

That is, the circuit is not allowed to output any better than “optimum” value, but is allowed to
output “worse” values with probability 1− ǫ.

A set X ⊆ Rn is isolating for a polynomial f ∈ R[x1, . . . , xn], if for every polynomial g in
R[x1, . . . , xn], g(x) = f(x) for all x ∈ X implies that g(x) = f(x) for all x ∈ Rn. In particular, the
set X = Rn is isolating for every polynomial over R of n variables.

Lemma D.1. Let f ∈ R[x1, . . . , xn] be a polynomial over an idempotent semiring R, and X ⊆ Rn

be isolating for f . If f can be computed on X by a probabilistic circuit over R of size s with a
one-sided success probability ǫ = ǫ(n) > 0, then f can be also computed by a deterministic circuit
over R of size O(ǫ−1s log |X|).

Proof. Let F (x, r) be a probabilistic constant-free circuit over R of size s computing f on X
with one-sided success probability ǫ. So, for every input x ∈ Rn, the value F (x, r) can only
be “smaller” than f(x), but must coincide with f(x) with probability at least ǫ. Take m =
⌈ǫ−1 log |X|⌉ independent copies r1, . . . , rm of r. Then for every fixed input x ∈ X, the probability
that F (x, ri) 6= f(x) will hold for all i = 1, . . . ,m is at most (1−ǫ)m 6 e−ǫm, which is strictly smaller
than 1/|X|. The union bound then implies that there must be a realizations r1, . . . , rm of r1, . . . , rm
such that for every x ∈ X, F (x, ri) 6 f(x) holds for all i, and F (x, ri) = f(x) holds for at least
one i. Fix such realizations, and consider the deterministic circuit H(x) = F (x, r1)⊕· · ·⊕F (x, rm)
over the same semiring R. This circuit has size O(ms) = O(ǫ−1s log |X|) and, by (14), H(x) = f(x)
holds for all x ∈ X. But since the set X is isolating for f , this implies H(x) = f(x) for all x ∈ Rn,
as desired. �

A 0-1 maximization problem is a function f : Rn
+ → R+ of the form f(x) = maxa∈A 〈a, x〉 for

some A ⊆ {0, 1}n.

Lemma D.2. Let f : Rn
+ → R+ be a 0-1 maximization problem. If f can be solved by a probabilistic

(max,+) circuit of size s with one-sided success probability ǫ > 0, then f can be also solved by a
deterministic (max,+) circuit of size O(ns/ǫ).
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Proof. By Lemma D.1, it is enough to show that the set X = {0, 1}n of boolean input weightings
is isolating for f . So, take an arbitrary polynomial g ∈ R[x1, . . . , xn]. It has the form g(x) =
maxb∈B 〈b, x〉 + cb, where B ⊂ Nn and cb ∈ R+. Assume that g(x) = f(x) holds for all x ∈ X.

Since then g(~0) = f(~0) must also hold for the all-0 input vector ~0 ∈ X, and since f(~0) = 0 (f is a
0-1 maximization problem), cb = 0 must hold for all b ∈ B, that is, g must be a “monic” tropical
polynomial. In this case, [30, Lemma 7] implies that g(x) = f(x) must hold for all x ∈ Rn

+. So, the
set X = {0, 1}n is isolating for f , and the desired result follows directly from Lemma D.1. �
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[26] J. Heintz, M.-F. Roy, and P. Solernó. Sur la complexite du principe de Tarski–Seidenberg. Bull. Soc.
Math. France, 118:101–126, 1990.
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