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Abstract

We consider probabilistic circuits working over the real numbers, and using arbitrary semial-

gebraic functions of bounded description complexity as gates. In particular, such circuits can use

all arithmetic operations +,−,×, ÷, optimization operations min and max, conditional branching

(if-then-else), and many more. We show that probabilistic circuits using any of these operations

as gates can be simulated by deterministic circuits with only about a quadratical blowup in size. A

not much larger blow up in circuit size is also shown when derandomizing approximating circuits.

The algorithmic consequence, motivating the title, is that randomness cannot substantially speed

up dynamic programming algorithms.

1 Introduction

Probabilistic algorithms can make random choices during their execution. Often, such algorithms are

more efficient than known deterministic solutions; see, for example, the books [39, 36]. So, a natural

questions arises: is randomness a really useful resource, can randomization indeed substantially speed

up algorithms? In the computational complexity literature, this is the widely open1 “BPP versus P”

question. The nonuniform version of this question, known as the “BPP versus P∕poly,” question asks

whether probabilistic circuits can be efficiently simulated by deterministic circuits.

A probabilistic circuit is a deterministic circuit that is allowed to use additional input variables,

each being a random variable taking its values in the underlying domain. We allow arbitrary proba-

bility distributions of these random variables, so that our derandomization results will be distribution

independent. Such a circuit computes a given function f if, on every input x, the circuit outputs the

correct value f (x) with probability at least2 2∕3. The size of a (deterministic or probabilistic) circuit

is the number of used gates.

A classical result of Adleman [1], extended to the case of two-sided error probability by Bennett

and Gill [9], has shown that randomness is useless in Boolean circuits: if a Boolean function f of n
variables can be computed by a probabilistic Boolean circuit of size polynomial in n, then f can be

also computed by a deterministic Boolean circuit of size polynomial in n. So, BPP ⊆ P∕poly holds for

Boolean circuits.

In this paper, we are mainly interested in the BPP versus P∕poly question for dynamic programming

algorithms (DP algorithms):
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†Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main. Associated with Institute of Data

Science and Digital Technologies, Faculty of Mathematics and Computer Science, Vilnius University, Lithuania. Email:
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1BPP stands for “bounded-error probabilistic polynomial time,” and P for “deterministic polynomial time.”
2There is nothing “magical” in the choice of this threshold value 2∕3: we do this only for definiteness. One can take any

constant larger than 1∕2: since we ignore multiplicative constants in our bounds, all results will hold also then.
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• Can randomization substantially speed up DP algorithms?

We answer this question in the negative: randomized DP algorithms can be efficiently derandomized.

That is, BPP ⊆ P∕poly holds also for DP algorithms. In fact, we prove a much stronger result: BPP ⊆
P∕poly holds for circuits over any basis consisting of semialgebraic operations g ∶ Rl → R of bounded

algebraic description complexity. Actually, we will show that the inclusion BPP ⊆ P∕poly holds even

when circuits are only required to approximate the values of given functions.

Proofs of BPP ⊆ P∕poly for Boolean circuits in [1, 9] crucially used the fact that the domain

{0, 1} of such circuits is finite: the proof is then obtained by a simple application of the union and

Chernoff’s bounds (see Lemma 5 in Section 4.3). A trivial reason why such a simple argument cannot

derandomize DP algorithms is that these algorithms work over infinite domains such as N, Z, Q or R

(inputs for optimization problems), so that already the union bound badly fails.

One also faces the “infinite domain” issue, say, in the polynomial identity testing problem over

infinite fields; see, for example, surveys [45, 48]. But when derandomizing DP algorithms, we ad-

ditionally face the “non-arithmetic basis” issue: besides arithmetic +,−×,÷ operations, such circuits

can use additional non-arithmetic operations, like tropical min andmax operations, sorting, conditional

branching (if-then-else), argmin, argmax, and other complicated operations.

To nail all this (infinite domain and powerful gates), in this paper, we consider the derandomization

of circuits that can use any semialgebraic functions of bounded description complexity as gates.

A function f ∶ Rn → R is semialgebraic if its graph can be obtained by finitely many unions and

intersections of sets defined by a polynomial equality or strict inequality. The description complexity

of f is the minimum number t for which such a representation of the graph of f is possible by using

at most t distinct polynomials, each of degree at most t (see Section 3 for more details). All operations

mentioned in the previous paragraph are semialgebraic of small description complexity; see Table 1

in Section 3 for more examples.

The majority vote function is a partly defined function Maj(x1,… , xm) which outputs the majority

element of its input string, if there is one. That is, Maj(x1,… , xm) = y if y occurs > m∕2 times among

the x1,… , xm. For example, in the case of m = 5 variables, we have Maj(a, b, c, b, b) = b, whereas the

value of Maj(a, b, c, a, b) is undefined. The function Maj(x1,… , xm) is b-semialgebraic for b ≤ m; see

Table 1 in Section 3.

A copy of a probabilistic circuit is a deterministic circuit obtained by fixing the values of its random

input variables. A (deterministic or probabilistic) circuit is b-semialgebraic if each its basis operation

(a gate) is b-semialgebraic. Note that b here is a local parameter: it bounds the description complexity

of only individual gates, not of the entire function computed by the circuit. For example, circuits using

any of the gates +,−,×,÷, min, max, “if x < y then u else v” are 2-semialgebraic.

Theorem 1. If a function f ∶ Rn → R can be computed by a probabilistic b-semialgebraic circuit of

size s, then f can be also computed as a majority vote of m = O(n2s log bs) copies of this circuit.

Note that, even though the majority vote functions are only partially defined, the derandomized

circuit ensures that, on every input x ∈ R

n to the circuit, the sequence of values given to the last

majority vote gate will always (for every input x to the entire circuit) contain a majority element. Note

also that the upper bound on the number m of copies of the probabilistic circuit is only logarithmic is

the description complexity b of individual gates.

Our next result extends Theorem 1 to the case when circuits are only required to approximate the

values of a given function. Given a binary relation x%y between real numbers, we say that a proba-

bilistic circuit F (x, r) %-approximates a given function f (x) if, for every input x ∈ R

n, F (x, r) % f (x)
holds with probability at least 2∕3. That is, on every input x, the circuit only has to output a value

which is close to the correct value f (x) with probability at least 2∕3. A relation % is contiguous ifx % a,
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z % a and x ≤ y ≤ z imply y % a. For example, if x % a holds precisely then x lies in an interval of a

given fixed length around the number a, then % is contiguous.

In the following theorem, x % y is any contiguous binary relation of description complexity t%,

f ∶ Rn → R is any semialgebraic function of description complexity tf , and  is a basis consisting of

b-semialgebraic gates. We assume that min(x, y) and max(x, y) operations belong to .

Theorem 2. If f can be %-approximated by a probabilistic circuit of size s over a basis , then f
can also be %-approximated by a deterministic circuit over  of size O(ms + m logm), where m =

n2s log(sb + tf + t%).

Note that now, unlike in Theorem 1, the derandomized circuit is in a “pure” form, that is, it only

uses gates from the basis  (no additional majority vote gates). This happens because we now require

that min and max must be among the basis operations: the majority vote function of m variables can

be computed using only O(m logm) min and max gates (see Claim 6 in Section 5.1).

Remark 1 (Relation to dynamic programming). Most (if not all) DP algorithms in discrete optimization

use only several semialgebraic functions of small description complexity in their recursion equations:

min, max, arithmetic operations, and apparently some additional, but still semialgebraic operations,

like the selection or the “if-then–else” operations (see Table 1 in Section 3). So, Theorem 1 implies

that randomization is (almost) useless in DP algorithms, at least as long as we are allowed to use

different deterministic DP algorithms to solve optimization problems on inputs x ∈ R

n from different

dimensions n. In fact, the message of this paper is even stronger: Theorem 2 shows that randomization

is almost useless also for approximating DP algorithms.

Remark 2 (The “uniformity” issue). Usually, a DP algorithm is described by giving one set of recur-

sion equations that can be applied to inputs of any dimension n. In this respect, DP algorithms are

“uniform” (like Turing machines). Probabilistic DP algorithms may use random input weights in their

recursion equations. However, when derandomizing such algorithms, we do not obtain also one set of

recursion equations valid for inputs of all dimensions. What we obtain is a sequence of deterministic

DP algorithms, one for each dimension n. To our best knowledge, in the “uniform” setting (with P

instead of P∕poly), the inclusion BPP ⊆ P remains not known to hold for DP algorithms, and even for

“pure” DP algorithms using only (min,+) or (max,+) operations in their recursion equations.

Organization

In Section 2, we shortly recall previous work concerning the derandomization of circuits and decision

trees working over infinite domains. In Section 3, we recall the notions of semialgebraic functions and

probabilistic circuits. Theorem 1 is proved in Section 4.4, and Theorem 2 is proved in Section 5.2.

Sections 6 and 7 are devoted to tropical circuits, that is, (min,+) and (max,+) circuits. Besides their

own interest (tropical algebra and geometry are now actively studied topics in mathematics), these

circuits are also important in the context of dynamic programming because many basic DP algorithms

are just special (recursively constructed) tropical circuits. The paper is organized as follows.

1. Derandomization of exactly computing semialgebraic circuits (Section 4).

2. Derandomization of approximating semialgebraic circuits (Section 5).

3. Derandomization of tropical circuits under the one-sided error scenario (Section 6).

4. A Boolean lower bound for probabilistic tropical circuits (Section 7).

Results (1) and (2) are obtained by a proper combination of deep tools from three different fields: com-

binatorial algebraic geometry (sign-patterns of polynomials), probability theory (uniform convergence

in probability), and quantifier elimination theory over the reals. Results (3) and (4) are obtained using

direct and elementary arguments.
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2 Related work

As we mentioned at the beginning, our starting point is the result of Adleman [1] that3 BPP ⊆ P∕poly

holds for Boolean circuits. In fact, Adleman proved this only when one-sided error is allowed. To

prove the two-sided error version, Bennett and Gill [9] used a simple “finite majority rule” (Lemma 5

in Section 4.3). This rule follows directly from the Chernoff and union bounds, and allows us to

simulate any probabilistic circuit of size s on n input variables taking their values in a finite domain D
as a majority vote of O(n log |D|) deterministic circuits, each of size at most s.

In the Boolean case, the domain D = {0, 1} is clearly finite, and the majority vote functions

turn into Boolean majority functions: output 1 if and only if more than half of the input bits are 1s.

Since majority functions have small Boolean circuits, even monotone ones, the resulting deterministic

circuits are then not much larger than the probabilistic ones.

Using entirely different arguments (not relying on the finite majority rule), Ajtai and Ben-Or [2]

have shown that BPP ⊆ P∕poly holds also for Boolean constant-depth circuits, known also as AC0

circuits. Note that this extension is far from being trivial, because the majority function itself requires

AC0 circuits of exponential size.

Markov [33] has found a surprisingly tight characterization of the minimum number of NOT gates

required by deterministic (∨,∧,¬) circuits to compute a given Boolean functions f in terms a natural

combinatorial characteristic of f . A natural question therefore was: can randomness substantially

reduce the number of NOT gates? Morizumi [38] has shown that Markov’s result already gives a

negative answer: in probabilistic circuits, the decrease of the number of NOT gates is at most by an

additive constant, where the constant depends only on the success probability.

The derandomization of circuits working over infinite domains D, such as N, Z or R, is a more

delicate task. Here we have to somehow “cope” with the infinity of the domain: Chernoff’s and union

bounds alone do not help then. Two general approaches have emerged along this line of research.

(A) Find (or just prove a mere existence of) a finite set X ⊂ Dn of input vectors that is “isolating”

in the following sense: if a (deterministic) circuit computes a given function f correctly on all

inputs x ∈ X, then it must compute f correctly on all inputs x ∈ Dn. Then use the finite

majority rule on inputs from X.

(B) Use the “infinite majority rule” (Lemma 7 below) following from the uniform convergence in

probability results in the statistical learning theory.

Approach (A) was used by many authors to show the inclusion BPP ⊆ P∕poly for various types

of decision trees. The complexity measure here is the depth of a tree. These trees work over R, and

branch according to the sign of values of rational functions. In the case when only linear functions

are allowed, the inclusion BPP ⊆ P∕poly was proved by Manber and Tompa [32], and Snir [49].

Meyer auf der Heide [34] proved the inclusion when arbitrary rational functions are allowed. He uses

a result of Milnor [35] about the number of connected components of polynomial systems in Rn to

upper-bound the minimum size of an “isolating” subset X ⊂ R

n. Further explicit lower bounds on the

depth of probabilistic decision trees were proved by Bürgisser, Karpinski and Lickteig [10], Grigoriev

and Karpinski [20], Grigoriev et. al. [21], Grigoriev [19] and other authors. In [29], we have used

Approach (A) to show that in the case of arithmetic (+,−,×,÷) circuits, randomization cannot spare

even one single gate. In Section 6, we will also use approach (A) to derandomize probabilistic (min,+)
and (max,+) circuits under the one-sided error probability scenario.

3Actually, the result is stronger, and should be stated as “BPP∕poly = P∕poly:” even probabilistic circuits, not only

probabilistic Turing machines (uniform sequences of circuits) can be derandomized. We, however, prefer to use the less

precise but more familiar shortcut “BPP ⊆ P∕poly.”
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Approach (B) was used by Cucker et. al. [11] to prove the inclusion BPP ⊆ P∕poly for algebraic cir-

cuits over the basis {+,−,×,÷, sgn}. They combined the upper bound on the Vapnik–Chervonenkis

dimension (VC dimension) of such circuits, obtained by Goldberg and Jerrum [17], with a uniform

convergence in probability theorem of Haussler [22] for classes of functions with bounded VC dimen-

sion. In the proofs of Theorems 1 and 2 we will also use Approach (B), but in a somewhat different,

more direct way avoiding the detour through VC dimension (and Sauer’s [44] lemma). Namely, we

will directly combine the classical uniform convergence in probability theorem of Vapnik and Chervo-

nenkis [51] with the upper bound of Warren [52] on the number of sign patterns of real polynomials.

The BPP vs. P problem in the uniform setting, that is, in terms of Turing machines, is an even

more delicate task. Still, a strong indication that BPP = P should hold also in the uniform setting was

given by Impagliazzo and Wigderson [24]: either BPP = P holds or every decision problem solvable

by deterministic Turing machines in time 2O(n) can be solved by Boolean circuits of sub-exponential

size 2o(n). Goldreich [18] related the BPP vs. P problem with the existence of pseudorandom gener-

ators: BPP = P if and only if there exists suitable pseudorandom generators; the “if” direction was

known for decades—the novelty is in the converse direction.

3 Preliminaries

Probabilistic circuits

A circuit basis is any family  of multivariate real-valued functions. A circuit over a basis  is a

sequence F = (f1,… , fs) of real-valued functions, where each fi is obtained by applying one of the

basis operations to the functions in R ∪ {x1,… , xn, f1,… , fi−1}; scalars a ∈ R can be also viewed as

(constant) functions. The size of a circuit is the number s of functions in the sequence, and the function

f ∶ Rn → R computed by the circuit is the last function f = fs in the sequence. Every circuit can

be also viewed as a directed acyclic graph; parallel edges joining the same pair of nodes are allowed.

Each indegree-zero node holds either one of the variables x1,… , xn or a scalar a ∈ R. Every other

node, a gate, performs one of the operations g ∈  on the results computed at its input gates. A circuit

is b-semialgebraic if each its basis operation (a gate) is b-semialgebraic.

A probabilistic circuit is a deterministic circuit which, besides the actual (deterministic) variables

x1,… , xn, is allowed to use some number k of additional variables r1,… , rk, each being a random

variable taking its values inR. As we already mentioned in the introduction, the probability distribution

of these random variables can be arbitrary: our derandomization results will hold for any distribution.

What such a circuit computes is a random function whose values depend on the values of the random

input variables. Thus, a probabilistic circuit is specified by giving a deterministic circuit F (x, y) of

n + k variables, together with some probability distribution Pr ∶ Rk → [0, 1] of random variables. A

probabilistic circuit F (x, r) computes a given function f ∶ Rn → R if Pr
{
r ∈ R

k ∶ F (x, r) = f (x)
}
≥

2∕3 holds for each input x ∈ R

n. That is, for every input x ∈ R

n, the circuit must output the correct

value f (x) with probability4 at least 2∕3. We will sometimes call circuits without random inputs

deterministic, just to distinguish them from probabilistic ones. In Section 5, we will relax the condition

till “F (x, r) approximates the value f (x) with probability at least 2∕3.”

4There is nothing “magical” in the choice of this threshold value 2∕3: we do this only for definiteness. One can take any

constant larger than 1∕2: since we ignore multiplicative constants in our bounds, all results will hold also then.
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Semialgebraic sets and functions

A set S ⊆ R

n is semialgebraic if it can be obtained by finitely many unions and intersections of sets

defined by a polynomial equality or strict inequality. For us important will be not the mere fact that a set

S is semialgebraic but rather “how much semialgebraic” it actually is: how many distinct polynomials

and of what degree do we need to define this set?

The sign function sgn ∶ R → {−1, 0,+1} takes value sgn x = −1 if x < 0, sgn 0 = 0, and

sgn x = +1 if x > 0. Let P = (p1,… , pm) be a sequence of polynomials in R[x1,… , xn]. The

sign-pattern of this sequence at a point x ∈ R

n is the vector

sgn P (x) =
(
sgn p1(x),… , sgn pm(x)

)
∈ {−1, 0,+1}n (1)

of signs taken by these polynomials at the point x.

A set S ⊆ R

n is t-semialgebraic if there is a sequence P = (p1,… , pm) of m ≤ t polynomials of

degree at most t such that the membership of points x ∈ R

n in the set S can be determined from sign

patterns of these polynomials on these points, that is, if x ∈ S and x′ ∉ S, then sgnP (x) ≠ sgnP (x′).
A function f ∶ Rn → R

m is t-semialgebraic if its graph S = {(x, y)∶ y = f (x)} ⊆ R

n+m is such.

The description complexity of a semialgebraic set (or function) is the smallest number t for which this

set (or function) is t-semialgebraic.

Algebraic formulas

The description complexity of sets and functions can be defined more explicitly using the language

of “algebraic formulas.” An algebraic formula is an arbitrary Boolean combination of atomic pred-

icates, each being of the form [p(x) ♢ 0] for some polynomial p in R[x1,… , xn], where ♢ is one of

the standard relations >, ≥, =, ≠, ≤, <, and the predicate [�] for a relation � outputs 1 if the relation

� holds, and outputs 0 otherwise. So, for example, [p(x) = 0] = 1 if and only if p(x) = 0. Note that

[p(x) ♢ q(x)] is equivalent to [p(x) − q(x) ♢ 0], so that we can also make comparisons between poly-

nomials. The description complexity of an algebraic formula is max{m, d}, where m is the number of

distinct polynomials used in the formula, and d is their maximum degree.

Claim 1. For every algebraic formula there is a algebraic formula of the same description complexity

which only uses atomic predicates of the form [p < 0], [p = 0] and [p > 0].

The claim is trivial: just replace each atomic predicate [p ≤ 0] by the formula [p = 0] ∨ [p < 0],

each atomic predicate [p ≥ 0] by the formula [p = 0]∨[p > 0], and each atomic predicate [p ≠ 0] by the

formula [p < 0]∨ [p > 0]. Neither the number of distinct polynomials used, nor their degree increases

during these transformations. Note that, actually, any two of these three forms [p < 0], [p = 0] and

[p > 0] of atomic predicates suffice because each of these predicates is equivalent to the AND of the

negations of the remaining two predicates.

An algebraic formula Φ(x) defines a set S ⊆ R

n if S = {x ∈ R

n ∶ Φ(x) = 1}.

Claim 2. The description complexity of a semialgebraic set is the minimum description complexity of

an algebraic formula defining this set.

In the literature, this fact is often used as the definition of the description complexity of sets.

Proof. Let S ⊆ R

n be a set of vectors. Our goal is to show that the description complexity of S is at

most t if and only if the set S can be defined by an algebraic formula Φ of description complexity at

most t.
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Table 1: Examples of semialgebraic functions, where m is the number of distinct polynomials used in a formula, and d
is their maximum degree, Here, p(x) is an arbitrary real multivariate polynomial of degree d, and Ψ(x) is a semialgebraic

formula using s polynomials of maximum degree d ≥ 1; Sel(x1,… , xn|y) is a partly defined function that outputs xi if y = i.
In the algebraic formula Φ for the majority vote function, maj is the Boolean majority function.

Graph of f (m, d) Algebraic formula Φ

y = p(x) (1, d) [y = p(x)]

y = |x| (2, 1) ([x ≥ 0] ∧ [y = x]) ∨ ([x < 0] ∧ [y = −x])

y = x1∕k (2, k)
[
x = yk

]
(odd k), [x ≥ 0] ∧

[
x = yk

]
(even k)

z = ‖x − y‖ (2, 2) [z ≥ 0] ∧
[
z2 = (x1 − y1)

2 +⋯ + (xn − yn)
2
]

z = x∕y (2, 2) [y ≠ 0] ∧ [yz = x]

z = min(x, y) (2, 1) [z ≤ x] ∧ [z ≤ y] ∧ ([z = x] ∨ [z = y])

z = max(x, y) (2, 1) [z ≥ x] ∧ [z ≥ y] ∧ ([z = x] ∨ [z = y])

y = Maj(x1,… , xn) (n, 1) maj
( [

y = x1
]
,… ,

[
y = xn

] )

z = Sel(x1,… , xn|y) (2n, 1)
⋁n

i=1 [y = i] ∧
[
z = xi

]

z = “if Ψ(x) = 1 then u else v” (s + 2, d) (Ψ(x) ∧ [z = u]) ∨ (¬Ψ(x) ∧ [z = v])

(⇐)By Claim 1, we can assume that only atomic predicates of the form [p < 0], [p = 0] and [p > 0]

are used in the formula Φ. Hence, the values of the formula Φ only depend on the sign patterns of the

sequence P = (p1,… , pm) of all m ≤ t polynomials of degree at most t used in the formula Φ.

(⇒) Let P = (p1,… , pm) be a sequence of m ≤ t polynomials of degree at most t such that the

membership of points x ∈ R

n in the set S can be determined from sign patterns of these polynomials

on these points. Consider the s = 3m functions gi ∶ R

n → {0, 1} defined by: gi =
[
pi < 0

]
for

1 ≤ i ≤ m, gi =
[
pi = 0

]
for m + 1 ≤ i ≤ 2m, and gi =

[
pi > 0

]
for 2m + 1 ≤ i ≤ 3m.

We know that for every two points x ∈ S and x′ ∉ S, sgnP (x) ≠ sgnP (x′) must hold. In

particular, this means that the operator G = (g1,… , gs) ∶ R
n → {0, 1}s cannot take the same value

(output the same vector) on any pair of points x ∈ S and x′ ∉ S. (In fact, then vectors G(x) and

G(x′) will differ in at least two positions.) Thus, there is a Boolean function f ∶ {0, 1}s → {0, 1}
such that, for every x ∈ R

n, f (G(x)) = 1 holds precisely when x ∈ S. It remains to take any Boolean

formula F (y1,… , ys) computing the function f , replace its inputs yi by the corresponding atomic

predicates gi(x), and the resulting algebraic formula Φ then defines the set S. The number of distinct

polynomials used by the formula Φ is m ≤ t (note that in atomic predicates
[
pi < 0

]
,
[
pi = 0

]
and[

pi > 0
]
, the same polynomial pi is used), and their degree is at most t. The actual size of the Boolean

formula F (number of gates in it) is irrelevant: important only is that the algebraic formula Φ uses at

most t distinct polynomials of degree at most t.

By Claim 2, a function is t-semialgebraic if there is an algebraic formula Φ(x, y) of description

complexity at most t such that for every x ∈ R

n and y ∈ R, Φ(x, y) = 1 holds precisely when y = f (x).
Table 1 gives a sample of some basic semialgebraic functions of small description complexity.

Let us stress that, in algebraic formulas, we only count the number of distinct polynomials used,

not the number of their occurrences in the formula: one and the same polynomial can appear many

times, and under different relations ♢.

Example 1 (Sorting operation). The sorting operation sort ∶ Rn → R

n takes a sequence x1,… , xn of
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real numbers, and outputs its ordered permutation y1 ≤ y2 ≤ … ≤ yn. The graph of this operation can

be defined by the following algebraic formula of 2n variables:

Φ(x, y) =
n−1⋀

i=1

[
yi ≤ yi+1

]
∧
( ⋁

�∈Sn

n⋀

i=1

[
yi = x�(i)

] )
,

where Sn is the set of all permutations of {1,… , n}. The total number of occurrences of atomic

predicates in this formula (the “size” of the formula) is huge (is even larger than n!), but the formula

only uses m = n2+n−1 distinct polynomials yi+1−yi for i = 1,… , n−1, and yi−xj for i, j = 1,… , n
of degree d = 1. Thus, the sorting operation sort ∶ Rn → R

n is t-semialgebraic for t = n2 + n − 1.

Sign patterns

By the definition, a set S ⊆ R

n is t-semialgebraic if the membership of points x ∈ R

n in S can be

determined from seeing the sign patterns of some fixed sequence of t polynomials of degree at most t
on these points x. So, a natural question arises: how many distinct sign patterns a given sequence of

m polynomials of n variables can have? A trivial upper bound is |{−1, 0,+1}m| = 3m.

A fundamental result of Warren [52, Theorem 3] shows that, when we have more than n polyno-

mials of bounded degree, then the critical parameter is not their number m but rather the number n of

variables.

Theorem 3 (Warren [52]). No sequence of m ≥ n polynomials in R[x1,… , xn] of degree at most d ≥ 1

can have more than (8emd∕n)n distinct sign patterns.

What Warren actually proved is the upper bound (4emd∕n)n on the number of sign patterns lying

in the set {−1,+1}n. But as observed by several authors, including Alon and Scheinerman [4], Pudlák

and Rödl [41], Goldberg and Jerrum [17], by “doubling” each polynomial, this bound can be easily

extended to the upper bound (8emd∕n)n on the number of all sign patterns. To see this, let p1,… , pm
be a sequence of polynomials in R[x1,… , xn] of degree at most d. The sequence can clearly have at

most 3m distinct sign patterns. So, there is a finite set X ⊂ R

n of |X| ≤ 3m vectors witnessing all

distinct sign patterns of this sequence. Take

� = 1

2
⋅min{pi(x)∶ x ∈ X and pi(x) ≠ 0} ,

and consider the sequence p1 − �, p1 + �,… , pm − �, pm + � of 2m polynomials. By the choice of �,

each two distinct (−1, 0,+1) patterns of the original sequence lead to also distinct (−1,+1) patterns of

the new sequence.

Remark 3. The condition m ≥ n in Warren’s upper bound on the number W of all (−1,+1) sign

patterns is not crucial: it comes just from trying to simplify the form of this bound. His general upper

bound on W holds for any parameters n, m, d ≥ 1, and is of the form

W ≤ 2(2d)n
n∑

k=0

2k
(
m
k

)
,

where
(m
k

)
= 0 when k > m. He then just shows that for m ≥ n, Stirling’s formula yields a more

handy upper bound W ≤ (4emd∕n)n. On the other hand, for 1 ≤ m < n, the binomial theorem yields

W ≤ 2(2d)n3m ≤ (6d)n.
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What function are not semialgebraic?

To show what kind of operations we do not allow to be used as gates, let us recall the following well

known necessary condition for a set to be semialgebraic.

Claim 3. If a set S ⊆ R

n is semialgebraic, then either the interior of S is nonempty, or some nonzero

polynomial must vanish on all points of S.

Proof. By observing that a system of equations p1(x) = 0,… , pm(x) = 0 is equivalent to one equation

p1(x)
2 +⋯ + pm(x)

2 = 0, and that p(x) < 0 is the same as −p(x) > 0, we have that a set S ⊆ R

n is

semialgebraic if and only if it is a finite union S = S1 ∪ S2 ∪⋯ ∪ Sm of (nonempty) sets of the form

Si = {x ∈ R

n ∶ pi(x) = 0, qi,1(x) > 0,… , qi,ki(x) > 0}, where pi and qi,j are real polynomials. So, if

some pi is the zero polynomial, then S has a nonempty interior. Otherwise, p1 ⋅ p2 ⋯ pm is a nonzero

polynomial vanishing on all points of S.

Example 2. Claim 3 can be used to show that some functions are not semialgebraic. Consider, for

example, the rounding function f (x) = ⌊x⌋. That is, for a real number x ∈ R, f (x) is the largest integer

n sucht that n ≤ x. The interior of the graph S = {(x, y) ∈ R × Z∶ ⌊x⌋ = y} of ⌊x⌋ is clearly empty,

because y can only take integer values. But the only polynomial p(x, y) =
∑d

i=0 pi(y) ⋅ x
i vanishing on

all points of S must be the zero polynomial. Indeed, since p vanishes on S, the polynomial p(x, n) has

an infinite (and, hence, larger than d) number of roots x ∈ [n, n+ 1), for every integer n; so, pi(n) = 0

for all i. Since this holds for infinitely many numbers n, all polynomials p0, p1,… , pd must be zero

polynomials. So, the rounding function is not semialgebraic.

4 The route to derandomization

In our derandomization of probabilistic circuits, the following parameters of (finite or infinite) Boolean

matrices M ∶ A × B → {0, 1} will be crucial.

• The matrix M has the m-majority property if there is a sequence b1,… , bm ∈ B of not neces-

sarily distinct columns of M such that M[a, b1] + ⋯ + M[a, bm] > m∕2 holds for every row

a ∈ A.

• The matrix M is probabilistically dense if there exists a probability distribution Pr ∶ B → [0, 1]
on the set of columns such that Pr {b ∈ B∶ M[a, b] = 1} ≥ 2∕3 holds for every row a ∈ A.

Note that the mere existence of at least one probability distribution with this property is sufficient.

Thus, density is a property of matrices, not of probability distributions on their columns.

• The growth function of M is the function ΠM ∶ N → N whose value ΠM (m) for each integer

m ≥ 1 is the maximum

ΠM (m) = max
b1,…,bm

|||
{(

M[a, b1]… ,M[a, bm]
)
∶ a ∈ A

} |||
over all choices of m columns, of the number of distinct 0-1 patterns from {0, 1}m appearing as

rows of M in these columns. Note that 1 ≤ ΠM (m) ≤ 2m for every m ≥ 1.

Given a probabilistic circuit F (x, r) computing a given function f ∶ Rn → R, the following two

Boolean matrices naturally arise, where k is the number of random input variables.

• The graph matrix of F (x, r) is the Boolean matrix MF ∶ R
n+1×Rk → {0, 1} with entries defined

by:

MF [(x, y), r] = 1 if and only if F (x, r) = y.

The graph matrix MF gives us a full information about all functions computed by the circuits

F (x, r) obtained from F (x, r) by setting the random inputs r of F to all possible values r ∈ R

k.

9



• The correctness matrix of F (x, r) with respect to the given function f ∶ Rn → R is the Boolean

matrix M ∶ Rn × Rk → {0, 1} with entries defined by:

M[x, r] = 1 if and only if F (x, r) = f (x).

Note that M is a submatrix of the graph matrix MF : just remove all rows of MF labeled by

pairs (x, y) such that y ≠ f (x), and replace the label (x, y) of each remaining row by x.

The relation of the majority property of matrices to the derandomization of probabilistic circuits is

quite natural. Suppose that a probabilistic circuit F (x, r) computes the correct values f (x) of a given

function f with probability ≥ 2∕3. So, the correctness matrix M is then probabilistically dense per

se. On the other hand, if the matrix M has the m-majority property, then there are m (not necessarily

distinct) assignments r1,… , rm ∈ R

k to the random input variables such that, for every input x ∈ R

n,

the deterministic circuit F (x) = Maj(F (x, r1),… , F (x, rm)) outputs the correct value f (x).
So, the derandomization of probabilistic circuits boils down to showing that their correctness ma-

trices have the m-majority property for possibly small values of m. We will show this in the following

three steps, where F (x, r) is a probabilistic semialgebraic circuit with n deterministic input variables,

and with s gates, each of description complexity at most b.

Step 1 The description complexity of the graph matrix MF of F is t ≤ (bs)Cns for a constant C
(Lemma 3). Here we will use a result of Basu, Pollack and Roy [6] on the quantifier elimination.

Step 2 The growth function of the graph matrix MF satisfies ΠMF
(m) ≤ (8emt2∕n)n (Lemma 4). Here

we will use Warren’s theorem (Theorem 3) on sign patterns of polynomials.

Step 3 Every probabilistically dense submatrix of MF has the m-majority property for any m ≥ 2∕c
satisfying ΠMF

(m) ≤ ecm, where c > 0 is an absolute constant (Lemma 6). Here we will use the

uniform convergence in probability theorem of Vapnik and Chervonenkis [51].

Now, if the circuit F (x, r) computes a given function f ∶ R

n → R, then the correctness matrix M
with respect to this function f , is a probabilistically dense submatrix of MF per se. By Steps 1–3,

the matrix M has the m-majority property for any m satisfying the inequality
(
8emt2∕n

)n
≤ ecm for

log t = O(ns log bs), from which the upper bound m = O(n2s log bs) given in Theorem 1 follows.

4.1 Step 1: Description complexity of circuits

An important consequence of the Tarski–Seidenberg theorem [50, 47]–stating that every quantified

algebraic formula has an equivalent quantifier-free formula—is that compositions of semialgebraic

functions are also semialgebraic functions. In particular, this implies that functions computable by

circuits over any basis consisting of semialgebraic functions are also semialgebraic. We, however, are

interested in the quantitative aspect of this theorem:

• If the basis functions (gates) have description complexity at most b, how large can then the

description complexity of functions computable by circuits of size up to s be?

The answer is given in Lemma 3 bellow. To prove the lemma, we first turn a semialgebraic circuit

into a quantified algebraic formula (Lemma 1), and then use a known result on quantifier elimination

over the reals (Lemma 2).

An existential algebraic formula with q quantifiers and n free variables is a formula of a form

(∃z1 ∈ R) (∃z2 ∈ R) … (∃zq ∈ R) Φ(x1,… , xn, z1,… , zq) ,

where Φ is a (quantifier-free) algebraic formula.

10



Lemma 1. If a function f ∶ Rn → R is computable by a deterministic b-semialgebraic circuit of size

at most s, then the graph of f can be defined by an existential algebraic formula using at most sb
polynomials of degree at most b, and at most s − 1 quantifiers.

Proof. See Appendix A.

The following lemma is a special case of a more general result of Basu, Pollack and Roy [6, The-

orem 1.3.1].

Lemma 2 (Basu, Pollack and Roy [6]). If an existential algebraic formula has n free variables, q
quantified variables and uses l polynomials of degree at most d, then there is an equivalent quantifier-

free algebraic formula which uses at most (ld)Cnq polynomials of degree at most dCq , where C is an

absolute constant.

Remark 4. A similar result with a worse bound (ld)Cq on the degree of the quantifier-free formula

was earlier proved by Renegar [43]. In fact, both results [43, 6] are more general, and hold also for

quantified formulas using both quantifiers ∃ and ∀: if there are ! blocks of alternating quantifiers

with qi variables in the i-th block, then the same upper bound holds with q replaced by the product

2!q1⋯ q! [43], and even by only q1⋯ q! [6].

The following direct consequence of Lemmas 1 and 2 answers the question asked at the beginning

of this section.

Lemma 3. If a function f ∶ Rn → R is computable by a deterministic b-semialgebraic circuit of size

at most s, then f is t-semialgebraic for t satisfying log t = O(ns log bs).

Proof. By Lemma 1, the graph of the function f ∶ Rn → R can be defined by an existential algebraic

formula of size l ≤ sb, degree b and with q ≤ s − 1 quantifiers. Lemma 2 yields a quantifier-free

algebraic formula which also defines the graph of f , has size and degree t ≤ (lb)Cnq ≤ (sb2)Cns, as

desired.

4.2 Step 2: Growth functions from description complexity

A Boolean matrixM ∶ Rn×Rk → {0, 1} is semialgebraic if the setS = {(x, y) ∈ R

n+k ∶ M[x, y] = 1}

of its 1-entries is such. The description complexity of a column r ∈ R

k is the description complexity

of the set Sr = {x ∈ R

n ∶ M[x, r] = 1} of its 1-entries.

Note that the description complexity of individual columns does not exceed the description com-

plexity of the entire matrix, but may be smaller, in general. Moreover, the description complexity of

columns may be bounded even if the matrix itself is not semialgebraic. Consider, for example, the

matrix M ∶ R × R → {0, 1} whose entries are defined by: M[x, y] = 1 if and only if x = ⌊y⌋. The

matrix is not semialgebraic (see Example 2), but for every fixed column r ∈ R, the set of 1-entries of

the rth column is defined by a semialgebraic formula [x − c = 0], where c = ⌊r⌋ is a (fixed) number.

Hence, the description complexity of each individual column is 1.

Lemma 4. Let M ∶ Rn × Rk → {0, 1} be a Boolean matrix. If the description complexity of every

column of M does not exceed t, then for all m ≥ n, the growth function ΠM (m) of M satisfies

ΠM (m) ≤

(
8emt2

n

)n

.

11



Proof. Take arbitrary m columns r1,… , rm ∈ R

k of M . Since every column of M is t-semialgebraic,

for every i = 1,… , m there is an algebraic formula Φi(x) which uses at most t distinct polynomials of

degree at most t, and satisfies M[x, ri] = Φi(x) for all x ∈ A. So, ΠM (m) is at most the number of

distinct 0-1 patterns (Φ1(x),… ,Φm(x)
)

when x ranges over the entire set Rn of row labels.

Let p1,… , ps be all polynomials R[x1,… , xn] used in at least one of the formulas Φ1,… ,Φm. So,

we have a sequence of n ≤ s ≤ tm n-variate polynomials of degree at most t. By Claim 1 (in Section 3),

we can assume that the formulas Φi only use atomic predicates of the form
[
pi < 0

]
,
[
pi = 0

]
and[

pi > 0
]
. This means that the values of formulas Φ1,… ,Φm can only depend on the sign-patterns

of the polynomials p1,… , ps. Consequently, the number of distinct 0-1 patterns (Φ1(x),… ,Φm(x)
)

cannot exceed the number of distinct sign patterns of the polynomials p1,… , ps. Since the number

s of polynomials satisfies n ≤ s ≤ tm, Warren’s theorem (Theorem 3) implies that the later number

cannot exceed (8est∕n)n ≤ (8emt2∕n)n, as desired.

4.3 Step 3: Majority property from growth functions

As we mentioned at the beginning of Section 4, the derandomization of probabilistic circuits boils

down to showing that their correctness matrices have the m-majority property for possibly small values

of m. The following “folklore” observation shows that, if the number of rows is finite, then the m-

majority property holds already for m about the logarithm of this number.

Lemma 5 (Finite majority rule). Every probabilistically dense Boolean matrix M ∶ A × B → {0, 1}
with a finite number |A| of rows has the m-majority property for m = O(log |A|).

Proof. Since the matrixM is probabilistically dense, there is a probability distribution Pr ∶ B → [0, 1]
such that Pr {b ∈ B∶ M[a, b] = 1} ≥ 2∕3 holds for every row a ∈ A. Let b1,… , bm be m independent

copies of b. The expected value � of the sum � = M[a, b1] +⋯ +M[a, bm] is at least 2m∕3. Thus,

the event � ≤ m∕2 implies the event � ≤ � − m∕3. By the Chernoff–Hoeffding bound (see, for

example, [12, Theorem 1.1]), the probability of the latter event is at most e−2(m∕3)
2∕m < e−m∕5. By

taking m = ⌈5 log |A|⌉, this probability is strictly smaller than 1. Since we only have |A| rows, the

union bound implies that the matrix M has the m-majority property for this value of m.

Lemma 5 allows us to efficiently derandomize probabilistic circuits working over any finite domain

(including Boolean circuits): if the probabilistic circuit has size s, then the obtained deterministic

circuit (with one additional majority vote operation as the output gate) will have size O(ns). We are,

however, interested in circuits simulating dynamic programming algorithms. These circuits work over

infinite (or even uncountable) domains like N, Z, Q or R; elements of the domain are possible weights

of items in optimization problems. So, in this case, the finite majority rule is of no use at all.

Fortunately, results from the statistical learning theory come to rescue. The classical uniform

convergence in probability theorem of Vapnik and Chervonenkis [51] ensures the majority property

also for matrices M with an infinite number of rows, as long as its growth function ΠM (m) grows not

too fast (Lemma 7 below).

4.3.1 Uniform convergence in probability

Let H be a class of 0-1 functions ℎ ∶ X → {0, 1} on a set X, and Pr ∶ X → [0, 1] a probability

distribution on the set X. Draw independently (with repetitions) a sequence x = (x1,… ,xm) of

samples xi ∈ X according to this probability distribution. The empirical frequency of ℎ ∈ H on x is
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the average value

aveℎ(x) ∶=
ℎ(x1) +⋯ + ℎ(xm)

m
,

while the theoretical probability of the function ℎ itself is its expected value

pℎ ∶= Pr {x ∈ X ∶ ℎ(x) = 1} .

Every function ℎ ∶ X → {0, 1} defines the event A = {x ∈ X ∶ ℎ(x) = 1}. The law of large numbers

says that, for each single event, its empirical frequency in a sequence of independent trials converges

(with high probability) to its theoretical probability. We are interested not in a single event but in a

whole family of events. We would like to know whether the empirical frequency of every event in the

family converges to its theoretical probability simultaneously. This is the content of so-called “uniform

convergence in probability” results in statistics.

The growth function of the family H is the function ΠH ∶ N → N whose value ΠH (m) for each

integer m ≥ 1 is the maximum,

ΠH (m) = max
x1,…,xm

|||
{(

ℎ(x1),… , ℎ(xm)
)
∶ ℎ ∈ H

} |||

over all sequences x1,… , xm of (not necessarily distinct) points in X, of the number of distinct 0-1

patterns from {0, 1}m produced by the function ℎ ∈ H on these points. Note that we always have

1 ≤ ΠH (m) ≤ 2m.

The uniform convergence theorem of Vapnik and Chervonenkis [51] states that if the class H is

“simple” in that ΠH(m) grows not too fast, and if we draw samples independently (with replacement)

from X according to any distribution, then with high probability, the empirical frequency aveℎ(x) of

every function ℎ ∈ H will be close to the theoretical probability pℎ of ℎ.

Remark 5. In this theorem, a mild measurability condition on the class H of functions is necessary (to

avoid “pathological” situations). A class H is permissible if the individual functions ℎ ∈ H as well

as the supremum function �(x) = supℎ∈H |aveℎ(x) − �ℎ| are measurable. That is, we need that for a

random sample x ∈ Xm, �(x) is a random variable. In our applications, the classes H will correspond

to the rows of graph matrices of semialgebraic circuits. So, each class H will consist of 0-1 valued

semialgebraic functions ℎ ∶ X → {0, 1}, where X = R

k for some finite k ≥ 1, and will be of the

form H = {f (t, ⋅)∶ t ∈ R

n} for a finite n ≥ 1, where the indexing function f ∶ Rn ×X → {0, 1} (the

matrix itself) is also semialgebraic. Such classes H are permissible; see Appendix B for more details.

Theorem 4 (Vapnik and Chervonenkis [51]). Let H be a permissible class of 0-1 functions ℎ ∶ X →

{0, 1} on a set X, and Pr ∶ X → [0, 1] a probability distribution on the set X. Let � > 0, and draw

independently (with repetitions) a sequence x = (x1,… ,xm) of m ≥ 2∕�2 samples xi ∈ X according

to this probability distribution. Then

Pr
{
∃ℎ ∈ H ∶ ||aveℎ(x) − pℎ|| > �

}
≤ 4 ⋅ ΠH (2m) ⋅ e−�

2m∕8 . (2)

In particular, for every constant 0 < � ≤ 1 there is a constant c > 0 with the following property: if

the sample size m satisfies

m ≥ 2∕c and ΠH(m) ≤ ecm , (3)

then there exists a sequence x = (x1,… , xm) of (not necessarily distinct) points in X such that

aveℎ(x) ≥ pℎ − �, that is,

ℎ(x1) +⋯ + ℎ(xm) ≥ (pℎ − �)m (4)

holds for all functions ℎ ∈ H .
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Remark 6. As the constant c in Eq. (3) we can take, for example, c ∶= �2∕24. Then ΠH (m) ≤ ecm

implies 4 ⋅ ΠH(2m) ≤ 4 ⋅ e2cm = e�
2m∕12+ln 4 < e�

2m∕12+2. For every m ≥ 2∕c = 48∕�2, we have

�2m∕12 + 2 ≤ �2m∕8 because then �2m∕8 − �2m∕12 = �2m∕24 ≥ 2. Thus, for c = �2∕24, Eq. (3)

ensures that the probability in Eq. (2) is strictly smaller than 1.

4.3.2 Infinite majority rule

Let M ∶ T ×X → {0, 1} be a Boolean matrix. Each row t ∈ T of M gives us a 0-1 valued function

ℎt ∶ X → {0, 1} whose values are ℎt(x) = M[t, x]. We say that the matrix M is permissible if the

class H = {ℎt ∶ t ∈ T } of functions corresponding to its rows is permissible.

Recall that the growth function ΠM (m) of the matrix M is the maximum, over all choices of up to

m columns, of the number of distinct 0-1 patterns from {0, 1}m appearing as rows in these columns.

Note that ΠM (m) coincides with the growth function ΠH (m) of the class of functions H defined by

the rows of M . In what follows, under a submatrix of a matrix M we will understand a submatrix

obtained by removing some rows of M ; that is, we do not remove columns.

Lemma 6. There is an absolute constant c > 0 for which the following holds. If a Boolean matrix M
is permissible, then every probabilistically dense submatrix of M has the m-majority property for any

integer m ≥ 2∕c satisfying ΠM (m) ≤ ecm.

Proof. Let M ∶ T × X → {0, 1} be a permissible matrix, and let H = {ℎt ∶ t ∈ T } be the class of

functions ℎt(x) = M[t, x] defined by the rows t ∈ T of M . Let M ′ be any probabilistically dense

submatrix of M , and H ′ ⊆ H be the class of functions corresponding to the rows of M ′. Hence,

there is a probability distribution Pr ∶ X → [0, 1] on the set X of columns such that the probability

pℎ = Pr {x ∈ X ∶ ℎ(x) = 1} is at least 2∕3 for every row ℎ ∈ H ′ of the submatrix M ′.

Fix � ∶= 1∕7, and let c > 0 be a constant for which Eq. (3) holds with this choice of � (by

Remark 6, taking c = �2∕24 = 1∕1176 is enough). By Eq. (4), there exists a sequence x1,… , xm of

(not necessarily distinct) columns of M such that

ℎ(x1) +⋯ + ℎ(xm) ≥
(
pℎ − �

)
m =

(
pℎ −

1

7

)
m

holds for every row ℎ ∈ H of M . For some rows ℎ ∈ H of M (those with pℎ ≤ �), this lower bound

is trivial. But since the submatrix M ′ is probabilistically dense, we know that pℎ ≥ 2∕3 holds for all

rows ℎ ∈ H ′ of this submatrix. Thus, for every row ℎ ∈ H ′, we have

ℎ(x1) +⋯ + ℎ(xm) ≥
(
pℎ −

1

7

)
m ≥

(
2

3
− 1

7

)
m = 11

21
m > 1

2
m ,

meaning that the matrix M ′ has the m-majority property, as desired.

Lemma 7 (Infinite majority rule). Let M ∶ Rn × Rk → {0, 1} be a semialgebraic Boolean matrix. If

the description complexity of every column of M does not exceed t, then any probabilistically dense

submatrix of M has the m-majority property for n ≤ m = O(n log t).

Proof. Let M ′ be a submatrix of M , and assume that the matrix M ′ is probabilistically dense. Since

M ′ is a submatrix of M , its growth function satisfies ΠM ′(m) ≤ ΠM (m) for all m ≥ 1. Hence,

Lemma 4 gives us an upper bound

ΠM ′(m) ≤ ΠM (m) ≤

(
8emt2

n

)n

. (5)
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on the growth function of the matrix M ′, for all m ≥ n. On the other hand, since the matrix M is

semialgebraic, it is permissible (see Appendix B). So, by Lemma 6, the submatrix M ′ of M has the

m-majority property for any m ≥ 2∕c satisfying ΠM ′(m) ≤ ecm, where c > 0 is an absolute constant.

Thus, by Eq. (5), in order to ensure the m-majority property for the submatrix M ′, it is enough that m
satisfies the inequality (

8emt2

n

)n

≤ ecm . (6)

By taking logarithms and setting w = m∕n, Eq. (6) turns into the inequality lnw + ln(8et2) ≤ cw.

If w ≤ 8et2, then it is enough that 2 ln(8et2) ≤ cw holds, which happens if w = C log t for a large

enough constant C . If w ≥ 8et2, then it is enough that 2 lnw ≤ cw holds, which happens if w = C
itself is a large enough constant. In both cases, we have that w ≤ C log t and, hence, m ≤ Cn log t for

a large enough constant C satisfies the inequality Eq. (6).

4.4 Proof of Theorem 1

Suppose that a probabilistic b-semialgebraic circuit F (x, r) of size s with k random input variables

computes a function f ∶ Rn → R. Our goal is to show then there are m = O(n2s log bs) deterministic

copies F1(x, r1),… , Fm(x, rm) of F (x, r) such that, for every input x ∈ R

n, more than the half of these

circuits will output the correct value f (x).
Let M ∶ Rn × Rk → {0, 1} be the correctness matrix of the circuit F (with respect to the given

function f ). Hence, the entries of M are defined by: M[x, r] = 1 if and only if F (x, r) = f (x).

Claim 4. The matrix M has the m-majority property for m = O(n2s log bs).

Proof. We are going to apply the infinite majority rule (Lemma 7). Recall that the graph matrix of the

circuit F (x, r) is the Boolean matrix MF ∶ R
n+1×Rk → {0, 1} with entries defined by: MF [(x, y), r] =

1 if and only if y = F (x, r).
Since the circuit F only uses semialgebraic functions as gates, Tarski–Seidenberg theorem [50, 47]

implies that the graph matrixMF ofF is also semialgebraic. Furthermore, for every assignment r ∈ R

n

of the values to the random input variables, F (x, r) is a deterministic b-semialgebraic circuit of size s
computing some function Fr ∶ R

n → R. Lemma 3 implies that the function Fr is t-semialgebraic for

t satisfying log t = O(ns log bs). Thus, the description complexity of every column of MF does not

exceed t.
Note that the correctness matrix M is a submatrix of the matrix MF obtained by removing all

rows of MF labeled by pairs (x, y) such that y ≠ f (x), and replacing the label (x, y) of each remaining

row by x. Moreover, since the (probabilistic) circuit F (x, r) computes f , the correctness matrix M
is probabilistically dense. (The graph matrix MF itself does not need to be such.) So, the infinite

majority rule (Lemma 7) implies that the correctness matrix M has the m-majority property for m =

O(n log t) = O(n2s log bs).

Claim 4 implies that there must be some m (not necessarily distinct) columns r1,… , rm of M such

that, for every input x ∈ R

n, the inequality ||{i∶ M[x, ri] = 1}|| > m∕2 and, hence, also the inequality
||{i∶ F (x, ri) = f (x)}|| > m∕2 holds. Thus, on every input x ∈ R

n, more than the half of the values

computed by deterministic copies F1(x, r1),… , Fm(x, rm) of the circuit F (x, r) compute the correct

value f (x), as desired.
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5 Derandomization of approximating circuits

In Theorem 1, the probabilistic circuit is required to compute exact values f (x) of a given function f
(with probability at least 2∕3). We will now prove a much more general result (Theorem 5) showing

that even probabilistic approximating circuits can be efficiently derandomized.

Let x % y be any binary relation between real numbers x, y ∈ R. One may interpret x % y (especially,

in the context of approximating algorithms) as “x lies close to y.” The description complexity of the

relation % is the description complexity of the set S = {(x, y) ∈ R

2∶ x % y}.

A probabilistic circuit F (x, r) %-approximates a given function f (x) if, for every input x ∈ R

n,

F (x, r) % f (x) holds with probability at least 2∕3. That is, on every input x, the circuit must output a

value which is close to the correct value f (x) with probability at least 2∕3.

Example 3. Some of the most basic relations are the following ones.

1. Equality relation: x % y iff x = y.

2. Sign relation: x % y iff x = y = 0 or x ⋅ y > 0.

3. Nullity relation: x % y iff x = y = 0 or x ⋅ y ≠ 0.

4. Approximation relation: x % y iff |x − y| ≤ c for some fixed number c ≥ 0.

In terms of circuits, the first relation (1) corresponds to computing the values f (x) exactly, as in

Theorem 1. The second relation (2) corresponds to detecting signs of the values f (x). In the case

of relation (3), a circuit must recognize the roots of f , that is, must output 0 precisely when f (x) = 0.

In the case of the last relation (4), the values computed by the circuit must lie not far away from the

correct values f (x).

A majority %-vote function is a (partial) function ' ∶ Rm → R with the following property for any

real numbers a, x1,… , xm:

if xi % a holds for more than m∕2 positions i, then '(x1,… , xm) % a holds.

That is, if more than half of the input numbers x1,… , xm lie close to the number a, then also the

value of ' must lie close to a. For example, the majority vote function Maj is the unique majority

%-vote function for the equality relation (when x % y iff x = y). In general, there may be more than one

majority %-vote function.

The following theorem derandomizes approximating semialgebraic probabilistic circuits.

Theorem 5. Let x % y be a t%-semialgebraic relation, and f ∶ Rn → R a tf -semialgebraic function.

Suppose that f can be % -approximated by a probabilistic b-semialgebraic circuit of size s. Then f can

be also %-approximated as a majority %-vote of m = O(n2s logK) deterministic copies of this circuit,

where K = sb + tf + t%.

Note that, in the case of the equality relation %, Theorem 1 gives an upper bound m = O(n2s logK)

with K = sb. In particular, the description complexity tf of the function f itself plays no role then.

Proof. Suppose that a probabilistic b-semialgebraic circuit F (x, r) of size s with k random input vari-

ables % -approximates a function f ∶ Rn → R. Consider the correctness matrix M ∶ Rn×Rk → {0, 1}
with entries defined by:

M[x, r] = 1 if and only if F (x, r) % f (x).

Since the circuit F % -approximates the function, the matrix M is probabilistically dense.

Claim 5. The correctness matrix M is semialgebraic, and the description complexity of every its

column is at most � = Kcns for an absolute constant c.
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Proof. The probabilistic circuit F (x, r) computes some function F ∶ Rn × Rk → R. Since the circuit

is b-semialgebraic, Lemma 1 gives us an existential algebraic formula ΨF (x, y, r) with n + k + 1 free

variables, at most s−1 quantifiers which uses at most sb polynomials of degree at most b, and defines

the graph of the function F . That is, ΨF (x, y, r) = 1 if and only if y = F (x, r).
Since the function f is tf -semialgebraic, there is an algebraic formulaΦf (x, y) of size and degree at

most tf such that Φf (x, y) = 1 if and only if y = f (x). Finally, since the relation % is t%-semialgebraic,

there is an algebraic formula Φ%(x, y) of size and degree at most t% such that Φ%(x, y) = 1 if and only

if x % y.

Consider the existential algebraic formula

Ψ(x, r) = ∃y1 ∃y2

sb
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
ΨF (x, y1, r) ∧

tf
⏞⏞⏞⏞⏞⏞⏞
Φf (x, y2) ∧

t%
⏞⏞⏞⏞⏞⏞⏞
Φ%(y1, y2) .

It is easy to see that for every row x ∈ R

n and every column r ∈ R

k of M , we have M[x, r] = 1

if and only if Ψ(x, r) = 1. Indeed, since both F (x, r) and f (x) are everywhere defined functions,

on every point (x, r) they output some unique values F (x, r) = y1 and f (x) = y2. So, the first part

∃y1 ∃y2 ΦF (x, y1, r) ∧ Φf (x, y2) of the formula Ψ is a tautology, that is, outputs 1 on all inputs. But

the last formula Φ%(y1, y2) outputs 1 precisely when y1 % y2 holds, which happens precisely when

F (x, r) % f (x) holds.

Thus, the existential formula Ψ(x, r) defines the correctness matrix M . By the Tarski–Seidenberg

theorem, the formula Ψ(x, r) has an equivalent quantifier-free algebraic formula. This shows that the

correctness matrix M is semialgebraic, and it remains to upper bound the description complexity of

its columns.

So, fix a column r ∈ R

k of M , and consider the existential formula Ψr(x) = Ψ(x, r) obtained from

the formula Ψ(x, r) by fixing the r-variables to the corresponding values. This formula defines the rth
column of M , and uses l ≤ sb + tf + t% polynomials of degree is at most d ≤ max{b, tf , t%}. The

formula has n free variables (x-variables). The formulas Φf and Φ% have no quantifiers, and ΨF has

at most s−1 existential quantifiers. So, the entire existential formula Ψ has only q ≤ s+1 quantifiers.

Lemma 2 gives us an equivalent quantifier-free algebraic formula using � ≤ (ld)O(nq) ≤ (ld)O(ns) ≤

(sb+ tf + t%)
O(ns) = KO(ns) polynomials of degree at most �, and defining the entries of the rth column

of the matrix M . Thus, the description complexity of each column of M is at most �, as desired.

Since the circuit F (x, r) %-approximates f , the correctness matrix M is probabilistically dense.

So, together with Claim 5, the infinite majority rule (Lemma 7) implies that the matrix M has the

m-majority property for m = O(n log �) = O(n2s logK).

This means that there must be some m (not necessarily distinct) columns r1,… , rm of M such

that, for every input x ∈ R

n, the inequality ||{i∶ M[x, ri] = 1}|| > m∕2 and, hence, also the inequality
||{i∶ F (x, ri) % f (x)}|| > m∕2 holds. Thus, is ' ∶ Rm → R is a majority %-vote function, then

'(F1(x, r1),… , Fm(x, rm)) % f (x)

holds for every input x ∈ R

n. That is, the obtained deterministic circuit (with one majority %-vote

output gate) %-approximates the values f (x) of our function f , as desired.

Remark 7. Note that, unlike in the proof of Theorem 1 (corresponding to the equality relation %), in

the case of other relations %, the correctness matrix M does not need to be a submatrix of the graph

matrix MF of the circuit F . For example, if F (x, r) = z for some z such that z ≠ f (x) but z % f (x),
then MF [(x, f (x)), r] = 0 but the corresponding entry (x, r) in the correctness matrix M will then
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be M[x, r] = 1. This is why, unlike in Theorem 1, now also the description complexity tf of the

approximated function f comes to play.

Remark 8. One could directly apply Lemma 2 to eliminate quantifiers from the entire formula Ψ(x, r).
This would yield a quantifier-free algebraic formula which defines all entries of the correctness matrix

M . Note, however, that the formula Ψ(x, r) has n + k free variables, instead of only n in formulas

Ψr(x). So, the upper bound on the number of polynomials used in the quantifier formula would then

be of the form (ld)O(nq+kq) ≤ (ld)O(ns+ks). The number k of random variables may be as large as

the circuit size s. This would increase the size of the resulting deterministic circuit by an additional

multiplicative factor of s. On the other hand, when dealing with individual columns of M separately,

we make the resulting upper bound on the size of the derandomized circuit independent on the number

k of random variables in the probabilistic circuit.

5.1 Majority vote for contiguous relations

One small issue still remains: just like in Theorem 1, the deterministic circuits given by Theorem 5 are

not in a “pure” form: they require one additional majority %-vote operation to output their values. To

obtain a “pure” circuit, we have to compute this operation by a (possibly small) circuit using only basis

operations. In most situations, this can be easily done. In particular, we have the following simple fact.

Call a relation x % y contiguous if x ≤ y ≤ z, x % a and z % a imply y % a. That is, if the endpoints

of an interval are close to a, then also all numbers in the interval are close to a. Note that the relations

(1), (2) and (4) mentioned in Example 3 are contiguous.

Claim 6. For every contiguous relation x % y, a majority %-vote function of m variables can be com-

puted by a fanin-2 (min,max) circuit of size O(m logm).

Proof. Given a sequence x1,… , xm of real numbers, the median function outputs the middle number

xi⌈m∕2⌉ of the sorted sequence xi1 ≤ … ≤ xim . So, the sorting network of Ajtai, Komlós and Szemerédi

[3] computes the median function using only O(m logm) min and max operations. On the other hand,

it is easy to show that the median function is a majority %-vote function for every contiguous relation

x % y.

Indeed, let x1 ≤ … ≤ xm be a sorted sequence of real numbers, and a a real number. Call a position

i good, if xi % a holds. Suppose that more than half of the positions i are good. Since the relation %
is contiguous, good positions constitute a contiguous interval of length > m∕2. So, the median of

x1,… , xm must be the number xi in a good position i.

Remark 9. The nullity relation % (the third relation in Example 3) is not contiguous: take, for example,

x = −1, y = 0 and z = a = 1. Then x ≤ y ≤ z, x % a and z % a hold but y % a does not hold: y = 0

but a ≠ 0. Still, a majority %-vote function for this relation can also computed by a small monotone

arithmetic (+,×) circuit (see Claim 8 in Appendix C).

5.2 Proof of Theorem 2

Let x % y be any contiguous relation of description complexity t%, and f ∶ Rn → R any function of

the description complexity tf . Let  be a basis containing min,max and any other b-semialgebraic

operations. Suppose that the function f can be %-approximated by a probabilistic circuit of size s over

. Our goal is to show that then f can be also %-approximated by a deterministic circuit over  of size

O(ms + m logm), where m = n2s log(sb + tf + t%).
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This is a direct consequence of Theorem 5 and Claim 6. Namely, by Theorem 5, f can be approx-

imated as a majority %-vote function of m = O(n2s logK) deterministic copies of this circuit, where

K = sb + tf + t%. Since our basis  contains both min and max operations, Claim 6 implies that the

majority %-vote function of m variables can be computed by a circuit over  of size S = O(m logm).
Thus, the entire derandomized circuit has at most a constant times m ⋅ s + S gates.

5.3 Circuits approximating optimization problems

Since one of the motivations in this paper is to derandomize probabilistic dynamic programming al-

gorithms, let us demonstrate Theorem 2 on semialgebraic circuits solving optimization problems. The

minimization problem f ∶ R

n → R on a finite set A ⊂ N

n of feasible solutions is to compute the

values f (x) = min
{
a1x1 +⋯ anxn ∶ a ∈ A

}
on all input weightings x ∈ R

n.

A probabilistic circuit F (x, r) approximates the problem f within a given factor c ≥ 0 if for every

input weighting x ∈ R

n, |F (x, r) − f (x)| ≤ c holds with probability at least 2∕3 holds.

The relation % is this case is simple: x % y if and only if |x − y| ≤ c (the fourth relation in

Example 3). This relation can be defined by a trivial algebraic formula [x ≥ y − c] ∧ [x ≤ y + c]. The

formula uses only two polynomials x− y− c and x− y+ c of degree 1; so, the description complexity

is t% ≤ 2. The relation is clearly contiguous: if x ≤ y ≤ z, |x − a| ≤ c and |z − a| ≤ c, then also

|y − a| ≤ c.

Let  be any basis containing the optimization operations min(x, y), max(x, y) and any other op-

erations of a constant description complexity b = O(1). For example, besides min and max, the basis

may contain any of the arithmetic operations +,−,×,÷, any branching operations “if x♢y then u else

v” with ♢ ∈ {>,≥,=,≤, <}, and other operations.

Corollary 1. If a minimization problem f (x) = min
{
a1x1 +⋯ anxn ∶ a ∈ A

}
can be approximated

within some fixed factor c by a probabilistic circuit of size s over the basis , then f can be also

approximated within the same factor c by a deterministic circuit over  of size at most a constant

times n2s2 log(s + |A|).
Proof. The graph {(x, y)∶ y = f (x)} of the function f can be defined by an algebraic formula

⋀

a∈A

[
a1x1 +⋯ anxn − y ≥ 0

]
∧
(⋁

a∈A

[
a1x1 +⋯ anxn − y = 0

] )

using |A| polynomials of degree 1. So, the description complexity of f is tf ≤ |A|. Since the approx-

imation relation % in our case has a constant description complexity t% ≤ 2, and since the description

complexity b of every gate is also constant, Theorem 5 implies that the minimization problem f can

be approximated as a majority %-vote function of m = O(n2s logK) deterministic copies of the prob-

abilistic circuit, where K = sb + tf + t% = O(s + |A|).
Since the relation % is contiguous, and since both min and max operations are available, Claim 6

implies that a majority %-vote function of m variables can be computed by a circuit over  of size

O(m logm). Thus, the size of the derandomized circuit is at most a constant times m ⋅ s + m logm,

which is at most a constant times n2s2 log(s + |A|), as desired.

Remark 10. Note that the upper bound on the size S of the derandomized circuit, given by Theorem 5,

is only logarithmic in the number |A| of feasible solutions of the minimization problem f . In most

optimization problems, the set A of feasible solutions is the set A ⊆ {0, 1}n of characteristic 0-1

vectors of objects of interest: spanning trees, perfect matchings, etc. In these cases, log |A| is at most

the number n of variables. Thus, for such problems f , the size of the derandomized circuit is at most

a constant times n3s2 log s.
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6 Probabilistic tropical circuits with one-sided error

Many dynamic programming (DP) algorithms for discrete optimization problems are pure in that their

recursion equations only use (min,+) or (max,+) as operations, and the recursion equations do not

depend on input weights. Every such DP algorithm is just a special (recursively constructed) tropical

circuit.

Notable examples of pure DP algorithms are the well-known Bellman–Ford–Moore DP algorithm

for the shortest s-t path problem [7, 16, 37], the Floyd–Warshall DP algorithm for the all-pairs shortest

paths problem [15, 53], the Held–Karp DP algorithm for the traveling salesman problem [23], the

Dreyfus–Levin–Wagner DP algorithm for the weighted Steiner tree problem [8, 31].

Since the basis operations min(x, y), max(x, y) and x + y of tropical circuits are b-semialgebraic

for very small b (namely, for b ≤ 2, see Table 1), Theorem 1 implies that if an optimization problem

f ∶ Rn → R can be solved by a probabilistic tropical circuit of size s, then f can be also solved as a

majority vote of about n2s log s deterministic copies of this circuits.

However, this result has two drawbacks. The first (not a real) drawback is that our proof of

Theorem 1 relies on three deep results: Pollack and Roy [6] (quantifier elimination, Lemma 2), War-

ren [52] (upper bound on sign patterns, Theorem 3), Vapnik and Chervonenkis [51] (uniform conver-

gence in probability, Theorem 4). The second, more important, drawback is that the majority vote

function Maj itself cannot be computed by a tropical (min,+) and (max,+) circuit at all (see Claim 7

in Appendix C). Recall that Maj can be computed is both min and max operations are allowed to be

used as gates (Claim 6), but tropical circuits can only use one of these two operations.

It turns out that, under the one-sided error probability scenario, these two drawbacks can be com-

pletely eliminated. The resulting deterministic circuits are then also tropical circuits (do not use ma-

jority vote gates), and derandomization itself is then much simpler.

In order not to treat (min,+) and (max,+) circuits separately, we will consider circuits over semir-

ings (R,⊕,⊗) which are commutative and idempotent, that is, where x ⊕ y = y ⊕ x, x ⊗ y = y ⊗ x
and x⊕ x = x hold. A circuit over the semiring is a circuit using the (fanin-2) semiring operations ⊕
and ⊗ as gates. Each input holds either one of the variables x1,… , xn or some “constant” c ∈ R, a

semiring element. What such a circuit computes is a polynomial function of the form

fA(x) =
∑

a∈A

ca

n∏

i=1

x
ai
i , (7)

where A ⊂ N

n is a finite set of exponent vectors, and the coefficients ca ∈ R are semiring elements.

In order to treat the one-sided error scenario in general semirings, we use the intrinsic (or “better-

than”) ordering ≤R in semirings (R,⊕,⊗) defined by a ≤R b iff a ⊕ c = b for some c ∈ R. For

example, if R is the Boolean (∨,∧) or tropical (max,+) semiring, then a ≤R b iff a ≤ b (larger is

better). In the tropical (min,+) semiring, we have a ≤R b iff a ≥ b (smaller is better).

Note that in idempotent semirings (where x ⊕ x = x holds), we have that a ≤R b iff a ⊕ b = b.

Indeed, if a⊕c = b for some c ∈ R, then a⊕b = a⊕a⊕c = a⊕c = b; the other direction is trivial.

Thus, we have the following useful property of the intrinsic order in idempotent semirings:

if a1 ≤R b,… , am ≤R b and b ∈ {a1,… , am}, then a1 ⊕⋯⊕ am = b. (8)

Under a probabilistic circuit of size s over a semiring R we will now understand an arbitrary

random variable F taking its values in the set of all deterministic circuits over R of size at most s.

That is, we now do not insist that the randomness into the circuits can be only introduced via random

input variables. Such a circuit computes a given function f ∶ Rn → Rwith one-sided error probability
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0 ≤ � ≤ 1 if Pr {F (x) ≠ f (x)} ≤ � and Pr
{
F (x) ≤R f (x)

}
= 1 hold for every input x ∈ Rn. That

is, the circuit is not allowed to output any better than “optimum” value f (x), but is allowed to output

worse values with probability at most �. In particular, � = 0 means that the circuit must correctly

compute f , while � = 1 means that the circuit can do “almost everything,” it only must never output

better than optimal values.

6.1 Isolating sets and derandomization

Let  be some family of polynomials over a semiring R. A set X ⊆ Rn isolates a polynomial f ∈ 

within  if for every polynomial g ∈  ,

g(x) = f (x) for all x ∈ X implies that g(x) = f (x) holds for all x ∈ Rn.

That is, if g(x) ≠ f (x) holds for some x ∈ Rn, then we also have g(x) ≠ f (x) for some x ∈ X. A set

X is isolating for f if this holds for the family  of all polynomials over R.

Lemma 8. Let R be an idempotent semiring, and f a polynomial over R. Suppose that f can be

computed by a probabilistic circuit over R of size s with one-sided error probability � < 1. If f has

a finite isolating set X ⊆ Rn, then f can be also computed by a deterministic circuit over R of size at

most
s+1
1−�

⋅ log |X| .

Proof. Let F be a probabilistic circuit over R of size s computing f with a one-sided error � < 1.

Set p ∶= 1 − �, take m = ⌈(1∕p) log |X|⌉ independent copies r1,… , rm of the vector r of random

input variables, and consider the probabilistic circuit H(x) = F (x, r1)⊕⋯⊕F (x, rm) over the same

semiring R.

Fix a vector x ∈ X. Since only one-sided error is allowed, we know that F (x, ri) ≤R f (x)
must hold for all i. Hence, by property (8), H(x) ≠ f (x) can only happen when all the values

F (x, r1),… , F (x, rm) are strictly worse than the optimal value f (x), and this can only happen with

probability at most �m = (1 − p)m ≤ e−pm. So, by the union bound, the probability that H(x) ≠ f (x)
holds for at least one of the inputs x ∈ X does not exceed |X|�m ≤ |X|e−pm, which is smaller than 1,

because m ≥ (1∕p) log |X| (and log e > 1).

There must therefore be a realization H(x) = F (x, r1)⊕⋯⊕F (x, rm) of the probabilistic circuit

H such that the polynomial ℎ(x) computed by H(x) satisfies ℎ(x) = f (x) for all x ∈ X. The size of

the obtained deterministic circuit H(x) is at most ms + m − 1 ≤ [(s + 1)∕p] log |X|. The circuit H
computes some polynomial function ℎ ∶ Rn → R over R. Since the set X is isolating for f , the fact

that ℎ(x) = f (x) holds for all x ∈ X implies this implies ℎ(x) = f (x) holds for all x ∈ Rn, that is, the

obtained deterministic circuit H correctly computes f on all possible inputs.

6.2 Derandomizing tropical circuits

Lemma 8 reduces the derandomization of probabilistic tropical (max,+) and (min,+) circuits under

the one-sided error scenario to proving the existence of small isolating sets X ⊂ R

n
+

for tropical poly-

nomials.

Existence of small isolating sets for polynomials over fields is long known: an easy consequence

of the Schwartz–Zippel lemma [46, 54] is that any set X of the form X = Sn for any set S ⊂ R of size

|S| ≥ d + 1 isolates every n-variate real polynomial f of degree at most d within all polynomials of

degree at most d.

Over tropical (max,+) or (min,+) semirings, that is, for tropical polynomials, we do not have

such a strong isolation fact. Still, also then we can show that the (particular) set X = {0, 1, n + 1}n is
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isolating for every monic and multilinear n-variate polynomial (Lemma 9 below). We will only require

tropical circuits to work correctly on nonnegative input weights x ∈ R

n
+

; see Remark 12 below for the

justification of only considering nonnegative weights.

In the tropical (max,+) semiring (R,⊕,⊗), we have R = R+, x⊕y = max(x, y) and x⊗y = x+y.

So, over this semiring, every polynomial of the form Eq. (7) turns into a tropical (max,+) polynomial

(maximization problem) of the form f (x) = maxa∈A⟨a, x⟩ + ca, where A ⊂ N

n is some finite set of

nonnegative integer vectors (“exponent” vectors), and ca ∈ R+ are nonnegative “coefficients.” Tropical

(min,+) polynomials are of the same form with min instead of max.

Just as in the case of ordinary (arithmetic) polynomials, we call a tropical (max,+) polynomial

f (x) = maxa∈A⟨a, x⟩ + ca monic if ca = 0 holds for all a ∈ A, and multilinear if A ⊆ {0, 1}n.

A sub-polynomial of f is any polynomial ℎ(x) = maxa∈A′⟨a, x⟩ + ca with A′ ⊆ A. Two n-variate

polynomials f and g are equivalent if f (x) = g(x) holds for all input weightings x ∈ R

n
+.

We will stick on optimization problems given by tropical polynomials which are both monic and

multilinear. Most of the problems in combinatorial optimization are defined by such polynomials.

Namely, we have some family  of feasible solutions (spanning trees, perfect matchings, etc), and

the goal is, given an assignment x of nonnegative weights to the items (e.g., edges), to compute the

minimum or maximum weight x(S) =
∑

i∈S xi of a feasible solution S ∈  .

Lemma 9. Let f (x1,… , xn) be a tropical polynomial. If f is monic and multilinear, then the set

X = {0, 1, n + 1}n is isolating for f .

Proof. That the set X = {0, 1, n+1}n isolates f within all monic tropical polynomials was (implicitly)

proved in [27, Lemma 7] for (max,+) polynomials, and in [28, Appendix A] for (min,+) polynomials.

So, it is enough to extend this result to the isolation within all (no necessarily monic) polynomials.

The complete proof of Lemma 9 is given in Appendix D.

Remark 11. The well known zero-one principle for comparator networks states (see, e.g. Knuth [30]):

if a comparator network sorts every 0-1 sequence, then the network also sorts any sequence of real

numbers. Lemma 9 is of similar type: if a tropical circuit solves a monic and multilinear optimization

problem f on all inputs from X = {0, 1, n + 1}n, then the circuit also solves f on all inputs from R

n
+

.

In fact, in the case of (max,+) circuits, this holds already for X = {0, 1}n (Lemma 10 in Appendix D).

Together with Lemma 9, Lemma 8 directly yields the following derandomization of probabilistic

tropical circuits under the one-sided error scenario.

Theorem 6. Let f (x1,… , xn) be a tropical (max,+) or (min,+) polynomial which is monic and mul-

tilinear. If f can be computed by a probabilistic tropical circuit of size s with a one-sided error � < 1,

then f can be also computed by a deterministic tropical circuit of size at most 2n(s + 1)∕(1 − �).

Note that even if the allowed error probability is a very close to 1 constant, say � = 0.999, the

size of the obtained deterministic circuits is still proportional to ns. This is in sharp contrast with

the two-sided probability scenario, where we required that the error probability is � ≤ 1∕2 − c for a

constant c > 0 (for definiteness, we have used � = 1∕3).

Remark 12 (Why only nonnegative weights?). When dealing with tropical (min,+) and (max,+) cir-

cuits, we have restricted us to circuits working correctly only over the domain R+ of nonnegative real

numbers (nonnegative input weights). The reason for doing this is that only then tropical circuits

can show their power, only then they can be more powerful than monotone arithmetic (+,×) circuits.

Namely, Jerrum and Snir [25, Theorem 2.5] proved that if tropical circuits must correctly work over
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the entire domain R, then the tropical circuit complexity of tropical polynomials is essentially the same

as the monotone arithmetic (+,×) circuit complexity of the arithmetical versions of these polynomials.

In contrast, if tropical circuits only need to correctly work over R+, then their size can be even

exponentially smaller than that of arithmetic (+,×) circuits. For example, then the shortest s-t path

problem on n-vertex graphs can be solved by a (min,+) circuit of size only O(n3) via simulating the

Bellman–Ford DP algorithm. But, as shown by Jerrum and Snir [25], the corresponding to this problem

arithmetical polynomial requires arithmetic (+,×) circuits of size 2Ω(n).

7 A lower bound for probabilistic tropical circuits

After the derandomization of a probabilistic tropical (min,+) or (max,+) circuits via Theorem 1, we

are forced to use a majority vote function as an output gate. But majority vote functions cannot be

computed by tropical circuits at all (see Claim 7 in Appendix C). So, the resulting deterministic circuits

are not tropical circuits, and known lower bounds for deterministic tropical circuits (see, for example,

[25, 28]) do not imply lower bounds for probabilistic tropical circuits.

Still, it is possible to derive lower bounds for probabilistic tropical circuits from lower bounds on

the size of deterministic monotone Boolean circuits solving the “decision versions” of the correspond-

ing optimization problems.

In order not to treat (min,+) and (max,+) circuits separately, we will (again) consider circuits over

arbitrary commutative semirings (R,⊕,⊗,0,1). But unlike in the previous section, now we insist

that the semiring must have additive and multiplicative unity elements 0 and 1 satisfying 0⊕ x = x,

0 ⊗ x = 0 and 1 ⊗ x = x. As in the previous section, a circuit over a semiring (R,⊕,⊗,0,1) is a

circuit using the (fanin-2) semiring operations ⊕ and ⊗ as gates. Each input holds either one of the

variables x1,… , xn or some “constant” c ∈ R, a semiring element.

A circuit is constant-free if it has no constant inputs c ∉ {0,1}, that is, when 0 and 1 are the only

allowed constant inputs. Every constant-free circuit over R computes some polynomial

f (x) =
∑

a∈A

n∏

i=1

x
ai
i , (9)

where A ⊂ N

n is a finite multi-set of vectors (exponent vectors); A being a multi-set means that one

and the same monomial may appear several times in the polynomial.

As in Section 6, under a probabilistic circuit of size s over a semiring R we will understand an

arbitrary random variable F taking its values in the set of all deterministic circuits over R of size at

most s. Such a circuit computes a given function f ∶ Rn → R if Pr {F (x) = f (x)} ≥ 2∕3 holds for

every input x ∈ Rn. That is, unlike in Section 6, we now allow two-sided error.

The decision version of a polynomial of the form (9) is the monotone Boolean function

f̂ (x) =
⋁

a∈A

⋀

i∶ ai≠0

xi .

A semiring (R,⊕,⊗,0,1) is of zero characteristic, if 1 ⊕ 1 ⊕ ⋯ ⊕ 1 ≠ 0 holds for any finite

sum of the multiplicative unity 1. Note that polynomials (9) over such semirings have the following

property: on every input x ∈ {0,1}n, we have f (x) ≠ 0 if and only if there is a vector a ∈ A such that

x has the multiplicative unity element 1 in all positions i where ai ≠ 0. This happens precisely when

the decision version f̂ accepts the corresponding Boolean version of x (with element 0 replaced by 0,

and element 1 replaced by 1). That is, the decision version f̂ of a polynomial f captures the behavior
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of f when restricted to only inputs in {0,1}n. This observation gives an idea behind the following

lower bound.

For a polynomial f over some semiring, let B(f ) denote the minimum size of a monotone Boolean

{∨,∧} circuit computing the decision version f̂ of f .

Theorem 7. Let f be a monic n-variate polynomial over a semiring R of zero characteristic. The

minimum size of every probabilistic constant-free circuit computing f over R is at least a constant

times B(f )∕n − O(log n).

Proof. Take a probabilistic constant-free circuit F (x) over R of size s computing the polynomial f ∶

Rn → R. We will concentrate us on inputs from the set X = {0,1}n ⊆ Rn. Since the circuit F (x)
correctly computes f (x) on all inputs x ∈ X, the finite majority rule (Lemma 5) gives us a sequence

F1,… , Fm of m = O(log |X|) = O(n) deterministic circuits of size at most s over the semiring R such

that also the (deterministic) circuit F (x) = Maj(F1(x),… , Fm(x)) correctly computes the polynomial

f (x) on all inputs x ∈ X. We are now going to turn the circuit F into a monotone Boolean circuit

computing the decision version f̂ of f .

Consider the set S = {n∶ n ∈ N} ⊆ R of semiring elements, where n ∶= 0 (the additive unity)

for n = 0, and n ∶= 1 ⊕ ⋯ ⊕ 1 is the n-fold sum of the multiplicative unity 1 for all n ≥ 1. Since

n⊕m = n + m and n⊗m = n ⋅ m, the setS is closed under both semiring operations. So, (S,⊕,⊗,0,1)
is a subsemiring of R. Since the circuit F is constant-free (can only use 0 and 1 as constant inputs),

this implies that, when we restrict the circuit to take inputs only from X = {0,1}n, all intermediate

results computed at the gates of F (x) all belong to S.

Let H be a Boolean circuit obtained from F as follows: replace each ⊕ gate by an OR gate,

and each ⊗ gate by an AND gate; the majority vote gate remains as it is. Consider the mapping

ℎ ∶ S → {0, 1} given by ℎ(0) ∶= 0 and ℎ(n) ∶= 1 for all n ≥ 1. Since R has zero-characteristic, n = 0

holds if and only if n = 0. Thus, the mapping ℎ is a homomorphism from the semiring (S,⊕,⊗,0,1)
to the Boolean semiring ({0, 1},∨,∧, 0, 1): ℎ(x⊕y) = ℎ(x)∨ℎ(y) and ℎ(x⊗y) = ℎ(x)∧ℎ(y) holds for

all x, y ∈ S. So, since the circuit F computes the polynomial f correctly on all inputs in {0,1}n, the

boolean circuit H correctly computes the decision version f̂ of f on all (Boolean) inputs in {0, 1}n.

In the Boolean version H of the circuit F , the output Maj gate only receives Boolean 0-1 inputs

and, hence, is the Boolean majority function (which outputs 1 exactly when the input 0-1 string has

more than half 1s). The sorting network of Ajtai, Komlós and Szemerédi [3] gives a monotone Boolean

circuit of size O(m logm) computing all threshold functions ofm variables and, hence, also the majority

function. So, since in our case m = O(n), we obtain a monotone Boolean circuit of size at most

t = ms +O(m logm) = O(ns + n log n) computing the decision version f̂ of our polynomial f . Since

t ≥ B(f ), the desired lower bound on the size s of the probabilistic circuit follows.

Strong, even super-polynomial lower bounds on the size of monotone Boolean circuits are long

known; see, for example, [5, 26] and the references therein. Together with Theorem 7, these bounds

immediately yield lower bounds on the size of probabilistic tropical circuits solving the corresponding

optimization problems. We restrict ourselves with just one application.

The identity elements in the (min,+) semiring are 0 = +∞ and 1 = 0, whereas in the (max,+)
semiring they are 0 = −∞ and 1 = 0. These semirings are clearly of zero characteristic: here x⊕y is

either min(x, y) or max(x, y). Functions computed by tropical polynomials are optimization problems.

Consider, for example, the permanent polynomial

Pern(x) =
∑

�∈Sn

n∏

i=1

xi,�(i) ,
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where Sn is the set of all permutations of 1, 2,… , n. In the tropical (min,+) semiring, this polynomial

turns into the well-known assignment problem: given a bipartite n×n graph with nonnegative weights

on its edges, compute the minimum weight of a perfect matching in this graph (non-edges hold weight

0 = +∞).

Corollary 2. Every probabilistic (min,+) circuit solving the assignment problem must have nΩ(log n)

gates.

Proof. Razborov [42] has proved that, over the Boolean semiring, deterministic circuits computing

Pern require super-polynomial size nΩ(log n). Together with Theorem 7, this implies that probabilistic

(min,+) circuits solving the assignment problem also require this number of gates.
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A Proof of Lemma 1: from circuits to quantified formulas

Let  be a basis consisting of b-semialgebraic functions. Let F be a circuit of size s over  computing

some function f ∶ R

n → R. Our goal is to show that then the graph {(x, y)∶ f (x) = y} of f can

be defined by an existential algebraic formula of size at most sb, degree at most b and with s − 1

(existential) quantifiers.

The circuit F is a sequence F = (f1,… , fs) of functions fi ∶ R
n → R, where fs = f and each

fi is obtained by applying one of the basis operations (a gate) to R ∪ {x1,… , xn, f1,… , fi−1}. Since

every basis operation gi ∶ R
k → R is b-semialgebraic, there must be an algebraic formula Φi(x, y) of

size and degree at most b such that Φi(x, y) = 1 if and only if y = gi(x).
Replace now each gate fi in F by a new variable zi. Then every gate fi = gi(fi1 ,… , fik) with

each fij in R ∪ {x1,… , xn, f1,… , fi−1} gives us an equation zi = gi(wi), where wi is a vector in

(R ∪ {x1,… , xn, z1,… , zi−1})
k. So, Φi(wi, zi) = 1 if and only if zi = gi(wi). The value of the first

variable z1 in the sequence z1,… , zs is determined by the actual inputs R ∪ {x1,… , xn} to the circuit

(is obtained by applying the basis operation g1 to these inputs), whereas the value of each subsequent

variable zi (i ≥ 2) is obtained by applying the i-th base operation gi to these inputs and some of the

27



previous values z1,… , zi−1. So, the existential formula

Ψ(x, y) = ∃z1 …∃zs−1
[
z1 = g1(w1)

]
∧⋯ ∧

[
zs−1 = gs−1(ws−1)

]
∧
[
y = gs(ws)

]

= ∃z1 …∃zs−1Φ1(w1, z1) ∧… ∧ Φs−1(ws−1, zs−1) ∧ Φs(ws, y)

defines the graph {(x, y)∶ y = f (x)} of the function f = fs computed by our circuit F . Existential

quantifiers just guess the possible values taken at intermediate gates, and the equalities ensure their

correctness. Since each algebraic formula Φi has size and degree at most b, the formula Ψ has size at

most sb, degree at most b, and contains only s − 1 quantifiers.

B Measurability

In order to obtain the uniform convergence result of Vapnik and Chervonenkis given in Theorem 4

(as well as its subsequent extensions for not necessarily 0-1 valued functions), certain measurability

assumptions have to be made concerning the class of functions H when this class is uncountable.

Haussler in [22, Appendix 9.2] gives a sufficient condition for a class H of (not necessarily 0-1

valued) functions ℎ ∶ X → R to be permissible. He calls a class H indexed by a set T if there

is a real valued function f on T × X such that H = {f (t, ⋅)∶ t ∈ T }, where f (t, ⋅) denotes the

real-valued function on X obtained from f by fixing the first parameter to t. Haussler shows that the

following conditions are already sufficient for the class H to be permissible: (1) every function ℎ ∈ H
is measurable, (2) the class H can be indexed by a set T = R

n for a finite n ≥ 1, and (3) the indexing

function f ∶ T ×X → R itself is measurable.

In the case of Boolean semialgebraic matrices M ∶ T × X → {0, 1}, we have a class H of 0-1

functions ℎt ∶ X → {0, 1}, where X = R

k and ℎt(x) = M[t, x]. The class H is indexed by the set T
of the form T = R

n, and the indexing function f = M is the matrix M itself. Since the matrix M is

semialgebraic, the functions ℎt ∈ H as well as the indexing function f are semialgebraic. Since the

functions ℎt and the indexing function f are 0-1 valued functions, this implies that all these functions

are measurable.

Indeed, every semialgebraic set S ⊆ R

n is a finite union of finite intersections of sets of the form

{x ∈ R

n ∶ p(x) = 0} and {x ∈ R

n ∶ p(x) > 0}, where p is a polynomial. So, semialgebraic sets are

measurable. Recall that a function ℎ ∶ X → R is measurable if the set X itself is a measurable set,

and for each real number r, the set Sr = {x ∈ X ∶ ℎ(x) > r} is measurable. In our case, functions

ℎ ∶ X → {0, 1} are 0-1 valued functions. Each such function is the characteristic function of the set

S = {x ∈ X ∶ ℎ(x) = 1}. Then each set Sr is either ∅, S or X. Hence, a 0-1 valued function ℎ is

measurable if and only if the set S = ℎ−1(1) it represents is measurable. Since semialgebraic sets are

measurable, we have that every semialgebraic 0-1 valued function is measurable.

The books of Dudley [13, Chapter 10] and Pollard [40, Appendix C] discuss more general sufficient

conditions for classes of not necessarily 0-1 valued functions ℎ ∶ X → R to be permissible.

C Circuits for majority vote

Recall that the majority vote function of m variables is a partly defined function Majn(x1,… , xn) that

outputs the majority element of its input string x1,… , xn, if there is one.

Claim 7. Arithmetic (+,−,×) circuits, as well as tropical (min,+) and (max,+) circuits cannot com-

pute majority vote functions.

28



Proof. Functions computed by circuits over the arithmetic basis {+,−,×} are polynomial functions.

So, suppose contrariwise that we can express Maj(x, y, z) as a polynomial f (x, y, z) = ax+ by+ cz+
ℎ(x, y, z), where the polynomial ℎ is either a zero polynomial or has degree > 1. Then f (x, x, z) = x
implies c = 0, f (x, y, x) = x implies b = 0, and f (x, y, y) = y implies a = 0. This holds because,

over fields of zero characteristic, equality of polynomial functions means equality of coefficients. We

have thus shown that ℎ = Maj. So, the polynomial ℎ cannot be the zero polynomial. But then ℎ has

degree > 1, so ℎ(x, x, x) = x for all x ∈ R is impossible.

Let us now show that also tropical circuits cannot compute majority vote functions. Every tropical

(min,+) circuit computes some tropical (min,+) polynomial. The functions f ∶ Rn → R computed

by tropical (min,+) polynomials are piecewise linear concave functions. In particular, f (1
2
x +

1

2
y) ≥

1

2
f (x) + 1

2
f (y) must hold for all x, y ∈ R

n:

min
v∈V

⟨v, x + y⟩ ≥ min
v∈V

⟨v, x⟩ +min
v∈V

⟨v, y⟩ .

But already the majority vote function Maj ∶ R3 → R of three variables is not concave. To see this,

take two input vectors x = (a, a, c) and y = (a, b, b) with a < b and c = 2a− b. Then Maj(
1

2
x+ 1

2
y) =

Maj(a, (a + b)∕2, a) = a but
1

2
Maj(x) + 1

2
Maj(y) =

1

2
a +

1

2
b > a since b > a. So, Maj is not

concave. Similar argument shows that Maj is not convex and, hence, cannot be computed by tropical

(max,+) circuits.

Recall that the nullity relation x % y holds precisely when either both x = 0 and y = 0, or both

x ≠ 0 and y ≠ 0 hold. A zero vote function of n variables is any function f ∶ R

n → R such that

f (x1,… , xn) = 0 precisely when more than n∕2 of the numbers xi are zeros. Note that every zero-

vote function is a majority %-vote function for the nullity relation % .

Claim 8. A zero-vote function of n variables can be computed by a monotone fanin-2 arithmetic (+,×)
circuit of size O(n2).

Proof. For nonnegative integers m ≤ n and 0 ≤ k ≤ m − 1, consider the following polynomials

fm,k(x1,… , xn) =
∑

S⊆[m]
|S|=m−k+1

∏

i∈S

x2i .

Note that fm,k(x1,… , xn) = 0 precisely when at least k numbers among the first m numbers x1,… , xm
are zeros. (We have taken squares just to avoid possible cancellations.) Hence, f = fn,k for k =

⌊n∕2⌋ + 1 computes the zero vote function of n variables. The polynomials fm,k can be computed

by first taking fm,1(x1,… , xn) = x2
1
⋯x2m, fm,m(x1,… , xn) = x2

1
+ ⋯ + x2m for m = 1,… , n, and

fm,k(x1,… , xn) = 1 (≠ 0) for k > m, and then using the recursion fm,k = fm−1,k + fm−1,k−1 ⋅ x
2
m.

The resulting arithmetic (+,×) circuit uses only O(n2) gates. We take squares only to avoid possible

cancellations of terms.

D Proof of Lemma 9: isolating sets for tropical polynomials

Recall that tropical (max,+) polynomials are of the form f (x) = maxa∈A⟨a, x⟩ + ca, where A ⊂ N

n

is some finite set of nonnegative integer vectors (“exponent” vectors), and ca ∈ R+ are nonnegative

“coefficients.” Such a polynomial is monic if ca = 0 holds for all a ∈ A, and is multilinear if A ⊆
{0, 1}n. Tropical (min,+) polynomials are of the form f (x) = mina∈A⟨a, x⟩+ ca, with min instead of

max.

In the following proofs we will use the following notation for two sets A,B ⊆ R

n of vectors.
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• B lies below A, denoted B ≤ A, if (∀b ∈ B) (∃a ∈ A) b ≤ a.

• B lies above A, denoted B ≥ A. if (∀b ∈ B) (∃a ∈ A) b ≥ a.

Here, as customary, b ≤ a means bi ≤ ai for all positions i. Note that B ≤ A does not imply A ≥ B,

and vice versa. For a vector x, let Sx = {i∶ xi ≠ 0} denote its support.

Lemma 10 (Maximization). Let f (x1,… , xn) be a monic and multilinear (max,+) polynomial. Then

the set X = {0, 1}n isolates f within all (max,+) polynomials.

Proof. The polynomial f is of the form f (x) = maxa∈A ⟨a, x⟩ + ca, where A ⊆ {0, 1}n (f is mul-

tilinear), and ca = 0 for all a ∈ A (f is monic). Take an arbitrary (max,+) polynomial g(x) =

maxb∈B ⟨b, x⟩+ cb with B ⊂ N

n and cb ∈ R+. Suppose that g(x) = f (x) holds for all input weightings

x ∈ {0, 1}n. Our goal is to show that then g(x) = f (x) must also hold for all input weightings x ∈ R

n
+

.

Since the coefficients cb must be nonnegative, and since the polynomial g takes the maximum of

the values ⟨b, x⟩+ cb, the equality g(0⃗) = f (0⃗) = 0 implies cb = 0 for all b ∈ B. So, the polynomial g
is monic. Furthermore, since g(x) = f (x) must hold for each of n input weightings x ∈ {0, 1}n with

exactly one 1, all vectors in B must also be 0-1 vectors, that is, B ⊆ {0, 1}n holds

We claim that B ≤ A. Suppose contrariwise that there is a vector b ∈ B such that b ≰ a for all

vectors a ∈ A. Since b is a 0-1 vector, we have Sb ⧵ Sa ≠ ∅ for all a ∈ A. But then on the 0-1 input

x = b ∈ {0, 1}n, we have g(x) ≥ ⟨b, x⟩ = ⟨b, b⟩ = |Sb|, whereas f (x) ≤ |Sb|− 1, a contradiction with

g(x) = f (x).
We claim that A ⊆ B. Suppose contrariwise that there is a vector a ∈ A such that b ≠ a for all

vectors b ∈ B. Since all vectors are 0-1 vectors, this means that |Sb ∩ Sa| ≤ |Sa| − 1 holds for every

vector b ∈ B. But then on input x = a ∈ {0, 1}n, we have ⟨b, x⟩ = ⟨b, a⟩ ≤ |Sa|− 1 for all b ∈ B and,

hence, also g(x) ≤ |Sa| − 1 < |Sa| = ⟨a, x⟩ ≤ f (x), a contradiction with g(x) = f (x).
Now, for every input weighting x ∈ R

n
+

, B ≤ A yields g(x) ≤ f (x), while the inclusion A ⊆ B
yields f (x) ≤ g(x). Thus, g(x) = f (x) for all x ∈ R

n
+

, as desired.

The case of (min,+) polynomial is more involved. The difficulty is enforced by our restric-

tion: we only consider nonnegative weights and, consequently, cannot use the equality min(x, y) =

−max(−x,−y) to reduce (min,+) polynomials to (max,+) polynomials; see Remark 12 for a justifi-

cation of this restriction (to nonnegative weights).

A sub-polynomial of a (min,+) polynomial f (x) = maxb∈B⟨b, x⟩ + cb is any polynomial ℎ(x) =
minb∈B′⟨b, x⟩+ cb with B′ ⊆ B. Two n-variate (min,+) polynomials f and g are equivalent if f (x) =
g(x) holds for all input weightings x ∈ R

n
+

.

If two (max,+) polynomials f and g are equivalent, and if f is monic, then g must also be monic

just because, as observed in the proof of Lemma 10, g(0⃗) = f (0⃗) = 0 implies that g cannot have any

nonzero “coefficients.” In the case of minimization, such a trivial argument does not work. Still, also

then the following lemma shows that the polynomial g must be “essentially” monic.

Lemma 11. Let f and g be equivalent (min,+) polynomials. If f is monic, then f is equivalent to

some monic sub-polynomial of g.

Proof. We will use the following corollary from Farkas’ lemma shown by Jerrum and Snir [25]. For a

vector x ∈ R

n, let x̃ denote the extended vector (x, 1) in Rn+1. Jerrum and Snir [25, Corollary A3] have

shown that for any two finite sets U, V ⊂ R

n+1 of vectors, the following two assertions are equivalent:

1. minv∈V ⟨v, x̃⟩ ≥ minu∈U ⟨u, x̃⟩ holds for all x ∈ R

n
+

;

2. V lies above the convex hull of U .

30



The direction (2) ⇒ (1) is obvious, and the (1) ⇒ (2) direction is derived in [25] from a version of

Farkas’ lemma proved by Fan [14, Theorem 4].

Now let fA(x) = mina∈A ⟨a, x⟩+ca and fB(x) = minb∈B ⟨b, x⟩+cb be two equivalent polynomials

over the (min,+) semiring. Suppose that fA is monic, that is, ca = 0 holds for all a ∈ A. Consider

the sets V = {(a, 0)∶ a ∈ A} and U = {(b, cb)∶ b ∈ B} of vectors in Nn × R+ ⊆ R

n+1
+

. Since

the polynomials fA and fB are equivalent, minv∈V ⟨v, x̃⟩ = minu∈U ⟨u, x̃⟩ holds for all x ∈ R

n
+

. By

the implication (1) ⇒ (2), the set V must lie above the convex hull of U . But since all vectors of

V have zeros in the last position, only vectors of U with zeros in the last position can participate in

the corresponding convex combinations. Thus, the set A must lie even above the convex hull of the

subset B′ = {b ∈ B∶ cb = 0} of B. (This subset is nonempty because fB(0⃗) = fA(0⃗) = 0). By

the implication (2) ⇒ (1), fA(x) ≥ fB′(x) must hold for all x ∈ R

n
+

. Since B′ is a subset of B, we

also have fA(x) = fB(x) ≤ fB′(x) for all x ∈ R

n
+

. So, fB′ is a desired monic sub-polynomial of fB
equivalent to fA.

Lemma 12 (Minimization). Let f (x1,… , xn) be a monic and multilinear (min,+) polynomial. Then

the set X = {0, 1, n + 1}n isolates f within all (min,+) polynomials.

Proof. The polynomial f is of the form f (x) = mina∈A ⟨a, x⟩ + ca, where A ⊆ {0, 1}n (f is mul-

tilinear), and ca = 0 for all a ∈ A (f is monic). Take an arbitrary (min,+) polynomial g′(x) =

maxb∈B′ ⟨b, x⟩ + cb with B ⊂ N

n and cb ∈ R+. Suppose that g′(x) = f (x) holds for all input weight-

ings x ∈ {0, 1, n + 1}n. Our goal is to show that then g′(x) = f (x) must also hold for all input

weightings x ∈ R

n
+

.

Since the polynomial f is monic, Lemma 11 gives us a monic sub-polynomial g(x) = maxb∈B ⟨b, x⟩
of g′ with B ⊆ B′ such that g(x) = f (x) holds for all x ∈ R

n
+

. In particular, g(x) = f (x) holds for all

x ∈ {0, 1, n + 1}n. We only have to show that then g(x) = f (x) also holds for all x ∈ R

n
+

. Since we

only consider nonnegative weights x ∈ R

n
+

, we can assume that A is an antichain, that is, no two its

vectors are comparable under ≤: if A contains two vectors a ≠ a′ with a ≤ a′, then remove vector a′;
the function computed remains the same.

We claim that B ≥ A. Suppose contrariwise that there is a vector b ∈ B such that b ≱ a for all

vectors a ∈ A. Since vectors in A are 0-1 vectors, this means that Sa ⧵ Sb ≠ ∅ holds for all vectors

a ∈ A. So, if we take an input x ∈ {0, 1}n with xi = 0 for i ∈ Sb, and xi = 1 for i ∉ Sb, then ⟨a, x⟩ ≥ 1

holds for all a ∈ A and, hence, also f (x) ≥ 1. But, on this input x, we have g(x) ≤ ⟨b, x⟩ = 0, a

contradiction.

We claim that A ⊆ B. Suppose contrariwise that there is a vector a ∈ A such that b ≠ a for all

vectors b ∈ B. Then, for every vector b ∈ B, there are only three possibilities: (1) Sb ⊂ Sa (a proper

inclusion), (2) Sb = Sa but bi ≥ ai + 1 for some position i ∈ Sa, and (3) Sb ⊈ Sa, that is, Sb ⧵ Sa ≠ ∅.

Since A is an antichain, and since a′ ≤ b must hold for some vector a′ ∈ A, the case (1), a proper

inclusion Sb ⊂ Sa, is impossible, for otherwise we would have a proper inclusion Sa′ ⊂ Sa. So, if

we take the input x ∈ {1, n + 1}n with xi = 1 for i ∈ Sa, and xi = n + 1 for i ∉ Sa, then we have

⟨b, x⟩ ≥ ⟨a, a⟩ + 1 > |Sa| in the case (2), and ⟨b, x⟩ ≥ n + 1 > |Sa| in the case (3). Thus, on this

weighting x, the value g(x) is strictly larger than |Sa|, whereas the value f (x) is at most ⟨a, x⟩ = |Sa|,
a contradiction with g(x) = f (x).
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