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Abstract. We prove that to estimate within a constant factor the num-
ber of defective items in a non-adaptive group testing algorithm we need
at least Ω̃((logn)(log(1/δ))) tests. This solves the open problem posed
by Damaschke and Sheikh Muhammad in [9, 10].

1 Introduction

Let X be a set of items that contains defective items I ⊆ X. In Group testing, we
test (query) a subset Q ⊂ X of items and the answer to the query is 1 if Q con-
tains at least one defective item, i.e., Q∩ I 6= Ø, and 0 otherwise. Group testing
was originally introduced as a potential approach to the economical mass blood
testing, [11]. However it has been proven to be applicable in a variety of prob-
lems, including DNA library screening, [21], quality control in product testing,
[25], searching files in storage systems, [17], sequential screening of experimen-
tal variables, [19], efficient contention resolution algorithms for multiple-access
communication, [17, 29], data compression, [15], and computation in the data
stream model, [8]. See a brief history and other applications in [7, 12, 13, 16, 20,
21] and references therein.

Estimating the number of defective items to within a constant factor λ is
the problem of finding an integer D that satisfies |I| ≤ D ≤ λ|I|. This problem
is extensively used in biological and medical applications [3, 26]. It is used to
estimate the proportion of organisms capable of transmitting the aster-yellows
virus in a natural population of leafhoppers [27], estimating the infection rate of
yellow-fever virus in a mosquito population [28] and estimating the prevalence
of a rare disease using grouped samples to preserve individual anonymity [18].

In adaptive algorithms, the queries can depend on the answers to the previ-
ous ones. In the non-adaptive algorithms they are independent of the previous
one and; therefore, one can ask all the queries in one parallel step. In many
applications in group testing non-adaptive algorithms are most desirable.

Estimating the number of defective items to within a constant factor with an
adaptive deterministic, Las Vegas and Monte Carlo algorithms is studied in [2,
6, 9, 10, 14, 23]. For |X| = n items and |I| = d defective items the bounds are
Θ(d log(n/d)) queries for Las Vegas and Deterministic algorithms andΘ(log log d+
log(1/δ)) queries for Monte Carlo algorithm [2, 14]. There are also polynomial
time algorithms that achieve such bounds [2, 14].
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In this paper we study this problem in the non-adaptive setting. We first show
that any deterministic and Las Vegas algorithm must ask at least Ω(n) queries.
For randomized algorithm with any constant failure probability δ, Damaschke
and Sheikh Muhammad give in [10] a non-adaptive randomized algorithm that
asks O(log n) queries and with probability at least 1 − δ returns an integer D
such that D ≥ d and E[D] = O(d). In this paper we give a polynomial time
Monte Carlo algorithm that asks O(log(1/δ) log n) queries and with probability
at least 1 − δ estimates the number of defective items to within a constant
factor. They then prove in [9] the lower bound Ω(log n) queries, but only for
algorithms that chooses each item in each query randomly and independently
with some fixed probability. They conjecture that Ω(log n) queries are needed
for any randomized algorithm with constant failure probability. In this paper we
prove this conjecture. We give two results. The first result shows that for any
δ > 1/poly(n), any non-adaptive randomized algorithm that with probability at
least 1 − δ estimates the number of defective items to within a constant factor
must ask at least

s = Ω

(
log 1

δ log n

log log n+ log log 1
δ

)
= Ω̃

(
log

1

δ
log n

)
queries. The second result shows that for any fixed δ and large enough n any
non-adaptive randomized algorithm that with probability at least 1−δ estimates
the number of defective items to within a constant factor must ask at least

Ω

(
log 1

δ log n

(c log∗ n)(log
∗ n)+1

)
queries. Here log∗ n is equal to the minimum k such that log log k. . . log n < 2.
In particular, the lower bound is

Ω

(
log 1

δ log n

log log k. . . log n

)
for any constant k.

This paper is organised as follows: In Section 2 we give some preliminary
results. In Section 3 we give the proof of the above two lower bounds and the
lower bound Ω(n) for the deterministic algorithm. Then in Section 4 we give the
upper bound. The technique for the upper bound is standard and is given for
completeness.

2 Preliminary Results

In this section we give some definitions and then prove some preliminary results.
We will consider the set of items X = [n] = {1, 2, . . . , n} and the set of

defective items I ⊆ X. The algorithm knows n and has an access to an oracle OI .
The algorithm can ask the oracle OI a query Q ⊂ X and the oracle answers
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OI(Q) := 1 if Q∩ I 6= Ø and OI(Q) := 0 otherwise. We say that algorithm A λ-
estimates the number of defective items if for every I ⊆ X it runs in polynomial
time in n, asks queries to the oracle OI and returns an integer D such that
|I| ≤ D ≤ λ|I|. If λ is constant then we say that the algorithm estimates the
number of defective items to within a constant factor . Our goal is to find such
an algorithm that asks minimum number of queries.

We now prove some preliminary results. The next three results are proved
for adaptive algorithms and therefore they are also valid for non-adaptive algo-
rithms.

The following lemma follows by elementary information theory [1].

Lemma 1. Let d < n be a fixed integer. Let A be an adaptive Monte Carlo
randomized algorithm that takes the number of items n as an input and, if the
number of defective items is |I| = d, outputs the defective items I. Then A must
ask at least d log(n/d) queries.

We denote by Q(A, I) the set of all queries that A asks when the oracle is OI .
Obviously, in non-adaptive algorithms Q(A, I) depends only on A.

Lemma 2. Let A be a deterministic adaptive algorithm that asks queries and
satisfies the following: For every two disjoint sets I, J ⊆ X of size d there is a
query Q ∈ Q(A, I) such that Q ∩ I = Ø and Q ∩ J 6= Ø. Then A asks at least
d log(n/d)− 2d+ 1 queries.

Proof. We change algorithm A to a deterministic algorithm B that asks at most
2d− 1 more queries and if the number of defective items is |I| = d then it finds
the defective items I. Assuming this is true, if algorithm A asks q queries then
algorithm B asks at most q + (2d− 1) queries. Then by Lemma 1, q + 2d− 1 ≥
d log(n/d) and the result follows.

The following is algorithm B

1. Run A. Define Y = X and for every query Q (to OI) that A asks that has
answer 0, eliminate all the elements of Q from Y . Notice here that when the
answer is 0, all the items in Q are not defective.

2. Exhaustively asks the queries {u} for all u ∈ Y and if the answer is 0 remove
u from Y .

3. Output Y .

Let Y ′ be the set Y after step 1 and let Y ′′ be the output of the algorithm.
Since algorithm B only removes items that are not defective, it is clear that
I ⊆ Y ′. Now in step 2, algorithm B removes from Y ′ all the elements that are
not in I and therefore I = Y ′′. This proves the correctness of the algorithm.

We now show that, when A halts in step 1, the number of elements that
remain in Y ′ is at most 2d− 1. Suppose, for the contrary, this is not true. That
is, Y ′ contains at least 2d items. Let J ⊆ Y ′\I be a set of size d. There is a query
Q′ ∈ Q(A, I) that is asked by A such that Q′ ∩ I = Ø and Q′ ∩ J 6= Ø. Then
the answer to this query is 0 and Y ′ ∩ Q′ 6= Ø. So there is j ∈ Y ′ that is not
eliminated by the query Q′ ∈ Q(A, I) which has an answer 0. A contradiction.

ut
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For an algorithm A that asks queries we denote by A(I) the output of A when
it runs with the oracle OI . When the algorithm is randomized then we write
A(s, I) where s is the random seed of the algorithm.

Lemma 3. Let d ≤ n/64 be an integer and δ ≥ (d/n)d. Let A be an adaptive
randomized Monte Carlo algorithm that satisfies:

1. For a random uniform set I ⊆ X of size d, with probability at least 1 − δ,
A(s, I) = 0.

2. For a random uniform set I ⊆ X of size 2d, with probability at least 1 − δ,
A(s, I) = 1.

Then A must ask at least
1

4
log

1

δ
− 1

4
queries.

In particular, for δ < 1/16, if A asks (1/16) log(1/δ) queries then its failure
probability is at least 4δ.

When δ ≤ (d/n)d then the the number of queries is Θ(d log(n/d)).

Proof. Let M be the query complexity of A(s, I). For every two sets I1 and
I2 of size d define a random variable XA(s, I1, I2) = 0 if A(s, I1) = 0 and
A(s, I1 ∪ I2) = 1, and XA(s, I1, I2) = 1 otherwise. Then for random uniform
disjoint sets I1 and I2 of size d we have

Es[EI1,I2 [XA(s, I1, I2)]] = EI1,I2,s[XA(s, I1, I2)] ≤ 2δ.

Therefore, there is a seed s0 such that EI1,I2 [XA(s0, I1, I2)] ≤ 2δ.
Consider q random, uniform and independent permutations φ′i : [n] → [n],

i = 1, . . . , q where

q =
2d log en

d

log 1
2δ

.

Notice here that q can be chosen to be an integer only when δ > (d/n)d. It is
easy to see that (φ′iI1, φ

′
iI2), i = 1, . . . , q are random, uniform and independent.

Therefore

Eφ′1,...,φ
′
q

[
EI1,I2

[
q∏
i=1

XA(s0, φ
′
iI1, φ

′
iI2)

]]
≤ (2δ)q.

This implies that there are φ1, . . . , φq such that

EI1,I2

[
q∏
i=1

XA(s0, φiI1, φiI2)

]
≤ (2δ)q.

Define an algorithm Aφi(s0, I) that runs A(s0, I) and for each query Q in A it
asks the query φi(Q) = {φi(x)|x ∈ Q}. ThenXA(s0, φiI1, φiI2) = XAφi

(s0, I1, I2)
and

EI1,I2

[
q∏
i=1

XAφi
(s0, I1, I2)

]
≤ (2δ)q.
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Thus ∑
I1,I2

q∏
i=1

XAφi
(s0, I1, I2) ≤ (2δ)q

(
n

d d n− 2d

)
≤ (2δ)q

(en
d

)2d
< 1.

Since
∏q
i=1XAφi

(s0, I1, I2) ∈ {0, 1} we have
∏q
i=1XAφi

(s0, I1, I2) = 0 for every
two disjoint set I1 and I2 of size d. This implies that for every disjoint sets I1
and I2 of size d there is φi such that XAφi

(s0, I1, I2) = 0. Therefore, For every
two disjoint sets I1 and I2 of size d there is φi such that Aφi(s0, I1) = 0 and
Aφi(s0, I1∪I2) = 1. Since Aφi(s0, I1) is deterministic algorithm, this implies that
there is a query Q in Aφi where Q ∩ I1 = Ø and Q ∩ (I1 ∪ I2) 6= Ø. Otherwise,
Aφi(s0, I1) = Aφi(s0, I1 ∪ I2). Let B be the algorithm that runs all Aφi . By
Lemma 3, the query complexity of B is at least d log(n/d)−2d+1 and therefore
Mq ≥ d log(n/d)− 2d+ 1 and

M ≥
(d log n

d − 2d+ 1) log(1/2δ)

2d log en
d

≥ 1

4
log

1

2δ
.

This proves the case when δ ≥ (d/n)d.
Now when δ < (d/n)d then the above lower bound is Ω(d log(n/d)) (take

δ = (d/n)d) and the upper bound follows from the algorithm that finds the
defective items and asks O(d log(n/d)) queries, [4, 5, 24]. ut

We now prove two results that will be used for the lower bound

Lemma 4. Let N ′ be a finite set of elements and s be an integer. Let S be
a probability space of s-tuples W = (w1, w2, . . . , ws) ∈ N ′s. Let N ⊆ N ′ and
N = N1 ∪ N2 ∪ · · · ∪ Nr be a partition of N to r disjoint sets. There is i0
such that for a random W ∈ S, the probability that at least k of the elements
(coordinates) of W are in Ni0 , is at most s/(kr). Equivalently, there is i0 such
that with probability at least 1 − s/(kr), the number of elements in W that are
in Ni0 is at most k.

Proof. Define the random variables Xi, i = 1, . . . , r, where Xi(W ) = 1 if at least
k of the elements of W are in Ni and 0 otherwise. Obviously, k(X1+. . .+Xr) ≤ s
and therefore

E[X1] + · · ·+ E[Xr] = E[X1 + · · ·+Xr] ≤
s

k
.

Therefore there is i0 such that Pr[Xi0 = 1] = E[Xi0 ] ≤ s/(kr). ut

Lemma 5. Let X ′ ⊆ X = [n]. Let D be the probability space of random uniform
subsets I ⊂ X ′ of size d and D′ be the probability space of random uniform and
independent d elements I = {x1, . . . , xd} ⊆ X ′. Let A be any event in D and
D′. Let B be the event that I ∈ D′ has size d, i.e., x1, . . . , xd are distinct. Then

PrD′ [A] + PrD′ [B̄] ≥ PrD[A] ≥ PrD′ [A]−PrD′ [B̄].
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Proof. Since

PrD′ [A] = PrD′ [A|B]PrD′ [B] + PrD′ [A|B̄]PrD′ [B̄]

≤ PrD′ [A|B] + PrD′ [B̄] = PrD[A] + PrD′ [B̄],

Therefore PrD[A] ≥ PrD′ [A] − PrD′ [B̄]. In the same way we have PrD[Ā] ≥
PrD′ [Ā]−PrD′ [B̄] which implies the left-hand side inequality. ut

3 Lower Bound

In this section we prove two lower bound for the number of queries in any non-
adaptive randomized algorithm that λ-estimates the number of defective items.
We give the proof for λ = 1.5. The proof for any other constant is similar. We
then prove the lower bound Ω(n) for any deterministic algorithm.

3.1 Lower Bound for Randomized Algorithm

We first prove

Theorem 1. Let δ > 1/poly(n). Any non-adaptive Monte Carlo randomized
algorithm that with probability at least 1−δ, 1.5-estimates the number of defective
items must ask at least

s = Ω

(
log 1

δ log n

log log n+ log log 1
δ

)
queries.

In particular, when δ = 1/poly(n) then

s = Ω

(
log2 n

log log n

)
.

Proof. Let c be a large enough constant. Suppose, for the contrary, there is a
non-adaptive Monte Carlo algorithm A(s, I) that chooses a random sequence
of queries M := Q1, . . . , Qs ⊆ X = [n] from some probability space where
s = ∆/(c log∆) and ∆ = (log n)(log(1/δ)), asks queries to OI and with prob-
ability at least 1 − δ, 1.5-estimates the number of defective items |I|. For r =
log n/(16 log∆) let Ni = [n/∆4i+4, n/∆4i], i = 0, 1, . . . , r − 1, be a partition
of N = [n3/4, n]. By Lemma 4, for k = (1/16) log(1/δ) and the s-tuple W =
(|Q1|, . . . , |Qs|), there is i0 such that, with probability at least

1− s

kr
= 1− 256

c
≥ 15

16

the number of queries Q in M where |Q| ∈ Ni0 is at most k. Let C the event
that the number of queries Q in M where |Q| ∈ Ni0 is at most k. Then

Pr[C̄] ≤ 1

16
.
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Let d′ = ∆4i0+2. For a random uniform set I ⊂ X of size d = d′, with
probability at least 1 − δ, A(s, I) returns an integer in the interval [d′, 1.5d′].
For a random uniform set I ⊂ X of size d = 2d′, with probability at least
1− δ, A(s, I) returns an integer in the interval [2d′, 3d′]. Since both intervals are
disjoint, algorithm A can distinguish between defective sets of size d′ and 2d′,
with probability at least 1−δ. We have constructed an algorithm, call it A′, that
satisfies the conditions in Lemma 3. The probability that A′ fails is at most δ.

Let D, D′ and {x1, . . . , xd} be as in Lemma 5. Here d ∈ {d′, 2d′}. Let B
be the event that x1, . . . , xd are distinct. Since i0 ≤ r we have d < n1/4 and
therefore

PrD′ [B̄] = 1−
d−1∏
i=1

(
1− i

n

)
≤ d(d− 1)

2n
≤ 1

n1/2
≤ 1

16
.

Now partition the queries in M to three sets of queries M1 ∪M2 ∪M3 where
M1 are the queries that contains at most n/∆4i0+4 items, M2 are the queries
that contains at least n/∆4i0 items and M3 = M\(M1 ∪M2), i.e., M3 are the
queries Q that satisfies |Q| ∈ Ni0 . Let A1(I) be the event that for I ⊆ X all the
queries in M1 give answer 0. Then

PrD′ [Ā1] = Pr[(∃Q ∈M1)Q ∩ I 6= Ø]

≤ sPr[Q ∩ I 6= Ø|Q ∈M1] (1)

= s(1−Pr[Q ∩ I = Ø|Q ∈M1])

≤ s

(
1−

(
1− 1

∆4i0+4

)d)

≤ sd

∆4i0+4
=

2

c∆ log∆
≤ 1

16
.

Then by Lemma 5, PrD[Ā1] ≤ 2/16. Let A2(I) be the event that for I ⊆ X all
the queries in M2 give answer 1. Then

PrD′ [Ā2] = Pr[(∃Q ∈M2)Q ∩ I = Ø]

≤ sPr[Q ∩ I = Ø|Q ∈M2]

≤ s
(

1− 1

∆4i0

)d
≤ se−

d

∆4i0 =
∆

ce∆2 log∆
≤ 1

16
.

Thus, by Lemma 5, PrD[Ā2] ≤ 2/16.
Now

Pr[A′ fails] ≥ Pr[A1 ∧A2 ∧ C] ·Pr[A′ fails | A1 ∧A2 ∧ C]

When events A1 and A2 happen then the only useful queries for A′ are the one
in M3. If, in addition, C happens then by Lemma 3,

Pr[A′ fails|A1 ∧A2 ∧ C] ≥ 4δ.
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Since

Pr[A1 ∧A2 ∧ C] = 1−Pr[Ā1 ∨ Ā2 ∨ C̄]

≥ 1−Pr[Ā1]−Pr[Ā2]−Pr[C̄]

≥ 1

2
,

we get Pr[A′ fails] ≥ 2δ which gives a contradiction. ut

Note that by choosing N = [nε, n2ε] in the above proof, where ε is small
constant, we make the result in Theorem 1 also valid for any δ < 2−n

c

where
c < 1 is any constant. In particular, when δ = 2−n

c

the lower and upper bound
is Θ̃(nc). For δ < 2−n one can ask n queries and finds the number of defective
items exactly and therefore the bound is Θ(n).

In the proof of Theorem 1, one cannot take smaller intervals for Ni (for
example [n/24i+4, n/24i]). This is because, with the multiplicand s for the union
bound in (1), the probability of Ā1 cannot then be bounded by 1/16. In the next
theorem we overcome this problem, but only for fixed δ and large enough n. The
idea is the following. We define the sets N1,i as we do with Ni in the proof of
Theorem 1. One of the intervals N1,i1 contains a “few” query sizes. The event
A1 then happens with high probability as before. We then recursively partition
N1,i1 to smaller intervals N2,i. One of the smaller interval N2,i2 contains a “very
few” query sizes. But now the event A1 should happen only to the query sizes
that are outside N2,i2 and inside N1,i1 that are “few” which makes the union
bound argument work again. The details are in the proof of the following

Theorem 2. Let c be a large enough constant. Fix any δ. Any non-adaptive
algorithm that 1.5-estimates the number of defective items must ask at least

Ω

(
log 1

δ log n

(c log∗ n)(log
∗ n)+1

)
queries.

In particular, the lower bound is

Ω

(
log 1

δ log n

log log k. . . log n

)
for any constant k.

Proof. We will denote log[k] n = log log k. . . log n, log[0] n = n and τ = log∗ n.
Let, for i = 1, 2, · · · , τ ,

si =
log 1

δ log[i] n

(cτ)τ−i+2
, ki = si+1 =

log 1
δ log[i+1] n

(cτ)τ−i+1
, ri =

log[i] n

16 log[i+1] n
,

Ni =

[
ni

(log[i−1] n)1/4
, ni

]
⊂ Ni−1,ji−1
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where n1 = n and for i > 1, ni, Ni−1,ji−1
and ji−1 will be defined later in the

proof.

Let A be any non-adaptive algorithm that generates a random sequence of
queries M := Q1, . . . , Qs1 ⊆ X = [n] from some probability space and with
probability at least 1− δ, 1.5-estimates the number of defective items. Let Ci be
the event that at most si(= ki−1) of the sizes in |Q1|, . . . , |Qs1 | are in Ni−1,ji−1

(and therefore in Ni). Now partition Ni into ri intervals

Ni,j =

[
ni

(log[i] n)4j+4
,

ni

(log[i] n)4j

]

where j = 0, . . . , ri − 1.

By Lemma 4, if event Ci happens then: for ki and the sizes inW = (|Q1|, . . . , |Qs1 |)
that are in Ni, there is ji such that, with probability at least

1− si
kiri

= 1− 16

cτ
≥ 1− 1

16τ

at most ki of the sizes in W are in Ni,ji . We now define

ni+1 =
ni

(log[i] n)4ji+2
.

Then

Ni+1 =

[
ni+1

(log[i] n)1/4
, ni+1

]
=

[
ni

(log[i] n)4ji+2 1
4

,
ni

(log[i] n)4ji+2

]
⊆ Ni,ji .

Therefore, with probability at least 1 − 1/(16τ) the event Ci+1 happens. The
number of defective items d will be chosen to be in [d1, d2] whereNτ = [n/d2, n/d1]
and since Nτ ⊆ Ni+1 for all i, we know at this stage that

n(log[i] n)4ji+2 1
4

ni
≥ d ≥ n(log[i] n)4ji+2

ni
.

Let Mi be the set of queries in M that have sizes in Ni−1,ji−1
. Now partition

Mi into three sets of queries M1,i ∪M2,i ∪M3,i where M1,i are the queries in

Mi that contains at most ni/(log[i] n)4ji+4 items, M2,i are the queries in Mi

that contains at least n/(log[i] n)4jj items and M3,i = Mi+1 = Mi\(M1,i ∪M2,i)
are the queries that have sizes in Ni,ji . Let A1,i(I) be the event that all the
queries in M1,i give answers 0 in the oracle OI and A2,i(I) be the event that
all the queries in M2,i give answer 1. Let Hi be the history event H1 = C1 and
Hi = Hi−1 ∧A1,i−1 ∧A2,i−1 ∧Ci. Let D and D′ be as in Lemma 5 and B as in
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Theorem 1. Then as in the proof of Theorem 1, PrD′ [B̄] ≤ 1/(16τ). Then

PrD′ [Ā1,i|Hi] = Pr[(∃Q ∈M1,i)Q ∩ I 6= Ø|Hi]

≤ siPr[Q ∩ I 6= Ø|Q ∈M1,i]

= si(1−Pr[Q ∩ I = Ø|Q ∈M1,i])

≤ si

1−

(
1− ni

n(log[i] n)4ji+4

)d
≤ nisid

n(log[i] n)4ji+4
≤

log 1
δ

(cτ)τ−i+2(log[i] n)3/4
≤ 1

16τ
.

and

PrD′ [Ā2,i|Hi] = Pr[(∃Q ∈M2,i)Q ∩ I = Ø|Hi]

≤ siPr[Q ∩ I = Ø|Q ∈M2,i]

≤ si

(
1− ni

n(log[i])4ji

)d

≤ sie−(log
[i] n)2 =

log 1
δ log[i] n

(cτ)τ−i+2e(log
[i] n)2

≤ 1

16τ
.

Then as in Theorem 1, PrD[Ā1,i|Hi] ≤ 1/(8τ) and PrD[Ā2,i|Hi] ≤ 1/(8τ). Now

Pr[Ā1,i ∨ Ā2,i ∨ C̄i+1|Hi] ≤
1

2τ

and

Pr[H̄i+1] ≤ Pr[H̄i] + Pr[Ā1,i ∨ Ā2,i ∨ C̄i+1|Hi] ≤ Pr[H̄i] +
1

2τ

which implies that Pr[H̄τ ] ≤ 1/2. We now proceed as in Theorem 1. Let A′

be as in the proof of Theorem 1. Then since kτ < (1/16) log(1/δ) we have
Pr[A′ fails|Hτ ] ≥ 4δ and therefore Pr[A′ fails] ≥ 2δ which gives a contradiction.

ut

3.2 Lower Bound for Deterministic Algorithm

In this section we prove

Theorem 3. Let c be any constant. Any non-adaptive deterministic algorithm
that c-estimates the number of defective items must ask at least Ω(n) queries.

Proof. Let A be a non-adaptive deterministic algorithm that c-estimates the
number of defective items. Let Q1, . . . , Qs be the queries that A asks. Let d =
n/2c. For possible answers a1, . . . , as ∈ {0, 1} to the queries we define S(a1,...,as),
the set of all defective sets of size d that gives the answers a1, . . . , as to the
queries Q1, . . . , Qs, respectively. That is, for every I ∈ S(a1,...,as) we have |I| = d

10



and for every i = 1, . . . , s we have Qi ∩ I 6= Ø if ai = 1 and Qi ∩ I = Ø if ai = 0.
For a = (a1, . . . , as) ∈ {0, 1}s let Ia = ∪s∈Sas. We now prove two claims
Claim 1. If the defective set is Ia then the algorithm gets the answers a to the
queries.

If Qi ∩ Ia 6= Ø then there is I ∈ Sa such that Qi ∩ I 6= Ø and then ai = 1. If
Qi ∩ Ia = Ø then for every I ∈ Sa we have Qi ∩ I = Ø and then ai = 0.

Claim 2. |Ia| ≤ cd.
If |Ia| > cd then the algorithm returns a value in [cd+1, c2d] and then for the

sets in Sa, that are of size d, this answer is not a c-estimation. A contradiction.
Since each I ∈ Sa is of size d and is a subset of Ia we have

|Sa| ≤
(
cd

d

)
.

Since there are
(
n
d

)
sets of size d we get(

n

d

)
=

∑
a∈{0,1}s

|Sa| ≤ 2s
(
cd

d

)
.

Since d = n/(2c),

s ≥ log

(
n
n
2c

)
− log

( n
2
n
2c

)
= Ω(n).ut

4 Upper Bounds

In this section we use techniques similar to the ones in [10, 14] to prove

Theorem 4. Let c be any constant. There is a non-adaptive Monte Carlo ran-
domized algorithm that asks

s = O

(
log

1

δ
log n

)
queries and with probability at least 1 − δ, c-estimates the number of defective
items.

We recall Chernoff Bound

Lemma 6. (Chernoff Bound). Let X1, . . . , Xt be independent random vari-
ables that takes values in {0, 1}. Let X = (X1 + · · ·+Xt)/t and E[X] ≤ µ. Then
for any ∆ ≥ µ

Pr[X ≥ ∆] ≤
(
e1−

µ
∆µ

∆

)∆t
(2)

≤
(eµ
∆

)∆t
. (3)
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We will assume that d ≥ 6. Otherwise, d can be estimated exactly in O(log n)
more queries. Just run the algorithm that finds the defective items that asks
O(log n) queries [22]. Here we give a 2-estimation algorithm. This can be ex-
tended in a straightforward manner to c-estimation for any constant c.

A p-query is a query Q that contains each item i ∈ [n] randomly and inde-
pendently with probability p. In the algorithm, OI(Q) = 1 if Q ∩ I 6= Ø and 0
otherwise.

Consider the following algorithm

Estimate(u,w, δ)

1. For each pi = 1/(u · 2i/4), i = 0, 1, 2, 3, · · · , 8 log(w/u),
2. For t = O(log(1/δ)) independent pi-queries Qi,1, . . . , Qi,t do:
3. qi = (OI(Qi,1) + · · ·+OI(Qi,t))/t.
4. Choose the first i0 such that qi0 < 0.83.
5. If no such i0 exists then output(“d > w”).
6. Otherwise output(D := 2/pi0).

We now prove

Lemma 7. Let |I| = d ≥ 6. If u ≤ d ≤ w then with probability at least 1 − δ,
d ≤ D ≤ 2d. The algorithm asks O(log(1/δ) log(w/u)) queries.

In particular, for u = 1 and w = n, the algorithm asks

O

(
log

1

δ
log n

)
queries.

Proof. Let i1 be such that pi1−1 > 2/d and pi1 ≤ 2/d. Then for j = 0, 1, · · · ,

2j/4/d < pi1+3−j ≤ 2(j+1)/4/d.

For every i, j we have

µi := E[qi] = E[OI(Qi,j)] = Pr[I ∩Qi,j 6= Ø] = 1− (1− pi)d.

Since d ≥ 6 we have E[qi1+3] = µi1+3 ≤ 1− (1− 21/4/d)d ≤ 0.74 and

Pr[D > 2d] = Pr[pi0 < 1/d] = Pr[i0 > i1 + 3]

≤ Pr[qi1+3 ≥ 0.83] ≤ δ/2. (4)

The first inequality in (4) follows from the fact that if i0 > i1 + 3 then qi1+3 ≥
0.83. The second inequality follows from Chernoff bound (2) with µ = 0.74 and
∆ = 0.83.

Now, since

E[1− qi1+3−j ] = 1− µi1+3−j = (1− pi1+3−j)
d

≤ e−pi1+3−jd < e−2
j/4

,
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we have E[1− qi1−2] ≤ E[1− qi1−1] ≤ 0.136 and

Pr[D < d] = Pr[pi0 > 2/d] = Pr[i0 ≤ i1 − 1]

=

i1−1∑
i=0

Pr[i0 = i] ≤
i1−1∑
i=0

Pr[qi < 0.83]

=

i1−3∑
i=0

Pr[1− qi > 0.17] +

i1−1∑
i=i1−2

Pr[1− qi > 0.17]

≤
i1−3∑
i=0

(
e · e−2(i1−i+3)/4

0.17

)0.17·t

+
δ

4
(5)

≤
∞∑
k=0

(
0.95 · e−2

k/4
)0.17·t

+
δ

4
≤ δ

4
+
δ

4
=
δ

2
.

In the first summand of (5) we use Chernoff bound (3). In the second summand
we use Chernoff bound (2) for µ = 0.136 and ∆ = 0.17. ut
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