Lower Bound for Non-Adaptive Estimate the Number of Defective Items

Nader H. Bshouty
Dept. of Computer Science
Technion, Haifa, 32000
bshouty@cs.technion.ac.il

Abstract. We prove that to estimate within a constant factor the number of defective items in a non-adaptive group testing algorithm we need at least $\widetilde{\Omega}(\log(n)\log(1/\delta))$ tests. This solves the open problem posed by Damaschke and Sheikh Muhammad in [9, 10].

1 Introduction

Let X be a set of items that contains defective items $I \subseteq X$. In Group testing, we test (query) a subset $Q \subset X$ of items and the answer to the query is 1 if Q contains at least one defective item, i.e., $Q \cap I \neq \emptyset$, and 0 otherwise. Group testing was originally introduced as a potential approach to the economical mass blood testing, [11]. However it has been proven to be applicable in a variety of problems, including DNA library screening, [21], quality control in product testing, [25], searching files in storage systems, [17], sequential screening of experimental variables, [19], efficient contention resolution algorithms for multiple-access communication, [17, 29], data compression, [15], and computation in the data stream model, [8]. See a brief history and other applications in [7, 12, 13, 16, 20, 21] and references therein.

Estimating the number of defective items to within a constant factor λ is the problem of finding an integer D that satisfies $|I| \leq D \leq \lambda|I|$. This problem is extensively used in biological and medical applications [3, 26]. It is used to estimate the proportion of organisms capable of transmitting the aster-yellows virus in a natural population of leafhoppers [27], estimating the infection rate of yellow-fever virus in a mosquito population [28] and estimating the prevalence of a rare disease using grouped samples to preserve individual anonymity [18].

In adaptive algorithms, the queries can depend on the answers to the previous ones. In the non-adaptive algorithms they are independent of the previous one and; therefore, one can ask all the queries in one parallel step. In many applications in group testing non-adaptive algorithms are most desirable.

Estimating the number of defective items to within a constant factor with an adaptive deterministic, Las Vegas and Monte Carlo algorithms is studied in [2, 6, 9, 10, 14, 23]. For $|X| = n$ items and $|I| = d$ defective items the bounds are $\Theta(d \log(n/d))$ queries for Las Vegas and Deterministic algorithms and $\Theta(\log \log d + \log(1/\delta))$ queries for Monte Carlo algorithm [2, 14]. There are also polynomial time algorithms that achieve such bounds [2, 14].
In this paper we study this problem in the non-adaptive setting. We first show that any deterministic and Las Vegas algorithm must ask at least \(\Omega(n)\) queries. For randomized algorithm with any constant failure probability \(\delta\), Damaschke and Sheikh Muhammad give in [10] a non-adaptive randomized algorithm that asks \(O(\log n)\) queries and with probability at least \(1 - \delta\) returns an integer \(D\) such that \(D \geq d\) and \(E[D] = O(d)\). In this paper we give a polynomial time Monte Carlo algorithm that asks \(O(\log(1/\delta) \log n)\) queries and with probability at least \(1 - \delta\) estimates the number of defective items to within a constant factor. They then prove in [9] the lower bound \(\Omega(\log n)\) queries, but only for algorithms that chooses each item in each query randomly and independently with some fixed probability. They conjecture that \(\Omega(\log n)\) queries are needed for any randomized algorithm with constant failure probability. In this paper we prove this conjecture. We give two results. The first result shows that for any \(\delta > 1/poly(n)\), any non-adaptive randomized algorithm that with probability at least \(1 - \delta\) estimates the number of defective items to within a constant factor must ask at least

\[
\begin{align*}
s &= \Omega\left(\frac{\log \frac{1}{\delta} \log n}{\log \log n + \log \log \frac{1}{\delta}}\right) = \tilde{\Omega}\left(\frac{1}{\log \log n}\right)
\end{align*}
\]

queries. The second result shows that for any fixed \(\delta\) and large enough \(n\) any non-adaptive randomized algorithm that with probability at least \(1 - \delta\) estimates the number of defective items to within a constant factor must ask at least

\[
\Omega\left(\frac{\log \frac{1}{\delta} \log n}{(c \log^* n)(\log^* n + 1)}\right)
\]

queries. Here \(\log^* n\) is equal to the minimum \(k\) such that \(\log \log .^k n < 2\). In particular, the lower bound is

\[
\Omega\left(\frac{\log \frac{1}{\delta} \log n}{\log \log .^k n}\right)
\]

for any constant \(k\).

This paper is organised as follows: In Section 2 we give some preliminary results. In Section 3 we give the proof of the above two lower bounds and the lower bound \(\Omega(n)\) for the deterministic algorithm. Then in Section 4 we give the upper bound. The technique for the upper bound is standard and is given for completeness.

2 Preliminary Results

In this section we give some definitions and then prove some preliminary results.

We will consider the set of items \(X = [n] = \{1, 2, \ldots, n\}\) and the set of defective items \(I \subseteq X\). The algorithm knows \(n\) and has an access to an oracle \(O_I\). The algorithm can ask the oracle \(O_I\) a query \(Q \subseteq X\) and the oracle answers
$$O_I(Q) := 1 \text{ if } Q \cap I \neq \emptyset \text{ and } O_I(Q) := 0 \text{ otherwise.}$$

We say that algorithm A λ-\textit{estimates} the number of defective items if for every $I \subseteq X$ it runs in polynomial time in n, asks queries to the oracle O_I and returns an integer D such that $|I| \leq D \leq \lambda|I|$. If λ is constant then we say that the algorithm \textit{estimates the number of defective items to within a constant factor}. Our goal is to find such an algorithm that asks minimum number of queries.

We now prove some preliminary results. The next three results are proved for adaptive algorithms and therefore they are also valid for non-adaptive algorithms.

The following lemma follows by elementary information theory [1].

Lemma 1. Let $d < n$ be a fixed integer. Let A be an adaptive Monte Carlo randomized algorithm that takes the number of items n as an input and, if the number of defective items is $|I| = d$, outputs the defective items I. Then A must ask at least $d \log(n/d)$ queries.

We denote by $Q(A, I)$ the set of all queries that A asks when the oracle is O_I.

Lemma 2. Let A be a deterministic adaptive algorithm that asks queries and satisfies the following: For every two disjoint sets $I, J \subseteq X$ of size d there is a query $Q \in Q(A, I)$ such that $Q \cap I = \emptyset$ and $Q \cap J \neq \emptyset$. Then A asks at least $d \log(n/d) - 2d + 1$ queries.

Proof. We change algorithm A to a deterministic algorithm B that asks at most $2d - 1$ more queries and if the number of defective items is $|I| = d$ then it finds the defective items I. Assuming this is true, if algorithm A asks q queries then algorithm B asks at most $q + (2d - 1)$ queries. Then by Lemma 1, $q + 2d - 1 \geq d \log(n/d)$ and the result follows.

The following is algorithm B

1. Run A. Define $Y = X$ and for every query Q (to O_I) that A asks that has answer 0, eliminate all the elements of Q from Y. Notice here that when the answer is 0, all the items in Q are not defective.
2. Exhaustively asks the queries $\{u\}$ for all $u \in Y$ and if the answer is 0 remove u from Y.
3. Output Y.

Let Y' be the set Y after step 1 and let Y'' be the output of the algorithm. Since algorithm B only removes items that are not defective, it is clear that $I \subseteq Y'$. Now in step 2, algorithm B removes from Y' all the elements that are not in I and therefore $I = Y''$. This proves the correctness of the algorithm.

We now show that, when A halts in step 1, the number of elements that remain in Y' is at most $2d - 1$. Suppose, for the contrary, this is not true. That is, Y' contains at least $2d$ items. Let $J \subseteq Y' \setminus I$ be a set of size d. There is a query $Q' \in Q(A, I)$ that is asked by A such that $Q' \cap I = \emptyset$ and $Q' \cap J \neq \emptyset$. Then the answer to this query is 0 and $Y' \cap Q' \neq \emptyset$. So there is $j \in Y'$ that is not eliminated by the query $Q' \in Q(A, I)$ which has an answer 0. A contradiction.

\[\square\]
For an algorithm A that asks queries we denote by $A(I)$ the output of A when it runs with the oracle O_I. When the algorithm is randomized then we write $A(s, I)$ where s is the random seed of the algorithm.

Lemma 3. Let $d \leq n/64$ be an integer and $\delta \geq (d/n)^d$. Let A be an adaptive randomized Monte Carlo algorithm that satisfies:

1. For a random uniform set $I \subseteq X$ of size d, with probability at least $1 - \delta$, $A(s, I) = 0$.
2. For a random uniform set $I \subseteq X$ of size $2d$, with probability at least $1 - \delta$, $A(s, I) = 1$.

Then A must ask at least

\[
\frac{1}{4} \log \frac{1}{\delta} - \frac{1}{4}
\]

queries.

In particular, for $\delta < 1/16$, if A asks $(1/16)\log(1/\delta)$ queries then its failure probability is at least 4δ.

When $\delta \leq (d/n)^d$ then the the number of queries is $\Theta(d \log(n/d))$.

Proof. Let M be the query complexity of $A(s, I)$. For every two sets I_1 and I_2 of size d define a random variable $X_A(s, I_1, I_2) = 0$ if $A(s, I_1) = 0$ and $A(s, I_1 \cup I_2) = 1$, and $X_A(s, I_1, I_2) = 1$ otherwise. Then for random uniform disjoint sets I_1 and I_2 of size d we have

\[
\mathbb{E}_s[X_A(s, I_1, I_2)] = \mathbb{E}_{s, I_1, I_2}[X_A(s, I_1, I_2)] \leq 2\delta.
\]

Therefore, there is a seed s_0 such that $\mathbb{E}_{I_1, I_2}[X_A(s_0, I_1, I_2)] \leq 2\delta$.

Consider q random, uniform and independent permutations $\phi_i^n : [n] \to [n]$, $i = 1, \ldots, q$ where

\[
q = \frac{2d \log \frac{en}{d}}{\log \frac{en}{d}}.
\]

Notice here that q can be chosen to be an integer only when $\delta > (d/n)^d$. It is easy to see that (ϕ_1^n, ϕ_2^n), $i = 1, \ldots, q$ are random, uniform and independent. Therefore

\[
\mathbb{E}_{\phi_1^n, \ldots, \phi_q^n} \left[\mathbb{E}_{I_1, I_2} \left[\prod_{i=1}^q X_A(s_0, \phi_i^n I_1, \phi_i^n I_2) \right] \right] \leq (2\delta)^q.
\]

This implies that there are ϕ_1, \ldots, ϕ_q such that

\[
\mathbb{E}_{I_1, I_2} \left[\prod_{i=1}^q X_A(s_0, \phi_i I_1, \phi_i I_2) \right] \leq (2\delta)^q.
\]

Define an algorithm $A_{\phi_i}(s_0, I)$ that runs $A(s_0, I)$ and for each query Q in A it asks the query $\phi_i(Q) = \{\phi_i(x) | x \in Q\}$. Then $X_A(s_0, \phi_i I_1, \phi_i I_2) = X_{A_{\phi_i}}(s_0, I_1, I_2)$ and

\[
\mathbb{E}_{I_1, I_2} \left[\prod_{i=1}^q X_{A_{\phi_i}}(s_0, I_1, I_2) \right] \leq (2\delta)^q.
\]
Thus

\[\sum_{i_1, i_2 = 1}^{q} \prod_{i = 1}^{q} X_{A_{\phi_i}}(s_0, I_1, I_2) \leq (2\delta)^q \left(\frac{d}{d} \frac{n}{d - 2d} \right) \leq (2\delta)^q \left(\frac{en}{d} \right)^{2d} < 1. \]

Since \(\prod_{i=1}^{q} X_{A_{\phi_i}}(s_0, I_1, I_2) \in \{0, 1\} \) we have \(\prod_{i=1}^{q} X_{A_{\phi_i}}(s_0, I_1, I_2) = 0 \) for every two disjoint set \(I_1 \) and \(I_2 \) of size \(d \). This implies that for every disjoint sets \(I_1 \) and \(I_2 \) of size \(d \) there is \(\phi_i \) such that \(X_{A_{\phi_i}}(s_0, I_1, I_2) = 0 \). Therefore, for every two disjoint sets \(I_1 \) and \(I_2 \) of size \(d \) there is \(\phi_i \) such that \(A_{\phi_i}(s_0, I_1) = 0 \) and \(A_{\phi_i}(s_0, I_1 \cup I_2) = 1 \). Since \(A_{\phi_i}(s_0, I_1) \) is deterministic algorithm, this implies that there is a query \(Q \) in \(A_{\phi_i} \) where \(Q \cap I_1 = \emptyset \) and \(Q \cap (I_1 \cup I_2) \neq \emptyset \). Otherwise, \(A_{\phi_i}(s_0, I_1) = A_{\phi_i}(s_0, I_1 \cup I_2) \). Let \(B \) be the algorithm that runs all \(A_{\phi_i} \). By Lemma 3, the query complexity of \(B \) is at least \(d \log(n/d) - 2d + 1 \) and therefore \(Mq \geq d \log(n/d) - 2d + 1 \) and

\[M \geq \frac{(d \log \frac{n}{d} - 2d + 1) \log(1/2\delta)}{2d \log \frac{n}{d}} \geq \frac{1}{4} \log \frac{1}{2\delta}. \]

This proves the case when \(\delta \geq (d/n)^d \).

Now when \(\delta < (d/n)^d \) then the above lower bound is \(\Omega(d \log(n/d)) \) (take \(\delta = (d/n)^d \)) and the upper bound follows from the algorithm that finds the defective items and asks \(O(d \log(n/d)) \) queries, [4, 5, 24]. \(\square \)

We now prove two results that will be used for the lower bound

Lemma 4. Let \(N' \) be a finite set of elements and \(s \) be an integer. Let \(S \) be a probability space of \(s \)-tuples \(W = (w_1, w_2, \ldots, w_s) \in N'^s \). Let \(N \subseteq N' \) and \(N = N_1 \cup N_2 \cup \cdots \cup N_r \) be a partition of \(N \) to \(r \) disjoint sets. There is \(i_0 \) such that for a random \(W \in S \), the probability that at least \(k \) of the elements (coordinates) of \(W \) are in \(N_{i_0} \), is at most \(s/(kr) \). Equivalently, there is \(i_0 \) such that with probability at least \(1 - s/(kr) \), the number of elements in \(W \) that are in \(N_{i_0} \) is at most \(k \).

Proof. Define the random variables \(X_i, i = 1, \ldots, r \), where \(X_i(W) = 1 \) if at least \(k \) of the elements of \(W \) are in \(N_i \) and 0 otherwise. Obviously, \(k(X_1 + \cdots + X_r) \leq s \) and therefore

\[\mathbb{E}[X_1] + \cdots + \mathbb{E}[X_r] = \mathbb{E}[X_1 + \cdots + X_r] \leq \frac{s}{k}. \]

Therefore there is \(i_0 \) such that \(\Pr[X_{i_0} = 1] = \mathbb{E}[X_{i_0}] \leq s/(kr) \). \(\square \)

Lemma 5. Let \(X' \subseteq X = [n] \). Let \(D \) be the probability space of random uniform subsets \(I \subset X' \) of size \(d \) and \(D' \) be the probability space of random uniform and independent \(d \) elements \(I = \{x_1, \ldots, x_d\} \subseteq X' \). Let \(A \) be any event in \(D \) and \(D' \). Let \(B \) be the event that \(I \in D' \) has size \(d \), i.e., \(x_1, \ldots, x_d \) are distinct. Then

\[\Pr[D'][A] + \Pr[D'[B] \geq \Pr[D][A] \geq \Pr[D'][A] - \Pr[D'[B]. \]

5
Proof. Since

$$\Pr[D][A] = \Pr[D'][A|B]\Pr[D'][B] + \Pr[D'][A|\bar{B}]\Pr[D'][\bar{B}] \leq \Pr[D][A|B] + \Pr[D'][\bar{B}] = \Pr[D][A] + \Pr[D'][\bar{B}],$$

Therefore $\Pr[D][A] \geq \Pr[D'][A] - \Pr[D'][\bar{B}].$ In the same way we have $\Pr[D][A] \geq \Pr[D'][A] - \Pr[D'][\bar{B}]$ which implies the left-hand side inequality.

\[\square\]

3 Lower Bound

In this section we prove two lower bound for the number of queries in any non-adaptive randomized algorithm that λ-estimates the number of defective items. We give the proof for $\lambda = 1.5$. The proof for any other constant is similar. We then prove the lower bound $\Omega(n)$ for any deterministic algorithm.

3.1 Lower Bound for Randomized Algorithm

We first prove

Theorem 1. Let $\delta > 1/poly(n)$. Any non-adaptive Monte Carlo randomized algorithm that with probability at least $1 - \delta$, 1.5-estimates the number of defective items must ask at least

$$s = \Omega \left(\frac{\log^{1/2} \log n}{\log \log n + \log \log \frac{1}{\delta}} \right)$$

queries.

In particular, when $\delta = 1/poly(n)$ then

$$s = \Omega \left(\frac{\log^{2} n}{\log \log n} \right).$$

Proof. Let c be a large enough constant. Suppose, for the contrary, there is a non-adaptive Monte Carlo algorithm $A(s,I)$ that chooses a random sequence of queries $M := Q_1,...,Q_s \subseteq X = [n]$ from some probability space where $s = \Delta/(c \log \Delta)$ and $\Delta = (\log n)/(\log(1/\delta))$, asks queries to O_I and with probability at least $1 - \delta$, 1.5-estimates the number of defective items $|I|$. For $r = \log n/(16 \log \Delta)$ let $N_i = [n/\Delta^{i+4}, n/\Delta^{i+1}]$, $i = 0, 1, ..., r-1$, be a partition of $N = [n^{3/4}, n]$. By Lemma 4, for $k = (1/16) \log(1/\delta)$ and the s-tuple $W = (|Q_1|, \ldots, |Q_s|)$, there is i_0 such that, with probability at least

$$1 - \frac{s}{kr} = 1 - \frac{256}{c} \geq \frac{15}{16},$$

the number of queries Q in M where $|Q| \in N_{i_0}$ is at most k. Let C the event that the number of queries Q in M where $|Q| \in N_{i_0}$ is at most k. Then

$$\Pr[\bar{C}] \leq \frac{1}{16}.$$
Let \(d' = \Delta 4n_0 + 2 \). For a random uniform set \(I \subset X \) of size \(d = d' \), with probability at least \(1 - \delta \), \(A(s, I) \) returns an integer in the interval \([d', 1.5d']\). For a random uniform set \(I \subset X \) of size \(d = 2d' \), with probability at least \(1 - \delta \), \(A(s, I) \) returns an integer in the interval \([2d', 3d']\). Since both intervals are disjoint, algorithm \(A \) can distinguish between defective sets of size \(d' \) and \(2d' \), with probability at least \(1 - \delta \). We have constructed an algorithm, call it \(A' \), that satisfies the conditions in Lemma 3. The probability that \(A' \) fails is at most \(\delta \).

Let \(D, D' \) and \(\{x_1, \ldots, x_d\} \) be as in Lemma 5. Here \(d \in \{d', 2d'\} \). Let \(B \) be the event that \(x_1, \ldots, x_d \) are distinct. Since \(i_0 \leq r \) we have \(d < n^{1/4} \) and therefore

\[
\Pr_{D'}[B] = 1 - \prod_{i=1}^{d-1} \left(1 - \frac{i}{n} \right) \leq \frac{d(d-1)}{2n} \leq \frac{1}{n^{1/2}} \leq \frac{1}{16}.
\]

Now partition the queries in \(M \) to three sets of queries \(M_1 \cup M_2 \cup M_3 \) where \(M_1 \) are the queries that contains at most \(n/\Delta 4n_0 + 4 \) items, \(M_2 \) are the queries that contains at least \(n/\Delta 4n_0 \) items and \(M_3 = M \backslash (M_1 \cup M_2) \), i.e., \(M_3 \) are the queries \(Q \) that satisfies \(|Q| \in N_{i_0} \). Let \(A_1(I) \) be the event that for \(I \subseteq X \) all the queries in \(M_1 \) give answer 0. Then

\[
\Pr_{D'}[A_1] = \Pr[(\exists Q \in M_1)Q \cap I \neq \emptyset] \\
\leq s \Pr[Q \cap I \neq \emptyset | Q \in M_1] \\
= s(1 - \Pr[Q \cap I = \emptyset | Q \in M_1]) \\
\leq s \left(1 - \left(1 - \frac{1}{\Delta 4n_0 + 4} \right)^d \right) \\
\leq \frac{sd}{\Delta 4n_0 + 4} = \frac{2}{c\Delta \log \Delta} \leq \frac{1}{16}.
\]

Then by Lemma 5, \(\Pr_{D'}[A_1] \leq 2/16 \). Let \(A_2(I) \) be the event that for \(I \subseteq X \) all the queries in \(M_2 \) give answer 1. Then

\[
\Pr_{D'}[A_2] = \Pr[(\exists Q \in M_2)Q \cap I = \emptyset] \\
\leq s \Pr[Q \cap I = \emptyset | Q \in M_2] \\
\leq s \left(1 - \frac{1}{\Delta 4n_0} \right)^d \\
\leq se^{-\frac{d}{\Delta 4n_0}} = \frac{\Delta}{ce^{-\Delta/\log \Delta}} \leq \frac{1}{16}.
\]

Thus, by Lemma 5, \(\Pr_{D'}[A_2] \leq 2/16 \).

Now

\[
\Pr[A' \text{ fails}] \geq \Pr[A_1 \land A_2 \land C] \cdot \Pr[A' \text{ fails} | A_1 \land A_2 \land C]
\]

When events \(A_1 \) and \(A_2 \) happen then the only useful queries for \(A' \) are the one in \(M_3 \). If, in addition, \(C \) happens then by Lemma 3,

\[
\Pr[A' \text{ fails}|A_1 \land A_2 \land C] \geq 4\delta.
\]
Since
\[
\Pr[A_1 \land A_2 \land C] = 1 - \Pr[A_1 \lor \bar{A}_2 \lor \bar{C}]
\geq 1 - \Pr[A_1] - \Pr[\bar{A}_2] - \Pr[\bar{C}]
\geq \frac{1}{2},
\]
we get \(\Pr[A' \text{ fails}] \geq 2\delta \) which gives a contradiction. \(\Box \)

Note that by choosing \(N = [n', n^{2^k}] \) in the above proof, where \(\epsilon \) is small constant, we make the result in Theorem 1 also valid for any \(\delta < 2^{-n^c} \) where \(c < 1 \) is any constant. In particular, when \(\delta = 2^{-n^c} \) the lower and upper bound is \(\Theta(n^c) \). For \(\delta < 2^{-n^c} \) one can ask \(n \) queries and finds the number of defective items exactly and therefore the bound is \(\Theta(n) \).

In the proof of Theorem 1, one cannot take smaller intervals for \(N_i \) (for example \([n/2^{4i+1}, n/2^{4i}) \)). This is because, with the multiplier \(s \) for the union bound in (1), the probability of \(\bar{A}_1 \) cannot then be bounded by 1/16. In the next theorem we overcome this problem, but only for fixed \(\delta \) and large enough \(n \). The idea is the following. We define the sets \(N_{1,i} \) as we do with \(N_i \) in the proof of Theorem 1. One of the intervals \(N_{1,i} \) contains a “few” query sizes. The event \(A_1 \) then happens with high probability as before. We then recursively partition \(N_{1,i} \) to smaller intervals \(N_{2,i} \). One of the smaller interval \(N_{2,i} \) contains a “very few” query sizes. But now the event \(A_1 \) should happen only to the query sizes that are outside \(N_{2,i} \) and inside \(N_{1,i} \) that are “few” which makes the union bound argument work again. The details are in the proof of the following

Theorem 2. Let \(c \) be a large enough constant. Fix any \(\delta \). Any non-adaptive algorithm that \(1.5 \)-estimates the number of defective items must ask at least
\[
\Omega \left(\frac{\log \frac{1}{\delta} \log n}{(c \log^* n)^{(\log^* n)+1}} \right)
\]
queries.

In particular, the lower bound is
\[
\Omega \left(\frac{\log \frac{1}{\delta} \log n}{\log \log \tau \cdot \log n} \right)
\]
for any constant \(k \).

Proof. We will denote \(\log^{[k]} n = \log \log \cdots \log n \), \(\log^{[0]} n = n \) and \(\tau = \log^* n \).

Let, for \(i = 1, 2, \cdots, \tau \),
\[
s_i = \frac{\log^{[i]} n}{(ct)^{r_{i-1}+2}}, \quad k_i = s_{i+1} = \frac{\log^{[i+1]} n}{(ct)^{r_{i-1}+1}}, \quad r_i = \frac{\log^{[i]} n}{16 \log^{[i+1]} n},
\]
\[
N_i = \left[\frac{n_i}{(\log^{[i-1]} n)^{1/4}}, n_i \right] \subset N_{i-1,j_{i-1}}
\]

8
where \(n_1 = n \) and for \(i > 1, n_i, N_{i-1,j_{i-1}} \) and \(j_{i-1} \) will be defined later in the proof.

Let \(A \) be any non-adaptive algorithm that generates a random sequence of queries \(M := Q_1, \ldots, Q_{s_1} \subseteq X = [n] \) from some probability space and with probability at least \(1 - \delta, 1.5 \)-estimates the number of defective items. Let \(C_i \) be the event that at most \(s_i(= k_{i-1}) \) of the sizes in \(|Q_1|, \ldots, |Q_{s_1}| \) are in \(N_{i-1,j_{i-1}} \) (and therefore in \(N_i \)). Now partition \(N_i \) into \(r_i \) intervals

\[
N_{i,j} = \left[\frac{n_i}{(\log[\log n])^{4j+4}}, \frac{n_i}{(\log[\log n])^{4j}} \right]
\]

where \(j = 0, \ldots, r_i - 1 \).

By Lemma 4, if event \(C_i \) happens then: for \(k_i \) and the sizes in \(W = (|Q_1|, \ldots, |Q_{s_1}|) \) that are in \(N_i \), there is \(j_i \) such that, with probability at least

\[
1 - \frac{s_i}{k_i r_i} = 1 - \frac{16}{c \tau} \geq 1 - \frac{1}{16 \tau}
\]

at most \(k_i \) of the sizes in \(W \) are in \(N_{i,j_i} \). We now define

\[
n_{i+1} = \frac{n_i}{(\log[\log n])^{4j_i+2}}
\]

Then

\[
N_{i+1} = \left[\frac{n_{i+1}}{(\log[\log n])^{4j_i+4}}, \frac{n_{i+1}}{(\log[\log n])^{4j_i+2}} \right] \subseteq N_{i,j_i}.
\]

Therefore, with probability at least \(1 - 1/(16 \tau) \) the event \(C_{i+1} \) happens. The number of defective items \(d \) will be chosen to be in \([d_2, n/d_2]\) where \(N_\tau = [n/d_2, n/d_1] \) and since \(N_\tau \subseteq N_{i+1} \) for all \(i \), we know at this stage that

\[
\frac{n(\log[\log n])^{4j_i+2}}{n_i} \geq d \geq \frac{n(\log[\log n])^{4j_i+2}}{n_i}.
\]

Let \(M_i \) be the set of queries in \(M \) that have sizes in \(N_{i-1,j_{i-1}} \). Now partition \(M_i \) into three sets of queries \(M_{1,i} \cup M_{2,i} \cup M_{3,i} \) where \(M_{1,i} \) are the queries in \(M_i \) that contains at most \(n_i/(\log[\log n])^{4j_i+4} \) items, \(M_{2,i} \) are the queries in \(M_i \) that contains at least \(n/(\log[\log n])^{4j_i+4} \) items and \(M_{3,i} = M_{i+1} = M_i \setminus (M_{1,i} \cup M_{2,i}) \) are the queries that have sizes in \(N_{i,j_i} \). Let \(A_{1,i}(I) \) be the event that all the queries in \(M_{1,i} \) give answers 0 in the oracle \(\mathcal{O}_I \) and \(A_{2,i}(I) \) be the event that all the queries in \(M_{2,i} \) give answer 1. Let \(H_i \) be the history event \(H_i = C_i \) and \(H_i = H_{i-1} \wedge A_{1,i-1} \wedge A_{2,i-1} \wedge C_i \). Let \(D \) and \(D' \) be as in Lemma 5 and \(B \) as in
Theorem 1. Then as in the proof of Theorem 1, \(\Pr_D[\bar{B}] \leq 1/(16\tau) \). Then

\[
\Pr_D[\bar{A}_{1,i}|H_i] = \Pr[\exists Q \in M_1,i)Q \not\in \emptyset|H_i] \\
\leq s_i \Pr[Q \cap I \not\in \emptyset|Q \in M_2,i] \\
= s_i(1 - \Pr[Q \cap I = \emptyset|Q \in M_1,i]) \\
\leq s_i \left(1 - \left(1 - \frac{n_i}{n(\log^i n)^{4j_i+4}}\right)^d\right) \\
\leq \frac{n_is_id}{n(\log^i n)^{4j_i+4}} \leq \frac{\log \frac{1}{\delta}}{(c\tau)^{\tau-i+2}(\log^i n)^{3/4}} \leq \frac{1}{16\tau},
\]

and

\[
\Pr_D[\bar{A}_{2,i}|H_i] = \Pr[\exists Q \in M_2,i)Q \cap I = \emptyset|H_i] \\
\leq s_i \Pr[Q \cap I = \emptyset|Q \in M_2,i] \\
\leq s_i \left(1 - \frac{n_i}{n(\log^i n)^{4j_i}}\right)^d \\
\leq s_i e^{-\left(\log^i n\right)^2} = \frac{\log \frac{1}{\delta} \log^i n}{(c\tau)^{\tau-i+2}e(\log^i n)^2} \leq \frac{1}{16\tau}.
\]

Then as in Theorem 1, \(\Pr_D[\bar{A}_{1,i}|H_i] \leq 1/(8\tau) \) and \(\Pr_D[\bar{A}_{2,i}|H_i] \leq 1/(8\tau) \). Now

\[
\Pr[\bar{A}_{1,i} \lor \bar{A}_{2,i} \lor \bar{C}_{i+1}|H_i] \leq \frac{1}{2\tau}
\]

and

\[
\Pr[\bar{H}_{i+1}] \leq \Pr[\bar{H}_i] + \Pr[\bar{A}_{1,i} \lor \bar{A}_{2,i} \lor \bar{C}_{i+1}|H_i] \leq \Pr[\bar{H}_i] + \frac{1}{2\tau}
\]

which implies that \(\Pr[\bar{H}_i] \leq 1/2 \). We now proceed as in Theorem 1. Let \(A' \) be as in the proof of Theorem 1. Then since \(k_\tau < (1/16) \log(1/\delta) \) we have \(\Pr[A' \text{ fails}|H_\tau] \geq 4\delta \) and therefore \(\Pr[A' \text{ fails}] \geq 2\delta \) which gives a contradiction.

\(\square \)

3.2 Lower Bound for Deterministic Algorithm

In this section we prove

Theorem 3. Let \(c \) be any constant. Any non-adaptive deterministic algorithm that \(c \)-estimates the number of defective items must ask at least \(\Omega(n) \) queries.

Proof. Let \(A \) be a non-adaptive deterministic algorithm that \(c \)-estimates the number of defective items. Let \(Q_1, \ldots, Q_s \) be the queries that \(A \) asks. Let \(d = n/2c \). For possible answers \(a_1, \ldots, a_s \in \{0, 1\} \) to the queries we define \(S_{(a_1, \ldots, a_s)} \), the set of all defective sets of size \(d \) that gives the answers \(a_1, \ldots, a_s \) to the queries \(Q_1, \ldots, Q_s \), respectively. That is, for every \(I \in S_{(a_1, \ldots, a_s)} \) we have \(|I| = d \)
and for every \(i = 1, \ldots, s \) we have \(Q_i \cap I \neq \emptyset \) if \(a_i = 1 \) and \(Q_i \cap I = \emptyset \) if \(a_i = 0 \). For \(a = (a_1, \ldots, a_s) \in \{0, 1\}^s \) let \(I_a = \bigcup_{s \in S_a} s \). We now prove two claims.

Claim 1. If the defective set is \(I_a \) then the algorithm gets the answers \(a \) to the queries.

If \(Q_i \cap I_a \neq \emptyset \) then there is \(I \in S_a \) such that \(Q_i \cap I \neq \emptyset \) and then \(a_i = 1 \). If \(Q_i \cap I_a = \emptyset \) then for every \(I \in S_a \) we have \(Q_i \cap I = \emptyset \) and then \(a_i = 0 \).

Claim 2. \(|I_a| \leq cd\).

If \(|I_a| > cd\) then the algorithm returns a value in \([cd+1, c^2d]\) and then for the sets in \(S_a \), that are of size \(d \), this answer is not a \(c \)-estimation. A contradiction.

Since each \(I \in S_a \) is of size \(d \) and is a subset of \(I_a \) we have

\[
|S_a| \leq \binom{cd}{d}.
\]

Since there are \(\binom{n}{d} \) sets of size \(d \) we get

\[
\binom{n}{d} = \sum_{a \in \{0,1\}^s} |S_a| \leq 2^s \binom{cd}{d}.
\]

Since \(d = n/(2c) \),

\[
s \geq \log \left(\frac{n}{2^c} \right) - \log \left(\frac{2^c}{n^d} \right) = \Omega(n). \square
\]

4 Upper Bounds

In this section we use techniques similar to the ones in [10, 14] to prove

Theorem 4. Let \(c \) be any constant. There is a non-adaptive Monte Carlo randomized algorithm that asks

\[
s = O \left(\log \frac{1}{\delta} \log n \right)
\]

queries and with probability at least \(1 - \delta \), \(c \)-estimates the number of defective items.

We recall Chernoff Bound

Lemma 6. (Chernoff Bound). Let \(X_1, \ldots, X_t \) be independent random variables that takes values in \(\{0,1\} \). Let \(X = (X_1 + \cdots + X_t)/t \) and \(E[X] \leq \mu \). Then for any \(\Delta \geq \mu \)

\[
\Pr[X \geq \Delta] \leq \left(\frac{e^{t \Delta} - \mu}{\Delta} \right)^{\Delta t}. \quad (2)
\]

\[
\leq \left(\frac{e \mu}{\Delta} \right)^\Delta t. \quad (3)
\]
We will assume that \(d \geq 6 \). Otherwise, \(d \) can be estimated exactly in \(O(\log n) \) more queries. Just run the algorithm that finds the defective items that asks \(O(\log n) \) queries \([22]\). Here we give a 2-estimation algorithm. This can be extended in a straightforward manner to \(c \)-estimation for any constant \(c \).

A \(p \)-query is a query \(Q \) that contains each item \(i \in [n] \) randomly and independently with probability \(p \). In the algorithm, \(O_I(Q) = 1 \) if \(Q \cap I \neq \emptyset \) and 0 otherwise.

Consider the following algorithm

\[\textbf{Estimate}(u, w, \delta) \]

1. For each \(p_i = 1/(u \cdot 2^i/4) \), \(i = 0, 1, 2, 3, \cdots, 8 \log(w/u) \),
2. For \(t = O(\log(1/\delta)) \) independent \(p_i \)-queries \(Q_{i,1}, \ldots, Q_{i,t} \) do;
3. \(q_i = (O_I(Q_{i,1}) + \cdots + O_I(Q_{i,t}))/t \).
4. Choose the first \(i_0 \) such that \(q_{i_0} < 0.83 \).
5. If no such \(i_0 \) exists then output("d > w^n").
6. Otherwise output(\(D := 2/p_{i_0} \)).

We now prove

Lemma 7. Let \(|I| = d \geq 6 \). If \(u \leq d \leq w \) then with probability at least \(1 - \delta \), \(d \leq D \leq 2d \). The algorithm asks \(O(1/\delta \log(\log(w/u))) \) queries.

In particular, for \(u = 1 \) and \(w = n \), the algorithm asks

\[O \left(\log \frac{1}{\delta} \log n \right) \]

queries.

Proof. Let \(i_1 \) be such that \(p_{i_1-1} > 2/d \) and \(p_{i_1} \leq 2/d \). Then for \(j = 0, 1, \cdots, 2^j \leq 2^{j+3}/d \)

\[2^j < p_{i_1+3-j} \leq 2^{j+3}/d. \]

For every \(i, j \) we have

\[\mu_i := \mathbb{E}[q_i] = \mathbb{E}[O_I(Q_{i,j})] = \Pr[I \cap Q_{i,j} \neq \emptyset] = 1 - (1 - p_i)^d. \]

Since \(d \geq 6 \) we have \(\mathbb{E}[q_{i_1+3}] = \mu_{i_1+3} \leq 1 - (1 - 2^j/d)^d \leq 0.74 \) and

\[\Pr[D > 2d] = \Pr[p_{i_0} < 1/d] = \Pr[i_0 > i_1 + 3] \]
\[\leq \Pr[q_{i_1+3} \geq 0.83] \leq \delta/2. \quad (4) \]

The first inequality in (4) follows from the fact that if \(i_0 > i_1 + 3 \) then \(q_{i_1+3} \geq 0.83 \). The second inequality follows from Chernoff bound (2) with \(\mu = 0.74 \) and \(\Delta = 0.83 \).

Now, since

\[\mathbb{E}[1 - q_{i_1+3-j}] = 1 - \mu_{i_1+3-j} = (1 - p_{i_1+3-j})^d \]
\[\leq e^{-p_{i_1+3-j}d} < e^{-2^j/4}, \]

we conclude...
we have $E[1 - q_{i_1 - 2}] \leq E[1 - q_{i_1 - 1}] \leq 0.136$ and

$$
\Pr[D < d] = \Pr[p_{i_0} > 2/d] = \Pr[i_0 \leq i_1 - 1]
= \sum_{i=0}^{i_1-1} \Pr[i_0 = i] \leq \sum_{i=0}^{i_1-1} \Pr[q_i < 0.83]
= \sum_{i=0}^{i_1-3} \Pr[1 - q_i > 0.17] + \sum_{i=i_1-2}^{i_1-1} \Pr[1 - q_i > 0.17]
\leq \sum_{i=0}^{i_1-3} \left(\frac{e \cdot e^{-2(i_1-i+3)/4}}{0.17} \right)^{0.17-t} + \frac{\delta}{4}
\leq \sum_{k=0}^{\infty} \left(0.95 \cdot e^{-2k/4} \right)^{0.17-t} + \frac{\delta}{4} \leq \frac{\delta}{4} + \frac{\delta}{4} = \frac{\delta}{2}.
$$

(5)

In the first summand of (5) we use Chernoff bound (3). In the second summand we use Chernoff bound (2) for $\mu = 0.136$ and $\Delta = 0.17$. \hfill \Box

References