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Abstract

The problem of constructing error-resilient interactive protocols was introduced in the
seminal works of Schulman (FOCS 1992, STOC 1993). These works show how to convert
any two-party interactive protocol into one that is resilient to constant-fraction of error,
while blowing up the communication by only a constant factor. Since these seminal works,
there have been many followup works which improve the error rate, the communication rate,
and the computational efficiency.

All these works assume that in each round each party sends a single bit, an assumption
that may cause a substantial increase in the round complexity. Moreover, they assume that
the communication complexity of the underlying protocol is fixed and a priori known.

In this work, we show how to convert any protocol Π, with no a priori known communi-
cation bound, into an error-resilient protocol Π′, with comparable computational efficiency,
that is resilient to constant fraction of adversarial error, while blowing up both the commu-
nication complexity and the round complexity by at most a constant factor. We consider
the model where in each round each party may send a message of arbitrary length, where
the length of the messages and the length of the protocol may be adaptive, and may depend
on the private inputs of the parties and on previous communication. We consider the ad-
versarial error model, where ε-fraction of the communication may be corrupted, where we
allow each corruption to be an insertion or deletion (in addition to toggle).

In addition, we try to minimize the blowup parameters: In particular, we construct such
Π′ with (1 + Õ

(
ε1/4

)
) blowup in communication and O(1) blowup in rounds. We also show

how to reduce the blowup in rounds at the expense of increasing the blowup in communi-
cation, and construct Π′ where both the blowup in rounds and communication, approaches
one (i.e., no blowup) as ε approaches zero. We give “evidence” that our parameters are
“close to” optimal.
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1 Introduction

Communication over a noisy channel is a fundamental problem in computer science, engineering
and related fields. Starting from the seminal work of Shannon [Sha48], this problem of error-
resilient communication has been extensively studied. Today, we have “good” error-correcting
codes – ones that achieve constant information rate as well as constant error rate. The two
main error models that were considered are the stochastic error model, where the errors are
distributed according to some distribution (such as the binary symmetric channel), and the
adversarial error model, where errors may occur adaptively and adversarially, so long as the
prescribed error rate is not exceeded. This work considers the latter (stronger) adversarial error
model. In addition, we consider (adversarial) insertion and deletion errors.

In a sequence of innovative works, Schulman [Sch92, Sch93, Sch96] initiated the study of
error-resilience in the context of interactive protocols. Specifically, he considered the setting
where two parties are interacting via a protocol over a noisy channel, where the noise could
be stochastic or adversarial. Since Schulman’s seminal works, there have been many followup
works, that improve the error rate [BR11, GH13, GHS14, BE14, AGS16, EGH16], the informa-
tion rate [KR13, Hae14, GH17], the computational efficiency [GMS11, BK12, BN13, BKN14],
and very recently that are been beautiful works that generalize the error model of the adversary
to allow insertions and deletions [BGMO16, HSV17, SW17]. There have also been several works
that consider the multi-party setting [RS94, JKL15, BEGH16, GK17]. We refer the reader to
[Gel17] for a fantastic survey on previous work on interactive coding. The focus of this work is
on the 2-party setting and the adversarial error model.

All previous works assume that in the underlying protocol, in each round a single bit is
sent. Thus, there is an inherent assumption that the round complexity is proportional to
the communication complexity. In contrast, in cryptography and in distributed computing,
protocols that consist of long messages are considered, and it is desirable to keep the round
complexity as low as possible. In fact, much research (in both cryptography and distributed
computing) focuses on reducing the round complexity of various protocols, as often the round
complexity is the bottleneck, and not the communication complexity. We argue that since we
consider interactive protocols, we should aim for error resilient protocols, that not only blow up
the communication by at most a constant factor, but also blow up the number of rounds by at
most a constant factor.

All previous works consider the “bit-by-bit” model, where each party sends a single bit
in each round, and thus the protocols inherently have large round complexity. Therefore, we
diverge from this “bit-by-bit” model, and consider the model where parties can send arbitrarily
long messages in each round. Our model is the typical synchronous model used in cryptography
and distributed algorithms. We elaborate on this model in Section 1.1.

Moreover, we emphasize that we do not assume that the communication (or round) com-
plexity is fixed or a priori known. This is in contrast to all previous works, which assume that
the communication (and round) complexity T is fixed and known in advance, and that the
adversary can corrupt at most εT bits.1 We note that such an assumption is often unrealistic
and results in protocols where the communication complexity is always worse-case.

In this work, we allow the communication and round complexity to differ from execution to
execution, depending on the inputs, or “types” of the parties, and construct an error-resilient
protocol that preserves this per-execution communication (and round) complexity. We note

1We mention the work of Agrawal et. al. [AGS16], which does assume that the communication complexity
of the underlying errorless protocol is a priori known. However, with the goal of maximizing the error rate, the
communication complexity in the error-resilient protocol is not fixed and is not a priori known. We emphasize
that in our work, we do not even assume that the parties a priori know the communication complexity in the
underlying errorless protocol.
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that the fact that we allow such adaptive (and not a priori known) communication length adds
substantial technical difficulties to our work, which we elaborate on in Section 1.3.2

Our Results in a Nutshell. We show how to convert any protocol, where messages can
be of arbitrary length, and where the communication and round complexity are not a priori
known, into an error-resilient one, with comparable (computational) efficiency guarantees, that
is secure against constant fraction of adversarial error, while incurring a constant blowup both
to the communication complexity and to the round complexity. We allow the adversary not
only to toggle with the bits of communication, but also allow the adversary to insert and delete
bits. We elaborate on our communication model and error model in Section 1.1.

Moreover, we try to minimize the (constant) overhead in communication and rounds: In
particular, we obtain (1 + Õ(ε1/4)) blowup in communication and O(1) blowup in rounds. We
also show how to reduce the blowup in rounds at the expense of slightly increasing the blowup
in communication, and construct an error-resilient protocol where both the blowup in rounds
and communication approaches one as ε approaches zero. We elaborate on our results (and on
the exact parameters we obtain) in Section 1.2, we give a high-level overview of our techniques
in Section 1.3, and give “evidence” that our parameters are “close to” optimal in Section 2.3
(after formally stating our main theorem in Section 2.2).

Our Technical Hurdles. The reader may at first think that dealing with short messages
is the “hard case”, since for long messages we can use standard error-correcting codes. We
argue that this intuition is misleading. First, when considering adversarial error, applying an
error-correcting code to each message separately does not help, since the entire message can
be corrupted (even if the message is long), and indeed in this work we focus on adversarial
error. We mention, however, that even for the case of stochastic error, dealing with messages
of varying lengths, where some messages may be short while other messages may be long, is
challenging.

Before explaining the difficulties that arise in this setting, we note that if we knew a priori
the number of rounds and the communication complexity of the underlying protocol, then we
could have “smoothed” it out perfectly, so that all the messages would have been of equal
length,3 and then we could have used a protocol (and analysis) from prior works.

Since we do not have such a bound, we cannot perfectly smooth out the underlying protocol.
Nevertheless, we must somehow smooth out the protocol, since a party cannot send a long
message before she is “sufficiently confident” that the transcript so far is correct, as otherwise,
this long message will be wasted (even if the adversary does not corrupt it at all). Therefore,
we “approximately” smoothen out the underlying protocol, by guaranteeing that each message
is of length at least half and at most twice the length of the previous message. We refer the
reader to Section 1.3 and Section 3 for details.

We mention that in order to minimize the blowup, we consider two small constants α, β > 0
(that depend on the error rate) and guarantee that the length of each message is at least α`
and at most `

β , where ` is the length of the message preceding it. This is not important for the
high-level overview.

2We believe (though we haven’t checked) that the tree-code based interactive coding schemes may easily
be adapted to the setting where the communication complexity is not a priori bounded, by having each party
construct an (infinitely growing) tree code. However, in tree-code based schemes the parties are computationally
inefficient and there is a large blowup to the round complexity.

3This approach blows up the communication and round complexity by a constant factor. If the goal is to
optimize this blowup (as we do in this work) then one cannot afford to perfectly smoothen out the protocol, in
which case our techniques are needed.
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We emphasize, that even after smoothing the underlying protocol, the length of the messages
can still grow (or shrink) at an exponential rate, which brings rise to several challenges. For
example, similar to many previous works (such as[Sch92, BK12, Hae14]), when a party realizes
that there was an error she backtracks. In our setting we need to be extremely cautious when we
backtrack. Note that the adversary can cause us to backtrack even though we are synchronized,
by making us believe that we are out of sync. Previous works ensure that the adversary needs
to invest enough error for such backtracking, and hence such “false” backtracking is costly for
the adversary. However, in the case where messages are of varying length, this analysis becomes
extremely delicate, since the adversary can corrupt a short message (by investing a small amount
of his error budget), and thus falsely cause the parties to backtrack and delete a previous long
message. Indeed, as opposed to previous protocols, we do not erase when we backtrack. Rather,
we keep this transcript as “questionable”. We refer the reader to Section 1.3 and Section 4 for
details.

Moreover, when messages are of varying lengths, even if the protocol is (approximately)
smooth, and even if we backtrack carefully, ensuring that the round complexity does not blow
up, does not only require a careful (and significantly more complex) analysis, but also requires
additional new ideas.

For example, the protocols in previous works, perform an equality test after every chunk of
length d (for some parameter d), where in this equality test the parties check whether they are
in sync by sending each other a hash of their transcript so far. In our setting, messages may be
very long, and we cannot chop a message to chunks of d bits each, since this will blow up the
round complexity. Instead, it is tempting to simply append to each message a hash of length
that is proportional to the message length (e.g., append a hash of length b `dc to a message of
length `). However, as we show in Section 1.3 and Section 5, in order to ensure a constant
blowup in round complexity, we must not only allow the length of the hash value to depend on
the length of the message it is being appended to, but rather it should also depend on the length
of the entire history. This is the case since if the protocol has messages of varying lengths, the
adversary can corrupt a single long message, in a way that causes many hash collisions in future
short messages. Thus, by corrupting one (long) message many rounds can be wasted.

In order to get around this problem, we allow the length of the hash to depend on the length
of the entire history. Moreover, we consider randomized (i.e., seeded) hash function, where the
party sends the hash value together with the hash seed, so that the adversary does not know
which hash function will be used ahead of time. However, with a seed of length w one can hash
messages of length at most 2w, and the history may be longer than 2w. Thus, in our scheme
some of the seed is chosen ahead of time and some of the seed is chosen with each message. We
refer the reader to Section 1.3 and Section 5 for details.

Moreover, the fact that the communication complexity is not a priori known creates an ad-
ditional problem. Following previous works (such as [BK12, BKN14, Hae14]), we first construct
a protocol in the common random string (CRS) model (this is done in Section 5), and then we
remove the CRS (in Section 6). Removing the CRS in previous work was straightforward: First
show that the CRS can be made relatively short (of size proportional to the communication
complexity) by using a δ-biased source, and then argue that one of the parties can simply send
the CRS using a (standard) error correcting code. In our case this cannot be done since we do
not have an a priori bound on the communication complexity.

We give an overview on how we overcome the technical hurdles mentioned above in Sec-
tion 1.3, but warn the reader that overcoming these challenges is quite difficult, and results in
a very complex analysis.

We next explain our model in more detail.
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1.1 Our Model

1.1.1 The Noiseless Model

We consider 2-party protocols, between two parties, Alice and Bob. In our model, at every
round i, Alice and Bob do the following: Alice chooses `A(i) ∈ N (greater than 0) and a message
mA(i) ∈ {0, 1}`A(i), based on her view of previous communication and her private input, and
sends mA(i) to Bob. Similarly, Bob chooses `B(i) ∈ N and a message mB(i) ∈ {0, 1}`B(i), based
on his view of previous communication and his private input, and sends mB(i) to Alice. At
some round, one of the parties aborts, and both parties report an output.

More generally, we allow Bob’s message in the i’th round to depend, not only on all previous
communication and his private input, but also on Alice’s message in the i’th round. This
corresponds to the synchronous model where in each round i, Alice and Bob do not send their
messages simultaneously, but rather first Alice sends her message and only then Bob sends his
message (which may depend on Alice’s message). This model is known as the message-passing
model, and is the most common model used in cryptography (and distributed algorithms). We
note that our results also apply to the synchronous simultaneous message model, and the choice
of presenting our results in the synchronous message-passing model was due to the fact that we
think that this model is more standard.

We emphasize that we allow the length of the messages in each round and the number of
rounds to vary and to depend on previous communication. This models real world interactions
where some conversations end fast, whereas others spark more interaction. We emphasize that
all previous works considered the case where in each round a single bit is sent, but several of
these works (such as [AGS13, GHS14]) considered adaptive protocols, where which party sends
the bit may be a function of the transcript so far. Nevertheless, they all assumed that the
(underlying errorless) protocol has an a priori fixed communication complexity.

We denote the input of Alice by x, and we denote the input of Bob by y. Note that a pair
of inputs (x, y) define `A and `B for all rounds, and also define the number of rounds. Thus,
in the noiseless setting, for any protocol we can define CC(x, y), which is the communication
complexity of the protocol for the input pair (x, y). Similarly, we can define R(x, y), which is
the number of rounds for the input pair (x, y).

1.1.2 The Noisy Model

In this work, we consider the adversarial error model, and assume that the adversary can corrupt
any ε-fraction of the bits, for some a priori fixed small constant ε > 0. We allow the adversary,
not only to toggle with the bits, but he can also insert and delete bits.

In our model, where messages can be of arbitrary length, protecting protocols against in-
sertions and deletions is extremely important, since otherwise the parties can securely encode
information via the length of the messages. Specifically, in our model, where messages can be
of varying lengths, one can trivially protect protocols against (adversarial) toggle corruptions
while incurring only a constant factor blowup in the communication complexity, albeit an un-
bounded blowup in the round complexity, as follows: First convert the protocol to a protocol
where each party sends a single bit in each round. Then, encode this bit as follows: If the bit is
zero then encode it via a single bit (zero or one), and if the bit is 1 then encode it via any two
bits. Upon receiving an encoded message the parties will decode without looking at the content
of the message, but rather only by the length of the message.

We note that most previous work on interactive coding do not consider insertion and dele-
tions. Indeed, in the synchronous model, where the parties send one bit per round, insertions
and deletions are not interesting, since the parties “can tell” when an insertion or deletion
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occurs.
An exception are the recent works of [BGMO16, HSV17, SW17]. These works consider

insertion and deletions in the asynchronous model. More specifically, they consider an adversary
who can insert a message from one party and delete a message from the other party, and thus
cause the parties to be out-of-synch with regard to which round they are on (though similarly
to previous work, they are in the bit-by-bit model, thus their protocols incur a large blowup to
the round complexity, and they assume an a priori bound on the communication complexity).

In our work, we consider the synchronous model, where the parties always agree on the num-
ber of speaking alternations (which in our case is exactly the number of rounds). We emphasize,
however, that the work of [HSV17] shows a generic method for converting any error-resilient
protocol in the synchronized model into one that that is error resilient in the asynchronized
model. We believe that one can use their approach (and in particular the use of a synchro-
nization code [HS17]) to boost our result from the synchronous model to the asynchronous
model.

In the adversarial error model, in our work and in all previous works, there is an a priori
fixed constant ε and it is assumed that the adversary can corrupt at most εT bits, where T is
the number of bits communicated. In most previous work, the value of T was assumed to be a
priori known (and fixed). As mentioned above, in this work, we allow the length of the protocol
to depend on previous communication. This models the real world setting, where we cannot a
priori predict the length of our conversations, and it can depend on our private inputs (or on
our “types”).

In this model, care should be taken when defining the adversarial error model. One possi-
bility is to allow the adversary to corrupt εT bits, where T is the number of bits that would
have been transmitted assuming no error.4

We note, however, that with such a definition the adversary can use his εT bits of corruption
budget, and cause the parties to abort prematurely. Namely, he can convince both parties that
the other party is “boring” (i.e., that the other party has an input such that if they were
executing the error-free protocol without error, the number of bits exchanged would have been
less than εT ). In such case both parties would abort prematurely and the adversary would
“win”.

Instead, we allow the adversary to corrupt only ε-fraction of the bits that were actually
communicated. We note that a similar model was used in the work of Agrawal et. al. [AGS16],
where their goal was to get optimal error-rate, and to that end, they considered error-resilient
protocols with an adaptive speaking order and where the communication complexity may depend
on the error pattern.5 We emphasize that this adversarial model is stronger than alternative
(natural) models, such as the the prefix model that allows the adversary to corrupt ε-fraction
of any prefix of the transcript.

In this work, we also add a bound ε′ on the number of rounds that the adversary can
“fully” corrupt, where we say that a round is fully corrupt if the adversary corrupts more than
δ-fraction of the bits, for some small constant δ (which depends on the error bound ε). We
note that all previous works also had such a bound (implicitly), since in previous works there
was no distinction between rounds and communication. In contrast, in our model, a bound on
the number of bits corrupted does not imply a bound on the number of rounds that are fully
corrupted. For example, consider the protocol in which there is one long message of length `,
followed by ε` messages, each consisting of a single bit. In such a protocol, not corrupting the

4We note that the adversary knows T since we assume (similarly to all previous work that consider the
adversarial error model), that the adversary knows the private inputs of the parties.

5As mentioned above, the work of [AGS16] does assume an a priori known bound on the communication
complexity of the underlying (errorless) protocol.
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long message gives the adversary the budget to corrupt all the short messages.
We emphasize that bounding the number of rounds that are fully corrupted is necessary,

since without such a bound, it is impossible to ensure a small blowup in round complexity. This
argument is deferred to Section 2.3 where we give evidence to the optimality of our parameters.

1.2 Our Results

In what follows, we denote our error parameters by ε and ε′, where ε corresponds to the fraction
of corrupted bits, and ε′ corresponds to the fraction of (fully) corrupted messages. We show
that for any (small enough) constants ε, ε′ > 0 there exist blowup parameters α, α′ > 0 such
that one can convert any protocol into an error resilient one (with respect to ε and ε′), with α
blowup in communication, and essentially α′ blowup in rounds (with an additional term that
depends logarithmically on the communication complexity). We can set α′ = O(1) we obtain
a blowup of α = Õ

(
ε1/4

)
in communication complexity. Alternatively, one can set α, α′ such

that they both approach 0 as ε, ε′ approach 0.
Our error-resilient protocol is randomized, even if the original protocol was determinis-

tic. This is similar to all previous works that construct computationally efficient interactive
coding schemes that are robust to adversarial error (starting with the work of [BK12]). Schul-
man [Sch93] (followed by many followup works) gave a deterministic interactive coding scheme,
at the price of computational inefficiency. The parties in the error resilient scheme run in ex-
ponential time in T , where T is an upper bound on the length of the underlying protocol.6

Recently, Gelles et. al. [GHK+16] gave a deterministic and efficient construction for the case of
random error. However, constructing a deterministic interactive coding scheme that is resilient
to adversarial error and is computationally efficient remains an interesting open problem.

We are now ready to state our main theorem. The most general theorem can be found in
Section 2, and in what follows we present our theorem in a regime of parameters that we think
is of particular interest.

In what follows, we let tmin denote the minimum value for which the underlying error-free
protocol Π transmits at least tmin bits.

Theorem 1 (Main Theorem (informal)). For any sufficiently small ε ≥ 0 and for any ε′ ≤ ε1/4,
there exist blowup parameters α and α′, and a polynomial time probabilistic oracle machine S,
such that the following holds. For any adversary A that corrupts at most ε-fraction of the bits of
the simulated protocol Π′A (which is the protocol Π′ executed with the adversary A), and “fully”
corrupts at most ε′-fraction of the messages of Π′A, where A “fully” corrupt a message if he
corrupts at least α2-fraction of the bits of the message, we have the following guarantees.

1. CC(Π′A) ≥ tmin.

2. Pr [CC(Π′A) > (1 + α)CC(Π)] = exp (−CC(Π′A)).

3. Pr [R(Π′A) > (1 + α′)R(Π) + α′ log CC(Π)] = exp (−R(Π′A)).

4. Pr [(Output(Π′A) 6= Trans(Π))] = exp (−CC(Π′A)).

Moreover, we can choose the parameter α, α′ such that α = Õ(ε1/4) and α′ = O(1), or we can
choose α, α′ such that α and α′ approach 0 as ε approaches 0.

6Braverman [Bra12] showed how to improve the parties’ runtime to be sub-exponential in T .
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The purpose of tmin. In the theorem above, without adding the restriction that CC(SA, SB) ≥
tmin, the simulated protocol could have aborted as soon as more than ε-fraction of error
was detected. In particular, if the first bit was noticeably corrupted, then the parties in
the simulated protocol could have safely aborted. Thus, without adding the restriction that
CC(SA, SB) ≥ tmin, this theorem does not even generalize previous works, which all assume an
a priori fixed transcript size t and assume the adversary makes at most εt corruptions. Adding
this restriction, gives the adversary an initial budget of εtmin corruption bits. Moreover, since
the error probability is exponentially small in the actual transcript length, the requirement
CC(SA, SB) ≥ tmin guarantees a low error probability.

1.3 Overview of Our Techniques

In this section we give a high-level overview of the main ideas behind our construction and
our analysis. In this overview, we do not focus on getting “optimal” parameters, and focus on
constructing an error-resilient scheme that blows up the round and communication complexity
by a constant factor. We note that all the conceptual ideas in this work are needed even to
achieve constant overhead.

We start with an arbitrary protocol Π.

Smoothness. We first convert Π into a smooth protocol, with the property that after a
message of length ` comes a message of length at most 2`, and before a message of length `
comes a message of length at least `/2. We mention that in the actual protocol, to minimize
the blowup in rounds and communication, we define (α, β)-smoothness, where α and β are
functions of the error rate ε, and the guarantee is that after a message of length ` comes a
message of length at least α` and at most `

β , and we show how to convert any protocol Π into
an (α, β)-smooth protocol.

As mentioned above, the reason we need to smoothen Π is that otherwise, if after receiving
a short message a party sends a long message, then the adversary by corrupting the short
message, can cause the long message to be wasted, thus effectively allowing him to corrupt the
long message by only using the budget needed to corrupt the short message.

Intuitively, we smoothen Π by instructing a party who wishes to send a long message after
receiving a short message, to do so “cautiously”, by sending the long message over several
rounds, each time increasing the message length by at most a factor of 2.

To ensure that this does not cause a blowup to the round complexity, we make sure that
a party does not send a short message after receiving a long one. Otherwise, suppose Alice
always sends long messages (each of length `) and Bob always sends single bit messages. Then
by having Alice send her messages “cautiously”, as explained above, the round complexity will
blowup by a factor of log `, which is too large. Instead, we instruct Bob to send longer messages,
of length α`, so that the adversary will need to invest enough budget to corrupt Bob’s message;
in particular, enough to allow Alice to send her length ` message safely.

We refer the reader to Section 3 for the formal definition of smoothness, and to Lemma 6
for how to convert a protocol into a smooth one.

From now on we assume the protocol Π is smooth, and show how to convert it into an error
resilient one.

Message adversary. We first note that we can focus our attention only on adversaries,
that rather than corrupting individual bits, corrupt messages, where the price of corrupting a
message m is the maximum between the length of m and the length of the corrupted version
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of m. If the adversary chooses to corrupt a message m then he may corrupt it adversarially,
and if the adversary chooses not to corrupt a message then he cannot make any changes to it.

The reason we can focus on such adversaries is that we can easily convert any protocol
that is resilient to errors made by message adversaries into a protocol that is error resilient to
any adversary by applying an error correcting code to each message, and hence if only a small
fraction of a message is corrupted (smaller than the allowed error rate) then this corruption
can be ignored, since it is immediately corrected by the error correcting code. We use the error
correcting code of Guruswami and Li [GL16], that is resilient to insertion and deletions, and
has a minimal blowup of 1 + Õ(

√
ε) to the message length.

Thus, from now on, throughout this section, we ignore the layer of error correcting code,
and consider only message adversaries.

1.3.1 The Protocol in the Ideal Hash Model

We first show how to convert any protocol Π into a protocol that is error resilient in the Ideal
Hash Model. As in previous works (starting with the original work of [Sch92]), our starting
point is the idea of using hashing to check for consistency. Namely, in the protocol Alice and
Bob check equality of their partial transcripts, by sending to each other hashes of their partial
transcripts.

In the Ideal Hash Model, we assume the existence of an “ideal” hash function, that is known
to all parties and does not need to be communicated, and in the analysis we assume that the
number of hash collisions is bounded, yet adversarially chosen (where the cost for each hash
collision is proportional to the length of the hash value). We later elaborate on how we remove
this ideal model assumption, by implementing this ideal hash using a real hash function.

For the sake of simplicity, throughout this overview we think of the parties appending to
each message they send a hash of their transcript so far. We mention however, that in the
actual protocol, since we want to optimize the communication blowup, we append a hash only
to “long enough” messages, i.e., messages of length at least d, for a carefully chosen parameter
d ∈ N. In particular, we do not append a hash to short messages, and instead add a hash in
every round that divides d (to take care of the case where all the messages are short).

Each party, upon receiving a message, first checks the consistency of the corresponding hash
with its current transcript. If an inconsistency occurs, the parties enter a correction mode.

Correction Mode. In correction mode, the parties realize that their transcripts are inconsis-
tent, and they need to rewind their transcript to a point where they believe they are consistent,
yet without backtracking too much. Note that once an error is detected, the parties cannot
simply rewind their transcript one round at a time, since the adversary can cause them to
completely get out of sync. Moreover, they cannot send each other the round number they
are currently simulating, as was done in [BK12], since this will blowup the communication by
too much. Instead, we adapt the idea of backtracking to a “meeting point”, an idea that was
originated in [Sch92] and used in [Hae14]. For the sake of completeness, we explain this idea
below.

Once the parties realize they are not in sync, they enter a correction mode, and once in
error mode, they send two hashes of their transcript: One hash of the entire transcript, and the
other of the transcript up until the second largest round. If a consistency was found they go
back to the point of consistency. Otherwise, they send two hashes of their transcript until the
largest, and second largest, round which is a multiple of 2. Again, if a consistency was found
they go back to the point of consistency. Otherwise, in the i’th try, they send two hashes of
their transcript until the largest, and second largest, round which is a multiple of 2i−1.
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In order to avoid the situation where the adversary invests O(1) corruptions, and causes a
party to go back 2i steps, and thus lose 2i bits of a possibly good transcript, the parties go
back 2i steps only after receiving roughly 2i confirmations. The confirmations cannot be in a
single round, since then the adversary could corrupt a single round and cause the parties to go
back (possibly) 2i rounds. Thus, instead these confirmations should span roughly 2i rounds,
and each party keeps a counter of how many confirmations it has.

One important missing piece is that they can be out of sync with respect to which are the
meeting points. Thus, we also append to the message a hash of E, which denotes the number
of rounds the party is in the error mode, and this length determines where the meeting points
should be (which is roughly the power of 2 closest to E).

In previous works, once the parties backtrack, they erase the (seemingly) inconsistent tran-
script and continue to simulate the actual protocol. One important point where our protocol
differs from all previous work, is that in our protocol the parties cannot afford to erase their
(seemingly) inconsistent transcripts. This is due to the fact that the messages in the (seemingly)
inconsistent part may be very long. For example, consider the case where the last message added
to the transcript is of length 1, the one prior is of length 2, the one prior is of length 4, then
length 8, and so on. Suppose no errors occurred and everything is consistent. The adversary can
corrupt the hash appended to the short (1 bit) message, making the parties believe that their
transcripts are inconsistent. The parties will backtrack, but the adversary will continue to make
them believe that they are inconsistent, so that they erase i messages. This means erasing 2i

bits of communication, which is way more than the parties can afford to erase. Therefore, in our
protocol, rather than erasing the (seemingly) inconsistent transcript, we keep it as questionable,
and enter what we call a verification mode.

Verification Mode. In the verification mode, the parties simply test whether their question-
able messages are consistent. They do this round-by-round, by sending a hash of the messages
corresponding to each round. If their hashes agree, they mark the round as valid, and continue
to the next round. If they arrive to a round where their messages do not agree, they don’t
immediately erase all the questionable transcript. Rather, they erase it only after they are “suf-
ficiently” confident that they are inconsistent. To this end, they send longer and longer hashes
until the number of bits of hash are proportional to the (seemingly) inconsistent transcript, and
if the inconsistency persists then the parties erase their questionable transcript, and continue
to simulate the underlying protocol.

This protocol is formally presented in Section 4, and the formal analysis in the Ideal Hash
Model can be found in Section 4.2 and in Appendix B.

1.3.2 Our Protocol in the Shared Randomness Model

We next show how to implement the ideal hash functions with a specific hash function. To this
end, we construct a function family H = {hx}, where each hash function hx is associated with
a (possibly long) seed x.

We consider the shared randomness model, where the parties are allowed to share a (possibly
long) random string. We later show how to eliminate the need for shared randomness. But
for now, we assume that the shared randomness is as long as we need. In particular, we use a
different hash function (i.e, a different seed) for each equality test, and assume that the shared
random string contains all these seeds. Since the length of the protocol is adaptive and not a
priori bounded, the length of the common random string is also not a priori bounded.7

7We later show how we convert any such protocol in the unbounded shared randomness model into one that
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We emphasize that the shared randomness (and in particular the seeds) are known to the
adversary. Therefore the adversary, given a seed x, can try to skew the protocol and cause the
parties to send many messages whose hashes collide.

Note that the adversary has
(
t
εt

)
= 2Õ(ε)t different ways to corrupt the t bits of the com-

munication. Thus, he can cause hash collisions in approximately Õ(ε)t bits. If we append each
message of size ` with O(`) bits of hash, the adversary will be able to cause hash collisions
in messages with total volume of Õ(ε)t, which is within the allowed error range. Indeed, our
main challenge is to bound the number of rounds with hash collisions, a challenge that previous
works did not need to deal with since in their setting, communication complexity and round
complexity are equivalent.

If we a priori knew the length of the transcript t and the number of rounds R, then we could
add U = t

R bits of hash to each message, and since the adversary can cause only Õ(ε)t bits
of hash collisions, the number of rounds in which the adversary can cause a hash collision, is
bounded by Õ(ε)R, which is again within our allowed error range.

Since we don’t have such a bound, it is tempting to append to each message sent in round r
a hash of length Ur = tr

r , where tr is the communication up to the round r. But the following
example shows that such a padding does not suffice, and the adversary can still force too many
rounds with hash collisions.

Consider a protocol that consists of Õ(1/ε) chunks such that chunk 0 consists of k single bit
messages, and each chunk i 6= 0 consists of a single (long) message of length 2ik, followed by
Õ(ε)k single bit messages. Note that in this case, the total number of hash bits in chunk i is ≈ 2i,
and thus an adversary that corrupts the long message of this chunk can cause hash collisions in
all the rounds of the chunk, resulting with a total of O(R) rounds with hash collisions.8

To overcome this issue, the idea is to partition the protocol to chunks (which we call regimes),
and append to each message a hash of length that is proportional to the average length of a
message in the chunk. To be precise, we append to each message a hash of length Ur =
maxr′<r

tr−tr′
r−r′ . Unfortunately, in this case the total amount of hash bits being added can be as

large as t log t, which we cannot afford.
To overcome this issue, in each round, instead of sending all the Ur bits of hash, we send

only a hash of these bits, where the seed of this (outer) hash is chosen using private random-
ness. Specifically, rather than sending Hx(T ) (which consists of Ur bits), the party chooses
a random seed S, and sends HS(Hx(T )), together with S. This reduces the number of bits
being communicated from Ur to logUr. Since the adversary does not a priori know the private
randomness chosen by the parties, he cannot corrupt the history to cause a hash collision in
HS in too many rounds. Moreover, since we saw that he cannot cause hash collisions in Hx(T )
in too many rounds, these hash functions are “safe”. We note that a similar idea of using a
randomized hash function was used by Haeupler [Hae14], for the sake of improving the rate of
his interactive coding scheme. We refer the reader to Section 5 formal description of the hash
function and to Appendix C.1 for the analysis of the number of hash collisions.

Finally, to conclude the analysis, we need to show that adding these (randomized) hash
functions does not blow up the communication by too much. More precisely, one needs to show
that

∑
r logUr = O(t). This analysis is extremely delicate and requires several new ideas. This

is done in Appendix C.2.

uses only private randomness.
8to be more precise, we need a long enough message at the end of the protocol to give the adversary enough

budget to corrupt all of the long messages.
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1.3.3 The Protocol in the Private Randomness Model

Finally, we show how to remove the need for shared randomness, while using only the private
randomness of the parties. Namely, we show how to convert any protocol Π in the shared
random string model, to one that uses only private randomness.

The basic idea is to follow the approach used in previous works (such as [BK12, Hae14]),
and replace the long shared randomness with 2−O(T )-biased randomness, where T is an upper
bound on the communication complexity. Such 2−O(T )-biased randomness can be generated
using only O(T ) random bits. So, the basic idea is to send these O(T ) bits of randomness in
advance, using an error correcting code. If we indeed had a bound T on the communication
complexity, then this idea would work, and we would be done.

However, in our setting, we do not have an a priori bound on the communication complex-
ity. In particular, if the communication complexity exceeds O(T ), then the adversary has the
budget to corrupt more than O(T ) bits, and hence can completely corrupt the randomness s.
We overcome this problem by sending more (and “safer”) randomness as the communication
complexity increases.

The protocol starts when one of the paries, say Alice, samples the shared random string
s1 ∈ {0, 1}O(tmin) on her own (using her private randomness), and sends it to Bob. Then the
parties execute Π with s1 as the shared randomness. Once the communication complexity
exceeds O(tmin/ε), where ε is the corruption rate of the adversary, the random string s1 is no
longer “safe”, and the the parties exchange a new random string s2 of length O(t1), where t1
is the current communication complexity. In addition to sending the new random string s2 the
parties also resend the previous random string s1. The reason for resending previous seeds is
that by resending the seeds the goal is to ensure that if one of the seeds was ever corrupted
then the parties will “catch” the adversary, since the adversary does not have enough budget
to continue to corrupt that seed, and the first time that he does not corrupt it, the parties will
notice the inconsistency and abort, with the guarantee that the adversary performed too many
errors.

In a similar way, after the communication complexity exceed t2 = O(t1/ε) a party will choose
at random s3 such that |s1|+ |s2|+ |s3| = t2, and will send (s1, s2, s3), where t2 is the current
communication complexity, etc. As mentioned above, we ensure that if at any point, a message
encoding randomness was decoded incorrectly, then eventually the paries will abort, and “catch”
the adversary with injecting too many errors. This guarantee simplifies the analysis: Either
at some point a randomness message was decoded incorrectly, in which case the adversary is
“caught” with injecting too many errors, or all the parties always agree on the randomness,
in which case correctness follows from the correctness of the underlying protocol in the shared
randomness model.

A minor problem with the above idea is the following: a randomness message (s1, s2) may
have been corrupted and converted into a protocol message, and a few rounds later a protocol
message could have been corrupted and converted into the same randomness (s1, s2). To ensure
that the parties will notice such corruption, we add to the randomness also the rounds r1, . . . , rk
in which randomness were sent.

However, there is still a problem with the above idea, which is that in the early stage of
the protocol, the shared random string has relatively large bias since it is generated using a
short seed, and yet the adversary may have the budget to corrupt many bits, since the total
communication may be large. It can be shown that such a powerful adversary can make too
many hash collisions in the first part of the protocol.

To overcome this problem, we “enforce” that the adversary corrupts at most O(ε) fraction
of any prefix of the protocol. To do so, in each time ti, in addition to sending (s1, ..., si+1)
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(together with (r1, . . . , ri)), the parties send the transcript they have seen so far. If the parties
detect that the adversary made significantly more than the allowed ε fraction of error, they
abort, causing him to fail by exceeding his allotted corruption budget.

The formal protocol is described in Section 6, and its analysis is provided in Appendix D.

2 Our Results

In this section we present our main theorem, and give an intuitive argument for why our
parameters seem to be optimal. We start by introducing notations and definitions that we use
in our theorem, and throughout the manuscript.

2.1 Notations and Definitions

For any 2-party protocol Π = (A,B), we denote by Trans(Π) the transcript of Π, which con-
sists of all the messages exchanged throughout an execution of the protocol Π. We denote by
Output(Π) the output of the parties after executing Π. We think of the protocol Π as being a
deterministic protocol with no inputs. This is without loss of generality since we can always
hard-wire the randomness and input into the protocol. We denote by CC(Π) the communication
complexity of Π, and we denote by R(Π) its communication complexity.

We consider simulators for simulating an interactive protocols. A simulator is a probabilistic
oracle machine, that uses a protocol Π = (A,B) as an oracle, and produces a new protocol
Π′ = (SA, SB) that outputs the transcript of Π (even in the presence of error). For any
adversary A we denote by Π′A the protocol Π′ executed with the adversary A.

Definition 2. We say that an adversary A corrupts at most ε-fraction of the bits of a protocol
Π′ if the number of corruptions made by A is at most εCC(Π′A), where each corruption is either
a toggle, an insertion or a deletion. The adversary A can be computationally unbounded, and
its corruptions may depend arbitrarily on states of both parties in Π′.

Definition 3. We say that a message is γ-corrupted if the adversary corrupts at least γ-fraction
of the bits of the message.

We say that f(x) = Õ(g(x)) if there exists a c ∈ N such that f(x) = O (g(x) logc (g(x))) and
we say that f(x) = Ω̃(g(x)) if there exists c ∈ N such that f(x) = Ω

(
g(x) log−c (g(x))

)
.

2.2 Our Main Theorem

Theorem 4. There exists a universal constant α0 ≥ 0 such that for any blowup parameters

α ≤ α0 and α′ ≤ 1, there exist parameters ε = Ω̃
(
α3+ 1

α′
)

, ε′ = Ω̃(αα′3), and δ = αO(1/α′), and

there exists a probabilistic oracle machine S, such that for any protocol Π = (A,B), in which the
parties always transmit at least tmin bits (even in the presence of error), and for any adversary
A that corrupts at most ε-fraction of the bits of the simulated protocol Π′A, the protocol Π′A
(which is the protocol Π′ executed with the adversary A), satisfies the following properties.

1. CC(Π′A) ≥ tmin.

2. There exists t0 = (1 + Õ(α))CC(A,B) such that for all t > t0

Pr[CC(Π′A) > t] ≤ 2 · 2−δt ,

where the probability over the private randomness of S.
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3. There exists r0 = (1 +O (α′))R(A,B) + O

(
1

log 2
α′

log CC(A,B) + 1

)
such that for any

r ≥ r0, if at most ε′-fraction of the messages are α2-corrupted, then

Pr
[
R(Π′A) > r

]
≤ 2 · 2−δr ,

where the probability over the private randomness of S.

4. For any t > 0,

Pr
[(
Output(Π′A) 6= Trans(Π)

)
∧
(
CC(Π′A) > t

)]
≤ 2 · 2−δt ,

where the probability over the private randomness of S.

5. S is a probabilistic polynomial time oracle machine, and hence the computational efficiency
of SA and SB is comparable to that of A and B, respectively.

In Section 2.3 below, we give an intuitive argument for why our parameters seem to be
optimal. Then, the rest of the manuscript is devoted to proving Theorem 4. Before, explaining
our choice of parameters, in what follows, we give a high-level overview of the structure of the
proof of Theorem 4.

Road Map. We first convert Π = (A,B) into a smooth protocol Πsmooth. We show how this
can be done in Section 3. Then, in Section 4, we show how to convert any smooth protocol
Πsmooth into a protocol Πideal, which is error-resilient in the ideal hash model. In this model,
we assume that the adversary is a “message adversary”, which means that if he corrupts even a
single bit of a message the price he pays for such a corruption is the length of the entire message
(more precisely, the maximum between the length of the original message and the length of the
corrupted version of it). Moreover, we assume that the number of hash collisions is bounded
and adversarially chosen. We refer the reader to Section 4 for details.

In Section 5, we show how to convert Πideal into a protocol Πrand1 , which is error resilient in
the common random string model, assuming the adversary is a “message adversary”. Loosely
speaking, this is done by instantiating the ideal hash using public (and private) randomness.
In Section 6, we show how to instantiate the common random string using private randomness,
to obtain a protocol Πrand2 that is error resilient against any “message adversary”. Finally, we
convert Πrand2 into Π′ = (SA, SB), where Π′ is the same as Πrand2 , except that each message
is sent encoded with the error correcting code that is resilient to insertions and deletions. In
Section 7, we “put it all together” and prove that Π′ is the error resilient protocol guaranteed
in Theorem 4 above.

2.3 Intuition Behind our Parameters

In what follows, we give an intuitive argument for why our parameters seem to be optimal. We
emphasize that this is by no means a proof of optimality, but rather an intuition for where these
parameters came from.

As mentioned above, since messages can be of arbitrary length, and since we do not want to
blow up the round complexity by much, we must use an error-correcting code that is resilient
to (adversarial) insertions and deletions. To date, the maximal rate error-correcting code that
is resilient to (adversarial) insertions and deletions is due to Guruswami and Li [GL16]. This
code blows up the message length by 1 + Õ(

√
ε) and is resilient to ε fraction of errors.

Moreover, as argued in Section 1.3, in order to ensure a small blowup in communication
our error-resilient protocol must be relatively “smooth”. In other words, in the error-resilient
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protocol, after a message of length ` we should not send a message much longer than `, since
then the adversary will corrupt the length ` message and as a result will cause the next long
message to be obsolete. Suppose for simplicity (for now) that all the messages are all of the
same length `.

Suppose our protocol has blowup 1 + Õ(α) in communication complexity. Thus, we can use
the error-correcting code of [GL16] that blows up the message length by at most (1 + Õ(α)).
This code is resilient to α2 fraction of errors. Thus, by corrupting α2` bits of a message the
adversary can make the next round completely obsolete. Since the adversary can corrupt ε-
fraction of the bits, he can make ε

α2 -fraction of the rounds obsolete, which implies that it must

be the case that ε
α2 ≤ α, which in turn implies that α > ε1/3.

Note, however, that we cannot assume that all the messages are of the same length since
this will blow up the round complexity by too much. And yet, as mentioned above, we do
need to assume that the error-resilient protocol is somewhat “smooth”, since otherwise the
communication complexity will blow up by too much. Thus, we let β > 0 be a parameter, such
that in the error-resilient protocol after a message of length ` comes a message of length at most
β−1`. Now, an adversary corrupting Õ(α2·`) bits of a message can cause β−1` bits to be obsolete.
Thus, intuitively, the parties may waste α−2 · β−1 bits of communication per each corruption.
This, together with the fact that the adversary has an ε-fraction of corruption budget and the
fact that the communication blows up by at most 1+ Õ(α), implies that α−2 ·β−1 · ε < α, which
in turn implies that

α3 · β > ε. (1)

Therefore, on the one hand we would like to make β as large as possible, to improve the
communication rate; on the other hand, increasing β blows up the round complexity. At first
it seems that requiring this smoothing condition (i.e., that after a message of length ` comes a
message of length at most β−1`), will blow up the round complexity by too much. The reason is
the following: Consider the real world example, where each message sent by Alice is of length `,
and each message sent by Bob is of length 1. Thus, to ensure that Alice is not wasting ` bits of
communication due to a single error in Bob’s message, we need to make the protocol smooth
and have Alice send her message slowly, first sending the first β−1 bits, then after getting a bit
of approval from Bob, Alice will send the next β−2 bits of her message, and so on. Thus, the
number of rounds it will take Alice to send her message is roughly log 1

β
(`). This will cause a

blowup of roughly log 1
β

(`) to the round complexity, which is way too much.

To avoid this blowup, we want to make sure that after a long message does not come a
message which is too short, since short messages may cause a blowup to the round complexity
(if the following message is long). However, this should be done while adding at most an α
fraction to the communication complexity. Thus, we also smooth the protocol in the “other
direction” and require that after a message of length ` comes a message of length at least α`.
Thus, going back to our example above, where Alice is talkative (sends messages of length `)
and where Bob sends messages of length 1, we first convert this to another protocol where Bob
sends messages of length α`. This does not change the round complexity at all, and changes
the communication complexity by at most an α-factor. Now, we smoothen out this protocol,
by having Alice, rather than sending her ` bit message in “one shot”, she will first send β−1α`
bits, then send the next β−2α` bits, and so on. Note that this will cause a blowup of log 1

β
(α−1)

in the round complexity. Since we allow a blowup of at most α′ to the round complexity
(without taking into account the blowup due to error, or the additive term), we take β so that
log 1

β
(α−1) ≤ α′, and thus we must take β such that β ≤ α1/α′ . This together with Equation (1),

implies that
α3+1/α′ > ε,
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as in Theorem 4 above.
It remains to explain the additive term in the round blowup and the multiplicative term

that depends on the round error-rate ε′. For the latter, clearly, if ε′-fraction of the rounds were
completely corrupted, these rounds need to be redone, and this incurs a blowup of 1 + ε′ to the
round complexity. As to the former, suppose the original protocol consists of a short message
followed by a very long message, to make this protocol error resilient we will have to blow up
the round complexity by essentially log 1

β
CC, where CC is the communication complexity of the

original protocol. This is the reason we have the log additive term in the round complexity.
Finally, we explain why ε′ = α · poly(α′). We note that for the purpose of our application

(Theorem 1) the exact power of α′ is not important. Consider a protocol that consists of a
single bit per round. In this case we can effort to add a hash check only every α−1 rounds. In
this case, the adversary can corrupt the first message of each chunk of α−1 rounds, which would
render the entire chunk useless. Thus, a corruption of ε′-fraction of the rounds, may result with
a round blowup of ε′α−1 ≤ α′, which implies that indeed ε′ ≤ αα′.

3 Smooth Protocols

Throughout this section, we refer to “rounds” in a protocol as a one way communication.
Namely, the number of rounds in a protocol is equal to the number of messages that are sent
in the protocol. We note that in Section 4 we diverge from this interpretation, and refer to
“rounds” as a back-and-forth communication between Alice and Bob. This inconsistency allows
us to simplify the notation and the presentation. Note that these two interpretations can be
interchanged, while incurring a blowup of at most 2 in the round complexity.

Let Π be an arbitrary 2-party protocol. We denote by mr the messages sent in the rth round
in Π. In this section we show how to convert any protocol Π into a smooth protocol SΠ. In
what follows we denote by Mr the message sent in the rth round in SΠ.

Definition 5. A protocol is (α, β)-smooth if for every round r the following holds:

α ·max{|Mr−1|, |Mr−2|, |Mr−3|} ≤ |Mr| ≤
1

β
·min{|Mr−1|, |Mr−2|, |Mr−3|} (2)

Lemma 6. For any α < 1
4 and β ≤ α

8 , the following holds: Any protocol Π can be efficiently
converted into an (α, β)-smooth protocol SΠ such that

1. CC(SΠ) ≤ CC(Π) · (1 + 50α).

2. R(SΠ) ≤ R(Π) · (1 + 8 log2β α) + 4 log 1
2β
·CC(Π) + 4

3. If Π is computationally efficient then so is SΠ.

We defer the proof of Lemma 6 to Appendix A.

Remark 7. In Sections 4, 5, and 6, we show how to convert a smooth protocol into an error-
resilient one. Similarly to previous error-resilient protocols in the literature, we will first pad
the smooth protocol, and only then we convert the padded protocol into an error-resilient one.
However, we will need to pad our protocol in a smooth way. This is done as follows: Suppose
we want to pad our protocol with anywhere between L and 2L bits of 0’s. Suppose that the last

message in the smooth protocol is of length `, then we add a message of length
⌊
`
β

⌋
, followed by

a message of length
⌊
`
β2

⌋
, and so on, until we add between βL and L bits, after which we add

L bits (if we haven’t added so already).
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Note that such a padding results in a smooth protocol, where the communication complexity
increases by at least L and at most 2L bits. The number of additional rounds required to do this
padding is at most log 1

β
L+ 1.

From now on, when we say that we convert a protocol Π to a smooth protocol, we assume
that the resulting smooth protocol is padded appropriately.

4 Interactive Coding in the Ideal Hash Model

In this section, we show how to convert any protocol Π into an error resilient protocol, and
analyze its properties in the Ideal Hash Model. This model assumes the existence of an ideal
hash. In our protocol, Alice and Bob check equality of their partial transcripts, by sending to
each other hashes of their partial transcripts. In this section, we consider the Ideal Hash Model,
where when we analyze the communication complexity of the protocol we do not take into
account the length of the hash values, and simply assume that the number of hash collisions is
bounded, yet adversarially chosen. (We explain how we bound the number of collisions below).
In Sections 5 and 6, we show how to remove this ideal model assumption, by implementing
this ideal hash using a real hash function. In these sections, we use hash values that are short
enough so the communication blowup is small, and yet we prove that with high probability the
amount of hash collisions is bounded.

Moreover, we consider an adversary that either leaves a message (and corresponding hash)
intact, or “fully” corrupts it. More precisely, we say that the hash is corrupted if and only if a
collision occurs. In the analysis of this ideal error-resilient protocol, we say that a message is
corrupted if the adversary corrupts any bit of the message (or if he corrupts the corresponding
hash). We let the budget of corrupting a message be the maximum between the original message
length, and the corrupted one. In particular, even if the adversary corrupted a single bit of a
long message of length n (or if he corrupts only the hash corresponding to this message), we
count it as n corruptions. We recall that the reason for this budgeting is that in our actual error-
resilient protocol we will apply the error correcting code of Guruswami and Li [GL16] to each
message (and hash) separately. Thus, in order to corrupt a message, the adversary will need to
corrupt a constant fraction of the bits in the message. We refer the reader to Section 7 for details.

In what follows, we set

α ≤ 0.01 , α′ ≤ 1 , d ≥ 1

α
and β ≤ min

{
α

1
α′ ,

1

5αd2

}
. (3)

We assume for simplicity that α−1 and β−1 are integers. We assume without loss of general-
ity, that the underlying protocol Π is (α, β)-smooth. This is without loss of generality since by
Lemma 6, we can convert Π to an (α, β)-smooth protocol while increasing its communication
complexity by a multiplicative factor of (1 + O(α)), and increase the number of rounds by a
multiplicative factor of (1 +O(α′)) and an additive factor of at most log CC(Π), as desired.

4.1 The Protocol

We note that this (ideal) protocol is quite similar to the error-resilient protocol of Haeu-
pler [Hae14]. The main difference being that we need to first convert the protocol into a
smooth one (whereas the protocol considered in [Hae14] is perfectly smooth since in each round
each party sends a single bit to the other party). Moreover, and more importantly, since our
protocol is not perfectly smooth, when the parties backtrack, they do not erase the questionable
transcript (since the messages in the questionable part may grow exponentially). Instead, the
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parties keep this transcript as questionable, and enter a “verification” state where they check
consistency round-by-round. We note that in [Hae14] the questionable transcript is simply
erased.

In what follows, we present the (error-resilient) protocol only from Alice’s perspective. Bob’s
perspective is symmetric. During the (error-resilient) protocol, Alice has a private variable TA,
which she believes to be a prefix of the transcript she is trying to reconstruct. TA is initiated
to ∅. We denote by mA the message that Alice sends in the error resilient protocol.

In what follows, we define all the other notations (in addition to mA and TA) that are used
in the protocol description:

SA, RA, `A, `
+, `−, wA, R

(1)
A , R

(2)
A ,

where all of these variables are defined as functions of TA and mA.
From now on we think of each round as consisting of consecutive two messages: a message

sent by Alice and a following message sent by Bob. We note that this diverges from the way
we defined rounds in Section 3, where we thought of each round as containing a single message
(sent by one party). The only reason for this inconsistency is that it is more convenient in terms
of notations. It is important to note that this is only a notational convenience and does not
affect our final result in any way.

For each variable used in our protocol

vA ∈ {TA,mA, SA, RA, `A, `
+, `−, wA, R

(1)
A , R

(2)
A },

we denote by vA,r the value of vA that Alice uses when sending her round r message, and we
occasionally omit r when it is clear from the context.

• During the protocol Alice has a state

SA ∈ {Simulation,Verification} ∪ N.

Loosely speaking, Alice is in a Simulation state when she believes that the transcript TA
that she is holding is indeed a prefix of the correct transcript.

If SA ∈ N then we say that Alice is in a Correction state. If Alice is in Correction state,
then SA is the first round (in the error-resilient protocol) that Alice has entered this state.
Alice enters a Correction state when she thinks her beliefs are wrong (for example, when
the hashes indicate that TA and TB are inconsistent). During this state, Alice tries to go
back to an earlier round in the transcript (corresponding to the original protocol) which
she believes to be correct. We denote this round by RA. Alice will continue the simulation
from TA[RA], which denotes the truncated transcript of TA to round RA. As mentioned
above, as opposed to the protocol of Haeupler [Hae14], in our protocol, she does not delete
the suffix of TA, and rather she keeps this suffix as questionable. The reason she does
not erase this questionable suffix, is that it may be the correct suffix (and the only reason
it is questioned is due to an error), and in this case it may be too expensive to delete
and reconstruct, since in our case the messages in the questionable suffix may grow at an
exponential rate.

After a Correction state, Alice either enters another Correction state or enters a Verification
state, where she decides whether to completely delete, partially delete, or keep, the ques-
tionable suffix. After the Verification state (assuming there were no errors), Alice enters
Simulation state again.

We define r − SA to be zero, when SA ∈ {Simulation,Verification}.
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• As mentioned above, RA denotes the round in TA that Alice simulates. If SA = Simulation
then RA is equal to the number of rounds in TA.

• Let mA,r be the message that Alice sends in round r (of the error resilient protocol), and
let `A,r denote its size. Let mB,r be the message that Alice received from Bob in round r,
and let `B,r denote its size. We define `max,r = max{`A,r, `B,r}. Note that if Bob’s message
was corrupted then `B,r may be arbitrarily large. However, our (error-resilient) protocol

has the property that if Bob’s message was not corrupted then `B,r ≤
`A,r
β .

We define

`+r = min

{
`A,r
β
, 2`max,r

}
and

`−r = min

{
`A,r
β
,max

{
β−1, α`max,r

}}
.

• Let wA,r be 2blog(r−SA)c if SA,r ∈ N, and let wA,r be 0 otherwise. In other words, wA,r is
the number of rounds that the party has been in Correction state, rounded to the closest
power of two.

• If wA = 0 then let R
(1)
A = RA. Otherwise, let R

(1)
A < RA be maximal that divided wA.

• R(2)
A , R

(1)
A − wA.

• In the protocol, at each round r, Alice sends hashes to Bob if and only if r = 0 (mod d)
or `A,r ≥ d, in which case she sends five hashes, one hash corresponding to each of the
following strings: (

TA[RA], TA[RA + 1], TA[R
(1)
A ], TA[R

(2)
A ], SA

)
.

We note that if RA is equal to the number of rounds in TA, then Alice will not know the
partial transcript TA[RA + 1]. In this case we define TA[RA + 1] = TA[R].

Alice in round r. Upon receiving a message from Bob, parse the message as

(mB,r−1, H(TB,r−1[RB,r−1]), H(TB,r−1[RB,r−1 + 1]),

H(TB,r−1[R
(1)
B,r−1]), H(TB,r−1[R

(2)
B,r−1]), H(SB,r−1)).

We assume that in this ideal model, parsing is easy. When we implement this ideal hash function
in Section 5, we will make sure that indeed Alice will be able to parse correctly (assuming the
message was not corrupted). Denote the size of mB,r−1 by `B,r−1.

1. If SA,r−1 = Simulation then do the following:

(a) If a hash was sent by Bob (i.e., if `B,r−1 ≥ d or d divides r − 1) then check that

H(SB,r−1) = Simulation and H(TA,r−1[RA,r−1]) = H(TB,r−1[RB,r−1]).

(b) Check that the (partial) transcript (TA,r−1[RA,r−1],mA,r−1,mB,r−1) satisfies the (α, β)-
smoothness condition.

(c) If one of these conditions does not hold then let

• mA,r = 0`
−
r−1
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• SA,r = r

• (TA,r, RA,r) = (TA,r−1, RA,r−1).

(d) Else, set

• TA,r = (TA,r−1,mA,r−1,mB,r−1)

• RA,r = RA,r−1 + 1

• mA,r = Π(TA,r)

• SA,r = SA,r−1 = Simulation.

2. If SA,r−1 = Verification then check if all the following conditions hold:

(a) |mB,r−1| ≥ β−1.

(b) H(SA,r−1) = H(SB,r−1)

(c) H(TA,r−1[RA,r−1]) = H(TB,r−1[RB,r−1]).

If one of these conditions does not hold then let

• mA,r = 0`
−
r−1

• SA,r = r

• (TA,r, RA,r) = (TA,r−1, RA,r−1).

Else, do the following:

(a) If number of rounds in TA,r−1 is greater than RA,r−1 + 1, and

H(TA,r−1[RA,r−1 + 1]) = H(TB,r−1[RB,r−1 + 1]),

then let

• mA,r = 0`
−
r−1

• RA,r = RA,r−1 + 1

• (SA,r, TA,r) = (SA,r−1, TA,r−1).

(b) Else, if mA,r−1 = mB,r−1 = 1` for some ` > |TA,r−1| − |TA,r−1[RA,r−1]|, then set

• TA,r = TA,r−1[RA,r−1]

• RA,r be the number of rounds in TA,r

• mA,r = Π(TA,r)

• SA,r = Simulation.

(c) Else, if `+r−1 > |TA,r−1| − |TA,r−1[RA,r−1]| then let

• mA,r = 1`
+
r−1

• (TA,r, RA,r, SA,r) = (TA,r−1, RA,r−1, SA,r−1).

(d) Else, let

• mA = 0`
+
r−1

• (TA,r, RA,r, SA,r) = (TA,r−1, RA,r−1, SA,r−1).

3. Else, do the following:

20



(a) Compute the values v0
r , v

1
r , v

2
r as follows:

If H(SA,r−1) 6= H(SB,r−1) then set v0
r ← v0

r−1 + 1.

Else, if H(TA,r−1[R
(1)
A,r−1]) ∈

{
H(TB,r−1[R

(1)
B,r−1]), H(TB,r−1[R

(2)
B,r−1])

}
then set v1

r ←
v1
r−1 + 1.

Else, if H(TA,r−1[R
(2)
A,r−1]) ∈

{
H(TB,r−1[R

(1)
B,r−1]), H(TB,r−1[R

(2)
B,r−1])

}
then set v2

r ←
v2
r−1 + 1.

(b) If r − SA,r−1 is not a power of 2,9 then set

• mA,r = 0`
−
r−1

• (TA,r, RA,r, SA,r) = (TA,r−1, RA,r−1, SA,r−1).

(c) Else, if v0
r−1 >

1
2(r − SA,r−1) then let

• SA,r = r

• mA,r = 0`
−
r−1

• Set v0
r = v1

r = v2
r = 0.

(d) Else, if v1
r >

1
4(r − SA,r−1) then let

• SA,r = Verification

• RA,r = R
(1)
A,r−1

• mA,r = 0`
−
r−1

• Set v0
r = v1

r = v2
r = 0.

(e) Else, if v2
r >

1
4(r − SA,r−1) then let

• SA,r = Verification

• RA,r = R
(2)
A,r−1

• mA,r = 0`
−
r−1

• Set v0
r = v1

r = v2
r = 0.

(f) Else, set v1
r = v2

r = 0, and let

• mA,r = 0`
−
r−1

• (v0
r , RA,r, SA,r, TA,r) = (v0

r−1, RA,r−1, SA,r−1, TA,r−1).

Send mA,r, and if r = 0(mod d) or |mA,r| ≥ d then append to mA,r also(
H(TA,r[RA,r]), H(TA,r[RA,r + 1]), H(TA,r[R

(1)
A,r]), H(TA,r[R

(2)
A,r]), H(SA,r)

)
.

Remark. Bob behaves identically to Alice, except in Steps 1 and 2b, when Bob computes
his next message corresponding to the underlying protocol Π, he computes it by mB,r =
Π(TB,r,mA,r), whereas recall that Alice computed it by mA,r = Π(TA,r).

4.2 Analysis

Terminology. In what follows, we introduce terminology that we use in the analysis.
We allow the adversary to create collisions in the ideal hash function, in which case we say

that the hash was corrupted. We say that a message is corrupted if the adversary corrupts
any bit of the message, or corrupts the associated hash. We define the budget of corrupting a

9Recall that we define r − SA = 0 if SA ∈ {Simulation,Verification}, and we consider 0 to be power of 2.
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message m to be the maximum between the length of m and the length of the corrupted version
of m. Thus, even if the adversary corrupts a few bits of a long message of length n (or corrupts
the associated hash), then we count it as n corruptions. On the other hand, if the adversary
corrupted a single bit message by converting it into a long n-bit message, then we count it as n
corruptions.

We analyze the correctness of the (error-resilient) protocol assuming a bound on these mes-
sage corruptions.

Definition 8. We say that the corrupted messages have volume e if the sum of lengths of
corrupted messages (where each such length is the maximum between the length of the original
message and the length of the corrupted version of it) is e.

Using this terminology we prove the following theorem.

Theorem 9. Let Π = (A,B) be any (α, β)-smooth protocol, and let Π′ = (SA, SB) be the
simulated protocol defined above. Let A be any adversary in Π′, who corrupts at most e′ messages
of total volume of at most e. Then, the protocol Π′, executed with the adversary A, denoted by
Π′A, satisfies the following.

1. CC(Π′A) ≥ tmin, where tmin is a lower bound of the communication of any instance of Π.

2. CC(Π′A) ≤ CC(A,B) + 18β−1e+ 20dβ−1e′.

3. R(Π′A) ≤ R(A,B) + 906d log 1
β e
′.

4. The parties outputs transcripts of size at most CC(Π′A) that agree with Π on the first

CC(Π′A)− 18β−1e− 20dβ−1e′ ,

many bits.

5. S is a polynomial time oracle machine.

Remark 10. We will apply Theorem 9 with an adversary A that corrupts at most e′ = O(min{ε′·
R(Π′A), εdCC(Π′A)}) messages of total volume at most e = O(ε · CC(Π′A)), where ε ≤ O(α · β)

and ε′ ≤ α′

d·log β−1 . Thus,

CC(Π′A) ≤
CC(A,B) + 18β−1e+ 20dβ−1e′ ≤

CC(A,B) + 0(β−1ε · CC(Π′A)) +O
(
dβ−1 ε

d
CC(Π′A)

)
≤

CC(A,B)(1 +O(α)),

and

R(Π′A) ≤

R(A,B) + 906d log
1

β
e′ ≤

R(A,B) +O(d log
1

β
ε′ ·R(Π′A)) ≤

R(A,B)(1 +O(α′)),

as desired.
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Moreover, we will apply this theorem with a protocol Π which is padded by 18β−1e+20dβ−1e′ =
O(α · CC(Π′A)) zeros. Thus, Item 4 from Theorem 9 implies correctness.

For example, one can set α = O(min{
√
ε, (ε′)1/3}), and set β = O(α), d = 1

α , α′ = 1,
to obtain an error resilient protocol in the ideal hash model with constant blowup in round
complexity and 1 +O(α) blowup in communication complexity.

We defer the proof of Theorem 9 to Appendix B.

5 Hash Implementation with Shared Randomness

Recall that in Section 4, we presented an interactive coding scheme with the desired guarantees,
in the ideal hash model, where we assume that the number of hash collisions is bounded, and
where the budget for making a collision is proportional to the message length (where the message
length is the maximum between the length of the message that was sent and the corrupted
version of it). We denote this ideal protocol by Π.

In this section, we show how to implement the ideal hash with a real hash function. Loosely
speaking, given a hash function h, we convert the protocol Π to the protocol Πh which is
identical to Π, where the ideal hash function is replaced by h. In order to maintain the desired
efficiency and error-resilience guarantees, we need to ensure that, on the one hand, these hash
values are not too long; and on the other hand there are not too many hash collisions (i.e., that
these hashes form a good equality test). To ensure the latter condition holds, it is easy to see
that we cannot use a single (deterministic) hash function. Instead we use a family of randomized
hash functions.

We construct a function family H = {hx}, where each hash function hx is associated with
a (possibly long) seed x. In this section, we consider the shared randomness model, where the
parties are allowed to share a (possibly long) random string. In Section 6 we show how to
eliminate the need for shared randomness.

In this section we assume that the shared randomness is as long as we need. In particular,
we use a different hash function (i.e, a different seed) for each equality query. Since the length of
the protocol is adaptive and not a priori bounded10, the length of the common random string is
also not a priori bounded. We assume that there is a separate segment of the common random
string for each round r, and each such segment contains five hash seeds, since in Π, in rounds
that a party sends an ideal hash, the party sends five ideal hashes.

We emphasize that the shared randomness (and in particular the seeds) are known to the
adversary. Therefore the adversary, given a seed x can try to skew the protocol and cause
the parties to send many messages whose hashes collide. To get around this, we construct a
hash family, where each hx is a randomized hash function. When a party sends a hash of a
value V , the party will choose randomness S and will send (S, hx(V, S)). On the one hand, the
randomness S needs to be short, since otherwise this will blowup the communication complexity
by too much. On the other hand, the adversary cannot predict S, and thus will not be able
to skew the messages of the parties towards ones which the hashes collide. We note that a
similar idea of using a randomized hash function was used by Haeupler [Hae14], for the sake of
improving the rate of his interactive coding scheme.

Before presenting our randomized hash family, we start with some preliminaries.

10In Section 6, we convert any such protocol in the unbounded shared randomness model into one that uses
only private randomness.
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5.1 Preliminaries

Chernoff bounds.

Lemma 11. For any N ∈ N, and any N independent Bernoulli random variables X1, . . . , XN ,
each with mean ≤ γ, it holds that

Pr[
N∑
i=1

Xi > 2γN ] ≤ e−
1
3
γN .

Definition 12. A distribution D over Fn2 is δ-bias if for any v ∈ Fn2 \ {0n}, we have that∣∣∣∣∣ Pr
x∼D

[
n∑
i=1

vixi = 0

]
− 1

2

∣∣∣∣∣ ≤ δ .
Lemma 13. [NN93] There exists an absolute constant C ∈ N and an efficiently computable
function G : {0, 1}∗ → {0, 1}∗ such that for any size k and a uniformly random string S ∈
{0, 1}Ck , we have that G(S) ∈ {0, 1}2k is a 2−k-biased distribution of length 2k.

Lemma 14 (6.3 from [Hae14]). There exists a hash family F = {FL}L∈N, such that for every
L ∈ N it holds that FL = {fx}x∈{0,1}2L, and for every x ∈ {0, 1}2L, fx : {0, 1}≤L → {0, 1}.
Moreover, for any k ∈ N and for any vectors V A

1 , ..., V
A
k , V

B
1 , ..., V B

k ∈ {0, 1}≤L the following
holds:

1. For uniform x = (x1, . . . , xk) ∈ ({0, 1}2L)k it holds that for each i ∈ [k], the probability
that fxi(V

A
i ) = fxi(V

B
i ) is 1

2 whenever V A
i 6= V B

i , and 1 whenever V A
i = V B

i . Moreover,
for each i ∈ [k] these probabilities are independent.

2. For δ-biased distribution x = (x1, . . . , xk) ∈ ({0, 1}2L)k, it holds that the distribution(
1fx1 (V A1 )=fx1 (V B1 ), . . . ,1fxk (V Ak )=fxk (V Bk )

)
is δ-close to the case where x is uniform.

5.2 Our Hash Function

We are now ready to construct our family of randomized hash functions. We first define the
randomized hash family H′ = {h′x}, which uses the hash family F from Lemma 14. Recall
that the hash values of H′ should not be too long, since this will result in a large blowup in
communication complexity.

In our construction, as opposed to previous constructions [BK12, BKN14, Hae14], the length
of each hash value depends not only on the length of the message it is appended to, but it also
depends on the length of the entire communication up until the point that the hash was sent.
We note that if we were only concerned with the communication blowup and were not concerned
with the round blowup, then we could have the length of the hash value depend only on the
length of the message it is sent with (in similar spirit to prior work). However, as we argue
below, in order to ensure a constant blowup in round complexity, we must allow the length
of the hash value to also depend on the length of the entire history. This is illustrated in the
following example: Suppose that a short message is sent, and prior to this short message were a
few very long messages (in a way that satisfies the smoothness criterion). By corrupting a few
long messages, the adversary can cause a hash collision in many short messages (with hash),
which will result with a large blowup to the round complexity.
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Hence, we allow the length of the hash value, not only to depend on the length of the message
it is appended to, but also to depend on the length of the communication history. Note that
the parties do not necessarily agree on the history length even if no errors occur in the current
round, since the adversary may insert and delete bits throughout the protocol, in which case
they will fail to parse the message and hash pair correctly.

Thus, we define the hash family H = {hx}, where the output of hx includes the output
of h′x, the randomness used by h′x (which is needed in order check for equality), and also the
length of the hash value. Namely, we define

hx(V ) = (S, h′x(V ;S), 1 · 0w),

where S is the (private) randomness used by h′x, and w is the length of H ′x(V ;S).
We next define h′x. As we mentioned, the length of the hash values (denoted by w) may

differ from one round to the next, as they depend on the communication complexity so far, and
on the length of the current message sent. We will specify how w is defined below. But we first,
define h′x assuming w is known.

The seed x is random in
(
{0, 1}2L

)L
, where we assume that L is greater than the input V

(which is bounded by the communication complexity of the protocol up until the point where

the hash is sent). For any y = (y1, . . . , yL) ∈
(
{0, 1}2L

)L
and for any k ≤ L, let

fky (V ) = (fy1(V ), ..., fyk(V )).

where F = {fy} is the hash family from Lemma 14. The randomness for h′x is denoted by S
and is of size 2C ·w. Let h′x be the randomized hash function, that takes as input a variable V ,
randomness S, and outputs

h′x(V ;S) = fwG(S) (Z) ,

where

Z =

{
(f2w
x (V ), 0) if |V | ≥ 2w

(V, 1) if |V | < 2w

In what follows we show how the length w of the hash values are chosen. To this end we
need to define the following variables with respect to a certain round r.

• Let QA be the set of all rounds r in which Alice send a hash to Bob.

Note that these are exactly the set of rounds r such that r divides d or Alice send a
message of length ≥ d.

We define QB analogously.

• Let aAr be the number of messages that Alice sent with a hash until (and including)
round r. Namely,

aAr = |{r′ ≤ r : r′ ∈ QA}|.

We define aBr analogously.

• Let tAr be all the communication received by Alice until (and including) round r. We
define tBr analogously.

• For every r, if Alice sends the message in round r then define

ur = max
r′∈QA∩[r−1]

log
tAr − tAr′
aAr − aAr′

.

The definition is analogous in the case that Bob sends the message in round r.
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• For every round r, let `r denote the length of the message to be sent in round r, and let

wr = dα`re+ dure+ 9

⌈
log

1

γ

⌉
+ 6,

where α, γ > 0 are parameters of the scheme, where γ < α (it will be instructive to think
of γ = ε, where ε is the corruption budget of the adversary, and of α as the communication
blowup in the error-resilient protocol).

5.3 Analysis

We denote by E the set of all messages mA,r or mB,r that were not corrupted but had a hash
associated with them that formed a hash collision. Recall that for any set of messages T , we
denote by |T | the volume of T (i.e., the number of bits in T ), and we denote by |T |′ the number
of messages in T .

Lemma 15. Fix ε < 0.0005. The protocol ΠH defined in Section 5.2 satisfies the following: If
ΠH consists of ≤ t bits and ≤ r rounds, then for any adversary that corrupts messages with
total volume at most εt, we get that

1. With probability ≥ 1− 10 · e
− αγ

3 log 1
γ
t

(over the common and private randomness),

|E| ≤ 20γt.

2. With probability ≥ 1− 10e−
2
3
γr (over the common and private randomness),

|E|′ ≤ 70γr.

The proof of this Lemma is deferred to Appendix C.1.

5.4 Communication Bound

In this section we will bound the blowup of the communication of ΠH, defined in Section 5.2.
To this end, fix any adversary A for the protocol ΠH, that corrupts at most e′ messages of total
volume at most e. We define a corresponding adversary D for the protocol Π, that corrupts at
most e′ message of total volume at most e, as follows:

The adversary D sends the exact same messages as A does, excluding the hash values. Recall
that for each message in ΠHA , the part that belongs to the hash value is well-defined by the suffix
of the message 1 · 0w, and hence the adversary D is well defined.

Lemma 16.

CC(ΠHA) ≤ (1 + 50Cα) CC(ΠD) + e+ 600C log
1

γ
· k

where C is the universal constant from Lemma 13, and k is the number of rounds with hash in
ΠD.

The proof of this lemma is deferred to Appendix C.2.

6 Hash Implementation with Private Randomness

In this section we show how to implement the ideal hashes in protocol Π, defined in Section 4,
without resorting to shared randomness, but rather using only private randomness. To this end,
we will slightly modify the protocol Π, into a new protocol Π′.
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High-level overview of Π′. Lets first recall the approach used in previous works [BK12,
Hae14]. In these works, the long shared randomness is replaced with δ-biased randomness,
where δ = 2−αt and t is a bound on the communication complexity. Such δ-biased randomness
can be generated using only O(αt) random bits. Hence, in previous works, these O(αt) bits of
randomness are sent in advance (using an error correcting code). If we indeed had a bound t
on the communication complexity, then this idea would work, as explained below.

Recall that the randomness is used for equality testing. From Lemma 14, we know that
for any oblivious adversary (i.e., one that is independent of the randomness), the fraction of
collisions in the case where the seed is random is δ-close to the fraction of collisions in the case
where the seed is δ-biased. Denoting by N the number of possible oblivious adversaries, and by
taking a union bound over all possible oblivious adversaries, we conclude that the probability
that there exists an oblivious adversary that causes “too many” hash collisions in the case where
the seed is δ-based is bounded by the same probability where the seed is truly random plus an
additive term of δN . We note that

N ≤ 2H(ε)t · 4εt = 2O(ε log 1
ε
t),

and thus
δN = 2−αt · 2O(ε log 1

ε
t) = 2−Ω(αt).

Therefore, the probability that there exists an oblivious adversary that causes “too many” hash
collisions is at most 2−Ω(αt). Note that we can view any (non-oblivious) adversary as one that
chooses an oblivious adversary as a function of the public randomness, and runs this oblivious
adversary. Therefore, we conclude that for any (non-oblivious) adversary the probability that
there are “too many” hash collisions is bounded by 2−Ω(αt).

However, in our setting, we do not have an a priori bound on the communication complexity.
In particular, if we replace the CRS with δ-biased randomness, where δ = 2−αt for some t, and
if the adversary has a corruption budget of more than O(αt) bits (i.e., the communication
complexity is larger than αt

ε ), then our protocol is no longer safe. We overcome this problem
by sending more randomness as the communication complexity increases.

More specifically, the parties start by assuming that the communication complexity is some
small tmin, where tmin is a lower bound on the communication complexity. So, the protocol
starts when one of the paries, say Alice, chooses a random string s ∈ {0, 1}αtmin , and sends it
to Bob.11

Once t1 ≥ αtmin
ε bits are sent in the protocol, the safety of this randomness could be com-

promised, since the adversary has enough budget to compromise αtmin bits. Hence, each party,
before sending its message, will check whether sending this message will cause the communi-
cation complexity to exceed αtmin

ε . If so, then instead of sending the message, the party will
send new randomness. This time, the party will choose at random s2 of size αt1 − |s1| and send
(s1, s2). If this randomness is inconsistent with the first randomness sent (s1) then the party
receiving the randomness aborts.

Once the communication complexity is t2 ≥ αt1
ε , again the safety of the previous randomness

could have been compromised, and hence as above, if a party is about to send a message that
will cause the communication complexity to exceed αt1

ε , then instead of sending the message,
the party will choose at random s3 such that |s1| + |s2| + |s3| = αt2, and will send (s1, s2, s3),
etc. If at any point the randomness received is inconsistent with the previous random string
then the party aborts. We refer to these special messages that transmit randomness by system
messages.

11As before, we ignore the error-correcting code, since we consider only message adversaries, that corrupt
messages as opposed to bits, and the budget for corrupting a message is the length of the message (or the length
of the corrupted message, whichever is longer).
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There is a slight problem with this idea: How does Bob know which message sent by Alice
corresponds to a message in the initial protocol Π, and which is a system message? We fix this
problem by appending 1’s to system messages, and appending 0’s to messages corresponding
to Π. However, recall, that we do not want to blowup the communication complexity. Hence
we only append these bits to long messages. This is enough, since system messages are always
long.

Note that according to our protocol the parties first receive randomness s1, then they receive
new randomness (s1, s2), and so on. We ensure that if at any point, a system message was
decoded incorrectly, then eventually the paries will abort, and “catch” the adversary with
injecting too many errors. This guarantee simplifies the analysis: Either at some point a
system message was decoded incorrectly, in which case the adversary is “caught” with injecting
too many errors, or all the parties always agree on the randomness, in which case correctness
follows from the correctness of the underlying protocol in the shared randomness model.

To ensure that indeed the parties will always notice when a system message was corrupted,
we add to the system message the rounds r1, . . . , rk in which system messages were sent. This
is done to circumvent the case where the message (s1, s2) was corrupted and converted into a
protocol message, and a few rounds later a protocol message was corrupted and converted into
the same system message (s1, s2). If we do not include the round number then the parties may
never notice that there was a point in the protocol where they did not agree on the shared
randomness. In order to avoid dealing with such cases, we simply include the round numbers
of the system messages.

Finally, we notice that even though we ensure that the parties always agree on the shared
randomness (assuming the adversary does not inject too many errors), there is still a subtle issue.
Note that the first random string s1 is δ-biased for δ = 2−αtmin . As we saw in previous work,
this suffices if the number of oblivious adversaries, restricted to the first tmin-bits, is bounded
by 2O(αtmin). However, in our setting, since the total communication may be significantly larger
than tmin, the number of such oblivious adversaries can be as large as 2tmin , in which case the
number of rounds with hash collisions can be large. To overcome this problem, we ensure that
in the first tmin bits of communication, the adversary cannot inject too many errors (without
being “caught”). This is done by re-sending the first tmin bits after tmin/α bits of the protocol
were transmitted, and the parties abort if these tmin bits are ε/α-far from the first tmin bits of
the transcript. More precisely, to each system message sent after t bits of the protocol were
communicated, we append the first αt bits of the transcript.

In what follows we present our protocol Π′. For the sake of simplicity, after each system
message is sent, the party receiving a system message replies with an “echo” message, by simply
repeating the system message. The purpose of this “echo” message is simply to allow the other
party to send his protocol message (which he didn’t have the budget to send in the previous
round).

The protocol Π′. Let b > 2, and let α ≤ 1
3200C , where C is the constant defined in Lemma 13.

Fix any d ∈ N and γ > 0 such that

γ ≤ min

{
1

d
, 2−b

}
and d ≥

log 1
γ

α
. (4)

For convenience the reader can think of b = 2 and γ = 1
d .

Let Π be the protocol, in the ideal hash model, defined in Section 4, instantiated with α and
d as above, and with any α′ > 0. Let tmin be a lower bound on the communication complexity
of Π, where

tmin ≥ max{α−2, 250Cα−1 log d}, (5)
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and let
W = αtmin.

Let H be the hash family defined in Section 5. The protocol Π′ makes oracle access to the
protocol ΠH (defined in Section 5).

In protocol Π′, each party maintains a transcript T initialized to ∅, an integer k initialized
to 0, k strings s1, ..., sk, k partial transcripts P1, . . . , Pk, and k rounds r1, ..., rk that will be
determined during the protocol. Intuitively, T is the transcript corresponding to Protocol ΠH,
s1, . . . , sk are k seeds that are used to generate the hash function implementing the ideal hash,
and r1, . . . , rk correspond to rounds in ΠH where the common randomness changes. Similarly
to Π (and ΠH), in Π′ we interpret the (partial) transcripts as strings.12 .

In Π′, if a party aborts, it always waits until at least tmin bits are sent before aborting
the protocol, so as to fulfill the requirement that the communication complexity of Π′ is at
least tmin.

In the first round of Π′ Alice does the following:

1. Choose s1 ∈R {0, 1}W , and let k = 1, r1 = 0, and P1 = ∅.

2. Send (s1, P1, r1, 1).

We next describe the protocol from Alice’s point of view, given her private state

(T, k, s1, . . . , sk, r1, . . . , rk, P1, . . . , Pk).

Bob’s view is symmetric (by switching between A and B). Upon receiving a message mB, Alice
does the following

1. If in the previous round Alice computed her message in step 4(e)ii of the protocol (or if
the previous round was the first round of the protocol) then check that mB is an echo
of (i.e., equal to) the message sent by Alice in the previous round. If not then halt, and
otherwise goto Step 4c.

2. Otherwise, denote ` = |mB|.

3. If ` ≥ bkW and the least significant bit of mB is 1, then do the following:

(a) If there exists s, P, r ∈ {0, 1}bkW , where r is a binary representation of |T |′, such that

(s1, ...., sk, s, P1, ...., Pk, P, r1, ..., rk, r, 1) = mB,

and such that P can be obtained from a prefix of T by corrupting messages of volume
at most |P |

bd log d , then define sk+1 = s, define rk+1 = r, Pk+1 = P , update k ← k + 1,
and send (an echo message) mB.

(b) Else, abort the protocol.

4. Else, do the following:

(a) If ` ≥ bkW then let m′B be the message mB when the least significant bit of mB is
truncated. Otherwise, let m′B = mB.

(b) Update T ← T ∪ {m′B}
12This is done by standard encoding, where after each bit of the transcript we add a bit that represents whether

the message ended or not. Thus, a transcript of length ` can be described by a string of length 2`.
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(c) Define mA = ΠH(T ), using x = x(s1, . . . , sk, r1, . . . , rk) as the shared randomness,
where the exact function x is defined later (after Lemma 54). If there is no mA to
send then abort.

(d) If |T ∪mA| < bkW
400Cα then do the following:

i. Update T ← T ∪ {mA}.
ii. Let ` = |mA|.
iii. If ` < bkW then send mA, and otherwise send (mA, 0).

(e) Else,

i. Let sk+1, Pk+1, rk+1 ∈ {0, 1}b
kW such that sk+1 is a uniformly chosen random

string, Pk+1 consists of the first bkW bits of T (where T is viewed as string) and
rk+1 is a binary representation of |T |′.13

ii. Send
(s1, . . . , sk, sk+1, P1, . . . , Pk, Pk+1, r1, . . . , rk, rk+1, 1).

iii. k ← k + 1.

Theorem 17. Fix any adversary A for Π′ that corrupts ε′R(Π′A) of the messages of total
volume at most εCC(Π′A), for ε ≤ α

bd log d , where Π′A denotes the protocol Π′ executed with
the adversary A. Then there exists an adversary D for the protocol Π, that corrupts at most
ε′R(ΠD)+2ε′ logb CC(ΠD) messages of total volume at most 2εCC(ΠD),14 such that the following
holds:

1. Π′A always sends at least tmin bits.

2. CC(Π′A) ≤ (1 + 2600Cα) CC(ΠD).

3. R(Π′A) ≤ R(ΠD) + 2 logb CC(ΠD).

4. When Π′A ends, both Alice and Bob (separately) can efficiently compute their view of the
transcript of ΠD.

5. The adversary D chooses the hash collisions in a probabilistic manner such that for every
t and every r, with probability ≥ 1− 20 · 2−

γ
3d
t, the volume of hash collisions in the first t

bits of ΠD is at most 35γt, and with probability ≥ 1− 80r · 2−
7γ8

d
r, the number of rounds

with hash collisions in the first r rounds of ΠD is at most 100γr.

6. Π′ is efficiently computable if Π is efficiently computable.

The proof of Theorem 17 is deferred to Appendix D.

7 Putting it all Together

In this section, we prove our main theorem (Theorem 4), using the theorems from previous
sections. We restate our main theorem for the sake of convenience.

13The binary representation of |T |′ has length ≤ bkW since bkW ≥ 1
α

and so log |T |′ ≤ log bkW
α
≤ bkW .

14ΠD denotes the protocol Π executed with the adversary D.

30



Theorem 18. There exists a universal constant α0 ≥ 0 such that for any blowup parameters

α ≤ α0 and α′ ≤ 1, there exist parameters ε = Ω̃
(
α3+ 1

α′
)

, ε′ = Ω̃(αα′3), and δ = αO(1/α′),

and there exists a probabilistic oracle machine S, such that for any protocol Π = (A,B), in
which the parties always transmit at least tmin bits (even in the presence of error), and for any
adversary A that corrupts at most ε-fraction of the bits of the simulated protocol Π′ = (SA, SB),
the protocol Π′A (which is the protocol Π′ executed with the adversary A), satisfies the following
properties.

1. CC(Π′A) ≥ tmin.

2. There exists t0 = (1 + Õ(α))CC(A,B) such that for all t > t0

Pr[CC(Π′A) > t] ≤ 2 · 2−δt ,

where the probability over the private randomness of S.

3. There exists r0 = (1 +O (α′))R(A,B) + O

(
1

log 2
α′

log CC(A,B) + 1

)
such that for any

r ≥ r0, if at most ε′-fraction of the messages are α2-corrupted, then

Pr
[
R(Π′A) > r

]
≤ 2 · 2−δr ,

where the probability over the private randomness of S.

4. For any t > 0,

Pr
[(
Output(Π′A) 6= Trans(Π)

)
∧
(
CC(Π′A) > t

)]
≤ 2 · 2−δt ,

where the probability over the private randomness of S.

5. S is a probabilistic polynomial time oracle machine, and hence the computational efficiency
of SA and SB is comparable to that of A and B, respectively.

In the proof of this theorem, we use an error correcting code from a recent work of Guruswami
and Li [GL16].

Theorem 19. [GL16] For every α > 0 there is an explicit encoding scheme Enc,Dec : {0, 1}∗ →
{0, 1}∗ with the following properties:

1. For any m ∈ {0, 1}∗ we have |Enc(m)| = (1 + Õ(α))|m|.

2. For any m ∈ {0, 1}∗ and any y that can be obtained from Enc(m) by α2·|Enc(m)| insertions
and deletions, Dec(y) = m.

3. Enc and Dec are computable by a polynomial time Turing machine.

In the proof of Theorem 18 we use the following padding claim.

Claim 20. Let α, β ≤ 0.1, and L0 ≥ α−1. Then any (α, 2β)-smooth protocol Π can be efficiently
converted into an (α, β)-smooth protocol Π′ such that

• Π can be computed from the first (1− 2α) fraction of bits of Π′.

• CC(Π) + L0 ≤ CC(Π′) ≤ (1 + 13α)CC(Π) + 3L0.

• R(Π′) ≤ R(Π) + log 1
β

CC(Π) + log 1
β
L0 + 1.
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The proof of this claim is deferred to Section E.1.

Proof of Theorem 18. Fix any α ≤ α0 and α′ ≤ 1. Let C be the constant from Lemma 13
(see Section 5). Let Enc,Dec be the encoding scheme from Theorem 19 with the parameter α.
Recall that for all m, |Enc(m)| = (1 + Õ(α))|m|. Let α1 be the maximal constant that satisfies,

∀m : |Enc(m)| ≤ 2|m|. (6)

We define α0 = min{α1,
1

3200C }.
Given α, α′ define,

β =
α

1
α′

320 log2 1
α

, γ =
α

4
α′

240
, b =

2

α′
, d =

log 1
γ

α
, L0 = 250Cα−2 log d ,

ε = min

{
α3

2bd log d
,
α3β

320

}
, ε′ =

αα′3

log3 1
α

, and δ = γ9 .

These parameters were chosen to satisfy the following claim.

Claim 21. Our parameters satisfy the following:15

1. ε = Ω̃(α3+ 1
α′ ) , ε′ = Ω̃(αα′3) and δ = αO(1/α′).

2. α < 1
4 and β ≤ α

16 .

3. α, β < 0.1 and L0 ≥ α−1.

4. α ≤ 0.01 , α′ ≤ 1 , d ≥ 1
α and β ≤ min

{
α

1
α′ , 1

5αd2

}
.

5. γ ≤ min
{

1
d , 2
−b} , d ≥

log 1
γ

α , and L0 ≥ max{α−2, 250Cα−1 log d}.

6. 2ε
α2 ≤ α

bd log d .

7. 18β−1(35γ + 4ε
α2 ) + 20dβ−1(35γ + 4ε) ≤ α.

8. (100γ + ε′) · 906d log 1
β ≤ α

′ and 1812d log 1
β ε
′ ≤ 1

log 2
α′

.

9. δ ≤ 1
(10α−1+10)L0

, and for all x > 0 we have that

2 · 2−δx ≥ min

{
1,

120d

γ
· 2−

γ
3d
x + γ−17 · 2−

3
2
γ8x

}
.

The protocol Π′ is defined as follows:

1. Convert Π into a (α, 2β)-smooth protocol Πsmooth by applying Lemma 6 (Section 3) to
Π, with respect to parameters (α, 2β). These parameters satisfy the requirements in
Lemma 6 by Item 2.

2. Convert Πsmooth into Πpad using Claim 20 (above) with parameters α, β, L0. These pa-
rameters satisfy the requirements in Claim 20 by Item 3.

15Each of the following items will later be used to apply a different theorem from previous sections.
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3. Convert Πpad to the error-resilient protocol Πideal, which is error-resilient in the ideal
hash model, by applying the protocol from Section 4 to Πpad, with parameters α, α′, β, d.
Jumping ahead, note that by Item 4, these parameters satisfy Equation (3) which is
required in order to apply Theorem 9.

4. Convert Πideal to the protocol Πrand, which is obtained by instantiating the ideal hash
using private randomness, obtained by applying the protocol described in Section 6 to
Πideal. Jumping ahead, note that by Items 5 and 6, imply that Equations (4) and (5) are
satisfied and the requirements of Theorem 17 are satisfied with respect to any adversary A
that corrupts messages of total volume ≤ 2ε

α2 CC((Πrand)A).

5. Convert Πrand to Π′ = (SA, SB), where Π′ is the same as Πrand, except that each message
is sent encoded with the error correcting code from Theorem 19 with parameter α.

Lemma 22. The protocol Π′ = (SA, SB) satisfies the conditions of Theorem 18.

The proof of Lemma 22 is deferred to Appendix E.3.
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A Smooth Protocols

In this section we prove Lemma 6. Namely, we show how to convert any protocol into a smooth
protocol. Recall the definition of a smooth protocol.

Definition 23. A protocol is (α, β)-smooth if for every round r the following holds:

α ·max{|Mr−1|, |Mr−2|, |Mr−3|} ≤ |Mr| ≤
1

β
·min{|Mr−1|, |Mr−2|, |Mr−3|} (7)

Recall Lemma 6.
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Lemma 6. For any α < 1
4 and β ≤ α

8 , the following holds: Any protocol Π can be efficiently
converted into an (α, β)-smooth protocol SΠ such that

1. CC(SΠ) ≤ CC(Π) · (1 + 50α).

2. R(SΠ) ≤ R(Π) · (1 + 8 log2β α) + 4 log 1
2β
·CC(Π) + 4

3. If Π is computationally efficient then so is SΠ.

Proof of Lemma 6. We denote the messages corresponding to the underlying protocol Π
by m1,m2, . . ., where mt corresponds to the t’th round message of Π. We denote the messages
corresponding to the smooth protocol SΠ by M1,M2, . . ., where Mr corresponds to the r’th
round message of SΠ. In what follows, we describe the protocol from the side of Alice in the
(r + 1)st round of the protocol SΠ, after receiving a message Mr from Bob.

Suppose that, before receiving this message, Alice has recovered all the messages correspond-
ing to the first t− 1 rounds of Π (and possibly a prefix of the t’th round message). We denote
by T the (partial) transcript that Alice holds. Formally, T is defined inductively starting with
T = ∅, as follows.

1. Let
dr = bα ·max {|Mr−1|, |Mr−2|, |Mr−3|}c

and let

k′r =

⌊
1

β
·min{|Mr−1|, |Mr−2|, |Mr−3|}

⌋
.

2. If |Mr| = k′r, then parse Mr = m′t · 0 · 1p, update T ← (T,m′t), and send back the
message Mr+1 = 0p.

A message of length k′r sent by Bob, is always interpreted as Bob not being done sending
his message due to budget constraints. In this case, think of m′t as being part of mt,
the t’th round message of Π (if it is the first part of mt then it is a prefix, and if it
not the first part, then it is the prefix of the remaining part of mt). The length of the
acknowledgment p is dictated by Bob, based on the length of the actual message that he
is trying to send.

Following such a message (of budget request), there will be three messages of the form
Mr+1 = Mr+2 = Mr+3 = 0p.

3. Otherwise, |Mr| < k′r. We distinguish between three cases:

(a) Case 1: Mr = 0p and in the previous round, Alice sent a message of length k′r−1 of
the form Mr−1 = m′ · 0 · 1p. In this case send Mr+1 = 0p.

This corresponds to the case that in the previous round Alice requested for more
budget, since she did not have enough budget to finish sending her message mt−1,
Hence, Bob replied to her request with sending a “budget message” 0p. In this case
Alice and Bob each send another budget message, to ensure that in the next time
Alice speaks she has the budget she requested.

(b) Case 2: Mr = Mr−1 = 0p and Mr−2, which was sent by Bob, is a message of length
k′r−2. In this case send Mr+1 = 0p.

This corresponds to the case that in round r − 2 Bob requested for more budget,
since he did have enough budget to finish sending his message mt. As mentioned
above, after such a request, three “budget messages” of form 0p are sent.
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(c) Case 3: Mr = Mr−1 = Mr−2 = 0p and in round r − 3 Alice sent a message of the
form Mr−3 = m′ · 0 · 1p of length k′r−3. As before, this corresponds to the case that
Alice did not have enough budget to finish sending her message mt−1. Namely, she
has been wanting to send mt−1 but so far due to budget constraints she has only sent
m′t−1 which is a prefix of mt−1. However, in this case the three previous messages

where of lengths p, and thus now Alice has a budget of
⌊
p
β

⌋
.

In this case, let m′′t−1 be the remaining (suffix) of Mt−1; i.e.,

mt−1 = (m′′t−1,m
′
t−1).

In what follows, we denote m′′t−1 by m.

(d) Case 4: Otherwise, parse Mr = mt · 0dr . In this case, update T ← (T,mt), let
mt+1 be the next message that Alice is supposed to send according to the updated
transcript T , and denote mt+1 by m.

Note that this corresponds to the case that Alice had enough budget to finish sending
mt−1 in the previous round, and Bob has enough budget to send all of mt in the r’th
round of Π′.

4. Compute
dr+1 = bα ·max {|Mr|, |Mr−1|, |Mr−2|}c ,

and

k′r+1 =

⌊
1

β
·min{|Mr|, |Mr−1|, |Mr−2|}

⌋
.

Intuitively, Alice would like to send m with a padding of dr+1 zeros, in order to ensure that
the condition |Mr+1| ≥ α · max{|Mr|, |Mr−1|, |Mr−2|} is satisfied. However, we need to
make sure that we do not violate the condition that |Mr+1| ≤ 1

β ·min{|Mr|, |Mr−1|, |Mr−2|}.
If this condition is violated then we do not send the (padded) message all at once, but
rather we do this in phases, as described below.

5. If |m|+ dr+1 < k′r+1 then send Mr+1 , m · 0dr+1 , update T = (T,m), and halt.

6. Else, send Mr+1 , m′ · 0 · 1p, where p = min{k′r+1− 2, d2α|m|e} and m′ is the prefix of m
of length k′r+1 − p− 1. Update T = (T,m′), and halt.

For Step 6 to be well defined, we must prove the following claim (whose proof is deferred
to the sequel).

Claim 24. For every r ∈ N, if |m| + dr+1 ≥ k′r+1 then |m| > k′r+1 − p − 1, where
p = min{k′r+1 − 2, d2α|m|e}.

This message Mr+1 will be interpreted by Bob as saying that Alice would like to send
a long message but does not have the budget to do so. m′ will be interpreted as a
prefix of Alice’s message, and 1p indicates that Alice wants the next three messages to be
Mr+2 = Mr+3 = Mr+4 = 0p, which gives her the budget she needs to continue to send
her message.

Correctness. We prove by induction on r that at the beginning of the rth round of SΠ, the
transcripts of both Alice and Bob, denoted by TA and TB respectively, are always a prefix of
the original transcript (where the last message in TA and TB may be a prefix of a message sent
in T ).
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For the base case, note that for r = 1, it holds that TA = TB = ∅. For the induction step,
suppose the hypothesis is true for every round < r, and we will prove that the hypothesis is
true for round r. We prove the correctness for TA, a similar argument can be used to prove the
correctness of TB.

We first note that Alice can distinguish between whether the conditions of Step 2, 3a, 3b, 3c
or 3d hold. This is the case, since in Step 2 the condition is that |Mr| = k′r, whereas in
Steps 3a, Step 3b, 3c and 3d one of the conditions is that |Mr| < k′r, and note that Alice can
compute k′r on her own. In addition, if |Mr| < k′r, she can distinguish between whether the
conditions of Step 3a, 3b, 3c or 3d are satisfied, since she can compute k′r−1, k′r−2 and k′r−3 on
her own. Therefore, she knows whether she should answer with a “budget message”.

If Alice adds the message mt to TA in Step 3d, then she received Mr = mt · 0dr of length
less than k′r from Bob, where |mt| ≥ 1. Note that Alice can compute dr on her own, and hence
can compute mt from Mr correctly.

If Alice adds the message m′t to TA in Step 2, then she received Mr = m′t · 0 · 1p of length
exactly k′r from Bob. In this case, Alice can decode Mr and find m′t by simply deleting from
Mr the suffix of the form 0 · 1p. She interprets m′t as a prefix of the message mt, or a prefix of
the remaining mt (note that a prefix of mt could have already been sent in previous rounds).

By our induction hypothesis, TA is a correct prefix of the original transcript. Hence, after
Alice updates TA = (TA,mt) or TA = (TA,m

′
t), TA remains a prefix of the transcript of Π.

We note that in Steps 3a, 3b, and 3c Alice does not update T . Indeed in these cases she
shouldn’t update T , since thesse correspond to the cases that in the previous round she received
a “budget message”.

We next prove that the (α, β) smoothness condition holds. The proof will be by induction
on the number of rounds. However, we first prove the following claim, which will be used in the
remaining of the proof.

Claim 25. Fix any r ∈ N, and suppose the (α, β) smoothness condition holds for all rounds
≤ r. Then

|k′r| ≥
⌊
dr
α

⌋
Proof. Fix any r ∈ N. Recall that by definition,

k′r =

⌊
1

β
·min{|Mr−1|, |Mr−2|, |Mr−3|}

⌋
and

dr = bα ·max {|Mr−1|, |Mr−2|, |Mr−3|}c .

Let c ∈ {1, 2, 3} be such that

|Mr−c| = min{|Mr−1|, |Mr−2|, |Mr−3|}.

The (α, β)-smoothness of SΠ up until round r, together with the assumption that β ≤ α implies
that

|Mr−c| ≥ β ·max{|Mr−1|, |Mr−2|, |Mr−3|}.

Therefore,

k′r =

⌊
|Mr−c|
β

⌋
≥ max{|Mr−1|, |Mr−2|, |Mr−3|} ≥

dr
α
≥
⌊
dr
α

⌋
,

as desired.
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The following corollary follows immediately from Claim 25, together with the observation

that if dr+1 = 0 then k′r+1 ≥
⌊

1
β

⌋
≥ 2.

Corollary 26. Fix any r ∈ N, and suppose the (α, β) smoothness condition holds for all rounds
≤ r. Then

|k′r| ≥ |dr|+ 2

Smoothness. We now prove that the protocol SΠ is (α, β)-smooth. The proof is by induction
on r. The base case is trivial. For the induction step, we first prove α-smoothness. Specifically,
we prove that

|Mr| > dr = bα ·max{|Mr−1|, |Mr−2|, |Mr−3|}c .

We distinguish between three cases:

1. The message Mr was sent in Step 5. Recall that in this case, |Mr| > dr, as desired.

2. The message Mr was sent in Step 6. Recall that in this case, |Mr| = k′r > dr, as desired.

3. The message Mr was sent in Step 2, 3a or 3b. Recall that in these cases

|Mr| = p = min{k′r−c − 2, d2α|m|e},

for some c ∈ {1, 2, 3}, and where m is the message that Bob or Alice were trying to send
in round r − c, but did not have enough budget to do so. In this case |Mr−c| = k′r−c. We
next prove the following claim

Claim 27. dr = bα · k′r−cc.

Proof. We distinguish between three cases:

Case 1: c = 1. In this case,

|Mr−1| = k′r−1 =

⌊
1

β
·min{|Mr−2|, |Mr−3|, |Mr−4|}

⌋
.

Note that in this case in order to prove Claim 27, it suffices to prove that

|Mr−2|, |Mr−3| ≤ k′r−1.

We start by proving that |Mr−2| ≤ k′r−1. To this end, note that by our induction hypoth-
esis,

|Mr−2| ≤ k′r−2 =

⌊
1

β
·min{|Mr−3|, |Mr−4|, |Mr−5|}

⌋
.

Note that if |Mr−2| ≥ min{|Mr−3|, |Mr−4|} then indeed k′r−1 ≥ |Mr−2|. On the other

hand, if |Mr−2| < min{|Mr−3|, |Mr−4|} then k′r−1 =
⌊

1
β · |Mr−2|

⌋
> |Mr−2|. Thus, we

conclude that |Mr−2| ≤ k′r−1, as desired.

We next argue that |Mr−3| ≤ k′r−1. To this end, by our induction hypothesis,

|Mr−3| ≤ k′r−3 =

⌊
1

β
·min{|Mr−4|, |Mr−5|, |Mr−6|}

⌋
.
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If min{|Mr−2|, |Mr−3|} ≥ |Mr−4| then |Mr−3| ≤ k′r−1, as desired. On the other hand, if
min{|Mr−2|, |Mr−3|} < |Mr−4| then

k′r−1 =

⌊
1

β
·min{|Mr−2|, |Mr−3|}

⌋
>

1

β
·min{|Mr−2|, |Mr−3|} − 1,

and hence
min{|Mr−2|, |Mr−3|} < β · (k′r−1 + 1).

Therefore, either |Mr−3| < β · (k′r−1 + 1) < k′r−1, as desired, or |Mr−2| < β · (k′r−1 + 1),
which in turn implies that

β · (k′r−1 + 1) > |Mr−2| ≥ dr−2 = bα ·max{|Mr−3|, |Mr−4|, |Mr−5|}c ≥ bα · |Mr−3|c ,

which in turn implies that

|Mr−3| ≤
1

α

(
β ·
(
k′r−1 + 1

)
+ 1
)

=
β

α
· k′r−1 +

β

α
+

1

α
≤ k′r−1

as desired, where the latter follows from the fact that k′r−1 ≤ 1
β together with the fact

that β ≤ α
8 .

Case 3: c = 3. In this case, by definition, |Mr−2| = |Mr−1| = p < k′r−3, and hence

dr = bα ·max{|Mr−1|, |Mr−2|, |Mr−3|}c = bα · k′r−3c,

as desired.

Case 2: c = 2. In this case, by definition, |Mr−1| = p < k′r−2. Thus, to prove Claim 27
it suffices to prove that |Mr−3| ≤ k′r−2.

To this end, note that by the induction hypothesis, Mr−3 satisfies the (α, β)-smoothness
requirement, and hence

|Mr−3| ≤ k′r−3 =

⌊
1

β
·min{|Mr−4|, |Mr−5|, |Mr−6|}

⌋
.

Moreover, recall that by definition,

k′r−2 =

⌊
1

β
·min{|Mr−3|, |Mr−4|, |Mr−5|}

⌋
.

Thus, if |Mr−3| ≥ min{|Mr−4|, |Mr−5|} then indeed |Mr−3| ≤ k′r−2. On the other hand, if

|Mr−3| < min{|Mr−4|, |Mr−5|} then k′r−2 =
⌊

1
β · |Mr−3|

⌋
> |Mr−3|, as desired.

Therefore, we conclude that |Mr−3| ≤ k′r−2, and hence

dr = bα ·max{|Mr−1|, |Mr−2|, |Mr−3|}c = bα ·max{p, k′r−2}c = bα · k′r−2c,

as desired.
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Armed with Claim 27, it is now easy to see that k′r−c − 2 > dr since according to our
assumptions, α ≤ 1

4 and hence

k′r−c − dr = k′r − bα · k′rc ≥
3k′r
4
≥

3
⌊

1
β

⌋
4

> 2

where the latter follows from our assumption that β ≤ 1
8 .

Thus, it remains to argue that

d2α|m|e ≥ dr = bα · k′r−cc,

which in turn implies that it suffices to argue that

2|m| ≥ k′r−c.

To this end, note that in this case

|m|+ dr−c ≥ k′r−c,

and hence

2|m| ≥
2(k′r−c − dr−c) =

k′r−c + (k′r−c − 2dr−c) ≥
k′r−c + (k′r−c − 2α(k′r−c + 1)) =

k′r−c + (1− 2α)k′r−c − 2α ≥
kr−c,

as desired, where the third equation follows from Claim 25 (together with induction hy-
pothesis), and the last equation follows from our assumption that α ≤ 1

4 and β ≤ 1
8 .

We next prove β-smoothness. As above, we distinguish between three cases:

1. The message Mr was sent in Step 5. Recall that in this case, |Mr| < k′r, as desired.

2. The message Mr was sent in Step 6. Recall that in this case, |Mr| = k′r, as desired.

3. The message Mr was sent in Step 2 or 3a or 3b. Recall that in this case there exists
c ∈ {1, 2, 3} such that

|Mr| = p = min{k′r−c − 2, d2α|m|e} < k′r−c.

Thus, in order to finish the proof of β-smoothness, it remains to prove the following claim.

Claim 28. k′r−c ≤ k′r

Proof. We distinguish between three cases.
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Case 1: c = 1. In this case, |Mr−1| = k′r−1. This, together with our induction hypoth-
esis, implies that for every i ∈ {2, 3, 4},

|Mr−1| = k′r−1 =

⌊
1

β
min{|Mr−2|, |Mr−3|, |Mr−4|}

⌋
≤ 1

β
· |Mr−i|.

Thus, for every i ∈ {2, 3, 4},
|Mr−i| ≥ β · k′r−1.

Hence,

k′r =

⌊
1

β
·min{|Mr−1|,Mr−2|, |Mr−3|}

⌋
≥
⌊

1

β
· β · k′r−1

⌋
≥ k′r−1,

as desired.

Case 2: c = 2. In this case, |Mr−2| = k′r−2 and |Mr−1| = p < k′r−2. Moreover, in this
case,

|Mr−2| = k′r−2 =

⌊
1

β
min{|Mr−3|, |Mr−4|, |Mr−5|}

⌋
≤ 1

β
· |Mr−3|,

and hence
|Mr−3| ≥ β · k′r−2.

Thus,

k′r =

⌊
1

β
·min{|Mr−1|,Mr−2|, |Mr−3|}

⌋
≥
⌊

1

β
·min{p, k′r−2, β · k′r−2}

⌋
.

Therefore, in this case, in order to prove that k′r ≥ k′r−c it suffices to prove that⌊
p

β

⌋
≥ k′r−c. (8)

Recall that
p = min{k′r−c − 2, d2α|m|e}.

If p = k′r−c − 2 then Equation (8) clearly holds since in this case⌊
p

β

⌋
=

⌊
k′r−c − 2

β

⌋
> k′r−c.

If p = d2α|m|e then⌊
p

β

⌋
=

⌊
d2α|m|e

β

⌋
≥
⌊
d2α · (k′r−c − dr−c)e

β

⌋
≥
⌊
d2α · (1− α) · k′r−c − 1e

β

⌋
≥ k′r−c,

as desired.

Case 3: c = 3. In this case, |Mr−3| = k′r−3 and |Mr−2| = |Mr−1| = p. Thus,

k′r =

⌊
1

β
·min{|Mr−1|,Mr−2|, |Mr−3|}

⌋
=

⌊
1

β
·min{p, k′r−c}

⌋
≥ k′r−c,

as desired, where the latter follows from Equation (8).

Now that we proved that the protocol SΠ is (α, β)-smooth, we next use Claim 25 in order
to prove Claim 24.
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Proof of Claim 24. Fix any r ∈ N such that |m| + dr+1 ≥ k′r+1. We argue that in this
case, |m| > k′r+1 − p− 1, where p = min{k′r+1 − 2, d2α|m|e}. Note that it suffices to prove that
p ≥ dr+1. We distinguish between two cases:

Case 1: d2α|m|e ≥ k′r+1 − 2. In this case, p = k′r+1 − 2 ≥ dr+1, where the latter inequality
follows from Corollary 26.

Case 2: d2α|m|e < k′r+1 − 2. In this case

p = d2α|m|e ≥ d2α · (k′r+1 − dr+1)e ≥
⌈

2α ·
(⌊

dr+1

α

⌋
− dr+1

)⌉
≥ dr+1,

as desired.

Communication complexity. We now bound the communication complexity. We note that
each message mt in Π is sent in a padded form in the smooth protocol SΠ (where the padding
may be empty). In what follows we bound the size of the padding. We refer to each bit of
padding as a “dummy” bit.

We distinguish between the following cases.

1. The message mt was sent all in a single round r, in Step 5, corresponding to the case that
|mt| + dr < k′r. In this case, this mt was sent in SΠ via a (padded) message of the form
Mr = mt · 0dr . Hence, the number of dummy bits sent for each such message is dr.

2. The message mt was sent in multiple rounds (since there was not enough budget to send
it all at once), starting from round r. In this case, at first only a prefix of mt, denoted
by m′t, is sent in Step 6, via a message of the form Mr = m′t · 0 · 1p, followed by the three
messages Mr+1 = Mr+2 = Mr+3 = 0p (which were sent in Step 2 or 3a or 3b), where
p = min{k′r − 2, d2α · |mt|e} and |m′t| = k′r − p − 1. These four messages contain 4p + 1
dummy bits altogether.

We distinguish between two subcases:

(a) d2α · |mt|e ≤ k′r − 2. In this case,

k′r+4 =

⌊
d2α · |mt|e

β

⌋
≥
⌊

2α · |mt|
β

⌋
≥ 2 · |mt|,

where the last inequality follows from the fact that β ≤ α. In addition,

dr+4 = bα · d2α · |mt|ec ≤ α · |mt|. (9)

Hence,

|mt|+ dr+4 ≤ |mt|+ α · |mt| = (1 + α) · |mt| < 2 · |mt| ≤ k′r+4,

and hence the remainder of the message mt will be sent in round r + 4.

Therefore, we conclude that in the case where d2α · |mt|e ≤ k′r − 2, the message mt

is sent with a total padding of size

4p+ 1 + dr+4 ≤ 4d2α · |mt|e+ 1 + α · |mt| ≤ 9α · |mt|+ 5.
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We next argue that in this case,

α · |mt| ≥ 5. (10)

This follows from the fact that

|mt| ≥ k′r − dr ≥ k′r − α · (k′r + 1) ≥ (1− α)k′r − α

(where the second inequality in the equation above follows from Claim 25), and hence

α·|mt| ≥ α(1−α)k′r−α2 ≥ α(1−α)·
⌊

1

β

⌋
−α2 ≥ α(1−α)·

(
1

β
− 1

)
−α2 ≥ α(1− α)

β
−1 ≥ 5,

as desired, where the latter follows from our assumption that β ≤ α
8 and α < 1

4 .

Thus, in this case the total padding of mt is bounded by

4p+ 1 + dr+4 ≤ 10α · |mt|.

(b) d2α · |mt|e > k′r − 2. In this case, Mr+1 = Mr+2 = Mr+3 = 0p = 0k
′
r−2, and hence

k′r+4 =

⌊
k′r − 2

β

⌋
and

dr+4 = bα · (k′r − 2)c ≤ α · k′r ≤ α ·
α · |mt|
1− α

≤ α · |mt|
3

,

where the third equation follows from Claim 25, and the forth equation follows our
assumption that α ≤ 1

4 .

In this case, denote the remainder of mt by m′′t ; namely, mt = (m′t,m
′′
t ).

If it holds that m′′t + dr+2 < k′r+4, then as above, the remainder of the message mt

(i.e., m′′t ) will be sent in round r + 4, and the total padding for mt will be of size

4p+1+dr+4 = 4(k′r−2)+1+dr+4 ≤ 4d2α·|mt|e+1+α·|mt| ≤ 9α·|mt|+5 ≤ 10α·|mt|,

where the latter inequality follows from Equation (10).

On the other hand, if m′′t + dr+4 ≥ k′r+4 then only a prefix of the remaining mt (i.e.,
of m′′t ) will be sent in round r + 4, in which case we again distinguish between the
two subcases, as above.

In what follows, we change notations, and denote the first prefix of mt that was sent in
round r by m′t,0 and denote the remaining of mt by m′′t,1 so that mt = (m′t,0,m

′′
t,1). More

generally we denote the part of mt that was sent in round r+4i by m′t,i, and we denote the
remaining part bym′′t,i+1 so thatm′′t,i = (m′t,i,m

′′
t,i+1) andmt = (m′t,0,m

′
t,1, . . . ,m

′
t,i,m

′′
t,i+1).

We define m′′t,0 = mt.

Let ` be the smallest integer for which

d2α|m′′t,`|e < k′r+4` − 2.

Sending the message mt requires either 4`+ 1 messages if

|m′′t,`|+ dr+4` < k′r+4`,
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or 4`+ 5 messages if
|m′′t,`|+ dr+4` ≥ k′r+4`,

where in both cases, dr+4` < α · k′r+4(`−1). In both cases, the number of dummy bits in
the first 4` messages is

(4(k′r−2)+1)+(4(k′r+4−2)+1)+. . .+(4(k′r+4(`−1)−2)+1) ≤ 4k′r+4k′r+4+. . .+4k′r+4(`−1).

Recall that for every i for which

d2α|m′′t,i|e ≥ k′r+4i − 2

it holds that |Mr+4i+1| = k′r+4i − 2, and hence

k′r+4(i+1) =

⌊
1

β
·
(
k′r+4i − 2

)⌋
>

1

β
·
(
k′r+4i − 2

)
− 1,

which implies that
k′r+4i ≤ βk′r+4(i+1) + 3 ≤ 4β · k′r+4(i+1),

where the latter inequality follows from the fact that k′r+2(i+1) >
1
β . Hence, we can bound

the number of dummy bits in the first 4` messages by

4k′r + 4k′r+4 + . . .+ 4k′r+4(`−1) <

4 · (k′r+4(`−1) + k′r+4(`−2) + . . .+ k′r) ≤

4k′r+4(`−1) ·
(

1 + 4β + (4β)2 + . . .+ (4β)`−1
)
≤

4k′r+4(`−1) ·
1

1− 4β
≤

5k′r+4(`−1),

where the latter inequality follows from our assumption that β ≤ 1
32 (which in turn follows

from the fact that β ≤ α
8 and the fact that α ≤ 1

4).

Recall that by the definition of `, it holds that

d2α|mt|e ≥ k′r+4(`−1) − 2 ≥
3k′r+4(`−1)

4
,

where the latter follows from the fact that k′(r+4(`−1)) >
1
β ≥ 8. Thus, the total number

of dummy bits in the first 4` rounds is at most

20

3
d2α|mt|e ≤ 14α|mt|+ 8 ≤ 16α|mt|,

where the latter inequality follows from Inequality (10). In order to bound the number of
dummy bits sent after these 2` rounds of transmission of mt, we distinguish between two
cases.

Case 1: |m′′t,`|+dr+4` < k′r+4`. In this case, in addition to these 2` messages, containing
in total at most 16α|mt| dummy bits, there is a single additional message containing at
most

dr+4` ≤ bα · k′r+4(`−1)c ≤ bα|mt|c
dummy bits, where the latter follows from the definition of `, which implies that

k′r+4(`−1) ≤ d2α|mt|e+ 2 ≤ 2α|mt|+ 3 ≤ 3α|mt|,

where the latter inequality follows from Equation (10). Thus, in this case the total number
of dummy bits sent in order to send mt is bounded by 19α|mt|.
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Case 2: |m′′t,`|+dr+2` ≥ k′r+2`. In this case, in addition to these 4` messages, containing
in total at most 16α|mt| dummy bits, five additional messages will be sent containing in
total

4p+ 1 + dr+4(`+1) ≤
4d2α|mt|e+ 1 + dr+4(`+1) ≤
4d2α|mt|e+ 1 + α|mt| ≤
9|α|mt|+ 3 ≤
10|α|mt|

dummy bits, where the second inequality follows from Equation (9) and the last inequality
follows from Equation (10). Thus, in this case the total number of dummy bits sent in
order to send mt is bounded by 26α|mt|.

We conclude that each message mt that requires multiple rounds to be sent contributes to at
most 26α|mt| dummy bits. Moreover, recall that each message that is sent in a single round r
contributes at most dr dummy bits, and thus, all these dummy bits together can blowup the
communication complexity by at most 3α. Therefore we conclude that the total communication
of SΠ is bounded by

CC(SΠ) ≤ CC(Π) · (1 + 26α) · (1 + 3α) = 1 + 29α+ 26 · 3 · α2 ≤ 1 + 29α+ α · 3 · 26

4
≤ 1 + 50α,

as desired, where the second to last inequality follows from our assumption that α ≤ 1
4 .

Round complexity Finally, we are ready to bound the round complexity of SΠ. Let

r1, r2, ..., rk

be a partition of the protocol where ri is the first round where the message mi was sent, and
where k denotes the round complexity of Π. Thus, the message mi was delivered in ri+1 − ri
rounds. As we saw, the messages which deliver mi consist of the following messages:

• Case 1: mi + di < ki. In this case mi is delivered via a single message, and hence
ri+1 = ri + 1.

• Case 2: mi + di ≥ ki. In this case mi is delivered via 4(`+ 1) + 1 messages, where ` ≥ 0,
where the first 4(`+ 1) messages are of size

k′ri , (k′ri − 2)×3, k′ri+4, (k′ri+4 − 2)×3, . . . , k′ri+4(`−1), (k′ri+4(`−1) − 2)×3, k′ri+4`, p
×3,

where p ≤ k′ri+4` − 2, followed by a single message of length < k′ri+4(`+1), and where in

the above w×3 , (w,w,w).

Note that for every j ∈ [`],

k′ri+4j =

⌊
k′ri+4(j−1) − 2

β

⌋
≥
k′ri+4(j−1)

2β
,

and

k′ri =

⌊
1

β
·min {|Mri−1|, |Mri−2|, |Mri−3|}

⌋
≥
⌊

1

β
· β · |Mri−1|

⌋
≥ |Mri−1|,
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where the latter follows from β-smoothness of SΠ.
Therefore, the number of messages between rounds ri+1 and ri is bounded by

1 + 4 · log 1
2β

(
k′ri+4`

k′ri

)
≤ 1 + 4 · log 1

2β

(
k′ri+4`

|Mri−1|

)
≤ 1 + 4 · log 1

2β

( |Mri+1−1|
α2 · |Mri−1|

)
,

where the latter inequality follows from α-smoothness.
Combining the above observations, we get the following upper bound on the total number

of rounds,

R(SΠ) ≤
k∑
j=1

(
1 + 4 log 1

2β

( |Mri+1−1|
α2 · |Mri−1|

))
=

k +

k∑
j=1

4 log 1
2β

( |Mri+1−1|
α2 · |Mri−1|

)
≤

k +

k∑
j=1

4 log 1
2β

|Mri+1−1|
|Mri−1|

+

k∑
j=1

4 log 1
2β
α−2 ≤

k +

k∑
j=1

4 log 1
2β

|Mri+1−1|
|Mri−1|

+ 8k log2β α ≤

k + 4 log 1
2β

k∏
i=1

|Mri+1−1|
|Mri−1|

+ 8k log2β α ≤

k + 4 log 1
2β

CC(SΠ) + 8k log2β α ≤

k · (1 + 8 log2β α) + 4 log 1
2β
·CC(Π) · (1 + 50α) ≤

R(Π) · (1 + 8 log2β α) + 4 log 1
2β
·CC(Π) + 4 log 1

2β
(1 + 50α) ≤

R(Π) · (1 + 8 log2β α) + 4 log 1
2β
·CC(Π) + 4,

as desired.

B Proof of Theorem 9.

In the proof of Theorem 9 we use the following terminology. We define the terminology from
Alice’s point of view. We use analogous terminology for Bob. For each round r, we denote by
msent
A,r the message that Alice sent in round r, and we denote by mreceive

A,r the message that Bob
thinks Alice sent in round r.

In the analysis, we denote

|mA,r| = max
{∣∣msent

A,r

∣∣ , ∣∣mreceive
A,r

∣∣} ,
and we denote

`sentA,r = |msent
A,r | , `receiveA,r = |mreceive

A,r | , and `A,r = max{`sentA,r , `
receive
A,r }.
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We use similar notations for Bob, and we let

`max,r = max{`A,r, `B,r},

so `max,r is the maximal size of message sent or received in round r. We emphasize that these
notations were used with a different meaning in the protocol, where error was not considered.
In the protocol, `A,r was the length of the message sent by Alice in round r, `B,r was the length
of the message that Alice received from Bob in round r (recall that the protocol was defined
from the perspective of Alice), and `max,r = max{`A,r, `B,r}. Using the new notation, the values
`−r and `+r may be different for Alice and Bob. In particular, using our new notation:

`+A,r = min

{
`sentA,r

β
, 2 max

{
`sentA,r , `

receive
B,r

}}

and

`−A = min

{
`sentA,r

β
,max

{
β−1, αmax

{
`sentA,r , `

receive
B,r

}}}
.

The values for Bob are defined analogously.

We say that a message is corrupted if the adversary corrupts the message or if there is a
hash collision in the hash associated with the message. We denote by E the set of all messages
mA,r or mB,r that were corrupted (due to adversarial error or due to hash collisions).

Given any ordered set of messages T , where T = (mA,r,mB,r)
t
r=1 for some t ∈ N, we denote

by

|T | =
∑

mA,r∈T
|mA,r|+

∑
mB,r∈T

|mB,r|

and refer to |T | as the volume of T . We denote the number of messages in T by |T |′. Recall
that T corresponds to a prefix of the transcript, and thus T ′ is twice the number of rounds in T
(since two messages are sent in each round, one by Alice and one by Bob).

Partitioning the protocol into chunks. We partition the error-resilient protocol into
chunks, as follows.

1. Good Simulation chunks: These chunks consist of all consecutive rounds where both
parties are in Simulation State and indeed TA = TB.

2. Good Verification chunks: These chunks consist of all consecutive rounds where both
parties are in Verification State and indeed TA[RA] = TB[RB].

3. Good Correction chunks: These chunks begin when SA = SB = r for some r, and end
when at least one party changes the value of its state S.

4. Bad Correction chunks: These chunks consist of all consecutive rounds where SA 6= SB,
and at least one of the parties is in Correction State (i.e. S ∈ N).

5. Bad chunks: These chunks consist of all consecutive rounds such that SA 6= SB or
TA[RA] 6= TB[RB], and none of the parties are in Correction State.

The bulk of the technical difficulty is in proving the following lemma.
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Lemma 29. The number of rounds in the (error-resilient) protocol (SA, SB) that are not in a
Good Simulation chunk is at most

301d log β−1|E|′,
and the volume of all the messages that are not in a Good Simulation chunk is at most

7β−1|E|+ 10dβ−1|E|′.

The remaining of the Section is devoted to the proof of Lemma 29. We start with the
following claim (which will be used later in this section).

Claim 30. For any round r > 1, the protocol satisfies

|msent
A,r | ≤ β−1 min{|msent

A,r−1|, |mreceive
B,r−1|}

and
|msent

B,r | ≤ β−1 min{|msent
B,r−1|, |mreceive

A,r−1|}
Moreover,

|msent
A,r | ≥ αmax{|msent

A,r−1|, |mreceive
B,r−1|}

unless SA,r−1 = Verification and SA,r = Simulation, and similarly

|msent
B,r | ≥ αmax{|msent

B,r−1|, |mreceive
A,r−1|}

unless SB,r−1 = Verification and SB,r = Simulation.

Proof. In what follows, we bound |msent
A,r |. The bound on |msent

B,r | is obtained in a similar manner.
If SA,r−1 ∈ N (i.e., Alice was in Correction state), then

|msent
A,r | = `−r−1,

and by definition of `−r−1,

αmax{|msent
A,r−1|, |mreceive

B,r−1|} ≤ `−r−1 ≤ β
−1|msent

A,r−1|

as desired.
If SA,r−1 = Verification and SA,r ∈ {Verification, r}, then in round r she sent a message of

length at most

`+r−1 = min
{
β−1`sentA,r−1, 2`

receive
B,r−1

}
≤ β−1 min

{
`sentA,r−1, `

receive
B,r−1

}
,

and a message of length at least

`−r−1 ≤ αmax{|msent
A,r−1|, |mreceive

B,r−1|},

where `+r−1 ≥ `
−
r−1, as desired. If SA,r−1 = Simulation then by the smoothness of the underlying

protocol,

|msent
A,r | ≤ max

{
`−r−1, β

−1 min{|msent
A,r−1|, |mreceive

B,r−1|}
}
≤ β−1 min{|msent

A,r−1|, |mreceive
B,r−1|},

and
|msent

A,r | ≥ min
{
`−r−1, αmax{|msent

A,r−1|, |mreceive
B,r−1|}

}
≥ αmax{|msent

A,r−1|, |mreceive
B,r−1|},

as desired.
If SA,r−1 = Verification and SA,r = Simulation, then

∣∣∣msent
A,r

∣∣∣ ≤ ∣∣∣msent
A,r−1

∣∣∣, since by the

definition of the protocol, in this case |msent
A,r−1| ≥ |T\T [R]| and msent

A,r is the first message in
T \ T [R].
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Claim 31. Let C be a set of messages sent in consecutive rounds. We abuse notation and also
denote by C the set of rounds in which these messages were sent. let r0 be the first round of C,
and let E0 be the set of corrupted messages in C ∪{r0− 1}. Assume that for each round r ∈ C,
it hold that SA,r 6= Simulation and SB,r 6= Simulation, and that each round r ∈ C \ {r0} has
the property that if Alice (resp., Bob) did not receive a corrupted message in round r − 1 then
it sends a message of length `−A,r−1 (resp., `−B,r−1) in round r. Then

|C| ≤ β−1|C|′ +
(
3β−1 + 3

)
|E0 ∩ C|+ 3`sentmax,r0 .

Proof. We partition C into sub-chunks C1, ..., Ck such that the following two conditions are
satisfied.

1. For every i ∈ {1, . . . k} and every round r ∈ Ci which is not the first round in Ci, it holds
that `max,r = `−A,r−1 = `−B,r−1, where recall that

`−A,r−1 = min
{
β−1`sentA,r−1,max{β−1, αmax{`sentA,r−1, `

receive
B,r−1}

}
.

2. For every i ∈ {2, . . . , k}, the first round r′ ∈ Ci satisfies `max,r′ 6= `−A,r′−1 or `max,r′ 6=
`−B,r′−1.

We will bound
|Ci| ≤ β−1|Ci|′ + 3|E0 ∩ Ci|+ 3β−1|E0 ∩ Ci−1|, (11)

and
|C1| ≤ β−1|C1|′ + 3|E0 ∩ C1|+ 3`sentmax,r0 . (12)

This is sufficient since:

|C| =
k∑
i=1

|Ci|

≤
k∑
i=1

β−1|Ci|′ +
k∑
i=2

3β−1|E0 ∩ Ci−1|+
k∑
i=1

3|E0 ∩ Ci|+ 3`sentmax,r0

≤ β−1|C|′ + (3β−1 + 3) · |E0|+ 3`sentmax,r0 .

It thus remains to prove Equations (11) and (12). To this end, fix any i ∈ {1, . . . , k}. Let
r′ be the first round in the sub-chunk Ci. We will show by induction that each round r ∈ Ci
satisfies `max,r ≤ max

{
β−1, αr−r

′
`max,r′

}
. Indeed, the statement is true for r = r′. For r > r′,

by the induction hypothesis, we get,

`max,r = `−A,r−1 ≤ max{β−1, α`max,r−1}

≤ max
{
β−1, α · αr−1−r′`max,r′

}
= max

{
β−1, αr−r

′
`max,r′

}
.
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So we can bound |Ci| using `max,r′ as follows.

|Ci| ≤
∑
r∈Ci

2`max,r ≤
∑
r∈Ci

2 max
{
β−1, αr−r

′
`max,r′

}
≤

∑
r∈Ci

(
2β−1 + 2αr−r

′
`max,r′

)
≤ β−1|Ci|′ + 2`max,r′

∑
r∈Ci

αr−r
′ ≤

≤ β−1|Ci|′ +
2`max,r′

1− α
≤

≤ β−1|Ci|′ + 3`max,r′

To prove Equations (11) and (12) it suffices to bound `max,r′ . First assume that `max,r′ 6=
`sentmax,r′ . In this case, `max,r′ ≤ |E0∩Ci|. This, together with the above calculations, implies that

|Ci| ≤ β−1|Ci|′ + 3|Ci ∩ E0|, which in turn implies that Equations (11) and (12) hold.
From now on assume that `max,r′ = `sentmax,r′ . In this case Equation (12) holds. To prove

Equation (11), we prove that for every Ci 6= C1,

`max,r′ ≤ β−1|E0 ∩ Ci−1| (13)

To this end, note that if one of the message sent in round r′ − 1 was corrupted, then
Equation (13) follows by the smoothness property (see Claim 30). Thus, from now on, we
assume that the messages sent in round r′ − 1 were not corrupted, which in turn implies that
in round r′ the parties send messages of length `−A,r′−1 and `−B,r′−1. Moreover, by the definition

of r′, it must be the case that `−A,r′−1 6= `−B,r′−1.
The fact that the messages sent in round r′ − 1 were not corrupted implies that

max{`sentA,r′−1, `
receive
B,r′−1} = max{`sentB,r′−1, `

receive
A,r′−1}.

This, together with the assumption that `−A,r′−1 6= `−B,r′−1, implies that

`max,r′ > `−A,r′−1 = β−1`sentA,r′−1 < αmax{`sentA,r′−1, `
receive
B,r′−1},

or
`max,r′ > `−B,r′−1 = β−1`sentB,r′−1 < αmax{`sentB,r′−1, `

receive
A,r′−1}.

Suppose without loss of generality that the former holds. This implies that

`sentA,r′−1 < αβ · `receiveB,r′−1 = αβ · `sentB,r′−1 ≤ α`sentB,r′−2,

where the last inequality follows from Claim 30. By the definition of C, SA,r′−1 6= Simulation.
This, together with Claim 30, implies `sentA,r′−1 ≥ α · `receiveB,r′−2. Thus, the message sent by Bob in
round r′ − 2 must have been corrupted. Therefore,

`max,r′ =

max{`−A,r′−1, `
−
B,r′−1} ≤

max{β−1, αmax{`sentA,r′−1, `
sent
B,r′−1}} ≤

max{β−1, αβ−1 · `B,r′−2} ≤
β−1|E0 ∩ Ci−1|,
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as desired, where the first equation follows from our assumption that the messages in round
r′ − 1 were not corrupted (together with the definition of C); the second equation follows from
the definition of `−; the third equation follows from the smoothness condition (Claim 30); and
the last equation follows from the fact that the message that Bob sent in round r′ − 2 was
corrupted.

In the following claims, we bound the volume and the number of messages in each chunk,
as a function of |E| and |E|′ (where recall that E is the set of all corrupted messages, mA and
mB).

Lemma 32. The total volume of all the Bad chunks is bounded by (2β−1 + 1)|E|+ 3dβ−1|E|′,
and the total number of messages exchanged in all the Bad chunks is bounded by 5d|E|′.

Proof. Fix a bad chunk C and let E0 be the set of corrupted messages in this chunk and in the
chunk preceding it. Note that by definition, the chunk preceding a bad chunk is never a bad
chunk. Hence, it suffices to prove that

|C| ≤ (2β−1 + 1)|E0|+ 3dβ−1|E0|′

and
|C|′ ≤ 5d|E0|′.

We first prove that |C|′ ≤ 5d|E0|′. To this end, we partition the messages in C into two
sets, those that are sent with a hash, and those that are sent without a hash, and we denote
the former by C ∩H.

Note that there is at most one round in the chunk C that has a non corrupted message m
sent with a hash, since after such a round at least one party will change its state into Correction
State. Therefore, |(C ∩H) \ E0|′ ≤ 2. Hence,

|C ∩H|′ = |(C ∩H) ∩ E0|′ + |(C ∩H) \ E0|′ ≤ |E0|′ + 2 ≤ 3|E0|′,

where the latter inequality follows from the fact that |E0|′ ≥ 1, which in turn follows from the
fact that if the previous chunk was a Good Simulation chunk, a Good Verification chunk, a
Good Correction chunk, or a Bad Correction chunk, and if there were no errors during that
chunk (i.e., the messages mA and mB were not corrupted and there was no collisions in the
corresponding hashes), then the next chunk would not be a Bad chunk. Note that, by definition
the previous chunk cannot be a bad chunk (otherwise, it would be part of the Bad chunk C).

By the definition of H, for every round r for which r is multiple of d, the messages in round r
are in H. Hence,

|C|′ ≤ d|C ∩H|′ + 2d ≤ 3d|E0|′ + 2d ≤ 5d|E0|′,

as desired.
We next prove that

|C| ≤ (2β−1 + 1)|E0|+ 3dβ−1|E0|′.

To this end, we partition C into three parts: The corrupted messages in C, the non-corrupted
messages in C without a hash, and the non-corrupted messages in C sent with a hash. Namely,

|C| = |C ∩ E0|+ |C \ (E0 ∪H)|+ |(C ∩H) \ E0|.

Note that
|C ∩ E0| ≤ |E0|
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and
|C \ (E0 ∪H)| ≤ d · |C|′ ≤ 5d2|E0|′ ≤ dβ−1|E0|′,

where this equation follows from the fact that each (uncorrupted) message without a hash is of
size at most d, together with the fact that d ≤ 1

5β (see Equation (3)).

We next bound |(C ∩H) \ E0|. As mentioned above, |(C ∩H) \ E0|′ ≤ 2. Thus, it suffices
to prove that each message m in (C ∩H) \ E0 is of size at most

|m| ≤ max
{
β−1|E0|, dβ−1

}
.

Fix any message m ∈ (C ∩H)\E0. Recall that the message m is sent in the last round of C
(since as we mentioned previously, after an uncorrupted message is sent with a hash the chunk
must end). We denote this last round by rf .

Suppose that m was sent by Alice (the case that m was sent by Bob is analogous). We use
the smoothness of the error-resilient protocol (Claim 30) to bound |m|, as follows: If |m| ≥ dβ−1

then by smoothness, |mreceive
B,rf−1| ≥ β|m| ≥ d (where recall that mreceive

B,rf−1 denotes the message that

Alice received before sending m).
We distinguish between three cases.

1. rf − 1 ∈ C. In this case, the message mB,rf−1 must have been corrupted (i.e., in E0),
since otherwise, in round rf Alice would change her state to Correction. Therefore,

|m| ≤ β−1|mreceive
B,rf−1| ≤ β−1 · |E0|,

as desired.

2. Round rf − 1 belongs to a Good Simulation or Good Verification chunk. In this
case, the message mA,rf−1 or mB,rf−1 must have been corrupted, since otherwise, round
rf would have also belonged to either a Good Simulation or Verification chunk (round rf
will either remain in the same chunk as rf − 1 or would be in a Simulation chunk while
rf − 1 is in a Verification chunk). Hence, as before,

|m| ≤ β−1 min{|msent
A,rf−1|, |mreceive

B,rf−1|} ≤ β−1 · |E0|,

as desired.

3. Round rf−1 belongs to a Bad Correction or Good Correction chunk. Recall that in
both a Bad Correction chunk and a Good Correction chunk, at least one of the parties is in
a Correction State. Assume w.l.og. that this party is Alice, and denote r0 = SA,rf−1 (i.e.,
the round where Alice entered this Correction State). In the next round, neither parties
are in Correction state since the next round belongs to the Bad chunk C. Therefore, Alice
must have changed her state into a Verification state.

We will show that in one of the rounds between (and including) r0 and rf there was a
corrupted message. Indeed, if the chunk preceding C was a Good Correction chunk and
none of these messages were corrupted, then both parties will switch into the Verification
State with matched transcripts, i.e. into a Good Verification chunk. On the other hand,
if the chunk preceding C was a Bad Correction chunk, and none of these messages were
corrupted, then Alice will remain in the Correction State (and the next chunk will be a
Good Correction chunk). Either way, the next chunk would not be a Bad chunk. Thus,
we conclude that one of the messages sent between (and including) round r0 and rf must
have been corrupted.
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Let r′ ∈ [r0, rf −1] be the last round that had a corrupted message. We will show that for
every r ∈ [r′ + 1, rf ] both messages sent in round r have length ≤ β−1|E0| . In particular
this will imply that |m| ≤ β−1 · |E0|, as required.

The proof is by induction on the round r.

Base Case: r = r′ + 1. By smoothness, we have that the size of all messages in the
round r′ + 1 is bounded by β−1 min{|mA,r′ |, |mB,r′ |} ≤ β−1|E0|, and hence the base case
follows.

Induction Step: Consider a round r ∈ [r′ + 2, rf ]. Since Alice is in a Correction State
(or in the first round of a Verification state, if r = rf ), we have that `A,r = `−A,r−1. We will

next show that `B,r = `−B,r−1. If in round r − 1 Bob was in a Simulation or a Verification
State, then since he received an uncorrupted message from Alice (which includes the fact
that she is in a Correction State), he would change his state into a Correction State, and
send a message of length `−B,r−1. On the other hand, if he was in a Correction State, he

would also send a message of length `−B,r−1 (by definition). This, together with the fact
that the messages in round r− 1 and round r were not corrupted, and with our induction
hypothesis, implies that

`A,r,= `−A,r−1 = min{β−1`A,r−1,max{β−1, α`max,r−1} ≤ max{β−1|E0|, `max,r−1} ≤ β−1|E0| ,

and

`B,r,= `−B,r−1 = min{β−1`B,r−1,max{β−1, α`max,r−1} ≤ max{β−1|E0|, `max,r−1} ≤ β−1|E0| ,

as desired.

Lemma 33. The total number of messages exchanged in all Bad Correction chunks is bounded
by 20|E|′.

Proof. Fix a Bad Correction chunk C. Denote its first round by r0 and denote its last round
by rf . Let E0 be the set of corrupted messages in all the chunks starting after the previous
Bad Correction chunk until (and including) chunk C. Note that it is enough to show that
|C|′ ≤ 20|E0|′.

First we argue that |E0|′ ≥ 1. To this end, assume that |E0|′ = 0, and we will get a
contradiction by showing that the protocol cannot reach a Bad Correction chunk if there were
no errors since the end of the previous Bad Correction chunk. This follows from the following
simple claims.

1. Between the previous Bad Correction chunk and C, the protocol cannot be in a Good
Simulation chunk, since without errors, the protocol will remain in a Good Simulation
chunk.

2. Between the previous Bad Correction chunk and C, the protocol cannot be in a Good
Verification chunk, since without errors, the protocol will move into a Good Simulation
chunk.

3. Between the previous Bad Correction chunk and C, the protocol cannot be in a Good
Correction chunk, since without errors, it will move into a Good Verification chunk.

54



4. Between the previous Bad Correction chunk and C, the protocol cannot be in a Bad
chunk, since if the protocol did enter a Bad chunk after the previous Bad Correction
chunk it must be the case that one party changed its state from a Correction state into a
Verification state. Without corruptions, after one round in the Bad chunk, this party gets
either a message of length < β−1, or a message of length ≥ β−1 > d with a hash. Either
way, she will detect this inconsistency and change her state into a Correction state. The
other party will receive a message of length ≥ β−1 with a hash, and thus will also change
its state into a Correction state. Since both parties change their state into a Correction
state at the same round, the protocol will enter a Good Correction chunk, after which the
parties will not move into a Bad Correction chunk, unless errors occurred.

5. It cannot be the case that there is no chunk between the previous Bad Correction chunk
and chunk C, since in this case the previous Bad Correction chunk and chunk C would
have been combined into a single Bad Correction chunk.

We thus conclude that |E0|′ ≥ 1.
We next prove that |C|′ ≤ 20|E0|′. The fact that |E0|′ ≥ 1 implies that it suffices to prove

that |C|′ ≤ 18|E0|′ + 2. We prove the latter using a potential argument. We define for every
r ∈ C,

ΨA(r) =

{
r − SA,r − 4

3v
0
A,r SA,r ∈ N

0 SA,r ∈ {Simulation,Verification}
,

where v0
A,r is the value of the variable v0 of Alice at the end of round r. We define ΨB similarly.

Our potential function Φ is defined as follows: For any r ∈ C,

Φ(r) = |E0(r)|′ − 1

3
ΨA(r)− 1

3
ΨB(r) ,

where E0(r) consists with all messages in E0 before (not including) round r.
In order to bound |C|′, we will show three properties of Φ:

1. Upper-bound: Φ(r) ≤ |E0(r)|′ for every r ∈ C.

2. Non-negative: Φ(r0) ≥ 0.

3. Increasing: Φ(r)− Φ(r − 1) ≥ 1
9 for every r ∈ C \ {r0}.

Indeed this will bound |C|′ ≤ 18|E0|′ + 2 since,

|E0|′ ≥ |E0(rf )|′ ≥ Φ(rf ) = (Φ(rf )− Φ(r0)) + Φ(r0) ≥ 1

9
(rf − r0) + 0 =

1

9

(
1

2
|C|′ − 1

)
,

where the latter equality follows from the fact that the number of rounds in C, which is equal
to 1

2 |C|
′, is rf − r0 + 1.

Upper-bound: Φ(r) ≤ |E0(r)|′. We prove this by showing that for any r,

ΨA(r) ≥ 0, (14)

and similarly for Bob. By definition, when SA,r ∈ {Simulation,Verification} then ΨA(r) = 0,
and the claim follows.

Next, consider the case where SA,r = r′ ∈ N, and we will show that

v0
A,r ≤

3

4
(r − r′).

This suffices since ΨA = r − r′ − 4
3v

0
A,r ≥ 0, as desired.

Let q be a power of two that satisfies 1
2(r − r′) ≤ q < (r − r′). We distinguish between two

cases:
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Case 1: v0
A,r′+q−1 >

1
2q. In this case, by the definition of the protocol Π, in Step 3c of the

protocol, v0
A,r′+q would have been set to 0, and hence

v0
A,r ≤ v0

A,r′+q + (r − r′ − q) ≤ 0 + (r − r′ − q) ≤ 1

2

(
r − r′

)
≤ 3

4

(
r − r′

)
,

as desired, where the first inequality follows from the fact that in each round v0
A,r increases by

at most 1.

Case 2: v0
A,r′+q−1 ≤

1
2q. In this case,

v0
A,r ≤ v0

A,r′+q−1 + (r − r′ − q + 1) ≤ 1

2
q + (r − r′ − q + 1) = (r − r′ + 1)− 1

2
q ≤ 3

4

(
r − r′

)
,

as desired, where the first inequality follows from the fact that in each round v0
A,r increases by

at most 1.

Non-negativity of Φ: Here we show that Φ(r0) ≥ 0.
We first note that for every round r,

SA,r ∈ {Simulation,Verification, r} ⇒ ΨA(r) = 0. (15)

Indeed, if SA,r ∈ {Simulation,Verification} then ΨA(r) = 0 by definition. If SA,r = r then
v0
A,r = 0 (see Step 3c in the protocol), and hence ΨA(r) = r − r − 0 = 0.

To prove that Φ(r0) ≥ 0, we first consider the case where the previous chunk was not
a Good Correction chunk (i.e., in the previous chunk the state of both parties is Simulation
or Verification). In this case, both parties satisfy SA,r0 , SB,r0 ∈ {Simulation,Verification, r0}.
This, together with Equation (15), implies that ΨA(r0) = ΨB(r0) = 0, and hence Φ(r0) =
|E0(r0)| − 1

3ΨA(r0)− 1
3ΨB(r0) ≥ 0.

Next, consider the case where the previous chunk was a Good Correction chunk. Namely,
for some r′ we get that SA,r0−1 = SB,r0−1 = r′. Note that in round r0, the parties states are in
disagreement (since it is a Bad Correction chunk), hence it must be the case that |E0(r0)|′ ≥
1
2(r0 − r′).

Note that in round r0 one of the parties (say Alice) changes her state to SA,r0 ∈ {r0,Verification}.
This, together with Equation (15), implies that ΨA(r0) = 0. Moreover, ΨB(r0) ≤ (r0 − r′).
Hence,

Φ(r0) = |E0(r0)|′ − 1

3
ΨA(r0)− 1

3
ΨB(r0) ≥ 1

2
(r0 − r′)−

1

3
· 0− 1

3
(r0 − r′) =

1

6
(r0 − r′) ≥ 0 ,

as required.

Increase of Φ (∆Φ > 1
9): Here we show that in each round r ∈ (r0, rf ] the potential function

increases by at least 1
9 . We use the notation ∆f(r) to denote f(r) − f(r − 1). We distinguish

between the case that one of the messages in round r−1 was corrupted, and the case that both
round r − 1 messages were not corrupted.

In the former, we bound ∆ΨA(r) ≤ 1 (and the same for Bob). This suffices, since recall
that E0(r) \ E0(r − 1) consists of the corrupted messages of round r − 1 and hence

∆Φ(r) = ∆|E0(r)|′ − 1

3
∆ΨA(r)− 1

3
∆ΨB(r) ≥ 1− 1

3
· 1− 1

3
· 1 =

1

3
>

1

9
.

We next bound ∆ΨA(r). We distinguish between three cases:
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1. SA,r−1 ∈ {Simulation,Verification}: In this case ΨA(r − 1) = 0. Moreover, SA,r ∈
{Simulation,Verification, r} and thus Equation (15) implies that ΨA(r) = 0. Hence,
∆ΨA(r) = 0− 0 ≤ 1, as desired.

2. SA,r−1 = r′ and SA,r ∈ {Simulation,Verification, r}: In this case, Equations (14) and (15)
imply that ∆ΨA(r) = 0−ΨA(r − 1) ≤ 0, as desired.

3. SA,r−1 = SA,r = r′: In this case, v0
A,r ≥ v0

A,r−1 (since in round r, v0 was not set to zero).
Thus,

∆ΨA(r) =

(
r − r′ − 4

3
v0
A,r

)
−
(
r − 1− r′ − 4

3
v0
A,r−1

)
= 1− 4

3
(v0
A,r − v0

A,r−1) ≤ 1 .

Since SA,r ∈ {Simulation,Verification, r, SA,r−1}, the above includes all possible cases. Thus we
conclude that ∆ΨA(r) ≤ 1, which in turn implies that in this case, ∆Φ(r) ≥ 1

9 .
Next we consider the second case, where there were no corrupted messages in round r − 1.

First, since r ∈ C and C is not a Good Correction chunk it cannot be that SA,r = SB,r = r.
Note that if SA,r = r then by Equations (14) and (15),

∆ΨA(r) = ΨA(r)−ΨA(r − 1) = 0−ΨA(r − 1) ≤ 0 .

We next show that if SA,r 6= r then ∆ΨA(r) ≤ −1
3 (and similarly for Bob), which will imply

that

∆Φ(r) = ∆|E0(r)| − 1

3
∆ΨA(r)− 1

3
∆ΨB(r) ≥ 0− 1

3
· 0− 1

3
·
(
−1

3

)
=

1

9
,

as required, where the second equation follows from the fact that it cannot be that SA,r =
SB,r = r, and hence for at most one party Ψ equals 0, which implies that for at least one party
Ψ is at most −1

3 .
To this end, suppose that SA,r 6= r. We argue that in the absence of error in round r − 1,

in the r’th round Alice will detect an inconsistency in their states. This is the case, since recall
that we are in a Bad Correction chunk, and hence the states of Alice and Bob are inconsistent.
Moreover, if Bob is in Correction state then he will send a message with a hash, and thus Alice
will notice this inconsistency, and if Bob is not in Correction state and sends a short message,
then Alice will notice this inconsistency since she is in Correction state, and thus expects longer
message. Hence, it must be the case that SA,r /∈ {Simulation,Verification, r}.

This, together with the fact that SA,r ∈ {Simulation,Verification, r, SA,r−1}, implies that
SA,r = SA,r−1 = r′ for some r′ ≤ r− 1. Since mB,r−1 was not corrupted, Alice increases v0 and
hence v0

A,r = v0
A,r−1 + 1. Therefore,

∆ΨA(r) =

(
r − r′ − 4

3
v0
A,r

)
−
(
r − 1− r′ − 4

3
v0
A,r−1

)
= 1− 4

3
(v0
A,r − v0

A,r−1) = −1

3
,

as required.
We thus conclude that

|C|′ ≤ 20|E0|′, (16)

as desired.

Lemma 34. The total number of messages in all of the Good Correction chunks is bounded by
11d|E|′.
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Proof. We partition the Good Correction chunks into two types: the corrupted Good Correction
chunks, which have at least 1

16 fraction of corrupted messages, and the uncorrupted Good
Correction chunks, which have less than 1

16 fraction of corrupted messages. By definition, the
total number of messages in the corrupted Good Correction chunks is bounded by 16|E|′. Thus,
we need to show that the total number of messages in uncorrupted Good Correction chunks is
at most (11d− 16)|E|′

Let B be the set of all Bad chunks, Bad Correction chunks, and corrupted Good Correction
chunks. We bound the total number of messages in the uncorrupted Good Correction chunks
by 2|B|′ + 2|E|′. This suffices since by Lemmas 32 and 33,

2|B|′ + 2|E|′ ≤ 2
(
5d|E|′ + 20|E|′ + 16|E|′

)
+ 2|E|′ ≤ (11d− 16)|E|′ ,

where the last inequality follows from the fact that d > 20, which in turn follows from the
definition of d and from the assumption that α < 0.01 (see Equation (3)).

To this end, fix an uncorrupted Good Correction chunk C, let r0 ∈ C be its first round
and let rf ∈ C be its last round. Let E0 be the set of corrupted messages in all the chunks
starting after the previous uncorrupted Good Correction chunk until (and including) chunk C.
Note that |E0|′ ≥ 1 since if after an uncorrupted Good Correction chunk there are no errors,
then afterwards the parties will enter a Good Verification chunk followed by a Good Simulation
chunk, and will never enter a Good Correction chunk again.16

Let B0 ⊆ B be the set of all chunks in B that came before C and after the previous
uncorrupted Good Correction chunk, after the previous Good Verification chunk, and after the
previous Good Simulation chunk. Note that B0 may be empty. We prove that

|C|′ ≤ 2|B0|′ + 2|E0|′.

Note that this inequality holds trivially in the case where C consists of a single round. From
now on, we assume that C has at least two rounds. Given two transcripts T1 and T2, let T1uT2

be the longest shared prefix between T1 and T2. We define the disagreement between T1 and
T2 by

T1∆T2 = (T1 \ (T1 u T2)) ◦ (T2 \ (T1 u T2)) ,

where ◦ denote the concatenation of the two strings.
We defined Dr to be the disagreement between the parties in round r. Namely,

Dr = (TA,r[RA,r]) ∆ (TB,r[RB,r]) .

We next prove that
1

2
|C|′ − 1 ≤ |Dr0−1|′ ≤ |B0|′ (17)

This implies that
|C|′ ≤ 2|B0|′ + 2 ≤ 2|B0|′ + 2|E0|′ ,

as desired.
In the proof of Equation (17), we use the following two claims.

Claim 35. The chunk immediately after C is a Good Verification chunk.

Claim 36. For any i ∈ {1, 2}, in the presence of < 1
4(rf − r0) errors, the following holds,

viA,rf >
1

4
(rf − r0) ⇐⇒ TA[R

(i)
A ] ∈

{
TB

[
R

(1)
B

]
, TB

[
R

(2)
B

]}
.

16Note that this is not true for a corrupted Good Correction chunk, since after a corrupted Good Correction
chunk the parties can immediately enter a Good Correction chunk, without any errors incurring in between.

58



Remark 37. Recall that each round consists of two messages, and hence the fact that there
are at most 1/16 corrupted messages in this chunk implies that there are at most 1/8 corrupted
rounds in this chunk. We prove Claim 36 assuming that the fraction of corrupted round is less
then 1/4. This stronger statement is needed later in the proof.

Proof of Claim 36. Assume viA,rf >
1
4(rf−r0). By the definition of the protocol, this implies

that the number of rounds between round r0 +
rf−r0

2 and round rf , in which

Hsent(TA[R
(i)
A ]) ∈

{
H receive(TB[R

(1)
B ]), H receive(TB[R

(2)
B ])

}
is more than 1

4(rf − r0). Recall that we are in the Ideal Hash Model, where a hash collision is
thought of as an error. Hence, it must be the case that indeed

TA[R
(i)
A ] ∈ {TB[R

(1)
B ], TB[R

(2)
B ]}.

Next assume that TA[R
(i)
A ] ∈ {TB[R

(1)
B ], TB[R

(2)
B ]}. In this case, vi increases by one at

any round between r0 +
rf−r0

2 and rf which had no error. Since as explained above, less
than 1

4(rf − r0) rounds out of these 1
2(rf − r0) rounds may have errors, we conclude that

viA,rf >
1
4(rf − r0), as desired.

Proof of Claim 35. Recall that each party in a Correction state, maintains variables v0, v1, v2,
where at each round, the party, say Alice, increases the variables vi (for i ∈ {1, 2}) if and only
if

Hsent(TA[R
(i)
A ]) ∈

{
H receive(TB[R

(1)
B ]), H receive(TB[R

(2)
B ])

}
.

Moreover, recall that for every k ∈ N, whenever the party is in this Correction state for 2k

rounds, it sets v0 = v1 = v2 = 0, and w is increased by a factor of 2, which redefines R(1) and
R(2). For any round r, the value of viA,r in round r is updated in Step 3a and is then set to zero

if and only if the party is in the Correction state for 2k rounds for some k ∈ N.
In what follows, we define viA,r to be the value of viA,r immediately after Step 3a (before it

may have been set to zero), and we define the values TA

[
R

(1)
A

]
, TA

[
R

(2)
A

]
, TB

[
R

(1)
B

]
, TB

[
R

(2)
B

]
to be the values as defined in the second half of chunk C. (Recall that these values are being
updated whenever the party is in this Correction chunk for 2k rounds for some k ∈ N. Suppose
the party was in this Correction chunk for a total of 2k rounds, then the values above are the
values after the update that happened after 2k−1 rounds.)

We now prove that the chunk after chunk C is a Good Verification chunk. To this end, note
that chunk C ends when one party, say Alice, changes her state from Srf−1 = r0 to Srf 6= r0.
Hence, rf − r0 must be a power of two. Since in a Good Correction chunk, v0 can increase
only due to an error we get that v0

A,rf
≤ 1

4(rf − r0) and hence Alice cannot change her state in
Step 3c. We show by case analysis that SA,rf = SB,rf = Verification, and at the end of round
rf it holds that TA[RA] = TB[RB], which implies that Drf+1 = ∅.

1. If TA[R
(1)
A ] = TB[R

(1)
B ] then v1

A,rf
, v1
B,rf

> 1
4(rf − r0). Therefore, the parties define RA =

R
(1)
A , RB = R

(1)
B and hence

TA[RA] = TA[R
(1)
A ] = TB[R

(1)
B ] = TB[RB] .
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2. If TA[R
(2)
A ] = TB[R

(2)
B ] and TA[R

(1)
A ] 6= TB[R

(1)
B ]. Then v1

A,rf
, v1
B,rf

≤ 1
4(rf − r0) and

v2
A,rf

, v2
B,rf

> 1
4(rf − r0). Therefore, the parties define RA = R

(2)
A , RB = R

(2)
B and hence

TA[RA] = TA[R
(2)
A ] = TB[R

(2)
B ] = TB[RB] .

3. If TA[R
(1)
A ] = TB[R

(2)
B ] then TB[R

(1)
B ] /∈ {TA[R

(1)
A ], TA[R

(2)
A ]}. Therefore, v1

A,rf
, v2
B,rf

>

1
4(rf − r0) and v1

B,rf
≤ 1

4(rf − r0). Thus, the parties define RA = R
(1)
A , RB = R

(2)
B and

hence
TA[RA] = TA[R

(1)
A ] = TB[R

(2)
B ] = TB[RB] .

4. The case TA[R
(2)
A ] = TB[R

(1)
B ] is similar to the previous case.

5. If {TA[R
(1)
A ], TA[R

(2)
A ]} and {TB[R

(1)
B ], TB[R

(2)
B ]} do not intersect, then v1

A,rf
, v2
A,rf

, v1
B,rf

, v2
B,rf
≤

1
4(rf − r0) and thus SA,rf = SB,rf = r0, in contradiction to the fact that C ends in round
rf .

Moreover, since in each of the cases above, both parties set SA,rf = SB,rf = Verification, at the
end of round rf the protocol enters a Good Verification chunk.

We are now ready to prove Equation (17).

Upper bound of Dr0−1. We show that |Dr0−1|′ ≤ |B0|′.
First suppose that B0 = ∅. In this case the chunk preceding C is either a Good Verification

chunk, a Good Simulation chunk, or an uncorrupted Good Correction chunk. However, as we
saw, it cannot be the latter since after an uncorrupted Good Correction chunk must come a
Good Verification chunk. Therefore, the chunk preceding C must be either a Good Verification
chunk or a Good Simulation chunk, which implies that in round r0− 1 there is no disagreement
on the transcript, and hence |Dr0−1|′ = 0.

We next assume that B0 6= ∅, and let r′ < r0 be the first round of B0. Let {rA,i}kAi=0 be a
sequence of rounds such that r′ − 1 = rA,0 < rA,1 < . . . < rA,kA = r0, and

[r′ − 1, r0 − 1] =

kA⋃
i=0

[rA,i, rA,i+1),

where each [rA,i, rA,i+1) is either a single round r in which SA,r ∈ {Simulation,Verification}, or
a sequence of rounds r in which SA,r = rA,i (this sequence may be of size 1). We next show

|Dr0−1|′ ≤
∣∣TA,r′−1[RA,r′−1]∆TB,r′−1[RB,r′−1]

∣∣′ (18)

+

kA∑
i=1

∣∣TA,rA,i [RA,rA,i ]∆TA,rA,i−1
[RA,rA,i−1

]
∣∣′

+

kB∑
i=1

∣∣TB,rB,i [RB,rB,i ]∆TB,rB,i−1
[RB,rB,i−1

]
∣∣′ .

Then we will bound the number of messages in each of these terms in order to bound |Dr0−1|′.
To prove equation (18) it suffices to prove that for any set of transcripts {Ti}ki=1,

|T1∆Tk|′ ≤
k−1∑
i=1

|Ti∆Ti+1|′. (19)
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To this end, it suffices to show that |T1∆T2|′ ≤ |T1∆T3|′ + |T2∆T3|′. Indeed,

|T1∆T2|′ =
|T1 \ (T1 u T2)|′ + |T2 \ (T1 u T2)|′ ≤
|T1 \ (T1 u T3)|′ + |(T1 u T3) \ (T1 u T2 u T3)|′ + |T2 \ (T2 u T3)|′ + |(T2 u T3) \ (T1 u T2 u T3)| ≤
|T1 \ (T1 u T3)|′ + |T3 \ (T2 u T3)|′ + |T2 \ (T2 u T3)|′ + |T3 \ (T1 u T3)| =
|T1∆T3|′ + |T2∆T3|′,

as desired.

We show that
|
(
TA,r′−1[RA,r′−1]∆TB,r′−1[RB,r′−1]

)
|′ = 0 .

By Claim 35, after an uncorrupted Good Correction chunk, the parties enter a Good Verification
chunk, which is not in B. Thus, round r′−1 cannot be in a uncorrupted Good Correction chunk
and therefore must be in a Good Verification or a Good Simulation chunk. Either way, in round
r′ − 1 the parties agree on their transcripts and thus(

TA,r′−1[RA,r′−1]∆TB,r′−1[RB,r′−1]
)

= ∅,

as required.
We show that for any i ∈ {1, . . . , kA} we have that

|TA,rA,i [RA,rA,i ]∆TA,rA,i−1
[RA,rA,i−1

]|′ ≤ rA,i − rA,i−1 . (20)

First consider the case where [rA,i−1, rA,i) contains only one round r and

SA,r ∈ {Simulation,Verification}.

If Alice detects an inconsistency in round r then TA,r+1[RA,r+1] = TA,r[RA,r]. Otherwise,
TA,r+1[RA,r+1] = (TA,r[RA,r],m) for some message m. Either way,

|TA,rA,i [RA,rA,i ]∆TA,rA,i−1
[RA,rA,i−1

]|′ = |TA,r+1[RA,r+1]∆TA,r[RA,r]|′ ≤ 1 = rA,i − rA,i−1 .

Now consider the case where [rA,i−1, rA,i) contains all rounds r in which SA,r = rA,i−1 . In this
case SA,rA,i ∈ {Verification, rA,i}. If SA,rA,i = rA,i, then TA,rA,i [RA,rA,i ] = TA,rA,i−1

[RA,rA,i−1
].

If SA,rA,i = Verification, then TA,rA,i = TA,rA,i−1
and RA,rA,i ∈ {R(1), R(2)}, as defined in the

second half of the rounds [rA,i−1, rA,i). In either case,

|TA,rA,i [RA,rA,i ]∆TA,rA,i−1
[RA,rA,i−1

]|′ ≤ RA,rA,i−1
−R(2) ≤ 2wA,rA,i−1 = 2·1

2
(rA,i−rA,i−1) = rA,i−rA,i−1 .

This proves Equation (20). This, together with Equation (18), implies that

|Dr0−1|′ ≤
∣∣TA,r′−1[RA,r′−1]∆TB,r′−1[RB,r′−1]

∣∣′ +
kA∑
i=1

∣∣TA,rA,i [RA,rA,i ]∆TA,rA,i−1
[RA,rA,i−1

]
∣∣′ +

kB∑
i=1

∣∣TB,rB,i [RB,rB,i ]∆TB,rB,i−1
[RB,rB,i−1

]
∣∣′ ≤

0 +

kA∑
i=1

(rA,i − rA,i−1) +

kB∑
i=1

(rB,i − rB,i−1) = 2(r0 − r′) = |B0|′ ,

as desired.
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Lower bound on the |Dr0−1|. Recall that we need to prove that |Dr0−1|′ ≥ 1
2 |C|

′ − 1. We
prove this by proving that

|Dr0−1| ≥
1

2
(rf − r0).

Note that at least one party changes its state in round rf , hence rf − r0 must be a power of

two. Let r′ = r0 +
rf−r0

2 be the previous round in C that was a power of two. We show that
Dr′ = Dr0−1. This is done by observing that for any r ∈ [r0 − 1, r′] we have that

TA,r = TA,r+1 , TB,r = TB,r+1 , RA,r = RA,r+1 , RB,r = RB,r+1.

Indeed, this is true for r = r0−1, since in this case the state is updated to be Sr0 = r0 and none
of the variables above are changed. Moreover, these values are not changed at any round r of
the correction state, except the last round.

Since in round r′ the parties did not change their state, v2
A,r′ ≤

1
4(r′− r0). By Claim 36, we

have that TA,r′
[
R

(2)
A,r′

]
6= TB,r′

[
R

(2)
B,r′

]
. Thus TA,r′ [RA,r′ ] u TB,r′ [RB,r′ ] does not include round

R
(2)
A = R

(2)
B , and therefore,

|Dr0−1|′ = |Dr′ |′

= |TA,r′ [RA,r′ ]∆TB,r′ [RB,r′ ]|′

≥ (RA,r′ −R
(2)
A,r′) + (RB,r′ −R

(2)
B,r′)

≥ wA,r′ + wB,r′

≥ 1

2
(rf − r0) ,

as required.

Lemma 38. The total number of messages in all Good Verification chunks is bounded by

300d
(

log 1
β

)
|E|′.

Proof. We partition all the rounds in all Good Verification chunks into 3 (non-consecutive)
parts.

• P1 consists of all the rounds r in Good Verification chunks that satisfy: RA,r = RA,r−1

and TA,r−1[RA,r−1 + 1] = TB,r−1[RB,r−1 + 1].

• P2 consists of all the rounds r in Good Verification chunks that satisfy: RA,r = RA,r−1 +1.

• P3 consists of all the rounds r in Good Verification chunks that satisfy: RA,r = RA,r−1

and TA,r−1[RA,r−1 + 1] 6= TB,r−1[RB,r−1 + 1].

We note that a more natural order of this partition would have been P1, P3, P2. However, in
the analysis we bound |P3|′ as a function of |P1|′ and |P2|′, and hence the unnatural order.
Note that these three parts cover all the Good Verification chunks since by the definition of the
protocol, for any round r in these chunks, we have that RA,r ∈ {RA,r−1, RA,r−1 + 1}. Note that
RA,r+1 is always defined since the protocol ends only when Alice is in a Simulation state. We
now bound the number of messages in each of these parts.
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First part: We show that
|P1|′ ≤ 2|E|′. (21)

To get the bound on |P1|′ we show that for every round r ∈ P1, mB,r is corrupted.17 By the
definition of the protocol, if SA,r−1 = Verification then RA,r = RA,r if and only if the hash that
Alice receives indicates that TB,r−1[RB,r−1 +1] 6= TA,r−1[RA,r−1 +1]. Since, by our assumption,
these transcripts are equal, it must be the case that mB,r is corrupted.

Second part: We show that
|P2|′ ≤ 17d|E|′. (22)

Let B be the set of all Bad chunks, Bad Correction chunks, and Good Correction chunks. By
Lemmas 32, 33, and 34, it holds that

|B|′ ≤ 5d|E|′ + 20|E|′ + 11d|E|′ ≤ 17d|E|′,

where the latter inequality follows from the fact that d ≥ 100, which in turn follows from the
fact that α ≤ 0.01.

Thus, to prove Equation (22), it suffices to prove that

|P2|′ ≤ |B|′.

To this end, let dr be the difference between the number of rounds in TA,r and RA,r, i.e.,

dr = 1
2 |TA,r|

′ −RA,r.18 Let rf be the last round in the protocol. Let {rA,i}ki=0 be a sequence of
rounds such that 0 = rA,0 < rA,1 < . . . < rA,kA = rf , and

[0, rf − 1] =

kA−1⋃
i=0

[rA,i, rA,i+1),

where each [rA,i, rA,i+1) is either a single round r in which SA,r ∈ {Simulation,Verification}, or
a sequence of all rounds r for which SA,r = rA,i.

19 Note that all the intervals in which Alice
is in a Correction state are contained in B. By definition of the protocol, dr has the following
properties:

1. If [rA,i, rA,i+1) consists of a single round r in which SA,r = Simulation then drA,i+1−drA,i =
0.

2. If [rA,i, rA,i+1) consists of a single round r in which SA,r = Verification then drA,i+1−drA,i ∈
{0,−1}.
Moreover, for any round in r ∈ P2 we have that dr+1 − dr = −1.

3. If [rA,i, rA,i+1) consists of all round r in which SA,r = rA,i then drA,i+1−drA,i ≤ rA,i+1−rA,i.

4. d0 = 0, and for every r it holds that dr ≥ 0.

17Recall that |E|′ denotes the number of messages that have been corrupted, whereas |P1|′ denotes the number
of messages sent in the rounds of P1, which is twice the number of rounds in P1, since in each round two messages
are sent, one by Alice and one by Bob.

18Note that dr is unrelated to the constant d.
19A similar partition was considered in the proof of Lemma 34.
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Thus,

0 ≤ drf
= drf − d0

=

k∑
i=0

(
drA,i+1 − drA,i

)
≤

∑
i:SrA,i=rA,i

(rA,i+1 − rA,i)−
∑

i:rA,i∈P2

(−1)

≤ 1

2
|B|′ − 1

2
|P2 ∩ [0, rf − 1]|′

=
1

2
|B|′ − 1

2
|P2|′ ,

where the last equality follows from the fact that rf /∈ P2. Hence, |P2|′ ≤ |B|′ as required.

Third phase: Let B be the set of all BAD chunks, Good and Bad Correction chunks, and
all the messages in P1 and P2. In other words, B consists of all the messages, except those
in P3 and those that belong to a Good Simulation. Lemmas 32, 33, and 34, together with
Equations (21) and (22), imply that

|B|′ ≤ 35d|E|′.

We prove that

|P3|′ ≤ (7|B|′ + 18|E|′) log
1

β
. (23)

which together with the above, implies that

|P3|′ ≤ 246d|E|′ log
1

β
. (24)

Equations (21) (22) and (24), imply that

|P1|′ + |P2|′ + |P3|′ ≤ 18d|E|′ + 281d|E|′ log
1

β
< 300d|E|′ log

1

β
,

as desired.
It thus remains to prove Equation (23). To this end, consider all the rounds which are in

Good Simulation chunks. Denote these rounds by 1 = r0 < r1 < . . . < rt. We divide the
protocol into chunks C1, . . . , Ct where Ci = [ri−1, ri].

20 We denote by Bi = B∩Ci, Ei = E∩Ci,
and P3,i = P3 ∩ Ci. We prove that for every i ∈ [t],

|P3,i|′ ≤ (7|Bi|′ + 9|Ei|′) log
1

β
. (25)

Note that this implies Equation (23) since all the Bi’s are disjoint (follows from the fact that all
the ri’s belong to Good Simulation chucks), and hence |B|′ =

∑t
i=1 |Bi|′. Moreover,

∑t
i=1 |Ei|′ ≤

2|E|′ since each message in E belongs to at most two Ei’s.
We next prove Equation (25) via the use of a potential function. In what follows, we focus

on a specific chunk Ci, but we omit the subscript i from the notations to avoid cluttering.

20Note that these chunks are not disjoint, however, they do cover all the rounds in the protocol.
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Moreover, we abuse notation, and denote by r0 the first round in this chunk and by rf the
last round in the chunk. We denote by Br all the messages in B from round r0 to round r
(including). We denote by simA(r) the largest round ≤ r such that SA,r−1 = Simulation. We
denote by

P3,A =
{
mr ∈ P3 : |TA,r| − |TA,r[RA,r]| ≤ `sentA,r

}
We define P3,B analogously, and we note that

|P3|′ ≤ |P3,A|′ + |P3,B|′ + |E|′.

Thus, it remains to prove that

|P3,A|′, |P3,B|′ ≤ (3.5|Bi|′ + 4|Ei|′) log
1

β
.

We focus on bounding |P3,A|′. Bounding |P3,B|′ is done analogously. For every round r ∈ [r0, rf ]
we define the potential function:

ΦA(r) =

3|Br|′ log
1

β
+ log ˜̀

A,r − |(simA(r), r] \ P3,A| −
(

1

2
|TA,r|′ −RA,r

)
· log

1

β
,

where ˜̀
A,r is defined as follows: If r is such that SA,r = Simulation then ˜̀

A,r = `sentA,r . Else, if

`sentA,r = `−A,r−1 then we define ˜̀
A,r = max{β−1, α˜̀

A,r−1}. Else, `sentA,r = `+A,r−1 in which case we

define ˜̀
A,r = 2˜̀

A,r−1.
The fact that round r0 and rf belong to a Good Simulation chunk, implies that

ΦA(r0) = log ˜̀
A,r0 ,

and

ΦA(rf ) ≤ 3|B|′ log
1

β
+ log ˜̀

A,rf .

Thus,

ΦA(rf )− ΦA(r0) =

3|B|′ log
1

β
+ log ˜̀

A,rf − log ˜̀
A,r0 =

3|B|′ log
1

β
+ log

˜̀
A,rf

˜̀
A,r0

≤ (26)

3|B|′ log
1

β
+ log β

− 1
2
|TA,r0∆TA,rf |

′−2 ≤ (27)

3|B|′ log
1

β
+ log β−

1
2
|B|′−4 =

(3.5|B|′ + 4) log
1

β
,

where recall that T1∆T2 = (T1 \ T1 u T2) ∪ (T2 \ T1 u T2). Equation 26 follows from the (α, β)-
smoothness of TA,r0 and TA,rf as follows: let ` be the length of the last message in TA,r0 uTA,rf .
Than Equation 26 follows from combining the follows,

`A,rf ≤ β
−( 1

2
|TA,r0\TA,r0u|TA,rf |

′+1)
`
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and
`A,r0 ≥ α

1
2
|TA,r0\TA,r0u|TA,rf |

′+1
` ≥ β

1
2
|TA,r0\TA,r0u|TA,rf |

′+1
` .

To prove Equation 27, since r0 and rf in good simulation, it will be suffice to show that
|TA,r0 [RA,r0 ]∆TA,rf [RA,rf ]|′ ≤ |B|′. This is done in a similar way to the proof of Equa-
tion 20. We will partition the regine [r0, rf ] into regines [rA,i, rA,i+1) such that each regime
contain a single round such that SA,rA,i ∈ {Simulation,Verification} or all rounds r such that
SA,rA,i = rA,i. By the protocol, if [rA,i−1, rA,i) contain a single round of Verification than
TA,rA,i−1

[RA,rA,i−1
]∆TA,rA,i [RA,rA,i ] = ∅. Else, if [rA,i, rA,i+1) contain a single round of Simula-

tion than two messages, or none, are added to T [R] and so |TA,rA,i [RA,rA,i ]∆TA,rA,i+1
[RA,rA,i+1

]|′ ≤
2. Else, where [rA,i−1, rA,i) contain that all round in which SA,r = rA,i−1 we have that R can
decreased by at most 2wrA,i−1 = rA,i − rA,i−1. Thus, using Equation 19 we have,

|TA,r0 [RA,r0 ]∆TA,rf [RA,rf ]|′ ≤
k−1∑
i=1

|TA,rA,i [RA,rA,i ]∆TA,rA,i+1
[RA,rA,i+1

]|′

≤ 2 |{r ∈ [r0, rf ) | SA,r 6= Verification}| ≤ |B|′ − 4 .

We partition [r0, rf ) into chunks (rA,i−1, rA,i] such that each chunk consists with a single
round r where SA,r−1 ∈ {Simulation,Verification}, or all consecutive rounds, where SA,r−1 = ri
for some r′ ∈ N.

We now note that for every i such that (rA,i−1, rA,i] consists with a single round in P3,A,

ΦA(rA,i)− ΦA(rA,i−1) = ΦA(r)− ΦA(r − 1) ≥ 1. (28)

This follows from the fact that the only term in the potential function ΦA that changes from
round r to round r + 1 is ˜̀

A,r, and by the definition of P3 it holds that ˜̀
A,r−1 ≥ 2˜̀

A,r, which
implies Equation (28).

It remains to argue that for all other i,

ΦA(rA,i)− ΦA(rA,i−1) ≥ 0. (29)

We consider the following four cases:

Case 1: (rA,i−1, rA,i] consists with all rounds r in which SA,r−1 = ri−1. In this case note
that RrA,i ≥ RrA,i−1 − 2(rA,i− rA,i−1). Moreover, since all the messages in this chunk are of the

form `−r−1, we have that ˜̀
A,ri ≥ αrA,i−rA,i−1 ˜̀

A,rA,i−1
and thus

ΦA(rA,i)−ΦA(rA,i−1) ≥ 6(rA,i−rA,i−1) log
1

β
−(ri−ri−1) log

1

α
−(rA,i−rA,i−1)−2(rA,i−rA,i−1) log

1

β
≥ 0 .

Case 2: The i-th chunk consists with a single round r ∈ P3\P3,A and SA,r 6= Simulation.
In this case, it is easy to see that

ΦA(r)− ΦA(r − 1) = log ˜̀
A,r − log ˜̀

A,r−1 − 1 ≥ 0.

Case 3: The i-th chunk consist with a single round r ∈ B and (SA,r−1, SA,r) 6=
(Verification, Simulation) In this case,

ΦA(r)− ΦA(r − 1) ≥

6 log
1

β
+ log ˜̀

A,r − log ˜̀
A,r−1 − 1 ≥

6 log
1

β
− log

1

α
− 1 ≥ 0 .
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where the second inequality follows from the fact that when Alice does not move from Verification
to Simulation, ˜̀ can drop by no more than a factor of α (Claim 30).

Case 4: The i-th regime consists with a single round r ∈ B such that SA,r−1 =
Verification and SA,r = Simulation. By definition of Φ,

ΦA(r)− ΦA(r − 1) ≥

6 log
1

β
+ log ˜̀

A,r − log ˜̀
A,r−1 + |(simA(r − 1), r − 1] \ P3,A|+

(
1

2
|TA,r−1|′ −RA,r−1

)
· log

1

β

Thus, it suffices to show that

log ˜̀
A,r ≥ log ˜̀

A,r−1−|(simA(r−1), r−1]\P3,A|−
(

1

2
|TA,r−1|′ −RA,r−1

)
· log

1

β
−6 log

1

β
(30)

Claim 39. For every r, the following holds:

log ˜̀
A,r − |(simA(r), r] \ P3,A| ≤ log |TA,r[RA,r,∞]|+ log

1

β

Proof. For r ∈ P3,A the claim holds trivially, since by definition of P3,A,

˜̀
A,r ≤ `sentA,r ≤ 2|TA,r[RA,r,∞]|

and hence
log ˜̀

A,r ≤ log |TA,r[RA,r,∞]|+ 1,

as desired.
For r such that SA,r ∈ Simulation, it holds that

˜̀
A,r ≤ `sentA,r ≤ β−1|TA,r[RA,r,∞]|,

where the latter follows from the smoothness condition. This implies that

log ˜̀
A,r ≤ log

1

β
+ log |TA,r[RA,r,∞]|,

as desired.
Next we prove the rest of the claim by induction on r. Suppose the claim is true for round r,

and we prove that it is true for round r+1 for which SA,r+1 /∈ {Simulation, P3,A}. We distinguish
between the case that RA,r+1 ≤ RA,r and the case where RA,r+1 = RA,r + 1. In the former
case, the fact that SA,r+1 /∈ Simulation, implies that ˜̀

A,r+1 ≤ 2˜̀
A,r, and hence by our induction

hypothesis,

log ˜̀
A,r+1 ≤

log ˜̀
A,r + 1 ≤

log |TA,r[RA,r,∞]|+ log
1

β
+ |(simA(r), r] \ P3,A|+ 1 ≤

log |TA,r+1[RA,r+1,∞]|+ log
1

β
+ |(simA(r), r] \ P3,A|+ 1 =

log |TA,r+1[RA,r+1,∞]|+ log
1

β
+ |(simA(r + 1), r + 1] \ P3,A|,
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as desired.
We next consider the case where RA,r+1 = RA,r+1. In this case ˜̀

A,r+1 = max{β−1, α · ˜̀A,r}.
If ˜̀

A,r+1 = β−1 then the claim holds trivially. On the other hand, if ˜̀
A,r+1 = α · ˜̀A,r then by

our induction hypothesis,

log ˜̀
A,r+1 =

logα · ˜̀A,r =

logα+ log ˜̀
A,r ≤

logα+ log |TA,r[RA,r,∞]|+ log
1

β
+ |(simA(r), r] \ P3,A| ≤

logα+ log

(
1

α
· |TA,r+1[RA,r+1,∞]|

)
+ log

1

β
+ |(simA(r), r] \ P3,A| ≤

log |TA,r+1[RA,r+1,∞]|+ log
1

β
+ |(simA(r + 1), r + 1] \ P3,A|,

as desired.

We now prove Equation (30) using Claim 39.

log ˜̀
A,r−1 − |(simA(r − 1), (r − 1)] \ P3,A| −

(
1

2
|TA,r−1|′ −RA,r−1

)
· log

1

β
− 6 log

1

β
≤

log |TA,r−1[RA,r−1,∞]| −
(

1

2
|TA,r−1|′ −RA,r−1

)
· log

1

β
− 5 log

1

β
.

Thus, we need to prove that

log ˜̀
A,r ≥ log |TA,r−1[RA,r−1,∞]| −

(
1

2
|TA,r−1|′ −RA,r−1

)
· log

1

β
− 2 log

1

β
.

To this end, let k , 1
2 |TA,r−1|′ − RA,r−1, and let ` denote the length of the longest message in

round RA,r−1 of in the transcript TA,r−1. The fact that SA,r = Simulation, together with the
smoothness property of the original protocol, implies that

˜̀
A,r = `sentA,r ≥ α` ≥ ` · β,

and hence

log ˜̀
A,r ≥ log `− log

1

β
. (31)

On the other hand, the smoothness property implies that

|TA,r−1[RA,r−1,∞]| ≤
k∑
i=0

2
`

βi
≤ 2`

βk(1− β)
≤ `

βk+1
,

which in turn implies that

log |TA,r−1[RA,r−1,∞]| ≤ log `+ (k + 1) · log
1

β
.
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Therefore,

log |TA,r−1[RA,r−1,∞]| −
(

1

2
|TA,r−1|′ −RA,r−1

)
· log

1

β
− 5 log

1

β
≤

log `+ (k + 1) · log
1

β
−
(

1

2
|TA,r−1|′ −RA,r−1

)
· log

1

β
− 5 log

1

β
=

log `+ (k + 1) · log
1

β
− k · log

1

β
− 5 log

1

β
=

log `− 4 log
1

β
≤

log ˜̀
A,r+1

as desired, where the latter inequality follows from Equation (31).
The result follows.

Lemma 40. The total volume of all Good Verification chunks, Good Correction chunks, and
Bad Correction chunks is at most 4β−1|E|+ 35dβ−1|E|′

Proof. We partition the rounds in Good Verification chunks into two part. The first part consists
of all the rounds that satisfy

TA,r−1[RA,r−1 + 1] 6= TB,r−1[RB,r−1 + 1]

and the second part consists of all the rounds that satisfy

TA,r−1[RA,r−1 + 1] = TB,r−1[RB,r−1 + 1].

We bound the first part of Good Verification by 2|E| and the rest of those chunks by (4β−1 −
2)|E|+ 35dβ−1|E|′.

Bounding the volume of all the rounds in the second part of Good Verification. We
remain consistent with the notations we used in the proof of Lemma 38, and denote all the
messages that belong to the second part of Good Verification by P3. We prove that |P3| ≤ 2|E|.

To this end, fix any rounds r0, rf such that both r0 and rf belong to a Good Simulation
chunk, and all the rounds r ∈ (r0, rf ) do not belong to a Good Simulation chunk. Let C1, ..., Ck
be all the (maximal) sets of consecutive rounds in P3∩(r0, rf ) such that there are errors only on
the last message in each chunk, i.e. we start a new chunk after a corrupted message or whenever
the rounds stop being consecutive) . Let C+

i to be Ci together with the round before it and let

E0 = E ∩ (r0, rf ). We show that |Ci| ≤ 4|C+
i ∩E0| for every i 6= k, and |Ck| ≤ 2|E0 \

⋃k−1
i=1 Ci|.

This yield a total bound of
∑k

i=1 |Ci| ≤ 8|E0|, and therefor |P3| ≤ 8|E|.
We start with the former. Fix any i ∈ {1, . . . , k − 1}. Since after chunk Ci the parties

do not enter a Good Simulation chunk it must be the case that Ci ended with an error, as
otherwise, the parties would have doubled their message size until they had enough budget to
erase the inconsistency in their transcripts, and would have entered a Simulation state. Denote
by r the first round in Ci and denote by r + c the last round in Ci. The fact that chunk Ci is
in P3, and have errors only in the last round, implies that for every i ∈ {1, . . . , c} it holds that
`max,r+i ≥ 2 · `max,r+i−1. Hence,

|Ci| ≤ `max,r+c

(
1 +

1

2
+

(
1

2

)2

+ . . .+

(
1

2

)c)
≤ 2`max,r+c.
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Thus, where both parties send messages of the same length in round r+ c, since the round r+ c
is corrupted, we have that,

|Ci| ≤ 2|C+
i ∩ E0|.

In the other case, the parties disagree on `max,r+c−1, and thus the longer message in round
r + c− 1 must be corrupted. In this case we get that `max,r+c ≤ 2`max,r+c−1 and we get,

|Ci| ≤ 4|C+
i ∩ E0|,

as desired.
We next prove that |Ck| ≤ 2|E0 \

⋃k−1
i=1 Ci|. To this end, denoting by r the first round in

Ck, note that

|Ck| ≤ max{|TA,r[RA,r,∞]|, |TA,r[RB,r,∞]|}+ |E0 \
k−1⋃
i=1

Ci|,

where RA,r = RB,r and TA,r[RA,r] = TB,r[RB,r] since we are in a Good Verification chunk, and
TA,r[RA,r + 1] 6= TB,r[RB,r + 1] since Ck is in P3. Therefore, all the messages in TA,r[RA,r,∞]

and TB,r[RB,r,∞] were added due to error. These messages were added in E0 \
⋃k−1
i=1 Ci since

before E0 was a Good Simulation chunk and in rounds
⋃k−1
i=1 Ci the transcripts do not change.

Therefore,

|Ck| ≤ max{|TA,r[RA,r,∞]|, |TA,r[RB,r,∞]|}+ |E0 \
k−1⋃
i=1

Ci| ≤ 2|E0 \
k−1⋃
i=1

Ci|,

as desired.

The rest of the chunks Let B be the set of all Bad chunks, and let G be the set of all
Bad Correction chunks, Good Correction chunks, and the first part of Good Verification chunks
(which consists only of messages in P1 ∪ P2). We bound

|G| ≤ β−1|G|′ +
(
3β−1 + 3

)
|E|+ 3α|B|+ 35dβ−1|E|′ .

By Lemmas 32, 33, 34, and the proof of Lemma 38, this is the desired bound, since:

|G| ≤ β−1|G|′ +
(
3β−1 + 3

)
|E|+ 3α|B|+ 6dβ−1|E|′

≤ β−1
(
20|E|′ + 11d|E|′ + 2|E|′ + 17d|E|′

)
+
(
3β−1 + 3

)
|E|

+3α
(
(2β−1 + 1)|E|+ 3dβ−1|E|′

)
+ 6dβ−1|E|′

≤
(
3β−1 + 3 + 3α(2β−1 + 1)

)
|E|+ 35dβ−1|E|′

≤ (4β−1 − 8)|E|+ 35dβ−1|E|′

where the last two inequalities follow from the choice of our parameters (see Equation (3)).
Let C be a set of consecutive rounds in G. We define B0 = ∅ if the chunk preceding C is

not a bad chunk, and otherwise we define B0 to be the bad chunk preceding C. Let E0 be the
set of corrupted messages in C and in the chunks preceding C until, not included, the previous
part of G. We show that

|C| ≤ β−1|C|′ +
(
3β−1 + 3

)
|E0|+ 3α|B0|+ 3dβ−1 .

To prove that this suffices, we bound the number of sets of consecutive rounds in G, by
|E|′ + 1. This is done as follows: Denote by G1, . . . , Gt the (ordered) set of all consecutive
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rounds in G, where G1 is the first set of consecutive rounds and Gt is the last. We show that
for every i ∈ {1, . . . , t − 1}, there must exist an error in the interval between (including) the
first round of Gi and (excluding) the first round of Gi+1. Indeed, suppose (for contradiction)
that this interval had no error. If Gi started with a Bad Correction chunk, then the protocol
would have moved into a Good Correction chunk, and from there into (either the first part or
the second part of) a Good Verification chunk. If Gi started with any other chunk, then it will
also move into (either the first part or the second part of) a Good Verification. In either case,
after being in the first part of a Good Verification chunk, the protocol will move into a Good
Simulation chunk or to the second part of a Good Verification chunk. However, after being in
the second part of the Good Verification chunk, in the absence of error, the protocol will always
move and remain in a Good Simulation chunk until the end, in contradiction to the existence
of Gi+1.

We show that in each round of C, except the first one, a player that did not receive a
corrupted message in round r− 1 sends a message of length `−r−1 in round r (i.e., Alice sends a
message of length `−A,r−1 and Bob sends a message of length `−B,r−1).

• If r is in a Good Correction chunk then each player indeed sends a message of this length.

• If r is in a Bad Correction chunk then one player, say Alice, is in a Correction state in
round r , and thus sends a message of length `−A,r−1. We prove the condition for Bob by
case analysis on the chunk at round r − 1.

If in round r − 1 the parties are in a Bad Correction chunk, then without an error Bob
detects the inconsistency, moves to a Correction state and sends a message of length
`−B,r−1.

If in round r− 1 Bob was in a Good Correction state, then also in round r he will send a
message of length `−B,r−1.

If in round r − 1 the parties were in the second part of a Verification chunk, then Bob’s
message in round r − 1 is corrupted.

• If r is in Good Verification , then both players are in a Verification state, TA,r−1[RA,r−1] =
TB,r−1[RB,r−1] and TA,r−1[RA,r−1 + 1] = TB,r−1[RB,r−1 + 1]. By the definition of the
protocol, without corruption, both players send a message of length `−r−1 in round r.

Thus, by Claim 31,

|C| ≤ β−1|C|′ +
(
3β−1 + 3

)
|E0 ∩ C|+ 3`sentmax,r0 , (32)

where r0 be the first round of C.
We next show that,

`sentmax,r0 ≤ β
−1|E0 \ C|+ α|B0|+ dβ−1 .

Which implies that |C| ≤ β−1|C|′ +
(
3β−1 + 3

)
|E0|+ 3α|B0|+ 3dβ−1, as required.

We distinguish between two cases: The case that in round r0 − 1 one of the messages was
corrupted or one of the messages sent was shorter than d, and the case that both r0 − 1 round
messages are of length ≥ d and not corrupted.

In the former case, the smoothness guaranty (Claim 30) implies that

`sentmax,r0 ≤ β
−1 min{`sentA,r0−1, `

receive
B,r0−1} ≤ β−1 max{|E0 \ C|, d} = β−1|E0 \ C|+ dβ−1 ,

where the second to last equation follow from the fact that one of the messages in round r0− 1
is corrupted or has length < d.
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We next consider the latter case, where there were no corrupted messages in round r0 − 1
and both of the messages have length ≥ d. In this case we show that the chunk preceding C
must be a Bad chunk. This is done by a process of elimination: It cannot be in first part of
Good Verification or Good Simulation chunk, since if in round r0 − 1 the parties agree on their
state and transcript, in the absence of corruptions, the parties continue agree on their state
and transcript and the protocol will remain in part 2 of Good Verification or move to Good
Simulation chunk. It cannot be the first part of Good Verification chunk, Good Correction
chunk or Bad Correction chunk, since in this case, by the definition of C, it will be unite
with C.

We now show that C cannot start with a Bad Correction chunk. Assume toward contradic-
tion that it does start with a Bad Correction chunk. Then one party, say Alice, did not set her
state SA,r0 = r0, and hence did not detect an inconsistency. This implies that the message she
received mB,r0−1 was not sent with a hash or was corrupted, in contradiction.

Since r0 in Good Correction chunk or second part of Good Verification chunk. Thus

`sentmax,r0 = `−r0−1 ≤ max{α|B0|, β−1} ,

where the last equality follows from the fact that r0 − 1 is in a Bad chunk.

Combining Lemmas 32, 33, 34, 38, and 40, we obtain Lemma 29. We next prove Theorem 9
given Lemma 29.

Proof of Theorem 9. First we note that Item 5 follows immediately from the efficient nature of
the protocol.

To prove Item 1 note that a player, say Alice, aborts if the underlying protocol Π instructs her
to abort given the (partial) transcript she is holding, denoted by TA,r. In this case, |TA,r| ≥ tmin

(by definition). It remains to note that for every round r, the communication complexity of
Π′A up until round r is at least |TA,r|. This follows from the fact that in the protocol Π′,
Alice increases TA,r only in Step 1d, where she adds (mA,r−1,mB,r−1) after sending the message
mA,r−1 and receiving the message mB,r−1.

To prove Items 2, 3 and 4 we rely on the following claim.

Claim 41.

|TA,rf u TB,rf | ≥ |G| − |B| and |TA,rf u TB,rf |
′ ≥ |G|′ − 2|B|′ ,

where G is the set of all rounds without errors in Good Simulation chunks, B is the rest of the
rounds, and rf be the last round of the protocol. Moreover, recall that T1 u T2 is the longest
shared prefix between T1 and T2.

We defer the proof of Claim 41, and first show why this claim implies Items 2, 3 and 4. First,
we bound |B| and |B|′. To do so we bound the number and volume of messages in rounds with
errors in Good Simulation chunks. Note that in any such round, if a message of length ` was
corrupted, by the smoothness property of the original protocol, there is at most one uncorrupted
message of length ≤ β−1` in this round. Summing over all such rounds, we get that there are
at most 2e′ messages in corrupted rounds in Good Simulation chunks, and the volume of these
messages is at most (1 + β−1)e. Combine it with Lemma 29, we get

|B| ≤ 9β−1e+ 10dβ−1e′ and |B|′ ≤ 302d log
1

β
e′ .
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To prove Item 2, note that by Claim 41,

CC(Π) ≥ |TA,rf u TB,rf | ≥ |G| − |B| .

This holds since the partial transcript that both parties agree on must be consistent with Π.
Thus,

CC(Π′A) = |G|+ |B| ≤ CC(Π) + 2|B| ≤ CC(Π) + 18β−1e+ 20dβ−1e′ .

To prove Item 3 note that by Claim 41,

R(Π) ≥ |TA,rf u TB,rf |
′ ≥ |G|′ − 2|B|′ ,

and thus,

R(Π′A) = |G|′ + |B|′ ≤ R(Π) + 3|B|′ ≤ R(Π) + 906d log
1

β
e′ .

Finally, to prove Item 4 it remains to note that by the proof of Item 1,

|TA,rf |, |TB,rf | ≤ CC(Π′A) ,

and by Claim 41,

|TA,rf u TB,rf | ≥ |G| − |B| = CC(Π′A)− 2|B| = CC(Π′A)− 18β−1e− 20dβ−1e′ .

Proof of Claim 41. The proof uses the potential functions

Φ(r) , |TA,r+1 u TB,r+1|

and
Φ′(r) , |TA,r+1[RA,r+1] u TB,r+1[RB,r+1]|′ − 2w̃A,r − 2w̃B,r ,

where w̃A,r = r − SA,r if SA,r ∈ N, and is zero otherwise (w̃B,r is defined analogously). We
prove that

Φ(rf ) ≥ |G| − |B| and Φ′(rf ) ≥ |G|′ − 2|B|′ .

As before we denote ∆Φ(r) = Φ(r)− Φ(r − 1) and ∆Φ′(r) = Φ′(r)− Φ′(r − 1).
Since TA,0 and TB,0 ar empty, we get that

Φ(0) = 0 and Φ′(0) = 0 .

In any round r ∈ G both parties are in Simulation (and so T [R] = T ) and agree on T and R.
Thus they both increase the agreement on the transcript by the messages mA,r,mB,r. Together
with the fact that in this case also wA, wB remain 0, we get,

∆Φ(r) = `A,r + `B,r and ∆Φ′(r) = 2 .

Hence, the total contribution of all round in G for Φ is |G| and for Φ′ is |G|′. By definition,

∆Φ(r) ≥ −max{|TA,r−1 − TA,r|, |TB,r−1 − TB,r|} .

Assume without lost of generality that |TA,r−1−TA,r| ≥ |TB,r−1−TB,r|. Note that |TA,r−1−TA,r|
can be positive only when in round r Alice execute Step 2b. In this case both the message that
she send and received in the round r was of size larger that what she erased. Thus we get that
for r ∈ B,

∆Φ(r) ≥ −`A,r − `B,r ,
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and so the total contribution of all the rounds in B to Φ is at least −|B|.
Note that the only place in the protocol where |TA[RA] u TB[RB]|′ can decrease is only

where |TA[RA]|′ or |TB[RB]|′ decreased, which is in Steps 3d or 3e. In both cases we get that it
decreased by at most 2wA (res. 2wB) and w̃A (res. w̃B) decreased to 0. Thus, since 2w̃A > wA
(rep. 2w̃B > wB) we get that in total execute Steps 3d or 3e does not decrease Φ′. Thus, Φ′

can decrease only where w̃A or w̃B increased, which by definition it can be by only 1 per round.
Thus for any round r ∈ B we get that

∆Φ′(r) ≥ −4 .

Thus the total contribution of all the rounds in B is at least 2|B|. By concluding the total
contributions of the round from G and B to Φ and Φ′ we get that

Φ(rf ) ≥ |G| − |B| and Φ′(rf ) ≥ |G|′ − 2|B|′ .

C Proofs from Section 5

C.1 Proof of Lemma 15

We partition E into E1, ..., E5, Ẽ1, ...., Ẽ5 where for every k ∈ [5], Ek is the set of messages with
hash collisions on Zk, and Ẽk is the set of messages with hash collisions on the function H ′k,
but not on Zk. Lemma 15 follows from the next 4 claims.

Claim 42. ∀k ∈ [5], Pr[|Ek| ≤ 2γt] ≥ 1− e−
1
6
t.

Proof. Recall that by definition in each round r,

Zk =

{
(f2wr
xk,r

(Vi), 0) if |Vk| ≥ 2wr

(Vk, 1) if |Vk| < 2wr

Note that if |Vk| < 2wr then there is no hash collision by definition. Next, consider the case
that |Vk| ≥ 2wr . In this case, by definition,

|Zk| = 2wr = 2
dα`re+dure+9dlog 1

γ
e+6

,

which greater than γ−1` log 1
γ .

We consider only the first γ−1` hash chunks of Zk, each of size log 1
γ . The total number of

such chunks (of Zk) in the entire protocol is at most γ−1t.
We first consider only oblivious adversaries, namely, ones that choose which bits to corrupt,

and whether the corruption is a toggle, insert, or delete, independently of the common random
string. Note that for any such oblivious adversary O, each hash chunk has a collision probability
of γ. The next claim bounds the number of such adversaries.

Claim 43. The number of oblivious adversaries that make at most εt errors in the first t bits
of the protocol, is bounded by 22ε log 1

ε
t for ε ≤ 0.05 .
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Proof. Each oblivious adversary can be described as a set of at most εt elements, where each
element in the set is a pair of the form (i, o) where i ∈ [t] and o is one of the following operations:
Toggle, Delete, Insert 0, Insert 1.

Each such set S corresponds to the following oblivious adversary: Let i be the smallest
number for which there exists o such that (i, o) ∈ S. Corrupt the i’th bit that is sent as
instructed by o, and remove the element (i, o) from S. Continue recursively, while considering
the updated transcript (including the corruptions). Namely, in the recursion, when considering
the smallest i for which (i, o) ∈ S for some o, we corrupt the i’th bit that is sent relative to the
(current) corrupted transcript. Namely, if the (current) corrupted transcript is of length k, we
consider the next bit to be sent to be the k + 1’st bit, even though the parties may have tried
to send many more (or less) bits, and a gap occurred due to many deletions (or insertions). In
particular, the set S may include multiple elements of the form (i, o) where o = Delete, and
hence S is actually a multi-set.

Thus, the number of oblivious adversaries is bounded by,

tεt

(εt)!
5εt ≤ tεt

( εte )εt
5εt = 2log( 5e

ε
)εt ≤ 22 log( 1

ε
)εt .

By the Chernoff bound (Lemma 11), the probability that there are > 2t hash chunks with a

hash collision, is at most e−
1
3
t. Note that a hash collision in a message of length ` corresponds

to at least γ−1` chunks with hash collisions. Therefore, for any oblivious adversary O, it hold
that

Pr
x

[|Ek| > 2γt] ≤ e−
1
3
t .

Using union bound over all ≤
(
t
εt

)
· 4εt ≤ 22ε log 1

ε
t ≤ e

1
6
t possible oblivious adversaries, we get

that
Pr
x

[∀O : |Ek| > 2γt] ≤ e−
1
6
t .

The result follows.

Claim 44. ∀k ∈ [5], Pr[|Ẽk| < 2γt] ≥ 1− e
− αγ

3 log 1
γ
t
.

Proof. Consider the r-th message with hash, and assume V A
k 6= V B

k . This message has wr bits
of hash. Thus, by Lemma 14 under the uniform seed, it has a collision probability 2−wr , and
hence under the 2−wr -biased distribution, it has a collision probability of at most

2 · 2−wr ≤ 2
−α`r−log 1

γ = γ
1

log 1
γ
·(α`r+log 1

γ
)
≤ γ

⌈
α`r
log 1

γ

⌉
.

So the probability of having such a hash collision in a message of length ` is at most the

probability that

⌈
α`

log 1
γ

⌉
independent Bernoulli variables with probability γ are all one. For

each a ∈ [r], we denote by

na ,

⌈
α`a

log 1
γ

⌉
,

and denote these Bernoulli random variables by Xa,1, ..., Xa,nr . Consider the set of all such
variables {Xa,i | a ∈ [r], i ∈ [na]}.
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Since each message of length ` contributes at least α`
log 1

γ

, their total number is at least α
log 1

γ

t.

By the Chernoff bound (Lemma 11), with probability ≥ 1 − e
− αγ

3 log 1
γ
t

less then 2αγ

log 1
γ

t of them

are 1. In this case,

|Ẽk| ≤
∑

a∈[r]:Xa,1=...=Xa,na=1

`a ≤

∑
a∈[r]:Xa,1=...=Xa,na=1

na ·
`a
na
≤

∑
a∈[r]:Xa,1=...=Xa,na=1

na ·max
a∈[r]

{
`a
na

}
≤

|{i, j | Xi,j = 1}| ·
log 1

γ

α
≤

2αγ

log 1
γ

t ·
log 1

γ

α
= 2γt.

Claim 45. ∀k ∈ [5], Pr[|Ẽk|′ ≥ 4γr] ≤ e−
2
3
γr

Proof. Consider a round with hash such that V A
k 6= V B

k . Note that for a uniformly distributed

U ∈ {0, 1}
1
γ ,

Pr[fwU (V A
k ) = fwU (V B

k )] = 2−w ≤ γ.

Since |S| = 2C · w > 2C · log 1
γ we have that G(S) is γ-biased. Therefore, by Lemma 14,

Pr[fwG(S)(V
A
k ) = fwG(S)(V

B
k )] ≤ 2γ.

This, together with the Chernoff bound (Lemma 11), implies that the probability that there

are more than 4γr hash collisions is at most e−
2
3
γr, as desired.

Claim 46. ∀k ∈ [5], Pr [|Ek|′ ≥ 10γr] ≤ 2 · 2−4r

Proof. Let EAk be the messages with hash collisions on Zk that Alice sends. We will show that

Pr
[
|EAk |′ ≥ 5γr

]
≤ 2−4r.

A similar equation holds also for Bob, and the result follows.
Given a set of massages received by Alice, which we denote by T = (mreceive

B,1 , . . . ,mreceive
B,r ),

we denote a partition of its rounds {1, . . . , r} by p(T ) = (r1, r2, ..., rk) according to the following
process: Let r0 = 0. Suppose ri is already defined, we will define ri+1 as follows:

We first define for every r ∈ Q \ [ri],

Ur =
tr − tri
ar − ari

,

where tr is the amount of communication Alice received until round r, and ar is the number of
rounds in which Alice sent a hash. In what follows, we abuse notation and often denote ari by
ai. Similarly, we often denote tri and Uri , by ti and Ui, respectively.

We define
U ′i+1 = min

r∈Q\[ri]
Ur.
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We next define
ri+1 = max{r ∈ Q \ [ri]|Ur < γ−6U ′i+1}. (33)

We define ∆ai = ari+1 − ari , which is the number of rounds with hash in the i’th regime.
We define ∆ti = ti+1 − ti, which is the volume of the i’th regime. We define

Ui ,
∆ti
∆ai

, (34)

which intuitively, would be the average message length if we glued together all consecutive
messages without a hash. Thus,

U ′i ≤ Ui ≤ γ−6U ′i . (35)

Moreover, we argue that
U ′i+1 ≥ γ−6U ′i . (36)

To this end, let r > ri be the round that satisfy U ′i+1 , tr−ti
ar−ai . Suppose for the sake of

contradiction that U ′i+1 = tr−ti
ar−ai < γ−6U ′i . This, together with the fact that ti−ti−1

ai−ai−1
< γ−6U ′i ,

implies that

tr − ti−1

ar − ai−1
=

ar − ai
ar − ai−1

· tr − ti
ar − ai

+
ai − ai−1

ar − ai−1
· ti − ti−1

ai − ai−1
< γ−6U ′i .

Since tr−ti−1

ar−ai−1
< γ−6U ′i , by Equation (33), we have that r ≤ ri, in contradiction to our choice of

r.
We say that a regime (ri, ri+1] is heavy if ∆ti >

1
2γti, and we say that is light otherwise. In

what follows, we first argue that the total number of rounds in the light regimes is at most 2γr.
We then argue that with probability at least 1 − 8r · 2−8γ2r, the total number of rounds with
hash collisions in all heavy regimes is at most 5γr. The result follows.

Light regimes. We first show that the total number of rounds with hashes in the light regimes
is at most 2γr. To this end, first note that

∆ti ≤
1

2
γti =

1

2
γ
i−1∑
j=0

∆tj .

Therefore, for any probability distribution (p0, . . . , pi−1),21 such that pj >
1

2i−j
for every j ∈

{0, 1, . . . , i− 1}, it holds that

∆ti ≤
i−1∑
j=0

pj2
i−j−1γ∆tj = Ej∼p[2i−j−1γ∆tj ].

Hence, there exists j ∈ {0, 1, . . . , i− 1} that satisfies

∆ti ≤ 2i−j−1γ∆tj .

For such j, we say that regime i is directly controlled by regime j. Note that

Ui ≥ U ′i ≥
(
γ−6

)i−j
U ′j ≥

(
γ−6

)i−j−1
U j ,

21Namely,
∑i−1
j=0 pj = 1 and pj ≥ 0 for every j ∈ {0, 1, . . . , i− 1}.
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where the first and third inequality follow from Equation (35), and the second inequality follows
from Equation (36). Thus,

∆ai =
∆ti
Ui
≤ 2i−j−1γ∆tj

(γ−6)i−j−1 U j
≤ 2i−j−1γ

(2γ−5)i−j−1
· ∆tj
U j

= γ5(i−j)−1∆aj ≤ γi−j∆aj .

Moreover, note that if there exists a series of rounds j = i0, i1, ..., im = i, where each ik is
directly controlled by ik−1, then

∆ai ≤ γi−im−1γim−1−im−2 · · · γi1−j∆aj = γi−j∆aj .

In this case we say that regime i is controlled by regime j, and denote this by j ≺ i.
Since, as we argued, every light regime i is (directly) controlled by some previous regime j, it

follows that for every light regime i there exists a heavy regime j such that regime i is controlled
by regime j. Hence,∑
i∈Light

∆ai ≤
∑

j∈Heavy

∑
i:j≺i

∆ai ≤
∑

j∈Heavy

∑
j≺i

γi−j∆aj =
∑

j∈Heavy

∆aj
∑
i:j≺i

γi−j ≤ γ

1− γ
∑

j∈Heavy

∆aj ≤ 2γr,

as desired.

Heavy regimes Next we show that with probability 1−2−4r the number of rounds with hash
collisions in all the heavy regimes i is at most 3γr.

Consider all the regimes that satisfy ti+1 < γr. In these regimes in total there are at most
γr rounds with hash. Thus it suffice to show that w.h.p for all the heavy regimes with ti+1 ≥ γr
there is a total of at most 2γr rounds with hash collisions.

To this end, we show that for each such heavy regime i, the probability that there are more
than 2γ∆ai hash collisions, is at most 4 · 2−7r. Given this, the claim follows since

∑
∆ai ≤ r

and r ·4 ·2−7r ≤ 2−4r together with a a straightforward union bound over all ≤ r heavy regimes.
We will use the following claim.

Claim 47. For any adversary and heavy regimes between the ti to ti+1 bits of the protocol, the
probability that the regime has more than 2γ∆a rounds of hash collisions, is at most 4·2−7γ−1ti+1.

Since we consider only regimes where ti+1 ≥ γr, the result follows.

Proof of Claim 47. For each oblivious adversary, over the i-th regime, the number of hash bits
of any message in this regime is

2wr ≥ 2
maxr′∈Q∩[r−1] log

tr−tr′
ar−ar′

+9 log 1
γ

+6
= 64γ−9 max

r′∈Q∩[r−1]

tr − tr′
ar − ar′

≥ 64γ−9U ′i ≥ 64γ−3Ui ,

When the first inequality follows from the definition of wr and the latter inequality follows from
Equation (35). Thus, each message has at least 64γ−2Ui hash blocks of size log 1

γ ≤
1
γ . We

consider only the first 64γ−2Ui blocks for each message. The number of all such hash blocks is

64γ−2Ui∆ai = 64γ−2∆ti ≥
64γ−2ti+1

2γ−1 + 1
≥ 24γ−2ti+1 ,

where the second equation follows since in heavy regimes ti+1 = ti + ∆ti ≤ (2γ + 1)∆ti. Since
we consider an oblivious adversary, the probability of having a hash collision in each block is
γ. Hence, by the Chernoff bound (Lemma 11), the probability that more than 2γ fraction of
them have a hash collision, is at most 2−8γ−1ti+1 . By union bound over all ≤ 2ti+1 oblivious
adversaries we get that with probability ≤ 2−(8γ−1−1)ti+1 ≤ 2−7γ−1ti+1 there are less then 2γ∆ai
rounds with hash collisions. In particular, the result follows.
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C.2 Proof of Lemma 16.

In the proof of Lemma 16 we use the following claim.

Claim 48. For any R ∈ N and any monotone increasing series T = {tr}Rr=1, consider the
continuous version of T , defined by setting t0 = 0, and for any r ∈ N and η ∈ [0, 1) setting
tr+η = (1− η)tr + ηtr+1. Let

ST (a) =

∫ a

0
max
b<r

{
ln
tr − tb
r − b

}
dr .

Then
∀a ∈ Z : ST (a) ≤ e · ta,

where e is the base of the natural log.

The proof of this claim is deferred to Appendix C.3. In what follows we use Claim 48 to
prove Lemma 16.

Proof of Lemma 16. In what follows, we use notions (such as ur and tr), defined in Sec-
tion 5.2, with respect to the protocol ΠHA .

To bound
∑

r∈QA ur define the series T ′ = {t′i} such that for any r ∈ QA let t′
aAr

= tAr .

Namely, t′i is the amount of communication (in bits) that Alice received until (and including)
the round where she sent the i’th message with a hash.
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∑
r∈QA

ur =
∑
r∈QA

max
r′∈QA∩[r−1]

log
tAr − tAr′
aAr − aAr′

≤
∑
r∈QA

max
r′∈QA∩[r−1]

log

(
2

tAr − tAr′
aAr + 1− aAr′

)

≤
∑
r∈QA

max
r′∈QA∩[r−1]

∫ aAr +1

a=aAr

log 2
t′a − tAr′
a− aAr′

da

=
∑
r∈QA

max
r′∈QA∩[r−1]

∫ aAr +1

a=aAr

log
2

α

αt′a − αtAr′
a− aAr′

da

= |QA| log
2

α
+
∑
r∈QA

max
r′∈QA∩[r−1]

∫ aAr +1

a=aAr

log
αt′a − αtAr′
a− aAr′

da

= |QA| log
2

α
+

1

ln 2

∑
r∈QA

max
r′∈QA∩[r−1]

∫ aAr +1

a=aAr

ln
αt′a − αtAr′
a− aAr′

da

≤ |QA| log
2

α
+

1

ln 2

∑
r∈QA

∫ aAr +1

a=aAr

max
r′∈QA∩[r−1]

{
ln
αt′a − αtAr′
a− aAr′

}
da

≤ |QA| log
2

α
+

1

ln 2

∑
r∈QA

∫ aAr +1

a=aAr

max
b<a

{
ln
αt′a − αt′b
a− b

}
da

= |QA| log
2

α
+

1

ln 2

∫ |QA|+1

a=1
max
b<a

{
ln
αt′a − αt′b
a− b

}
da

≤ |QA| log
2

α
+

1

ln 2
SαT ′(|QA|+ 1)

≤ |QA| log
2

α
+

1

ln 2
αtA .

The first equation follows from the definition of ur. The second equation follows from simple
arithmetics (and the fact that aAr −aAr′ ≥ 1). The third equation follows from simple arithmetics,
and in particular, from the fact that for every a ∈ [aAr , a

A
r + 1] it holds that

t′a − tAr′
a− aAr′

≥
tAr − tAr′

aAr + 1− aAr′
.

The forth equation follows from trivial arithmetics (multiplying and dividing by α). The fifth
equation follows by taking the component 2

α outside of the summation. The sixth equation
follows by replacing the log function with the ln function. The seventh equation follows from
the fact that moving the max inside the integral can only increase the expression. The eighth
equation follows from the fact that for every r′ ∈ QA ∩ [r − 1] it holds that b , aAr′ < a. The
ninth equation follows from basic properties or the integral. The tenth equation follows from
the definition of SαT ′(|QA|+ 1). The final equation follows from Claim 48.

Similarly, one can argue that∑
r∈QB

ur ≤ |QB| log
2

α
+

1

ln 2
αtB.
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Thus, ∑
r∈Q

ur ≤ |Q| log
2

α
+

1

ln 2
αCC(ΠHA) .

Recall that the adversary D for the protocol Π sends the exact same messages as A does,
excluding the hash values.

By definition of A and D, for any round r /∈ Q, the length of the r’th round message is the
same for both ΠHA and ΠD. For rounds r ∈ Q we have that the messages in ΠHA and ΠD differ
by 5 hash values. If there were no insertion or deletion errors on these hash values, then each
of them would have been of size 2Cwr + wr + (wr + 1) = (2C + 2)wr + 1. Thus,

CC(ΠHA)− CC(ΠD)− e
≤

∑
r∈Q

(10C + 10)wr + 5

=
∑
r∈Q

(10C + 10)

(
dα`re+ dure+ 9dlog

1

γ
e+ 6

)
+ 5

≤
∑
r∈Q

(10C + 10)

(
α`r + ur + 9 log

1

γ
+ 17

)
+ 5

= (10C + 10)α
∑
r∈Q

`r + (10C + 10)
∑
r∈Q

ur +
∑
r∈Q

(
(90C + 90) log

1

γ
+ (170C + 175)

)

≤ (10C + 10)αCC(Π) + (10C + 10)

(
|Q| log

2

α
+

1

ln 2
αCC(Π)

)
+

(
(90C + 90) log

1

γ
+ (170C + 175)

)
|Q|

=

(
(10C + 10) +

(10C + 10)

ln 2

)
αCC(Π) +

(
(10C + 10) log

1

α
+ (90C + 90) log

1

γ
+ (180C + 185)

)
|Q|

≤ 50Cα · CC(Π) + 600C log
1

γ
· |Q| .

C.3 Proof of Claim 48

Fix any R ∈ N and any series T = {ta}Ra=1. For each a ∈ R+ let P (a) be the set of points b < a
that maximize ta−tb

a−b .

Claim 49. For any r ∈ Z and η, η′ ∈ (0, 1), it holds that r+η ∈ P (a) if and only if r+η′ ∈ P (a).

Proof. First consider the case where r = a− 1. In this case,

ta − ta−1+η

1− η
=
ta − (1− η)ta−1 − ηta

1− η
= ta − ta−1 .

Since this expression does not depend on η, we conclude that r + η ∈ P (a) if and only if
r + η′ ∈ P (a).

Now consider r < a− 1. In this case, basic arithmetics shows that

ta − tr+η
a− r − η

=
ta − (1− η)tr − ηtr+1

a− r − η

=
η(a− r − 1)

a− r − η
· ta − tr+1

a− r − 1
+

(
1− η(a− r − 1)

a− r − η

)
ta − tr
a− r
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Therefore,
ta−tr+η
a−r−η is a non trivial convex combination of ta−tr+1

a−r−1 and ta−tr
a−r . Thus, if r ∈ P (a)

and r + 1 ∈ P (a), then for any η we get that r + η ∈ P (a). On the other hand if r or r + 1
are not in P (a), then it must be the case that r + η /∈ P (a) for every η, since any (non-trivial)
convex combination of any two elements is smaller than the maximum of these elements.

Claim 50. ∀a ∈ R+, ∀b ∈ P (a), ST (a) ≤ ST (b) + (a− b) ln e(ta−tb)
a−b .

Before proving Claim 50, we prove that this claim implies Claim 48. We need to prove that
∀a ∈ N,

ST (a) ≤ e · ta
To this end, consider the following recursive process. Let a0 = a and ai+1 = min{P (ai)}. By
Claim 49 we have that ai+1 is an integer, and since by definition min{P (ai)}) < ai, we conclude
that ai+1 is in {0, 1, . . . , ai − 1}. Thus the process must end after k ≤ a steps with ak = 0.
Therefore, by a recursive application of Claim 50,

ST (a) = ST (a0) ≤ ST (0) +
k∑
i=0

(ai − ai+1) ln
e(tai − tai+1)

ai − ai+1

≤ 0 +
k∑
i=0

(ai − ai+1)
e(tai − tai+1)

ai − ai+1

=
k∑
i=0

e(tai − tai+1)

= e(ta0 − tak) = e · ta,

as desired.
It thus remains to prove Claim 50.

Proof of Claim 50. Fix a ∈ R+ and fix b ∈ P (a). We say that a point c ∈ [0, a] is interesting
if there exists d ∈ R such that c is the largest element satisfying d ∈ P (c). Claim 49 implies
that there are at most 2a interesting points.

The proof is by induction on the number of interesting points. The base case, when there
are no interesting points, holds since in this case a = 0 and S(a) = 0.

Consider the case where b = maxP (a), and let c be the interesting point before a.
We now show that b ∈ P (r) for all r ∈ [a, c). To this end, Fix such r and let d ∈ P (r).

We have that maxP−1(d) is an interesting point that is at least r which can be only a. Since
b = maxP (a) we have that d ≤ b. Since r /∈ P (a) we have that ta−tr

a−r < ta−tb
a−b . We can write

ta−tb
a−b as a weighted average of ta−tr

a−r and tr−tb
r−b as follows

ta − tb
a− b

=
a− r
a− b

ta − tr
a− r

+
r − b
a− b

tr − tb
r − b

.

Since this average is greater than ta−tr
a−r , we have that tr−tb

r−b is the larger elements in the above

average. Assume towards contradiction that b /∈ P (r). Thus tr−td
r−d > tr−tb

r−b and so

ta − td
a− d

=
a− r
a− d

· ta − tr
a− r

+
r − d
a− d

· tr − td
r − d

>
a− r
a− d

· ta − tr
a− r

+
r − d
a− d

· tr − tb
r − b

≥ a− r
a− b

· ta − tr
a− r

+
r − b
a− b

· tr − tb
r − b

=
ta − tb
a− b

,

82



When the last inequality follows from increasing the weight of the larger element in a weighted
sum. This contradict the fact that b ∈ P (a).

We got that for every d and r > c we have that f(r) = tr−tb
r−b −

tr−td
r−d ≥ 0. From the continuity

of f around c, we have that f(c) ≥ 0, and so b ∈ P (c). Thus, by induction hypothesis ST (c) ≤
ST (b) + (c− b) ln tc−tb

c−b . By simple calculations, and using the fact that
∫

ln A
x dx = x ln eA

x ,

ST (a) ≤ ST (c) +

∫ a

c
ln
tr − tb
r − b

dr

≤ ST (b) + (c− b) ln
e(ta − tb)
c− b

+

∫ a

c
ln
ta − tb
r − b

dr

= ST (b) + (c− b) ln
e(ta − tb)
c− b

+ (a− b) ln
e(ta − tb)
a− b

− (c− b) ln
e(ta − tb)
c− b

= ST (b) + (a− b) ln
e(ta − tb)
a− b

Now consider the case that maxP (a) = c 6= b. By definition ta−tb
a−b = ta−tc

a−c and so ta−tc
a−c =

tc−tb
c−b . First we observe that b ∈ P (c). This is the case, since otherwise, there was d such

that tc−td
c−d > tc−tb

c−b , and so ta−td
a−d > ta−tb

a−b , contradicting the fact that b ∈ P (a). Hence, by the
induction hypothesis

ST (c) ≤ ST (b) + (c− b) ln
e(tc − tb)
c− b

.

By the previous case we saw that

ST (a) ≤ ST (c) + (a− c) ln
e(ta − tc)
a− c

,

and we get

ST (a) ≤ ST (c) + (a− c) ln
e(ta − tc)
a− c

≤ ST (b) + (c− b) ln
e(tc − tb)
c− b

+ (a− c) ln
e(ta − tc)
a− c

= ST (b) + (a− b) ln
e(ta − tb)
a− b

D Proof of Theorem 17

Proof. The fact that the number of bits sent in Π′ is at least tmin follows from the definition.
We note that a priori it may seem that the parties may not agree on which of the messages

are system messages. However, in the following claim, we show that this is not the case.

Claim 51. Throughout the protocol the parties agree on k and {si, Pi, ri}ki=1.

Proof. Assume without lost of generality that Alice received the last message of the protocol,
and let K be the last value of the variable k of Alice. We first show that both parties agree on
the values of {si, Pi, ri}Ki=1.

LetmA
1 , . . . ,m

A
K be the system messages sent by Alice (including echoes), and letmB

1 , . . . ,m
B
K′

be the system messages sent by Bob (including echoes). The fact that mA
K cannot be corrupted,

follows from the following claim.
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Claim 52. |mA
K | > 12εd log dCC(Π′).

We defer the proof of Claim 52 for later.
Now consider the case that when Bob receives the message mA

K from Alice, his variable
k satisfies |mA

K | ≥ bkW . In this case Bob will parse mA
K as a system message. Since by our

assumption, Bob does not halt, then both parties agree on {si, Pi, ri}Ki=1.
Now consider the case where |mA

K | < bkW . In this case, we have that k > K, and thus the
message mB

K was sent before mA
K . Since |mB

K | = |mA
K | ≥ εCC(Π′), we have also that mB

K hasn’t
been corrupted. Thus, Alice will parse mB

K as a system message, and since she does not halt,
we have that both parties agree on {si, Pi, ri}Ki=1.

We next argue that Bob does not send the message mB
K+1. We assume towards contradiction

that Bob does send this message. Since |mB
K+1| ≥ |mA

K | this message hasn’t been corrupted,
and hence Alice parses it as a system message. Since by our assumption, Alice does not respond
with a system message, we conclude that there were more than 1

bd log d fraction of errors in the

first 1
2b
KW bits of the protocol. Observe that |mA

K | ≤ 6bK−1W , which follows from the fact
that

|mA
K | = |(s1, . . . , sK , P1, . . . , PK , r1, . . . , rK , 1)| = 1 +

K−1∑
j=0

3bjW ≤ 6bK−1W.

Thus, the total number of corruptions is at least,

1
2b
KW

bd log d
≥ 1

12d log d
|mA

K | > εCC(Π′) ,

in contradiction.
We conclude that both parties sendK system messages. Since the parties agree on r1, . . . , rK ,

they agree when the system messages were sent. In particular for each i < K, they both send
the same i’th system message in consecutive rounds. Thus, throughout the protocol the parties
always agree on k and {si, Pi, ri}ki=1.

Proof of Claim 52. First we note that the total communication in Alice’s view, denoted by
CCA(Π′A), is at least (1 − ε)CC(Π′A), which in turn is at least 1

2CC(Π′A). Since each system
message that Alice received is either an echo of a system message she sent, or was echoed by her,
the total communication of system messages according to Alice, is at most 2

∑K
i=1 |mA

i |. All the
non-system messages she stores in TA, possibly without their last bit. Thus, the total volume
of non-system messages according to Alice is at most 2|TA|. Finally, since Alice does not send

any more system messages after mA
K , we have that |TA| ≤ bKW

400Cα . Putting it all together, we
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get,

CC(Π′A) ≤ 2CCA(Π′A)

≤ 4|TA|+ 4

K∑
i=1

|mA
K |

≤ 4 · b
KW

400Cα
+ 4

K−1∑
i=0

1 +

i∑
j=0

3bjW


≤ 4b

α
· bK−1W + 24

K−1∑
i=0

biW

≤
(

4b

3α
+ 8

)K−1∑
i=0

3biW

≤
(

4b

3α
+ 8

)
|mA

K |

<
|mA

K |
12εd log d

,

where the last inequality follows from the fact that ε ≤ b
10αd log d , b > 2 and α < 1

3200 .

Simulation. We next define an adversary D for the protocol Π that satisfies the requirements
of Theorem 17.

To this end, we first define an adversary A′ for the protocol ΠH that emulates the adversary
A in Π′. The adversary A′ emulates (in his head) a transcript corresponding to Π′, by emulating
the system messages (using the shared random string) and the bits added to long messages (as
in Π′), and applies A to these messages. The corruption strategy of A′ is the induced corruption
to the messages corresponding to ΠH.

The fact that the adversary A′ is well defined follows from Claim 51, which guarantees that
the parties in Π′A always agree on the string used as shared randomness, and on the rounds
where system messages are sent.

As defined in Section 5.4, we let D be the adversary for the protocol Π, that sends the exact
same messages as A, excluding the hash values.

Note that by definition, when Π′A ends, both Alice and Bob (separately) can efficiently
compute their view of the transcript ΠD. Moreover, the total volume and number of messages
corrupted by D are bounded by those of A′, which in turn are bounded by the volume and
number of messages corrupted by A.

Communication Complexity. We next bound the communication complexity of Π′A. We
will have 3 budgets: O for the original messages of ΠH, B for the extra bit added to messages
of length ≥ bkW , and S for system messages. Thus,

CC(Π′A) = O + B + S.

Note that by definition B ≤ O+S
W .

We next argue that it suffices to prove that

O + S ≤ (1 + 24α) · CC(ΠHA′).
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This follows from Lemma 16 and the assumption that W = αtmin ≥ 1
α , as follows:

CC(Π′A) = O + B + S

≤ (1 +
1

W
)(1 + 24α) · CC(ΠHA′)

≤ (1 + α)(1 + 24α)

(
(1 + 50Cα)CC(ΠD) +

(
ε+

600C log 1
γ

d/2

)
CC(Π′A)

)
≤ (1 + 80Cα)CC(ΠD) + 1201Cα · CC(Π′A) .

Thus we got that

CC(Π′A) ≤ 1 + 60Cα

1− 1201Cα
· CC(ΠD) ≤ (1 + 2600Cα) · CC(ΠD)

as desired.

Note that O = CC(ΠHA′). Thus, it remains to prove that

S ≤ 24α · CC(ΠHA′) = 24α · O.

Denote by
m1,m

′
1,m2,m

′
2, . . . ,mK ,m

′
K

the system messages in Π′, where for every i ∈ [K], the message m′i is an echo of mi, and thus
these messages are identical (follows from Claim 51).

Note that for every i ∈ [K − 1], it holds that

|mi+1| ≥ |m1|+ . . .+ |mi|,

and in particular,
|m1|+ . . .+ |mK−1|+ |mK | ≤ 2|mK |.

Moreover, note that when mK is sent (in step 4(e)ii), it holds that

|mK | ≤ 6bK−1W ≤ 6αO′ ≤ 6αO,

where O′ is the local transcript corresponding to ΠH after the party sending mK will send its
next message in Π. Thus, we conclude that overall

S = 2|m1|+ . . .+ 2|mK | ≤ 4|mK | ≤ 24α · O,

as desired.

Round Complexity. We denote by K the number of system messages that were sent in Π′

by each of the players. Note that

R(Π′A) = R(ΠHA′) + 2K = R(ΠD) + 2K.

Thus, it suffices to prove that
K ≤ logb CC(ΠD).
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Since the parties send the K’th system message, we have that CC(ΠHA′) ≥
bK−1W
800Cα . This,

together with our previous bound on the communication complexity of Π′, and together with
our assumption that α ≤ 1

3200C implies that

K ≤ logb
(
800CαCC(ΠHA′ )

)
+ 1 ≤

logb
(
1600CαCC(ΠHA′)

)
≤

logb
(
1600CαCC(Π′A)

)
≤

logb (1600Cα(1 + 2600Cα)CC(ΠD)) ≤
logb CC(ΠD) ,

as desired.

Bounding hash collisions. It remains to prove Item 5 in Theorem 17. To this end, we
finally define

x = {xi,r}i∈[5],r∈N ,

where each xi,r is defined as a function of (s1, . . . , sk, r1, . . . , rk) that were sent in Π′ up until
the point where round r of ΠH is simulated.

Fix a round r and let n be the maximal such that rn ≤ r. We partition sn into 5 equal
parts,22

sn = (sn,1, . . . , sn,5),

where for each i ∈ [5], the string sn,i is used to generate xr,i, the seed for the i’th hash function
used in round r, as follows: We define

L ,

(
|G(sn,i)|

2

)1/3

,

where G is the pseudo-random generator function from Lemma 13. Thus |G(sn,i)| = 2L3.
Partition

G(sn,i) = (xn,i,1, . . . , xn,i,L)

where for each r ∈ [L], it holds that |xn,i,r| = 2L2. We define xi,r , xn,i,r for every r ∈ [L].
We remark that the protocol never uses xi,r for r > L, however we define xi,r for r > L to be
uniform only for the simplicity of the analysis (to avoid dealing with edge cases).

Recall, that in Protocol ΠH, it suffices to use xi,r of length 2t2r , where tr is the total commu-
nication up to round r in ΠH. This is the case since we used the hash function from Lemma 14,
which takes as input a string {0, 1}≤L to a single output bit, using a seed of length 2L. In
round r of the protocol ΠH, we applied this function at most tr times on inputs of length at
most tr. Hence, in total we need a seed of length 2tr · tr = 2 · t2r .

Thus we need to prove the following claim.

Claim 53. L ≥ tr.

Proof. Note that it is always the case that

|sn| ≥W = αtmin ≥ 250C log d,

where the latter follows from the definition of tmin (see Equation (5)). This implies that

|sn,i| ≥ 50C · log d,

22We assume without loss of generality that 5 divides |s|.
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which in turn implies that

L ,

(
|G(sn,i)|

2

)1/3

≥
(

250·log d

2

)1/3

≥ d2.

Thus, if tr < d2, then indeed tr ≤ L, as desired.

Therefore, assume that tr ≥ d2. By the protocol,

|sn| = bn−1W ≥ 400Cα

b
tr ≥

400C

d
tr ,

where the fact that tr ≤ bnW
400Cα follows from the definition of the protocol Π′, and the latter

inequality follows from the fact that d ≥ b
α (see Equation (4)). Thus,

L ,

(
|G(sn,i)|

2

)1/3

≥

(
2

400tr
d

2

)1/3

≥

(
2400

√
tr

2

)1/3

≥ tr,

where the last inequality follows from a straightforward calculus, and the second to last in-
equality follows from the fact that tr

d ≥
√
tr, which in turn follows from our assumption that

tr ≥ d2.

Having defined the random string x and the adversary A′, we are now ready to state the
following lemma, which immediately implies Item 5 (as we explain after the lemma statement).

Lemma 54. Consider the protocol ΠHA′ with the random string x defined above. Then

1. With probability ≥ 1− 20 · 2−
γ
3d
t ,

|E \ E0| ≤ 35γt.

2. With probability ≥ 1− 80r · 2−
7γ8

d
r ,

|E \ E0|′ ≤ 100γr.

Recall that E \ E0 is the set of all messages with a hash collision.

The reason this lemma implies Item 5 follows from the fact that the volume of messages
with hash collisions in ΠD is at most the volume of messages with hash collisions in ΠHA′ , and
the communication complexity in ΠHA′ is at most twice the communication complexity in ΠD
(follows from Item 2 together with the bound on α). Similarly the number of rounds with hash
collisions in ΠD is at most the number of rounds with hash collisions in ΠHA′ .

In order to prove this Lemma, we need to prove that the random string x and the adversary
A′ have the following properties.

Claim 55. For every i ∈ [5], every k ∈ N, and every r1, . . . , rk ∈ N, and every r0 ∈ N, the
distribution x(s1, . . . , sk, r1, . . . , rk), where {si}ki=1 are uniform, has the property that {xi,r}r≥r0
is 2−

80tr0
d -biased.

Claim 56. The adversary A′ (defined above) for the protocol ΠH satisfies that for any t ∈
[W2 , CC(ΠHA′)], the volume of corrupted messages in the first t bits of ΠHA′ is at most t

d log d .

88



proof of Claim 55. Let n be the maximal that satisfies rn ≤ r0. By our construction the
variables can be partitioned into disjoint sets

{xi,r}r≥r0 = {xi,r}rn+1
r=r0 ∪ {xi,r}

rn+2

r=rn+1+1 ∪ · · · ∪ {xi,r}r≥rk+1

It suffices to prove that for every j ∈ {n, . . . , k}, the joint distribution of {xi,r}
rj+1

r=rj+1 is

2−
tr0
40d -biased (since it is independent of all the rest).
According to the protocol, tr0 is at most bnW

400Cα , and recall that d ≥ b/α. Thus, for any
j ≥ n we have

|sj | = bj−1W ≥ bn−1W =
400Cα

b
· b

nW

400Cα
≥ 400Cα

b
tr0 ≥

400C

d
tr0 .

Hence, the seed sj,i is of length at least
80Ctr0
d . Since sj , and hence sj,i, is independent of all

the other seeds {si}i 6=j , then even conditioned on any fixing of the latter, by Lemma 13, the set

{xi,r}
rj+1

r=rj+1 is 2−
80tr0
d -biased, as desired.

Proof of Claim 56. Fix some t ∈ [W2 , CC(ΠH)]. First consider the case where t ≥ 1
2b
K−1W ,

where K is the final value of k in the protocol. Since there are at most εCC(Π′A) errors on the
first t bits, we have that the fraction of errors is at most

εCC(Π′A)

t
≤ ε(1 + 2600Cα)CC(ΠD)

t
≤

2εCC(ΠHA)

t
≤

2ε b
KW

400Cα
1
2b
K−1W

=
εb

100Cα
≤ 1

d log d
,

where the first inequality follows from our bound on the communication complexity, the sec-
ond inequality follows from the fact that 2600Cα ≤ 1 and CC(ΠD) ≤ CC(ΠHA), and the last
inequality follows from the bound ε ≤ α

bd log d .

Now consider the case that t ≤ 1
2b
K−1W and let k be such that 1

2b
k−1W ≤ t ≤ 1

2b
kW . By

Claim 51, the parties do not halt immediately after the (k + 1)-st system message. Therefore,
on the first 1

2b
kW bits of the protocol there were less than 1

2b
kW · 1

bd log d errors. Thus, the
fraction of errors on the first t bits is at most

1
2b
kW · 1

bd log d
1
2b
k−1W

=
1

d log d
.

We are now ready to prove Lemma 54. The proof follows by an adaptation of the proof of
Lemma 15, presented in Appendix C.1. In what follows we use the notations and definitions from
Appendix C.1. Recall that the proof of Lemma 54, follows by proving four claims: Claim 42,
Claim 44, Claim 45, and Claim 46.

Note that Claims 44 and 45 still hold with respect to our new hash functions, since these
claims do not depend on the public randomness. Thus, to prove Lemma 54, it suffice to prove
an adapted version of Claims 42 and 46, stated below.

Claim 57. ∀k ∈ [5], Pr[|Ek| ≤ 5γt] ≥ 1− 4 · 2−
7γ
d
t.

Claim 58. ∀k ∈ [5], Pr [|Ek|′ ≥ 16γr] ≤ 8r · 2−
7γ8

d
r.
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We now fix k. Consider a random fixing of the shared randomness x and the private
randomness rA and rB (corresponding to Alice and Bob, respectively). This determines a
transcript T for ΠHA (with x, rA, rB). In any non-corrupted round r with hash in T , we consider
the vector f2wr

xk,r
(Vk) (where Vk is determined by x, rA, rB), and divide it into hash chunks of size

log 1
γ .
We define S = Sg,x,rA,rB to be the set of hash chunks, where for every non-corrupted

message of length ` with hash, sent in the r’th round of the protocol (determined by (x, rA, rB)),
S contains the first g(`) hash chunks corresponding to f2wr

xk,r
(Vk) (where Vk corresponds to

(x, rA, rB)), for some g such that g(`) ≤ 2wr/ log 1
γ . Let S[t′, t] = Sg,x,rA,rB [t′, t] contain only

the hash chunks in S that were sent after at least t′ bits were sent, and at most t bits were
sent.

The proofs of Claims 57 and 58 follow from the next technical claim.

Claim 59. Let S, t, t′ be as above, and let N be an upper bound on the number of hash chunks
in S. Then, the probability that there are more than 2γN chunks with hash collision in S[t′, t],

is at most 2
13
d
t
(
e−

1
3
γN + 2−

40t′
d

)
.

Proof. Fix the private randomness rA and rB of Alice and Bob, respectively. Given 5 subsets
(of rounds with hash) J1, . . . , J5 ⊆ [2t

d ], we denote J = {J1, . . . , J5}, and define ΠH,J to be the
protocol that acts like ΠH with the following changes: For the r-th round with a hash, the
protocol ΠH,J acts like there is a hash collision on the variable Vj if and only if r ∈ Jj . Thus,
in a sense, the protocol ΠH,J does not depend on the public randomness x.

We next bound the number of hash chunks in S[t′, t], corresponding to the transcript ΠH,J ,
that have collisions with respect to the public randomness x. We emphasize that the protocol
ΠH,J is independent of whether or not there is a hash collision with respect to x, yet in S[t′, t]
we count the number of hash collisions with respect to x.

Let (ΠJ)′ denote the protocol obtained by simulating ΠH,J , as was defined in Section 6.
Namely, (ΠJ)′ is defined as Π′ was, however rather than defining it with respect to ΠH it is
defined with respect to ΠH,J . Note that the rounds r1, . . . , rk that are used to generate x in
(ΠJ)′ are independent of the random seeds s1, . . . , sk. This is the case since the behavior of the
protocol ΠH,J does not depend on the random string x.

Therefore, for any oblivious adversary O that make at most t
d log d errors on the first t bits,

when the random string x is uniform, by the Chernoff bound (see Lemma 11), the probability
that there are more than 2γN hash collisions (with respect to x) in S in the protocol ΠH,JO , is

at most e−
1
3
γN . By Lemma 14, when x comes from a 2−

40t′
d -bias distribution (as opposed to

uniform), this probability is at most e−
1
3
γN + 2−

40t′
d .

By Claim 43 there are at most 2
3t
d oblivious adversaries that make at most t

d log d errors in

the first t bits. By the union bound over all such adversaries and over all 2
10t
d possible sets J ,

we have that for any such adversary and any set J , the probability that there are more than
2γN hash chunks with hash collisions in ΠH,J is at most

2
3
d
t+ 10

d
t(e−

1
3
γN + 2−

40t′
d ) ≤ 2

13
d
t(e−

1
3
γN + 2−

40t′
d ) .

We show that this bound holds also for ΠHA′ . Let O describe the messages that were corrupted
due to the adversary A′, and let J describe the rounds with hash collisions. Note that by
Claim 56, O corrupts at most t

d log d bits from the first t bits of the transcript. By definition,

ΠHA′ acts exactly like ΠH,JO .
Hence, we conclude that the number of hash chunks with hash collisions is at most 2γN , as

required.
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We are now ready to prove Claim 57.

Proof of Claim 57. Let S = Sg,x,rA,rB where g(`) = γ−1`. Namely, S contains the first γ−1`
hash chunks of each message of length ` that was sent with a hash. This is well defined since
2wr > γ−1 log 1

γ `.

Let Si = S[ t
2i+1 ,

t
2i

]. We have that |Si| ≤ t
γ2i+1 . By Claim 59 the probability that Si has

more than t
2i

hash chunks with hash collisions is at most

2
13t

2id

(
e−

t

3·2i+1 + 2−
40t

d2i+1

)
≤

2
13t

2id

(
2 · 2−

40t

d2i+1

)
≤

2 · 2(13− 40
2 ) t

d2i = 2 · 2−
7

d2i
t .

Consider all the messages that were sent after t
2i+1 bits were sent and before t

2i
bits were sent,

and consider the volume of all these messages for which all the hash chunks in S have a hash

collision. Thus, with probability ≥ 1 − 2 · 2−
7

2id
t, we have that this volume is at most γt

2i
. By

the union bound, we have that the probability that for any 0 ≤ i ≤ log 1
γ the above holds is at

least,

1−
log 1

γ∑
i=1

2 · 2−
7

2id
t ≥ 1− 4 · 2

− 7

2
log 1

γ d

t

= 1− 4 · 2−
7γ
d
t .

Moreover, in the first t

2
log 1

γ
= γt bits of the protocol, the volume of Ek is clearly at most γt.

Thus, with probability ≥ 1− 4 · 2−
7γ
d
t the total volume of hash collisions is at most

γt+

log 1
γ∑

i=0

γt

2i
≤ 3γt .

Proof of Claim 58. The proof of Claim 58 follow the footsteps of the proof of Claim 46. Recall
that in the proof of Claim 46, we bound the number of hash collisions on messages received
by Alice, and messages received by Bob, separately. For the former, we partition the messages
received by Alice into regimes, and classify some of these regimes as heavy and the others as
light. Loosely speaking, a heavy regime is one where the number bits that Alice received during
this regime consists of a large fraction (γ2 ) of the bits that Alice received so far. We showed
that the total number of hashes in the light regimes is bounded by 2γr. The same is also true
in our setting.

Thus, it remains to prove that with probability 4r · 2−
7γ8r
d , the number of rounds with hash

collisions sent by Alice in all heavy regimes is at most 6γr.
To this end, for any heavy regime we let t denote the number of bits that Alice received in

the protocol until the end of this regime. As in the proof of Claim 46, we distinguish between
the case where t ≥ γr and the case where t < γr. As we proved, the number of messages with
hash that Alice sends overall in all the regimes for which t < γr, is at most γr.

Therefore, to prove that with probability 4r · 2−
7γ8r
d , the number of rounds with hash colli-

sions sent by Alice in all heavy regimes is at most 6γr, it suffices to prove that with probability

4r · 2−
7γ8r
d , the number of rounds with hash collisions sent by Alice in all heavy regimes for

which t ≥ γr is at most 5γr. Namely, by the union bound, it suffices to prove the following
claim (which is an analog of Claim 47).
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Claim 60. For any adversary and any heavy regime, the probability that the regime has more

than 5γ∆a rounds of hash collisions is at most 4 · 2−
7γ7t
d , where t is the number of bits that

Alice received in the protocol until the end of this regime.

Proof. Fix an adversary and a heavy regime. Let ∆t be the volume of messages in this regime
(i.e., messages received by Alice in this regime), and let ∆a be the number of messages that Alice
sent with hashes in this regime. Let U = ∆t

∆a . This definition of U is similar to Equation (34).
Let S be the set of the first 64γ−2U hash chunks in each message that Alice sends with hash

in this regime. There are enough bits of hash in each such message since,

2wr = 2
maxr′∈Q∩[r−1] log

tr−tr′
ar−ar′

+9 log 1
γ

+6
= 64γ−9 max

r′∈Q∩[r−1]

tr − tr′
ar − ar′

≥ 64γ−9U ′ ≥ 64γ−3U ,

where the latter is greater than 64γ−2U · log 1
γ , as desired, where U ′ is defined in the proof of

Claim 46, and where the latter inequality follow from Equation (35). Thus, the number of hash
chunks in S is

|S| = ∆a · 64γ−2U = 64γ−2∆t ≥ 32γ−1t, (37)

where the latter inequality follows from the definition of heavy regime, which asserts that
∆t > 1

2γt.
Let k = 7 log 1

γ . For each 0 ≤ i ≤ k, let Si be the part of S that was sent by Alice, after

receiving from Bob at least t
2i+1 bits in this regime, and at most t

2i
bits in the regime. Let S′ be

the remaining part of S. By Claim 59, we have that the probability that in each Si, there are

more than 2γ|Si|+ γ
2i
|S| hash chunks with hash collisions is at most 2

13

2id
t
(
e−

γ

3·2i
|S| + 2−

40t

2i+1d

)
.

By union bound the probability that for all i, the number of hash collisions in Si is at most
2γ|Si|+ γ

2i
|S| is,

k∑
i=0

2
13

2id
t
(
e−

γ

3·2i
|S| + 2−

40t

2i+1d

)
≤

k∑
i=0

2
13

2id
t
(
e−

32

3·2i
t + 2−

20t

2id

)
≤ 2 ·

k∑
i=0

2
13

2id
t · 2−

20t

2id

= 2

k∑
i=0

2−
7t

d2i

≤ 4 · 2−
7t

d2k

= 4 · 2−
7γ7t
d ,

where the first equation follows from Equation (37), the second equation follows from the fact
that d is a large enough constant, the third equation follows from basic arithmetics, the forth
equation follows from the fact that the series is dominant by a geometrical series, and the latter
equation follows from the definition of k.

In this case, the number of chunks with hash collisions in S0, S1, . . . , Sk, is at most

k∑
i=0

(
2γ|Si|+

γ

2i
|S|
)
≤ 2γ|S|+ 2γ|S| = 4γ|S| .

Therefore, after receiving t
2k

bits from Bob, at most 4γ fraction of the messages with hash sent
by Alice have a collision. This implies that the number of messages with hash collisions sent by
Alice, after receiving t

2k
bits from Bob, is at most 4γ∆a.
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To finish the proof it is suffice to show that the number of messages with hash collisions
sent by Alice in this regime, before receiving t

2k
bits from Bob, is at most γ∆a.

Consider the first γ∆a rounds where Alice sends a message with hash in the regime , and
let r be any round proceeding these rounds where Alice sends a message with a hash. Let tr
denote the number of bits received by Alice throughout the protocol until round r. It suffices
to show that tr ≥ t

2k
.

To this end, let t′ denote the number of bits received by Alice before this regime, and let a′

denote the number of rounds in which Alice sent a message with hash before this regime. One
the one hand, By Equation (35),

U ′ ≥ γ6U =
γ6(t− t′)

∆a
.

One the other hand, by the definition of U ′,

U ′ ≤ tr − t′

ar − a′
≤ tr − t′

γ∆a
.

Putting those together we have that tr − t′ ≥ γ7(t− t′) , and hence

tr ≥ γ7t− γ7t′ + t′ ≥ γ7t =
t

2k
,

as desired.

E Proofs from Section 7

E.1 Proof of Claim 20

Proof. We define Π′ to simulate Π with the following changes:

1. If a party receives a message m of length < α−1 then it interprets this message as a
message from Π.

2. If a party receives a message of the form (0,m) of length ≥ α−1, then the party interprets
this message as receiving m according to the protocol Π.

3. If a party receives a message (1,m) of length `′ ≥ α−1 then it does the following: Let
t denote the total length of all the messages that were sent so far corresponding to Π.
If the message is 14αt+L0 then it terminates the protocol. Otherwise it sends 1`, where
` = min{β−1`′, 4αt+ L0}.
Loosely speaking, these messages are “padding” messages, and are appended to the tran-
script of Π′ to ensure that the transcript of Π can be recovered from the first (1 − 2α)-
fraction of bits in the transcript of Π′.

4. If the protocol Π instructs the party to send a message m of length < α−1 then it simply
sends m.

5. If the protocol Π instructs a party to send a message m of length ≥ α−1, then the party
sends (0,m).
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6. If the protocol Π instructs the party to terminate then the party sends the message 1`,
where ` = min{β−1`′, 4αt + L0}, where `′ is the length of the received message and t is
the total communication of the messages from the original protocol.

We first note that Π′ is (α, β)-smooth, since adding a single bit to a message can cause that
after a message of length ` there will be a message of length at most `

2β + 1 ≤ `
β .

We next bound the communication complexity of Π′. We start with a lower bound. To this
end, note that long messages that start with 1, are sent only after the simulation of Π ends.
Thus at least CC(Π) bits are communicated prior to that. Moreover, since the protocol ends
with a message of the form 1` for ` ≥ L0, we have that CC(Π′) ≥ CC(Π) + L0.

We next upper bound the communication complexity of Π′. Since the messages correspond-
ing to Π are padded with an extra bit only if they are longer than α−1, the total length of all
the messages corresponding to Π is at most (1 + α)CC(Π). Since the length of all the extra
messages, except the last message, creates a geometric series, their total length is bounded by
4αCC(Π)+L0

1−β . Thus the total communication complexity of Π′ is

CC(Π′) ≤ (1 + α)CC(Π) + (4αCC(Π) + L0)(1 +
1

1− β
) ≤ 1 + 13αCC(Π) + 3L0 .

We next bound the round complexity. Since all the extra messages, except one, create a
geometric series, there total number is bounded by

log 1
β

(4αCC(Π) + L0) ≤ log 1
β

(CC(Π)) + log 1
β
L0.

Thus,
R(Π′) ≤ R(Π) + log 1

β
(CC(Π)) + log 1

β
L0 + 1 .

Finally, since the total length corresponding to messages of Π is at most (1 + α)CC(Π),
and the extra messages are of total length at least 4αCC(Π), we have that the total length of
messages from the original protocol are at most 1+α

1+5α < 1 − 2α fraction of the communication
complexity of Π′. Thus, if only the 1− 2α prefix of Π′ was encoded correctly, we will be able to
decode the messages of Π correctly.

E.2 Proof of Claim 21

Proof. We first verify that ε, ε′ and δ satisfy the conditions of Theorem 4. To prove the

asymptotic bound on ε we will show that α3

bd log d = Ω̃(α3+ 1
α′ ) and α′α3β = Ω̃(α3+ 1

α′ ) as follows

α3

bd log d
= Ω

(
α′α3

d log d

)
= Ω

 α′α4

log 1
γ log

(
log 1

γ

α

)
 = Ω

(
α′α4

log2 1
γ log 1

α

)
= Ω

(
α′3α4

log 1
α

)
= Ω̃

(
α3+ 1

α′
)
,

α′α3β = α′α3+ 1
α′ = Ω̃

(
α3+ 1

α′
)
.

We next verify the asymptotic bound on ε′,

ε′ = Ω

(
α′

d log 1
β

)
= Ω

 αα′

log 1
γ log

(
log2 1

α

α
1
α′

)
 = Ω

 αα′

log
(
α−

4
α′
)

log

(
1

α
1

2α′

)
 = Ω

(
αα′3

log3 1
α

)
= Ω̃

(
αα′3

)
.
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We conclude this item by bounding δ as follows,

δ = γ9 =
α

36
α′

2360
≤ α

36
α′+360 = αO( 1

α′ ) .

Items 2, 3 and 6 follow trivially. To prove Item 4 it suffices to show that β ≤ 1
5αd2

, indeed,

1

5αd2
=

α

5 log2 1
γ

=
α

5
(

4
α′ log 1

α + 40
)2 ≥ α

5
(

8
α′ log 1

α

)2 =
αα′2

320 log2 1
α

≥ α
1
α′

320 log2 1
α

= β .

To prove Item 5 it is suffice to show that γ ≤ 1
d . Note that γ < α

2 log 1
α

, and thus γ log 1
γ ≤ α,

which in turn imply γ ≤ α
log 1

γ

= 1
d .

To prove Item 7 we will show that 630γ, 72ε
α2 , 700dγ, 80dε ≤ 1

4αβ. Indeed,

630γ ≤ α1+ 1
α′

720 log2 1
α

=
1

4
αβ ,

72ε

α2
≤ 1

4
αβ ,

700dγ =
700γ log 1

γ

α
≤ 700γ

3
4

α
=

700α
3
α′−1

230
≤ α1+ 1

α′

720 log2 1
α

=
1

4
αβ ,

80dε =
log 1

γα
′α2β

4
≤ α2 log

1

α
β ≤ αβ

4
.

To prove Item8 first note that 1812d log 1
β ε
′ = α′ ≤ 1

log 2
α′

. Moreover, since 906d log 1
β ε
′ = 1

2α
′

it remain to show the following,

90600d log
1

β
γ =

90600γ log 1
γ log

(
245 log2 1

α

α
1
α′

)
α

≤
90600γ

3
4 log

(
1

α
3
α′

)
α

=
3 · 90600 log 1

α

230αα′
·α

3
α′ ≤ α

1
α′

α′
≤ α′ .

Finally, to prove Item 9 we first note that

1
(10α−1+10)L0

≥ α

20L0
=

α3

10000C log d
≥ α5

d
≥ α6

log 1
γ

≥ γ7 ≥ δ .

For the second part we first need to verify the following,

γ

6d log
(

120d
γ

) ≥ γ2

720d2
=

γ2α2

720 log2 1
γ

≥ γ2 · γ2

γ−1 · ( 1
γ )2

= γ6 ≥ δ . (38)

To prove the second part of Item 9 we consider x ≥ 1
δ and show that 2 · 2−δx ≥ 60d

γ · 2
− γ

3d
x +

γ−17 · 2−
3
2
γ8x by proving the following two Equations (39) and (40), as follows,

120d

γ
·2−

γ
3d
x =

120d

γ
·2−

γ
6d
x− γ

6d
x ≤ 120d

γ
·2−

γ
6dδ ·2−

γ
6d
x ≤ 120d

γ
·2− log

(
120d
γ

)
2
−δ log

(
120d
γ

)
x ≤ 2−δx ,

(39)
where the third equation follows from Equation (38).

γ−17 · 2−
3
2
γ8x ≤ γ−17 · 2−

3
4
γ8x− 3

4
γ8x ≤ γ−17 · 2−

3
4
γ8

δ · 2−
3
4
γ8x ≤ 2−γ

9x ≤ 2−δx . (40)
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E.3 Proof of Lemma 22

Proof. Fix any adversary A for Π′ that corrupts at most ε-fraction of the bits of Π′ and such
that at most ε′-fraction of the messages are α2-corrupted.23.

The fact that CC(Π′A) ≥ tmin , and the fact that S is a probabilistically polynomial time
oracle machine (where Π′ = (SA, SB)), follows from the fact that each reduction in the definition
of Π′ is both efficient and only increases the communication complexity, as shown by Lemma 6,
Claim 20, Theorem 9, Theorem 17 and Theorem 19. It remains to bound the communication
complexity, round complexity and to prove the correctness guarantee.

By Theorem 19, in order to prevent the decoder from decoding a message correctly, the
adversary needs to corrupt at least α2-fraction of the message. Recall that the volume of
corrupted messages is defined to be the sum of the lengths of corrupted messages, where the
length of each corrupted message is defined be to the maximum between the length of the original
message and the length of its corrupted version (see Definition 8). Thus, we can convert A′ to
an adversary Arand, corresponding to protocol Πrand, where the volume of messages corrupted
by Arand is at most

ε

α2
· CC(Π′A) ≤ 2ε

α2
· CC(Πrand,Arand

),

where the latter inequality follows from our assumption that for every message m, |Enc(m)| ≤
2|m|.

Moreover, the total number of corrupted messages is bounded by

min
{
εCC(Π′A), ε′R(Π′A)

}
≤ min

{
2εCC(Πrand,Arand

), ε′R(Πrand,Arand
)
}
.

In what follows, we denote

εrand =
2ε

α2
and ε′rand = ε′.

This, together with Item 6 of Claim 21, implies that εrand ≤ α
bd log d . Thus by Theorem 17, there

exists an adversary Aideal for Πideal, that corrupts at most e′rand messages of total volume at
most erand = 2εrandCC(Πideal,Aideal

), where

e′rand = min
{
εCC(Π′A), ε′randR(Πideal,Aideal

) + 2ε′rand logb CC(Πideal,Aideal
)
}
,

and where

εCC(Π′A) =
α2

2
εrandCC(Π′A) ≤ α2εrandCC(Πrand,Arand

) ≤ 2α2εrandCC(Πideal,Aideal
) ,

where the last inequality follows from Theorem 9 together with the fact that 2600Cα ≤ 1.
Moreover, by Theorem 17, the adversary Aideal chooses the hash collisions in a probabilistic
manner, and for every t and every r, with probability ≥ 1 − 20 · 2−

γ
3d
t, the volume of hash

collisions, in the first t bits of Πrand,Arand
, is at most 35γt, and with probability ≥ 1−80r ·2−7γ8r,

the number of rounds with hash collisions, in the first r rounds of Πrand,Arand
, is at most 100γr.

For every t denote by Gt the event that for every t′ ≥ t, the total volume of messages with
hash collisions in the first t′ bits of Πrand,Arand

is at most 35γt′. By the union bound, for every
t, the probability of event Gt is at least

1−
∞∑
t′=t

20 · 2−
γ
3d
t′ = 1− 20 · 2−

γ
3d
t

1− 2−
γ
3d

≥ 1− 20 · 2−
γ
3d
t

γ
6d

= 1− 120d

γ
· 2−

γ
3d
t . (41)

23Recall that a message is α2-corrupted if the adversary corrupts at least α2-fraction of its bits.
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where the second equation follows from the fact that 1− 2−x ≥ x/2 for every x ≤ 1.
Moreover, for every r, the probability that for every r′ ≥ r the number of rounds with hash

collisions is at most 100γr′, is at least

1−
∞∑
r′=r

80r′ · 2−7γ8r′ ≥ 1−
∞∑
r′=r

80 ·
log 1

4γ8

2γ8
· 24γ8r′ · 2−7γ8r′

≥ 1−
∞∑
r′=r

80 ·
log 1

γ8

2γ8
· 24γ8r′ · 2−7γ8r′

= 1−
320 log 1

γ

γ8
· 2−3γ8r

1− 2−3γ8

≥ 1− γ−1

γ8
· 2−3γ8r

γ8

= 1− γ−17 · 2−3γ8r (42)

To justify the first equation, note that that for every δ and r′ it holds that 2δr
′ ≥ r′ for every r′

such that δr′ ≥ log r′. Using basic calculus, one can verify that δr′ ≥ log r′ for every r′ ≥ 2 log 1
δ

δ .

Thus, 2δr
′ ≥ r′ for every r′ ≥ 2 log 1

δ
δ . The first inequality follows from this fact, by setting

δ = 4γ8.

Communication Complexity. Let tsmooth = CC(Πsmooth). By Lemma 6,

tsmooth = (1 +O(α))CC(Π).

Let tpad = CC(Πpad). By Claim 20,

tpad ≤ (1 + 13α)tsmooth + 3L0 = (1 +O(α))CC(Π) + 3L0 .

Let cα = (1 + Õ(α)) ≤ 3 to be determined later. Define

t′0 ,
cαtpad
1− α

= (1 + Õ(α))CC(Π) + 10L0

and
t0 , (1 + α)(t′0 − 10L0) = (1 + Õ(α))CC(Π) .

Fix any t ≥ t0. First consider the case where t < t′0. In this case,

t′0 > t > t0 = (1 + α)(t′0 − 10L0)

which implies that
t < t′0 < (10α−1 + 10)L0,

and in turn implies that

2 · 2−
t

(10α−1+10)L0 ≥ 1.

Hence, it trivially hold that

Pr[CC(Π′A) ≥ t] < 2 · 2−
t

(10α−1+10)L0 .

By (the first part of) Item 9 of Claim 21, we get the desired communication complexity bound.
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We next consider the case where t ≥ t′0. Let tideal = t
cα

. By Equation (41), Item 9 of

Claim 21, and the fact that tideal ≥ t
3 , it suffices to show that if for every t′ ≥ tideal the total

volume of hash collisions in the first t′ bits of Πideal is at most 35γt′, then CC(Π′A) ≤ t.
To this end, we first show that CC(Πideal,Aideal

) ≤ tideal. By our assumption, the fraction of
volume of messages with hash collisions or with adversarial corruption in Πideal,Aideal

is at most
35γ + 2εrand. Thus, By Theorem 9

CC(Πideal,Aideal
) ≤ tpad+18β−1(35γ+2εrand)CC(Πideal,Aideal

)+20dβ−1(35γ+2α2εrand)CC(Πideal,Aideal
) .

Hence, by Item 7 of Claim 21,

CC(Πideal,Aideal
) ≤

tpad
1− 18β−1(35γ + 2εrand)− 20dβ−1(35γ + 2α2εrand)

≤
tpad

1− α
=
t′0
cα
≤ tideal ,

as desired.
By Theorem 17, CC(Πrand,Arand

) ≤ (1 +O(α))tideal. Thus, by Theorem 19, we have that

CC(Π′A′) ≤ (1 + Õ(α))CC(Πrand,Arand
) = (1 + Õ(α))tideal , cαtideal .

The result follows from the fact that t = cαtideal.

Correctness We assume that for every t′ ≥ tideal the total volume of hash collisions in the
first t′ bits of Πideal is at most 35γt′, where tpad, tideal and trand, are defined as above. It suffices
to assume that CC(Π′A) ≥ t and show that ΠA decodes Π correctly.

Since CC(Π′A) ≥ t, by the same argument as above, we have that CC(Πideal,Aideal
) ≥ tideal

and thus the total volume of messages with hash collisions is at most 35γCC(Πideal,Aideal
).

By Theorem 9, the parties output transcripts of size ≤ CC(Πideal,Aideal
), and the first N bits

of the transcript are consistent with Πpad, for

N = CC(Πideal,Aideal
)− 18β−1(35γ + 2εrand)CC(Πideal,Aideal

)− 20dβ−1(35γ + 2α2εrand)CC(Πideal,Aideal
)

≥ (1− α)CC(Πideal,Aideal
) ,

where the inequality follows from Item 7 of Claim 21.
Thus, by Claim 20,

Output(Π′A) = Output(Πpad) = Trans(Π) ,

as required.

Round Complexity Let rsmooth = CC(Πsmooth). By Lemma 6

rsmooth ≤ R(Π) · (1+8 log4β α)+4 log 1
4β
·CC(Π)+4 = (1+O(α′))R(Π)+O

(
α′ log CC(Π) + 1

)
.

Let rpad = R(Πpad), thus by Claim 20,

rpad ≤ rsmooth + log 1
β

CC(Π) + log 1
β
L0 + 1 = (1 +O(α′))R(Π) +O

(
α′ log CC(Π) + 1

)
.

We define

r0 =
rpad + 1812d log 1

β ε
′
rand · logb t0

1− (100γ + ε′rand) · 906d log 1
β

+ 4 logb t0 ,
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and consider r ≥ r0 . By Item 8 of Claim 21 we have that

r0 = (1 +O(α′))R(Π) +O

(
1

log 2
α′

log CC(Π) + 1

)
,

as required.
First, we consider the case where r ≥ t0. In this case, by our bound on the communication

complexity we have that

Pr
[
R(Π′A) ≥ r

]
≤ Pr

[
CC(Π′A) ≥ r

]
≤ 2 · 2−δr .

From now on we will consider the case where that r < t0 and let rideal = r − 2 logb t0. Since
r ≥ r0 we have that rideal ≥ r

2 .
We assume that for every r′ ≥ rideal the number of rounds with hash collisions in the first r′

bits of Πideal is at most 100γr′ and that CC(Π′A) ≤ t0. This suffices since, by the communication
bound and Equation 42, the probability that the above does not hold is bounded by

min

{
1,

60d

γ
· 2−

γ
3d
t0 + γ−17 · 2−3γ8rideal

}
≤ min

{
1,

60d

γ
· 2−

γ
3d
r + γ−17 · 2−

3
2
γ8r

}
≤ 2 · 2δt ,

where the first inequality follows from the fact that t0 ≥ r and rideal ≥ r
2 , and the second

inequality follows from Item 9 of Claim 21.
We next show that R(Πideal,Aideal

) ≤ rideal. By our assumption, the number of rounds with
hash collisions in Πideal,Aideal

is at most 100γR(Πideal,Aideal
). Moreover, by Theorem 17, the number

of rounds with channel corruptions is at most ε′rand(R(Πideal,Aideal
)+2 logb t). Thus, By Theorem 9

R(Πideal,Aideal
) ≤ rpad + 906d log

1

β

(
100γR(Πideal,Aideal

) + ε′rand(R(Πideal,Aideal
) + 2 logb t0)

)
.

Hence,

R(Πideal,Aideal
) ≤

rpad + 1812d log 1
β ε
′
rand · logb t

1− (100γ + ε′rand) · 906d log 1
β

= r0 − 4 logb t ≤ r − 2 logb t0 = rideal ,

as desired.
Thus, by Theorem 17,

R(Π′A) = R(Π′rand,Arand
) ≤ rideal + 2 logb t = r .
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