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Abstract

The problem of constructing error-resilient interactive protocols was introduced in the
seminal works of Schulman (FOCS 1992, STOC 1993). These works show how to convert
any two-party interactive protocol into one that is resilient to constant-fraction of error,
while blowing up the communication by only a constant factor. Since these seminal works,
there have been many followup works which improve the error rate, the communication rate,
and the computational efficiency.

All these works assume that in each round each party sends a single bit, an assumption
that may cause a substantial increase in the round complexity. Moreover, they assume that
the communication complexity of the underlying protocol is fized and a priori known.

In this work, we show how to convert any protocol I, with no a priori known communi-
cation bound, into an error-resilient protocol II’, with comparable computational efficiency,
that is resilient to constant fraction of adversarial error, while blowing up both the commu-
nication complexity and the round complexity by at most a constant factor. We consider
the model where in each round each party may send a message of arbitrary length, where
the length of the messages and the length of the protocol may be adaptive, and may depend
on the private inputs of the parties and on previous communication. We consider the ad-
versarial error model, where e-fraction of the communication may be corrupted, where we
allow each corruption to be an insertion or deletion (in addition to toggle).

In addition, we try to minimize the blowup parameters: In particular, we construct such
I’ with (14O (¢'/%)) blowup in communication and O(1) blowup in rounds. We also show
how to reduce the blowup in rounds at the expense of increasing the blowup in communi-
cation, and construct II’ where both the blowup in rounds and communication, approaches
one (i.e., no blowup) as e approaches zero. We give “evidence” that our parameters are
“close to” optimal.
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1 Introduction

Communication over a noisy channel is a fundamental problem in computer science, engineering
and related fields. Starting from the seminal work of Shannon [Sha48], this problem of error-
resilient communication has been extensively studied. Today, we have “good” error-correcting
codes — ones that achieve constant information rate as well as constant error rate. The two
main error models that were considered are the stochastic error model, where the errors are
distributed according to some distribution (such as the binary symmetric channel), and the
adversarial error model, where errors may occur adaptively and adversarially, so long as the
prescribed error rate is not exceeded. This work considers the latter (stronger) adversarial error
model. In addition, we consider (adversarial) insertion and deletion errors.

In a sequence of innovative works, Schulman [Sch92| [Sch93|, [Sch96] initiated the study of
error-resilience in the context of interactive protocols. Specifically, he considered the setting
where two parties are interacting via a protocol over a noisy channel, where the noise could
be stochastic or adversarial. Since Schulman’s seminal works, there have been many followup
works, that improve the error rate [BR11, (GH13| [GHS14, BE14], [AGS16, [EGH16], the informa-
tion rate [KRI13l Haeld, (GHI7], the computational efficiency |[GMS11, BK12, BN13, BKN14],
and very recently that are been beautiful works that generalize the error model of the adversary
to allow insertions and deletions [BGMO16, [HSV17, [SW17]. There have also been several works
that consider the multi-party setting [RS94) [JKL15, BEGH16, (GK17]. We refer the reader to
[Gell7] for a fantastic survey on previous work on interactive coding. The focus of this work is
on the 2-party setting and the adversarial error model.

All previous works assume that in the underlying protocol, in each round a single bit is
sent. Thus, there is an inherent assumption that the round complexity is proportional to
the communication complexity. In contrast, in cryptography and in distributed computing,
protocols that consist of long messages are considered, and it is desirable to keep the round
complexity as low as possible. In fact, much research (in both cryptography and distributed
computing) focuses on reducing the round complexity of various protocols, as often the round
complexity is the bottleneck, and not the communication complexity. We argue that since we
consider interactive protocols, we should aim for error resilient protocols, that not only blow up
the communication by at most a constant factor, but also blow up the number of rounds by at
most a constant factor.

All previous works consider the “bit-by-bit” model, where each party sends a single bit
in each round, and thus the protocols inherently have large round complexity. Therefore, we
diverge from this “bit-by-bit” model, and consider the model where parties can send arbitrarily
long messages in each round. Our model is the typical synchronous model used in cryptography
and distributed algorithms. We elaborate on this model in Section (1.1

Moreover, we emphasize that we do not assume that the communication (or round) com-
plexity is fixed or a priori known. This is in contrast to all previous works, which assume that
the communication (and round) complexity T is fixed and known in advance, and that the
adversary can corrupt at most €T’ bitsE] We note that such an assumption is often unrealistic
and results in protocols where the communication complexity is always worse-case.

In this work, we allow the communication and round complexity to differ from execution to
execution, depending on the inputs, or “types” of the parties, and construct an error-resilient
protocol that preserves this per-execution communication (and round) complexity. We note

We mention the work of Agrawal et. al. [AGSI6], which does assume that the communication complexity
of the underlying errorless protocol is a priori known. However, with the goal of maximizing the error rate, the
communication complexity in the error-resilient protocol is not fixed and is not a priori known. We emphasize
that in our work, we do not even assume that the parties a priori know the communication complexity in the
underlying errorless protocol.



that the fact that we allow such adaptive (and not a priori known) communication length adds
substantial technical difficulties to our work, which we elaborate on in Section |1.3|*|

Our Results in a Nutshell. We show how to convert any protocol, where messages can
be of arbitrary length, and where the communication and round complexity are not a priori
known, into an error-resilient one, with comparable (computational) efficiency guarantees, that
is secure against constant fraction of adversarial error, while incurring a constant blowup both
to the communication complexity and to the round complexity. We allow the adversary not
only to toggle with the bits of communication, but also allow the adversary to insert and delete
bits. We elaborate on our communication model and error model in Section [.1l

Moreover, we try to minimize the (constant) overhead in communication and rounds: In
particular, we obtain (1 4+ O(e'/4)) blowup in communication and O(1) blowup in rounds. We
also show how to reduce the blowup in rounds at the expense of slightly increasing the blowup
in communication, and construct an error-resilient protocol where both the blowup in rounds
and communication approaches one as € approaches zero. We elaborate on our results (and on
the exact parameters we obtain) in Section we give a high-level overview of our techniques
in Section and give “evidence” that our parameters are “close to” optimal in Section
(after formally stating our main theorem in Section .

Our Technical Hurdles. The reader may at first think that dealing with short messages
is the “hard case”, since for long messages we can use standard error-correcting codes. We
argue that this intuition is misleading. First, when considering adversarial error, applying an
error-correcting code to each message separately does not help, since the entire message can
be corrupted (even if the message is long), and indeed in this work we focus on adversarial
error. We mention, however, that even for the case of stochastic error, dealing with messages
of varying lengths, where some messages may be short while other messages may be long, is
challenging.

Before explaining the difficulties that arise in this setting, we note that if we knew a priori
the number of rounds and the communication complexity of the underlying protocol, then we
could have “smoothed” it out perfectly, so that all the messages would have been of equal
lengthﬂ and then we could have used a protocol (and analysis) from prior works.

Since we do not have such a bound, we cannot perfectly smooth out the underlying protocol.
Nevertheless, we must somehow smooth out the protocol, since a party cannot send a long
message before she is “sufficiently confident” that the transcript so far is correct, as otherwise,
this long message will be wasted (even if the adversary does not corrupt it at all). Therefore,
we “approximately” smoothen out the underlying protocol, by guaranteeing that each message
is of length at least half and at most twice the length of the previous message. We refer the
reader to Section and Section [3 for details.

We mention that in order to minimize the blowup, we consider two small constants «, 5 > 0
(that depend on the error rate) and guarantee that the length of each message is at least o/
and at most %, where £ is the length of the message preceding it. This is not important for the
high-level overview.

*We believe (though we haven’t checked) that the tree-code based interactive coding schemes may easily
be adapted to the setting where the communication complexity is not a priori bounded, by having each party
construct an (infinitely growing) tree code. However, in tree-code based schemes the parties are computationally
inefficient and there is a large blowup to the round complexity.

3This approach blows up the communication and round complexity by a constant factor. If the goal is to
optimize this blowup (as we do in this work) then one cannot afford to perfectly smoothen out the protocol, in
which case our techniques are needed.



We emphasize, that even after smoothing the underlying protocol, the length of the messages
can still grow (or shrink) at an exponential rate, which brings rise to several challenges. For
example, similar to many previous works (such as[Sch92, BK12l [Hae14]), when a party realizes
that there was an error she backtracks. In our setting we need to be extremely cautious when we
backtrack. Note that the adversary can cause us to backtrack even though we are synchronized,
by making us believe that we are out of sync. Previous works ensure that the adversary needs
to invest enough error for such backtracking, and hence such “false” backtracking is costly for
the adversary. However, in the case where messages are of varying length, this analysis becomes
extremely delicate, since the adversary can corrupt a short message (by investing a small amount
of his error budget), and thus falsely cause the parties to backtrack and delete a previous long
message. Indeed, as opposed to previous protocols, we do not erase when we backtrack. Rather,
we keep this transcript as “questionable”. We refer the reader to Section [I.3] and Section [4] for
details.

Moreover, when messages are of varying lengths, even if the protocol is (approximately)
smooth, and even if we backtrack carefully, ensuring that the round complexity does not blow
up, does not only require a careful (and significantly more complex) analysis, but also requires
additional new ideas.

For example, the protocols in previous works, perform an equality test after every chunk of
length d (for some parameter d), where in this equality test the parties check whether they are
in sync by sending each other a hash of their transcript so far. In our setting, messages may be
very long, and we cannot chop a message to chunks of d bits each, since this will blow up the
round complexity. Instead, it is tempting to simply append to each message a hash of length
that is proportional to the message length (e.g., append a hash of length ng to a message of
length ¢). However, as we show in Section and Section [5, in order to ensure a constant
blowup in round complexity, we must not only allow the length of the hash value to depend on
the length of the message it is being appended to, but rather it should also depend on the length
of the entire history. This is the case since if the protocol has messages of varying lengths, the
adversary can corrupt a single long message, in a way that causes many hash collisions in future
short messages. Thus, by corrupting one (long) message many rounds can be wasted.

In order to get around this problem, we allow the length of the hash to depend on the length
of the entire history. Moreover, we consider randomized (i.e., seeded) hash function, where the
party sends the hash value together with the hash seed, so that the adversary does not know
which hash function will be used ahead of time. However, with a seed of length w one can hash
messages of length at most 2%, and the history may be longer than 2*. Thus, in our scheme
some of the seed is chosen ahead of time and some of the seed is chosen with each message. We
refer the reader to Section [L.3] and Section [{ for details.

Moreover, the fact that the communication complexity is not a priori known creates an ad-
ditional problem. Following previous works (such as [BK12, BKNT4l [Hael4]), we first construct
a protocol in the common random string (CRS) model (this is done in Section , and then we
remove the CRS (in Section[f). Removing the CRS in previous work was straightforward: First
show that the CRS can be made relatively short (of size proportional to the communication
complexity) by using a d-biased source, and then argue that one of the parties can simply send
the CRS using a (standard) error correcting code. In our case this cannot be done since we do
not have an a priori bound on the communication complexity.

We give an overview on how we overcome the technical hurdles mentioned above in Sec-
tion but warn the reader that overcoming these challenges is quite difficult, and results in
a very complex analysis.

We next explain our model in more detail.



1.1 Owur Model
1.1.1 The Noiseless Model

We consider 2-party protocols, between two parties, Alice and Bob. In our model, at every
round 4, Alice and Bob do the following: Alice chooses £4(i) € N (greater than 0) and a message
ma(i) € {0,1}4@) based on her view of previous communication and her private input, and
sends m (i) to Bob. Similarly, Bob chooses £5(i) € N and a message mp(i) € {0,1}3(®) based
on his view of previous communication and his private input, and sends mpg(i) to Alice. At
some round, one of the parties aborts, and both parties report an output.

More generally, we allow Bob’s message in the 7’th round to depend, not only on all previous
communication and his private input, but also on Alice’s message in the ¢’th round. This
corresponds to the synchronous model where in each round ¢, Alice and Bob do not send their
messages simultaneously, but rather first Alice sends her message and only then Bob sends his
message (which may depend on Alice’s message). This model is known as the message-passing
model, and is the most common model used in cryptography (and distributed algorithms). We
note that our results also apply to the synchronous simultaneous message model, and the choice
of presenting our results in the synchronous message-passing model was due to the fact that we
think that this model is more standard.

We emphasize that we allow the length of the messages in each round and the number of
rounds to vary and to depend on previous communication. This models real world interactions
where some conversations end fast, whereas others spark more interaction. We emphasize that
all previous works considered the case where in each round a single bit is sent, but several of
these works (such as [AGS13, (GHS14]) considered adaptive protocols, where which party sends
the bit may be a function of the transcript so far. Nevertheless, they all assumed that the
(underlying errorless) protocol has an a priori fixed communication complexity.

We denote the input of Alice by x, and we denote the input of Bob by y. Note that a pair
of inputs (z,y) define £4 and ¢p for all rounds, and also define the number of rounds. Thus,
in the noiseless setting, for any protocol we can define CC(z,y), which is the communication
complexity of the protocol for the input pair (x,y). Similarly, we can define R(x,y), which is
the number of rounds for the input pair (x,y).

1.1.2 The Noisy Model

In this work, we consider the adversarial error model, and assume that the adversary can corrupt
any e-fraction of the bits, for some a priori fixed small constant € > 0. We allow the adversary,
not only to toggle with the bits, but he can also insert and delete bits.

In our model, where messages can be of arbitrary length, protecting protocols against in-
sertions and deletions is extremely important, since otherwise the parties can securely encode
information via the length of the messages. Specifically, in our model, where messages can be
of varying lengths, one can trivially protect protocols against (adversarial) toggle corruptions
while incurring only a constant factor blowup in the communication complexity, albeit an un-
bounded blowup in the round complexity, as follows: First convert the protocol to a protocol
where each party sends a single bit in each round. Then, encode this bit as follows: If the bit is
zero then encode it via a single bit (zero or one), and if the bit is 1 then encode it via any two
bits. Upon receiving an encoded message the parties will decode without looking at the content
of the message, but rather only by the length of the message.

We note that most previous work on interactive coding do not consider insertion and dele-
tions. Indeed, in the synchronous model, where the parties send one bit per round, insertions
and deletions are not interesting, since the parties “can tell” when an insertion or deletion



occurs.

An exception are the recent works of [BGMOI16, [HSV17, SW17]. These works consider
insertion and deletions in the asynchronous model. More specifically, they consider an adversary
who can insert a message from one party and delete a message from the other party, and thus
cause the parties to be out-of-synch with regard to which round they are on (though similarly
to previous work, they are in the bit-by-bit model, thus their protocols incur a large blowup to
the round complexity, and they assume an a priori bound on the communication complexity).

In our work, we consider the synchronous model, where the parties always agree on the num-
ber of speaking alternations (which in our case is exactly the number of rounds). We emphasize,
however, that the work of [HSV17] shows a generic method for converting any error-resilient
protocol in the synchronized model into one that that is error resilient in the asynchronized
model. We believe that one can use their approach (and in particular the use of a synchro-
nization code [HS17]) to boost our result from the synchronous model to the asynchronous
model.

In the adversarial error model, in our work and in all previous works, there is an a priori
fixed constant € and it is assumed that the adversary can corrupt at most €1 bits, where T is
the number of bits communicated. In most previous work, the value of T" was assumed to be a
priori known (and fixed). As mentioned above, in this work, we allow the length of the protocol
to depend on previous communication. This models the real world setting, where we cannot a
priori predict the length of our conversations, and it can depend on our private inputs (or on
our “types”).

In this model, care should be taken when defining the adversarial error model. One possi-
bility is to allow the adversary to corrupt €I bits, where T is the number of bits that would
have been transmitted assuming no errorﬁ

We note, however, that with such a definition the adversary can use his €T bits of corruption
budget, and cause the parties to abort prematurely. Namely, he can convince both parties that
the other party is “boring” (i.e., that the other party has an input such that if they were
executing the error-free protocol without error, the number of bits exchanged would have been
less than €T'). In such case both parties would abort prematurely and the adversary would
“win”.

Instead, we allow the adversary to corrupt only e-fraction of the bits that were actually
communicated. We note that a similar model was used in the work of Agrawal et. al. [AGS16],
where their goal was to get optimal error-rate, and to that end, they considered error-resilient
protocols with an adaptive speaking order and where the communication complexity may depend
on the error patternﬂ We emphasize that this adversarial model is stronger than alternative
(natural) models, such as the the prefix model that allows the adversary to corrupt e-fraction
of any prefix of the transcript.

In this work, we also add a bound € on the number of rounds that the adversary can
“fully” corrupt, where we say that a round is fully corrupt if the adversary corrupts more than
d-fraction of the bits, for some small constant ¢ (which depends on the error bound €). We
note that all previous works also had such a bound (implicitly), since in previous works there
was no distinction between rounds and communication. In contrast, in our model, a bound on
the number of bits corrupted does not imply a bound on the number of rounds that are fully
corrupted. For example, consider the protocol in which there is one long message of length /¢,
followed by e/ messages, each consisting of a single bit. In such a protocol, not corrupting the

“We note that the adversary knows 7' since we assume (similarly to all previous work that consider the
adversarial error model), that the adversary knows the private inputs of the parties.

®As mentioned above, the work of [AGSI6] does assume an a priori known bound on the communication
complexity of the underlying (errorless) protocol.



long message gives the adversary the budget to corrupt all the short messages.

We emphasize that bounding the number of rounds that are fully corrupted is necessary,
since without such a bound, it is impossible to ensure a small blowup in round complexity. This
argument is deferred to Section where we give evidence to the optimality of our parameters.

1.2 Our Results

In what follows, we denote our error parameters by € and €/, where € corresponds to the fraction
of corrupted bits, and ¢ corresponds to the fraction of (fully) corrupted messages. We show
that for any (small enough) constants €,¢ > 0 there exist blowup parameters a,a’ > 0 such
that one can convert any protocol into an error resilient one (with respect to € and €'), with «
blowup in communication, and essentially o/ blowup in rounds (with an additional term that
depends logarithmically on the communication complexity). We can set o/ = O(1) we obtain
a blowup of & = O (el/ 4) in communication complexity. Alternatively, one can set a,a’ such
that they both approach 0 as €, € approach 0.

Our error-resilient protocol is randomized, even if the original protocol was determinis-
tic. This is similar to all previous works that construct computationally efficient interactive
coding schemes that are robust to adversarial error (starting with the work of [BK12]). Schul-
man [Sch93| (followed by many followup works) gave a deterministic interactive coding scheme,
at the price of computational inefficiency. The parties in the error resilient scheme run in ex-
ponential time in 7', where T is an upper bound on the length of the underlying protocolﬁ
Recently, Gelles et. al. [GHK™16] gave a deterministic and efficient construction for the case of
random error. However, constructing a deterministic interactive coding scheme that is resilient
to adversarial error and is computationally efficient remains an interesting open problem.

We are now ready to state our main theorem. The most general theorem can be found in
Section [2] and in what follows we present our theorem in a regime of parameters that we think
is of particular interest.

In what follows, we let ty;, denote the minimum value for which the underlying error-free
protocol II transmits at least t,;, bits.

Theorem 1 (Main Theorem (informal)). For any sufficiently small € > 0 and for any € < e'/4,
there exist blowup parameters o and o', and a polynomial time probabilistic oracle machine S,
such that the following holds. For any adversary A that corrupts at most e-fraction of the bits of
the simulated protocol Iy (which is the protocol II' executed with the adversary A), and “fully”
corrupts at most € -fraction of the messages of Il'y, where A “fully” corrupt a message if he
corrupts at least a-fraction of the bits of the message, we have the following guarantees.

1. CC(IT}) > tomin.

2. Pr[CC(IT,) > (14 )CC(IT)] = exp (—~CC(IT,)).

3. Pr[R(IT) > (1+ o/)R(IT) + o' log CC(IT)] = exp (—R(IT,)).
4. Pr[(Output(IT'y) # Trans(IT))] = exp (~CC(IL,)).

Moreover, we can choose the parameter o, o’ such that o = 0(61/4) and o/ = O(1), or we can
choose a, o such that « and o approach 0 as € approaches 0.

SBraverman [Bral2] showed how to improve the parties’ runtime to be sub-exponential in T'.



The purpose of t,i,. In the theorem above, without adding the restriction that CC/(S4, SB) >
tmin, the simulated protocol could have aborted as soon as more than e-fraction of error
was detected. In particular, if the first bit was noticeably corrupted, then the parties in
the simulated protocol could have safely aborted. Thus, without adding the restriction that
ccC (SA, SB) > tinin, this theorem does not even generalize previous works, which all assume an
a priori fixed transcript size ¢t and assume the adversary makes at most et corruptions. Adding
this restriction, gives the adversary an initial budget of ety corruption bits. Moreover, since
the error probability is exponentially small in the actual transcript length, the requirement
cc(s4, 88 ) > tmin guarantees a low error probability.

1.3 Overview of Our Techniques

In this section we give a high-level overview of the main ideas behind our construction and
our analysis. In this overview, we do not focus on getting “optimal” parameters, and focus on
constructing an error-resilient scheme that blows up the round and communication complexity
by a constant factor. We note that all the conceptual ideas in this work are needed even to
achieve constant overhead.

We start with an arbitrary protocol II.

Smoothness. We first convert II into a smooth protocol, with the property that after a
message of length ¢ comes a message of length at most 2¢, and before a message of length ¢
comes a message of length at least £/2. We mention that in the actual protocol, to minimize
the blowup in rounds and communication, we define («, 3)-smoothness, where o and (3 are
functions of the error rate e, and the guarantee is that after a message of length ¢ comes a
message of length at least af and at most %, and we show how to convert any protocol II into
an («, 8)-smooth protocol.

As mentioned above, the reason we need to smoothen II is that otherwise, if after receiving
a short message a party sends a long message, then the adversary by corrupting the short
message, can cause the long message to be wasted, thus effectively allowing him to corrupt the
long message by only using the budget needed to corrupt the short message.

Intuitively, we smoothen II by instructing a party who wishes to send a long message after
receiving a short message, to do so “cautiously”, by sending the long message over several
rounds, each time increasing the message length by at most a factor of 2.

To ensure that this does not cause a blowup to the round complexity, we make sure that
a party does not send a short message after receiving a long one. Otherwise, suppose Alice
always sends long messages (each of length ¢) and Bob always sends single bit messages. Then
by having Alice send her messages “cautiously”, as explained above, the round complexity will
blowup by a factor of log £, which is too large. Instead, we instruct Bob to send longer messages,
of length af, so that the adversary will need to invest enough budget to corrupt Bob’s message;
in particular, enough to allow Alice to send her length ¢ message safely.

We refer the reader to Section [3] for the formal definition of smoothness, and to Lemma [f]
for how to convert a protocol into a smooth one.

From now on we assume the protocol II is smooth, and show how to convert it into an error
resilient one.

Message adversary. We first note that we can focus our attention only on adversaries,
that rather than corrupting individual bits, corrupt messages, where the price of corrupting a
message m is the maximum between the length of m and the length of the corrupted version



of m. If the adversary chooses to corrupt a message m then he may corrupt it adversarially,
and if the adversary chooses not to corrupt a message then he cannot make any changes to it.

The reason we can focus on such adversaries is that we can easily convert any protocol
that is resilient to errors made by message adversaries into a protocol that is error resilient to
any adversary by applying an error correcting code to each message, and hence if only a small
fraction of a message is corrupted (smaller than the allowed error rate) then this corruption
can be ignored, since it is immediately corrected by the error correcting code. We use the error
correcting code of Guruswami and Li |[GL16], that is resilient to insertion and deletions, and
has a minimal blowup of 1 + O(y/€) to the message length.

Thus, from now on, throughout this section, we ignore the layer of error correcting code,
and consider only message adversaries.

1.3.1 The Protocol in the Ideal Hash Model

We first show how to convert any protocol II into a protocol that is error resilient in the Ideal
Hash Model. As in previous works (starting with the original work of [Sch92]), our starting
point is the idea of using hashing to check for consistency. Namely, in the protocol Alice and
Bob check equality of their partial transcripts, by sending to each other hashes of their partial
transcripts.

In the Ideal Hash Model, we assume the existence of an “ideal” hash function, that is known
to all parties and does not need to be communicated, and in the analysis we assume that the
number of hash collisions is bounded, yet adversarially chosen (where the cost for each hash
collision is proportional to the length of the hash value). We later elaborate on how we remove
this ideal model assumption, by implementing this ideal hash using a real hash function.

For the sake of simplicity, throughout this overview we think of the parties appending to
each message they send a hash of their transcript so far. We mention however, that in the
actual protocol, since we want to optimize the communication blowup, we append a hash only
to “long enough” messages, i.e., messages of length at least d, for a carefully chosen parameter
d € N. In particular, we do not append a hash to short messages, and instead add a hash in
every round that divides d (to take care of the case where all the messages are short).

Each party, upon receiving a message, first checks the consistency of the corresponding hash
with its current transcript. If an inconsistency occurs, the parties enter a correction mode.

Correction Mode. In correction mode, the parties realize that their transcripts are inconsis-
tent, and they need to rewind their transcript to a point where they believe they are consistent,
yet without backtracking too much. Note that once an error is detected, the parties cannot
simply rewind their transcript one round at a time, since the adversary can cause them to
completely get out of sync. Moreover, they cannot send each other the round number they
are currently simulating, as was done in [BK12|, since this will blowup the communication by
too much. Instead, we adapt the idea of backtracking to a “meeting point”, an idea that was
originated in [Sch92] and used in [Hael4]. For the sake of completeness, we explain this idea
below.

Once the parties realize they are not in sync, they enter a correction mode, and once in
error mode, they send two hashes of their transcript: One hash of the entire transcript, and the
other of the transcript up until the second largest round. If a consistency was found they go
back to the point of consistency. Otherwise, they send two hashes of their transcript until the
largest, and second largest, round which is a multiple of 2. Again, if a consistency was found
they go back to the point of consistency. Otherwise, in the i’th try, they send two hashes of
their transcript until the largest, and second largest, round which is a multiple of 271,



In order to avoid the situation where the adversary invests O(1) corruptions, and causes a
party to go back 2° steps, and thus lose 2¢ bits of a possibly good transcript, the parties go
back 2¢ steps only after receiving roughly 2° confirmations. The confirmations cannot be in a
single round, since then the adversary could corrupt a single round and cause the parties to go
back (possibly) 2¢ rounds. Thus, instead these confirmations should span roughly 2 rounds,
and each party keeps a counter of how many confirmations it has.

One important missing piece is that they can be out of sync with respect to which are the
meeting points. Thus, we also append to the message a hash of E, which denotes the number
of rounds the party is in the error mode, and this length determines where the meeting points
should be (which is roughly the power of 2 closest to E).

In previous works, once the parties backtrack, they erase the (seemingly) inconsistent tran-
script and continue to simulate the actual protocol. One important point where our protocol
differs from all previous work, is that in our protocol the parties cannot afford to erase their
(seemingly) inconsistent transcripts. This is due to the fact that the messages in the (seemingly)
inconsistent part may be very long. For example, consider the case where the last message added
to the transcript is of length 1, the one prior is of length 2, the one prior is of length 4, then
length 8, and so on. Suppose no errors occurred and everything is consistent. The adversary can
corrupt the hash appended to the short (1 bit) message, making the parties believe that their
transcripts are inconsistent. The parties will backtrack, but the adversary will continue to make
them believe that they are inconsistent, so that they erase i messages. This means erasing 2°
bits of communication, which is way more than the parties can afford to erase. Therefore, in our
protocol, rather than erasing the (seemingly) inconsistent transcript, we keep it as questionable,
and enter what we call a verification mode.

Verification Mode. In the verification mode, the parties simply test whether their question-
able messages are consistent. They do this round-by-round, by sending a hash of the messages
corresponding to each round. If their hashes agree, they mark the round as valid, and continue
to the next round. If they arrive to a round where their messages do not agree, they don’t
immediately erase all the questionable transcript. Rather, they erase it only after they are “suf-
ficiently” confident that they are inconsistent. To this end, they send longer and longer hashes
until the number of bits of hash are proportional to the (seemingly) inconsistent transcript, and
if the inconsistency persists then the parties erase their questionable transcript, and continue
to simulate the underlying protocol.

This protocol is formally presented in Section 4] and the formal analysis in the Ideal Hash
Model can be found in Section [£.2] and in Appendix

1.3.2 Our Protocol in the Shared Randomness Model

We next show how to implement the ideal hash functions with a specific hash function. To this
end, we construct a function family H = {h,}, where each hash function h, is associated with
a (possibly long) seed .

We consider the shared randomness model, where the parties are allowed to share a (possibly
long) random string. We later show how to eliminate the need for shared randomness. But
for now, we assume that the shared randomness is as long as we need. In particular, we use a
different hash function (i.e, a different seed) for each equality test, and assume that the shared
random string contains all these seeds. Since the length of the protocol is adaptive and not a
priori bounded, the length of the common random string is also not a priori boundedm

"We later show how we convert any such protocol in the unbounded shared randomness model into one that
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We emphasize that the shared randomness (and in particular the seeds) are known to the
adversary. Therefore the adversary, given a seed x, can try to skew the protocol and cause the
parties to send many messages whose hashes collide.

Note that the adversary has (ett) = 2009t {ifferent ways to corrupt the ¢ bits of the com-
munication. Thus, he can cause hash collisions in approximately é(e)t bits. If we append each
message of size ¢ with O(¢) bits of hash, the adversary will be able to cause hash collisions
in messages with total volume of O(e)t, which is within the allowed error range. Indeed, our
main challenge is to bound the number of rounds with hash collisions, a challenge that previous
works did not need to deal with since in their setting, communication complexity and round
complexity are equivalent.

If we a priori knew the length of the transcript ¢t and the number of rounds R, then we could
add U = % bits of hash to each message, and since the adversary can cause only O(e)t bits
of hash collisions, the number of rounds in which the adversary can cause a hash collision, is
bounded by O(e)R, which is again within our allowed error range.

Since we don’t have such a bound, it is tempting to append to each message sent in round r
a hash of length U, = tf, where t, is the communication up to the round r. But the following
example shows that such a padding does not suffice, and the adversary can still force too many
rounds with hash collisions.

Consider a protocol that consists of O(1 /€) chunks such that chunk 0 consists of k single bit
messages, and each chunk i # 0 consists of a single (long) message of length 2'k, followed by
O(e)k single bit messages. Note that in this case, the total number of hash bits in chunk i is ~ 27,
and thus an adversary that corrupts the long message of this chunk can cause hash collisions in
all the rounds of the chunk, resulting with a total of O(R) rounds with hash collisionsﬁ

To overcome this issue, the idea is to partition the protocol to chunks (which we call regimes),
and append to each message a hash of length that is proportional to the average length of a
message in the chunk. To be precise, we append to each message a hash of length U, =
max,/ < t;:fj' . Unfortunately, in this case the total amount of hash bits being added can be as
large as tlogt, which we cannot afford.

To overcome this issue, in each round, instead of sending all the U, bits of hash, we send
only a hash of these bits, where the seed of this (outer) hash is chosen using private random-
ness. Specifically, rather than sending H,(T") (which consists of U, bits), the party chooses
a random seed S, and sends Hg(H,(T)), together with S. This reduces the number of bits
being communicated from U, to log U,. Since the adversary does not a priori know the private
randomness chosen by the parties, he cannot corrupt the history to cause a hash collision in
Hg in too many rounds. Moreover, since we saw that he cannot cause hash collisions in H,(T")
in too many rounds, these hash functions are “safe”. We note that a similar idea of using a
randomized hash function was used by Haeupler [Hael4], for the sake of improving the rate of
his interactive coding scheme. We refer the reader to Section [5| formal description of the hash
function and to Appendix for the analysis of the number of hash collisions.

Finally, to conclude the analysis, we need to show that adding these (randomized) hash
functions does not blow up the communication by too much. More precisely, one needs to show
that > log U, = O(t). This analysis is extremely delicate and requires several new ideas. This

is done in Appendix

uses only private randomness.
8to be more precise, we need a long enough message at the end of the protocol to give the adversary enough
budget to corrupt all of the long messages.
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1.3.3 The Protocol in the Private Randomness Model

Finally, we show how to remove the need for shared randomness, while using only the private
randomness of the parties. Namely, we show how to convert any protocol Il in the shared
random string model, to one that uses only private randomness.

The basic idea is to follow the approach used in previous works (such as [BK12, Hael4]),
and replace the long shared randomness with 2-9(T)-biased randomness, where T is an upper
bound on the communication complexity. Such 279 -biased randomness can be generated
using only O(T') random bits. So, the basic idea is to send these O(T) bits of randomness in
advance, using an error correcting code. If we indeed had a bound T on the communication
complexity, then this idea would work, and we would be done.

However, in our setting, we do not have an a priori bound on the communication complex-
ity. In particular, if the communication complexity exceeds O(T'), then the adversary has the
budget to corrupt more than O(T") bits, and hence can completely corrupt the randomness s.
We overcome this problem by sending more (and “safer”) randomness as the communication
complexity increases.

The protocol starts when one of the paries, say Alice, samples the shared random string
51 € {0,1}O0min) on her own (using her private randomness), and sends it to Bob. Then the
parties execute II with s; as the shared randomness. Once the communication complexity
exceeds O(tmin/€), where € is the corruption rate of the adversary, the random string s; is no
longer “safe”, and the the parties exchange a new random string sg of length O(t1), where t;
is the current communication complexity. In addition to sending the new random string sy the
parties also resend the previous random string s;. The reason for resending previous seeds is
that by resending the seeds the goal is to ensure that if one of the seeds was ever corrupted
then the parties will “catch” the adversary, since the adversary does not have enough budget
to continue to corrupt that seed, and the first time that he does not corrupt it, the parties will
notice the inconsistency and abort, with the guarantee that the adversary performed too many
erTors.

In a similar way, after the communication complexity exceed to = O(t1/€) a party will choose
at random s3 such that |si| + |s2| + |s3] = t2, and will send (s1, s2, s3), where ¢ is the current
communication complexity, etc. As mentioned above, we ensure that if at any point, a message
encoding randomness was decoded incorrectly, then eventually the paries will abort, and “catch”
the adversary with injecting too many errors. This guarantee simplifies the analysis: Either
at some point a randomness message was decoded incorrectly, in which case the adversary is
“caught” with injecting too many errors, or all the parties always agree on the randomness,
in which case correctness follows from the correctness of the underlying protocol in the shared
randomness model.

A minor problem with the above idea is the following: a randomness message (s1,s2) may
have been corrupted and converted into a protocol message, and a few rounds later a protocol
message could have been corrupted and converted into the same randomness (s1, s2). To ensure
that the parties will notice such corruption, we add to the randomness also the rounds 71, ...,
in which randomness were sent.

However, there is still a problem with the above idea, which is that in the early stage of
the protocol, the shared random string has relatively large bias since it is generated using a
short seed, and yet the adversary may have the budget to corrupt many bits, since the total
communication may be large. It can be shown that such a powerful adversary can make too
many hash collisions in the first part of the protocol.

To overcome this problem, we “enforce” that the adversary corrupts at most O(e) fraction
of any prefix of the protocol. To do so, in each time ¢;, in addition to sending (si, ..., Si+1)
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(together with (r1,...,r;)), the parties send the transcript they have seen so far. If the parties
detect that the adversary made significantly more than the allowed € fraction of error, they
abort, causing him to fail by exceeding his allotted corruption budget.

The formal protocol is described in Section [6] and its analysis is provided in Appendix D]

2 Our Results

In this section we present our main theorem, and give an intuitive argument for why our
parameters seem to be optimal. We start by introducing notations and definitions that we use
in our theorem, and throughout the manuscript.

2.1 Notations and Definitions

For any 2-party protocol II = (A, B), we denote by Trans(II) the transcript of II, which con-
sists of all the messages exchanged throughout an execution of the protocol II. We denote by
Output(IT) the output of the parties after executing II. We think of the protocol II as being a
deterministic protocol with no inputs. This is without loss of generality since we can always
hard-wire the randomness and input into the protocol. We denote by CC(IT) the communication
complexity of II, and we denote by R(II) its communication complexity.

We consider simulators for simulating an interactive protocols. A simulator is a probabilistic
oracle machine, that uses a protocol II = (A, B) as an oracle, and produces a new protocol
I = (S4,5P) that outputs the transcript of II (even in the presence of error). For any
adversary A we denote by II'y the protocol II' executed with the adversary A.

Definition 2. We say that an adversary A corrupts at most e-fraction of the bits of a protocol
I’ if the number of corruptions made by A is at most eCC(Il'y), where each corruption is either
a toggle, an insertion or a deletion. The adversary A can be computationally unbounded, and
its corruptions may depend arbitrarily on states of both parties in II'.

Definition 3. We say that a message is y-corrupted if the adversary corrupts at least vy-fraction
of the bits of the message.

O(g(x)) if there exists a ¢ € N such that f(z) = O (g(z) log® (¢(z))) and

We say that f(z) =
= Q(g(w)) if there exists ¢ € N such that f(z) = Q (g(x)log™“ (g9(x))).

we say that f(z) = 0
2.2 Owur Main Theorem

Theorem 4. There exists a universal constant oy > 0 such that for any blowup parameters
a < ap and o/ <1, there exist parameters € = (a3+§), € = Q(ozo/?’), and § = a9/ and
there exists a probabilistic oracle machine S, such that for any protocol Il = (A, B), in which the
parties always transmit at least tyin bits (even in the presence of error), and for any adversary

A that corrupts at most e-fraction of the bits of the simulated protocol 11y, the protocol H;\
(which is the protocol II' executed with the adversary A), satisfies the following properties.

1. CC(IT') = tmin.
2. There exists tg = (1 4+ O(a))CC(A, B) such that for all t > to
Pr[CC(IT,) > ] <2-27°%

where the probability over the private randomness of S.

13



3. There exists 1o = (1+ O (/) R(A,B) + O < L logCC(A, B) + 1) such that for any

log %

2

r > 1o, if at most € -fraction of the messages are a*-corrupted, then

Pr[R(ITy) >r] <2-27°",
where the probability over the private randomness of S.
4. For anyt >0,
Pr [(Output(Il’y) # Trans(II)) A (CC(ITy) > t)] < 2- 279t |
where the probability over the private randomness of S.

5. S is a probabilistic polynomial time oracle machine, and hence the computational efficiency
of SA and SB is comparable to that of A and B, respectively.

In Section below, we give an intuitive argument for why our parameters seem to be
optimal. Then, the rest of the manuscript is devoted to proving Theorem [l Before, explaining
our choice of parameters, in what follows, we give a high-level overview of the structure of the
proof of Theorem

Road Map. We first convert IT = (A, B) into a smooth protocol Igmeoth- We show how this
can be done in Section 3| Then, in Section 4} we show how to convert any smooth protocol
Ilsmooth into a protocol Iliges;, which is error-resilient in the ideal hash model. In this model,
we assume that the adversary is a “message adversary”, which means that if he corrupts even a
single bit of a message the price he pays for such a corruption is the length of the entire message
(more precisely, the maximum between the length of the original message and the length of the
corrupted version of it). Moreover, we assume that the number of hash collisions is bounded
and adversarially chosen. We refer the reader to Section 4] for details.

In Section |§|, we show how to convert Iljge, into a protocol 1l,an4,, which is error resilient in
the common random string model, assuming the adversary is a “message adversary”. Loosely
speaking, this is done by instantiating the ideal hash using public (and private) randomness.
In Section |§|, we show how to instantiate the common random string using private randomness,
to obtain a protocol Il;ang, that is error resilient against any “message adversary”. Finally, we
convert Iliang, into IT' = (SA, SB), where II' is the same as I and,, except that each message
is sent encoded with the error correcting code that is resilient to insertions and deletions. In
Section [7, we “put it all together” and prove that IT' is the error resilient protocol guaranteed
in Theorem M above.

2.3 Intuition Behind our Parameters

In what follows, we give an intuitive argument for why our parameters seem to be optimal. We
emphasize that this is by no means a proof of optimality, but rather an intuition for where these
parameters came from.

As mentioned above, since messages can be of arbitrary length, and since we do not want to
blow up the round complexity by much, we must use an error-correcting code that is resilient
to (adversarial) insertions and deletions. To date, the maximal rate error-correcting code that
is resilient to (adversarial) insertions and deletions is due to Guruswami and Li [GL16]. This
code blows up the message length by 1 + O(\/E) and is resilient to e fraction of errors.

Moreover, as argued in Section [1.3] in order to ensure a small blowup in communication
our error-resilient protocol must be relatively “smooth”. In other words, in the error-resilient
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protocol, after a message of length ¢ we should not send a message much longer than ¢, since
then the adversary will corrupt the length ¢ message and as a result will cause the next long
message to be obsolete. Suppose for simplicity (for now) that all the messages are all of the
same length .

Suppose our protocol has blowup 1+ O(a) in communication complexity. Thus, we can use
the error-correcting code of [GLI6] that blows up the message length by at most (1 + O(a)).
This code is resilient to a? fraction of errors. Thus, by corrupting «?¢ bits of a message the
adversary can make the next round completely obsolete. Since the adversary can corrupt e-

fraction of the bits, he can make -5-fraction of the rounds obsolete, which implies that it must

a2’

be the case that —5 < «, which in turn implies that a > L3,

Note, however, that we cannot assume that all the messages are of the same length since
this will blow up the round complexity by too much. And yet, as mentioned above, we do
need to assume that the error-resilient protocol is somewhat “smooth”, since otherwise the
communication complexity will blow up by too much. Thus, we let 5 > 0 be a parameter, such
that in the error-resilient protocol after a message of length ¢ comes a message of length at most
B~1¢. Now, an adversary corrupting O(a2 -¢) bits of a message can cause 3¢ bits to be obsolete.
Thus, intuitively, the parties may waste a2 - 57! bits of communication per each corruption.
This, together with the fact that the adversary has an e-fraction of corruption budget and the
fact that the communication blows up by at most 1+ O(«), implies that a=2- 37! € < a, which
in turn implies that

o> e (1)

Therefore, on the one hand we would like to make § as large as possible, to improve the
communication rate; on the other hand, increasing 8 blows up the round complexity. At first
it seems that requiring this smoothing condition (i.e., that after a message of length ¢ comes a
message of length at most 371¢), will blow up the round complexity by too much. The reason is
the following: Consider the real world example, where each message sent by Alice is of length ¢,
and each message sent by Bob is of length 1. Thus, to ensure that Alice is not wasting ¢ bits of
communication due to a single error in Bob’s message, we need to make the protocol smooth
and have Alice send her message slowly, first sending the first 37! bits, then after getting a bit
of approval from Bob, Alice will send the next 572 bits of her message, and so on. Thus, the
number of rounds it will take Alice to send her message is roughly log 1 (¢). This will cause a

blowup of roughly log 1 (¢) to the round complexity, which is way too much.

To avoid this blowup, we want to make sure that after a long message does not come a
message which is too short, since short messages may cause a blowup to the round complexity
(if the following message is long). However, this should be done while adding at most an «
fraction to the communication complexity. Thus, we also smooth the protocol in the “other
direction” and require that after a message of length ¢ comes a message of length at least a.
Thus, going back to our example above, where Alice is talkative (sends messages of length /)
and where Bob sends messages of length 1, we first convert this to another protocol where Bob
sends messages of length af. This does not change the round complexity at all, and changes
the communication complexity by at most an a-factor. Now, we smoothen out this protocol,
by having Alice, rather than sending her ¢ bit message in “one shot”, she will first send S~ 'a/
bits, then send the next 82/ bits, and so on. Note that this will cause a blowup of log% (a™h)

in the round complexity. Since we allow a blowup of at most o’ to the round complexity
(without taking into account the blowup due to error, or the additive term), we take S so that
log% (1) < o, and thus we must take 3 such that 8 < o/ This together with Equation ,

implies that
a3+l/o¢ > €,
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as in Theorem [ above.

It remains to explain the additive term in the round blowup and the multiplicative term
that depends on the round error-rate €¢’. For the latter, clearly, if ¢-fraction of the rounds were
completely corrupted, these rounds need to be redone, and this incurs a blowup of 1+ ¢’ to the
round complexity. As to the former, suppose the original protocol consists of a short message
followed by a very long message, to make this protocol error resilient we will have to blow up
the round complexity by essentially log 1 CC, where CC is the communication complexity of the

original protocol. This is the reason we have the log additive term in the round complexity.

Finally, we explain why € = « - poly(«/). We note that for the purpose of our application
(Theorem (1)) the exact power of & is not important. Consider a protocol that consists of a
single bit per round. In this case we can effort to add a hash check only every a~! rounds. In
this case, the adversary can corrupt the first message of each chunk of o' rounds, which would
render the entire chunk useless. Thus, a corruption of ¢-fraction of the rounds, may result with
a round blowup of €a~! < &/, which implies that indeed ¢ < ac’.

3 Smooth Protocols

Throughout this section, we refer to “rounds” in a protocol as a one way communication.
Namely, the number of rounds in a protocol is equal to the number of messages that are sent
in the protocol. We note that in Section [4] we diverge from this interpretation, and refer to
“rounds” as a back-and-forth communication between Alice and Bob. This inconsistency allows
us to simplify the notation and the presentation. Note that these two interpretations can be
interchanged, while incurring a blowup of at most 2 in the round complexity.

Let II be an arbitrary 2-party protocol. We denote by m, the messages sent in the 7! round
in II. In this section we show how to convert any protocol II into a smooth protocol S'I. In
what follows we denote by M, the message sent in the r*" round in S™.

Definition 5. A protocol is («, B)-smooth if for every round r the following holds:
r .
a - max{|M, 1], [My 2|, M|} < [M,] < 5 min{ | M 1|, [M;—2l, | My 3|} (2)
Lemma 6. For any a < % and B < §, the following holds: Any protocol 11 can be efficiently
converted into an («, 3)-smooth protocol S™ such that
1. CC(S™) < co) - (1 + 50a).
2. R(S™) < R(IT) - (1 + 8logyg ) + 4log% -CC(IT) + 4

3. IfII is computationally efficient then so is S'.
We defer the proof of Lemma [6] to Appendix [A]

Remark 7. In Sections[4), [3, and[f, we show how to convert a smooth protocol into an error-
resilient one. Similarly to previous error-resilient protocols in the literature, we will first pad
the smooth protocol, and only then we convert the padded protocol into an error-resilient one.
However, we will need to pad our protocol in a smooth way. This is done as follows: Suppose
we want to pad our protocol with anywhere between L and 2L bits of 0’s. Suppose that the last

message in the smooth protocol is of length £, then we add a message of length L%J , followed by

a message of length b%J, and so on, until we add between BL and L bits, after which we add
L bits (if we haven’t added so already).
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Note that such a padding results in a smooth protocol, where the communication complexity
increases by at least L and at most 2L bits. The number of additional rounds required to do this
padding is at most log% L+1.

From now on, when we say that we convert a protocol I1 to a smooth protocol, we assume
that the resulting smooth protocol is padded appropriately.

4 Interactive Coding in the Ideal Hash Model

In this section, we show how to convert any protocol II into an error resilient protocol, and
analyze its properties in the Ideal Hash Model. This model assumes the existence of an ideal
hash. In our protocol, Alice and Bob check equality of their partial transcripts, by sending to
each other hashes of their partial transcripts. In this section, we consider the Ideal Hash Model,
where when we analyze the communication complexity of the protocol we do not take into
account the length of the hash values, and simply assume that the number of hash collisions is
bounded, yet adversarially chosen. (We explain how we bound the number of collisions below).
In Sections [p] and [6], we show how to remove this ideal model assumption, by implementing
this ideal hash using a real hash function. In these sections, we use hash values that are short
enough so the communication blowup is small, and yet we prove that with high probability the
amount of hash collisions is bounded.

Moreover, we consider an adversary that either leaves a message (and corresponding hash)
intact, or “fully” corrupts it. More precisely, we say that the hash is corrupted if and only if a
collision occurs. In the analysis of this ideal error-resilient protocol, we say that a message is
corrupted if the adversary corrupts any bit of the message (or if he corrupts the corresponding
hash). We let the budget of corrupting a message be the maximum between the original message
length, and the corrupted one. In particular, even if the adversary corrupted a single bit of a
long message of length n (or if he corrupts only the hash corresponding to this message), we
count it as n corruptions. We recall that the reason for this budgeting is that in our actual error-
resilient protocol we will apply the error correcting code of Guruswami and Li [GLI16] to each
message (and hash) separately. Thus, in order to corrupt a message, the adversary will need to
corrupt a constant fraction of the bits in the message. We refer the reader to Section[7]for details.

In what follows, we set

1 1 1
a<00l , /<1, d>= and f<minaa,——s . 3
< <1,dz L and pmindad, Lo ®)

We assume for simplicity that o' and ! are integers. We assume without loss of general-
ity, that the underlying protocol II is («, 8)-smooth. This is without loss of generality since by
Lemma @ we can convert II to an («, 8)-smooth protocol while increasing its communication
complexity by a multiplicative factor of (1 + O(«a)), and increase the number of rounds by a

multiplicative factor of (14 O(a/)) and an additive factor of at most log CC(II), as desired.

4.1 The Protocol

We note that this (ideal) protocol is quite similar to the error-resilient protocol of Haeu-
pler [Hael4]. The main difference being that we need to first convert the protocol into a
smooth one (whereas the protocol considered in [Hael4] is perfectly smooth since in each round
each party sends a single bit to the other party). Moreover, and more importantly, since our
protocol is not perfectly smooth, when the parties backtrack, they do not erase the questionable
transcript (since the messages in the questionable part may grow exponentially). Instead, the
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parties keep this transcript as questionable, and enter a “verification” state where they check
consistency round-by-round. We note that in [Hael4] the questionable transcript is simply
erased.

In what follows, we present the (error-resilient) protocol only from Alice’s perspective. Bob’s
perspective is symmetric. During the (error-resilient) protocol, Alice has a private variable Ty,
which she believes to be a prefix of the transcript she is trying to reconstruct. T4 is initiated
to (). We denote by m 4 the message that Alice sends in the error resilient protocol.

In what follows, we define all the other notations (in addition to m 4 and T)4) that are used
in the protocol description:

SA, RAyeAv £+7 g_v wa, R,(Al)7 Rf‘f)’

where all of these variables are defined as functions of T4 and m4.

From now on we think of each round as consisting of consecutive two messages: a message
sent by Alice and a following message sent by Bob. We note that this diverges from the way
we defined rounds in Section [3] where we thought of each round as containing a single message
(sent by one party). The only reason for this inconsistency is that it is more convenient in terms
of notations. It is important to note that this is only a notational convenience and does not
affect our final result in any way.

For each variable used in our protocol

vg € {TA,mA,SA,RA,EA,W,F,%UA,RS),RS)},

we denote by v4, the value of v4 that Alice uses when sending her round r message, and we
occasionally omit r» when it is clear from the context.

e During the protocol Alice has a state
S4 € {Simulation, Verification} U N.

Loosely speaking, Alice is in a Simulation state when she believes that the transcript T4
that she is holding is indeed a prefix of the correct transcript.

If S4 € N then we say that Alice is in a Correction state. If Alice is in Correction state,
then S4 is the first round (in the error-resilient protocol) that Alice has entered this state.
Alice enters a Correction state when she thinks her beliefs are wrong (for example, when
the hashes indicate that T4 and T are inconsistent). During this state, Alice tries to go
back to an earlier round in the transcript (corresponding to the original protocol) which
she believes to be correct. We denote this round by R 4. Alice will continue the simulation
from T4[R4|, which denotes the truncated transcript of T4 to round R4. As mentioned
above, as opposed to the protocol of Haeupler [Hael4], in our protocol, she does not delete
the suffix of T4, and rather she keeps this suffix as questionable. The reason she does
not erase this questionable suffix, is that it may be the correct suffix (and the only reason
it is questioned is due to an error), and in this case it may be too expensive to delete
and reconstruct, since in our case the messages in the questionable suffix may grow at an
exponential rate.

After a Correction state, Alice either enters another Correction state or enters a Verification
state, where she decides whether to completely delete, partially delete, or keep, the ques-
tionable suffix. After the Verification state (assuming there were no errors), Alice enters
Simulation state again.

We define r — S4 to be zero, when S4 € {Simulation, Verification}.
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e As mentioned above, R4 denotes the round in T4 that Alice simulates. If S4 = Simulation
then R4 is equal to the number of rounds in T'4.

e Let my, be the message that Alice sends in round r (of the error resilient protocol), and
let £4, denote its size. Let mp, be the message that Alice received from Bob in round r,
and let £ , denote its size. We define fax » = max{€4,,¢p,}. Note that if Bob’s message
was corrupted then /g, may be arbitrarily large. However, our (error-resilient) protocol

has the property that if Bob’s message was not corrupted then /5, < e‘z;r.

We define

la
g;r = min { g ) 2l max 7"}
,8 ’

and

{, = min {ZAB’T,maX {ﬂ*17 aémax,?"}} .

e Let wa, be ollog(r=Sa)] jf Sar €N, and let wa, be 0 otherwise. In other words, wa, is
the number of rounds that the party has been in Correction state, rounded to the closest
power of two.

o If wy =0 then let R} = Ry. Otherwise, let R} < R4 be maximal that divided w .
° Rf) = RS) — WA4.

e In the protocol, at each round r, Alice sends hashes to Bob if and only if 7 = 0 (mod d)
or {4, > d, in which case she sends five hashes, one hash corresponding to each of the
following strings:

(TalRal, TalRa + 1), TAlRY] Ta[RT], S4 )
We note that if R4 is equal to the number of rounds in T4, then Alice will not know the

partial transcript T4[R4 + 1]. In this case we define T4[R4 + 1] = T4[R].

Alice in round r. Upon receiving a message from Bob, parse the message as

(mB,Tflu H(TB,Tfl[RB,Tfl]% H(TB,rfl[RB,rfl + 1])’
H(Tp,1[Ry), ). H(T,1[R, ), H(Sps1)).

,r—1

We assume that in this ideal model, parsing is easy. When we implement this ideal hash function
in Section |5, we will make sure that indeed Alice will be able to parse correctly (assuming the
message was not corrupted). Denote the size of mp,_1 by ¢p,_1.

1. If Sa,—1 = Simulation then do the following:
(a) If a hash was sent by Bob (i.e., if p,_1 > d or d divides r — 1) then check that
H(SBJ_l) = Simulation and H(TA,T—l[RA,r—ID = H(TB,T—l[RB,r—ID-

(b) Check that the (partial) transcript (T'4,,—1[Rar—1], mAr—1, mp r—1) satisfies the (o, 5)-
smoothness condition.

(c) If one of these conditions does not hold then let

[ mA,’r g 06:71
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[ ] SA,T‘ =7r
i (TA,ra RA,?“) = (TA,r—h RA,r—l)-
(d) Else, set

© Ty = (Tar—1,MAr—1,MBr—1)
® Rar=Rap1+1

® My, = H(TA’T)

e Sa,=54,-1 = Simulation.

2. If S -1 = Verification then check if all the following conditions hold:

(a) |mpr_1| > 7L
(b) H(S4,-1) = H(Sp:r-1)
(C) H(TA,T—I[RA,T—l]) = H(TB,T—l[RB,r—l])-
If one of these conditions does not hold then let
& MAr = 06;_1
L4 SA,T =T
L4 (TA,T‘7 RA,T) - (TA,T‘717 RA,rfl)-

Else, do the following;:

(a) If number of rounds in T4 ,—; is greater than R4 ,—1 + 1, and
H(TA,rfl[RA,rfl + 1]) = H(TB,rfl[RB,rfl + 1])7

then let

& My, = Oer_*l

e Roar=Rap1+1

o (SarTay)=(Sar—1,Tar—1)-
(b) Else, if ma,—1 =mp,_1 = 1¢ for some ¢ > |Tar—1| — |Tar—1[Rar—1]|, then set
Tay =Tar—1[RA;r—1]
R4, be the number of rounds in T4,
ma,y =1(Ta,)
e 5S4, = Simulation.

(c) Else, if Ej_l > |Tar—1] — |Tar—1[Rar—1]| then let

e m = 1&*1
Agr =
b (TA,Ta RA,T‘: SA,r) = (TA,Tfla RA,rfla SA,rfl)-
(d) Else, let

Y mA — Oej—l
b (TA,ra RA,T; SA,T‘) = (TA,T—la RA,T—l; SA,T—1)~

3. Else, do the following;:
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0,1

Compute the values v?, v}, v? as follows:

If H(Sa,—1) # H(Sp,—1) then set v0 + 09 | + 1.
Else, if H(Tp,_1[R}
vl + 1.
=1
v |+ 1.
If r — Sa,—1 is not a power of 2E| then set
® My, = 0fr—1
o (Tar,Ras,Sar)=Tar—1,Rar-1,54,-1)
Else, if v0_; > 4(r — Sa,—_1) then let
o Sar=r
o ma, =01
e Set v =v! =02 =0.
Else, if v} > 1(r — Sa,_1) then let
e 5S4, = Verification
* Ryy = Rfaxl,)qul
® My, = 0fr—1
e Set v =v! =02 =0.
Else, if v2 > 1(r — Sa,_1) then let
e 5S4, = Verification
® Ray = Rg,)qul
o ma, =01
e Set v =v! =02 =0.
Else, set v} =02 = 0, and let
® My, = 0fr-1
o (0, Rar,SarTar) = (v)_1, Rar—1,Sa,-1,Tar1).

Vi) € {HTp o [RE), 1)) H(Tp, (R

(2)

B,r—1

Else, it H(Ta,1[RY)_,]) € {H(TB,T_l[Rg) 1), H(Tp 1 [R?

r—1

])} then set v} <

])} then set v? <

Send my ., and if 7 = 0(mod d) or |ma,| > d then append to m, also

Terminology.

(H(Tar[Roag]), H(Tar[Roap 1), H(Tar (RG], H(Ta s [RE))) H(Sa,))

4.2 Analysis
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Remark. Bob behaves identically to Alice, except in Steps [I] and when Bob computes
his next message corresponding to the underlying protocol II, he computes it by mp, =
II(Tg,y, ma,), whereas recall that Alice computed it by ma, = II(T4,).

In what follows, we introduce terminology that we use in the analysis.

We allow the adversary to create collisions in the ideal hash function, in which case we say
that the hash was corrupted. We say that a message is corrupted if the adversary corrupts
any bit of the message, or corrupts the associated hash. We define the budget of corrupting a

9Recall that we define r — Sa = 0if S4 € {Simulation, Verification}, and we consider 0 to be power of 2.



message m to be the maximum between the length of m and the length of the corrupted version
of m. Thus, even if the adversary corrupts a few bits of a long message of length n (or corrupts
the associated hash), then we count it as n corruptions. On the other hand, if the adversary
corrupted a single bit message by converting it into a long n-bit message, then we count it as n
corruptions.

We analyze the correctness of the (error-resilient) protocol assuming a bound on these mes-
sage corruptions.

Definition 8. We say that the corrupted messages have volume e if the sum of lengths of
corrupted messages (where each such length is the mazimum between the length of the original
message and the length of the corrupted version of it) is e.

Using this terminology we prove the following theorem.

Theorem 9. Let 11 = (A, B) be any (a, B)-smooth protocol, and let TU' = (S4,SB) be the
simulated protocol defined above. Let A be any adversary in I, who corrupts at most €’ messages
of total volume of at most e. Then, the protocol I, executed with the adversary A, denoted by
IT'y, satisfies the following.

1. CC(Il'y) > tmin, where tmin is a lower bound of the communication of any instance of II.
2. CC(IT'y) < CC(A,B) + 1837 e + 20dB~ e’
3. R(IT;) < R(A, B) + 906dlog 4 ¢’
4. The parties outputs transcripts of size at most CC(IIy) that agree with II on the first
CO(ITy) — 1867 te — 20d8™ ¢’ |
many bits.
5. S is a polynomial time oracle machine.

Remark 10. We will apply Theorem@ with an adversary A that corrupts at most ¢/ = O(min{¢€-
R(IT'y), §CC(II))}) messages of total volume at most e = O(e - CC(II'y)), where € < O(a - f3)

and € < m Thus,
CO(ILy) <
CCO(A,B) + 1837 e +20dp7 e <
CC(A, B) +0(fLe- CO(ITy)) + O (dﬁ‘ ‘oo A))
CC(A, BY(1 + O(a)),
and
R(IT) <
R(A, B) + 906d log ;e/ <
R(A, B) + O(dlog ;a R(IT,)) <
R(A, B)(1+ 0O()),
as desired.
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Moreover, we will apply this theorem with a protocol I1 which is padded by 183 'e+20d3 e’ =
O(a- CC(ITy)) zeros. Thus, Item[f] from Theorem[d implies correctness.

For ezample, one can set a = O(min{ /e, (¢')1/?}), and set B = O(a), d = 1, o/ =1,
to obtain an error resilient protocol in the ideal hash model with constant blowup in round

complexity and 14+ O(«) blowup in communication complezity.

We defer the proof of Theorem [9] to Appendix [B]

5 Hash Implementation with Shared Randomness

Recall that in Section 4] we presented an interactive coding scheme with the desired guarantees,
in the ideal hash model, where we assume that the number of hash collisions is bounded, and
where the budget for making a collision is proportional to the message length (where the message
length is the maximum between the length of the message that was sent and the corrupted
version of it). We denote this ideal protocol by II.

In this section, we show how to implement the ideal hash with a real hash function. Loosely
speaking, given a hash function h, we convert the protocol II to the protocol II" which is
identical to II, where the ideal hash function is replaced by h. In order to maintain the desired
efficiency and error-resilience guarantees, we need to ensure that, on the one hand, these hash
values are not too long; and on the other hand there are not too many hash collisions (i.e., that
these hashes form a good equality test). To ensure the latter condition holds, it is easy to see
that we cannot use a single (deterministic) hash function. Instead we use a family of randomized
hash functions.

We construct a function family H = {h;}, where each hash function h, is associated with
a (possibly long) seed z. In this section, we consider the shared randomness model, where the
parties are allowed to share a (possibly long) random string. In Section |§| we show how to
eliminate the need for shared randomness.

In this section we assume that the shared randomness is as long as we need. In particular,
we use a different hash function (i.e, a different seed) for each equality query. Since the length of
the protocol is adaptive and not a priori boundedIE7 the length of the common random string is
also not a priori bounded. We assume that there is a separate segment of the common random
string for each round r, and each such segment contains five hash seeds, since in II, in rounds
that a party sends an ideal hash, the party sends five ideal hashes.

We emphasize that the shared randomness (and in particular the seeds) are known to the
adversary. Therefore the adversary, given a seed x can try to skew the protocol and cause
the parties to send many messages whose hashes collide. To get around this, we construct a
hash family, where each h, is a randomized hash function. When a party sends a hash of a
value V', the party will choose randomness S and will send (S, h;(V,S)). On the one hand, the
randomness S needs to be short, since otherwise this will blowup the communication complexity
by too much. On the other hand, the adversary cannot predict S, and thus will not be able
to skew the messages of the parties towards ones which the hashes collide. We note that a
similar idea of using a randomized hash function was used by Haeupler [Hael4], for the sake of
improving the rate of his interactive coding scheme.

Before presenting our randomized hash family, we start with some preliminaries.

1011 Section @, we convert any such protocol in the unbounded shared randomness model into one that uses
only private randomness.
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5.1 Preliminaries

Chernoff bounds.

Lemma 11. For any N € N, and any N independent Bernoulli random variables X1, ..., Xn,
each with mean < -y, it holds that

N
Pr[z X; >2yN| < e 3N,
i=1

Definition 12. A distribution D over F} is d-bias if for any v € F§ \ {0"}, we have that

= 1
Py |0
1=

Lemma 13. [NN93] There exists an absolute constant C € N and an efficiently computable
function G : {0,1}* — {0,1}* such that for any size k and a uniformly random string S €
{0,1}9% | we have that G(S) € {0,1}2" is a 2-*-biased distribution of length 2.

<9d.

Lemma 14 (6.3 from [Haeld]). There exists a hash family F = {FL}ren, such that for every
L € N it holds that F, = {fs}zeqo,1321, and for every x € {0,1}2F, f, : {0,1}=F — {0,1}.
Moreover, for any k € N and for any vectors VlA, ...,VkA,VlB7 ...,VkB € {0,1}=L the following
holds:

1. For uniform x = (x1,...,2x) € ({0,1}2E)* it holds that for each i € [k], the probability
that fo,(ViY) = fo,(VB) is & whenever VA # VB, and 1 whenever VA = V.B. Moreover,
for each i € [k] these probabilities are independent.

2. For §-biased distribution = (x1,...,xx) € ({0,1}2F)%, it holds that the distribution

(1fx1(v1A>:fx1(le)’ el vag, (V,f))

is §-close to the case where x is uniform.

5.2 Owur Hash Function

We are now ready to construct our family of randomized hash functions. We first define the
randomized hash family H' = {h/}, which uses the hash family F from Lemma Recall
that the hash values of H’ should not be too long, since this will result in a large blowup in
communication complexity.

In our construction, as opposed to previous constructions [BK12, [BKN14, [Hae14], the length
of each hash value depends not only on the length of the message it is appended to, but it also
depends on the length of the entire communication up until the point that the hash was sent.
We note that if we were only concerned with the communication blowup and were not concerned
with the round blowup, then we could have the length of the hash value depend only on the
length of the message it is sent with (in similar spirit to prior work). However, as we argue
below, in order to ensure a constant blowup in round complexity, we must allow the length
of the hash value to also depend on the length of the entire history. This is illustrated in the
following example: Suppose that a short message is sent, and prior to this short message were a
few very long messages (in a way that satisfies the smoothness criterion). By corrupting a few
long messages, the adversary can cause a hash collision in many short messages (with hash),
which will result with a large blowup to the round complexity.
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Hence, we allow the length of the hash value, not only to depend on the length of the message
it is appended to, but also to depend on the length of the communication history. Note that
the parties do not necessarily agree on the history length even if no errors occur in the current
round, since the adversary may insert and delete bits throughout the protocol, in which case
they will fail to parse the message and hash pair correctly.

Thus, we define the hash family H = {h,}, where the output of h, includes the output
of h/,, the randomness used by h/, (which is needed in order check for equality), and also the
length of the hash value. Namely, we define

ha(V) = (S, hy (V5 S),1-0%),

where S is the (private) randomness used by h’, and w is the length of H.(V;S).

We next define h!. As we mentioned, the length of the hash values (denoted by w) may
differ from one round to the next, as they depend on the communication complexity so far, and
on the length of the current message sent. We will specify how w is defined below. But we first,
define A/, assuming w is known.

The seed z is random in ({0, 1}2L )L, where we assume that L is greater than the input V'
(which is bounded by the communication complexity of the protocol up until the point where
the hash is sent). For any y = (y1,...,y1) € ({0, I}QL)L and for any k£ < L, let

Fy V) = (fa(V), s fp (V).

where F = {f,} is the hash family from Lemma The randomness for b, is denoted by S
and is of size 2C' - w. Let h/, be the randomized hash function, that takes as input a variable V,
randomness S, and outputs

he (V3 S) = fg(s) (Z),

where

P (f2°(V),0) if [V|>2v
(v if |V] < 2w

In what follows we show how the length w of the hash values are chosen. To this end we
need to define the following variables with respect to a certain round r.

e Let Q4 be the set of all rounds r in which Alice send a hash to Bob.

Note that these are exactly the set of rounds r such that r divides d or Alice send a
message of length > d.

We define QP analogously.

e Let a? be the number of messages that Alice sent with a hash until (and including)
round r. Namely,

ad = |{r' <r:r'eQ}
We define a analogously.

e Let t2 be all the communication received by Alice until (and including) round r. We
define tZ analogously.

e For every r, if Alice sends the message in round r then define

A_4A
T/
u, = max log

reQAnr—1 . a A°

T./

r
A _
T a

The definition is analogous in the case that Bob sends the message in round r.
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e For every round r, let ¢, denote the length of the message to be sent in round r, and let
1
wy = [aly] + [up] +9 [log 7—‘ +6,

where «,y > 0 are parameters of the scheme, where v < a (it will be instructive to think
of v = ¢, where € is the corruption budget of the adversary, and of « as the communication
blowup in the error-resilient protocol).

5.3 Analysis

We denote by E the set of all messages m 4, or mp, that were not corrupted but had a hash
associated with them that formed a hash collision. Recall that for any set of messages T', we
denote by |T'| the volume of T (i.e., the number of bits in T"), and we denote by |T|" the number
of messages in 7.

Lemma 15. Fiz e < 0.0005. The protocol 1™ defined in Section satisfies the following: If
I consists of < t bits and < r rounds, then for any adversary that corrupts messages with
total volume at most et, we get that
NS s
1. With probability > 1 —10-e Blog 5 (over the common and private randomness),

|E| < 207t.

2. With probability > 1 — 10e~ 57" (over the common and private randomness),

|E|" < 70yr.
The proof of this Lemma is deferred to Appendix

5.4 Communication Bound

In this section we will bound the blowup of the communication of II*, defined in Section
To this end, fix any adversary A for the protocol II*, that corrupts at most ¢’ messages of total
volume at most e. We define a corresponding adversary D for the protocol I, that corrupts at
most €’ message of total volume at most e, as follows:

The adversary D sends the exact same messages as A does, excluding the hash values. Recall
that for each message in Hﬁ, the part that belongs to the hash value is well-defined by the suffix
of the message 1 - 0%, and hence the adversary D is well defined.

Lemma 16.

1
CC(I1H) < (14 50Ca) CC(Ip) + e + 600C log S k

where C' is the universal constant from Lemma[I3, and k is the number of rounds with hash in
IIp.

The proof of this lemma is deferred to Appendix

6 Hash Implementation with Private Randomness

In this section we show how to implement the ideal hashes in protocol 11, defined in Section
without resorting to shared randomness, but rather using only private randomness. To this end,
we will slightly modify the protocol II, into a new protocol IT'.
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High-level overview of II'. Lets first recall the approach used in previous works [BK12|
Hael4]. In these works, the long shared randomness is replaced with d-biased randomness,
where § = 27 and t is a bound on the communication complexity. Such d-biased randomness
can be generated using only O(at) random bits. Hence, in previous works, these O(at) bits of
randomness are sent in advance (using an error correcting code). If we indeed had a bound ¢
on the communication complexity, then this idea would work, as explained below.

Recall that the randomness is used for equality testing. From Lemma we know that
for any oblivious adversary (i.e., one that is independent of the randomness), the fraction of
collisions in the case where the seed is random is §-close to the fraction of collisions in the case
where the seed is d-biased. Denoting by N the number of possible oblivious adversaries, and by
taking a union bound over all possible oblivious adversaries, we conclude that the probability
that there exists an oblivious adversary that causes “too many” hash collisions in the case where
the seed is d-based is bounded by the same probability where the seed is truly random plus an
additive term of §N. We note that

N < 2H(5)t .48 — 2O(elog %t)’

and thus
SN = 9ot 20(510g%t) _ 2—Q(o¢t)'

Therefore, the probability that there exists an oblivious adversary that causes “too many” hash
collisions is at most 2-("), Note that we can view any (non-oblivious) adversary as one that
chooses an oblivious adversary as a function of the public randomness, and runs this oblivious
adversary. Therefore, we conclude that for any (non-oblivious) adversary the probability that
there are “too many” hash collisions is bounded by 2-¢(e%)

However, in our setting, we do not have an a priori bound on the communication complexity.
In particular, if we replace the CRS with d-biased randomness, where § = 27! for some ¢, and
if the adversary has a corruption budget of more than O(at) bits (i.e., the communication
complexity is larger than %t), then our protocol is no longer safe. We overcome this problem
by sending more randomness as the communication complexity increases.

More specifically, the parties start by assuming that the communication complexity is some
small tyin, where ty;, is a lower bound on the communication complexity. So, the protocol
starts when one of the paries, say Alice, chooses a random string s € {0,1}*minand sends it
to Bob[]

Once t1 > O‘t?i“ bits are sent in the protocol, the safety of this randomness could be com-
promised, since the adversary has enough budget to compromise atyi, bits. Hence, each party,
before sending its message, will check whether sending this message will cause the communi-
cation complexity to exceed % If so, then instead of sending the message, the party will
send new randomness. This time, the party will choose at random ss of size at; — |s1| and send
(s1,82). If this randomness is inconsistent with the first randomness sent (s1) then the party
receiving the randomness aborts.

Once the communication complexity is to > %1, again the safety of the previous randomness
could have been compromised, and hence as above, if a party is about to send a message that
will cause the communication complexity to exceed %tl, then instead of sending the message,
the party will choose at random s3 such that |si| + |s2| 4 |s3] = ate, and will send (s1, s2, s3),
etc. If at any point the randomness received is inconsistent with the previous random string
then the party aborts. We refer to these special messages that transmit randomness by system

messages.

1 As before, we ignore the error-correcting code, since we consider only message adversaries, that corrupt
messages as opposed to bits, and the budget for corrupting a message is the length of the message (or the length
of the corrupted message, whichever is longer).
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There is a slight problem with this idea: How does Bob know which message sent by Alice
corresponds to a message in the initial protocol II, and which is a system message? We fix this
problem by appending 1’s to system messages, and appending 0’s to messages corresponding
to II. However, recall, that we do not want to blowup the communication complexity. Hence
we only append these bits to long messages. This is enough, since system messages are always
long.

Note that according to our protocol the parties first receive randomness s1, then they receive
new randomness (s1,$2), and so on. We ensure that if at any point, a system message was
decoded incorrectly, then eventually the paries will abort, and “catch” the adversary with
injecting too many errors. This guarantee simplifies the analysis: FEither at some point a
system message was decoded incorrectly, in which case the adversary is “caught” with injecting
too many errors, or all the parties always agree on the randomness, in which case correctness
follows from the correctness of the underlying protocol in the shared randomness model.

To ensure that indeed the parties will always notice when a system message was corrupted,
we add to the system message the rounds rq,...,7; in which system messages were sent. This
is done to circumvent the case where the message (s1,s2) was corrupted and converted into a
protocol message, and a few rounds later a protocol message was corrupted and converted into
the same system message (s1,s2). If we do not include the round number then the parties may
never notice that there was a point in the protocol where they did not agree on the shared
randomness. In order to avoid dealing with such cases, we simply include the round numbers
of the system messages.

Finally, we notice that even though we ensure that the parties always agree on the shared
randomness (assuming the adversary does not inject too many errors), there is still a subtle issue.
Note that the first random string s; is d-biased for § = 27 *min, As we saw in previous work,
this suffices if the number of oblivious adversaries, restricted to the first #p;,-bits, is bounded
by 2€(@tmin) - However, in our setting, since the total communication may be significantly larger
than tyin, the number of such oblivious adversaries can be as large as 2bmin_ in which case the
number of rounds with hash collisions can be large. To overcome this problem, we ensure that
in the first ¢, bits of communication, the adversary cannot inject too many errors (without
being “caught”). This is done by re-sending the first ¢,,;, bits after tyi,/c bits of the protocol
were transmitted, and the parties abort if these ¢, bits are €/a-far from the first ¢y, bits of
the transcript. More precisely, to each system message sent after ¢ bits of the protocol were
communicated, we append the first at bits of the transcript.

In what follows we present our protocol II'. For the sake of simplicity, after each system
message is sent, the party receiving a system message replies with an “echo” message, by simply
repeating the system message. The purpose of this “echo” message is simply to allow the other
party to send his protocol message (which he didn’t have the budget to send in the previous
round).

The protocol II'. Let b > 2, and let o < ﬁ, where C is the constant defined in Lemma
Fix any d € N and v > 0 such that

1 log L
fy<min{d,2_b} and d > gw. (4)
a

For convenience the reader can think of b = 2 and v = é.
Let IT be the protocol, in the ideal hash model, defined in Section[d] instantiated with o and
d as above, and with any o/ > 0. Let ty;, be a lower bound on the communication complexity
of II, where
tmin > max{a~2,250Ca logd}, (5)
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and let
W = Oétmin.

Let ‘H be the hash family defined in Section The protocol II' makes oracle access to the
protocol IT* (defined in Section .

In protocol II’, each party maintains a transcript 7" initialized to @), an integer % initialized
to 0, k strings si, ..., s, k partial transcripts Pi,..., P, and k rounds 7y, ...,r; that will be
determined during the protocol. Intuitively, T" is the transcript corresponding to Protocol I,
s1,...,SE are k seeds that are used to generate the hash function implementing the ideal hash,
and 71, ..., 7y, correspond to rounds in II" where the common randomness changes. Similarly
to II (and I17!), in II' we interpret the (partial) transcripts as strings@ .

In IT', if a party aborts, it always waits until at least ¢, bits are sent before aborting
the protocol, so as to fulfill the requirement that the communication complexity of II' is at
least tmin.

In the first round of IT" Alice does the following:

1. Choose s; €z {0,1}W, and let k =1, 7, =0, and Py = ().

2. Send (s1, P1,r1,1).

We next describe the protocol from Alice’s point of view, given her private state
(T, Ky S1yeeySkyT1ye- s Ty P1yo oy Pr).

Bob’s view is symmetric (by switching between A and B). Upon receiving a message mpg, Alice
does the following

1. If in the previous round Alice computed her message in step of the protocol (or if
the previous round was the first round of the protocol) then check that mp is an echo
of (i.e., equal to) the message sent by Alice in the previous round. If not then halt, and
otherwise goto Step

2. Otherwise, denote ¢ = |mp|.

3. If £ > b*W and the least significant bit of mp is 1, then do the following:
(a) If there exists s, P,r € {0, 1}ka, where r is a binary representation of |T'|’, such that
(81, ceeey Sky S, Pl, ceeey Pk, P, T1yeees Ty Ty 1) =mpg,

and such that P can be obtained from a prefix of T' by corrupting messages of volume
bd|1];|gd’ then define si41 = s, define rg11 = r, Pyy1 = P, update k < k+ 1,
and send (an echo message) mp.

(b) Else, abort the protocol.

at most

4. Else, do the following;:

(a) If £ > bFWW then let m/y be the message mp when the least significant bit of mp is
truncated. Otherwise, let m’y = mp.

(b) Update T' < T'U {m/g}

12This is done by standard encoding, where after each bit of the transcript we add a bit that represents whether
the message ended or not. Thus, a transcript of length ¢ can be described by a string of length 2¢.
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(c) Define my = II(T), using © = (s1,...,8k,71,...,7) as the shared randomness,
where the exact function z is defined later (after Lemma [54)). If there is no ma to
send then abort.

(d) If [T Umy| < 4%%/& then do the following:

i. Update T <~ T U{ma}.
ii. Let £ = |ma].
iii. If £ < bW then send m 4, and otherwise send (ma, 0).
(e) Else,

i. Let sgi1, Pry1,7k+1 € {0, 1}ka such that siy; is a uniformly chosen random
string, Py, consists of the first b*IW bits of T' (where T is viewed as string) and
Tk+1 is a binary representation of |T'|'['¥]

ii. Send

(S1y« -y SkySka1s Ply oy Py Poa1, 1y« ooy Thy Tkt 1, 1).

iii. k< k+1.

Theorem 17. Fiz any adversary A for II' that corrupts € R(IT'y) of the messages of total
volume at most eCC(Il'y), for e < tdlogd: Where II'y denotes the protocol I' executed with
the adversary A. Then there exists an adversary D for the protocol 11, that corrupts at most

€ R(Ilp)+2€ log, CC(Ilp) messages of total volume at most QECC(HD)E such that the following
holds:

e e

6.

:4 always sends at least tyi, bits.
CC(IT’y) < (1 +2600C ) CC(Ilp).
R(H;‘) < R(IIp) 4 2log, CC(Ip).

When I’y ends, both Alice and Bob (separately) can efficiently compute their view of the
transcript of llp.

The adversary D chooses the hash collisions in a probabilistic manner such that for every
t and every r, with probability > 1 — 20 - 2_?%dt, the volume of hash collisions in the first t

8
bits of llp is at most 35vt, and with probability > 1 — 80r - 27%T, the number of rounds
with hash collisions in the first r rounds of llp is at most 100yr.

Il is efficiently computable if I is efficiently computable.

The proof of Theorem [17]is deferred to Appendix

7 Putting it all Together

In this section, we prove our main theorem (Theorem , using the theorems from previous
sections. We restate our main theorem for the sake of convenience.

"*The binary representation of |T'|’ has length < b*W since "W > 1 and so log |T|’ < log kaW < bRW.
4115 denotes the protocol II executed with the adversary D.
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Theorem 18. There exists a universal constant ag > 0 such that for any blowup parameters
a < ag and o < 1, there exist parameters € = <a3+$), ¢ = Qaa’), and § = aPW/),
and there ezists a probabilistic oracle machine S, such that for any protocol 11 = (A, B), in
which the parties always transmit at least tymin bits (even in the presence of error), and for any
adversary A that corrupts at most e-fraction of the bits of the simulated protocol II' = (S4, SB),

the protocol I’y (which is the protocol II' executed with the adversary A), satisfies the following
properties.

1. CC(IT'y) > tmin.
2. There eists tg = (1 4+ O(a))CC(A, B) such that for all t > to
Pr[CC(IT,) > ] <2-27°%

where the probability over the private randomness of S.

3. There exists g = (1+ O (')) R(A,B) + O < L log CC(A, B) + 1) such that for any

log %

2

r > 1o, if at most € -fraction of the messages are a*-corrupted, then

Pr [R(Il) > 7] <2.27°",
where the probability over the private randomness of S.
4. Foranyt >0,
Pr [(Output(Ily) # Trans(II)) A (CC(IIy) >t)] <2- 270t
where the probability over the private randomness of S.

5. S is a probabilistic polynomial time oracle machine, and hence the computational efficiency
of S4 and SB is comparable to that of A and B, respectively.

In the proof of this theorem, we use an error correcting code from a recent work of Guruswami

and Li [GLI6].

Theorem 19. [GL16|] For every o > 0 there is an explicit encoding scheme Enc, Dec : {0,1}* —
{0, 1}* with the following properties:

1. For any m € {0,1}* we have |Enc(m)| = (1 + O(a))|m].

2. For anym € {0,1}* and any y that can be obtained from Enc(m) by o®-|Enc(m)| insertions
and deletions, Dec(y) = m.

3. Enc and Dec are computable by a polynomial time Turing machine.
In the proof of Theorem [18 we use the following padding claim.

Claim 20. Let o, 3 < 0.1, and Lo > a~1. Then any (o, 23)-smooth protocol I1 can be efficiently
converted into an («, B8)-smooth protocol II' such that

e II can be computed from the first (1 — 2a) fraction of bits of II'.
e CC(IT) 4+ Ly < CC(IT') < (1 + 13a)CC(IT) + 3Ly.

e R(IT') < R(II) + log% CC(II) + log% Lo+1.

31



The proof of this claim is deferred to Section [E.I}

Proof of Theorem[1§ Fix any o < ap and o/ < 1. Let C be the constant from Lemma
(see Section . Let Enc, Dec be the encoding scheme from Theorem [19 with the parameter a.
Recall that for all m, |[Enc(m)| = (14 O(«))|m|. Let a1 be the maximal constant that satisfies,

Vm : |Enc(m)| < 2|m]. (6)
We define g = min{a, 5095 }-
Given «, o’ define,
ai’ ai’ 2 log £
= 4= b= d=—2 Ly=250Ca 2logd
P 320l0g L "1 T 20 07T o1 a @ s

a3 a3/3 , aa/?)
— 3 - = — d 5 = 9 .
c=mm { 2bdlogd’ 320 } T g I 0=

«

These parameters were chosen to satisfy the following claim.

Claim 21. Our parameters satisfy the followingﬁ
1. €= Q(a3+§) = Q(ao/g) and 6 = oP1/a)
2. a<iand6§%,
3. a,f<0.1and Lo > o~
4o a<001 , /<1, d>3 and Bgmin{ai,ﬁ}.

log %
o

5. v < min {é, 2_b} ,d> , and Lo > max{a~2,250Ca ! logd}.

2e «a
0. a? = bdlogd"

7. 18871(35y + 25) + 20dB 1 (357 + 4e) < a.

8. (100y + ¢) - 906dlog 4 < o' and 1812dlog e’ < .~

log% ’

9. 6§ <

= m, and for all x > 0 we have that

2.279% > min {1, 120d o310 + 717 2—37%} .
gl

The protocol II’ is defined as follows:

1. Convert IT into a («,2/3)-smooth protocol gmeoth by applying Lemma |§| (Section [3)) to
I1, with respect to parameters (a,23). These parameters satisfy the requirements in
Lemma [6] by Item

2. Convert Ilgmooth into Ilp,q using Claim (above) with parameters «, 3, Lyg. These pa-
rameters satisfy the requirements in Claim [20| by Item

5Each of the following items will later be used to apply a different theorem from previous sections.
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3. Convert Ilp,q to the error-resilient protocol Iligeal, which is error-resilient in the ideal
hash model, by applying the protocol from Section [4] to II,5q, with parameters o, o/, 3, d.
Jumping ahead, note that by Item these parameters satisfy Equation which is
required in order to apply Theorem [0

4. Convert Iljgeas to the protocol Il,,nq, which is obtained by instantiating the ideal hash
using private randomness, obtained by applying the protocol described in Section [6] to
ITigeal. Jumping ahead, note that by Items [5| and @ imply that Equations and are
satisfied and the requirements of Theorem [I7] are satisfied with respect to any adversary .A
that corrupts messages of total volume < %CC((Hrand) A)-

5. Convert Il ng to I’ = (SA, SB), where IT’ is the same as Il,3nq, except that each message
is sent encoded with the error correcting code from Theorem [19| with parameter «.

Lemma 22. The protocol II' = (S4, SP) satisfies the conditions of Theorem .
The proof of Lemma [22] is deferred to Appendix
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A Smooth Protocols

In this section we prove Lemma[6] Namely, we show how to convert any protocol into a smooth
protocol. Recall the definition of a smooth protocol.

Definition 23. A protocol is («, 3)-smooth if for every round r the following holds:

I
o - max{| My, [Mr |, |Mr—s[} < [My] < 5 - min{| My ], [My—a], | Mr—s|} (7)

Recall Lemma [6l
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Lemma |§|. For any a < % and B < g, the following holds: Any protocol I1 can be efficiently
converted into an (o, 3)-smooth protocol S such that

1. CC(S™ < ce() - (1 + 50a).
2. R(S™) < R(IT) - (1 + 8logys ) + 4log 1 -CC(II) + 4

3. If 11 is computationally efficient then so is S'.

Proof of Lemma [6, We denote the messages corresponding to the underlying protocol IT
by mi, ma, ..., where m; corresponds to the t'th round message of II. We denote the messages
corresponding to the smooth protocol S by M, Ms, ..., where M, corresponds to the r’th
round message of S™. In what follows, we describe the protocol from the side of Alice in the
(r 4+ 1)* round of the protocol S, after receiving a message M, from Bob.

Suppose that, before receiving this message, Alice has recovered all the messages correspond-
ing to the first ¢ — 1 rounds of II (and possibly a prefix of the ¢’th round message). We denote
by T the (partial) transcript that Alice holds. Formally, 7" is defined inductively starting with
T = (), as follows.

1. Let
dr = |- max {[My—1|, [My—a], | M;_3]}]

and let 1
]{;; = {ﬁ ~min{|M,_1|, | M,—_a|, |Mr3|}J .

2. If |M,| = k., then parse M, = mj -0 - 1P, update T «+ (T, m}), and send back the
message M, = 0P.

A message of length k! sent by Bob, is always interpreted as Bob not being done sending
his message due to budget constraints. In this case, think of m; as being part of my,
the #’th round message of II (if it is the first part of m; then it is a prefix, and if it
not the first part, then it is the prefix of the remaining part of m;). The length of the
acknowledgment p is dictated by Bob, based on the length of the actual message that he
is trying to send.

Following such a message (of budget request), there will be three messages of the form
M1 = M,19 =M, 3=0.

3. Otherwise, |M,| < k.. We distinguish between three cases:

(a) Case 1: M, = 0P and in the previous round, Alice sent a message of length k/_; of
the form M,_1 =m/-0-1P. In this case send M, = OP.
This corresponds to the case that in the previous round Alice requested for more
budget, since she did not have enough budget to finish sending her message m;_1,
Hence, Bob replied to her request with sending a “budget message” 0P. In this case
Alice and Bob each send another budget message, to ensure that in the next time
Alice speaks she has the budget she requested.

(b) Case 2: M, = M,_; = 0P and M, _o, which was sent by Bob, is a message of length
kl._,. In this case send M, 1 = 0P.
This corresponds to the case that in round r — 2 Bob requested for more budget,
since he did have enough budget to finish sending his message m;. As mentioned
above, after such a request, three “budget messages” of form 0P are sent.
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(c) Case 3: M, = M,_; = M,_9 = 0P and in round r — 3 Alice sent a message of the
form M,_3 =m/-0-1P of length k/_5. As before, this corresponds to the case that
Alice did not have enough budget to finish sending her message m;_1. Namely, she
has been wanting to send m;_1 but so far due to budget constraints she has only sent
my_, which is a prefix of m;_;. However, in this case the three previous messages

where of lengths p, and thus now Alice has a budget of L%J

In this case, let m}_; be the remaining (suffix) of M;_i; i.e.,
mi—1 = (mgfhm:eq)‘

In what follows, we denote my_; by m.

(d) Case 4: Otherwise, parse M, = my - 0%. In this case, update T < (T, m;), let
my41 be the next message that Alice is supposed to send according to the updated
transcript 7', and denote my41 by m.

Note that this corresponds to the case that Alice had enough budget to finish sending

my—_1 in the previous round, and Bob has enough budget to send all of m; in the r’th
round of II'.

4. Compute
dr+1 = LOZ : max{|MT\, |MT*1|7 |MT*2’}J )

and )
;Hz{ﬁ«mwmmmunpw]

Intuitively, Alice would like to send m with a padding of d,1 zeros, in order to ensure that
the condition |M,41| > o - max{|M,|, |M,_1|, |M,_2|} is satisfied. However, we need to
make sure that we do not violate the condition that | M, ;| < %'min{]MT\, |My_1], | My—2|}.
If this condition is violated then we do not send the (padded) message all at once, but
rather we do this in phases, as described below.

5. If |m| 4+ dr41 < k!, then send M, = m - 0%+, update T = (T,m), and halt.

6. Else, send M, 1 =m/-0- 17, where p = min{k/,, — 2, [2a|m|]} and m' is the prefix of m
of length k], —p — 1. Update T' = (T, m’), and halt.

For Step |§| to be well defined, we must prove the following claim (whose proof is deferred
to the sequel).

Claim 24. For every r € N, if |m| + d,y1 > k.| then |m| > k., —p — 1, where
p = min{kl,, — 2, [2alm]]}.

This message M,11 will be interpreted by Bob as saying that Alice would like to send
a long message but does not have the budget to do so. m’ will be interpreted as a
prefix of Alice’s message, and 1P indicates that Alice wants the next three messages to be
Myyo = Myy3 = M,14 = 0P, which gives her the budget she needs to continue to send
her message.

Correctness. We prove by induction on r that at the beginning of the rt" round of S™, the
transcripts of both Alice and Bob, denoted by T4 and Tp respectively, are always a prefix of
the original transcript (where the last message in T4 and T may be a prefix of a message sent
inT).
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For the base case, note that for r = 1, it holds that T4y = Ts = (0. For the induction step,
suppose the hypothesis is true for every round < r, and we will prove that the hypothesis is
true for round r. We prove the correctness for T4, a similar argument can be used to prove the
correctness of Tg.

We first note that Alice can distinguish between whether the conditions of Step
or hold. This is the case, since in Step [2 the condition is that |M,| = k., whereas in
Steps Step , and one of the conditions is that |M,| < k., and note that Alice can
compute k. on her own. In addition, if |[M,| < k., she can distinguish between whether the

conditions of Step or [3d| are satisfied, since she can compute k._,, kI._, and k/._5 on
her own. Therefore, she knows whether she should answer with a “budget message”.

If Alice adds the message m; to T4 in Step then she received M, = my - 0% of length
less than k. from Bob, where |m;| > 1. Note that Alice can compute d, on her own, and hence
can compute my; from M, correctly.

If Alice adds the message mj to T4 in Step [2| then she received M, = mj -0 - 17 of length
exactly k] from Bob. In this case, Alice can decode M, and find m; by simply deleting from
M, the suffix of the form 0 - 17. She interprets m; as a prefix of the message my, or a prefix of
the remaining m; (note that a prefix of m; could have already been sent in previous rounds).

By our induction hypothesis, T4 is a correct prefix of the original transcript. Hence, after
Alice updates T4 = (T'a,my) or T4 = (T'a,m}), T'a remains a prefix of the transcript of II.

We note that in Steps and [3d Alice does not update T'. Indeed in these cases she
shouldn’t update T', since thesse correspond to the cases that in the previous round she received
a “budget message”.

We next prove that the (a, ) smoothness condition holds. The proof will be by induction
on the number of rounds. However, we first prove the following claim, which will be used in the
remaining of the proof.

Claim 25. Fiz any r € N, and suppose the («, 3) smoothness condition holds for all rounds

<7r. Then
d,
e H
o

Proof. Fix any r € N. Recall that by definition,
.
k= | - min{M, L, M ol 101

and
dr = |o- max {|M; 1|, [My—al, |[M,—3]}] .

Let ¢ € {1,2,3} be such that
|My—c| = min{| M, 1|, [My—2|, [M;—3|}.

The (e, B)-smoothness of S™ up until round 7, together with the assumption that 3 < a implies
that
‘Mr—c| >3- max{‘Mr—l‘a |M’I‘—2’7 ’MT—3‘}'

Therefore,

r

M,—. dr
K = V‘JJ > max{|M,_1|, |M,_a|, | M,—_3|} > _— {J 7

as desired.
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The following corollary follows immediately from Claim [25] together with the observation
that if dy41 = 0 then k., > [%J > 2.

Corollary 26. Fiz any r € N, and suppose the (a, 3) smoothness condition holds for all rounds
<7r. Then
k.| > |dy| + 2

Smoothness. We now prove that the protocol S™ is («, 3)-smooth. The proof is by induction
on r. The base case is trivial. For the induction step, we first prove a-smoothness. Specifically,
we prove that

My | > dy = |- max{|M, ], |My—a], [ My o]}

We distinguish between three cases:
1. The message M, was sent in Step |5l Recall that in this case, |M,| > d,, as desired.
2. The message M, was sent in Step @ Recall that in this case, |M,| = k| > d,, as desired.

3. The message M, was sent in Step or Recall that in these cases
| M| = p = min{k,_, — 2, [2a|m][]},

for some ¢ € {1,2,3}, and where m is the message that Bob or Alice were trying to send
in round r — ¢, but did not have enough budget to do so. In this case |M,_.| = k._.. We
next prove the following claim

Claim 27. d, = |a - k,_.]|.

Proof. We distinguish between three cases:

Case 1: ¢ =1. In this case,

1 .
Myl = Koy = |5 i, Ml 01,

Note that in this case in order to prove Claim it suffices to prove that
|Mr—2|’ |M7"—3| < kq/ﬂ—l‘
We start by proving that |M,_s| < k/._;. To this end, note that by our induction hypoth-

esis,

1 .
My <Ky = {5 ming [ Mg, [ My 4. rMM\}J |

Note that if |M,_o| > min{|M,_s|,|M,_4|} then indeed k/_; > |M,_2|. On the other
hand, if |M,_s| < min{|M,_s|,|M,_4|} then & _, = L% : |MT_2|J > |M,_s|. Thus, we
conclude that |M,_o| < k/_;, as desired.

We next argue that |M,_3| < k/_;. To this end, by our induction hypothesis,

1 .
Mysl < Koy = |5 - min{al 1Mol 0ol
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If min{|M,_a|, |M,_3|} > |M,_4| then |M,_3| < kl._, as desired. On the other hand, if
min{|M,_a|, |M,_3|} < |M,_4| then

1 . 1 )
;qz[5mmmM@mmaauﬁnymmwmqu_w—L

and hence
min{[M, _o|,|M, s} < 8- (k._; +1).

Therefore, either |M,_3| < 8- (kl._; + 1) < kl._y, as desired, or |M,_a| < - (kl._; + 1),
which in turn implies that

B (ki1 +1) > [Myog| = dry = | max{| M|, [My—a|, [Mr 5[} = [~ |M5]],

which in turn implies that

g

153 1
a'k;—1+a+&§k;—1

Mysl < — (8- (Ko +1) +1) =

as desired, where the latter follows from the fact that k. ; < % together with the fact
that 8 < &.
Case 3: ¢=3. In this case, by definition, |M,_3| = |M,_1| = p < kl._5, and hence

dy = o max{|My |, [ M|, [My—s|}] = |- k]3],

as desired.

Case 2: ¢ =2. In this case, by definition, |M,_1| = p < k/._,. Thus, to prove Claim
it suffices to prove that |M,_s| < k/_,.

To this end, note that by the induction hypothesis, M, _3 satisfies the («, 5)-smoothness
requirement, and hence

.
Mycal < Ky = | 5 min{|0 -l ¥ M o).
Moreover, recall that by definition,
/ L.
r—2 = B ~min{|M,—3|, [My—al, [Mr—s]} | -

Thus, if |M,_3| > min{|M,_4|, |M,_5|} then indeed |M,_3| < k!._,. On the other hand, if
|M,_3] < min{|M,_4|,|M,_5|} then k,_, = L% : \Mr_g\J > |M,_3|, as desired.

Therefore, we conclude that |M,_3| < k! _,, and hence
dr = |oc- max{|M, 1|, | My, [Myr—3]}| = |- max{p, k. »}] = o k]_],

as desired. ]
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Armed with Claim it is now easy to see that k._, — 2 > d, since according to our
assumptions, a < % and hence

1
3k, 3 H
Koo—dy =K — o k] > > L o
4 4
where the latter follows from our assumption that 8 < %.
Thus, it remains to argue that
[2alm|] > dr = o k],
which in turn implies that it suffices to argue that

2lm| = k.

To this end, note that in this case

|m‘ +dr_c > K,

and hence
2lm| =
2(k;~—c - dr—c) -
ket (Ko — 2dr—c) >
ko + (k. — 2a(k._.+1)) =
k_.+(1—-20)k._.—2a>
Koo,

as desired, where the third equation follows from Claim [25 (together with induction hy-
pothesis), and the last equation follows from our assumption that o < % and 8 < %.

We next prove S-smoothness. As above, we distinguish between three cases:
1. The message M, was sent in Step |5} Recall that in this case, |M,| < k., as desired.
2. The message M, was sent in Step @ Recall that in this case, |[M,| = k., as desired.

T

3. The message M, was sent in Step [2] or Ba] or BBl Recall that in this case there exists
c € {1,2,3} such that

M| = p = min{k,_, — 2, [2afm[]} < K._,.

Thus, in order to finish the proof of S-smoothness, it remains to prove the following claim.

Claim 28. k._, <k

Proof. We distinguish between three cases.
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Case 1: ¢=1. In this case, |M,_;| = kl._;. This, together with our induction hypoth-
esis, implies that for every i € {2,3,4},

1 . 1
Myl = Kooy = | {10 ol 104l (3} | < 5100
Thus, for every i € {2,3,4},

‘Mrfi| > 5 ’ k;—l-
Hence,
1

k; = \‘; . min{‘M',«_1|,Mr—2|7 ’MT—3’}J > \‘5

5. kJ K,

as desired.

Case 2: ¢ =2. In this case, |M,_a| = kl._, and |M,_1| = p < k|._,. Moreover, in this

case,
1 . 1
My = K, = b win{|M,_s], | My, |Mr_5|}J < 1|0,
and hence
|Mr73‘ >p- k;—Q-
Thus,

1 . 1 .
K = b} min{|M, 1|, M, s, \Mr_sr}J > {5 min{p, K._y, 3 - k;_Q}J |

Therefore, in this case, in order to prove that k.. > k/__ it suffices to prove that

m > K. (8)

Recall that
p =min{k,_. — 2, [2a|m|]}.

If p=k/._. — 2 then Equation ({8)) clearly holds since in this case

p k;‘—c —2 /

= =|— k._..

EE s
If p = [2a|m|] then

V)J _ U?Oélmw > U?a-(ké_c—drc)w > {[204-(1—@)%;_0— HJ ..

B 3 B8 3 = e

as desired.

Case 3: ¢ =3. In this case, |[M,_3| = k|._5 and |M,_2| = |M,_1| = p. Thus,

1 1
k;’ = \‘,3 ’ min{|Mr71|a Mr72|7 ‘Mr3|}J = \‘ﬁ : min{p, k;—c}J > k;—cv
as desired, where the latter follows from Equation . O

Now that we proved that the protocol S™ is (a, 3)-smooth, we next use Claim [25[in order
to prove Claim
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Proof of Claim Fix any r € N such that |m|+ dy41 > k;;. We argue that in this
case, |m| > k., —p — 1, where p = min{k,., — 2, [2a|m|]}. Note that it suffices to prove that
p > dyy1. We distinguish between two cases:

Case 1: [2a|m|] > k/,; — 2. In this case, p = k;,; — 2 > dy11, where the latter inequality
follows from Corollary

Case 2: [2a|m|] <k, ; —2. In this case

p=[2alm|] > [2a- (kL1 — dri1)] > [204' (Vt;lJ - dr+1ﬂ > dry1,

as desired.
O

Communication complexity. We now bound the communication complexity. We note that
each message m; in II is sent in a padded form in the smooth protocol S" (where the padding
may be empty). In what follows we bound the size of the padding. We refer to each bit of
padding as a “dummy” bit.

We distinguish between the following cases.

1. The message m; was sent all in a single round r, in Step |5 corresponding to the case that
|mq¢| 4+ d, < k.. In this case, this m; was sent in ST via a (padded) message of the form
M, = my - 0% . Hence, the number of dummy bits sent for each such message is d,..

2. The message m; was sent in multiple rounds (since there was not enough budget to send
it all at once), starting from round r. In this case, at first only a prefix of m;, denoted
by mj, is sent in Step [6] via a message of the form M, = mj-0- 17, followed by the three
messages My11 = M,yo = M,+3 = 0P (which were sent in Step [2| or or , where
p = min{k] — 2, [2a - |my|]} and |m}| = k.. — p — 1. These four messages contain 4p + 1
dummy bits altogether.

We distinguish between two subcases:

(a) [2a-|m|] < kI — 2. In this case,

, 2 - 2 -
o [ o

where the last inequality follows from the fact that § < «. In addition,

J >2- ‘mt’a

dria = la- 20 |my|]] < o |my. (9)
Hence,
[me| + dpya < |mel + o fme] = (1+ @) - [my| <2 |my| < kpyy,

and hence the remainder of the message m; will be sent in round r + 4.

Therefore, we conclude that in the case where [2« - |m¢|] < kI — 2, the message m;
is sent with a total padding of size

Ap+1+drpa <A4A2a- |my|] + 14+ - |my| < 9a - |my| + 5.
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We next argue that in this case,
a-|my| > 5. (10)
This follows from the fact that
imy| >kl —dy > k. —a- (K. +1) > (1 - )kl — «

(where the second inequality in the equation above follows from Claim, and hence

i 2 a1k —a” 2 a(1i-ay | 5| ~a? 2 ai-a) (5 - 1) a2 2

as desired, where the latter follows from our assumption that 8 < ¢ and a < i.

Thus, in this case the total padding of m; is bounded by
4p+ 1+ dr+4 < 10« - ]mt|

(b) [2a - |m¢|] > k. — 2. In this case, My, 1 = M, 9 = M,,3 = 0” = 052 and hence

-l
r+4 — /3

.Of'\mt’ < Oé"mt\’

l-a = 3
where the third equation follows from Claim and the forth equation follows our
assumption that o < i.

and

drya=la- (k. —2)| <a- k. <a

In this case, denote the remainder of m; by m}; namely, m; = (m}, m}).

If it holds that m} + d,1o < k|4, then as above, the remainder of the message m;
(i.e., my) will be sent in round r 4 4, and the total padding for m; will be of size

dp+1tdrpg = 4K —2)+1+dyra < 4200 |my| ]+ 1+ |me| < 9a|my|+5 < 10a|my,

where the latter inequality follows from Equation .

On the other hand, if m} + d,44 > k., then only a prefix of the remaining my (i.e.,
of m}') will be sent in round r + 4, in which case we again distinguish between the
two subcases, as above.

In what follows, we change notations, and denote the first prefix of m; that was sent in
round 7 by m; ; and denote the remaining of m; by my; so that m; = (mj 4, m¢,). More
generally we denote the part of m; that was sent in round r+4i by mj ;, and we denote the
remaining part by my; | so that my;, = (mj ;, m{,;,,) and m; = (mj g, mj 1, ..., mj;,m{; ).
We define mg’ 0= M.

Let ¢ be the smallest integer for which
[2amy | < kypge — 2.
Sending the message m; requires either 4¢ + 1 messages if

1 /
[y ol + diyae < Ky ap,
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or 4¢ 4+ 5 messages if
M o] + dryae > kryag,

where in both cases, d,14 < - kr+4(£ 1) In both cases, the number of dummy bits in
the first 4/ messages is

(4(kr=2)+1) +(4(k g =2)+ 1) 4 A Ak g1y —2)+1) <k 44ki g+ 4Ky ).
Recall that for every ¢ for which
[2a|m2’,¢ 1> kr+4z 2

it holds that [M, 41| = ;. 4; — 2, and hence

1 1
B =[5 (=) > 5 (=2 -1,

which implies that
7/"+4Z < Bkr+4(z+1) +3<45- kr+4 (i+1)>

where the latter inequality follows from the fact that &/
the number of dummy bits in the first 4¢ messages by

Aky +4kpgg + o Ak ) <

(i) > B' Hence, we can bound

4 (ki paor) T ko) T k) <
Ak 4y - (1 +46+ (482 + .. + (4ﬁ)e_1) <
1
/
Wisae) 7745 <
Bkypa(e-1)s

where the latter inequality follows from our assumption that g < % (which in turn follows
from the fact that 3 < § and the fact that o < 1).

Recall that by the definition of ¢, it holds that

3K/
20fm] 2 Ky~ 22—,
where the latter follows from the fact that kET +a(e—1)) > % > 8. Thus, the total number
of dummy bits in the first 4¢ rounds is at most
20
3
where the latter inequality follows from Inequality . In order to bound the number of
dummy bits sent after these 2¢ rounds of transmission of m;, we distinguish between two
cases.

[2a|my || < Tda|my| + 8 < 16a|my|,

Case 1: |m}/,|+dyya0 < k], 4,- In this case, in addition to these 2¢ messages, containing
in total at most 16c|m;| dummy bits, there is a single additional message containing at
most

driae < Lo Ky gomy) < Lafmul]
dummy bits, where the latter follows from the definition of £, which implies that
k‘;+4(g 1y < [2almef] +2 < 2a|mt| + 3 < 3a|myl,

where the latter inequality follows from Equation (|1 . Thus, in this case the total number
of dummy bits sent in order to send m; is bounded by 19a|my|.
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Case 2: |my [ +d, 420 > k5. In this case, in addition to these 4/ messages, containing
in total at most 16c|m¢| dummy bits, five additional messages will be sent containing in
total

Ap +1+dryges1) <
A2alme|] + 1+ dypagerr) <
412a|my|] + 1+ afmy| <
9a|my| + 3 <

10|y |

dummy bits, where the second inequality follows from Equation @D and the last inequality
follows from Equation (10). Thus, in this case the total number of dummy bits sent in
order to send m; is bounded by 26a|my|.

We conclude that each message m; that requires multiple rounds to be sent contributes to at
most 26a|m| dummy bits. Moreover, recall that each message that is sent in a single round r
contributes at most d, dummy bits, and thus, all these dummy bits together can blowup the
communication complexity by at most 3a. Therefore we conclude that the total communication
of S is bounded by

3-26
CC(S™) < CC(I) - (1 +26a) - (1+3a) =1+29a+26-3-a> < 1+290¢+a‘T <1+ 50c,
as desired, where the second to last inequality follows from our assumption that o < i.

Round complexity Finally, we are ready to bound the round complexity of S. Let
r1,72, ..., Tk

be a partition of the protocol where r; is the first round where the message m; was sent, and
where k denotes the round complexity of II. Thus, the message m; was delivered in r;41 — 7;
rounds. As we saw, the messages which deliver m; consist of the following messages:

e Case 1: m; +d; < k;. In this case m; is delivered via a single message, and hence
riq1 =1 + L.

e Case 2: m;+d; > k;. In this case m; is delivered via 4(¢+ 1) 4+ 1 messages, where £ > 0,
where the first 4(¢ + 1) messages are of size

3 3 3 3
k;‘iv (k:% _2>>< ) k;“i+47 ( ;“i+4_2)>< PRI :"i+4(€*1)’ (k;“i+4(£71) _2)>< ) 7/"Z~+4Z7 pX )

/

A1) and where in

where p < k;,l 440 — 2, followed by a single message of length < k

><3é(

the above w w, w, w).

Note that for every j € [¢],

/ /
/ b= \‘kn+4(jl) o 2J > kri+4(jfl)
ri+4y T B = 23 ’
and
/ . 1
kri = B ’ mln{|M7"i*1|a ’MTz’*QL |MT¢*3|} > E B |MT¢*1| > |Mri71|a
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where the latter follows from B-smoothness of S'I.
Therefore, the number of messages between rounds 7,11 and r; is bounded by

144 -log. Frose <1+4-loga Friar <144 log M|
W\ k)T 20\ |My, 1] )~ 28 \a? - [My,a|)’

where the latter inequality follows from a-smoothness.
Combining the above observations, we get the following upper bound on the total number
of rounds,

R(S™ <
k
|Mr' 71‘
1+41 —_ il =
jZl < " Ogi <a2 ' ‘MTi—l‘

MT1+1 1‘

7"z+1 1| 2
k+24log \Mr_l\ +Z4log1a <

k+Z4log 1 w—k&clogma <
o

k+4log 1 H | ]\2“11’ + 8k loggg o <
Ti—

k+ 4logﬁ CC(SH) + 8klogyz a <

k- (14 8logys ) + 4logﬁ -CC(IT) - (1 + 50c) <

R(IT) - (1 + 8logyp av) + 4logi -CC(IT) + 4log%(1 + 50a) <
R(IT) - (1 + 8logys a) + 410g% -CC(II) + 4,

as desired.

B Proof of Theorem 9.

In the proof of Theorem [9 we use the following terminology. We define the terminology from

Alice’s point of view. We use analogous terminology for Bob. For each round r, we denote by

mff';t the message that Alice sent in round r, and we denote by mfﬁf’i"e the message that Bob

thinks Alice sent in round r.
In the analysis, we denote

sent receive ‘ }

Ima| —max{‘m }m ,

and we denote

gsent sent grecelve receive ‘
)

_ sent recelve
= [mi5 E

|me , and fa, = max{{F7,
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We use similar notations for Bob, and we let

Emax,r - maX{EA,ra EB,T’})

50 {max,r 1s the maximal size of message sent or received in round r. We emphasize that these
notations were used with a different meaning in the protocol, where error was not considered.
In the protocol, £4, was the length of the message sent by Alice in round 7, {g, was the length
of the message that Alice received from Bob in round r (recall that the protocol was defined
from the perspective of Alice), and fax» = max{f4,,¢p,}. Using the new notation, the values
¢ and /£, may be different for Alice and Bob. In particular, using our new notation:

sent

+ . Ar t i
(4, = min { 5 , 2 max {KSAF”; ’ggfflve}}

and

sent
(7 = min { ’2;7" , ax {Bil, a max {E;F;t,ﬁgffive}}} .
The values for Bob are defined analogously.

We say that a message is corrupted if the adversary corrupts the message or if there is a
hash collision in the hash associated with the message. We denote by E the set of all messages
ma, or mp, that were corrupted (due to adversarial error or due to hash collisions).

Given any ordered set of messages T', where T = (mu,,m Bn”)i=1 for some t € N, we denote

by
1T = Z Imar|+ Z Imp,r

ma €T mp €T

and refer to |T'| as the volume of T. We denote the number of messages in T' by |T|". Recall
that T corresponds to a prefix of the transcript, and thus 7" is twice the number of rounds in T’
(since two messages are sent in each round, one by Alice and one by Bob).

Partitioning the protocol into chunks. We partition the error-resilient protocol into
chunks, as follows.

1. Good Simulation chunks: These chunks consist of all consecutive rounds where both
parties are in Simulation State and indeed Ty = 1.

2. Good Verification chunks: These chunks consist of all consecutive rounds where both
parties are in Verification State and indeed T4[Ra] = TB[RpB].

3. Good Correction chunks: These chunks begin when Sy = Sp = r for some r, and end
when at least one party changes the value of its state .S.

4. Bad Correction chunks: These chunks consist of all consecutive rounds where Sy # Sp,
and at least one of the parties is in Correction State (i.e. S € N).

5. Bad chunks: These chunks consist of all consecutive rounds such that S4 # Sp or
T4[Ra] # T[RpB], and none of the parties are in Correction State.

The bulk of the technical difficulty is in proving the following lemma.
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Lemma 29. The number of rounds in the (error-resilient) protocol (S, SP) that are not in a

Good Simulation chunk is at most
301dlog 3 EY,

and the volume of all the messages that are not in a Good Simulation chunk is at most
767YE| +10d37 Y E).

The remaining of the Section is devoted to the proof of Lemma We start with the
following claim (which will be used later in this section).

Claim 30. For any round r > 1, the protocol satisfies
i) < B min{minL |, e )
and _
m5 | < A7 min{|mE |, [mESE [}

Moreover,

M| > amax{mF0t |, [miEEE ]}

unless Sa,r—1 = Verification and S4, = Simulation, and similarly

|msent| > amax{|mSBer},.t_1|a ’m;(ff:reilf|}

unless Sp,—1 = Verification and Sp, = Simulation.

sent

Proof. In what follows, we bound [m%7|. The bound on |m3!| is obtained in a similar manner.

If Sqr—1 €N (i.e., Alice was in Correctlon state), then
] = 6,

and by definition of £,

amax{[mh [, [mETN} < 6y < BT mEY

as desired.
If Sqr—1 = Verification and S4, € {Verification, r}, then in round r she sent a message of
length at most

+ 1 psent recelve 1 sent receive
Gy =min {BTHRT 2085V < B min {4550, 05N
and a message of length at least

0y < amax{|m0t |, Im5EE [}

where Z >0
protocol,

| < max {6y, 87 min{[mh [ [mEEE} < 871 min{|mI |, Imi5EE ]}

+_1, as desired. If S4,_; = Simulation then by the smoothness of the underlying

and

g > min {0y, coma{ i, miSEeE [} > comase{ ey, migees

as desired.
sent sent

If Syr—1 = Verification and S4, = Simulation, then ‘mAW‘ < ‘mAﬂ_l , since by the

definition of the protocol, in this case [m%7" ;| > |T\T[R]| and m¥7" is the first message in

T\ T[R).
O
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Claim 31. Let C be a set of messages sent in consecutive rounds. We abuse notation and also
denote by C the set of rounds in which these messages were sent. let rog be the first round of C,
and let Ey be the set of corrupted messages in C'U{ro—1}. Assume that for each round r € C,
it hold that Sa, # Simulation and Sp, # Simulation, and that each round r € C'\ {ro} has
the property that if Alice (resp., Bob) did not receive a corrupted message in round r — 1 then
it sends a message of length E;l’r_l (resp., Eg,r—l) in round r. Then

O] < B7YOI + (3871 +3) |[Eg N C| + 360 .

Proof. We partition C' into sub-chunks C', ..., C) such that the following two conditions are
satisfied.
1. For every i € {1,...k} and every round r € C; which is not the first round in Cj, it holds
that lax, = €4 ,_1 = {5 ,_, where recall that

Capey = min {570 max {5, amax {50, €555 )

2. For every i € {2,...,k}, the first round ' € C; satisfies liax, 7 €411 OF lmaxyr #
05 )
B,r'—1

We will bound
‘Cz| §5_1|C¢|,+3|E0ﬂ0i|—|—3ﬂ_1|EoﬁCifl|, (11)

and
|Cy| < B7YC|" + 3|Eg N Ch| + 36550 .- (12)

This is sufficient since:

k
c] = Y |G
=1

k k k
< e+ 8387 BN Cima| + Y 3By N Cif + 3650t
=1 =2 =1
< BHCI+ (387! +3) - |Eo| + 365, -

It thus remains to prove Equations and . To this end, fix any ¢ € {1,...,k}. Let
r’ be the first round in the sub-chunk C;. We will show by induction that each round r € C;

satisfies max,» < max {5*1, a’"*wﬁmax,r/}. Indeed, the statement is true for » = r’. For r > 1/,

by the induction hypothesis, we get,

- 1
Emax,r = £A7,,~_1 < max{ﬁ uagmax,r—l}
-1 r—1—r'
< max /8 - & gmax,r’

_ !
= max{ﬁ Lar Tfmax,r'} )

50



So we can bound |C;| using pax - as follows.

Ol € 5 2 < 5ttt i)

T‘ECZ' T€C7;
< Z (25_1 + QCVT_Tlgmax,r’)
reC;
< 571|Ci|/ + 2£max,r’ Z aTir/ <
TECZ'
1 Emax r!
< gl o) 4 Zmexr’ o
11—«
< 6_1|C’L| + 3émax,r’

To prove Equations and it suffices to bound /pax /. First assume that fpax . #
gsent . In this case, dpax, < |EoNC;|. This, together with the above calculations, implies that

max 7"
|Ci| < B7Y|Cs|" 4 3|C; N Ey|, which in turn implies that Equations (1] and . hold.

From now on assume that fpax,» = Zfﬁg; - In this case Equatlon ) holds. To prove

Equation , we prove that for every C; # Cl,
gmax,r’ < /B_I‘ED N Ci—l‘ (13)

To this end, note that if one of the message sent in round 7’ — 1 was corrupted, then
Equation follows by the smoothness property (see Claim . Thus, from now on, we
assume that the messages sent in round r’ — 1 were not corrupted, which in turn implies that
in round r’ the parties send messages of length ég,r'q and Zg,rur Moreover, by the definition

of 7/, it must be the case that ¢, , | # {5 .4
The fact that the messages sent in round r’ — 1 were not corrupted implies that

ma {5575y, (555} = ma{ TS, £,
This, together with the assumption that 6277,,71 #+ «@,T,,p implies that
e > Oy oy = By < amax {0, 0559},
or
Cmaxr > g 0 g = ﬁ—lzsg?;,_l < amax{[sg?ﬁ,_l,éﬁfﬁ'ﬁel .
Suppose without loss of generality that the former holds. This implies that

giir;t},l < OZB recelve 05/8 ESBen,:/ 1 < agsent

where the last inequality follows from Claim [30] By the definition of C, S, _; # Simulation.
This, together with Claim implies és‘j”‘rt,_l > - ch,"’eQ Thus, the message sent by Bob in
round r’ — 2 must have been corrupted. Therefore,

Crnax,r =

max{ly /1,0, 1} <

max {8, amax{€5_;, 6571 }} <
max{B 1, aB"! - lp, o} <

B~ E) N Cil,
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as desired, where the first equation follows from our assumption that the messages in round
r’ — 1 were not corrupted (together with the definition of C'); the second equation follows from
the definition of £7; the third equation follows from the smoothness condition (Claim ; and
the last equation follows from the fact that the message that Bob sent in round 7’ — 2 was

corrupted.
O

In the following claims, we bound the volume and the number of messages in each chunk,
as a function of |E| and |E|" (where recall that F is the set of all corrupted messages, m4 and
mpg).

Lemma 32. The total volume of all the Bad chunks is bounded by (268~! + 1)|E| + 3dB~|E/,
and the total number of messages exchanged in all the Bad chunks is bounded by 5d|E|".

Proof. Fix a bad chunk C and let Fy be the set of corrupted messages in this chunk and in the
chunk preceding it. Note that by definition, the chunk preceding a bad chunk is never a bad
chunk. Hence, it suffices to prove that

|C] < (2671 + 1)|Eo| + 3dB™" | Eo

and
|C|" < 5d|Ep|'.

We first prove that |C|" < 5d|Ep|’. To this end, we partition the messages in C' into two
sets, those that are sent with a hash, and those that are sent without a hash, and we denote
the former by C' N H.

Note that there is at most one round in the chunk C' that has a non corrupted message m
sent with a hash, since after such a round at least one party will change its state into Correction
State. Therefore, |(C'N H)\ Ep|" < 2. Hence,

CAH| = |(C N H) N Bl +[(C 1 H)\ Bl < |Eol +2 < 3|Bo/.

where the latter inequality follows from the fact that |Ep|" > 1, which in turn follows from the
fact that if the previous chunk was a Good Simulation chunk, a Good Verification chunk, a
Good Correction chunk, or a Bad Correction chunk, and if there were no errors during that
chunk (i.e., the messages m4 and mp were not corrupted and there was no collisions in the
corresponding hashes), then the next chunk would not be a Bad chunk. Note that, by definition
the previous chunk cannot be a bad chunk (otherwise, it would be part of the Bad chunk C).

By the definition of H, for every round r for which r is multiple of d, the messages in round r
are in H. Hence,

|C|" < d|C N H| +2d < 3d|Ey| + 2d < 5d|Ey|,

as desired.
We next prove that
IC] < (2871 4 1)|Ey| + 3dB~ Y Eo|'.

To this end, we partition C' into three parts: The corrupted messages in C, the non-corrupted
messages in C' without a hash, and the non-corrupted messages in C sent with a hash. Namely,

|IC| =|CNEy|+|C\(EoUH)|+|(CNH)\ Ey|.

Note that
|C' N Ey| < |Ep|
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and
IC\ (EoUH)| <d-|C| <5d°|Eo|' < dB~"|Eol,

where this equation follows from the fact that each (uncorrupted) message without a hash is of
size at most d, together with the fact that d < % (see Equation (3))).

We next bound [(C' N H) \ Ey|. As mentioned above, |(C N H) \ Ep|’ < 2. Thus, it suffices
to prove that each message m in (C'N H) \ Ep is of size at most

[l < max {57 Eol,d5 '}

Fix any message m € (CNH)\ Ep. Recall that the message m is sent in the last round of C'
(since as we mentioned previously, after an uncorrupted message is sent with a hash the chunk
must end). We denote this last round by ry.

Suppose that m was sent by Alice (the case that m was sent by Bob is analogous). We use
the smoothness of the error-resilient protocol (Claim [30]) to bound |m|, as follows: If |m| > d3~*
then by smoothness, ]mﬁfﬁ}"fl\ > Blm| > d (where recall that mg’cf}"fl denotes the message that
Alice received before sending m).

We distinguish between three cases.

1. ry —1 € C. In this case, the message mp,,—1 must have been corrupted (i.e., in Ejy),
since otherwise, in round ry Alice would change her state to Correction. Therefore,

m| < B mESe | < 871 |Eol,
as desired.

2. Round r; — 1 belongs to a Good Simulation or Good Verification chunk. In this
case, the message m 4, j—1 0 mp .1 must have been corrupted, since otherwise, round
r would have also belonged to either a Good Simulation or Verification chunk (round r
will either remain in the same chunk as ry — 1 or would be in a Simulation chunk while
ry — 1 is in a Verification chunk). Hence, as before,

im| < B~ min{|m¥EN, [, ImESS |} < 87" - |Eol,
as desired.

3. Round 7 —1 belongs to a Bad Correction or Good Correction chunk. Recall that in
both a Bad Correction chunk and a Good Correction chunk, at least one of the parties is in
a Correction State. Assume w.l.og. that this party is Alice, and denote 79 = Sa,,—1 (i-e.,
the round where Alice entered this Correction State). In the next round, neither parties
are in Correction state since the next round belongs to the Bad chunk C. Therefore, Alice
must have changed her state into a Verification state.

We will show that in one of the rounds between (and including) rg and 7y there was a
corrupted message. Indeed, if the chunk preceding C' was a Good Correction chunk and
none of these messages were corrupted, then both parties will switch into the Verification
State with matched transcripts, i.e. into a Good Verification chunk. On the other hand,
if the chunk preceding C was a Bad Correction chunk, and none of these messages were
corrupted, then Alice will remain in the Correction State (and the next chunk will be a
Good Correction chunk). Either way, the next chunk would not be a Bad chunk. Thus,
we conclude that one of the messages sent between (and including) round ro and r¢ must
have been corrupted.
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Let 7' € [rg,7¢ — 1] be the last round that had a corrupted message. We will show that for
every r € [’ + 1, r¢] both messages sent in round 7 have length < B~ Ep| . In particular
this will imply that |m| < 371 |Ey|, as required.

The proof is by induction on the round r.

Base Case: r = v’ + 1. By smoothness, we have that the size of all messages in the
round r’ + 1 is bounded by 87! min{|ma |, |mp|} < 87'|Ey|, and hence the base case
follows.

Induction Step: Consider a round r € [’ + 2,7¢]. Since Alice is in a Correction State
(or in the first round of a Verification state, if r = r¢), we have that {4, = 6277,71. We will
next show that /g, = Eé,rq- If in round r» — 1 Bob was in a Simulation or a Verification
State, then since he received an uncorrupted message from Alice (which includes the fact
that she is in a Correction State), he would change his state into a Correction State, and
send a message of length 673,74—1' On the other hand, if he was in a Correction State, he
would also send a message of length ¢5 ., (by definition). This, together with the fact
that the messages in round r — 1 and round r were not corrupted, and with our induction
hypothesis, implies that

EA,TW = EZ,T—I = min{ﬁ_lgA,rfla max{ﬁ_l, afmax,rfl} < maX{B_I|E0|, Zmax,rfl} < IB_IIEO‘ )

and

EB,T? = gém_l = min{ﬁ_lgB,r—lvmaX{B_la azmax,r—l} S max{ﬁ_1|EO|7£max,r—l} S B_1|E0| )
as desired.
]

Lemma 33. The total number of messages exchanged in all Bad Correction chunks is bounded
by 20|E)'.

Proof. Fix a Bad Correction chunk C. Denote its first round by rg and denote its last round
by 7. Let Ep be the set of corrupted messages in all the chunks starting after the previous
Bad Correction chunk until (and including) chunk C. Note that it is enough to show that
|C|" < 20|Ep|'.

First we argue that |Eg|" > 1. To this end, assume that |Ey|" = 0, and we will get a
contradiction by showing that the protocol cannot reach a Bad Correction chunk if there were
no errors since the end of the previous Bad Correction chunk. This follows from the following
simple claims.

1. Between the previous Bad Correction chunk and C, the protocol cannot be in a Good
Simulation chunk, since without errors, the protocol will remain in a Good Simulation
chunk.

2. Between the previous Bad Correction chunk and C, the protocol cannot be in a Good
Verification chunk, since without errors, the protocol will move into a Good Simulation
chunk.

3. Between the previous Bad Correction chunk and C, the protocol cannot be in a Good
Correction chunk, since without errors, it will move into a Good Verification chunk.
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4. Between the previous Bad Correction chunk and C, the protocol cannot be in a Bad
chunk, since if the protocol did enter a Bad chunk after the previous Bad Correction
chunk it must be the case that one party changed its state from a Correction state into a
Verification state. Without corruptions, after one round in the Bad chunk, this party gets
either a message of length < 37!, or a message of length > ! > d with a hash. Either
way, she will detect this inconsistency and change her state into a Correction state. The
other party will receive a message of length > 3~! with a hash, and thus will also change
its state into a Correction state. Since both parties change their state into a Correction
state at the same round, the protocol will enter a Good Correction chunk, after which the
parties will not move into a Bad Correction chunk, unless errors occurred.

5. It cannot be the case that there is no chunk between the previous Bad Correction chunk
and chunk C|, since in this case the previous Bad Correction chunk and chunk C' would
have been combined into a single Bad Correction chunk.

We thus conclude that |Ep|" > 1.

We next prove that |C|" < 20|Ep|". The fact that |Ep|" > 1 implies that it suffices to prove
that |C|" < 18|Ey|" + 2. We prove the latter using a potential argument. We define for every
recC,

4
W)= {7 TS Tl SarEN
0 Sar € {Simulation, Verification}
where U%m is the value of the variable v¥ of Alice at the end of round . We define ¥ g similarly.
Our potential function ® is defined as follows: For any r € C,
1 1
B(r) = [Eo(r)l' — 3 Walr) ~ 3W5(0)
where Ey(r) consists with all messages in Fy before (not including) round r.
In order to bound |C|’, we will show three properties of ®:

1. Upper-bound: ®(r) < |Ey(r)| for every r € C.
2. Non-negative: ®(rg) > 0.

3. Increasing: ®(r) — ®(r — 1) > & for every r € C'\ {ro}.
Indeed this will bound |C|" < 18|Ey|" + 2 since,

1 1/1
|[Eol' = |Eo(ry)l" = @(rg) = (2(ry) = 2(ro)) + (r0) = 5 (ry —710) + 0 =5 <2C|' - 1> ,
where the latter equality follows from the fact that the number of rounds in C, which is equal
to £|C|,is ry —ro + 1.

Upper-bound: ®(r) < |Ey(r)|'. We prove this by showing that for any r,
Uu(r) >0, (14)
and similarly for Bob. By definition, when S4, € {Simulation, Verification} then W4(r) = 0,

and the claim follows.
Next, consider the case where Sy, =" € N, and we will show that

3
]

This suffices since W4 =r — 1’ — %1)94 » = 0, as desired.
Let ¢ be a power of two that satisfies 1(r — ') < ¢ < (r — /). We distinguish between two
cases:
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Case 1: U%,T/Jrqfl > %q. In this case, by the definition of the protocol II, in Step |3c| of the

protocol, v% ++o Would have been set to 0, and hence

/+q

(=)

as desired, where the first inequality follows from the fact that in each round v%w increases by
at most 1.

=~

1
Vi < ”Bl,r/+q+(7“—?“/—q)§0+(r—r’—q)§§(r—r’)S

. 0 1 ;
Case 2: VA pipg—1 = 24 In this case,

q<

B oo

(=)

as desired, where the first inequality follows from the fact that in each round UBM increases by
at most 1.

DN | =

1
Vi < U%,r/+q—1+(7"—7“/—q4-1)§§Q+(7“—7”/—Q+1):(7”—7“/+1)—

Non-negativity of ®: Here we show that ®(rp) > 0.
We first note that for every round r,

Sa,r € {Simulation, Verification, r} = W4(r) = 0. (15)

Indeed, if S4, € {Simulation, Verification} then W4(r) = 0 by definition. If S4, = r then
v%’r = 0 (see Step [3¢|in the protocol), and hence W(r) =r—7r—0=0.

To prove that ®(rg) > 0, we first consider the case where the previous chunk was not
a Good Correction chunk (i.e., in the previous chunk the state of both parties is Simulation
or Verification). In this case, both parties satisfy S4,,, S, € {Simulation, Verification, o}
This, together with Equation (15]), implies that W4(rg) = ¥p(ry) = 0, and hence ®(rg) =
|Eo(ro)| — 5% a(ro) — 5¥p(ro) > 0.

Next, consider the case where the previous chunk was a Good Correction chunk. Namely,
for some " we get that Sa,,—1 = Spr,—1 =r’. Note that in round ro, the parties states are in
disagreement (since it is a Bad Correction chunk), hence it must be the case that |Ey(rg)|" >
%(ro — 7).

Note that in round r( one of the parties (say Alice) changes her state to S4 ,, € {ro, Verification}.
This, together with Equation (15)), implies that W4 (rg) = 0. Moreover, Wp(rg) < (ro —r’).
Hence,

1

o1 1 1 , 1 1 ,
- - U > Z(ro—1) — = 0—=(rg—1") = ~(rg — ') >
D(rg) = |Eo(ro)| B\I/A(ro) 3 B(ro) > 2(7'0 ") 3 0 3(7“0 ') 6(r0 ) >0,

as required.

Increase of & (AP > %): Here we show that in each round r € (o, rf| the potential function
increases by at least $. We use the notation Af(r) to denote f(r) — f(r —1). We distinguish
between the case that one of the messages in round r — 1 was corrupted, and the case that both
round 7 — 1 messages were not corrupted.
In the former, we bound AW, (r) < 1 (and the same for Bob). This suffices, since recall
that Eg(r) \ Eo(r — 1) consists of the corrupted messages of round r — 1 and hence
1 1

1 1
AD(r) = A|Ey(r)| — gA\IfA(T) - gA\I/B(T) >1- 3 1—--1=

>
3

Lo =
O =

We next bound AW 4(r). We distinguish between three cases:
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1. Sar—1 € {Simulation, Verification}: In this case W4(r — 1) = 0. Moreover, Sq, €
{Simulation, Verification, 7} and thus Equation implies that U4(r) = 0. Hence,
AW 4(r) =0—0 <1, as desired.

2. Say—1 =1"and S4, € {Simulation, Verification, r}: In this case, Equations and
imply that AU 4(r) =0— Va(r — 1) <0, as desired.

0

3. Say—1 =S4, =r'": In this case, U%,r > v%m_l (since in round r, v’ was not set to zero).

Thus,

4 4
AV 4(r) = (r —r' = 31)9‘7,4) — <7‘ —1—7" = 37)9&,1«1) =1- f(vA’,, — U%,T,l) <1.

Since Sy4, € {Simulation, Verification, r, Sa r—1}, the above includes all possible cases. Thus we
conclude that AW 4(r) < 1, which in turn implies that in this case, A®(r) > 1.

Next we consider the second case, where there were no corrupted messages in round r — 1.
First, since r € C' and C is not a Good Correction chunk it cannot be that S4, = S, = r.
Note that if S4, = r then by Equations and ,

A\I/A(T') = \I/A(T’) —\I/A(T’— 1) ZO—\I/A<7"— 1) <0.

We next show that if S4, # 7 then AW 4(r) < —1 (and similarly for Bob), which will imply
that

1
3 3 3 9’
as required, where the second equation follows from the fact that it cannot be that S4, =
Sp, = r, and hence for at most one party ¥ equals 0, which implies that for at least one party
U is at most —%.

To this end, suppose that S4, # r. We argue that in the absence of error in round r — 1,
in the r’th round Alice will detect an inconsistency in their states. This is the case, since recall
that we are in a Bad Correction chunk, and hence the states of Alice and Bob are inconsistent.
Moreover, if Bob is in Correction state then he will send a message with a hash, and thus Alice
will notice this inconsistency, and if Bob is not in Correction state and sends a short message,
then Alice will notice this inconsistency since she is in Correction state, and thus expects longer
message. Hence, it must be the case that Sy, ¢ {Simulation, Verification, r}.

This, together with the fact that S4, € {Simulation, Verification,r, S4,_1}, implies that
Sar=Sa,—1 =1 for some r’ <r—1. Since mp,_1 was not corrupted, Alice increases v° and
hence v%’r = v%ﬂ_l + 1. Therefore,

AD(r) = A|Eo(r)] — %A@A(r) - %A\I'B(r) >o-Lt.0-1. <—1> -

4 4 4 1
Aa(r) = (7= = e, ) = (r=1 = J) =1 0% ) = -3

as required.
We thus conclude that
|C|" < 20| Ey|’, (16)

as desired. O

Lemma 34. The total number of messages in all of the Good Correction chunks is bounded by
11d|E| .
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Proof. We partition the Good Correction chunks into two types: the corrupted Good Correction
chunks, which have at least %6 fraction of corrupted messages, and the uncorrupted Good
Correction chunks, which have less than % fraction of corrupted messages. By definition, the
total number of messages in the corrupted Good Correction chunks is bounded by 16|E|". Thus,
we need to show that the total number of messages in uncorrupted Good Correction chunks is
at most (11d — 16)|E|

Let B be the set of all Bad chunks, Bad Correction chunks, and corrupted Good Correction
chunks. We bound the total number of messages in the uncorrupted Good Correction chunks
by 2|B|" 4 2|E|". This suffices since by Lemmas 32| and

2|B|' + 2|E|' < 2 (5d|E|' + 20|E|' + 16|E|") 4+ 2|E|' < (11d — 16)|E|’,

where the last inequality follows from the fact that d > 20, which in turn follows from the
definition of d and from the assumption that a < 0.01 (see Equation (3)).

To this end, fix an uncorrupted Good Correction chunk C, let o € C be its first round
and let ry € C be its last round. Let Ep be the set of corrupted messages in all the chunks
starting after the previous uncorrupted Good Correction chunk until (and including) chunk C.
Note that |Ep|" > 1 since if after an uncorrupted Good Correction chunk there are no errors,
then afterwards the parties will enter a Good Verification chunk followed by a Good Simulation
chunk, and will never enter a Good Correction chunk again[T

Let By C B be the set of all chunks in B that came before C' and after the previous
uncorrupted Good Correction chunk, after the previous Good Verification chunk, and after the
previous Good Simulation chunk. Note that By may be empty. We prove that

ICI" < 2|Bo| + 2| Eo|"

Note that this inequality holds trivially in the case where C consists of a single round. From
now on, we assume that C has at least two rounds. Given two transcripts 171 and 15, let T3 M7,
be the longest shared prefix between 77 and T5. We define the disagreement between 77 and
T2 by

TVAT, = (T1 \ (Tl M TQ)) o (TQ \ (T1 M TQ)),

where o denote the concatenation of the two strings.
We defined D, to be the disagreement between the parties in round r. Namely,

Dy = (Tar[Ras]) A(Tpy[Rpy) -
We next prove that
1
IO =1 < [Dyoa” < [ Boff (17)
This implies that
I < 2By +2 < 2|Bol/ + 2|
as desired.
In the proof of Equation , we use the following two claims.
Claim 35. The chunk immediately after C' is a Good Verification chunk.

Claim 36. For any i € {1,2}, in the presence of < %(rf —19) errors, the following holds,

- %(rf —ry) = TulRY]e {TB [qu T [qu }

16Note that this is not true for a corrupted Good Correction chunk, since after a corrupted Good Correction
chunk the parties can immediately enter a Good Correction chunk, without any errors incurring in between.
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Remark 37. Recall that each round consists of two messages, and hence the fact that there
are at most 1/16 corrupted messages in this chunk implies that there are at most 1/8 corrupted
rounds in this chunk. We prove Claim assuming that the fraction of corrupted round is less
then 1/4. This stronger statement is needed later in the proof.

Proof of Claim Assume del’rf > i(rf —1rg). By the definition of the protocol, this implies

that the number of rounds between round 7o + £ ;TO and round 7y, in which

Hsent(TA[Rg)]) c {Hreceive(TB [Rj(gl)])’ Hreceive(TB [Rg)b}

is more than %(T § —10). Recall that we are in the Ideal Hash Model, where a hash collision is
thought of as an error. Hence, it must be the case that indeed

TARY] € {Ts[RV], T5[RY]).

Next assume that TA[RE:)] € {TB[Rg)],TB [Rg)]}. In this case, v’ increases by one at

any round between ry + L ;TO and ry which had no error. Since as explained above, less
than %(rf — rg) rounds out of these %(rf — rg) rounds may have errors, we conclude that

i 1 y
Vs > 7(ry — o), as desired.

O]

Proof of Claim Recall that each party in a Correction state, maintains variables v°, v!, v?,

where at each round, the party, say Alice, increases the variables v* (for i € {1,2}) if and only
if
sen i receive 1 receive 2
H=(T4[RY)]) € {He(Tp[RG))), H=e(Ty R }

Moreover, recall that for every k € N, whenever the party is in this Correction state for 2F
rounds, it sets v = v! = v2 = 0, and w is increased by a factor of 2, which redefines RY) and
R®). For any round r, the value of vf“ in round r is updated in Step [3al and is then set to zero
if and only if the party is in the Correction state for 2* rounds for some k € N.

In what follows, we define Uf“ to be the value of viw immediately after Step (before it
may have been set to zero), and we define the values Ty [RS)} , T [Rff)] ,Tp [Rg) ,Ip [Rg)}
to be the values as defined in the second half of chunk C. (Recall that these values are being
updated whenever the party is in this Correction chunk for 2¥ rounds for some k € N. Suppose
the party was in this Correction chunk for a total of 2¥ rounds, then the values above are the
values after the update that happened after 2+~1 rounds.)

We now prove that the chunk after chunk C'is a Good Verification chunk. To this end, note
that chunk C' ends when one party, say Alice, changes her state from S,,_1 = ro to S, # ro.
Hence, ry — ro must be a power of two. Since in a Good Correction chunk, vY can increase
only due to an error we get that v%yr < %(r # — 7o) and hence Alice cannot change her state in
Step We show by case analysis tltlat Sar ;= SB,r ;= Verification, and at the end of round
7y it holds that Ta[Ra] = T[Rp], which implies that D;, 1 = 0.

1. If TA[R(AI)] = TB[RSBI)] then Uix,rf’Ule,rf > 1(ry — o). Therefore, the parties define Ry =
RS), Rp = Rg) and hence

Tu[Ra] = Ta[RY)] = T5[RY)) = Ts[R5) .
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2. If TA[RY)] = Tp[RY)] and Ta[RY)] # Tp[RY). Then v} vk, < (rj —ro) and

vimf,v%mf > 1(ry — o). Therefore, the parties define Ry = R(A2), Rp = Rg) and hence

Ta[Ra) = TA[RY)) = Ts[RY)] = Tp(R] .

3. If Ta[RY)] = Tu[RY] then Tp[RY)) ¢ {Ta[RY), Ta[RT]}. Therefore, v}, v}, >

1(ry — ) and v}g’rf < X(ry — o). Thus, the parties define Ry = RS),RB = Rg) and
hence ) )
Ta[Ra] = Ta[RY)) = To[RE) = Ti[Rs)

4. The case Ty [Rf)] =1Tg [Rg)] is similar to the previous case.

5. If {TA[RS)], Ta [Rf)]} and {Tp [Rg)],TB [Rg)]} do not intersect, then U}nyrf,vimf,vl v%,rf <

B,T‘f ?
i(rf —rp) and thus SA,rf = SBM = rg, in contradiction to the fact that C ends in round
r f-
Moreover, since in each of the cases above, both parties set Sy, ;= SB,r ;= Verification, at the
end of round 7y the protocol enters a Good Verification chunk. O

We are now ready to prove Equation .

Upper bound of D,,_;. We show that |D,,_1|" < |By|".

First suppose that By = (). In this case the chunk preceding C' is either a Good Verification
chunk, a Good Simulation chunk, or an uncorrupted Good Correction chunk. However, as we
saw, it cannot be the latter since after an uncorrupted Good Correction chunk must come a
Good Verification chunk. Therefore, the chunk preceding C' must be either a Good Verification
chunk or a Good Simulation chunk, which implies that in round rg — 1 there is no disagreement
on the transcript, and hence |D;,—1|" = 0.

We next assume that By # 0, and let ' < ro be the first round of By. Let {r A,i}fﬁo be a
sequence of rounds such that 7' —1=1r40<7r41 <...< TAks = T0, and

ka
[T/ - 17 o — 1] = U[TA,i) TA,i+1)7
=0

where each [r4i,7441) is either a single round r in which S4, € {Simulation, Verification}, or
a sequence of rounds r in which S4, = ra; (this sequence may be of size 1). We next show

‘Dr071|, < ‘TA,r’fl[RA,r’fl]ATB,r’fl[RB,r’fl]‘/ (18)
ka

+ Z ‘TA,TA,i [RAarA,i]ATAarA,i—l [RAJ”A,z‘—l] ‘/
i=1
kg
/
+ Z‘TB,TB,i[RB,TB,i]ATBJB,iA[RBJ’B,FlH :
=1

Then we will bound the number of messages in each of these terms in order to bound |Dy,_1|".
To prove equation (I8)) it suffices to prove that for any set of transcripts {T;}¥_;,

k—1
AT < Y ITAT . (19)
=1
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To this end, it suffices to show that |1 ATy|" < [Ty ATs|' + |ToATs| . Indeed,

AT =

T\ (TN TR)| + T\ (T1 NT)| <

T\ (TyNTs)| + (T T3) \ (TN N T3)| +|Te \ (TN T3)| + [(Te N T3) \ (Th NN T3)| <
T\ (M NT)| + [T\ (TN )| + T2\ (TN D) + T3\ (TN T3)| =

TV ATs| + |TLAT3|,

as desired.

‘We show that
‘ (TA,T’fl[RA,r’fl]ATB,T’fl[RB,r’fl]) ’/ =0.

By Claim [35] after an uncorrupted Good Correction chunk, the parties enter a Good Verification
chunk, which is not in B. Thus, round 7’ —1 cannot be in a uncorrupted Good Correction chunk
and therefore must be in a Good Verification or a Good Simulation chunk. Either way, in round
r’ — 1 the parties agree on their transcripts and thus

(Tag—1[Ray—1]ATp 1 [Rp 0 1]) =0,

as required.
We show that for any ¢ € {1,...,ka} we have that

Taras[Raga JATA s, o [Raga, o) <7rag—rai-1- (20)
First consider the case where [r Ai—1,T A,;) contains only one round r and
Sa,r € {Simulation, Verification}.

If Alice detects an inconsistency in round r then T4 ,41[Rary1] = Tar[Ra,]. Otherwise,
Tar+1[Rars1]) = (Tar[Ray], m) for some message m. Either way,

Tagai[Baga i AT A gy [Raga, )l = [Tags1[Raze1]ATa  [Ray]l <1 =743 —ra-1.
Now consider the case where [r4,;_1,74,) contains all rounds r in which Sq, =r4,-1 . In this
case Sa,,, € {Verification, 74 }. If Sa,,, = 744, then Ta,,  [Razs.] = Tara, o [Rara, ]
If Say,, = Verification, then T, , = Tay;,, , and Ra,,, € {RMW R®1, as defined in the
second half of the rounds [r4;—1,74,). In either case,

1
|TA,7"A,1' [RA,TA,i]ATA,TA,iﬂ [RAJ‘A,iq”, < RAJ'A,i—l_R(2) < 2wA,TA,F1 - 2'5(701471'_70147@'*1) =TAi—TAi-1-
This proves Equation . This, together with Equation , implies that
/
‘DT0—1|/ < ‘TA,T‘,—I[RA,T‘/—I]ATB,T’—I[RB,’I’/—I]‘ +

ka

Z ‘TA:TA,Z' [RA,TA,JATA,TA,F:l [RAJ’A,FJ ’/ +

i=1

kp )

Z ‘TBvrB,i[RByrB,i]ATByrB,i—l[RB7TB,7;—1H <

i=1
kA kB

04+ (ra;—rai)+ Y (rei—rpi1) =20 —1") =B,
=1 i=1

as desired.
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Lower bound on the |D,,_1|. Recall that we need to prove that |D,,_1|" > 1|C|' — 1. We
prove this by proving that

1
|Dr071‘ > Q(Tf - TO)'

Note that at least one party changes its state in round 7, hence r; — rop must be a power of
two. Let ' = 7o + % be the previous round in C' that was a power of two. We show that

D,s = Dy,—1. This is done by observing that for any r € [ro — 1,7/] we have that

TA,T = TA,r-i-l ) TB,T = TB77"+1 ’ RA,’I’ = RA,T’—H ) RB,T = RB,T+1~

Indeed, this is true for » = 7o — 1, since in this case the state is updated to be S,, = rp and none
of the variables above are changed. Moreover, these values are not changed at any round r of
the correction state, except the last round.

Since in round 7’ the parties did not change their state, 21124 o < %(r’ —rp). By Claim we
have that T4 ,/ {Rf)r,} # Tp [Rg)r/}. Thus T4 [Ra,) M T, [Rp,~] does not include round

Rf) = Rg), and therefore,

| D1/ Dy

’TA,T’/ [RA,T/]ATB,T' [RB,T’] ‘/

2 (RAJAI - RE42’)7") + (RB,’I"/ - Rg,)T")
> WA+ WRy

1
> i(rf —70),

as required.
O

Lemma 38. The total number of messages in all Good Verification chunks is bounded by
300d (log %) .

Proof. We partition all the rounds in all Good Verification chunks into 3 (non-consecutive)
parts.

e P; consists of all the rounds r in Good Verification chunks that satisfy: R4, = Ra,—1
and TA,rfl[RA,rfl + 1] = TB,rfl[RB,rfl + 1]

e P, consists of all the rounds r in Good Verification chunks that satisfy: Ra, = Ra,—1+1.

e P35 consists of all the rounds r in Good Verification chunks that satisfy: R4, = Ra,—1
and TA,rfl[RA,rfl + 1] # TB,rfl[RB,rfl + 1]

We note that a more natural order of this partition would have been P;, P3, P,. However, in
the analysis we bound |P3|" as a function of |P;|" and |P»|’, and hence the unnatural order.
Note that these three parts cover all the Good Verification chunks since by the definition of the
protocol, for any round r in these chunks, we have that R4, € {Ra,—1, Rar—1+1}. Note that
R4 r41 is always defined since the protocol ends only when Alice is in a Simulation state. We
now bound the number of messages in each of these parts.
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First part: We show that
|P|" < 2|E|. (21)

To get the bound on |P;|" we show that for every round r € Py, mp, is corruptedm By the
definition of the protocol, if S4,_1 = Verification then R4, = R4, if and only if the hash that
Alice receives indicates that T ,—1[Rpr—1+1] # Ta,—1[Rar—1+1]. Since, by our assumption,
these transcripts are equal, it must be the case that mp , is corrupted.

Second part: We show that
Byl < 17d| Y. (22)

Let B be the set of all Bad chunks, Bad Correction chunks, and Good Correction chunks. By
Lemmas and [34], it holds that

B < 5d|E| +20|E|' + 11d|E|' < 17d|E/,

where the latter inequality follows from the fact that d > 100, which in turn follows from the
fact that o < 0.01.
Thus, to prove Equation , it suffices to prove that

Pl < |BY'.

To this end, let d, be the difference between the number of rounds in T4, and Ra,, ie.,

dp = 3|Ta,| — RA,T Let 77 be the last round in the protocol. Let {TAJ}?:O be a sequence of
rounds such that 0 =ra9 <rg1 <...<7Tak, =7f, and
ka—1
0,7 —1] = U (74,07 A,i+1),
i=0

where each [r4;,7441) is either a single round r in which S4, € {Simulation, Verification}, or
a sequence of all rounds 7 for which S4, = T‘A’Z’H Note that all the intervals in which Alice
is in a Correction state are contained in B. By definition of the protocol, d, has the following
properties:

1. If [ra,,rait1) consists of a single round r in which Sy , = Simulation then d d

0.

A+l Pras —

2. If[ra;,ma,i+1) consists of a single round 7 in which Sy, = Verification then d,., ,,, —d;, ; €
{0,—1}.

Moreover, for any round in r € P, we have that d,+; — d, = —1.
3. If [ra,7a,i11) consists of all round r in which S4, = ra; thend,, ., —dr, , <Tai1-Ta,.

4. dop = 0, and for every r it holds that d, > 0.

'"Recall that |E| denotes the number of messages that have been corrupted, whereas |P1|" denotes the number
of messages sent in the rounds of P, which is twice the number of rounds in P;, since in each round two messages
are sent, one by Alice and one by Bob.

8Note that d, is unrelated to the constant d.

19 A similar partition was considered in the proof of Lemma
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Thus,

0 < drf

- d’l”f - dO
k

= (dTA,iJrl - dTA,i)
1=0

< Y (rapm—ra)— Y, (<)
Z':STA,Z-:TAJ i:TA’iEPQ

< Yisr=Ypnp,r -y

< 5 512 yTf

1 1
— 2B —Z|Py
where the last equality follows from the fact that ry ¢ P,. Hence, |P|" < |B|" as required.

Third phase: Let B be the set of all BAD chunks, Good and Bad Correction chunks, and
all the messages in P; and P,. In other words, B consists of all the messages, except those
in P; and those that belong to a Good Simulation. Lemmas and together with

Equations and , imply that

|B|" < 35d|E]'.
We prove that
1
|Ps|" < (7|B|" + 18|E[") logB. (23)
which together with the above, implies that
1
| P3| < 246d|E| log 5 (24)

Equations and , imply that
1 1
|P1| + | Ps| + | P3| < 18d|E|' + 281d|E| log 3 < 300d|E| log 5

as desired.

It thus remains to prove Equation . To this end, consider all the rounds which are in
Good Simulation chunks. Denote these rounds by 1 = rg < r; < ... < 1. We divide the
protocol into chunks C1,. .., C; where C; = [r;_1, n]m We denote by B; = BNC;, E; = ENC;,
and P3; = P3N C;. We prove that for every i € [t],

Pual' < (7B + I og 3. (25)

Note that this implies Equation since all the B;’s are disjoint (follows from the fact that all

the 7;’s belong to Good Simulation chucks), and hence |B|' = Y>'_ | B;|". Moreover, >'_, |E;|' <
2|E|’ since each message in F belongs to at most two E;’s.

We next prove Equation via the use of a potential function. In what follows, we focus

on a specific chunk C;, but we omit the subscript ¢ from the notations to avoid cluttering.

2ONote that these chunks are not disjoint, however, they do cover all the rounds in the protocol.
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Moreover, we abuse notation, and denote by 7 the first round in this chunk and by r; the
last round in the chunk. We denote by B, all the messages in B from round r¢ to round r
(including). We denote by sim4(r) the largest round < r such that S4,_; = Simulation. We
denote by

PS,A = {mr € P3 : ’TA,T‘ - ‘TA,T[RAJ” < giir;t

We define P3 p analogously, and we note that

|Ps|" < |P5 4

"+|P3 |+ |E|.

Thus, it remains to prove that

1
"< (3.5|B;|" + 4| E;|") log ik
We focus on bounding |P3 4|. Bounding |P; p|" is done analogously. For every round r € [rg, ]
we define the potential function:

|Ps al’, | P58

Pa(r) =
' 1 5 . 1 / 1
318, 'log 5 +log a = (sima(r). 7\ Paal = (5/Tarl = Ra ) -log
where ¢ A is defined as follows: If r is such that S4, = Simulation then / Ar = Efjf"},t. Else, if

@i’;t = E;Lr_l then we define ¢4, = max{8~, als,_1}. Else, @fﬂ,t = 827"_1 in which case we

define 04, = 2!7,47,“_1.
The fact that round 79 and r; belong to a Good Simulation chunk, implies that
D A(ro) = log s,

and

1 _
@A(Tf) < 3\B|’log E + IOgEAJf.

Thus,

Du(ry) — Pa(ro) =

1 _ -
3|B| log 3 +loglay, —logla,, =

1 l
3Bl log  +log ZA” < (26)
A,ro
1 1 "
318/ log 7 + log § 2 TargATar =2 < (27)

1 /
3Bl log 5 -+ log p 2181 =

1
(3.5|B|" + 4) log R

where recall that T1ATy = (17 \ Ty NTy) U (T2 \ T N T3). Equation 26| follows from the («, §)-
smoothness of T4 », and T'a ., as follows: let £ be the length of the last message in T4y, T4,
Than Equation [26] follows from combining the follows,

— (T4 T (| T4 |/ +1
Cary < BB A A L)
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and

1 , 1 )
lare = a2 Taro\TargMTars 41, > ﬁilTA,ro\TA,ro‘_”TA,rﬂ +,

To prove Equation since rg and 7y in good simulation, it will be suffice to show that
|Taro[Raro|ATar [Ray ]l < |Bl'. This is done in a similar way to the proof of Equa-
tion We will partition the regine [rg,7¢] into regines [ra;,74,+1) such that each regime
contain a single round such that Sa,,, € {Simulation, Verification} or all rounds r such that
SA’TAJ = ra,. By the protocol, if [ra,;—1,74,) contain a single round of Verification than
Tarp; 1 [Rawpa, JATAr, [Rar,,] = 0. Else, if [ra;,r4:11) contain a single round of Simula-
tion than two messages, or none, are added to T[R] and so T [RAra JAT A g i1 [RAra )| <
2. Else, where [rq;-1,74,) contain that all round in which S4, = 74,1 we have that R can
decreased by at most 2Wpy —1=TA;i —TAi-1- Thus, using Equation [19| we have,

k—1

T o [Raro) ATa s [Ras,]l < D | Tapa [Bars JAT Az i [Rars )l
=1
< 2|{r € [ro,7¢) | Sa, # Verification}| < |B|' — 4.

We partition [rg,rf) into chunks (r4;—1,74,] such that each chunk consists with a single
round r where S4,_1 € {Simulation, Verification}, or all consecutive rounds, where Sy ,_1 =17;
for some r’ € N.

We now note that for every i such that (r4,;-1,74,] consists with a single round in P3 4,

Du(ra;) —Pa(rai-1) =Pa(r) —®a(r—1)>1. (28)

This follows from the fact that the only term in the potential function ®4 that changes from
round 7 to round r + 1 is £4,, and by the definition of P3 it holds that £4,_1 > 2{4 ,, which

implies Equation .
It remains to argue that for all other 4,

Pa(rag) —Pa(rai—1) >0. (29)

We consider the following four cases:

Case 1: (r4,—1,74,] consists with all rounds 7 in which S4,_1 = ;1. In this case note
that RT’A,Z’ > RTA’F1 —2(ra;—7ra,i—1). Moreover, since all the messages in this chunk are of the
we have that £4,, > a7 410y, . and thus

form ¢,_,,

1 1
Pa(ra)—Pa(rai—1)>6(rai—rai—1)log -—(ri—ri—1)log a_(TA,i_TA,i—l)_2(7"A,z’_7"A,i—1) log—>0.

B B

Case 2: The i-th chunk consists with a single round r € P3\ P3 4 and S, # Simulation.
In this case, it is easy to see that

cI)A(T) - (I)A(T - 1) = lOg ZA,?” - lOg ZA,r—l -1>0.

Case 3: The i-th chunk consist with a single round r € B and (Sa,-1,54,) #
(Verification, Simulation) In this case,

DA(r) —DPa(r—1)>

1 _ _
6log B + log EA,T‘ — log EA,rfl -1>

1 1
GIOgE—log——lzo.
o
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where the second inequality follows from the fact that when Alice does not move from Verification
to Simulation, ¢ can drop by no more than a factor of o (Claim .

Case 4: The i-th regime consists with a single round r € B such that S4,_; =
Verification and S4, = Simulation. By definition of ®,

@A(T) —@A(T— 1) >

1 ~ ~ . 1 1
6log — +logla, —loglar—1 + |(sima(r —1),r — 1]\ Ps 4| + <2]TA7T_1|' — RA7T_1> -log =

B B

Thus, it suffices to show that

1
—6log— (30)

_ - ] 1 1
logla, >logla,—1—|(sima(r—1),r—1]\ Ps 4| — <2]TA,T_1\’ — RAJ_1> -log — 3

g
Claim 39. For every r, the following holds:

_ . 1
logla, — |(sima(r),r] \ Ps,a| <log|Tar[Ra,o0]| + log 3

Proof. For r € P3 4 the claim holds trivially, since by definition of P 4,
EA r < ésent < 2|TA,1' [RA,'M OO”

and hence ~
logla, <log|Ta,[Rar, ool +1,

as desired.
For r such that S4, € Simulation, it holds that

Doy < 6500 < 67T s Ry, o0,

where the latter follows from the smoothness condition. This implies that

. 1
log (4, <log—

6 + 1Og |TA,T[RA,7"7 OO] |7

as desired.

Next we prove the rest of the claim by induction on r. Suppose the claim is true for round r,
and we prove that it is true for round r+1 for which S4 ;41 ¢ {Simulation, P3 4}. We distinguish
between the case that R4 ,y1 < R4, and the case where Rx Il = Ry, + 1. In the former
case, the fact that S4 ,41 ¢ Simulation, implies that / Art1 < 20 A, and hence by our induction
hypothesis,

logla,ry1 <
loggA,T +1<
1 :
log |Tar[Ra,r, 00| + logB + [(sima(r),r] \ P3al +1 <
1
log |Tar+1[Rart1,00]] +log — + [(sima(r), 7] \ Psa| +1=

B
1 .
log [Ta,r+1[Fa;r41, 0] +10g 2 + [(sima(r + 1), r + 1]\ Py al,
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as desired.

We next consider the case where R4 ;41 = R4 ,+1. In this case gA,r+1 = max{ﬁ_l, a-gA,r}.
If ZA,T-‘F]. = B~! then the claim holds trivially. On the other hand, if EA7T+1 =a- lZAm then by
our induction hypothesis,

log ZAW“ =

logoz-llw =

log o + log 17,47,« <

1
log oo+ log |T'a r[Ra,r, 00]| + log 3 + |(sima(r), 7] \ P3.4| <

1 1 :
g -+10g (5 TaialRain, o)) +log 5 + [(ima(r), o]\ Pl <
1

5 + [(sima(r +1),r + 1]\ P53 4|,

log |TA,7"+1 [RA,rJrl, OOH + IOg

as desired.

We now prove Equation using Claim

~ . 1 1 1
loglar—1 — |[(sima(r — 1), (r — 1))\ P3 4] — <2|TA,7~1\/ - RA7T1> -log B — 6logg <

1 1 1
log |T'ar—1[Rar—1,00]| — (2\TA,T—1|' - RA,T—l) -log 5 5log 3

Thus, we need to prove that
~ 1 , 1 1
log 4, > log |Ta,—1[Rar—1,00]| — i\TA,r—ﬂ —Ray—1 ) -log 5 2log 3
To this end, let k = %]TA7,~_1|’ — Ry -1, and let £ denote the length of the longest message in

round R4 ,—1 of in the transcript T4 ,—1. The fact that S, = Simulation, together with the
smoothness property of the original protocol, implies that

lap =057 >l > (-5,

and hence 1
logZA7r > log ¢ — log 3

On the other hand, the smoothness property implies that

12 < l

—B) — B

k
l 2
Tar_1[Rar—1, < 2— <
‘ Ay 1[ A;r—1 OO” 12_% 51 Bk(l
which in turn implies that

1
log |Tar—1[Rar—1,00]| <logl+ (k+1)-log 5



Therefore,

1 1 1
log |Tar—1[RAr—1,00]| — (2!TA,T_1V - RA,T_1> -log — — 5log 3 <

B
log £+ (k+1) - log ~ — (L|Ta, 1/ — R log + — 5log ~ —
og 08;6 5 Ar—1 Ar—1 08;6 ogﬁ—
lg€+(k‘+1)lg1 k:lg1 5lg1
O '07_ -O—— 0—:
B B B

1
logl —4log — <
g gﬁ_
10g£A,r+l

as desired, where the latter inequality follows from Equation .

The result follows.
O

Lemma 40. The total volume of all Good Verification chunks, Good Correction chunks, and
Bad Correction chunks is at most 437 E| + 35d3~ | E|

Proof. We partition the rounds in Good Verification chunks into two part. The first part consists
of all the rounds that satisfy

TA,rfl[RA,rfl + 1] 7é TB,rfl[RB,rfl + 1]
and the second part consists of all the rounds that satisfy
Tar-1[Rayp—1+1]=Tp,_1[Rpyr—1 + 1].

We bound the first part of Good Verification by 2| E| and the rest of those chunks by (4371 —
2)|E| + 3543871 E.

Bounding the volume of all the rounds in the second part of Good Verification. We
remain consistent with the notations we used in the proof of Lemma and denote all the
messages that belong to the second part of Good Verification by P3. We prove that | P3| < 2|E)|.

To this end, fix any rounds rg,r; such that both 79 and 7y belong to a Good Simulation
chunk, and all the rounds r € (r9,7¢) do not belong to a Good Simulation chunk. Let Ci, ..., Cj
be all the (maximal) sets of consecutive rounds in P3N (79, 7¢) such that there are errors only on
the last message in each chunk, i.e. we start a new chunk after a corrupted message or whenever
the rounds stop being consecutive) . Let C’j to be C; together with the round before it and let
Ey = EN(ro,ry). We show that |C;]| < 4|C;" N Ey| for every i # k, and |Cy| < 2|Ep \ Uf:_ll Cil.
This yield a total bound of Zle |C;| < 8| Ey|, and therefor | Ps| < 8|E].

We start with the former. Fix any ¢ € {1,...,k — 1}. Since after chunk C; the parties
do not enter a Good Simulation chunk it must be the case that C; ended with an error, as
otherwise, the parties would have doubled their message size until they had enough budget to
erase the inconsistency in their transcripts, and would have entered a Simulation state. Denote
by 7 the first round in C; and denote by r 4 ¢ the last round in C;. The fact that chunk C; is
in P3, and have errors only in the last round, implies that for every ¢ € {1,..., ¢} it holds that
gmaxﬂ‘—i—i >2- gmax,r—i—i—l' Hence,

1 /1\? 1\°
’Ci‘gemax,'r—l-c 1+§+ 5 Tt 5 SQemaXJ_FC.



Thus, where both parties send messages of the same length in round 7 + ¢, since the round r + ¢
is corrupted, we have that,
|Cy| < 2]0;“ N Ep|.

In the other case, the parties disagree on fmaxr+c—1, and thus the longer message in round
r 4+ ¢ — 1 must be corrupted. In this case we get that linaxrt+c < 2lmax,r+c—1 and we get,

|Ci| < 4|CF N Ey|,

as desired.
We next prove that |Cy| < 2|Ep \ U;:ll C;|. To this end, denoting by r the first round in
C}, note that

k—1
|Ck‘ < maX{|TA,r[RA,T7 OO”a |TA,7’[RB,7’7 OO”} + ‘EO \ U Cz|a
=1

where Ra, = Rp, and T4 ,[Ra,| = Tp,[RB,,| since we are in a Good Verification chunk, and
TarRar+1] # Tpr[Rp, + 1] since Cy is in P3. Therefore, all the messages in T4 ,[R A, 0]
and T ,[Rp,,,00] were added due to error. These messages were added in Ej \ U;:ll C; since
before Fy was a Good Simulation chunk and in rounds Uf;ll C; the transcripts do not change.
Therefore,

k—1 k—1
|Ck| < max{|Ta,[Rar, ||, |Tar[Rp. 0]} +Eo\ | Cil <20\ | Cil,
i=1 i=1
as desired.

The rest of the chunks Let B be the set of all Bad chunks, and let G be the set of all
Bad Correction chunks, Good Correction chunks, and the first part of Good Verification chunks
(which consists only of messages in P; U P»). We bound

G| < B7HG| + (387" +3) |E| + 3a|B| + 35d3~ | E| .

By Lemmas and the proof of Lemma this is the desired bound, since:

Gl < B7HGI + (387" +3) |E| + 3a|B| + 645~ | B
< B71(20|E| + 11d|E| +2|E| + 17d|E|') + (387 +3) |E|
+3a (26871 + 1)|B| + 3dB7|E|') + 6dB~ | B/
< (3871 +3+3a(287! +1))|E| +35d37E|
< (4871 - 8)|E| +35d57|E[

where the last two inequalities follow from the choice of our parameters (see Equation (3)).

Let C be a set of consecutive rounds in G. We define By = () if the chunk preceding C' is
not a bad chunk, and otherwise we define By to be the bad chunk preceding C. Let Ey be the
set of corrupted messages in C' and in the chunks preceding C until, not included, the previous
part of G. We show that

IC| < B7HCOI + (387 +3) | Eo| + 3a|Bo| +3dB~ " .

To prove that this suffices, we bound the number of sets of consecutive rounds in G, by
|E|" + 1. This is done as follows: Denote by Gi,...,G; the (ordered) set of all consecutive
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rounds in G, where GGy is the first set of consecutive rounds and G; is the last. We show that
for every i € {1,...,t — 1}, there must exist an error in the interval between (including) the
first round of G; and (excluding) the first round of G;1. Indeed, suppose (for contradiction)
that this interval had no error. If G; started with a Bad Correction chunk, then the protocol
would have moved into a Good Correction chunk, and from there into (either the first part or
the second part of) a Good Verification chunk. If G; started with any other chunk, then it will
also move into (either the first part or the second part of) a Good Verification. In either case,
after being in the first part of a Good Verification chunk, the protocol will move into a Good
Simulation chunk or to the second part of a Good Verification chunk. However, after being in
the second part of the Good Verification chunk, in the absence of error, the protocol will always
move and remain in a Good Simulation chunk until the end, in contradiction to the existence
of Gi+1.

We show that in each round of C, except the first one, a player that did not receive a
corrupted message in round r — 1 sends a message of length £, ; in round r (i.e., Alice sends a
message of length f;l,r_l and Bob sends a message of length Eg,r—l)‘

e If r is in a Good Correction chunk then each player indeed sends a message of this length.

e If 7 is in a Bad Correction chunk then one player, say Alice, is in a Correction state in
round 7 , and thus sends a message of length £ ;. We prove the condition for Bob by
case analysis on the chunk at round r — 1.

If in round r — 1 the parties are in a Bad Correction chunk, then without an error Bob
detects the inconsistency, moves to a Correction state and sends a message of length
Eé,rfl'

If in round r — 1 Bob was in a Good Correction state, then also in round r he will send a
message of length £ .

If in round r — 1 the parties were in the second part of a Verification chunk, then Bob’s
message in round r — 1 is corrupted.

e If r is in Good Verification , then both players are in a Verification state, T4 ,—1[Ra,—1] =
Tpr—1[RByr—1] and Ta,—1[Ra,—1 + 1] = TByr_1[RBr—1 + 1]. By the definition of the
protocol, without corruption, both players send a message of length ¢, ; in round r.

Thus, by Claim

C] < B7HC + (387" +3) [Eo N C| + 365 1y (32)
where ry be the first round of C.
We next show that,

gsent S ,BillEO\C‘ +CY’BO‘ —l—d,@il )

max,rq

Which implies that |C| < 87 C|' + (3871 + 3) |Eo| + 3a|By| + 3dB~", as required.

We distinguish between two cases: The case that in round rg — 1 one of the messages was
corrupted or one of the messages sent was shorter than d, and the case that both ryp — 1 round
messages are of length > d and not corrupted.

In the former case, the smoothness guaranty (Claim implies that

et < B min{ Ty, 0558} < 6  maxc{| By \ O, d} = 5o \ O] + B! |

max,rq

where the second to last equation follow from the fact that one of the messages in round ry — 1
is corrupted or has length < d.
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We next consider the latter case, where there were no corrupted messages in round rg — 1
and both of the messages have length > d. In this case we show that the chunk preceding C
must be a Bad chunk. This is done by a process of elimination: It cannot be in first part of
Good Verification or Good Simulation chunk, since if in round g — 1 the parties agree on their
state and transcript, in the absence of corruptions, the parties continue agree on their state
and transcript and the protocol will remain in part 2 of Good Verification or move to Good
Simulation chunk. It cannot be the first part of Good Verification chunk, Good Correction
chunk or Bad Correction chunk, since in this case, by the definition of C, it will be unite
with C.

We now show that C' cannot start with a Bad Correction chunk. Assume toward contradic-
tion that it does start with a Bad Correction chunk. Then one party, say Alice, did not set her
state S4, = 70, and hence did not detect an inconsistency. This implies that the message she
received mp ,,—1 was not sent with a hash or was corrupted, in contradiction.

Since rg in Good Correction chunk or second part of Good Verification chunk. Thus

o = lryo1 < max{al|Bol, 571},
where the last equality follows from the fact that rg — 1 is in a Bad chunk.
O

Combining Lemmas and [0} we obtain Lemma [29] We next prove Theorem [J]
given Lemma [29]

Proof of Theorem[9. First we note that Item [p] follows immediately from the efficient nature of
the protocol.

To prove Item[I|note that a player, say Alice, aborts if the underlying protocol II instructs her
to abort given the (partial) transcript she is holding, denoted by T’ . In this case, |T4,r| > tmin
(by definition). It remains to note that for every round r, the communication complexity of
I’y up until round r is at least [T4,|. This follows from the fact that in the protocol IT,
Alice increases T4 , only in Step where she adds (ma ,—1, mp—1) after sending the message
ma,—1 and receiving the message mp 1.

To prove Items and [ we rely on the following claim.

Claim 41.
|TA7rf M TB,rf‘ > |G| —|B| and ’TAJ’f M TB,rf|/ > |G\’ — 2|B\' ,

where G is the set of all rounds without errors in Good Simulation chunks, B is the rest of the
rounds, and r; be the last round of the protocol. Moreover, recall that T1 M 15 is the longest
shared prefix between T1 and Ts.

We defer the proof of Claim A1} and first show why this claim implies Items and[d First,
we bound |B| and |B|". To do so we bound the number and volume of messages in rounds with
errors in Good Simulation chunks. Note that in any such round, if a message of length ¢ was
corrupted, by the smoothness property of the original protocol, there is at most one uncorrupted
message of length < 7!/ in this round. Summing over all such rounds, we get that there are
at most 2¢/ messages in corrupted rounds in Good Simulation chunks, and the volume of these
messages is at most (1 + 871)e. Combine it with Lemma 29| we get

1
|B| < 98 e +10dB ¢ and |B|" < 302dlog Ee/ .
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To prove Item [2| note that by Claim [41]
CC) = [Ta,r, M Th | > |G| —|BJ .

This holds since the partial transcript that both parties agree on must be consistent with II.
Thus,
CC(ITy) = |G| + |B| < CC(II) + 2|B| < CC(II) + 188 'e + 20d3 e’ .

To prove Item [3] note that by Claim
R(IT) > [Ta,, M TB,rf’/ > |G| -2|B|,
and thus,
R(IT,) = |G/ + |BJ < R(IT) + 3|BJ < R(IT) + 906d log ;e’ |
Finally, to prove Item [4] it remains to note that by the proof of Item
Tas | T | < CC(TLY)
and by Claim
Tar; N Ty, | > |G| — |B| = CC(IT) — 2|B| = CC(IT) — 183 e — 20dB "¢’ .
Proof of Claim[{1. The proof uses the potential functions
®(r) 2 |Tayr1 Mo

and
' (r) £ |Tars1[Rar+1] M1 TBr1[RErt1]| — 2Wa, — 2B,

where wa, =1 — Sa, if Sa, € N, and is zero otherwise (wp, is defined analogously). We
prove that
O(ry) > |G| —|B] and @'(ry) > |G| —2|B .

As before we denote A®(r) = &(r) — &(r — 1) and AP/ (r) = &'(r) — ®'(r — 1).
Since T4 0 and Tp ar empty, we get that

®(0)=0 and ®'(0)=0.

In any round r € G both parties are in Simulation (and so T[R] = T') and agree on 7' and R.
Thus they both increase the agreement on the transcript by the messages ma ,, mp,. Together
with the fact that in this case also wa,wp remain 0, we get,

AD(r)=Lla, +Lp, and AP'(r)=2.
Hence, the total contribution of all round in G for ® is |G| and for @’ is |G|". By definition,

}.

Assume without lost of generality that |14 ,—1—Ta,| > |TBr—1—TB,|. Note that |T4,_1—Ta,|
can be positive only when in round r Alice execute Step 2B In this case both the message that
she send and received in the round r was of size larger that what she erased. Thus we get that
for r € B,

A(I)(’r) > — max{‘TA,r—l - TA,’I’|7 |TB,7’—1 - TB,T

AD(r) > —ly, — g,
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and so the total contribution of all the rounds in B to ® is at least —|B|.

Note that the only place in the protocol where |T4[Ra] M Tg[Rp]|" can decrease is only
where |T4[R4]|" or |Tg[Rp]|" decreased, which is in Steps [3d| or In both cases we get that it
decreased by at most 2w, (res. 2wpg) and w4 (res. wp) decreased to 0. Thus, since 2wy > wy
(rep. 2wp > wp) we get that in total execute Steps or [3e| does not decrease ®'. Thus, ¢’
can decrease only where w4 or wWg increased, which by definition it can be by only 1 per round.
Thus for any round r € B we get that

AD'(r) > —4.

Thus the total contribution of all the rounds in B is at least 2|B|. By concluding the total
contributions of the round from G and B to ® and ® we get that

O(rg) 2 |G| = |B] and ®'(ry) = |G| - 2|B|".

C Proofs from Section [5l

C.1 Proof of Lemma [15]

We partition F into E, ..., Es, E\, ..., E5 where for every k € [5], F¥ is the set of messages with
hash collisions on Z, and E}, is the set of messages with hash collisions on the function Hj,
but not on Zj. Lemma [15| follows from the next 4 claims.

Claim 42. Vk € [5], Pr[|Ey| < 2yt] > 1 — e 6.

Proof. Recall that by definition in each round r,

Zp = (fo (Vi),0) if [Vi| > 2%

Note that if |[Vi| < 2“7 then there is no hash collision by definition. Next, consider the case
that |Vi| > 2“r. In this case, by definition,

| Z| = 2 = ol abr]+[ur]+9]log %1+67

which greater than v~ 1¢log %

We consider only the first y~!¢ hash chunks of Zj, each of size log % The total number of
such chunks (of Z;) in the entire protocol is at most v~ 't.

We first consider only oblivious adversaries, namely, ones that choose which bits to corrupt,
and whether the corruption is a toggle, insert, or delete, independently of the common random
string. Note that for any such oblivious adversary O, each hash chunk has a collision probability
of 4. The next claim bounds the number of such adversaries.

Claim 43. The number of ObliviOUf adversaries that make at most et errors in the first t bits
of the protocol, is bounded by 22¢°8 <t for ¢ < 0.05 .
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Proof. Each oblivious adversary can be described as a set of at most et elements, where each
element in the set is a pair of the form (7, 0) where i € [t] and o is one of the following operations:
Toggle, Delete, Insert 0, Insert 1.

Each such set S corresponds to the following oblivious adversary: Let ¢ be the smallest
number for which there exists o such that (i,0) € S. Corrupt the i'th bit that is sent as
instructed by o, and remove the element (i,0) from S. Continue recursively, while considering
the updated transcript (including the corruptions). Namely, in the recursion, when considering
the smallest 7 for which (i,0) € S for some o, we corrupt the i’th bit that is sent relative to the
(current) corrupted transcript. Namely, if the (current) corrupted transcript is of length k, we
consider the next bit to be sent to be the k + 1’st bit, even though the parties may have tried
to send many more (or less) bits, and a gap occurred due to many deletions (or insertions). In
particular, the set S may include multiple elements of the form (i,0) where o = Delete, and
hence S is actually a multi-set.

Thus, the number of oblivious adversaries is bounded by,

t t
t

@ =@

5et — 210g(%)et < 2210g(%)et )

O]

By the Chernoff bound (Lemma , the probability that there are > 2¢ hash chunks with a
hash collision, is at most ¢3¢, Note that a hash collision in a message of length ¢ corresponds
to at least y~¢ chunks with hash collisions. Therefore, for any oblivious adversary O, it hold
that

14
Pr[|Ex| > 2vt] < e s".
x

Using union bound over all < (:t) 4t < Q2elog et < eét possible oblivious adversaries, we get
that )

Pr[VO : |Eg| > 29t] < e7 6" .

X

The result follows. O
ay 4

Claim 44. Vk € [5], Prl|Bg| < 29] > 1— e "7 .

Proof. Consider the r-th message with hash, and assume VkA #* VkB. This message has w, bits
of hash. Thus, by Lemma under the uniform seed, it has a collision probability 27%r, and
hence under the 27%r-biased distribution, it has a collision probability of at most

1 (aly+log L ’VLM—‘
. gmur < grotelosd _ ] TR i

So the probability of having such a hash collision in a message of length ¢ is at most the

lo
each a € [r], we denote by

probability that { O‘gﬂ -‘ independent Bernoulli variables with probability v are all one. For
Y

and denote these Bernoulli random variables by X, 1,..., Xon,. Consider the set of all such
variables {X,; | a € [r],i € [ng]}.
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Since each message of length ¢ contributes at least aﬂ , their total number is at least —=rt.
ad

log log
__ay 7

t
By the Chernoff bound (Lemma , with probability > 1 —e 318 5 Jess then ligzt of them
Y

are 1. In this case,

|E~k| < Z fa <

a€lr]:Xa1=..=Xa,ne=1

14

Z Ng - = <

a€lr]: Xa,1=.=Xa,ng=1 Ng
14

Z na - max {a} S
a€lrl: Xa,1=.=Xa,ng=1 a€lr] | Ng
o log%

1

2ary . log 5
].Og% o

IN

= 2~t.

Claim 45. Vk € [5], Pr[|Ey| > 4yr] < e 37"
Proof. Consider a round with hash such that VkA #* VkB . Note that for a uniformly distributed
Ue{0,1}7,
Pr{fg (Vi) = f (V&) = 27 <.
Since |S]| =2C - w > 2C - log% we have that G(95) is v-biased. Therefore, by Lemma
Pr(fés) (Vi) = fés (VO < 27,

This, together with the Chernoff bound (Lemma , implies that the probability that there
are more than 4+r hash collisions is at most 67%7”, as desired. O

Claim 46. Vk € [5], Pr[|E| > 10yr] <2.27%
Proof. Let E,‘;‘ be the messages with hash collisions on Zj, that Alice sends. We will show that
Pr [|E,’€4]' > 5yr] <274

A similar equation holds also for Bob, and the result follows.

Given a set of massages received by Alice, which we denote by T = (mjg"cfi"e, . ,mgffi"e),
we denote a partition of its rounds {1,...,r} by p(T) = (r1,72, ..., 1) according to the following

process: Let 7o = 0. Suppose r; is already defined, we will define ;41 as follows:
We first define for every r € Q \ [r:],

ay — Qy;

where t, is the amount of communication Alice received until round r, and a, is the number of
rounds in which Alice sent a hash. In what follows, we abuse notation and often denote a,, by
a;. Similarly, we often denote ¢,, and U,,, by ¢; and U;, respectively.

We define

Ul.,,= min U,.
e\
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We next define
riy1 = max{r € Q\ [r:]|U, < v~ °U/,,}. (33)

We define Aa; = ar,,, — ar,, which is the number of rounds with hash in the 7’th regime.
We define At; = t; 11 — t;, which is the volume of the i’th regime. We define

a At;
Aai ’

U; (34)

which intuitively, would be the average message length if we glued together all consecutive
messages without a hash. Thus,

Ul <U; <~ °U;. (35)
Moreover, we argue that
Uiy 297°0;. (36)
To this end, let » > r; be the round that satisfy i/+1 = ZIZZ Suppose for the sake of
contradiction that U/, = % < v75U]. This, together with the fact that % <~ 5,
implies that
br—tic1 _ G —ai bt 4 TG ti —ti-1 < A5

Qr — Aj—1 Ay — Aj—1 Ay — G4 Qr — Aj—1 Q5 — Qi1

tr—ti—1

Since e < ’y_GUi’ , by Equation , we have that r < r;, in contradiction to our choice of
r.

We say that a regime (7, 74+1] is heavy if At; > %’yti, and we say that is light otherwise. In
what follows, we first argue that the total number of rounds in the light regimes is at most 2+yr.
We then argue that with probability at least 1 — 8r - 2*87%, the total number of rounds with

hash collisions in all heavy regimes is at most 5yr. The result follows.

Light regimes. We first show that the total number of rounds with hashes in the light regimes
is at most 2yr. To this end, first note that

1 1 1—1
At; < i = 27; At;.

Therefore, for any probability distribution (p, ..., pl;l) such that p; > 22%] for every j €
{0,1,...,7— 1}, it holds that

i—1
Ati S ijzi_j_l’)/Atj = Eij[Qi_j_l’yAtj].
§=0
Hence, there exists j € {0,1,...,7 — 1} that satisfies
At; < 2797y AL

For such j, we say that regime ¢ is directly controlled by regime j. Note that

U; > UL > (v T Ul > () T g,

2INamely, Z;;tpj =1 and p; > 0 for every j € {0,1,...,i — 1}.
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where the first and third inequality follow from Equation , and the second inequality follows
from Equation . Thus,

R e NS i—j—1 At - o
ok < i—"y—lt] < : z‘—f‘y—1 2l VD Aay <77 Mgy
Ui = (v )70 — @) Uy

Moreover, note that if there exists a series of rounds j = ig, %1, ..., &m = %, where each iy is
directly controlled by 4;_1, then

Aai =

Aai S ,.yi_im—l,.)/im—l_im—Q ... VZI_JACL] — /'yl_]Aa/‘]

In this case we say that regime ¢ is controlled by regime j, and denote this by j < 4.

Since, as we argued, every light regime ¢ is (directly) controlled by some previous regime 7, it
follows that for every light regime ¢ there exists a heavy regime j such that regime 7 is controlled
by regime j. Hence,

Z Aa; < Z ZAaig Z Zyi_jAaj: Z AajZWi_jgli Z Aaj < 29,

i€Light j€Heavy 1:5<1t jEHeavy j<i j€Heavy 1) <1 -7 j€Heavy

as desired.

Heavy regimes Next we show that with probability 1 —27%" the number of rounds with hash
collisions in all the heavy regimes ¢ is at most 3~r.

Consider all the regimes that satisfy t;11 < 7. In these regimes in total there are at most
~r rounds with hash. Thus it suffice to show that w.h.p for all the heavy regimes with ;11 > yr
there is a total of at most 2vr rounds with hash collisions.

To this end, we show that for each such heavy regime 4, the probability that there are more
than 2yAa; hash collisions, is at most 4 - 277", Given this, the claim follows since > Aa; < r
and 7-4-277" < 274 together with a a straightforward union bound over all < r heavy regimes.

We will use the following claim.

Claim 47. For any adversary and heavy regimes between the t; to t;11 bits of the protocol, the
probability that the regime has more than 2yAa rounds of hash collisions, is at most 4.2 i

Since we consider only regimes where ¢;11 > vr, the result follows.

Proof of Claim[{7. For each oblivious adversary, over the i-th regime, the number of hash bits
of any message in this regime is

—t

tr / 1
conr | ' 19log 146 _ tr — by - -
gur > 2maux /eQn(r—1] 108 ar—a,; og 3 _ 64’7 9 max T > 64’7 9Uz/ > 64’7 3Ui
r'eQNr—1] Gy — Gy’

When the first inequality follows from the definition of w, and the latter inequality follows from

Equation . Thus, each message has at least 64y~2U; hash blocks of size log% < % We

consider only the first 64y~ 2U; blocks for each message. The number of all such hash blocks is

-2
647_2U1~Aai = 64’7_2Ati > m
where the second equation follows since in heavy regimes ;11 = t; + At; < (2v + 1)At;. Since
we consider an oblivious adversary, the probability of having a hash collision in each block is
~. Hence, by the Chernoff bound (Lemma , the probability that more than 2v fraction of
them have a hash collision, is at most 287 i1, By union bound over all < 2%+! oblivious
adversaries we get that with probability < 2-(B7 I =Dtivs < 97 Mit1 there are less then 2vAa;
rounds with hash collisions. In particular, the result follows. O

> 24y %ty

O]
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C.2 Proof of Lemma [16l

In the proof of Lemma [16| we use the following claim.

Claim 48. For any R € N and any monotone increasing series T = {t,}2_|, consider the

continuous version of T, defined by setting to = 0, and for any r € N and n € [0,1) setting
trgn = (1 =)ty + ntpq1. Let
@ tr —1
St(a) = / max {ln b } dr
0 b<r r—>b

Va € Z : St(a) <e-tg,

Then

where e is the base of the natural log.

The proof of this claim is deferred to Appendix In what follows we use Claim [4§] to
prove Lemma

Proof of Lemma In what follows, we use notions (such as u, and t,), defined in Sec-
tion with respect to the protocol H%.

To bound ), cna ur define the series T = {#;} such that for any r € QA let t;ﬂ = ¢4
Namely, ¢/ is the amount of communication (in bits) that Alice received until (and including)
the round where she sent the i’th message with a hash.
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Y= % o~
U, = max log ——"¢
reQA A B
tA
< max log | 2—1—T"—
- TEZQ:A reQAN[r—1] 8 < ad +1— af,)
a+1 H_ A
< Z max / log 22— da
reoA reQANr—1] Ja=qA a — ar,
a;+1 2 at! — at?
= Z max / log ——*——"da
reoA reQANr—1] Ja=qA o a—ay
at+1 / A
A T at, — at?;
= lo + max / log ————"da
|Q ‘ g Z r'eQAn[r—1] a=aA & afa‘ﬁ
1 a ot — atd
- |QA|log +— Y max / In a0 g
In2 ey T’EQAﬂ[rfl] a=aA a— a,,
at, — at?
< Ao + / max In—2—" %da
- |Q | g Z a=a# r'eQAn[r—1] a—a;f‘,
< oM + Z / Rl A
0 max —2 % %da
- g a=a# b<a a—>
2 1 |QA|+1 ot — ot}
= Q% log = + — max < In —2 bld
a In2 b<a a—b

2
< |QA|logE+l—saT/(rQAr+1>
2 1
< Q% log = +ﬁatA

The first equation follows from the definition of u,.. The second equation follows from simple
arithmetics (and the fact that a2 —a% > 1). The third equation follows from simple arithmetics,
and in particular, from the fact that for every a € [a2, a! 4 1] it holds that

T

t4 —

/ A
ta_t,r,/

A= A A
a—ay  ar+1—a)

a

The forth equation follows from trivial arithmetics (multiplying and dividing by «). The fifth
equation follows by taking the component % outside of the summation. The sixth equation
follows by replacing the log function with the In function. The seventh equation follows from
the fact that moving the max inside the integral can only increase the expression. The eighth
equation follows from the fact that for every ' € @4 N [r — 1] it holds that b £ a/ < a. The
ninth equation follows from basic properties or the integral. The tenth equation follows from
the definition of Sa7(|Q4| 4 1). The final equation follows from Claim

Similarly, one can argue that

1
—atB.

2
B
Zur§|Q |1Oga+1 9

reQb
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Thus,

2 1
< 24 - Hy
TEEQUT < |Q|log ot 1n2aCC(HA)

Recall that the adversary D for the protocol IT sends the exact same messages as A does,
excluding the hash values.

By definition of A and D, for any round r ¢ @, the length of the r’th round message is the
same for both Hﬁ and IIp. For rounds r € () we have that the messages in Hﬁ and Ilp differ
by 5 hash values. If there were no insertion or deletion errors on these hash values, then each
of them would have been of size 2Cw, + w, + (w, + 1) = (2C + 2)w, + 1. Thus,

CC(IT%) — CC(Ilp) — e
> (10C + 10)w, + 5
reQ

— 3.(10C + 10) <[am +[w] +9log =] + 6> +5
req v

IN

IN

1
g (10C + 10) <a€7~+ur+910g+17> +5
reQ v

= (10C +10)a > 6+ (10C +10) Y up + > ((900 +90) log ’1y + (1700 + 175))
reQ reqQ reQ

< (10C + 10)aCC(IT) + (10C + 10) <|Q| 1og§ + lnlzaccm)) 4 ((900 +90) logfly + (1700 + 175)> 0|

(10C 4 10)

= <(100+10)+ —

1 1
) aCC(I) + <(100 +10)log — + (90C + 90) log S+ (180C + 185)) Q|

IN

1
50Ca - CC(II) + 600010g§ Q| .

C.3 Proof of Claim (48

Fix any R € N and any series T = {t,}/*_|. For each a € R* let P(a) be the set of points b < a
that maximize %.

Claim 49. For anyr € Z andn,n’ € (0,1), it holds that r+n € P(a) if and only if r+n' € P(a).
Proof. First consider the case where r = a — 1. In this case,

ta_ta—1+77_ta_(l_n)tafl_nta—t —ta—1
= = la a—1 -

1—n 1—n

Since this expression does not depend on 7, we conclude that r + n € P(a) if and only if
r+n' € P(a).
Now consider 7 < a — 1. In this case, basic arithmetics shows that
to —treyg  ta— (1 —m)tr —ntr1
a—1—1 a—1—1
— 77(@—7“—1) ta_tr+1 + <1_ W(G—T—1)> to —tr

a—r—mn a—r—1 a—r—mn a—r
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Therefore, % is a non trivial convex combination of t” t“’f and ‘=t Thus, if 7 € P(a)
and r + 1 € P(a), then for any n we get that r +1n € P(a ) On the other hand if r or r +1
are not in P(a), then it must be the case that r + 1 ¢ P(a) for every 7, since any (non-trivial)
convex combination of any two elements is smaller than the maximum of these elements. [
Claim 50. Va € RT,Vb € P(a), Sr(a) < Sr(b) + (a — b) In Laziv),

Before proving Claim we prove that this claim implies Claim We need to prove that
Va € N,

St(a) <e-t,
To this end, consider the following recursive process. Let ap = a and a;+; = min{P(a;)}. By
Claim [49) we have that a;;1 is an integer, and since by definition min{P(a;)}) < a;, we conclude
that a;41 is in {0,1,...,a; — 1}. Thus the process must end after k¥ < a steps with a; = 0.
Therefore, by a recursive application of Claim

e(t i —t i )
Sr(a) = Sr(ag) < S7(0 Z a; — aiy1) ;_7&1?
(A
k
e(ta; — ta; 1)
< 0+ — - -
> Z:(a az+1) a; — ais1
i=0
k
= > elta; — ta,,)
1=0
= et L) =e€-tg,

as desired.
It thus remains to prove Claim

Proof of Claim Fix a € RT and fix b € P(a). We say that a point ¢ € [0, a] is interesting
if there exists d € R such that ¢ is the largest element satisfying d € P(c). Claim implies
that there are at most 2a interesting points.

The proof is by induction on the number of interesting points. The base case, when there
are no interesting points, holds since in this case a = 0 and S(a) = 0.

Consider the case where b = max P(a), and let ¢ be the interesting point before a.

We now show that b € P(r) for all » € [a,c). To this end, Fix such r and let d € P(r).
We have that max P~1(d) is an interesting point that is at least » which can be only a. Since

b = max P(a) we have that d < b. Since r ¢ P(a) we have that ‘=l < La=  We can write
% as a weighted average of % and % as follows
to—ty a—rteg—t, 10t —1
a—b a—-ba—-r a—-br—>b "

Since this average is greater than tgfr b= Z” is the larger elements in the above

, we have that

average. Assume towards contradiction that b ¢ P(r). Thus t;:tdd > t;_f}” and so
te — ta a—1r to—t r—d t.—1ty
a—d  a—-d a-r a—d r—d
- a—r_ta—tT r—d‘t,«—tb
a—d a—r a—d r—>
S a—r.ta—tr r—b.tr—tb
~ a—-b a-r a—-b r-—>
_ ta —
- a-b’
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When the last inequality follows from increasing the weight of the larger element in a weighted
sum. This contradict the fact that b € P(a).

We got that for every d and r > ¢ we have that f(r) = t::zb t;:fid > 0. From the continuity
of f around ¢, we have that f(c) > 0, and so b € P(c). Thus, by induction hypothesis Sp(c) <
St(b) + (¢ — b) In‘==t2. By simple calculations, and using the fact that [ In Adx =zlnet GA

t, —t

Sr(a) < ST(C)—l-/ In ;—b dr
< s+ -y [Tt
_ ( ) ( — 1) e(ta — tb)
= S7(b)+(c—b)In + (a—0b)In p— (c—b)In S
e(teg — 1t
— () + (a— b)ln(aa_bb)
Now consider the case that max P(a) = ¢ # b. By definition % = lazle gpd so lazle =

te=th  First we observe that b € P(c). This is the case, since otherwise, there was d such

c—b °
that tc_td > tc_zb, and so tzitd > t“_zb, contradicting the fact that b € P(a). Hence, by the

1nduct10n hypothesis

St(c) < Sr(b) + (C — b) In Qg(t;__btb)
By the previous case we saw that
tg — tc
St(a) < Sr(e)+ (a—c)ln e(a_c),
and we get
Sr(a) < Sr(e) + (a— ) o1
e(te —tp) e(ty — te)
< — —
< Sr(b)+(c—0b)In - +(a—c¢)ln o
tg — 1
= Sp(b) + (a—b)In e(a — b")

D Proof of Theorem 17

Proof. The fact that the number of bits sent in II’ is at least t,,;, follows from the definition.
We note that a priori it may seem that the parties may not agree on which of the messages
are system messages. However, in the following claim, we show that this is not the case.

Claim 51. Throughout the protocol the parties agree on k and {s;, Pi,m}le.

Proof. Assume without lost of generality that Alice received the last message of the protocol,
and let K be the last value of the variable k of Alice. We first show that both parties agree on
the values of {s;, P;, ri}fil.

Let mf, cee m‘?( be the system messages sent by Alice (including echoes), and let m’lB e mﬁ,
be the system messages sent by Bob (including echoes). The fact that mf} cannot be corrupted,
follows from the following claim.
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Claim 52. |m#| > 12edlog dCC(IT').

We defer the proof of Claim [52] for later.

Now consider the case that when Bob receives the message m‘?( from Alice, his variable
k satisfies |m‘;}| > b*W. In this case Bob will parse mf‘( as a system message. Since by our
assumption, Bob does not halt, then both parties agree on {s;, P, ri}fil.

Now consider the case where |m#:| < bW. In this case, we have that k > K, and thus the

message m% was sent before m4. Since [m%| = |m#| > eCC(IT'), we have also that m% hasn’t

been corrupted. Thus, Alice will parse mf} as a system message, and since she does not halt,
we have that both parties agree on {s;, P;, ri}fil.

We next argue that Bob does not send the message mf} +1- We assume towards contradiction
that Bob does send this message. Since |m% | > |m#| this message hasn’t been corrupted,
and hence Alice parses it as a system message. Since by our assumption, Alice does not respond

with a system message, we conclude that there were more than m fraction of errors in the

rst 5 1ts of the protocol. serve that /mi| < - , which follows from the fact
first 16TV bits of th 1. Ob hat [m#| < 6b5—'W, which follows f he f

that
K—1

\m?}| = ‘(81,...,SK,Pl,...,PK,Tl,...,TK,l)‘ =1+ Z3b]W§6bK_1W
Jj=0

Thus, the total number of corruptions is at least,

SOEW 1
>
bdlogd ~ 12dlogd

Im| > eCC(IT') |

in contradiction.

We conclude that both parties send K system messages. Since the parties agree onry, ..., rg,
they agree when the system messages were sent. In particular for each ¢ < K, they both send
the same i’th system message in consecutive rounds. Thus, throughout the protocol the parties
always agree on k and {s;, P, i }¥_;.

Proof of Claim[53. First we note that the total communication in Alice’s view, denoted by
CCA(ITy), is at least (1 — €)CC(IT'y), which in turn is at least CC(IT,). Since each system
message that Alice received is either an echo of a system message she sent, or was echoed by her,
the total communication of system messages according to Alice, is at most 2 Zfi 1 \mf‘\ All the
non-system messages she stores in T, possibly without their last bit. Thus, the total volume
of non-system messages according to Alice is at most 2|T4|. Finally, since Alice does not send

any more system messages after m‘;}, we have that ]TA] < 4%186%. Putting it all together, we
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get,
CC(ITy) < 20CA(IT))

K
< AT 44D Iyl

i=1
bKW K-—1 7 A
< 4- 4 1 YW
- 4OOCoz+ . +Z
=0 7=0
b K-1
< pE- 1W+24Zb’
=0

< <+8) ZSb’

4b
(M + 8) |mit|

Im%|
12edlogd’

IN

where the last inequality follows from the fact that € < b>2and a< 32—100.

10ad logd?’

Simulation. We next define an adversary D for the protocol II that satisfies the requirements
of Theorem [17

To this end, we first define an adversary A’ for the protocol II”* that emulates the adversary
Ain II'. The adversary A" emulates (in his head) a transcript corresponding to IT', by emulating
the system messages (using the shared random string) and the bits added to long messages (as
in IT’), and applies A to these messages. The corruption strategy of A’ is the induced corruption
to the messages corresponding to IT7.

The fact that the adversary A’ is well defined follows from Claim which guarantees that
the parties in II'y always agree on the string used as shared randomness, and on the rounds
where system messages are sent.

As defined in Section [5.4] we let D be the adversary for the protocol II, that sends the exact
same messages as A, excluding the hash values.

Note that by definition, when II’y ends, both Alice and Bob (separately) can efficiently
compute their view of the transcript IIp. Moreover, the total volume and number of messages
corrupted by D are bounded by those of A’, which in turn are bounded by the volume and
number of messages corrupted by A.

Communication Complexity. We next bound the communication complexity of II'y. We
will have 3 budgets: O for the original messages of I, B for the extra bit added to messages
of length > b*W, and S for system messages. Thus,

coM’y)=0+B+S.

Note that by definition B < %
We next argue that it suffices to prove that

O+ 8 < (1+24a) - CC(TTH)).
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This follows from Lemma |16 and the assumption that W = aityn > é, as follows:

CC(ly) = O+B+S
1
(14 5 (1 + 24a) - ce(’)

IN

IN

600C log *
(14 a)(1+ 24a) ((1 +50Ca)CC(Ip) + (e + dm”) CC(H’A))

< (1+80Ca)CC(Ilp) + 1201Ca - CC(ITYy) .
Thus we got that

CC(IT) < % . CC(IIp) < (1 + 2600Ca) - CC(IIp)

as desired.

Note that @ = CC(IT%,). Thus, it remains to prove that
S < 24 - CC(IT%,) = 240 - O.

Denote by
/ / /
My, My, M, My, ..., MK, My

the system messages in II', where for every i € [K], the message m/ is an echo of m;, and thus
these messages are identical (follows from Claim .
Note that for every i € [K — 1], it holds that

Imi1] > fma| + ..+ myl,

and in particular,
[ma| + ..+ [mr 1| + [mk| < 2lmgl.

Moreover, note that when mg is sent (in step |4(e)iil), it holds that
Img| < 6b5 W < 600’ < 600,

where O’ is the local transcript corresponding to II" after the party sending my will send its
next message in II. Thus, we conclude that overall

S=2\mi|+...+2mg| <4mg| < 24a- O,

as desired.

Round Complexity. We denote by K the number of system messages that were sent in IT’
by each of the players. Note that

R(ITy) = R(IT%,) + 2K = R(Ilp) + 2K.

Thus, it suffices to prove that
K <log, CC(Ilp).
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Since the parties send the K’th system message, we have that CC(IT%,) > l’;;g%. This,

together with our previous bound on the communication complexity of IT', and together with
our assumption that a < ﬁ implies that

K < log; (800CaCC(ITH4)) +1 <
log;, (1600CaCC(ITH,)) <

logy, (1600CaCC(ITy)) <

log;, (1600Ca(1 + 2600Ca)CC(Ip)) <
log, CC(IIp) ,

as desired.

Bounding hash collisions. It remains to prove Item [5] in Theorem To this end, we
finally define

T = {xin“}ze[f)],reNv
where each z;, is defined as a function of (si,..., sk, 71,...,7%) that were sent in IT" up until

the point where round r of IT* is simulated.
Fix a round r and let n be the maximal such that r, < r. We partition s, into 5 equal

parts@

Sp = (Sn,1s--+»5n,5),

where for each i € [5], the string s, ; is used to generate x,;, the seed for the i’th hash function
used in round r, as follows: We define

L2 <IG<sn,i>)1/3
2 Y

where G is the pseudo-random generator function from Lemma Thus |G(sn;)| = 2L3.
Partition

G(Sn,i) = ($n,i,1> cee 7xn,i,L)
where for each r € [L], it holds that |z, ;.| = 2L%. We define ;. £ Tpi, for every r € [L].
We remark that the protocol never uses x;, for » > L, however we define z;, for » > L to be
uniform only for the simplicity of the analysis (to avoid dealing with edge cases).

Recall, that in Protocol IT*, it suffices to use x; of length 2t2 where t, is the total commu-
nication up to round r in IT*. This is the case since we used the hash function from Lemma
which takes as input a string {0,1}=" to a single output bit, using a seed of length 2L. In
round 7 of the protocol II*, we applied this function at most ¢, times on inputs of length at
most t.. Hence, in total we need a seed of length 2¢, - t, =2 - t%.

Thus we need to prove the following claim.

Claim 53. L > t,.
Proof. Note that it is always the case that
|sn| > W = atpin > 250C log d,
where the latter follows from the definition of ¢, (see Equation ) This implies that

|sn,i| > 50C - logd,

22We assume without loss of generality that 5 divides |s|.
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which in turn implies that

AN 1/3 50-logd\ 1/3
LA (|G(;n,z)‘> > <2 5 > > d2.

Thus, if ¢, < d?, then indeed ¢, < L, as desired.

Therefore, assume that ¢, > d?. By the protocol,

400C o 400C
t, >

n:bnil > I tr;
[3n Wz——tr=z—

where the fact that ¢, < % follows from the definition of the protocol II', and the latter
inequality follows from the fact that d > & (see Equation (). Thus,

NN 1/3 00t \ 1/3 1007\ 1/*
pe (19505 () (255) s,

where the last inequality follows from a straightforward calculus, and the second to last in-
equality follows from the fact that % > \/f,, which in turn follows from our assumption that
ty > d>.

O

Having defined the random string z and the adversary A’, we are now ready to state the
following lemma, which immediately implies Item [5[ (as we explain after the lemma statement).

Lemma 54. Consider the protocol H%, with the random string x defined above. Then
1. With probability > 1 — 20 -2 34" |

|E\ Eo| < 357t

8
2. With probability > 1 — 80r - 9= ,

|E\ Eo|" < 1007r.

Recall that E \ Ey is the set of all messages with a hash collision.

The reason this lemma implies Item [5| follows from the fact that the volume of messages
with hash collisions in Ilp is at most the volume of messages with hash collisions in HZ},, and
the communication complexity in II%, is at most twice the communication complexity in IIp
(follows from Item [2| together with the bound on «). Similarly the number of rounds with hash
collisions in Ilp is at most the number of rounds with hash collisions in Hﬁ,.

In order to prove this Lemma, we need to prove that the random string x and the adversary
A’ have the following properties.

Claim 55. For every i € [5], every k € N, and every r1,...,ri € N, and every ro € N, the
distribution z(s1, ..., Sk, T1,...,7k), where {s;}¥_| are uniform, has the property that {z;; }r>r,
801r0

18 27 d -biased.

Claim 56. The adversary A’ (defined above) for the protocol TI" satisfies that for any t €

[%, CCO(I1%,)], the volume of corrupted messages in the first t bits of I’ is at most ﬁgd'
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proof of Claim Let n be the maximal that satisfies 7, < ro. By our construction the
variables can be partitioned into disjoint sets

{Zirtrorg = {ziphredt Uda 1202 U Ui b

It suffices to prove that for every j € {n,...,k}, the joint distribution of {;U@T}:j:*rlﬁl is

tr
2~ 10a-biased (since it is independent of all the rest).

According to the protocol, ¢,, is at most %, and recall that d > b/a. Thus, for any
7 > n we have

400Ca "W 400C« 400C
: Z t'l‘o Z 7t7‘0 .
b 400C« b d

80Cty,

|sj| = W > 0 =

Hence, the seed s;; is of length at least . Since sj, and hence s;;, is independent of all
the other seeds {s;}+;, then even conditioned on any fixing of the latter, by Lemma the set

i 80t
T oSOt .
{zir},Z, 41 18 2777 -biased, as desired.

O

Proof of Claim Fix some t € [%, CC(II™)]. First consider the case where ¢ > $b5 1,
where K is the final value of & in the protocol. Since there are at most eCC(Il'y) errors on the
first ¢ bits, we have that the fraction of errors is at most

€CC(I) _ e(1+2600Ca)CC(IIp) _ 2:CC(ITY) _ 2e bW b !
t - t - t - %belW "~ 100Co ~ dlogd’

where the first inequality follows from our bound on the communication complexity, the sec-
ond inequality follows from the fact that 2600Ca < 1 and CC(Ilp) < CC(IT¥), and the last
inequality follows from the bound e < bdf‘m.

Now consider the case that ¢ < %bK_IW and let k be such that %bk_IW <t< %ka. By
Claim the parties do not halt immediately after the (k + 1)-st system message. Therefore,
on the first %ka bits of the protocol there were less than %ka . m errors. Thus, the
fraction of errors on the first ¢ bits is at most

11k 1
20°W - paroga 1

FOF1W ~ dlogd’

O
We are now ready to prove Lemma [54] The proof follows by an adaptation of the proof of
Lemmal[l5] presented in Appendix[C.1] In what follows we use the notations and definitions from
Appendix Recall that the proof of Lemma follows by proving four claims: Claim
Claim Claim and Claim
Note that Claims [44] and [45] still hold with respect to our new hash functions, since these
claims do not depend on the public randomness. Thus, to prove Lemma it suffice to prove
an adapted version of Claims [{2] and [£6] stated below.

Claim 57. Vk € [5], Pr(|Ey| < 5yt > 1—4.27a".

8

Claim 58. Vk € [5], Pr[|Eg|" > 167r] < 8r- o=,
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We now fix k. Consider a random fixing of the shared randomness z and the private
randomness 74 and rp (corresponding to Alice and Bob, respectively). This determines a
transcript T for Hﬁ (with z,74,7p). In any non-corrupted round r with hash in 7', we consider
the vector fg:: (Vi) (where Vi is determined by x,74,7rp), and divide it into hash chunks of size
log %

We define S = Sy .., to be the set of hash chunks, where for every non-corrupted
message of length ¢ with hash, sent in the r’th round of the protocol (determined by (x,74,75)),
S contains the first g(¢) hash chunks corresponding to ff: (V&) (where Vi corresponds to
(x,74,7B)), for some g such that g(¢) < 2wr/log%. Let S[t',t] = Sy zrarplt’,t] contain only
the hash chunks in S that were sent after at least ¢’ bits were sent, and at most ¢ bits were
sent.

The proofs of Claims and [58| follow from the next technical claim.

Claim 59. Let S,t,t' be as above, and let N be an upper bound on the number of hash chunks
in S. Then, the probability that there are more than 2yN chunks with hash collision in S[t',t],

18 at most 2%'5 (e_%VN + 2_%)

Proof. Fix the private randomness r4 and rpg of Alice and Bob, respectively. Given 5 subsets
(of rounds with hash) Ji,...,Js C [2], we denote J = {J1,...,J5}, and define II"*/ to be the
protocol that acts like II™ with the following changes: For the r-th round with a hash, the
protocol IT":7/ acts like there is a hash collision on the variable Vj if and only if r € J;. Thus,
in a sense, the protocol I’/ does not depend on the public randomness z.

We next bound the number of hash chunks in S[t,¢], corresponding to the transcript 1177,
that have collisions with respect to the public randomness . We emphasize that the protocol
1% is independent of whether or not there is a hash collision with respect to x, yet in S[t, ]
we count the number of hash collisions with respect to z.

Let (I17)" denote the protocol obtained by simulating , as was defined in Section @
Namely, (IT17)’ is defined as Il was, however rather than defining it with respect to IT* it is
defined with respect to II"/. Note that the rounds 71, ...,r; that are used to generate z in
(I17)" are independent of the random seeds s, ..., s,. This is the case since the behavior of the
protocol I/ does not depend on the random string z.

Therefore, for any oblivious adversary O that make at most m errors on the first ¢ bits,
when the random string x is uniform, by the Chernoff bound (see Lemma , the probability
that there are more than 2yN hash collisions (with respect to z) in S in the protocol Hg’J, is

H’H,J

at most e 57V, By Lemma when 2 comes from a 2~ "¢ -bias distribution (as opposed to

uniform), this probability is at most e=57N + P

By Claim 43| there are at most 2% oblivious adversaries that make at most ﬁgd errors in
the first ¢ bits. By the union bound over all such adversaries and over all 9 possible sets J,

we have that for any such adversary and any set J, the probability that there are more than
2vN hash chunks with hash collisions in II* is at most

Q%H%Ot(e*%'ﬂv + 27407#) < Z%t(e*%VN + 2*4OTH) :

We show that this bound holds also for H:’Z‘,. Let O describe the messages that were corrupted
due to the adversary A’, and let J describe the rounds with hash collisions. Note that by
Claim O corrupts at most ﬁgd bits from the first ¢ bits of the transcript. By definition,
H% acts exactly like Hg"].

Hence, we conclude that the number of hash chunks with hash collisions is at most 2vN, as
required. O
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We are now ready to prove Claim [57]

Proof of Claim[57. Let S = Sy, +p wWhere g(¢) = 4y~ 1. Namely, S contains the first y~1¢
hash chunks of each message of length ¢ that was sent with a hash. This is well defined since
2ur > 4~ 1log %Z.

Let S; = S[z%t, 37)- We have that | S| < ﬁ By Claim |59 the probability that S; has
more than % hash chunks with hash collisions is at most

13t t 40t
22id (e_3~2i+1 + 2_d2i+1) <
13t 4ot

22i4d <2 .2 d2i+1) <
9. 2(13—%)ﬁ —9. Q—ﬁt )

Consider all the messages that were sent after 2,% bits were sent and before % bits were sent,
and consider the volume of all these messages for which all the hash chunks in S have a hash
collision. Thus, with probability > 1 — 2 - 2_2T7dt, we have that this volume is at most g—f By
the union bound, we have that the probability that for any 0 < ¢ < log% the above holds is at
least,

log% 1,
1= 22790 > 142 0 —1-4.277",
=1

Moreover, in the first 10’; + = 7t bits of the protocol, the volume of Ej, is clearly at most ~t.
2 ]

Thus, with probability > 1 —4- 9="2t the total volume of hash collisions is at most

log%
vt
v+ Y 5 S
i=0
]

Proof of Claim[58 The proof of Claim [58| follow the footsteps of the proof of Claim [46] Recall
that in the proof of Claim we bound the number of hash collisions on messages received
by Alice, and messages received by Bob, separately. For the former, we partition the messages
received by Alice into regimes, and classify some of these regimes as heavy and the others as
light. Loosely speaking, a heavy regime is one where the number bits that Alice received during
this regime consists of a large fraction (%) of the bits that Alice received so far. We showed
that the total number of hashes in the light regimes is bounded by 2vr. The same is also true
in our setting.

8

Thus, it remains to prove that with probability 47 - 2_%, the number of rounds with hash
collisions sent by Alice in all heavy regimes is at most 6yr.

To this end, for any heavy regime we let ¢ denote the number of bits that Alice received in
the protocol until the end of this regime. As in the proof of Claim (6], we distinguish between
the case where t > «r and the case where t < yr. As we proved, the number of messages with
hash that Alice sends overall in all the regimes for which ¢ < yr, is at most yr.

748
Therefore, to prove that with probability 4r - 2_7T, the number of rounds with hash colli-
sions sent by Alice in all heavy regimes is at most 6+r, it suffices to prove that with probability

8T
4r - 2_777, the number of rounds with hash collisions sent by Alice in all heavy regimes for
which ¢ > ~r is at most 5yr. Namely, by the union bound, it suffices to prove the following
claim (which is an analog of Claim .
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Claim 60. For any adversary and any heavy regime, the probability that the regime has more

than 5yAa rounds of hash collisions is at most 4 - 2_%, where t is the number of bits that
Alice received in the protocol until the end of this regime.

Proof. Fix an adversary and a heavy regime. Let At be the volume of messages in this regime
(i.e., messages received by Alice in this regime) and let Aa be the number of messages that Alice
sent with hashes in this regime. Let U = A . This definition of U is similar to Equation ([34)).

Let S be the set of the first 64720 hash chunks in each message that Alice sends with hash
in this regime. There are enough bits of hash in each such message since,

gwr _ oM/ eQnir—1) 108 ar_ar +9log 5 +6 =647"? max et 647U’ > 643U ,
reQnr—1] Qr — Qpr -
where the latter is greater than 64y~2U - log %, as desired, where U’ is defined in the proof of
Claim and where the latter inequality follow from Equation . Thus, the number of hash
chunks in S is
S| = Aa - 647720 = 64y 2At > 3297, (37)

where the latter inequality follows from the definition of heavy regime, which asserts that
At > It

Let &k = Tlog 1. For each 0 <1 <k, let S; be the part of S that was sent by Alice, after
receiving from Bob at least 54+ bits in this regime, and at most o7 L bits in the regime. Let S’ be
the remaining part of S. By Claim we have that the probabﬂlty that in each S;, there are
more than 2v|S;| + 55| S| hash chunks with hash collisions is at most 93id! (e_&%w' + 2_%)

By union bound the probability that for all ¢, the number of hash collisions in S; is at most
2918 + 3 1S] is,

22211321 (e 321‘ |+2 214*811) < 222121 (e 5321 + 2 3?;)

=0
k 13 20t
< 2. 22’272
i=0
k Tt
= 2) 2 @
=0
Tt
< 4.2 a2k
— 4.2—7E7t7

where the first equation follows from Equation , the second equation follows from the fact
that d is a large enough constant, the third equation follows from basic arithmetics, the forth
equation follows from the fact that the series is dominant by a geometrical series, and the latter
equation follows from the definition of k.

In this case, the number of chunks with hash collisions in Sy, S1,..., Sk, is at most

k
) (2v|sir + 57181) < 24181+ 2918] = 48]
=0

Therefore, after receiving 5z bits from Bob, at most 4+ fraction of the messages with hash sent
by Alice have a colhslon ThlS implies that the number of messages with hash collisions sent by
Alice, after receiving 5z bits from Bob, is at most 47Aa.
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To finish the proof it is suffice to show that the number of messages with hash collisions
sent by Alice in this regime, before receiving 2% bits from Bob, is at most yAa.

Consider the first vAa rounds where Alice sends a message with hash in the regime , and
let r be any round proceeding these rounds where Alice sends a message with a hash. Let ¢,
denote the number of bits received by Alice throughout the protocol until round r. It suffices
to show that ¢, > 2%

To this end, let ¢ denote the number of bits received by Alice before this regime, and let o’
denote the number of rounds in which Alice sent a message with hash before this regime. One
the one hand, By Equation ,

Gt—t/)
U > oty = 201
=7 Aa

One the other hand, by the definition of U’,

o =ttt
~a,—a ~ '

vAa

Putting those together we have that ¢, —t' > ~47(t — ') , and hence

t
trzv7t—v7t’+t/zv7t=27,

as desired.

E

E.1

Proofs from Section [Tl

Proof of Claim [20]

Proof. We define IT' to simulate IT with the following changes:

1.

If a party receives a message m of length < a~! then it interprets this message as a
message from II.

. If a party receives a message of the form (0,m) of length > a~!, then the party interprets

this message as receiving m according to the protocol II.

. If a party receives a message (1,m) of length ¢ > a~! then it does the following: Let

t denote the total length of all the messages that were sent so far corresponding to II.
If the message is 1%**Lo then it terminates the protocol. Otherwise it sends 1¢, where
¢ =min{B~ W dat + Lo}.

Loosely speaking, these messages are “padding” messages, and are appended to the tran-
script of II' to ensure that the transcript of II can be recovered from the first (1 — 2a)-
fraction of bits in the transcript of IT'.

. If the protocol II instructs the party to send a message m of length < a~! then it simply

sends m.

. If the protocol II instructs a party to send a message m of length > a !, then the party

sends (0, m).
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6. If the protocol II instructs the party to terminate then the party sends the message 1,
where ¢ = min{8~1¢',4at + Lo}, where ¢ is the length of the received message and t is
the total communication of the messages from the original protocol.

We first note that II' is (v, 8)-smooth, since adding a single bit to a message can cause that
after a message of length ¢ there will be a message of length at most % +1< é.

We next bound the communication complexity of II'. We start with a lower bound. To this
end, note that long messages that start with 1, are sent only after the simulation of II ends.
Thus at least CC(II) bits are communicated prior to that. Moreover, since the protocol ends
with a message of the form 1¢ for £ > Ly, we have that CC(II') > CC(II) 4 Lq.

We next upper bound the communication complexity of IT. Since the messages correspond-
ing to IT are padded with an extra bit only if they are longer than o~ !, the total length of all
the messages corresponding to IT is at most (1 + «)CC(II). Since the length of all the extra
messages, except the last message, creates a geometric series, their total length is bounded by
%. Thus the total communication complexity of IT’ is

1
CC(IT') < (1 + a)CC(I) + (4aCC(IT) + Lo)(1 + ﬂ) <1+ 13aCC(II) + 3Lg .
We next bound the round complexity. Since all the extra messages, except one, create a
geometric series, there total number is bounded by

10g%(4aCC(H) + L) < log% (CC(I1)) + log% Ly.

Thus,
R(IT') < R(IT) + 10g%(CC(H)) + log% Lo+1.

Finally, since the total length corresponding to messages of II is at most (1 + a)CC(II),
and the extra messages are of total length at least 4«CC(II), we have that the total length of
messages from the original protocol are at most 1115%‘ < 1 — 2« fraction of the communication
complexity of II'. Thus, if only the 1 — 2« prefix of II' was encoded correctly, we will be able to

decode the messages of II correctly.

O]

E.2 Proof of Claim 21
Proof. We first verify that e, ¢ and § satisfy the conditions of Theorem To prove the

asymptotic bound on e we will show that % = Q(a3+$) and o’a?p = Q(a3+§) as follows
o? Q( oo ) 0 oot Q o/at 0 aBat Q( 3+g>
= = = _— = —_— = (8] of y
bdlog d dlogd log L log <1og i) log” L log 1 log <
v «

1 = 1
dalB=d oty =Q <a3+a’> )

We next verify the asymptotic bound on €,

= (aa’3) .

/ / / 13

€:Q<d1a1>:Q aq _ _q 40404 :Q<lao;1>

0% 5 log % log (logla> log (oz_?> log < 11> %% o
aao! «2a’
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We conclude this item by bounding § as follows

36
_ 0 a 361360 _ O(L)
5—7—2360§aa =q ‘o,
Items l I and |§| follow trivially. To prove Item I it suffices to show that 8 < = d2, indeed,
1 a a S a B aa? - a _ 5
Soud? 5log2$ 5 (4 log L _|_4())2 " 5(2 log é)Q 320log” L = 320log® L '
To prove Item [5| it is suffice to show that ~ g . Note that ~ <3 @ Tog I’ and thus 'ylog < a,
which in turn imply v < log T = é.
Y
To prove Item |7| we will show that 6307, -5 T2¢ 700d~y, 80de < 4a,8 Indeed,
1+
a Tl 1
630y < 5T = cab,
72¢ 1
@ =5
700ylog 5 _ 7009 _ 7000w B
700dy — <O DY O =248,
o @ 230 720log” = 4
log La/a%8 1
80de = —1 — < a2log—ﬁ < % .
4 « 4
Moreover, since 906d log %e’ = %o/

To prove Ite first note that 1812d log %e’ =a < 1og1l

it remain to show the following,
1 245 log 3 1
- QOGOOfylog log <aa/ ) 3 906001 log (a;> 3 9060010g7 s o .
8 57_ o - o N 230/ =Ty =
Finally, to prove Item [9] we first note that
L > 2 o >a75> of >A7>6
(10a=1+10)Lo = 20Ly ~ 10000Clogd = d = log> —  ~
For the second part we first need to verify the following,
2 2.2 2. .2
’y 2 7d2: ’70421_ :Yl ’712:,)/626. (38)
6log (1204) — T20d*  T20log® 5 Ty ()
To prove the second part of Item |§| we consider x > % and show that 2 - 2792 > 60d  9—z5z |
4~17. 272772 by proving the following two Equations and , as follows,
@.2*%33 — @ R e £ < @ 9= 645 .9 6a” < 120d ’10g<120d>2751°g<1270d) <2- 51,
Y Y Y Y
(39)
where the third equation follows from Equation
8
,}/717 ) %’ysm < ,}/717 . 27%78.’177%781 < ,}/717 . 27%% . 27278:1: < 2779‘% <2 ox (40)
O
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E.3 Proof of Lemma 22

Proof. Fix any adversary A for IT' that corrupts at most e-fraction of the bits of II" and such
that at most €-fraction of the messages are az—corrupted@

The fact that CC(II'y) > tmin , and the fact that S is a probabilistically polynomial time
oracle machine (where I = (S4, $7)), follows from the fact that each reduction in the definition
of II" is both efficient and only increases the communication complexity, as shown by Lemma @
Claim 20} Theorem [9] Theorem [I7 and Theorem It remains to bound the communication
complexity, round complexity and to prove the correctness guarantee.

By Theorem [I9] in order to prevent the decoder from decoding a message correctly, the
adversary needs to corrupt at least a?-fraction of the message. Recall that the volume of
corrupted messages is defined to be the sum of the lengths of corrupted messages, where the
length of each corrupted message is defined be to the maximum between the length of the original
message and the length of its corrupted version (see Definition . Thus, we can convert A’ to
an adversary Aang, corresponding to protocol Il;,,q4, where the volume of messages corrupted

by Aand is at most
€

2e
g . CC(H?A) S @ . CC(Hrand»Arand)7
where the latter inequality follows from our assumption that for every message m, |Enc(m)| <
2|m|.
Moreover, the total number of corrupted messages is bounded by

min {eCC(IT'y), € RIT'y) } < min {2eCC(ILyand, A,ng)> € R(Hrand, A,ug) } -

In what follows, we denote

2¢
/ /
€rand = 2 and €,,q =F€.

This, together with Item |§| of Claim [21] implies that €rand < g7iog4- Thus by Theorem [17] there
exists an adversary Ajgeal for Iljges;, that corrupts at most eﬁand messages of total volume at
most €rand = 2€randCC(Hideal,Aidea|)a where

e:'and = min {6CC(HC4)7 6iand1%(1_[idea|y-f4idea|) + 26/rand logb CC(Hideal,A;dea|)} )

and where

2
«
ECC(HfA) = 7€randCC(H{A) < a26randCC(Hrand,Arand) < 2042€randCC(I_Iideal,flidem) s

where the last inequality follows from Theorem [J] together with the fact that 2600Ca < 1.
Moreover, by Theorem [I7] the adversary Ajjea chooses the hash collisions in a probabilistic
manner, and for every ¢ and every r, with probability > 1 — 20 - 2_377175, the volume of hash
collisions, in the first ¢ bits of Il;ang 4,,.4, is at most 35vt, and with probability > 1—80r- 2_778T,
the number of rounds with hash collisions, in the first r rounds of Il;ang 4,4, is at most 100yr.

For every t denote by G; the event that for every ¢ > ¢, the total volume of messages with
hash collisions in the first ¢’ bits of Il;ang 4,,,, i at most 35yt’. By the union bound, for every
t, the probability of event Gy is at least

rand

, 20 - 2~ 3at 20 - 2~ 34t 120d
1-Y 2025 =1 - T > - T T o Tt (41)
1—273d 6d Y

=]

23Recall that a message is a®-corrupted if the adversary corrupts at least a-fraction of its bits.
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where the second equation follows from the fact that 1 —27% > x/2 for every z < 1.
Moreover, for every r, the probability that for every ' > r the number of rounds with hash
collisions is at most 1007/, is at least

> 8./ > logﬁ 8./ 8./
1= 80727 > 1-)"80- 5 A
r/=r r'=r "
0o 1 1
> 1 80 705 T AP i
r'=r v
320 log% 9—37°r
T 2
,.)/—1 2—3787“
> =53
v v
= 1—y T3 (42)

To justify the first equation, note that that for every § and 7’ it holds that 2°" > +/ for every 1’
1
such that d7’ > logr’. Using basic calculus, one can verify that 7" > logr’ for every r’ > 2logs
, 1
Thus, 2°7 > ¢/ for every ' > 210%.
§ =418,

The first inequality follows from this fact, by setting

Communication Complexity. Let tsmooth = CC(Ilgmooth). By Lemma @
tsmooth = (1 + O(a))CC(II).
Let tpad = CC(Ilpad). By Claim
tpad < (1 + 13)tsmooth + 3Lo = (1 4+ O(«r))CC(II) 4 3Ly .

Let ¢, = (14 O(a)) < 3 to be determined later. Define
Catpa ~
t & 22— (1 4 O())CC(ID) + 10Lg

and
to 2 (14 a)(th — 10Lg) = (1 + O(a))CC(II) .
Fix any ¢ > to. First consider the case where ¢ < (. In this case,

ty >t >t = (14 a)(ty — 10Lo)

which implies that
t <ty < (10! +10)Lg,

and in turn implies that
t
2.2 (0a~T10)Ly > 1,

Hence, it trivially hold that

S
Pr[CC(H;\) > 1] < 2.2 (0a~TH0)L,

By (the first part of) Item |§| of Claim we get the desired communication complexity bound.
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We next consider the case where ¢ > t. Let tigeal = L By Equation , Item |§| of

Co
Claim and the fact that tigeal > %, it suffices to show that if for every ¢ > tigea the total
volume of hash collisions in the first ¢’ bits of ITigeal is at most 35yt’, then CC(IT'y) < t.
To this end, we first show that CC(Iligeal, Ayye,) < tideal- By our assumption, the fraction of
volume of messages with hash collisions or with adversarial corruption in Iligeal 4., is at most

357 + 2€rand- Thus, By Theorem [J]

ideal

CC(Migeal Ayy) < tpad+1887 (357 4+2¢rand ) CC(Tigeal Ay ) +20d3 7 (357+20%€rand ) CC (Mideal Ay, ) -
Hence, by Item [7] of Claim

tpad < tpad :ﬁ <t

CC Hi eal, A; < —=
(Midest dsen) < T 185-T(357 1 Derana) — 20451357 + 20%crmma) = 1— @ o

ideal >

as desired.
By Theorem CC(ITrand, A,,y) < (1 + O())tigeal. Thus, by Theorem we have that

CC(H{A/) S (1 + O(a))cc(ﬂrand,fl,and) = (1 + O(Ol))tidea| é Catideal .

The result follows from the fact that ¢t = cytideal-

Correctness We assume that for every ' > tiqeas the total volume of hash collisions in the
first ¢’ bits of Iligeas is at most 35yt', where tpad, tideal and trand, are defined as above. It suffices
to assume that CC(IT'y) > ¢ and show that II4 decodes II correctly.

Since CC(IT'y) > t, by the same argument as above, we have that CC(Iigeal, Aiye,) = tideal
and thus the total volume of messages with hash collisions is at most 357CC(Iligeal A;,..,)-

By Theorem |§|, the parties output transcripts of size < CC(Iligeal, Ay, ), and the first N bits
of the transcript are consistent with II,,q, for

N = CC(Hideal,Aideal) - 18571(357 + 2€rand)CC(Hideal,Aideal) - 20d671(357 + 20426rand)CC(HideaLAideal)
(1 — OZ)CC(HideaI,.Aidem) ’

A\

where the inequality follows from Item [7] of Claim [21]
Thus, by Claim

Output(Il'y) = Output(Ilpg) = Trans(II) ,

as required.

Round Complexity Let 7smooth = CC(Ilgmooth). By Lemma |§|
remooth < R(I) (1+8logys o) +4log 1 ~CC(ID) +4 = (1+0(a)) R(IT) +0 (o' log CC(ID) +1) .
Let rpag = R(Ilpaq), thus by Claim ,

Tpad < Tsmooth + 10g% CcC(I) + log% Lo+1=(14+0())R(IT) + O (o/ log CC(IT) + 1) .

We define L
Tpad + 1812dlog =€ - logy, to
ro = P2 p B “rand b T +4log, o,
1= (1007 + €7,,4) - 906d log 5
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and consider 7 > ro . By Item [§ of Claim [21] we have that

1

ro = (1+ O(a")R(ID) + O (10 1ogCC<H>+1) ,

2
a/
as required.

First, we consider the case where r > 3. In this case, by our bound on the communication
complexity we have that

Pr [R(Ily) > 7] < Pr[CC(ITy,) >r] <2-27° .

From now on we will consider the case where that r < tg and let rigea = r — 21ogy tg. Since
r > 19 we have that rigea > 5.

We assume that for every 7’ > rigeas the number of rounds with hash collisions in the first r’
bits of ITigear is at most 100y’ and that CC(HQ) < tg. This suffices since, by the communication
bound and Equation the probability that the above does not hold is bounded by

min {1, 60d 9 3alo 4 4717, szsmeal} < min {1, 60d | 273d" 4417 23787“} <2.20
gl gl

where the first inequality follows from the fact that tg > r and 7igeas > 5, and the second
inequality follows from Item [9] of Claim

We next show that R(Iligeal Ay.,) < Tideal- By our assumption, the number of rounds with
hash collisions in ITigeal, 4,,.,, is @t most 100y R(ITigeal, 4., ). Moreover, by Theorem the number
of rounds with channel corruptions is at most €/, (R(Iligeal 4y, ) +2 108, t). Thus, By Theorem@

rand

1
. < — . / .
s idea — s/ idea s/ idea
R(Hldeal A |) rpad + 906d10g 6 (100’)/R(H|dea|AAd I) + erand(R(Hldea|A‘d I) —+ 210gb to)) .

Hence,

Tpad + 1812dlog %eﬁand -logy t

R(Iigeal Aiyey) < =19 — 4log,t < r — 2logyty = Tideal

= 1 (1007 + €,,4) - 906d log %

rand

as desired.
Thus, by Theorem

R(H./A) = R( /rand,.A,and) < Tideal + 210gbt =T.
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