
Balance Problems for Integer Circuits

Titus Dose

Abstract

We investigate the computational complexity of balance problems for {−, ·}-circuits com-
puting finite sets of natural numbers. These problems naturally build on problems for in-
teger expressions and integer circuits studied by Stockmeyer and Meyer (1973), McKenzie
and Wagner (2007), and Glaßer et al (2010).

Our work shows that the balance problem for {−, ·}-circuits is undecidable which is the
first natural problem for integer circuits or related constraint satisfaction problems that
admits only one arithmetic operation and is proven to be undeciable.

Starting from this result we precisely characterize the complexity of balance problems
for proper subsets of {−, ·}. These problems turn out to be complete for one of the classes
L, NL, and NP. The case where only the multiplication is allowed turns out to be of
particular interest as it leads us to the general non-trivial observation that the product S of
two sets with sufficiently large maxima is subbalanced (i.e., |S| ≤ max(S)/2), which might
be interesting on its own.

1 Introduction

In 1973, Stockmeyer and Meyer [SM73] defined and studied membership and equivalence prob-
lems for integer expressions. They considered expressions built up from single natural numbers
by using set operations (∪, ∩,), pairwise addition (+), and pairwise multiplication (·). For

example, 1 · 1 ∩ 1 describes the of primes P.
The membership problem for integer expressions asks whether some given number is contained
in the set described by a given integer expression, whereas the equivalence problem for integer
expressions asks whether two given integer expression describe the same set. Restricting the
set of allowed operation results in problems of different complexities.
Wagner [Wag84] studied a more succinct way to represent such expressions, namely circuits over
sets of natural numbers, also called integer circuits. Each input gate of such a circuit is labeled
with a natural number, the inner gates compute set operations and arithmetic operations (∪,
∩, , +, ·). The following circuit with only 4 inner gates computes the set of primes.

1 · ∩

Starting from this circuit, one can use integer circuits to express fundamental number theoretic
questions: thus, a circuit describing the set of all twin primes or the set of all Sophie Germain
primes can be constructed. McKenzie and Wagner [MW07] constructed a circuit C computing
a set that contains 0 if and only if the Goldbach conjecture holds.
Wagner [Wag84], Yang [Yan01], and McKenzie and Wagner [MW07] investigated the complexity
of membership problems for circuits over natural numbers: here, for a given circuit C, one has
to decide whether a given number n belongs to the set described by C. Travers [Tra06] and

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 55 (2018)

Breunig [Bre07] considered membership problems for circuits over integers and positive integers,
respectively. Glaßer et al [GHR+10] studied equivalence problems for circuits over sets of natural
numbers, i.e., the problem of deciding whether two given circuits compute the same set.
Satisfiability problems for circuits over sets of natural numbers, investigated by Glaßer et al
[GRTW10], are a generalization of the membership problems investigated by McKenzie and
Wagner [MW07]: the circuits can have unassigned input gates and the question is: on input of
a circuit C with gate labels from O ⊆ {∪,∩, ,+, ·} and a natural number b, does there exist
an assignment of the unassigned input gates with natural numbers such that b is contained in
the set described by the circuit?
Barth et al [BBD+17] investigated emptiness problems for integer circuits. Here, for both
circuits with unassigned inputs and circuits without unassigned inputs, the question of whether
an integer circuit computes the empty set (for some/all assignment(s) if the circuits allow
unassigned inputs) is raised and investigated.
Apart from the mentioned research on circuit problems there has been work on related vari-
ants like functions computed by circuits [PD09] and constraint satisfaction problems (csp) over
natural numbers [GJM17, Dos16]. The constraint satisfaction problems by Glaßer, Jonsson,
and Martin [GJM17] can be considered as conjunctions of equations of integer expressions with
variables standing for singleton sets of natural numbers. Here the question is whether there is
an assignment of the variables such that all equations are satisfied. These constraint satisfaction
problems have the peculiarity that expressions describe sets of integers whereas variables can
only store singleton sets of natural numbers. Dose [Dos16] addressed this and studied constraint
satisfaction problems over finite subsets of N, consequently replaced the set complement with
the set difference −, and allowed the variables to describe arbitrary finite subsets of N.

Our Model and Contributions The definition of the circuits investigated in this paper
follows the definition of previous papers such as [MW07, GHR+10, GRTW10, BBD+17]. Yet
there are some differences:
Our circuit problems are about balanced sets where a finite and non-empty set S ⊆ N is balanced
if |S| = |{0, 1, . . . ,max(S)}−S|. Analogously, S is unbalanced if |S| 6= |{0, 1, . . . ,max(S)}−S|.
That means, the maximum of a set marks the relevant area and then we ask whether there are
as many elements inside the set as outside of it. As the notion of balanced sets only makes
sense for finite sets, our circuits should solely compute finite sets. Due to that we replace the
commonly used set complement with the set difference − as otherwise, infinite sets could be
generated. Now, as the circuits only work over the domain of finite subsets of N, it suggests itself
to also allow the input gates of a circuit to compute arbitrary finite subsets of N and not only
singleton sets (cf. Dose [Dos16] where the analogous step was made for constraint satisfaction
problems).
For such circuits we ask: is there an assignment of the unassigned inputs with arbitrary finite
subsets of N under which the circuit computes a balanced set. This problem is denoted by
BC(O), where O ⊆ {∪,∩,−,+, ·} is the set of allowed operations.
The notion of balance is important in computational complexity. It occurs when considering
counting classes like C=L or C=P for instance. There, the question is whether for some problem
A there is a non-deterministic logarithmic space or polynomial-time machine M accepting A,
where M accepts some input x if and only if the number of accepting paths equals the number
of rejecting paths.
Balance problems for integer circuits are interesting for another reason. To our knowledge, there
is no natural decision problem for integer circuits or constraint satisfaction problems over sets
of natural numbers that allows only one arithmetic operation and is known to be undecidable.
In this paper, however, it is shown that BC(−, ·) is undecidable.

2

Starting from this undecidable problem BC(−, ·), we also investigate BC(O) for arbitrary subsets
of {−, ·} and precisely characterize the complexity of each such problem. It turns out that all
these problems are in NP. In detail, we show that BC(·) is NL-complete, BC(−) is NP-complete,
and BC(∅) ∈ L.
Here, the NL-complete problem BC(·) is particularly interesting as it leads us to the general
question of whether the product S = A · B for two finite sets A and B is always subbalanced
(i.e., |S| < |{0, 1, . . . ,max(S)} − S|). We show that this holds if the maxima of A and B are
sufficiently large, which is a non-trivial observation and might be interesting on its own.

2 Preliminaries

Basic Notions Let N denote the set of natural numbers. N+ = N−{0} is the set of positive
naturals. For n ∈ N let |n| denote the length of the binary representation of n (without leading
zeros). The greatest common divisor of positive naturals a and b is denoted by gcd(a, b) and
gcd(a, b) for arbitrary non-zero integers a and b is defined to be gcd(max(a,−a),max(b,−b)).
We extend the arithmetical operations + and · to sets of naturals: for A,B ⊆ N define A+B =
{a + b | a ∈ A, b ∈ B} and A · B = {a · b | a ∈ A, b ∈ B}. In contrast to previous papers,
in this paper the multiplication of sets is not denoted by × but by ·. Instead, × denotes the
cartesian product. Furthermore, for arbitrary sets, the operations ∪, ∩, and − define the union,
intersection, and set difference, respectively. The power set of a set M is denoted by P(M)
whereas Pfin(M) = {A ∈ P(M) | A finite}. For a finite and non-empty set S let max(S) (resp.,
min(S)) denote the maximum (resp., minimum) number of S. Finite intervals {x | a ≤ x ≤ b}
for a, b ∈ Z are denoted by [a, b].
L, NL, and NP denote standard complexity classes [Pap94] and RE is the set of computably
enumerable problems.
For problems A and B we say that A is (logarithmic-space) many-one reducible to B if there
is some (logarithmic-space) computable function f with cA(x) = cB(f(x)), where cX for a set

X is the characteristic function of X. We denote this by A ≤m B (resp., A ≤log
m B). Moreover,

A is logarithmic-space Turing reducible to B if there exists a logarithmic-space-bounded oracle
Turing machine (with one oracle tape) that accepts A with B as its oracle. This is denoted by
A ≤T B.
For pairs (A,B) and (C,D) with A∩B = C ∩D = ∅ we say that (A,B) is many-one reducible
to (C,D) (denoted as (A,B) ≤m (C,D)) if there is a computable function f with x ∈ A ⇒
f(x) ∈ C and x ∈ B ⇒ f(x) ∈ D. Note that if B = A and D = C this coincides with the usual
many-one reducibility, i.e., (A,A) ≤m (C,C)⇔ A ≤m C.
CSAT is the circuit satisfiability problem, i.e., the problem of determining whether a given
boolean circuit has an assignment of the unassigned inputs that makes the output gate true.
The problem is ≤log

m -complete for NP via a trivial reduction from SAT which itself can be shown
to be ≤log

m -complete for NP via a construction by Cook [Coo71].

Balanced Sets A finite and non-empty set S ⊆ N is balanced (resp., unbalanced) if |S| =
|{0, 1, . . . ,max(S)} − S| (resp., |S| 6= |{0, 1, . . . ,max(S)} − S|). Intuitively spoken, max(S)
defines the universe {0, 1, . . . ,max(S)} and then S is balanced if it contains the same number
of elements as its complement. Note that the notion of balance/unbalance only makes sense if
there is some maximum element defining the universe. Hence the empty set is neither balanced
nor unbalanced.
The following lemma immediately follows from the definition.

Lemma 1. Let S ∈ Pfin(N) be balanced. Then S 6= ∅ and max(S) is odd.

3

Moreover, we say that S is subbalanced if |S| < (max(S) + 1)/2 which is equivalent to |S| ≤
max(S)/2. As we want to investigate the complexity of balance problems with respect to
deterministic logarithmic-space reductions, it is important to see that the test of whether some
input set is balanced can be done in deterministic logarithmic space. Define Bal = {S ∈
Pfin(N) | S is balanced}. We want to observe that Bal ∈ L, but we show a stronger result.
For that we introduce another more general problem. For a finite and non-empty set M let
BalM = {S ∈ Pfin(N) |M · S is balanced}.

Proposition 2. For M ∈ Pfin(N) non-empty it holds BalM ∈ L. In particular, Bal ∈ L.

Proof. The second statement follows from the first as Bal = Bal{1}.
It suffices to consider the cases where M 6= ∅ and max(M) ≥ 1. The following algorithm
decides BalM on input of a finite set S ⊆ N Let n denote the length of the input. For the
sake of simplicity, we assume that the elements of S are encoded in binary representation,
max(S) ≥ 1, and n ≥ 4.

1. Reject if log(n+ 1) + 2 < |max(S)|.

2. Let c = 0.

3. For α = 0, 1, . . . ,max(M) ·max(S):

(a) Let d = 0. For (m, s) ∈ {(m′, s′) | m′ ∈M, s′ ∈ S}:
i. If m · s = α and 2 · c = max(M) ·max(S) + 1, then reject.

ii. If m · s = α and 2 · c < max(M) ·max(S) + 1, then d = 1.

(b) Let c = c+ d.

4. If 2 · c = max(M) ·max(S) + 1, then accept. Otherwise reject.

Step 1 can be executed in logarithmic space. If the algorithm executes step 2, then |max(S)| ≤
log(n + 1) + 2 ≤ 3 · log(n). Hence all numbers m and s considered in the loop 3 are of
logarithmic length. Moreover, multiplication can be computed in deterministic logarithmic
space. Apart from the multiplications and comparisons the algorithm only counts to a number
at most (max(M)·max(S)+1)/2 ≤ max(M)·max(S) < max(M)·2|max(S)| ≤ max(M)·23·log(n) =
8 ·max(M) · n, where max(M) is a constant. Hence c can be stored in logarithmic space.
If the algorithm rejects in step 1, then max(S) > 2|max(S)|−1 > 2log(n+1)+1 = 2n + 2. As S
contains at most n elements, |S| ≤ n < (max(S)−2)/2 and thus |M ·S| < max(M) · (max(S)−
2)/2 + 1 < max(M · S)/2. Consequently, M · S is subbalanced and S /∈ BalM .
In the steps 3 and 4 the algorithm accepts and rejects correctly by construction.

Definition of Circuits In previous papers such as [BBD+17] it was differentiated between
completely and partially assigned circuits. As we restrict on partially assigned circuits in this
paper, we define circuits in general as partially assigned circuits.
A circuit C is a triple (V,E, gC) where (V,E) is a finite, non-empty, directed, acyclic graph with
a designated vertex gC ∈ V and a topologically ordered vertex set V ⊆ N, i.e., if u, v ∈ V are
vertices with u < v, then there is no edge from v to u. Here, graphs may contain multi-edges
and are not necessarily connected. But we require that C is topologically ordered. Note that the
test of whether a graph is topologically ordered or not is possible in deterministic logarithmic
space. Consequently, we are able to check in deterministic logarithmic space whether an input
graph is acyclic. Hence there is a deterministic logarithmic-space algorithm that on input of a
graph tests whether the input is a circuit. Therefore, when presenting algorithms for circuits
we may always assume that the input is a valid circuit.

4

Without loss of generality we may assume that V = {1, . . . , r} for some r ∈ N since circuits can
be renumbered in logarithmic space.
Let O ⊆ {∪,∩,−,+, ·}. An O-circuit (or circuit for short if O is apparent from the context)
is a quadruple C = (V,E, gC , α) where (V,E, gC) is a circuit whose nodes are labeled by the
labeling function α : V → O∪Pfin(N)∪{�} such that each node has indegree 0 or 2, nodes with
indegree 0 have a label from Pfin(N) (encoded as a list of all the numbers in the set) or from
{�}, and nodes with indegree 2 have labels from O. In the context of circuits, nodes are also
called gates. A gate with indegree 0 is called input gate, all other nodes are inner gates, the
designated gate gC is also called output gate. Input gates with a label from Pfin(N) are assigned
input gates whereas input gates with label � are unassigned input gates.
O-circuits are also called integer circuits. If g is some gate of C with predecessors g′ < g′′ and
α(g) = ⊗ ∈ O, then we also write g = g′ ⊗ g′′. Note that in case ⊗ = − it is important to
consider the order of the operands.

The Set Computed by a Circuit For an O-circuit C with unassigned input gates g1 <
· · · < gn and X1, . . . , Xn ∈ Pfin(N), let C(X1, . . . , Xn) be the circuit that arises from C by
modifying the labeling function α such that α(gi) = Xi for every 1 ≤ i ≤ n.
For a circuit C = (V,E, gC , α) without unassigned input gates we inductively define the set
I(g;C) computed by a gate g ∈ V by

I(g;C) =

{
α(g) ⊆ N if g has indegree 0,

I(g′, C)⊗ I(g′′, C) if g = g′ ⊗ g′′ and g′ < g′′.

The set computed by the circuit is denoted by I(C) and defined to be the set computed by the
output gate I(gC ;C).

Basic Constructions It is convenient to introduce notations for basic constructions of cir-
cuits. For X ∈ Pfin(N) we use X as an abbreviation for the circuit ({1},∅, {1}, 1 7→ X). For
O-circuits C,C ′ for some O and ⊗ ∈ {∪,∩, ,−+, ·} let C ⊗ C ′ be the circuit obtained from C ′

and C ′′ by feeding their output gates to the new output gate ⊗ (and renumbering the nodes in
a reasonable way; in particular it should be made sure that the nodes of C have lower numbers
than the nodes of C ′). This construction is possible in logarithmic space.
As an example, for an unassigned input gate g = 0, consider the circuit C = (g − {0})− ((g −
{0}) · {2}), which is the following circuit

0,�

1, {0}

2,−

3, {2}

4, · 5,−

where each node is given by its number and its label. The node 5 is the output gate and it
computes the set {1} if and only if I(2;C) is a set of the form {20, 21, 22, . . . , 2r} for some r ∈ N.

The Main Problems Now we define the problems this paper focuses on.

Definition 3. Let O ⊆ {−,∪,∩,+, ·} and define

BC(O) = {C | C is an O-circuit with n unassigned inputs and there exist
X1, . . . , Xn ∈ Pfin(N) such that I(C(X1, . . . , Xn)) is balanced}.

5

For the rest of the paper we will study the complexity of the problems BC(O) for O ⊆ {−, ·}.
In order to prove BC(·) to be ≤log

m -hard for NL we need the following NL-complete problem
investigated by McKenzie and Wagner [MW07]

MC(∩) = {(C, b) | C is an ∩-circuit whose inputs are all assigned and have labels
from {X ⊆ N | |X| = 1}, b ∈ I(C)}.

The following lemma follows from the definition.

Lemma 4. For O ⊆ O′ ⊆ {−, ·} it holds BC(O) ≤log
m BC(O′).

Therefore, each lower bound for a problem BC(O) shown in this paper implies the same lower
bound for all problems BC(O′) for arbitrary O′ ⊇ O.
We use the following abbreviations if confusions are impossible: we write g or I(g) for I(g;C),
where C is a circuit and g is a gate of C; we write C for I(C), where C is a circuit; we write
BC(−, ·) for BC({−, ·}) and the like.

3 Set Difference and Multiplication Lead to Undecidability

This section contains our main result: the undecidability of BC(−, ·). According to the Matiyasevich-
Robinson-Davis-Putnam theorem [Mat70, DPR61] the problem of determining whether there
is a solution for a given Diophantine equation is RE-complete. It can be derived by standard
arguments that also the following problem is RE-complete (with regard to ≤m).

DE = {(p(x1, . . . , xn), q(x1, . . . , xn)) | ∃a1, . . . , an ∈ N+, p(a1, . . . , an) = q(a1, . . . , an)

for multivariate polynomials p and q with coefficients from the positive naturals}.

Reducing this problem to BC(−, ·) shows the following theorem.

Theorem 5. BC(−, ·) is RE-complete.

Let for the remainder of this section O = {−, ·} unless stated differently. For the sake of
brevity, we make use of intersection gates but note that A ∩ B is just an abbreviation for
A− (A−B). Further abbreviated notations are A−

⋃n
i=1Bi for (. . . ((A−B1)−B2)− . . .)−Bn

and A− (
⋃n
i=1Bi − {1}) for (. . . ((A− (B1 − {1}))− (B2 − {1}))− . . .− (Bn − {1}).

In order to prove Theorem 5 we define a slightly different version of the problem BC(−, ·) which
can be reduced to the original version in logarithmic space.

Definition 6. Define

BC′(O) = {(C,Q) | C is a partially assigned O-circuit, Q is a subset of the nodes of C,
and there exist X1, . . . , Xn ∈ Pfin(N+) such that I(C(X1, . . . , Xn))
is balanced and I(K;C(x1, . . . , xn)) = {1} for all K ∈ Q}.

For the sake of simplicity, we call instances of BC′(O) O-circuits as well.

Lemma 7. The following hold.

1. For K ∈ Pfin(N) with κ := max(K) ≥ 3 it holds |K ·K ·K| < κ3/2.

2. BC′(O) ≤log
m BC(O) for O = {−, ·}.

6

Proof. We argue for statement 1. Due to K ·K ·K =
⋃3
l=1{i · j · k | i, j, k ∈ K, |{i, j, k}| = l}

we obtain

|K ·K ·K| ≤
(
κ

3

)
+ 2 ·

(
κ

2

)
+ κ =

κ(κ− 1)(κ− 2) + 6κ(κ− 1) + 6κ

6

=
κ3 + 3κ2 + 2κ

6
<
κ3 + 3

2κ
3 + 1

2κ
3

6
=
κ3

2
.

Now we argue for statement 2. Let C be a partially assigned O-circuit with output node gC
and let Q be a subset of the nodes of C. Starting with this circuit, we build a new circuit and
denote this modified circuit by C ′:
For each assigned or unassigned input node g, add a node g′ of type − which computes the set
g − {0}, replace all edges (g, h) with (g′, h), and in case g ∈ Q, remove g from Q and add g′.
Then add a new output node gC′ = gC ·

∏
K∈Q(K ·K ·K).

It remains to show that (C,Q) ∈ BC′(O) if and only if C ′ ∈ BC(O).
Assume (C,Q) ∈ BC′(O). Hence there is an assignment with elements of Pfin(N+) such that
under this assignment, gC is balanced and K = {1} for all K ∈ Q. Then by construction of C ′

there is an assignment under which gC′ is balanced.

Conversely, let C ′ be balanced under some assignment. Then without loss of generality all
assigned inputs do not contain 0 and all unassigned inputs are mapped to a set not containing
0 by the mentioned assignment. Due to that it suffices to show that K = {1} for all K ∈ Q
under this assignment. By construction, 0 /∈ K. Assume K 6= {1} for some K. As K = ∅ leads
to an empty output set and due to Lemma 1 also max(K) = 2 does not lead to a balanced
output set, we have κ = max(K) ≥ 3 and statement 1 can be applied.
We show that for an arbitrary finite set M the set M ·K ·K ·K is not balanced, which yields a
contradiction. ForM = ∅ and max(M) = 0 this assertion is true. Consider the case max(M) ≥ 1

and 0 /∈M . Here it holds that M ·K ·K ·K contains less than κ3 max(M)
2 elements, the maximum

of this set is max(M) · κ3 and thus M ·K ·K ·K is not balanced.

Before proving Theorem 5 we introduce some O-circuits which will be used extensively as
components of circuits expressing Diophantine equations.

Lemma 8. For every finite P = {p1, . . . , pn} ⊆ P with n = |P | ≥ 1 there is an O-circuit
(CP , QP) containing gates g1

P , . . . , g
n
P satisfying the following properties:

1. For an arbitrary assignment with values from Pfin(N+) it holds

∀K∈QP K = {1} ⇒ ∃m∈N ∀i=1,...,n g
i
P = {1, pi, . . . , pmi }.

2. For each m ∈ N there is an assignment with values from Pfin(N+) under which giP =
{1, pi, . . . , pmi } and K = {1} for all K ∈ QP .

Proof. We construct (CP , QP) as follows:

• For each p ∈ P insert an input gate Xp and gates hp = Xp − (Xp · {p}) and h′p =
({1, p} ·Xp)− (Xp − {1}). Put all the nodes hp into QP .

• Similarly, for k ∈ {p1 · p2, p2 · p3, . . . , pn−1 · pn} insert an input gate Xk and gates hk =
Xk − (Xk · {k}) and h′k = ({1, k} ·Xk)− (Xk − {1}). Insert all the nodes hk into QP .

• For each k = pi · pi+1 with i ∈ {1, . . . , n − 1} add a node γk = h′k −
(
(h′pi · h

′
pi+1

) − {1}
)

and let QP contain all these nodes.

7

• Denote giP = Xpi .

We now argue that the conditions 1 and 2 are satisfied.

1. Choose an arbitrary assignment with values from Pfin(N+) and assume K = {1} for all
K ∈ QP . Then for α ∈ {p1, . . . , pn, p1 · p2, p2 · p3, . . . , pn−1 · pn} it holds

Xα −Xα · {α} = {1} (1)

and in particular, 1 ∈ Xα.
Assume there is some β ∈ Xα such that β is no power of α. Then there are l ∈ N and α′ ≥ 2
with β = αl ·α′ and α - α′. Choose β such that l = 0 or αl−1 ·α′ /∈ Xα. Then due to (1) we obtain
β ∈ Xα · {α}. If l = 0, we have α | α′, a contradiction. Otherwise we obtain αl−1 · α′ ∈ Xα,
which is a contradiction to the choice of β. Thus Xα only contains powers of α.
Now, choose l ∈ N+ with αl ∈ Xα (if there is none, then Xα = {1}). Then due to (1) we have
αl ∈ Xα · {α} and thus αl−1 ∈ Xα. Hence each Xα is of the form {1, α, . . . , αmα} for some
mα ∈ N. As a consequence h′α = {1, αmα+1}.
Now choose k = pi · pi+1 for some i. As γk = {1} we have

kmk+1 = pmk+1
i · pmk+1

i+1 ∈ ({1, pmpi+1
i } · {1, p

mpi+1+1

i+1 }),

which yields mk = mpi = mpi+1 . Thus there exists m such that for each i ∈ {1, . . . , n} it holds
giP = {1, pi, . . . , pmi }.
2. Let m ∈ N and choose the assignment with Xα = {1, α, . . . , αm} for α ∈ {p1, . . . , pn, p1 ·
p2, p2 · p3, . . . , pn−1 · pn}.
It follows immediately that hα = {1} and h′α = {1, αm+1}. Consequently, for k ∈ {p1 · p2, p2 ·
p3, . . . , pn−1 · pn} it holds

γk = {1, pm+1
i · pm+1

i+1 } − {p
m+1
i , pm+1

i+1 , p
m+1
i · pm+1

i+1 } = {1},

which proves statement 2.

Building upon this construction we extend these circuits and receive the following statement.

Lemma 9. For every finite P = {p1, . . . , pn} ⊆ P with n = |P | ≥ 1 there is an O-circuit
(DP , QP) with gates g0

P , g
1
P , . . . , g

n
P satisfying the following properties:

1. For an arbitrary assignment with values from Pfin(N+) it holds

∀K∈QP K = {1} ⇒ ∃m∈N+∀i=0,...,n |giP | = mi, 1 ∈ giP , and the prime divi-
sors of numbers in giP are all in P .

2. For each m ∈ N+ there is an assignment with values from Pfin(N+) under which |giP | = mi

and 1 ∈ giP for all i, the prime divisors of numbers in giP are all in P , and K = {1} for
all K ∈ QP .

Proof. The lemma basically follows from Lemma 8: let (CP , QP) be a circuit according to that
lemma. As —in case K = {1} for all K ∈ QP— any two numbers a ∈ giP and b ∈ gjP for i 6= j

are relatively prime, it holds |giP · g
j
P | = |giP | · |g

j
P |. Under repeated application of this argument

it can be shown that adding nodes computing
∏j
i=1 g

i
P for j = 1, . . . , n and a node g0

P = {1}
leads to a circuit which satisfies the statement.

8

Proof of Theorem 5. Due to Lemma 7 it suffices to show the reduction

DE ≤m BC′(−, ·).

Instead of showing this reduction directly we define an intermediate problem, the cardinality
circuit problem CC given by

{(C,Q, s, t) | C = (V,E, gC , α) is a {−, ·}-circuit, Q ⊆ V , s, t ∈ V , and there exists an assign-
ment with values from Pfin(N+) under which

1. |I(s)| = |I(t)|

2. 1 ∈ I(s) ∩ I(t)

3. I(K) = {1} for all K ∈ Q

4. I(s) and I(t) only contain numbers whose prime divisors are all > 3.}

Moreover, define

C = {(C,Q, s, t) | C = (V,E, gC , α) is a {−, ·}-circuit, Q ⊆ V , s, t ∈ V such that for all
assignments with values from Pfin(N+) satisfying ∀K∈Q K = {1} it holds
that s ≥ t and that s and t solely contain numbers whose prime divisors
are all greater than 3},

i.e., for all circuits in C each relevant assignment maps s to a set with higher cardinality than
the set it maps t to and each relevant assignment maps s and t to sets that do not contain
any numbers with prime divisors ≤ 3. For the sake of simplicity, we also call tuples (C,Q, s, t)
{−, ·}-circuits.
The proof will be given in the two steps

1. (DE,DE) ≤m (CC,CC ∩ C)

2. (CC,CC ∩ C) ≤m (BC′(−, ·),BC′(−, ·)).

That means that the function composition of the two reduction functions yields a reduction
DE ≤m BC′(−, ·).
1. Roughly speaking, the first of the two reductions generates a circuit computing two sets
whose cardinalities express the results of two multivariate polynomials.
Let q and q′ be multivariate polynomials with variables x1, . . . , xn. Then for any assignment
with positive natural numbers a1, . . . , an it holds q(a1, . . . , an) = q′(a1, . . . , an) if and only if
q(a1, . . . , an)2 + q′(a1, . . . , an)2 = 2 · q(a1, . . . , an) · q′(a1, . . . , an). Observe that here because of
(q(a1, . . . , an)− q′(a1, . . . , an))2 ≥ 0 we have q(a1, . . . , an)2 + q′(a1, . . . , an)2 ≥ 2 · q(a1, . . . , an) ·
q′(a1, . . . , an) for any assignment.
Due to that we may assume that we are given multivariate polynomials q and q′ with variables
x1, . . . , xn such that q ≥ q′ for all assignments of the variables with values from N+. Let

q =

m∑
i=1

ai ·
n∏
j=1

x
di,j
j and q′ =

m′∑
i=1

a′i

n∏
j=1

x
d′i,j
j

for positive numbers m, m′, ai, and a′i and natural numbers di,j and d′i,j . Moreover, for each vari-
able xj define ej = max({d1,j , . . . , dm,j , d

′
1,j , . . . , d

′
m′,j}), i.e., ej denotes the maximum exponent

of the variable xj occurring in a monomial of q or q′.
We now successively build the output circuit (C,Q, s, t). For the single steps we give some
intuition which is written italic.

9

1. For each variable xj select a set Pj = {pj,1, . . . , pj,ej} of primes greater than 3 such that
|Pj | = ej and Pj ∩ Pj′ = ∅ for j 6= j′. Then insert a circuit (CPj , QPj) according to
Lemma 9 and for all Pj , insert the nodes of QPj into Q.

We will make use of the notation of Lemma 9, in particular of the nodes g0
Pj
, . . . , g

ej
Pj

.

That means, for any assignment which satisfies K = {1} for all K ∈ Q ⊇ QPj , it holds
|giPj | = mi

j for mj ∈ N+ and for all i ≤ ej . Moreover, in that case all primes dividing

some number of giPj are in Pj .

For intuition, think of the node giPj as a set whose cardinality describes xij.

2. (a) Choose a prime p > 3 not used before and insert gates hi = {1, p, . . . , pai−1} ·∏n
j=1 g

di,j
Pj

for all i = 1, . . . ,m.

Loosely speaking, the cardinality of hi describes the value of the i-th monomial of q.

(b) For each node hi choose a prime pi > 3 not used before and insert a node h′i =
({1, pi} · hi)−

(
hi − {1}

)
.

As addition is supposed to be simulated by union, we need to make sure that the sets
standing for distinct monomials are disjoint. Still, for a technical reason we have to
keep 1 in each set. So the idea is to let h′i consist of 1 and a copy of hi multiplied
with an additional prime factor.

(c) For i = 1, . . . ,m add an unassigned input node zq. Finally add nodes zq−
(⋃m

i=1 h
′
i−

{1}
)

and h′i − (zq − {1}) (for i = 1, . . . ,m) and insert these nodes into Q.

Roughly speaking, zq describes the value of q + 1 as it is the union of all the h′i.

3. Do the same as in step 2 but for q′. In particular a node zq′ is added.

4. Define s = zq and t = zq′ .

First, observe that the function (q, q′) 7→ (C,Q, s, t) is computable. In order to show

(q, q′) ∈ DE⇒ (C,Q, s, t) ∈ CC and (q, q′) /∈ DE⇒ (C,Q, s, t) ∈ CC ∩ C

we make the following central observation.

Claim 10. 1. For each y1, . . . , yn ∈ N+ there is an assignment of the circuit (C,Q) with val-
ues from Pfin(N+) such that s (resp., t) consists of 1+q(y1, . . . , yn) (resp., 1+q′(y1 . . . , yn))
numbers whose prime divisors are greater than 3, 1 ∈ s ∩ t, and K = {1} for all K ∈ Q.

2. If K = {1} for all K ∈ Q under some assignment with values from Pfin(N+), then there
are y1, . . . , yn ∈ N+ such that |s| = 1 + q(y1, . . . , yn) and |t| = 1 + q′(y1, . . . , yn) and s and
t solely contain numbers whose prime divisors are all greater than 3.

Proof of Claim 10. 1. Let y1, . . . , yn ∈ N+. Then according to Lemma 9 the inputs of the
circuits (CPj , QPj) can be chosen such that

• K = {1} for all K ∈ QPj ,

• |giPj | = yij and 1 ∈ giPj for i = 1, . . . , ej , and

• all prime divisors of numbers in giPj are in Pj and greater than 3.

10

As the set of primes chosen for two different variables are disjoint and in step 2b we select primes

not used before, the gate hi associated with the monomial ai ·
∏n
j=1 x

di,j
j contains ai ·

∏n
j=1 y

di,j
j

elements that only have prime divisors greater than 3. Furthermore, as 1 ∈ hi for all i, we have
|h′i| = 2 · |hi| − (|hi| − 1) = |hi|+ 1. Moreover, observe that h′i ∩ h′j = {1} for arbitrary i 6= j.
For the node zq choose the assignment

⋃m
i=1 h

′
i. Consequently, 1 ∈ zq and

|zq| = 1 +
m∑
i=1

(|h′i| − 1)︸ ︷︷ ︸
=|hi|

= 1 +
m∑
i=1

ai ·
n∏
j=1

x
di,j
j = 1 + q(y1, . . . , yn).

Since we do the same for the nodes associated with the polynomial q′ we have |zq′ | = 1 +
q′(y1, . . . , yn) and 1 ∈ zq′ . Observe that the prime divisors of numbers in zq and zq′ are greater
than 3.
It remains to observe that all nodes added into Q in step 2c compute the set {1}. This holds
since zq was chosen to be

⋃m
i=1 h

′
i.

2. Consider an assignment with K = {1} for all K ∈ Q. Then according to Lemma 9 for each
variable xj we have |giPj | = yij for some yj ∈ N+ and i = 0, . . . , ej and all numbers in these gates
solely have prime divisors in Pj . As the Pj are pairwise disjoint and in step 2b we select primes

not used before, we obtain |hi| = ai ·
∏n
j=1 y

di,j
j and |h′i| = |hi| + 1. As h′i ∩ h′j = {1} for i 6= j

and each h′i contains 1, it holds |zq| = 1 +
∑n

i=1 ai ·
∏n
j=1 y

di,j
j = 1 + q(y1, . . . , yn). Similarly we

obtain |zq′ | = 1 + q′(y1, . . . , yn).
It remains to argue that under the given assignment s and t do not contain any numbers
with prime divisors ≤ 3. Obviously, the assigned inputs only compute sets whose elements
solely have prime divisors greater than 3. By our construction and Lemma 9 the same holds
for all nodes giPj . As a consequence, all nodes hi and h′i have the same property and due to

zq−
(⋃m

i=1 h
′
i−{1}

)
= {1} (cf. Step 2c) this also holds for zq = s. An analogous argumentation

shows that also t does not contain any numbers with prime divisors ≤ 3.

Claim 11. 1. If (q, q′) ∈ DE, then (C,Q, s, t) ∈ CC.

2. If (q, q′) /∈ DE, then (C,Q, s, t) ∈ CC ∩ C.

Proof of Claim 11. The first implication follows from Claim 10. For the second implication note
that q ≥ q′ as has been argued above. Due to that and Claim 10 it holds (C,Q, s, t) ∈ C. Since
(q, q′) /∈ DE⇒ (C,Q, s, t) /∈ CC by Claim 10, the proof is complete.

2. Now we show (CC,CC∩C) ≤m (BC′(−, ·),BC′(−, ·)). The following algorithm computes the
reduction function. The italic comments are supposed to give some intuition.

1. Let a circuit (C,Q, s, t) be given. We construct a circuit (C ′, Q′) by successively updating
the given circuit.

2. Add new unassigned input gates X and X ′. Insert the following nodes into Q′:

{1, 2} · s− (X − {1}), (2)

{1, 2} · t− (X − {1}), (3)

{1, 2} · (X − s)−
(
(X ′ ∪ (X − s))− {1}

)
, (4)

X ′ − {2} · (X − s). (5)

11

The basic idea is as follows: X is supposed to be an interval containing s and t and X ′

basically encodes the set X − s where this set is made disjoint to t by multiplying it with
{2}. As |s| ≥ |t|, the set X ′ ∪ t is subbalanced. But if |s| = |t|, then X ′ ∪ t is almost
balanced. Adding the element max(X ′)+1 would make the set balanced. This element is
generated in the next step.

3. Let p1 = 2 and p2 = 3. Add a circuit (C{p1,p2}, Q{p1,p2}) according to Lemma 8. Put all
nodes of Q{p1,p2} into Q′. Add a node g =

(
g2
{p1,p2} · {1, 3}

)
− (g2

{p1,p2} − {1}).

4. Add a new unassigned input node O and the following nodes which are also added to Q′:

O −
((
X ′ ∪ t ∪ g

)
− {1}

)
, (6)

X ′ − (O − {1}), (7)

t− (O − {1}), (8)

g − (O − {1}). (9)

Thus, roughly speaking, the output set O equals X ′ ∪ t∪ g and is only balanced if |t| ≥ |s|.

5. Let O be the output node of the circuit (C ′, Q′).

Claim 12. If (C,Q, s, t) ∈ CC, then (C ′, Q′) ∈ BC′(−, ·).

Proof of Claim 12. Let (C,Q, s, t) ∈ CC. Then there is some assignment with

• |s| = |t|,

• 1 ∈ s ∩ t,

• K = {1} for all K ∈ Q, and

• s and t only contain numbers whose prime divisors are all greater than 3.

We now consider the circuit (C ′, Q′) under an assignment satisfying the four conditions just
mentioned. Moreover, we choose the input of C{p1,p2}, X, X ′, and O such that

• g = {1, 3m} for m minimal with 4 · (max(s ∪ t) + 1) < 3m and 4 | 3m − 1 and all nodes in
Q{p1,p2} compute {1} (such an assignment exists by Lemma 8),

• X = {x | 1 ≤ x ≤ (3m − 1)/2},

• X ′ = {1} ∪ {2} · (X − s), and

• O = X ′ ∪ t ∪ g =
((
{2} · (X − s)

))
∪ t ∪ {3m}.

In order to see K = {1} for all K ∈ Q′ it remains to consider the nodes added in the steps 2
and 4. Due to the choice of g and X it holds max(X) > 2 ·max(s∪t) and thus the nodes defined
in (2) and (3) compute {1}. The choice of X ′ immediately implies that the node defined in (5)
computes {1}. Now we argue for the node defined in (4): As X ′ = {1} ∪ {2} · (X − s) we have
{1, 2} · (X − s)−

(
(X ′ ∪ (X − s))− {1}

)
= {1, 2} · (X − s)−

(
({1, 2} · (X − s))− {1}

)
= {1}.

The nodes defined in (6), (7), (8), and (9) compute {1} by the choice of g, X, X ′, and O.
As s and t only contain numbers whose prime divisors are > 3, the sets {2} · (X − s), t, and
{3m} are disjoint. Hence,

|O| = max(X)− |s|+ |t|+ 1 = max(X) + 1 =
max(O)− 1

2
+ 1 =

max(O) + 1

2

and thus O is balanced.

12

Claim 13. If (C,Q, s, t) ∈ CC ∩ C, then (C ′, Q′) ∈ BC′(−, ·).

Proof of Claim 13. For a contradiction, assume that (C,Q, s, t) ∈ CC ∩ C and (C ′, Q′) ∈
BC′(−, ·). As the second circuit is an extended version of the first circuit, both circuits can now
be considered under the same assignment. Choose an assignment with values from Pfin(N+)
under which O is balanced and all K ∈ Q′ satisfy K = {1}. As by construction Q ⊆ Q′, we
have K = {1} for K ∈ Q.
As in particular the nodes defined in (2) and (3) compute {1}, we obtain 1 ∈ s ∩ t, X ⊇
{1, 2} · s ∪ {1, 2} · t, and in particular s ⊆ X and max(X) > max(s) ≥ 1. As {1, 2} · (X − s)−(
(X ′ ∪ (X − s))− {1}

)
= {1} (cf. (4)), it holds 2 ·max(X) ∈ X ′. Since the node defined in (5)

computes {1}, we obtain X ′ ⊆ {1} ∪ {2} · (X − s). In particular, max(X ′) = 2 ·max(X).
The fact that the nodes defined in (6), (7), (8), and (9) compute {1} implies 1 ∈ O ∩X ′ ∩ t∩ g
and O = X ′ ∪ t ∪ g. Moreover, it follows from Lemma 8 that g = {1, 3m} for some m ∈ N+.
Thus, as 1 ∈ t,

O ⊆ {1} ∪
(
{2} · (X − s)

)
∪ t ∪ g =

(
{2} · (X − s)

)
∪ t ∪ {3m}. (10)

As O is balanced, Lemma 1 implies that max(O) is odd. Since X ⊇ t and max(X ′) = 2 ·max(X)
is even, max(O) = 3m > max(X ′). Due to (C,Q, s, t) ∈ C for the given assignment it holds
|s| ≥ |t| and that s and t do not contain any numbers with prime divisors ≤ 3. Due to that,
since we have seen that 1 ∈ s ∩ t, and as by assumption we have (C,Q, s, t) /∈ CC it even holds
|s| > |t|.
Putting things together, as we have proven (10), |s| > |t|, 1 ∈ t, s ⊆ X, max(X ′) = 2 ·max(X),
and max(O) > max(X ′), we now obtain

|O| ≤ max(X)− |s|+ |t|+ 1 < max(X) + 1 =
max(X ′) + 2

2
≤ max(O) + 1

2
,

which contradicts the fact that O is balanced.

This completes the proof of (CC,CC ∩ C) ≤m (BC′(−, ·),BC′(−, ·)) and thus BC′(−, ·) and
BC(−, ·) are ≤m-complete for RE.

4 Smaller Sets of Operations Lead to Problems in NP

In this section it is shown that all problems BC(O) for O ({−, ·} are in NP. Each of these

problems is proven to be ≤log
m -complete for one of the classes L, NL, and NP.

4.1 The Complexity of the Problem Solely Admitting Multiplication

This section’s purpose is to prove the NL-completeness of BC(·): first, a technical elaboration
shows that A · B for sets A and B with sufficiently large maxima is subbalanced. Second, this
result is exploited by a non-trivial non-deterministic logarithmic-space algorithm which accepts
BC(·).
In order to prove the first of the two results, we need the following estimation.

Lemma 14. 1. Let p1, . . . , pn ∈ N+ be relatively prime. Let A be an interval. Define B0 = A
and Bk+1 = Bk − {x ∈ A | pk+1 | x} for k = 0, . . . , n− 1. Then for k = 0, 1, . . . , n

|Bk| ≥ |A| ·
k∏
i=1

(
1− 1

pi

)
− 2k.

13

2. Let p be some number greater than max(p1, . . . , pn) and relatively prime to
∏n
i=1 pi. Moreover,

let A = {x ∈ N | p | x, a ≤ x ≤ b} for naturals a ≤ b. Define B0 = A and Bk+1 = Bk − {x ∈
A | pk+1 | x} for k = 0, . . . , n− 1. Then for k = 0, 1, . . . , n

|Bk| ≥ |A| ·
k∏
i=1

(
1− 1

pi

)
− 2k.

Proof. 1. We prove the inequation by induction over k. For k = 0 the statement is true. Assume
that the statement is true for some k ≥ 0. We prove that it also holds for k+1. As for arbitrary
finite sets M1, . . . ,Mn

|M1 ∪ · · · ∪Mn| =
∑

∅6=T⊆{1,...,n}

(−1)|T |−1
∣∣∣ ⋂
i∈T

Mi

∣∣∣ (11)

holds, we obtain

|Bk+1| = |Bk| −
∣∣∣{x ∈ A | pk+1 | x} −

k⋃
i=1

{x ∈ A | pi | x, pk+1 | x}
∣∣∣

(11)

≥ |Bk| −
(⌈ |A|

pk+1

⌉
−

∑
∅6=T⊆{1,...,k}

(−1)|T |−1 · |{x ∈ A | ∀i ∈ T pi | x, pk+1 | x}|
)

≥ |Bk| −
(⌈ |A|

pk+1

⌉
−

(∑
∅6=T⊆{1,...,k},|T | odd

(−1)|T |−1

⌊
|A|(∏

i∈T pi

)
· pk+1

⌋
+

+
∑

∅6=T⊆{1,...,k},|T | even

(−1)|T |−1

⌈
|A|(∏

i∈T pi

)
· pk+1

⌉))

≥ |Bk| − 2k −
(
|A|
pk+1

−
∑

∅6=T⊆{1,...,k}

(−1)|T |−1 |A|(∏
i∈T pi

)
· pk+1

)

= |Bk| − 2k − |A|
pk+1

·
(

1 +
∑

∅6=T⊆{1,...,k}

(−1)|T |
1∏
i∈T pi

)

= |Bk| − 2k − |A|
pk+1

·
k∏
i=1

(
1− 1

pi

) ind. hyp.
≥ |A| ·

k∏
i=1

(
1− 1

pi

)
− |A|
pk+1

·
k∏
i=1

(
1− 1

pi

)
− 2k+1

= |A| ·
(k∏
i=1

(
1− 1

pi

))
·
(

1− 1

pk+1

)
− 2k+1 = |A| ·

(k+1∏
i=1

(
1− 1

pi

))
− 2k+1.

2. Note A = {p} · [c, d] for an interval [c, d]. Define B′0 = [c, d] and B′k+1 = B′k − {x ∈ B′0 |
pk+1 | x} for k = 0, . . . , n − 1. As p and all pi are relatively prime, it can be seen inductively
that Bk = {p} · B′k for all 0 ≤ k ≤ n. In particular, |Bk| = |B′k| for 0 ≤ k ≤ n. Applying the
first statement for the B′k finishes the proof.

Theorem 15. For A,B ∈ Pfin(N) with sufficiently large maxima the set A ·B is subbalanced.

Proof. It suffices to prove the statement for the case where A ⊆ B are intervals starting from 0,
i.e., |A| = max(A)+1 and |B| = max(B)+1. We even prove that |A ·B| < max(A) ·max(B)/2.

Let k = (23!)2. We show the statement in two steps.

14

1. First we show that for |B| ∈ {|A|, |A| + 1, . . . , |A| + k − 1} the set A · B has less than
max(A) ·max(B)/2 elements.

2. Then it is argued that if |A · B| < max(A) ·max(B)/2 for some B with |B| ≥ |A|, then
|A · (B ∪ {max(B) + 1,max(B) + 2, . . . ,max(B) + k})| < max(A) · (max(B) + k)/2.

Then, given finite and sufficiently large intervals A = [0, a] and B = [0, b] for a ≤ b, if b ≤
a + k − 1, the statement follows from 1. Otherwise, there is 0 ≤ r ≤ k − 1 and s ∈ N+ with
B = [0, a + r + s · k]. According to 1, the statement holds for the sets A and B′ = [0, a + r].
Applying part 2 for s times yields that the statement also holds for A and B.

1. Let A = [0, α] and B = [0, β] with β ∈ [α, α+ k − 1]. We first give an approximation for the
size of A ·A. Let D = {(a, b) | a, b ∈ A, 1 ≤ a ≤ b} ∪ {(0, 0)} and

E = D − {(a, b) ∈ D | a even, 0 < a ≤ b ≤ α/2}.

We have A · A = {a · b | (a, b) ∈ D} = {a · b | (a, b) ∈ E}: we only argue for ⊆ of the second
equation. Let (a, b) ∈ {(a, b) | a > 0, a, b ∈ A, a ≤ b} /∈ E. Then, as (a, b) ∈ D − E, a is even
and b ≤ α/2. Consider the pair (a/2, 2b) ∈ D. If this pair is in E, we are done. Otherwise, the
pair is in D−E and we can apply the same argument. Thus we finally obtain a pair (a′, b′) ∈ E
with a′ · b′ = a · b.
It holds

|D| =
(
α

2

)
+ α+ 1 =

α · (α− 1)

2
+ α+ 1 =

α2 + α

2
+ 1

and if α is sufficiently large,

|A ·A| ≤ |E| ≤ |D| − α

2 · 5
· α

4
− 1 ≤

19
20α

2 + α

2
.

Now assume β = α + b for b ∈ {1, 2, . . . , k − 1}. Then, with the observations made above, it
holds

|A ·B| ≤
19
20α

2 + α

2
+ α · b =

α · (α+ 1 + 2 · b− α/20)

2

=
α · β − α ·

(
α/20− (b+ 1)

)
2

<
α · β

2

in case α is sufficiently large.

2. Let A = [0, α] and B = [0, β] with α ≤ β and A · B < max(A) ·max(B)/2. We show that
then |A · [0, β + k]| < α · (β + k)/2.
We sketch the basic idea of the proof in a semiformal way. Consider the set C = [1, α] × [β +
1, β + k]. Clearly,

{a · b | (a, b) ∈ C} ∪ (A ·B) ⊇ A · [0, β + k]. (12)

Thus, C covers the set (A · [0, β+ k])−A ·B. We delete the elements of two sets D and E from
C. Thereto, let P = {p ∈ P | p ≤ 23},

D = {(a, b) ∈ C | ∃p∈P p | b, 1 ≤ a ≤ α/p},

and

E = {(a, b) ∈ C | ∃j|a∃i|b j ≤ min(i− 1, 50) ∧ gcd(i, j) = 1 ∧ a · i
j
≤ α}.

15

Observe that for each pair (a, b) ∈ D there is a prime p ∈ P such that (a · p, b/p) is in C.
Therefore, roughly speaking, the pairs in D are redundant and can be deleted from C.

Analogously, for each pair (a, b) ∈ E, there are numbers i and j satisfying the mentioned
properties such that (a · i/j, b · j/i) is in C. Hence, loosely speaking, also the pairs in E are
obsolete and may be deleted from C.

Hence it suffices to show that C− (D∪E) does not contain too many elements. In other words,
if D ∪ E is large enough, then the set (A · [0, β + k]) − A · B is not too big and as A · B is
subbalanced, the set A · [0, β + k] = A ·B ∪

(
(A · [0, β + k])−A ·B

)
is subbalanced as well.

We now move to the formal proof. It is sufficient to show

{a · b | (a, b) ∈ C} ∪ (A ·B) = {a · b | (a, b) ∈ C −D} ∪ (A ·B), (13)

{a · b | (a, b) ∈ C −D} ∪A ·B = {a · b | (a, b) ∈ C − (D ∪ E)} ∪A ·B, (14)

and

|D ∪ E| ≥ k · α/2 (15)

because then it follows

|A · [0, β + k]|
(12)

≤ |{a · b | (a, b) ∈ C} ∪ (A ·B)|
(13)
= |{a · b | (a, b) ∈ C −D} ∪ (A ·B)|

(14)
= |{a · b | (a, b) ∈ C − (D ∪ E)} ∪ (A ·B)|
≤ |C − (D ∪ E)|+ |A ·B| = |C| − |D ∪ E|+ |A ·B|
(15)

≤ k · α− kα

2
+ |A ·B| < kα

2
+
α · β

2

=
α · (β + k)

2
=

max(A) ·max([0, β + k])

2
.

Define C ′ = C − D and C ′′ = C − (D ∪ E). We argue for (13). It suffices to prove ⊆. Let
(a, b) ∈ C. If (a, b) /∈ C ′, then there is a prime p ∈ P with p | b and a ≤ α/p. Consider the pair
(a · p, b/p). There are three cases.

1. (a · p, b/p) ∈ A×B

2. (a · p, b/p) ∈ C ∩ C ′

3. (a · p, b/p) ∈ C − C ′

In the first two cases we are done. In the third case we argue in the same way as we did for the
pair (a, b). As b/p < b, repeating this argument finally leads to a pair which is in A ·B or in C ′.

Now we prove (14). It suffices to argue for ⊆. Let (a, b) ∈ C ′ and assume (a, b) /∈ C ′′. Then
(a, b) ∈ E. Let i and j be numbers according to the definition of E, i.e., j | a, i | b, gcd(i, j) = 1,
j < i, j ≤ 50, and a · i/j ≤ α. We consider the pair (a′, b′) = (a · i/j, b · j/i). We analyze all
possible cases.

1. (a′, b′) ∈ A×B.

2. (a′, b′) /∈ A×B. Then b′ > max(B) and (a′, b′) ∈ C. Thus we have the following cases.

16

(a) (a′, b′) ∈ C − C ′

(b) (a′, b′) ∈ C ′ − C ′′

(c) (a′, b′) ∈ C ′ ∩ C ′′

In the first case and in the case 2(c) we are immediately done. In the case 2(a), according
to the proof of Equation 13 there is a pair (a′′, b′′) ∈ C ′ ∪ A × B with a′ < a′′, b′′ < b′, and
a′′ · b′′ = a′ · b′. If (a′′, b′′) ∈ A×B, we are done. Otherwise (a′′, b′′) ∈ C ′. Here, if (a′′, b′′) ∈ C ′′,
we are done. Otherwise (a′′, b′′) ∈ C ′ − C ′′ and we can argue as in the case 2(b), which is the
last case to consider and in which we can argue for the given pair in the same way as we did
for the pair (a, b).
Whenever we consider a new pair, then this pair’s first (resp., second) component is greater
(resp., lower) than the first (resp., second) component of the pair before. Hence, we do not have
an endless recursion and at some point in time, we will reach one of the base cases 1 and 2(c),
in which we are immediately done.

For the remainder of the proof we argue for (15), i.e., we show |D ∪ E| ≥ k · α/2.
For Q ⊆ P non-empty let bQ denote the least number greater than α such that each prime
p ∈ P −Q does not divide bQ and each prime p ∈ Q divides bQ (note that due to the choice of
k there always is such a number bQ ≤ α+ k).
Observe that in [β + 1, β + k] there are

k ·
∏
p∈P

{
1
p p ∈ Q
p−1
p p /∈ Q

numbers y that equal bQ regarding the primes in P , i.e., all p ∈ P − Q do not divide y and
all p ∈ Q divide y. Moreover, note that a pair (a, y) for y with the properties just mentioned
is in D if and only if the pair (a, bQ) is in D. Finally (a, bQ) is in D if and only if 1 ≤ a and
a ·min(Q) ≤ α.
Thus it holds

|D| =
∑

Q∈P(P),
Q 6=∅

k ·

(∏
p∈P

{
1
p p ∈ Q
p−1
p p /∈ Q

)
·
∣∣∣{(a, bQ) ∈ C | 1 ≤ a ≤

⌊ α

min(Q)

⌋}∣∣∣︸ ︷︷ ︸
≥ α

min(Q)
−1

≥ k · α ·

(∑
Q∈P(P),
Q6=∅

(∏
p∈P

{
1
p p ∈ Q
p−1
p p /∈ Q

)
·
(1

min(Q)
− 1

α

))

≥ k · α ·

((∑
Q∈P(P),
Q 6=∅

(∏
p∈P

{
1
p p ∈ Q
p−1
p p /∈ Q

)
· 1

min(Q)

)
− 1

α

)
. (16)

Now we consider lower bounds for the size of E −D.
Let

y ∈ {x | ∃p∈P p | x} ∩ [β + 1, β + k] =: P ′

and j ∈ {2, . . . , 50}. Moreover, let

iy,j = min({x | x > j, gcd(x, j) = 1,∀p∈P,p|xp ∈ P ∧ p3 - x ∧ x | y},

17

where min(∅) is defined to be −1. In other words, iy,j is the least number greater j and coprime
to j that divides y and is solely built by primes ≤ 23 occurring with exponent at most 2 in the
prime factor decomposition. We denote the least prime divisor of y by py. Define Ey,j = ∅ if
py /∈ P and otherwise

Ey,j =

{
(x, y) ∈ E |

⌊
max(A)

py

⌋
+ 1 ≤ x ≤

⌊
max(A) · j

iy,j

⌋
, j | x

}
,

i.e., Ey,j contains such pairs (x, y) ∈ E −D for which j and iy,j witness the membership in E.
Roughly speaking, as iy,j is selected to be as low as possible, j and iy,j witness the membership
in E for as many pairs (x, y) as possible.
Note that by definition Ey,j and Ey′,j′ for y′ 6= y and arbitrary j and j′ are disjoint.
As Ey,j only contains pairs (a, b) with a > max(A)/py and D solely contains pairs (a, b) with
a ≤ max(A)/py, ⋃

y∈P ′

⋃
2≤j≤50

Ey,j ⊆ E −D.

It follows that E −D can be written as a superset of the union of pairwise disjoint sets in the
following way.

E −D ⊇
⋃
y∈P ′

50⋃
j=2

(
Ey,j −

(j−1⋃
j′=2

Ey,j′
))

︸ ︷︷ ︸
=:E′y,j

.

This shows

|E −D| ≥
∑
y∈P ′

∑
j=2,...,50

|E′y,j |. (17)

The next step is to observe that, roughly speaking, the size of E′y,j does not really depend on y
but only on the primes in P occurring in the prime factor decomposition of y:
Let y and y′ satisfy the following condition: for all p ∈ P it holds

• p | y ⇔ p | y′

• p2 | y ⇔ p2 | y′.

Observe that then for all 2 ≤ j ≤ 50 it follows from the definitions that iy,j = iy′,j and thus
{x | (x, y) ∈ Ey,j} = {x | (x, y′) ∈ Ey′,j}.
Therefore, the following definition is well-defined, i.e., independent of the choice of y. Let
P1, P2 ⊆ P with P1 ∪ P2 6= ∅ be disjoint. Choose y ∈ {max(B) + 1, . . . ,max(B) + k} such
that each p ∈ P − (P1 ∪ P2) does not divide y, for each p ∈ P1 it holds p | y and p2 - y, and
for each p ∈ P2 we have p2 | y (note that such a number y exists by the choice of k). Define
iP1,P2,j := iy,j , EP1,P2,j := {x | (x, y) ∈ Ey,j}, and E′P1,P2,j

= {x | (x, y) ∈ E′y,j}. Note that then

iP1,P2,j = min

({
x | x > j, gcd(x, j) = 1, x |

(∏
p∈P1

p

)
·
(∏
p∈P2

p2

)})
,

where by definition min(∅) = −1, and observe that iP1,P2,j ≤ j ·max(P1 ∪ P2).

18

Observe that in [β + 1, β + k] there are

k ·

(∏
p∈P

p−1
p2

p ∈ P1

1
p2

p ∈ P2

p−1
p p /∈ (P1 ∪ P2)

)

numbers y that equal bP1,P2 regarding the primes in P1 ∪ P2, i.e., all p ∈ P − (P1 ∪ P2) do not
divide y, for all p ∈ P1 it holds p | y and p2 - y, and for all p ∈ P2 it holds p2 | y.
Thus, due to (17) we obtain

|E −D| ≥
∑

P1∈P(P)

∑
P2∈P(P−P1),
P1∪P2 6=∅

[
k ·

(∏
p∈P

p−1
p2

p ∈ P1

1
p2

p ∈ P2

p−1
p p /∈ (P1 ∪ P2)

)
·

50∑
j=2

·|E′P1,P2,j |

]
. (18)

Now we estimate the size of the sets of the form E′P1,P2,j
.

The set EP1,P2,j consists of all numbers in the interval I(EP1,P2,j) = [bα/min(P1 ∪P2)c+ 1, bα ·
j/iP1,P2,jc] dividable by j. Hence, for each j′ ∈ [2, 50] there is an interval I(EP1,P2,j′) associated
with it. To simplify the estimation, we do not want the intervals associated with j and j′ to
overlap if j′ 6= j and gcd(j, j′) > 1. So, we shrink the intervals in the following way. For that
purpose let P1, P2 ⊆ P with P1 ∪ P2 6= ∅ be disjoint, j ∈ {2, . . . , 50} and p = min(P1 ∪ P2).
Define

γP1,P2,j = max

(
{δP1,P2,j′ | 2 ≤ j′ < j, gcd(j, j′) 6= 1, γP1,P2,j′ < δP1,P2,j′} ∪

{1

p

})
,

δP1,P2,j =
j

iP1,P2,j
,

and
JP1,P2,j =

[
bα · γP1,P2,jc+ 1, bα · δP1,P2,jc

]
.

Note that γP1,P2,j is positive whereas δP1,P2,j is possibly negative and thus iP1,P2,j = −1 implies
JP1,P2,j = ∅.
It follows immediately from the definition that JP1,P2,j ⊆ I(EP1,P2,j) and thus, the set EP1,P2,j

contains all elements in JP1,P2,j that are dividable by j. Moreover, observe that for numbers
j′ < j with gcd(j′, j) > 1 the intervals JP1,P2,j and JP1,P2,j′ do not overlap: this holds as
γP1,P2,j > δP1,P2,j′ by definition of γP1,P2,j . In other words, the interval JP1,P2,j lies above of all
intervals JP1,P2,j′ for j′ < j with gcd(j′, j) > 1 and if there is some number occurring in two
intervals JP1,P2,j and JP1,P2,j′ , then j′ and j are relatively prime.
For our estimation we will consider E′P1,P2,j

only inside the interval JP1,P2,j .

As a next step, loosely speaking, we partition the interval JP1,P2,j into a set of intervals de-
pending on which intervals JP1,P2,j′ with j′ < j overlap with the current part of JP1,P2,j . More
precisely, we define a partition of JP1,P2,j′ into intervals such that for each interval I of the
partition and each j′ < j either JP1,P2,j′ contains I or the two intervals are disjoint. Then for
each such I we can estimate the size of E′P1,P2,j

∩ I with Lemma 14.
Note that γP1,P2,j equals either 1/p or δP1,P2,j′ + 1 for the upper bound δP1,P2,j′ of an interval
JP1,P2,j′ , where j′ < j and gcd(j′, j) = 1.
Thus the list defined in the following contains all “relevant” points. Define

SP1,P2,j = {δP1,P2,j′ | 2 ≤ j′ ≤ j, γP1,P2,j < δP1,P2,j′ ≤ δP1,P2,j , γP1,P2,j′ < δP1,P2,j′} ∪ {γP1,P2,j}

19

and let ΓP1,P2,j be the empty list if |SP1,P2,j | = 1 and an increasingly sorted list containing the
numbers in SP1,P2,j otherwise.
Let nP1,P2,j ≤ j be the number of elements in ΓP1,P2,j .

The interval JP1,P2,j =
[
bα ·γP1,P2,jc+1, bα ·δP1,P2,jc

]
is either empty or can be partitioned into

the intervals IP1,P2,j,σ =
[
bα · ΓP1,P2,j [σ]c + 1, bα · ΓP1,P2,j [σ + 1]c

]
for σ = 1, . . . , nP1,P2,j − 1,

where ΓP1,P2,j [1] = γP1,P2,j and ΓP1,P2,j [nP1,P2,j] = δP1,P2,j .
Observe that by construction for arbitrary r < s and 1 ≤ ζ < nP1,P2,s either JP1,P2,r contains
IP1,P2,s,ζ or the two intervals are disjoint.

Claim 16.

|E′P1,P2,j | ≥ α ·
(nP1,P2,j∑

r=2

(ΓP1,P2,j [r]− ΓP1,P2,j [r − 1])

j
·

∏
2≤j′<j,

IP1,P2,j,r−1⊆JP1,P2,j′

(
1− 1

j′

))
− 4j .

Proof of Claim 16. As P1 and P2 are fixed throughout this proof, we may omit corresponding
indices.
The size of the interval Ij,r = [bα · Γj [r]c+ 1, bα · Γj [r + 1]c] for 1 ≤ r ≤ nj − 1 is at least

bα · Γj [r + 1]c − bα · Γj [r]c ≥ max
(
0, α · (Γj [r + 1]− Γj [r])− 1

)
. (19)

As for all r < s and arbitrary ζ either Jr ⊇ Is,ζ or the two intervals are disjoint,

E′j = Ej −
j−1⋃
j′=2

Ej′ ⊇ (Ej ∩ Jj)−
j−1⋃
j′=2

(Ej′ ∩ Jj)

=
(
Ej ∩

nj⋃
r=2

Ij,r−1

)
−

j−1⋃
j′=2

(Ej′ ∩
nj⋃
r=2

Ij,r−1)

=
(nj⋃
r=2

(Ej ∩ Ij,r−1)
)
−

nj⋃
r=2

j−1⋃
j′=2

(Ej′ ∩ Ij,r−1)

=
(nj⋃
r=2

(Ej ∩ Ij,r−1)
)
−

nj⋃
r=2

⋃
2≤j′<j,Ij,r−1⊆Jj′

(Ej′ ∩ Ij,r−1)

=

nj⋃
r=2

((
Ej ∩ Ij,r−1

)
−

⋃
2≤j′<j,Jj′⊇Ij,r−1

(Ej′ ∩ Ij,r−1)

)
.

Now Lemma 14 can be applied: each Ej ∩ Ij,r consists of those numbers in the interval Ij,r
that are dividable by j. Beginning with this set we successively remove all numbers that are
dividable by lower numbers j′ relatively prime to j (cf. the choice of the bounds of the interval
Jj , in particular the choice of γj).

20

|E′j | ≥
nj∑
r=2

|(Ej ∩ Ij,r−1)| ·
∏

2≤j′<j,Ij,r−1⊆Jj′

(
1− 1

j′

)
− nj · 2j

(19)

≥
nj∑
r=2

⌊max(0, α · (Γj [r]− Γj [r − 1])− 1)

j

⌋
·

∏
2≤j′<j,Ij,r−1⊆Jj′

(
1− 1

j′

)
− nj · 2j

(∗)
≥

nj∑
r=2

⌊α · (Γj [r]− Γj [r − 1])

j

⌋
·

∏
2≤j′<j,Ij,r−1⊆Jj′

(
1− 1

j′

)
− nj · (2j + 1)

(∗)
≥ α ·

nj∑
r=2

(Γj [r]− Γj [r − 1])

j
·

∏
2≤j′<j,Ij,r−1⊆Jj′

(
1− 1

j′

)
− nj · (2j + 2)

≥ α ·
nj∑
r=2

(Γj [r]− Γj [r − 1])

j
·

∏
2≤j′<j,Ij,r−1⊆Jj′

(
1− 1

j′

)
− 4j ,

where (∗) holds as all factors behind the Gauß-brackets are in the rational interval [0, 1].

The Estimations (16) and (18) together with Claim 16 yield

|D ∪ E| = |D|+ |E −D|

≥ k · α ·

[(∑
Q∈P(P),
Q 6=∅

(∏
p∈P

{
1
p p ∈ Q
p−1
p p /∈ Q

)
· 1

min(Q)

)
− 1

α
+

∑
P1∈P(P)

∑
P2∈P(P−P1),
P1∪P2 6=∅

(∏
p∈P

p−1
p2

p ∈ P1

1
p2

p ∈ P2

p−1
p p /∈ (P1 ∪ P2)

)
·

(
50∑
j=2

(nP1,P2,j∑
r=2

(ΓP1,P2,j [r]− ΓP1,P2,j [r − 1])

j
·

∏
2≤j′<j,

IP1,P2,j,r−1⊆JP1,P2,j′

(
1− 1

j′

))
−
∑50

ξ=2 4ξ

α︸ ︷︷ ︸
≤ 451

α

)]

Thus, in order to complete the proof of Theorem 15, it suffices to observe that

∑
Q∈P(P),
Q6=∅

(∏
p∈P

{
1
p p ∈ Q
p−1
p p /∈ Q

)
· 1

min(Q)
+

∑
P1∈P(P)

∑
P2∈P(P−P1),
P1∪P2 6=∅

(∏
p∈P

p−1
p2

p ∈ P1

1
p2

p ∈ P2

p−1
p p /∈ (P1 ∪ P2)

)
·

50∑
j=2

(nP1,P2,j∑
r=2

(ΓP1,P2,j [r]− ΓP1,P2,j [r − 1])

j
·

∏
2≤j′<j,

IP1,P2,j,r−1⊆JP1,P2,j′

(
1− 1

j′

))
>

1

2
. (20)

Claim 17. Inequation 20 holds.

In order to prove Claim 17, it suffices to determine the value of the expression on the left-hand
side of Inequation 20. Appendix A contains a Python program computing this value showing
that it equals

411983765287317296949308854316350341437087460043469

818055136927161825348279436709256253210949631000000
,

21

which is greater than 1/2.

Theorem 18. BC(·) ∈ NL.

Proof. Consider the problem

BC′(·) df={C ∈ BC(·) | all gates in C have a path to the output gate, there exists an assigned
input, no assigned input computes the empty set or a set whose max-
imum is even or ≤ 1, there is an assignment of the unassigned inputs
with values from Pfin(N+) such that the output set is balanced.}.

Claim 19. BC(·) ∈ NLBC′(·).

Proof of Claim 19. The following NL-algorithm with oracle BC′(·) accepts BC(·).

1. Let C be the input circuit. If C has no assigned input gates, then accept.

2. For each node, test whether there is a path from it to the output gate. If there is none,
then delete the node and all its incident edges.
This step can be implemented as a non-deterministic logarithmic-space subroutine (recall
that the graph accessibility problem for directed graphs is in NL).

3. If there is some assigned input computing the empty set or a set with an even maximum,
then reject.

4. If there is no assigned input computing a set with maximum > 1:

(a) In case there is an unassigned input, accept.

(b) In case there is no unassigned input, accept if all assigned inputs compute {1}.
Otherwise reject.

5. Now there is some assigned input gate g with max(g) > 1. If there is some assigned input
gate computing a set containing 0, then add 0 to the set computed by g and delete 0 from
all sets computed by another assigned input.

6. If there is some assigned input gate h computing the set {1}, then for each successor h′′

of h do the following.

(a) Let h′ be the node such that h and h′ are the predecessors of h′′ (possibly it holds
h = h′). Delete h′′ and its ingoing edges and replace each outgoing edge (h′′, u) with
(h′, u).

(b) If h′′ was the output gate, then let h′ be the new output gate.

If h has no outgoing edge, delete h. If there still is an assigned input computing {1},
repeat Step 6.

7. If the current circuit is in BC′(·), then accept. Add 0 into the set computed by the gate
g. If the current circuit is in BC′(·), then accept, otherwise reject.

Observe that if in Step 6b a new output node is chosen, then g is the new output node: before
the first execution of Step 6 g is connected to the output node. Observe that if g is connected
to the output node before some execution of this step, then it still is after the execution. In
particular, g is never deleted as only nodes computing {1} are deleted in Step 6. Hence, when

22

a new output node is chosen, g is still connected to the old output node, thus is a predecessor
of it, and becomes the new output.
This shows that, in case the circuit has an output node before an execution of Step 6, then it
still has afterwards.
In order to see that the algorithm is correct, it is important to note that Step 6 is no endless
loop. When this step is executed for some node h the first time, then h is connected to the
output gate. If h is not connected to the output node after some execution of Step 6, then it is
deleted. Thus, Step 6 is only executed for nodes connected to the output node. Consequently, in
each execution of it one node of the circuit is deleted. Due to that Step 6 can only be executed
finitely (indeed linearly) many times.
It follows that the algorithm is indeed an NL-algorithm.

The following observations complete the proof.

• With the observations made above, it can be observed that at any point in time in which
the algorithm executes one of the Steps 1 to 6 the current circuit is in BC(·) if and only
if the original circuit is in BC(·).

• If the algorithm accepts in one of the Steps 1 to 6, then the input circuit is in BC(·).

• If the algorithm rejects in one of the Steps 1 to 6, then the input circuit is not in BC(·).

• When Step 7 is executed, then in the current circuit all gates have a path to the output
gate, there exists an assigned input, and no assigned input computes the empty set or a
set whose maximum is even or ≤ 1.

• If and only if the circuit at the beginning of the execution of Step 7 is in BC(·), then one
of the two circuits the oracle is asked in this step is in BC′(·).

Due to NLNL = NL it suffices to prove BC′(·) ∈ NL.

According to Theorem 15 there is a number µ ∈ N such that for A,B ∈ Pfin(N+) with max(A) ≥
µ ≤ max(B) the set A · (B ∪ {0}) is subbalanced.
Observe that the set

GAP′ = {((V,E), s, t, k) | (V,E) is a directed multigraph, s, t ∈ V , k ∈ {1, 2, 3},
there are at least k paths from s to t}

is in NL.
We show that the following deterministic logarithmic-space algorithm with oracle GAP′ accepts
BC′(·) (then due to LNL = NL it follows that BC′(·) ∈ NL). As input a {·}-circuit C with the
set of nodes V , set of edges E and output node gC is given. We may assume that all gates in C
have a path to the output gate, there is an assigned input a, and no assigned input computes
the empty set or a set whose maximum is even or ≤ 1.

1. If there are two assigned input gates each containing an element ≥ µ, reject.
If there is an assigned input gate with two paths to gC containing an element ≥ µ, reject.

2. If there are at least µ assigned input gates, reject.

3. In case there is an assigned input gate with at least three paths to the output, reject.

23

4. We denote the set of unassigned input gates that have precisely one path (resp., two paths)
to the output gate by U (resp., V).

While there are more than µ nodes in U , there are more than µ nodes in V , or there is
an unassigned input with at least three paths to the output, do the following.

(a) If there is an unassigned input with at least three paths to the output, denote this
gate by g.
Otherwise:

• If there are more than µ nodes in U , let g denote a node of U . Otherwise let g
denote a node of V .

(b) For each successor g′′ of g do the following.

i. Let g and g′ be the predecessors of g′′ (possibly g = g′). Delete g′′ and replace
each outgoing edge (g′′, u) with (g′, u).

ii. If g′′ was the output gate, then let g′ be the new output gate.

If g has no outgoing edges, delete g.

Note that the sets U and V are never computed explicitly and stored on a working tape.

5. We have the following differentiation of cases.

(a) In case there is no assigned input gate with an element ≥ µ:
If the current circuit is in BC′(·), then accept. Otherwise reject.

(b) In case there is one assigned input gate g with an element ≥ µ:

i. For each assignment for the remaining ≤ 2µ unassigned input gates with values
from P({1, . . . , µ}) do the following

• Compute the constant-size set

M =
∏
u∈U

u ·
∏
v∈V

(v · v) ·
∏

h is assigned input 6= g

h.

Then gC = M · g where M is of constant-size and g is part of the input.

• Test whether g ∈ BalM and accept in case the answer is “yes”.

ii. Reject.

Now we consider each step explicitly. From this consideration it will follow that the algorithm
works correctly and only requires logarithmic space.

1. If the algorithm rejects in Step 1, then for any assignment

gC = M1 ·M2 ·M3 ⊆ (M1 ∪ {0}) ·M2 · (M3 − {0}),

where M1 and M2 contain an element ≥ µ each. Lemma 15 yields that |(M1 ∪ {0}) ·
M2| ≤ max(M1) ·max(M2)/2. Consequently, |gC | ≤ max(M1) ·max(M2) ·max(M3)/2 =
max(gC)/2. So, C /∈ BC′(·).

2. If the algorithm rejects in Step 2, then there are µ assigned inputs which by assumption
compute sets with maxima ≥ 2. These µ sets can also be seen as two sets each containing
an element ≥ µ. Then it follows from the case before that C /∈ BC′(·).

24

3. Assume the algorithm rejects in Step 3 and let g be an assigned input with at least
three paths to the output. Here gC = g3 ·M ⊆ (g ∪ {0})3 · (M − {0}) for some set M
depending on the assignment of the unassigned inputs. By assumption max(g) is odd and
max(g) ≥ 3. According to Lemma 7 the set (g ∪ {0})3 has at most max(g)3/2 elements.
Therefore |gC | ≤ max(g)3/2 ·max(M) = max(gC)/2 and hence gC is not balanced under
any assignment. Therefore, C /∈ BC′(·).

4. Assigning an input with at least three paths to the output gate with a set with maximum
≥ 2 does not lead to a balanced output (cf. Lemma 1 and the argumentation for Step 3).

Assigning µ inputs with sets with maximum ≥ 2 does not lead to a balanced output as
well (cf. the argumentation for Step 2).

Assigning any input with the empty set leads to an empty output.

Therefore, only assignments mapping all gates g treated in Step 4b to {1} might generate
a balanced output. But then in the notation of this step, each successor of g′′ computes
the same set as g′. Together with the observation that, if a new output node is chosen,
then a (and thus no node which might be deleted at the end of the step) becomes the new
output (cf. the argumentation for Step 6 of the algorithm in Claim 19), this justifies the
modifications of each execution of the loop 4b, i.e., if the circuit before some execution of
this loop is in BC′(·), then it is in BC′(·) afterwards as well.

Observe that each execution of this step is possible in logarithmic space and that with the
same argumentation as for Step 6 of the algorithm in Claim 19 it is only executed finitely
(indeed linearly) many times.

5. Due to the previous steps, at the beginning of this step the circuit has an assigned input,
it only has constantly many inputs, each gate in it is connected to the output, and at
most one assigned input contains an element > µ.

Therefore, in Step 5a the circuit is of constant size. Hence it remains to argue for Step 5b.
Let g be an assigned input with an element greater than µ. Clearly, the algorithm only
accepts if the input circuit is in BC′(·). We argue that it only rejects if the input circuit
is not in BC′(·).
If an unassigned input is assigned a set whose maximum is greater than µ, then we
basically have the same situation as in Step 1 and an analogous argumentation yields that
the output is not balanced under such an assignment. Hence, it suffices to consider those
assignments which are tested by the algorithm. As the algorithm only rejects if for each
such assignment and its corresponding set M it holds g /∈ BalM , it only rejects if the input
circuit is not in BC′(·).
Finally observe that due to Propostion 2 Step 5a only requires logarithmic space.

Theorem 20. BC(·) is ≤log
m -hard for NL.

Proof. McKenzie and Wagner [MW07] proved the problem MC(∩) to be ≤log
m -complete for NL.

The following algorithm computes a function for MC(∩) ≤log
m BC(·).

• input: (C, b)

• Replace all gates computing ∩ with gates computing ·.

25

• Let all input gates computing a set containing b compute the set {1}.
Let all other input gates compute the set {0}.

• Return the modified circuit C ′.

This can be done in logarithmic space. Moreover, (C, b) ∈ MC(∩) if and only if there is an input
computing a set containing b that is connected to the output node and no input computing a
set not containing b is connected to the output node. In the output circuit, the output set
is balanced if and only if there is an input computing the set {1} that is connected to the
output node and no input computing another set is connected to the output node. Hence
(C, b) ∈ MC(∩)⇔ C ′ ∈ BC(·).

Corollary 21. BC(·) is ≤log
m -complete for NL.

Proof. The statement follows from the Theorems 18 and 20.

4.2 The Complexity of the Problems Not Admitting Multiplication

We consider the two remaining problems and prove that BC(−) is ≤log
m -complete for NP and

BC(∅) is in L.

Theorem 22. BC(−) is ≤log
m -hard for NP.

Proof. We show the hardness by a reduction from CSAT.

• input: a Boolean circuit C without assigned inputs (assigned inputs can be simulated by
X ∨ ¬X or X ∧ ¬X for an unassigned input X).

• We convert the Boolean circuit into a {−}-circuit: For each unassigned input gate X add
a node Y = {1} − ({1} −X) and let all outgoing edges of X start in Y .

• Let Z be an inner gate of the circuit. Replace it as follows.

– In case Z is a ¬-gate with predecessor Z ′, let Z = {1} − Z ′.
– In case Z is a ∨-gate with predecessors Z1 and Z2, let Z = {1} −

(
({1} −Z1)−Z2

)
.

– In case Z is a ∧-gate with predecessors Z1 and Z2, let Z =
(
{1} − ({1} − Z1)

)
−

({1} − Z2).

• Return the circuit.

Observe that this function is logarithmic-space computable. Moreover, by construction, the
output circuit is in BC(−) if and only if the input circuit is in CSAT.

Theorem 23. BC(−) is in NP.

Proof. We sketch an NP-algorithm that accepts BC(−).

1. input: a circuit C with output node gC and labeling function α.

2. Go from gC upwards always taking the left predecessor. Denote the input gate finally
reached by g.

3. If g is assigned, then:
guess all assignments with values from P(α(g)) and accept if the ouput set is balanced
for one of these assignments, otherwise reject.

26

4. Note that now g is unassigned. Let M be the union of all sets computed by assigned
inputs. Let m = max(M) + 1. Guess an assignment such that I(g) = {m} and each
unassigned input either computes {m} or ∅. If under this assignment gC contains m, then
accept.

5. Guess an assignment of the unassigned inputs such that each of them computes a subset
of M . In case gC is balanced, accept. Otherwise reject.

Claim 24. If the algorithm accepts, then C ∈ BC(−).

Proof of Claim 24. If the algorithm accepts in the 3-rd step, then C ∈ BC(−). If it accepts in
the 4-th step, then there is an assignment that maps each unassigned input either to {m} or to
∅ such that m is in the output set. Now change this assignment such that the sets mapped to
{m} are now mapped to {m+ 1,m+ 2, . . . , 2m+ 1}. Then I(C) = {m+ 1,m+ 2, . . . , 2m+ 1}
is balanced and C ∈ BC(−). Trivially, in case C is accepted in the 5-th step, C ∈ BC(−).

Claim 25. If the algorithm rejects, then C /∈ BC(−).

Proof of Claim 25. If the algorithm rejects, then this happens in step 3 or step 5. We argue
for the first case. Here g is an assigned input gate. As the output set always is a subset of
the set computed by g, it holds gc ⊆ α(g) for any assignment and hence it suffices to consider
assignments that map all unassigned inputs to subsets of α(g). As the algorithm rejects, gC is
not balanced under any of these assignments and thus C /∈ BC(−).
It remains to argue for the case where the algorithm rejects in step 5. In this case, g is an
unassigned input and as step 4 did not accept, there is no assignment putting elements outside
of M into the circuit’s ouput set. Hence, it is sufficient to consider assignments that solely map
to subsets of M . As the algorithm rejects, none of these assignments yields a balanced output
set and hence there is no assignment at all under which the output set is balanced. Therefore,
C /∈ BC(−).

The observation that the algorithm can be computed in polynomial time by a non-deterministic
Turing machine completes the proof.

Corollary 26. BC(−) is ≤log
m -complete for NP.

Proof. The assertion follows from the Theorems 22 and 23.

Theorem 27. BC(∅) ∈ L.

Proof. In this situation the output node is also an input node. Hence, the following algorithm
decides BC(∅). If the output node is an unassigned input, accept. Otherwise, test whether the
set M computed by the ouput node is balanced which is possible in deterministic logarithmic
space (cf. Proposition 2). Accept or reject correspondingly.

5 Conclusion and Open Questions

The following table summarizes our results, namely the lower and upper complexity bounds for
the complexity of BC(O) with O ⊆ {−, ·}. As each non-trivial problem is ≤log

m -hard for L, it is
not necessary to prove the mentioned lower bound for BC(∅).

27

BC(O) for O = ≤log
m -hard for contained in

∅ L L, Theorem 27

{−} NP, Theorem 22 NP, Theorem 23

{·} NL, Theorem 20 NL, Theorem 18

{·,−} undecidable, Theorem 5

To our knowledge, in contrast to all results from previous papers on complexty issues con-
cerning decision problems for integer circuits (e.g., [MW07, Tra06, Bre07, GHR+10, GRTW10,
BBD+17]) or related constraint satisfaction problems ([GJM17, Dos16]), a problem admitting
only one arithmetic operation is shown to be undecidable. Beginning with this problem, namely
BC(−, ·), the problems BC(O) for O ⊆ {−, ·} are systematically investigated and for each of
these problems the complexity is precisely characterized. It turns out that decreasing the size of
the set of allowed operations yields problems that are in NP. In particular, all these problems
are ≤log

m -complete for one of the classes L, NL, and NP.
Hence, in some sense the questions of these paper are completely answered. Nevertheless, there
arise new questions from our results: Is there a set O ⊆ {−,∪,∩} such that BC(O ∪ {+}) is
undecidable? And if so, for which of the sets this is the case and for which it is not?

References

[BBD+17] D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau. Emptiness
problems for integer circuits. In 42nd International Symposium on Mathemati-
cal Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg,
Denmark, pages 33:1–33:14, 2017.

[Bre07] H.-G. Breunig. The complexity of membership problems for circuits over sets of
positive numbers. In Fundamentals of Computation Theory, 16th International
Symposium, FCT 2007, Budapest, Hungary, August 27-30, 2007, Proceedings, pages
125–136, 2007.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, pages 151–158, 1971.

[Dos16] T. Dose. Complexity of constraint satisfaction problems over finite subsets of nat-
ural numbers. In 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 32:1–
32:13, 2016.

[DPR61] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential
Diophantine equations. Annals of Mathematics, 74(2):425–436, 1961.

[GHR+10] C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, and M. Waldherr. Equivalence
problems for circuits over sets of natural numbers. Theory Comput. Syst., 46(1):80–
103, 2010.

[GJM17] C. Glaßer, P. Jonsson, and B. Martin. Circuit satisfiability and constraint satisfac-
tion around skolem arithmetic. Theor. Comput. Sci., 703:18–36, 2017.

[GRTW10] C. Glaßer, C. Reitwießner, S. D. Travers, and M. Waldherr. Satisfiability of algebraic
circuits over sets of natural numbers. Discrete Applied Mathematics, 158(13):1394–
1403, 2010.

28

[Mat70] Y. V. Matiyasevich. Enumerable sets are Diophantine. Doklady Akad. Nauk SSSR,
191:279–282, 1970. Translation in Soviet Math. Doklady, 11:354–357, 1970.

[MW07] P. McKenzie and K. W. Wagner. The complexity of membership problems for
circuits over sets of natural numbers. Computational Complexity, 16(3):211–244,
2007.

[Pap94] C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[PD09] I. Pratt-Hartmann and I. Düntsch. Functions definable by arithmetic circuits. In
Conference on Mathematical Theory and Computational Practice, volume 5635 of
Lecture Notes in Computer Science, pages 409–418. Springer, 2009.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, STOC ’73, pages 1–9, New York, NY, USA, 1973. ACM.

[Tra06] S. D. Travers. The complexity of membership problems for circuits over sets of
integers. Theor. Comput. Sci., 369(1-3):211–229, 2006.

[Wag84] K. Wagner. The complexity of problems concerning graphs with regularities (ex-
tended abstract). In Proceedings of the Mathematical Foundations of Computer
Science 1984, pages 544–552, London, UK, UK, 1984. Springer-Verlag.

[Yan01] K. Yang. Integer circuit evaluation is PSPACE-complete. Journal of Computer and
System Sciences, 63(2):288–303, 2001. An extended abstract of appeared at CCC
2000.

29

A A Program for Claim 17

Claim 17 states

∑
Q∈P(P),
Q6=∅

(∏
p∈P

{
1
p p ∈ Q
p−1
p p /∈ Q

)
· 1

min(Q)
+

∑
P1∈P(P)

∑
P2∈P(P−P1),
P1∪P2 6=∅

(∏
p∈P

p−1
p2

p ∈ P1

1
p2

p ∈ P2

p−1
p p /∈ (P1 ∪ P2)

)
·

50∑
j=2

(nP1,P2,j∑
r=2

(ΓP1,P2,j [r]− ΓP1,P2,j [r − 1])

j
·

∏
2≤j′<j,

IP1,P2,j,r−1⊆JP1,P2,j′

(
1− 1

j′

))
>

1

2
.

We divide the left-hand side into two parts and at the same time introduce some abbreviations
that will be used by the program. Note that by definition IP1,P2,j,r−1 ⊆ JP1,P2,j′ if and only if
γP1,P2,j′ ≤ ΓP1,P2,j [r − 1] ∧ ΓP1,P2,j [r] ≤ δP1,P2,j′ .

∑
Q∈P(P),
Q6=∅

(∏
p∈P

{
1
p p ∈ Q
p−1
p p /∈ Q

)
· 1

min(Q)
+ (21)

∑
P1∈P(P)

∑
P2∈P(P−P1)
P1∪P2 6=∅

(∏
p∈P

p−1
p2

p ∈ P1

1
p2

p ∈ P2

p−1
p p /∈ (P1 ∪ P2)︸ ︷︷ ︸

=:WP1,P2

)
·

[
50∑
j=2

nP1,P2,j∑
r=2

(ΓP1,P2,j [r]− ΓP1,P2,j [r − 1])

j
·

∏
2≤j′<j,

γP1,P2,j′
≤ΓP1,P2,j [r−1],

ΓP1,P2,j [r]≤δP1,P2,j′

(
1− 1

j′

)

︸ ︷︷ ︸
=:XP1,P2,j,r︸ ︷︷ ︸

=:YP1,P2,j

]

︸ ︷︷ ︸
ZP1,P2

(22)

In the following a Python program is given that computes the values of the Expressions 21 and
22. The values are

16371319996435847

49770428644836900

and
142895417326061807270595835531719117019879078513469

818055136927161825348279436709256253210949631000000
.

The program represents rational numbers as 2-tuples of integers, where the first entry represents
the numerator and the second represents the denominator. It never occurs the situation that
the numerator is 0. Moreover, we assume that functions for the powerset of a set, sorting a list
of rationals, the greatest common divisor of two integers, as well as multiplication, addition,
subtraction, and the relations =, <, >, ≤, and ≥ over the rationals are given. The names of
the corresponding functions are supposed to be “powerset, sort, gcd, mul, add, sub, eq, lower,
greater, leq, geq”.
The program follows the Expressions 21 and 22 and broadly uses the same notation.

30

1 def computeSetOfPairsP1P2 (P) :
2 pP = powerset (P)
3 S = set ()
4 for P1 in pP :
5 S |= {(P1 , P2) for P2 in powerset (P − P1)}
6 S −= {(frozenset () , frozenset ())}
7 return S
8
9 def computeW P1P2(P, P1 , P2) :

10 r e t = (1 , 1)
11 for p in P:
12 i f p in P1 :
13 r e t = mul (ret , (p−1, p∗∗2))
14 e l i f p in P2 :
15 r e t = mul (ret , (1 , p∗∗2))
16 else :
17 r e t = mul (ret , (p−1, p))
18 return r e t
19
20 def compute i P1P2j (j , P1 , P2) :
21 for x in range (j + 1 , max(P1 |P2)∗ j +1):
22 #r e c a l l i P1P2j <= j ∗ max(P1 |P2)
23 i f gcd (x , j) == 1 :
24 k = x
25 for p in P1 |P2 :
26 i f k%p == 0 :
27 k = k//p
28 i f k%p == 0 and p in P2 :
29 k = k//p
30 i f k == 1 :
31 return x
32 return −1
33
34 def compute delta P1P2 (j , i) :
35 delta P1P2 = {}
36 for k in range (2 , j + 1) :
37 delta P1P2 [k] = (k , i [k])
38 return delta P1P2
39
40 def compute gamma P1P2 (j , i , delta P1P2 , pmin) :
41 gamma P1P2 = {}
42 for k in range (2 , j +1):
43 m = (1 , pmin)
44 for j in range (2 , k) :
45 i f gcd (k , j) > 1 and lower (gamma P1P2 [j] , delta P1P2 [j]) :
46 i f g r e a t e r (delta P1P2 [j] , m) :
47 m = delta P1P2 [j]
48 gamma P1P2 [k] = m
49 return gamma P1P2

31

50 def computeGamma P1P2j (gamma P1P2 , delta P1P2 , j) :
51 i f geq (gamma P1P2 [j] , delta P1P2 [j]) :
52 return []
53 Gamma = {gamma P1P2 [j]}
54 for j in range (2 , j + 1) :
55 d = delta P1P2 [j]
56 i f lower (gamma P1P2 [j] , d) and l e q (d , delta P1P2 [j]) :
57 i f lower (gamma P1P2 [j] , d) :
58 Gamma |= {d}
59 Gamma = {(a// gcd (a , b) , b// gcd (a , b)) for (a , b) in Gamma}
60 return s o r t (l i s t (Gamma))
61
62 def computeY P1P2j (j , Gamma P1P2j , gamma P1P2 , delta P1P2) :
63 Y P1P2j = (0 , 1)
64 for r in range (1 , len (Gamma P1P2j)) :
65 X P1P2jr = mul (sub (Gamma P1P2j [r] , Gamma P1P2j [r −1]) , (1 , j))
66 for j in range (2 , j) :
67 i f l e q (gamma P1P2 [j] , Gamma P1P2j [r −1]) :
68 i f l e q (Gamma P1P2j [r] , delta P1P2 [j]) :
69 X P1P2jr = mul (X P1P2jr , (j −1, j))
70 Y P1P2j = add (X P1P2jr , Y P1P2j)
71 return Y P1P2j
72
73 def computeValueOfExpression21 () :
74 P = [2 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7 , 1 9 , 2 3]
75 Powerset = powerset (set (P)) − { frozenset ()}
76 r e t = (0 , 1)
77 for Q in Powerset :
78 f = (1 , 1)
79 for p in P:
80 i f p in Q:
81 f = mul (f , (1 , p))
82 else :
83 f = mul (f , (p−1,p))
84 r e t = add (ret , mul (f , (1 , min(Q))))
85 return r e t
86
87 def computeValueOfExpression22 () :
88 P = [2 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7 , 1 9 , 2 3]
89 Q = computeSetOfPairsP1P2 (set (P))
90 r e t = (0 , 1)
91 for (P1 , P2) in Q:
92 W P1P2 = computeW P1P2(P, P1 , P2)
93 i = [0 for i in range (0 , 5 1)]
94 Z P1P2 = (0 , 1)
95 for j in range (2 , 5 1) :
96 i [j] = compute i P1P2j (j , P1 , P2)
97 delta P1P2 = compute delta P1P2 (j , i)
98 gamma P1P2 = compute gamma P1P2 (j , i , delta P1P2 ,min(P1 |P2))

32

99 Gamma P1P2j = computeGamma P1P2j (gamma P1P2 , delta P1P2 , j)
100 Y P1P2j = computeY P1P2j (j , Gamma P1P2j , gamma P1P2 , delta P1P2)
101 Z P1P2 = add (Z P1P2 , Y P1P2j)
102 r e t = add (ret , mul (W P1P2, Z P1P2))
103 return r e t

33

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

