
Balance Problems for Integer Circuits

Titus Dose

Abstract

We investigate the computational complexity of balance problems for {−, ·}-circuits com-
puting finite sets of natural numbers. These problems naturally build on problems for in-
teger expressions and integer circuits studied by Stockmeyer and Meyer (1973), McKenzie
and Wagner (2007), and Glaßer et al. (2010).

Our work shows that the balance problem for {−, ·}-circuits is undecidable which is the
first natural problem for integer circuits or related constraint satisfaction problems that
admits only one arithmetic operation and is proven to be undecidable.

Starting from this result we precisely characterize the complexity of balance problems
for proper subsets of {−, ·}. These problems turn out to be complete for one of the classes
L, NL, and NP.

1 Introduction

In 1973, Stockmeyer and Meyer [SM73] defined and studied membership and equivalence prob-
lems for integer expressions. They considered expressions built up from single natural numbers
by using set operations (∪, ∩,), pairwise addition (+), and pairwise multiplication (·). For

example, 1 · 1 ∩ 1 describes the set of primes P.
The membership problem for integer expressions asks whether some given number is contained
in the set described by a given integer expression, whereas the equivalence problem for integer
expressions asks whether two given integer expression describe the same set. Restricting the
set of allowed operations results in problems of different complexities.
Wagner [Wag84] studied a more succinct way to represent such expressions, namely circuits over
sets of natural numbers, also called integer circuits. Each input gate of such a circuit is labeled
with a natural number, the inner gates compute set operations and arithmetic operations (∪,
∩, , +, ·). The following circuit with only 4 inner gates computes the set of primes.

1 · ∩

Starting from this circuit, one can use integer circuits to express fundamental number theoretic
questions: thus, a circuit describing the set of all twin primes or the set of all Sophie Germain
primes can be constructed. McKenzie and Wagner [MW07] constructed a circuit C computing
a set that contains 0 if and only if the Goldbach conjecture holds.
Wagner [Wag84], Yang [Yan01], and McKenzie and Wagner [MW07] investigated the complexity
of membership problems for circuits over natural numbers: here, for a given circuit C, one
has to decide whether a given number n belongs to the set described by C. Travers [Tra06]
and Breunig [Bre07] considered membership problems for circuits over integers and positive
integers, respectively. Glaßer et al. [GHR+10] studied equivalence problems for circuits over

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 5 of Report No. 55 (2018)

sets of natural numbers, i.e., the problem of deciding whether two given circuits compute the
same set.
Satisfiability problems for circuits over sets of natural numbers, investigated by Glaßer et al.
[GRTW10], are a generalization of the membership problems investigated by McKenzie and
Wagner [MW07]: the circuits can have unassigned input gates and the question is: on input of
a circuit C with gate labels from O ⊆ {∪,∩, ,+, ·} and a natural number b, does there exist
an assignment of the unassigned input gates with natural numbers such that b is contained in
the set described by the circuit?
Barth et al. [BBD+17] investigated emptiness problems for integer circuits. Here, for both
circuits with unassigned inputs and circuits without unassigned inputs, the question of whether
an integer circuit computes the empty set (for some/all assignment(s) if the circuits allow
unassigned inputs) is raised and investigated.
Apart from the mentioned research on circuit problems there has been work on related vari-
ants like functions computed by circuits [PD09] and constraint satisfaction problems (csp) over
natural numbers [GJM17, Dos16]. The constraint satisfaction problems by Glaßer, Jonsson,
and Martin [GJM17] can be considered as conjunctions of equations of integer expressions with
variables standing for singleton sets of natural numbers. Here the question is whether there is
an assignment of the variables such that all equations are satisfied. These constraint satisfaction
problems have the peculiarity that expressions describe sets of integers whereas variables can
only store singleton sets of natural numbers. Dose [Dos16] addressed this and studied constraint
satisfaction problems over finite subsets of N, consequently replaced the set complement with
the set difference −, and allowed the variables to describe arbitrary finite subsets of N.

Our Model and Contributions The definition of the circuits investigated in this paper
follows the definition of previous papers such as [MW07, GHR+10, GRTW10, BBD+17]. Yet
there are some differences:
Our circuit problems are about balanced sets where a finite and non-empty set S ⊆ N is balanced
if |S| = |{0, 1, . . . ,max(S)}−S|. Analogously, S is unbalanced if |S| 6= |{0, 1, . . . ,max(S)}−S|.
That means, the maximum of a set marks the relevant area and then we ask whether there are
as many elements inside the set as outside of it. As the notion of balanced sets only makes
sense for finite sets, our circuits should solely compute finite sets. Due to that we replace the
commonly used set complement with the set difference −. Now, as the circuits only work over
the domain of finite subsets of N, it suggests itself to also allow the input gates of a circuit to
compute arbitrary finite subsets of N and not only singleton sets (cf. Dose [Dos16] where the
analogous step was made for constraint satisfaction problems).
For such circuits we ask: is there an assignment of the unassigned inputs with arbitrary finite
subsets of N under which the circuit computes a balanced set? This problem is denoted by
BC(O), where O ⊆ {∪,∩,−,+, ·} is the set of allowed operations.
The notion of balance is important in computational complexity. It occurs when considering
counting classes [GNW90] like C=L or C=P for instance. There, the question is whether for
some problem A there is a non-deterministic logarithmic space or polynomial-time machine M
accepting A, where M accepts some input x if and only if the number of accepting paths equals
the number of rejecting paths.
Balance problems for integer circuits are interesting for another reason. To our knowledge, there
is no natural decision problem for integer circuits or constraint satisfaction problems over sets
of natural numbers that allows only one arithmetic operation and is known to be undecidable.
In this paper, however, it is shown that BC(−, ·) is undecidable.
Starting from this undecidable problem BC(−, ·), we also investigate BC(O) for arbitrary subsets
of {−, ·} and precisely characterize the complexity of each such problem. It turns out that all

2

these problems are in NP. In detail, we show that BC(·) is NL-complete, BC(−) is NP-complete,
and BC(∅) ∈ L.

2 Preliminaries

Basic Notions Let N (resp., Q) denote the set of natural (resp., rational) numbers. N+ =
N− {0} is the set of positive naturals. Moreover, the set of primes is denoted by P. For n ∈ N
let |n| denote the length of the binary representation of n (without leading zeros). The greatest
common divisor of positive naturals a and b is denoted by gcd(a, b) and gcd(a, b) for arbitrary
non-zero integers a and b is defined to be gcd(max(a,−a),max(b,−b)).
We extend the arithmetical operations + and · to sets of naturals: for A,B ⊆ N define A+B =
{a+b | a ∈ A, b ∈ B} and A·B = {a·b | a ∈ A, b ∈ B}. As an abbreviation, for i ≥ 2 we write Ai

for A ·A · . . . ·A︸ ︷︷ ︸
i times

. In contrast to previous papers, in this paper the multiplication of sets is not

denoted by × but by ·. Instead, × denotes the cartesian product. Furthermore, for arbitrary
sets, the operations ∪, ∩, and − define the union, intersection, and set difference, respectively.
The power set of a set M is denoted by P(M) whereas Pfin(M) = {A ∈ P(M) | A finite}. For a
finite and non-empty set S let max(S) (resp., min(S)) denote the maximum (resp., minimum)
number of S. Finite intervals {x | a ≤ x ≤ b} for a, b ∈ Z are denoted by [a, b].
L, NL, and NP denote standard complexity classes [Pap94] and RE is the set of computably
enumerable problems.
For problems A and B we say that A is (logarithmic-space) many-one reducible to B if there
is some (logarithmic-space) computable function f with cA(x) = cB(f(x)), where cX for a set

X is the characteristic function of X. We denote this by A ≤m B (resp., A ≤log
m B). Moreover,

A is logarithmic-space Turing reducible to B if there exists a logarithmic-space-bounded oracle
Turing machine (with one oracle tape) that accepts A with B as its oracle. This is denoted by
A ≤T B.
For pairs (A,B) and (C,D) with A∩B = C ∩D = ∅ we say that (A,B) is many-one reducible
to (C,D) (denoted as (A,B) ≤m (C,D)) if there is a computable function f with x ∈ A ⇒
f(x) ∈ C and x ∈ B ⇒ f(x) ∈ D. Note that if B = A and D = C this coincides with the usual
many-one reducibility, i.e., (A,A) ≤m (C,C)⇔ A ≤m C.
CSAT is the circuit satisfiability problem, i.e., the problem of determining whether a given
Boolean circuit has an assignment of the unassigned inputs that makes the output gate true.
The problem is ≤log

m -complete for NP via a trivial reduction from SAT which itself can be shown
to be ≤log

m -complete for NP via a construction by Cook [Coo71].

Balanced Sets A finite and non-empty set S ⊆ N is balanced (resp., unbalanced) if |S| =
|{0, 1, . . . ,max(S)} − S| (resp., |S| 6= |{0, 1, . . . ,max(S)} − S|). Intuitively spoken, max(S)
defines the universe {0, 1, . . . ,max(S)} and then S is balanced if it contains the same number
of elements as its complement. Note that the notion of balance/unbalance only makes sense if
there is some maximum element defining the universe. Hence the empty set is neither balanced
nor unbalanced.
The following lemma immediately follows from the definition.

Lemma 1. Let S ∈ Pfin(N) be balanced. Then S 6= ∅ and max(S) is odd.

Moreover, we say that S is subbalanced if |S| < (max(S) + 1)/2 which is equivalent to |S| ≤
max(S)/2. As we want to investigate the complexity of balance problems with respect to
deterministic logarithmic-space reductions, it is important to see that the test of whether some
input set is balanced can be done in deterministic logarithmic space. Define Bal = {S ∈

3

Pfin(N) | S is balanced}. We want to observe that Bal ∈ L, but we show a stronger result.
For that we introduce another more general problem. For a finite and non-empty set M let
BalM = {S ∈ Pfin(N) |M · S is balanced}.

Proposition 2. For M ∈ Pfin(N) non-empty it holds BalM ∈ L. In particular, Bal ∈ L.

Proof. The second statement follows from the first as Bal = Bal{1}.
It suffices to consider the cases where M 6= ∅ and max(M) ≥ 1. The following algorithm
decides BalM on input of a finite set S ⊆ N Let n denote the length of the input. For the
sake of simplicity, we assume that the elements of S are encoded in binary representation,
max(S) ≥ 1, and n ≥ 4.

1. Reject if log(n+ 1) + 2 < |max(S)|.

2. Let c = 0.

3. For α = 0, 1, . . . ,max(M) ·max(S):

(a) Let d = 0. For (m, s) ∈ {(m′, s′) | m′ ∈M, s′ ∈ S}:
i. If m · s = α and 2 · c = max(M) ·max(S) + 1, then reject.

ii. If m · s = α and 2 · c < max(M) ·max(S) + 1, then d = 1.

(b) Let c = c+ d.

4. If 2 · c = max(M) ·max(S) + 1, then accept. Otherwise reject.

Step 1 can be executed in logarithmic space. If the algorithm executes Step 2, then |max(S)| ≤
log(n + 1) + 2 ≤ 3 · log(n). Hence all numbers m and s considered in the loop 3 are of
logarithmic length. Moreover, multiplication can be computed in deterministic logarithmic
space. Apart from the multiplications and comparisons the algorithm only counts to a number
at most (max(M)·max(S)+1)/2 ≤ max(M)·max(S) < max(M)·2|max(S)| ≤ max(M)·23·log(n) =
8 ·max(M) · n, where max(M) is a constant. Hence c can be stored in logarithmic space.
If the algorithm rejects in step 1, then max(S) > 2|max(S)|−1 > 2log(n+1)+1 = 2n + 2. As S
contains at most n elements, |S| ≤ n < (max(S)−2)/2 and thus |M ·S| < max(M) · (max(S)−
2)/2 + 1 < max(M · S)/2. Consequently, M · S is subbalanced and S /∈ BalM .
In the steps 3 and 4 the algorithm accepts and rejects correctly by construction.

Definition of Circuits In previous papers such as [BBD+17] it was differentiated between
completely and partially assigned circuits. As we restrict on partially assigned circuits in this
paper, we define circuits in general as partially assigned circuits.
A circuit C is a triple (V,E, gC) where (V,E) is a finite, non-empty, directed, acyclic graph with
a designated vertex gC ∈ V and a topologically ordered vertex set V ⊆ N, i.e., if u, v ∈ V are
vertices with u < v, then there is no edge from v to u. Here, graphs may contain multi-edges
and are not necessarily connected. But we require that C is topologically ordered. Note that the
test of whether a graph is topologically ordered or not is possible in deterministic logarithmic
space. Consequently, we are able to check in deterministic logarithmic space whether an input
graph is acyclic. Hence there is a deterministic logarithmic-space algorithm that on input of a
graph tests whether the input is a circuit. Therefore, when presenting algorithms for circuits
we may always assume that the input is a valid circuit.
Without loss of generality we may assume that V = {1, . . . , r} for some r ∈ N since circuits can
be renumbered in logarithmic space.
Let O ⊆ {∪,∩,−,+, ·}. An O-circuit (or circuit for short if O is apparent from the context)
is a quintuple C = (V,E, gC , α, β) where (V,E, gC) is a circuit whose nodes are labeled by the

4

labeling function α : V → O∪Pfin(N)∪{�} such that each node has indegree 0 or 2, nodes with
indegree 0 have a label from Pfin(N) (encoded as a list of all the numbers in the set) or from
{�}, and nodes with indegree 2 have labels from O. Moreover, β is a function E → {l, r} and
we require that for each node u with predecessors u1 and u2 it holds {β(u1), β(u2)} = {l, r}.
Thus, β marks whether an edge starts in the left or right predecessor of the node it points to.
In the context of circuits, nodes are also called gates. A gate with indegree 0 is called input
gate, all other nodes are inner gates, the designated gate gC is also called output gate. Input
gates with a label from Pfin(N) are assigned input gates whereas input gates with label � are
unassigned input gates.
O-circuits are also called integer circuits. If g is some gate of C with α(g) = ⊗ ∈ O and with
predecessors g′ and g′′ satisfying β(g′) = l and β(g′′) = r, then we also write g = g′ ⊗ g′′. Note
that in case ⊗ = − it is important to consider the order of the operands.

The Set Computed by a Circuit For an O-circuit C with unassigned input gates g1 <
· · · < gn and X1, . . . , Xn ∈ Pfin(N), let C(X1, . . . , Xn) be the circuit that arises from C by
modifying the labeling function α such that α(gi) = Xi for every 1 ≤ i ≤ n.
For a circuit C = (V,E, gC , α) without unassigned input gates we inductively define the set
I(g;C) computed by a gate g ∈ V by

I(g;C) =

{
α(g) ⊆ N if g has indegree 0,

I(g′, C)⊗ I(g′′, C) if g = g′ ⊗ g′′.

The set computed by the circuit is denoted by I(C) and defined to be the set computed by the
output gate I(gC ;C).

Basic Constructions It is convenient to introduce notations for basic constructions of cir-
cuits. For X ∈ Pfin(N) we use X as an abbreviation for the circuit ({1},∅, {1}, 1 7→ X). For
O-circuits C,C ′ for some O and ⊗ ∈ {∪,∩, ,−+, ·} let C ⊗ C ′ be the circuit obtained from C ′

and C ′′ by feeding their output gates to the new output gate ⊗ (and renumbering the nodes in
a reasonable way). This construction is possible in logarithmic space.
As an example, for an unassigned input gate g = 0, consider the circuit C = (g − {0})− ((g −
{0}) · {2}), which is the following circuit

0,�

1, {0}

2,−

3, {2}

4, · 5,−

l

r
l

l

r
r

where each node is given by its number and its label. The node 5 is the output gate and it
computes the set {1} if and only if I(2;C) is a set of the form {20, 21, 22, . . . , 2r} for some r ∈ N.

The Main Problems Now we define the problems this paper focuses on.

Definition 3. Let O ⊆ {−,∪,∩,+, ·} and define

BC(O) = {C | C is an O-circuit with n unassigned inputs and there exist
X1, . . . , Xn ∈ Pfin(N) such that I(C(X1, . . . , Xn)) is balanced}.

Moreover, we call an assignment for a circuit balancing if the circuit is balanced under this
assignment.

5

For the rest of the paper we will study the complexity of the problems BC(O) for O ⊆ {−, ·}.
In order to prove BC(·) to be ≤log

m -hard for NL we need the following NL-complete problem
investigated by McKenzie and Wagner [MW07]

MC(∩) = {(C, b) | C is an ∩-circuit whose inputs are all assigned and have labels
from {X ⊆ N | |X| = 1}, b ∈ I(C)}.

The following lemma follows from the definition.

Lemma 4. For O ⊆ O′ ⊆ {−, ·} it holds BC(O) ≤log
m BC(O′).

Therefore, each lower bound for a problem BC(O) shown in this paper implies the same lower
bound for all problems BC(O′) for arbitrary O′ ⊇ O.
We use the following abbreviations if confusions are impossible: we write g or I(g) for I(g;C),
where C is a circuit and g is a gate of C; we write C for I(C), where C is a circuit; we write
BC(−, ·) for BC({−, ·}) and the like.

3 Set Difference and Multiplication Lead to Undecidability

This section contains our main result: the undecidability of BC(−, ·). According to the Matiyasevich-
Robinson-Davis-Putnam theorem [Mat70, DPR61] the problem of determining whether there
is a solution for a given Diophantine equation is RE-complete. It can be derived by standard
arguments that also the following problem is RE-complete (with regard to ≤m).

DE = {(p(x1, . . . , xn), q(x1, . . . , xn)) | ∃a1, . . . , an ∈ N+, p(a1, . . . , an) = q(a1, . . . , an)

for multivariate polynomials p and q with coefficients from the positive naturals}.

Reducing this problem to BC(−, ·) shows the following theorem.

Theorem 5. BC(−, ·) is RE-complete.

Let for the remainder of this section O = {−, ·} unless stated differently. For the sake of
brevity, we make use of intersection gates but note that A ∩ B is just an abbreviation for
A− (A−B). Further abbreviated notations are A−

⋃n
i=1Bi for (. . . ((A−B1)−B2)− . . .)−Bn

and A− (
⋃n
i=1Bi − {1}) for (. . . ((A− (B1 − {1}))− (B2 − {1}))− . . .− (Bn − {1}).

In order to prove Theorem 5 we define a slightly different version of the problem BC(−, ·) which
can be reduced to the original version in logarithmic space.

Definition 6. Define

BC′(−, ·) = {(C,Q) | C is a partially assigned {−, ·}-circuit, Q is a subset of the
nodes of C, and there exist X1, . . . , Xn ∈ Pfin(N+) such that
I(C(X1, . . . , Xn)) is balanced and I(K;C(X1, . . . , Xn)) = {1} for
all K ∈ Q}.

For the sake of simplicity, instances of BC′(−, ·) are called {−, ·}-circuits as well.

Lemma 7. The following hold.

1. For K ∈ Pfin(N) with κ := max(K) ≥ 3 it holds |K ·K ·K| < κ3/2.

2. BC′(O) ≤log
m BC(O) for O = {−, ·}.

6

Proof. We argue for statement 1. Due to K ·K ·K =
⋃3
l=1{i · j · k | i, j, k ∈ K, |{i, j, k}| = l}

we obtain

|K ·K ·K| ≤
(
κ

3

)
+ 2 ·

(
κ

2

)
+ κ =

κ(κ− 1)(κ− 2) + 6κ(κ− 1) + 6κ

6

=
κ3 + 3κ2 + 2κ

6
<
κ3 + 3

2κ
3 + 1

2κ
3

6
=
κ3

2
.

Now we argue for statement 2. Let C be a partially assigned O-circuit with output node gC
and let Q be a subset of the nodes of C. Without loss of generality we assume that gC is no
input node of the circuit (otherwise introduce a new output o = gC · {1}). Starting with this
circuit, we build a new circuit and denote this modified circuit by C ′:
For each assigned or unassigned input node g, add a node g′ of type − which computes the set
g − {0}, replace all edges (g, h) with (g′, h), and in case g ∈ Q, remove g from Q and add g′.
Then add a new output node gC′ = gC ·

∏
K∈Q(K ·K ·K).

It remains to show that (C,Q) ∈ BC′(O) if and only if C ′ ∈ BC(O).
Assume (C,Q) ∈ BC′(O). Hence there is an assignment with elements of Pfin(N+) such that
under this assignment, gC is balanced and K = {1} for all K ∈ Q. Then by construction of C ′,
under the same assignment gC′ is balanced.

Conversely, let C ′ be balanced under some assignment. Then without loss of generality all
assigned inputs do not contain 0 and all unassigned inputs are mapped to a set not containing
0 by the mentioned assignment (recall that the reduction “replaces” each input g with a node
computing g − {0}). Due to that it suffices to show that K = {1} for all K ∈ Q under this
assignment. By construction, 0 /∈ K. Assume K 6= {1} for some K. As K = ∅ leads to an
empty output set and due to Lemma 1 also max(K) = 2 does not lead to a balanced output
set, we have κ = max(K) ≥ 3 and statement 1 can be applied.
We show that for an arbitrary finite set M the set M ·K ·K ·K is not balanced, which yields a
contradiction. ForM = ∅ and max(M) = 0 this assertion is true. Consider the case max(M) ≥ 1

and 0 /∈M . Here it holds that M ·K ·K ·K contains less than κ3 max(M)
2 elements, the maximum

of this set is max(M) · κ3 and thus M ·K ·K ·K is not balanced.

Before proving Theorem 5 we introduce some O-circuits which will be used extensively as
components of circuits expressing Diophantine equations.

Lemma 8. For every finite P = {p1, . . . , pn} ⊆ P with n = |P | ≥ 1 there is an O-circuit
(CP , QP) containing gates g1

P , . . . , g
n
P satisfying the following properties:

1. For an arbitrary assignment with values from Pfin(N+) it holds

∀K∈QP K = {1} ⇒ ∃m∈N ∀i=1,...,n g
i
P = {1, pi, . . . , pmi }.

2. For each m ∈ N there is an assignment with values from Pfin(N+) under which giP =
{1, pi, . . . , pmi } and K = {1} for all K ∈ QP .

Proof. We construct (CP , QP) as follows:

• For each p ∈ P insert an input gate Xp and gates hp = Xp − (Xp · {p}) and h′p =
({1, p} ·Xp)− (Xp − {1}). Put all the nodes hp into QP .

• Similarly, for k ∈ {p1 · p2, p2 · p3, . . . , pn−1 · pn} insert an input gate Xk and gates hk =
Xk − (Xk · {k}) and h′k = ({1, k} ·Xk)− (Xk − {1}). Insert all the nodes hk into QP .

7

• For each k = pi · pi+1 with i ∈ {1, . . . , n − 1} add a node γk = h′k −
(
(h′pi · h

′
pi+1

) − {1}
)

and let QP contain all these nodes.

• Denote giP = Xpi .

We now argue that the conditions 1 and 2 are satisfied.

1. Choose an arbitrary assignment with values from Pfin(N+) and assume K = {1} for all
K ∈ QP . Then for α ∈ {p1, . . . , pn, p1 · p2, p2 · p3, . . . , pn−1 · pn} it holds

Xα −Xα · {α} = {1} (1)

and in particular, 1 ∈ Xα.
Assume there is some β ∈ Xα such that β is no power of α. Then there are l ∈ N and α′ ≥ 2
with β = αl ·α′ and α - α′. Choose β such that l = 0 or αl−1 ·α′ /∈ Xα. Then due to (1) we obtain
β ∈ Xα · {α}. If l = 0, we have α | α′, a contradiction. Otherwise we obtain αl−1 · α′ ∈ Xα,
which is a contradiction to the choice of β. Thus Xα only contains powers of α.
Now, choose l ∈ N+ with αl ∈ Xα (if there is none, then Xα = {1}). Then due to (1) we have
αl ∈ Xα · {α} and thus αl−1 ∈ Xα. Hence each Xα is of the form {1, α, . . . , αmα} for some
mα ∈ N. As a consequence h′α = {1, αmα+1}.
Now choose k = pi · pi+1 for some i. As γk = {1} we have

kmk+1 = pmk+1
i · pmk+1

i+1 ∈ ({1, pmpi+1
i } · {1, p

mpi+1+1

i+1 }),

which yields mk = mpi = mpi+1 . Thus there exists m such that for each i ∈ {1, . . . , n} it holds
giP = {1, pi, . . . , pmi }.
2. Let m ∈ N and choose the assignment with Xα = {1, α, . . . , αm} for α ∈ {p1, . . . , pn, p1 ·
p2, p2 · p3, . . . , pn−1 · pn}.
It follows immediately that hα = {1} and h′α = {1, αm+1}. Consequently, for k ∈ {p1 · p2, p2 ·
p3, . . . , pn−1 · pn} it holds

γk = {1, pm+1
i · pm+1

i+1 } − {p
m+1
i , pm+1

i+1 , p
m+1
i · pm+1

i+1 } = {1},

which proves statement 2.

Building upon this construction we extend these circuits and receive the following statement.

Lemma 9. For every finite P = {p1, . . . , pn} ⊆ P with n = |P | ≥ 1 there is an O-circuit
(DP , QP) with gates g0

P , g
1
P , . . . , g

n
P satisfying the following properties:

1. For an arbitrary assignment with values from Pfin(N+) it holds

∀K∈QP K = {1} ⇒ ∃m∈N+∀i=0,...,n |giP | = mi, 1 ∈ giP , and the prime divi-
sors of numbers in giP are all in P .

2. For each m ∈ N+ there is an assignment with values from Pfin(N+) under which |giP | = mi

and 1 ∈ giP for all i, the prime divisors of numbers in giP are all in P , and K = {1} for
all K ∈ QP .

Proof. The lemma basically follows from Lemma 8: let (CP , QP) be a circuit according to that
lemma. As —in case K = {1} for all K ∈ QP— any two numbers a ∈ giP and b ∈ gjP for i 6= j

are relatively prime, it holds |giP · g
j
P | = |giP | · |g

j
P |. Under repeated application of this argument

it can be shown that adding nodes computing
∏j
i=1 g

i
P for j = 1, . . . , n and a node g0

P = {1}
leads to a circuit which satisfies the statement.

8

Proof of Theorem 5. Due to Lemma 7 it suffices to show the reduction

DE ≤m BC′(−, ·).

Instead of showing this reduction directly we define an intermediate problem, the cardinality
circuit problem CC given by

{(C,Q, s, t) | C = (V,E, gC , α, β) is a {−, ·}-circuit, Q ⊆ V , s, t ∈ V , and there exists an
assignment with values from Pfin(N+) under which

1. |I(s)| = |I(t)|

2. 1 ∈ I(s) ∩ I(t)

3. I(K) = {1} for all K ∈ Q

4. I(s) and I(t) only contain numbers whose prime divisors are all > 3.}

Moreover, define

C = {(C,Q, s, t) | C = (V,E, gC , α, β) is a {−, ·}-circuit, Q ⊆ V , s, t ∈ V such that for all
assignments with values from Pfin(N+) satisfying ∀K∈Q K = {1} it holds
that s ≥ t and that s and t solely contain numbers whose prime divisors
are all greater than 3},

i.e., for all circuits in C each relevant assignment maps s to a set with higher cardinality than
the set it maps t to and each relevant assignment maps s and t to sets that do not contain
any numbers with prime divisors ≤ 3. For the sake of simplicity, we also call tuples (C,Q, s, t)
{−, ·}-circuits.
The proof will be given in the two steps

1. (DE,DE) ≤m (CC,CC ∩ C)

2. (CC,CC ∩ C) ≤m (BC′(−, ·),BC′(−, ·)).

That means that the function composition of the two reduction functions yields a reduction
DE ≤m BC′(−, ·).
1. Roughly speaking, the first of the two reductions generates a circuit computing two sets
whose cardinalities express the results of two multivariate polynomials.
Let q and q′ be multivariate polynomials with variables x1, . . . , xn. Then for any assignment
with positive natural numbers a1, . . . , an it holds q(a1, . . . , an) = q′(a1, . . . , an) if and only if
q(a1, . . . , an)2 + q′(a1, . . . , an)2 = 2 · q(a1, . . . , an) · q′(a1, . . . , an). Observe that here because of
(q(a1, . . . , an)− q′(a1, . . . , an))2 ≥ 0 we have q(a1, . . . , an)2 + q′(a1, . . . , an)2 ≥ 2 · q(a1, . . . , an) ·
q′(a1, . . . , an) for any assignment.
Due to that we may assume that we are given multivariate polynomials q and q′ with variables
x1, . . . , xn such that q ≥ q′ for all assignments of the variables with values from N+. Let

q =

m∑
i=1

ai ·
n∏
j=1

x
di,j
j and q′ =

m′∑
i=1

a′i

n∏
j=1

x
d′i,j
j

for positive numbers m, m′, ai, and a′i and natural numbers di,j and d′i,j . Moreover, for each vari-
able xj define ej = max({d1,j , . . . , dm,j , d

′
1,j , . . . , d

′
m′,j}), i.e., ej denotes the maximum exponent

of the variable xj occurring in a monomial of q or q′.
We now successively build the output circuit (C,Q, s, t). For the single steps we give some
intuition which is written italic.

9

1. For each variable xj select a set Pj = {pj,1, . . . , pj,ej} of primes greater than 3 such that
|Pj | = ej and Pj ∩ Pj′ = ∅ for j 6= j′. Then insert a circuit (CPj , QPj) according to
Lemma 9 and for all Pj , insert the nodes of QPj into Q.

We will make use of the notation of Lemma 9, in particular of the nodes g0
Pj
, . . . , g

ej
Pj

.

That means, for any assignment which satisfies K = {1} for all K ∈ Q ⊇ QPj , it holds
|giPj | = mi

j for mj ∈ N+ and for all i ≤ ej . Moreover, in that case all primes dividing

some number of giPj are in Pj .

For intuition, think of the node giPj as a set whose cardinality describes xij.

2. (a) Choose a prime p > 3 not used before and insert gates hi = {1, p, . . . , pai−1} ·∏n
j=1 g

di,j
Pj

for all i = 1, . . . ,m.

Loosely speaking, the cardinality of hi describes the value of the i-th monomial of q.

(b) For each node hi choose a prime pi > 3 not used before and insert a node h′i =
({1, pi} · hi)−

(
hi − {1}

)
.

As addition is supposed to be simulated by union, we need to make sure that the sets
standing for distinct monomials are disjoint. Still, for a technical reason we have to
keep 1 in each set. So the idea is to let h′i consist of 1 and a copy of hi multiplied
with an additional prime factor.

(c) For i = 1, . . . ,m add an unassigned input node zq. Finally add nodes zq−
(⋃m

i=1 h
′
i−

{1}
)

and h′i − (zq − {1}) (for i = 1, . . . ,m) and insert these nodes into Q.

Roughly speaking, zq describes the value of q + 1 as it is the union of all the h′i.

3. Do the same as in Step 2 but for q′. In particular a node zq′ is added.

4. Define s = zq and t = zq′ .

First, observe that the function (q, q′) 7→ (C,Q, s, t) is computable. In order to show

(q, q′) ∈ DE⇒ (C,Q, s, t) ∈ CC and (q, q′) /∈ DE⇒ (C,Q, s, t) ∈ CC ∩ C

we make the following central observation.

Claim 10. 1. For each y1, . . . , yn ∈ N+ there is an assignment of the circuit (C,Q) with val-
ues from Pfin(N+) such that s (resp., t) consists of 1+q(y1, . . . , yn) (resp., 1+q′(y1 . . . , yn))
numbers whose prime divisors are greater than 3, 1 ∈ s ∩ t, and K = {1} for all K ∈ Q.

2. If K = {1} for all K ∈ Q under some assignment with values from Pfin(N+), then there
are y1, . . . , yn ∈ N+ such that |s| = 1 + q(y1, . . . , yn) and |t| = 1 + q′(y1, . . . , yn) and s and
t solely contain numbers whose prime divisors are all greater than 3.

Proof of Claim 10. 1. Let y1, . . . , yn ∈ N+. Then according to Lemma 9 the inputs of the
circuits (CPj , QPj) can be chosen such that

• K = {1} for all K ∈ QPj ,

• |giPj | = yij and 1 ∈ giPj for i = 1, . . . , ej , and

• all prime divisors of numbers in giPj are in Pj and greater than 3.

10

As the set of primes chosen for two different variables are disjoint and in Step 2b we select primes

not used before, the gate hi associated with the monomial ai ·
∏n
j=1 x

di,j
j contains ai ·

∏n
j=1 y

di,j
j

elements that only have prime divisors greater than 3. Furthermore, as 1 ∈ hi for all i, we have
|h′i| = 2 · |hi| − (|hi| − 1) = |hi|+ 1. Moreover, observe that h′i ∩ h′j = {1} for arbitrary i 6= j.
For the node zq choose the assignment

⋃m
i=1 h

′
i. Consequently, 1 ∈ zq and

|zq| = 1 +
m∑
i=1

(|h′i| − 1)︸ ︷︷ ︸
=|hi|

= 1 +
m∑
i=1

ai ·
n∏
j=1

x
di,j
j = 1 + q(y1, . . . , yn).

Since we do the same for the nodes associated with the polynomial q′ we have |zq′ | = 1 +
q′(y1, . . . , yn) and 1 ∈ zq′ . Observe that the prime divisors of numbers in zq and zq′ are greater
than 3.
It remains to observe that all nodes added into Q in Step 2c compute the set {1}. This holds
since zq was chosen to be

⋃m
i=1 h

′
i.

2. Consider an assignment with K = {1} for all K ∈ Q. Then according to Lemma 9 for each
variable xj we have |giPj | = yij for some yj ∈ N+ and i = 0, . . . , ej and all numbers in these gates
solely have prime divisors in Pj . As the Pj are pairwise disjoint and in Step 2b we select primes

not used before, we obtain |hi| = ai ·
∏n
j=1 y

di,j
j and |h′i| = |hi| + 1. As h′i ∩ h′j = {1} for i 6= j

and each h′i contains 1, it holds |zq| = 1 +
∑n

i=1 ai ·
∏n
j=1 y

di,j
j = 1 + q(y1, . . . , yn). Similarly we

obtain |zq′ | = 1 + q′(y1, . . . , yn).
It remains to argue that under the given assignment s and t do not contain any numbers
with prime divisors ≤ 3. Obviously, the assigned inputs only compute sets whose elements
solely have prime divisors greater than 3. By our construction and Lemma 9 the same holds
for all nodes giPj . As a consequence, all nodes hi and h′i have the same property and due to

zq−
(⋃m

i=1 h
′
i−{1}

)
= {1} (cf. Step 2c) this also holds for zq = s. An analogous argumentation

shows that also t does not contain any numbers with prime divisors ≤ 3.

Claim 11. 1. If (q, q′) ∈ DE, then (C,Q, s, t) ∈ CC.

2. If (q, q′) /∈ DE, then (C,Q, s, t) ∈ CC ∩ C.

Proof of Claim 11. The first implication follows from Claim 10. For the second implication note
that q ≥ q′ as has been argued above. Due to that and Claim 10 it holds (C,Q, s, t) ∈ C. Since
(q, q′) /∈ DE⇒ (C,Q, s, t) /∈ CC by Claim 10, the proof is complete.

2. Now we show (CC,CC∩C) ≤m (BC′(−, ·),BC′(−, ·)). The following algorithm computes the
reduction function. The italic comments are supposed to give intuition.

1. Let a circuit (C,Q, s, t) be given. We construct a circuit (C ′, Q′) by successively updating
the given circuit.

2. Add new unassigned input gates X and X ′. Insert the following nodes into Q′:

{1, 2} · s− (X − {1}), (2)

{1, 2} · t− (X − {1}), (3)

{1, 2} · (X − s)−
(
(X ′ ∪ (X − s))− {1}

)
, (4)

X ′ − {2} · (X − s). (5)

11

The basic idea is as follows: X is supposed to be an interval containing s and t and X ′

basically encodes the set X − s where this set is made disjoint to t by multiplying it with
{2}. As |s| ≥ |t|, the set X ′ ∪ t is subbalanced. But if |s| = |t|, then X ′ ∪ t is almost
balanced. Adding the element max(X ′)+1 would make the set balanced. This element is
generated in the next step.

3. Let p1 = 2 and p2 = 3. Add a circuit (C{p1,p2}, Q{p1,p2}) according to Lemma 8. Put all
nodes of Q{p1,p2} into Q′. Add a node g =

(
g2
{p1,p2} · {1, 3}

)
− (g2

{p1,p2} − {1}).

4. Add a new unassigned input node O and the following nodes which are also added to Q′:

O −
((
X ′ ∪ t ∪ g

)
− {1}

)
, (6)

X ′ − (O − {1}), (7)

t− (O − {1}), (8)

g − (O − {1}). (9)

Thus, roughly speaking, the output set O equals X ′ ∪ t∪ g and is only balanced if |t| ≥ |s|.

5. Let O be the output node of the circuit (C ′, Q′).

Claim 12. If (C,Q, s, t) ∈ CC, then (C ′, Q′) ∈ BC′(−, ·).

Proof of Claim 12. Let (C,Q, s, t) ∈ CC. Then there is some assignment with

• |s| = |t|,

• 1 ∈ s ∩ t,

• K = {1} for all K ∈ Q, and

• s and t only contain numbers whose prime divisors are all greater than 3.

We now consider the circuit (C ′, Q′) under an assignment satisfying the four conditions just
mentioned. Moreover, we choose the input of C{p1,p2}, X, X ′, and O such that

• g = {1, 3m} for m minimal with 4 · (max(s ∪ t) + 1) < 3m and 4 | 3m − 1 and all nodes in
Q{p1,p2} compute {1} (such an assignment exists by Lemma 8),

• X = {x | 1 ≤ x ≤ (3m − 1)/2},

• X ′ = {1} ∪ {2} · (X − s), and

• O = X ′ ∪ t ∪ g =
((
{2} · (X − s)

))
∪ t ∪ {3m}.

In order to see K = {1} for all K ∈ Q′ it remains to consider the nodes added in the steps 2
and 4. Due to the choice of g and X it holds max(X) > 2 ·max(s∪t) and thus the nodes defined
in (2) and (3) compute {1}. The choice of X ′ immediately implies that the node defined in (5)
computes {1}. Now we argue for the node defined in (4): As X ′ = {1} ∪ {2} · (X − s) we have
{1, 2} · (X − s)−

(
(X ′ ∪ (X − s))− {1}

)
= {1, 2} · (X − s)−

(
({1, 2} · (X − s))− {1}

)
= {1}.

The nodes defined in (6), (7), (8), and (9) compute {1} by the choice of g, X, X ′, and O.
As s and t only contain numbers whose prime divisors are > 3, the sets {2} · (X − s), t, and
{3m} are disjoint. Hence,

|O| = max(X)− |s|+ |t|+ 1 = max(X) + 1 =
max(O)− 1

2
+ 1 =

max(O) + 1

2

and thus O is balanced.

12

Claim 13. If (C,Q, s, t) ∈ CC ∩ C, then (C ′, Q′) ∈ BC′(−, ·).

Proof of Claim 13. For a contradiction, assume that (C,Q, s, t) ∈ CC ∩ C and (C ′, Q′) ∈
BC′(−, ·). As the second circuit is an extended version of the first circuit, both circuits can now
be considered under the same assignment. Choose an assignment with values from Pfin(N+)
under which O is balanced and all K ∈ Q′ satisfy K = {1}. As by construction Q ⊆ Q′, we
have K = {1} for K ∈ Q.
As in particular the nodes defined in (2) and (3) compute {1}, we obtain 1 ∈ s ∩ t, X ⊇
{1, 2} · s ∪ {1, 2} · t, and in particular s ⊆ X and max(X) > max(s) ≥ 1. As {1, 2} · (X − s)−(
(X ′ ∪ (X − s))− {1}

)
= {1} (cf. (4)), it holds 2 ·max(X) ∈ X ′. Since the node defined in (5)

computes {1}, we obtain X ′ ⊆ {1} ∪ {2} · (X − s). In particular, max(X ′) = 2 ·max(X).
The fact that the nodes defined in (6), (7), (8), and (9) compute {1} implies 1 ∈ O ∩X ′ ∩ t∩ g
and O = X ′ ∪ t ∪ g. Moreover, it follows from Lemma 8 that g = {1, 3m} for some m ∈ N+.
Thus, as 1 ∈ t,

O ⊆ {1} ∪
(
{2} · (X − s)

)
∪ t ∪ g =

(
{2} · (X − s)

)
∪ t ∪ {3m}. (10)

As O is balanced, Lemma 1 implies that max(O) is odd. Since X ⊇ t and max(X ′) = 2 ·max(X)
is even, max(O) = 3m > max(X ′). Due to (C,Q, s, t) ∈ C for the given assignment it holds
|s| ≥ |t| and that s and t do not contain any numbers with prime divisors ≤ 3. Due to that,
since we have seen that 1 ∈ s ∩ t, and as by assumption we have (C,Q, s, t) /∈ CC it even holds
|s| > |t|.
Putting things together, as we have proven (10), |s| > |t|, 1 ∈ t, s ⊆ X, max(X ′) = 2 ·max(X),
and max(O) > max(X ′), we now obtain

|O| ≤ max(X)− |s|+ |t|+ 1 < max(X) + 1 =
max(X ′) + 2

2
≤ max(O) + 1

2
,

which contradicts the fact that O is balanced.

This completes the proof of (CC,CC ∩ C) ≤m (BC′(−, ·),BC′(−, ·)) and thus BC′(−, ·) and
BC(−, ·) are ≤m-complete for RE.

4 Smaller Sets of Operations Lead to Problems in NP

In this section it is shown that all problems BC(O) for O ({−, ·} are in NP. Each of these

problems is proven to be ≤log
m -complete for one of the classes L, NL, and NP.

4.1 The Complexity of the Problem Solely Admitting Multiplication

This section’s purpose is to prove the NL-completeness of BC(·): first, we use theorems by
Ford [For08a, For08b] and Koukoulopoulos [Kou14] in order to show that A ·B for sets A and B
with sufficiently large maxima is subbalanced. Second, this result is exploited by a non-trivial
non-deterministic logarithmic-space algorithm which accepts BC(·).
In order to be able to make use of the mentioned results, we introduce some notation.

Definition 14. Let N1, N2 ∈ N+. Define A : N+ × N+ → N via

A(N1, N2) :=
∣∣{n1 · n2 | n1 ≤ N1, n2 ≤ N2, n1, n2 ∈ N+}

∣∣.
Moreover, we define a function H : N+ ×Q×Q→ N via

H(x, y, z) :=
∣∣{n ≤ x | n ∈ N+, ∃d∈N+,d|n such that y < d ≤ z}

∣∣.
13

The following theorem formulates two statements. The first is a special case of a result by
Koukoulopoulos [Kou14]. Furthermore, Koukoulopoulos [Kou14] cites Ford [For08a, For08b]
for a further theorem which contains the second statement as a special case. Note that Kouk-
oulopoulos and Fort indeed prove much stronger results than we make use of here.

Theorem 15 ([For08a, For08b, Kou14]). The following statements hold.

1. There exist k1 ∈ N+ and 3 ≤ µ1 ∈ N such that for all natural numbers N1 and N2 with
µ1 ≤ N1 ≤ N2 it holds A(N1, N2) ≤ k1 ·H(N1 ·N2, N1/2, N1).

2. There exist k2 ∈ N+ and 3 ≤ µ2 ∈ N such that for all natural numbers x ≥ µ2 and y ≥ µ2

with 4y2 ≤ x it holds

H(x, y, 2y) ≤ k2 ·
x

(log y)
1− 1+log log 2

log 2 (log log y)3/2
.

Theorem 16. There exists µ ∈ N such that for all non-empty sets A,B ∈ Pfin(N) with
max(A) ≥ µ and max(B) ≥ µ the set A ·B is subbalanced.

Proof. Let k1, µ1, k2, and µ2 be the numbers guaranteed by Theorem 15. Now choose µ such
that µ ≥ max(k1, µ1, k2, µ2) and log log(µ/2) ≥ 4 · k1 · k2. Let A and B be sets of natural
numbers with max(A) ≥ µ and max(B) ≥ µ. Without loss of generality max(A) ≤ max(B).
We want to show that A · B is subbalanced. Hence, without loss of generality we may assume
that A and B are intervals starting from 0. Statement 1 of Theorem 15 implies

|A ·B| ≤ 1 +A(max(A),max(B)) ≤ 1 + k1 ·H(max(A) ·max(B),max(A)/2,max(A)).

Because of max(A) ≤ max(B) it holds 4 · (max(A)/2)2 ≤ max(A) ·max(B). Therefore, we may
apply Statement 2 of Theorem 15 for H(max(A) ·max(B),max(A)/2,max(A)). Thus

|A ·B| ≤ 1 + k1 ·H(max(A) ·max(B),max(A)/2,max(A))

≤ 1 + k1 · k2 ·
max(A) ·max(B)

(log(max(A)/2))
1− 1+log log 2

log 2 (log log(max(A)/2))3/2

≤ 1 + k1 · k2 ·
max(A) ·max(B)

log log(µ/2)

≤ 1 +
max(A) ·max(B)

4
≤ max(A) ·max(B)

2
,

i.e., A ·B is subbalanced.

Theorem 17. BC(·) ∈ NL.

Proof. In the following we present an NL-algorithm for BC(·). We make use of the fact that
the graph accessibility problem for directed graphs and the modifications of this problem

GAP≥k = {(G, s, t) | G is an directed graph, there exist k paths from s to t}

and consequently

GAP=k = {(G, s, t) | G is an directed graph, the number of paths from s to t is k}

for k ∈ N+ are in NL. We may assume the following for the input circuit C:

14

1. All gates in C are connected to the output gate gC . Otherwise, delete all edges not
connected to the output, which can be done by an NL-subroutine.

2. No assigned input computes the empty set or the set {0}. Otherwise, under the assumption
of 1 we may reject immediately.

3. There is an assigned input gate a computing a set with maximum ≥ 2. Otherwise: under
the assumption of 1 and 2,

• we may accept if there is an unassigned input or no assigned input computes {0, 1}
• we may reject if there does not exist an unassigned input and there is an assigned

input computing {0, 1}.

4. No assigned input gate but possibly a computes a set containing 0. Otherwise, under the
assumptions 1 and 3 we may delete 0 from all assigned inputs and insert 0 into a.

5. There is an assigned input node g1 computing {1}.

6. For each set M ⊆ Pfin(N) there is at most one assigned input computing M . Otherwise,
select one of the nodes computing M , let all outgoing edges of nodes computing M start
in this node, and delete all other nodes computing M and their incident edges.

Assume there is an NL-algorithm P that accepts the set of those circuits C which satisfy the
mentioned properties and whose unassigned inputs can be assigned with sets of positive naturals
such that the output set is balanced. Then the following NL-algorithm accepts BC(·) (on input
of a circuit C satisfying the properties listed above).

• If P accepts on C, accept.

• If there is an unassigned input, then add 0 into the set computed by the aforementioned
node a and accept if P accepts the modified circuit.

• Reject.

Now we sketch P and argue that it is an NL-algorithm. Let µ ≥ 2 be the number mentioned in
Theorem 16, i.e., for A,B ∈ Pfin(N) with max(A) ≥ µ ≤ max(B) the set A · B is subbalanced.
The algorithm will query the following constant-size problem

Θ = {(B, k1, k2) |B ⊆ {(h, ih) | h ⊆ {0, 1, . . . , µ}, 1 ≤ ih ≤ 2}, |B| ≤ µ, k1 ≤ µ, k2 ≤ µ,

∃E1,...,Ek1
,F1,...,Fk2

∈Pfin(N+)

∏
(h,ih)∈B

hih ·
k1∏
i=1

Ei ·
k2∏
i=1

F 2
i is balanced}.

1. If there are two assigned input gates each containing an element ≥ µ, reject.
If there is an assigned input gate with two paths to gC containing an element ≥ µ, reject.

2. If there are at least µ assigned input gates computing a set with maximum ≥ 2, reject.

3. In case there is an assigned input gate computing a set with maximum ≥ 2 with at least
three paths to the output, reject.

4. Let v1, . . . , vn be the nodes of the circuit in topological order. For i = 1, . . . , n, if one of
the conditions

• vi is an unassigned input with at least three paths to gC .

15

• vi is an unassigned input with precisely one path to gC , such that there are at least
µ unassigned inputs < vi with precisely one path to gC .

• vi is an unassigned input with precisely two paths to gC , such that there are at least
µ unassigned inputs < vi with precisely two paths to gC .

• g1 is the only input with a path to vi.

is satisfied, then delete vi and let all outgoing edges of vi start in g1.
This step can be implemented as a non-deterministic logarithmic-space subroutine.

5. Let n1 (resp., n2) be the number of unassigned inputs with 1 path (resp., 2 paths) to
gC . Due to Step 4 we have max(n1, n2) ≤ µ. Moreover, let A be a set consisting of all
pairs (h, ih) where h is a set computed by an assigned input with 1 < max(h) ≤ µ and
ih ∈ {1, 2} is the number of paths from h to gC . Due to Step 2 it holds |A| ≤ µ. We have
the following cases.

(a) In case there is no assigned input gate with an element ≥ µ:
If (A,n1, n2) ∈ Θ, then accept. Otherwise reject.
Computing the triple (A,n1, n2) is possible in non-deterministic logarithmic space
whereas the subsequent test only requires constant time.

(b) In case there is one assigned input gate g with an element ≥ µ:
Due to Step 1 the node g only has one path to the output.

i. For all E1, . . . , En1 , F1, . . . , Fn2 ∈ P({1, . . . , µ}) do the following

• Compute the constant-size set

M =

n1∏
i=1

Ei ·
n2∏
i=1

F 2
i ·

∏
(h,ih)∈A,h 6=g

hih .

• Test whether g ∈ BalM and accept in case the answer is “yes”.

ii. Reject.

By Proposition 2 this step can be executed in logarithmic space.

In the following we observe that each step of the algorithm P accepts (resp., rejects) if and only
if the circuit at the beginning of the execution of the respective step has a (resp., no) balancing
assignment with values from Pfin(N+). It suffices to argue for the following steps.

1. If the algorithm rejects in this step, then there are sets A and B with max(A) ≥ µ ≤
max(B) and a set M such that gC = A · B · M . Then according to Theorem 16 it
holds |(A ∪ {0}) · B| ≤ max(A) · max(B)/2. Hence for each set M ∈ Pfin(N) the set
M ·A ·B ⊆ (A∪{0}) ·B ·(M−{0}) contains at most max(A) ·max(B) ·max(M)/2 elements
and its greatest element is max(A) ·max(B) ·max(M). Thus, the set is subbalanced.

2. If there are ≥ µ sets with maximum greater 2 connected to the output, then we can
interpret these sets as two sets with maxima ≥ µ and argue in the same way as in the
step before.

3. If the algorithm rejects in this step, then there are sets A and M with max(A) ≥ 2 and
gC = A·A·A·M . If max(A) = 2, then Lemma 1 states that the output set is not balanced.
Otherwise, max(A) ≥ 3 and according to Statement 2 of Lemma 7 the set A·A·A contains
less than max(A)3/2 elements. Hence gC contains less than max(A)3 ·max(M)/2 elements
and the maximum of this set is max(A)3 ·max(M). Thus gC is subbalanced.

16

5. At the beginning of the execution of this step we have the following situation: Due to the
steps 1, 2, and 3 and because of the assumption we made on the input circuit there

• is at most one assigned input containing an element > µ and this has at most one
path to the output gate.

• are at most µ assigned inputs with maximum ≥ 2 and all these inputs have at most
two paths to the output gate.

• is one assigned input with maximum < 2, namely g1 = {1}.

Moreover, as observed above, because of Step 4 it holds max(n1, n2) ≤ µ and there are no
unassigned inputs with more than 2 paths to the output.

Thus we have to consider two cases. Either there is no assigned input with maximum > µ
or there is one. In the first case the circuit has a balancing assignment with values from
Pfin(N+) if and only if there are n1 +n2 sets E1, . . . , En1 , F1, . . . , Fn2 ∈ Pfin(N+) such that∏

(h,ih)∈B h
ih ·
∏k1
i=1Ei ·

∏k2
i=1 F

2
i is balanced. This is what the algorithm tests.

In the second case, assigning one of the unassigned inputs with a set with maximum > µ
would lead to a subbalanced output with the same argument as was used for Step 1.
Thus, only assignments with values from P({1, . . . , µ}) have to be considered. Hence,
there is a balancing assignment with values from Pfin(N+) if and only if there are sets
E1, . . . , En1 , F1, . . . , Fn2 ∈ P({1, . . . , µ}) such that

∏n1
i=1Ei ·

∏n2
i=1 F

2
i ·
(∏

(h,ih)∈A,h 6=g h
ih
)
·g

is balanced. This is what the algorithm tests.

It remains to observe that the circuit has a balancing assignment with values from Pfin(N+)
before the execution of Step 4 if and only if it has afterwards:
In case there are more than µ unassigned inputs with one path (resp., two paths) to the output
and more than µ of them are mapped to sets containing elements ≥ 2, then the same arguments
as for Step 2 yield that the output is subbalanced. Therefore, all but µ of these nodes can be
replaced with g1.
Let g be an unassigned input with at least three paths to the output (if such a node exists).
Assigning this node with a set with maximum ≥ 2 leads to a subbalanced output set with the
same arguments as were used for Step 3. Therefore, g can be replaced with g1.
For each node vi there exists an input that has a path to vi. Hence, if no input different from
g1 has a path to vi, then vi computes {1} and can be replaced with g1.

Theorem 18. BC(·) is ≤log
m -hard for NL.

Proof. McKenzie and Wagner [MW07] proved the problem MC(∩) to be ≤log
m -complete for NL.

The following algorithm computes a function for MC(∩) ≤log
m BC(·).

• input: (C, b)

• Replace all gates computing ∩ with gates computing ·.

• Let all input gates computing a set containing b compute the set {1}.
Let all other input gates compute the set {0}.

• Return the modified circuit C ′.

This can be done in logarithmic space. Moreover, (C, b) ∈ MC(∩) if and only if there is an input
computing a set containing b that is connected to the output node and no input computing a
set not containing b is connected to the output node. In the output circuit, the output set

17

is balanced if and only if there is an input computing the set {1} that is connected to the
output node and no input computing another set is connected to the output node. Hence
(C, b) ∈ MC(∩)⇔ C ′ ∈ BC(·).

Corollary 19. BC(·) is ≤log
m -complete for NL.

Proof. The statement follows from the Theorems 17 and 18.

4.2 The Complexity of the Problems Not Admitting Multiplication

We consider the two remaining problems and prove that BC(−) is ≤log
m -complete for NP and

BC(∅) is in L.

Theorem 20. BC(−) is ≤log
m -hard for NP.

Proof. We show the hardness by a reduction from CSAT.

• input: a Boolean circuit C without assigned inputs (assigned inputs can be simulated by
X ∨ ¬X or X ∧ ¬X for an unassigned input X).

• We convert the Boolean circuit into a {−}-circuit: For each unassigned input gate X add
a node Y = {1} − ({1} −X) and let all outgoing edges of X start in Y .

• Let Z be an inner gate of the circuit. Replace it as follows.

– In case Z is a ¬-gate with predecessor Z ′, let Z = {1} − Z ′.
– In case Z is a ∨-gate with predecessors Z1 and Z2, let Z = {1} −

(
({1} −Z1)−Z2

)
.

– In case Z is a ∧-gate with predecessors Z1 and Z2, let Z =
(
{1} − ({1} − Z1)

)
−

({1} − Z2).

• Return the circuit.

Observe that this function is logarithmic-space computable. Moreover, by construction, the
output circuit is in BC(−) if and only if the input circuit is in CSAT.

Theorem 21. BC(−) is in NP.

Proof. We sketch an NP-algorithm that accepts BC(−).

1. input: a circuit C with output node gC and labeling function α.

2. Go from gC upwards always taking the left predecessor. Denote the input gate finally
reached by g.

3. If g is assigned, then:
guess an assignment with values from P(α(g)) and accept if the output set is balanced for
this assignment, otherwise reject.

4. Note that now g is unassigned. Let M be the union of all sets computed by assigned
inputs. Let m = max(M) + 1. Guess an assignment such that I(g) = {m} and each
unassigned input either computes {m} or ∅. If under this assignment gC contains m, then
accept.

5. Guess an assignment of the unassigned inputs such that each of them computes a subset
of M . In case gC is balanced, accept. Otherwise reject.

18

Claim 22. If the algorithm accepts, then C ∈ BC(−).

Proof of Claim 22. If the algorithm accepts in the 3-rd step, then C ∈ BC(−). If it accepts in
the 4-th step, then there is an assignment that maps each unassigned input either to {m} or to
∅ such that m is in the output set. Now change this assignment such that the sets mapped to
{m} are now mapped to {m+ 1,m+ 2, . . . , 2m+ 1}. Then I(C) = {m+ 1,m+ 2, . . . , 2m+ 1}
is balanced and C ∈ BC(−). Trivially, in case C is accepted in the 5-th step, C ∈ BC(−).

Claim 23. If the algorithm rejects, then C /∈ BC(−).

Proof of Claim 23. If the algorithm rejects, then this happens in Step 3 or Step 5. We argue
for the first case. Here g is an assigned input gate. As the output set always is a subset of
the set computed by g, it holds gc ⊆ α(g) for any assignment and hence it suffices to consider
assignments that map all unassigned inputs to subsets of α(g). As the algorithm rejects, gC is
not balanced under any of these assignments and thus C /∈ BC(−).
It remains to argue for the case where the algorithm rejects in Step 5. In this case, g is an
unassigned input and as Step 4 did not accept, there is no assignment putting elements outside
of M into the circuit’s output set. Hence, it is sufficient to consider assignments that solely map
to subsets of M . As the algorithm rejects, none of these assignments yields a balanced output
set and hence there is no assignment at all under which the output set is balanced. Therefore,
C /∈ BC(−).

The observation that the algorithm can be computed in polynomial time by a non-deterministic
Turing machine completes the proof.

Corollary 24. BC(−) is ≤log
m -complete for NP.

Proof. The assertion follows from the Theorems 20 and 21.

Theorem 25. BC(∅) ∈ L.

Proof. In this situation the output node is also an input node. Hence, the following algorithm
decides BC(∅). If the output node is an unassigned input, accept. Otherwise, test whether the
set M computed by the output node is balanced which is possible in deterministic logarithmic
space (cf. Proposition 2). Accept or reject correspondingly.

5 Conclusion and Open Questions

The following table summarizes our results, namely the lower and upper complexity bounds for
the complexity of BC(O) with O ⊆ {−, ·}. As each non-trivial problem is ≤log

m -hard for L, it is
not necessary to prove the mentioned lower bound for BC(∅).

BC(O) for O = ≤log
m -hard for contained in

∅ L L, Theorem 25

{−} NP, Theorem 20 NP, Theorem 21

{·} NL, Theorem 18 NL, Theorem 17

{·,−} undecidable, Theorem 5

To our knowledge, in contrast to all results from previous papers on complexty issues con-
cerning decision problems for integer circuits (e.g., [MW07, Tra06, Bre07, GHR+10, GRTW10,
BBD+17]) or related constraint satisfaction problems ([GJM17, Dos16]), a problem admitting
only one arithmetic operation is shown to be undecidable. Beginning with this problem, namely

19

BC(−, ·), the problems BC(O) for O ⊆ {−, ·} are systematically investigated and for each of
these problems the complexity is precisely characterized. It turns out that decreasing the size of
the set of allowed operations yields problems that are in NP. In particular, all these problems
are ≤log

m -complete for one of the classes L, NL, and NP.
Hence, in some sense the questions of this paper are completely answered. Nevertheless, there
arise new questions from our results: Is there a set O ⊆ {−,∪,∩} such that BC(O ∪ {+}) is
undecidable? And if so, for which of the sets this is the case and for which it is not?

References

[BBD+17] D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau. Emptiness
problems for integer circuits. In 42nd International Symposium on Mathemati-
cal Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg,
Denmark, pages 33:1–33:14, 2017.

[Bre07] H.-G. Breunig. The complexity of membership problems for circuits over sets of
positive numbers. In Fundamentals of Computation Theory, 16th International
Symposium, FCT 2007, Budapest, Hungary, August 27-30, 2007, Proceedings, pages
125–136, 2007.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA, pages 151–158, 1971.

[Dos16] T. Dose. Complexity of constraint satisfaction problems over finite subsets of nat-
ural numbers. In 41st International Symposium on Mathematical Foundations of
Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 32:1–
32:13, 2016.

[DPR61] M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential
Diophantine equations. Annals of Mathematics, 74(2):425–436, 1961.

[For08a] K. Ford. integers with a divisor in (y, 2y]. In Anatomy of integers, volume 46 of
CRM Proc. and Lect. Notes, pages 65–81. Amer. Math. Soc., Providence, RI, 2008.

[For08b] K. Ford. the distribution of integers with a divisor in a given interval. Annals of
Math. (2), 168:367–433, 2008.

[GHR+10] C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, and M. Waldherr. Equivalence
problems for circuits over sets of natural numbers. Theory Comput. Syst., 46(1):80–
103, 2010.

[GJM17] C. Glaßer, P. Jonsson, and B. Martin. Circuit satisfiability and constraint satisfac-
tion around skolem arithmetic. Theor. Comput. Sci., 703:18–36, 2017.

[GNW90] Thomas Gundermann, Nasser Ali Nasser, and Gerd Wechsung. A survey on count-
ing classes. In Proceedings: Fifth Annual Structure in Complexity Theory Con-
ference, Universitat Politècnica de Catalunya, Barcelona, Spain, July 8-11, 1990,
pages 140–153, 1990.

[GRTW10] C. Glaßer, C. Reitwießner, S. D. Travers, and M. Waldherr. Satisfiability of algebraic
circuits over sets of natural numbers. Discrete Applied Mathematics, 158(13):1394–
1403, 2010.

20

[Kou14] D. Koukoulopoulos. On the number of integers in a generalized multiplication table.
Journal für die reine und angewandte Mathematik, 689:33–99, 2014.

[Mat70] Y. V. Matiyasevich. Enumerable sets are Diophantine. Doklady Akad. Nauk SSSR,
191:279–282, 1970. Translation in Soviet Math. Doklady, 11:354–357, 1970.

[MW07] Pierre McKenzie and Klaus W. Wagner. The complexity of membership problems
for circuits over sets of natural numbers. Computational Complexity, 16(3):211–244,
2007.

[Pap94] C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[PD09] Ian Pratt-Hartmann and Ivo Düntsch. Functions definable by arithmetic circuits. In
Mathematical Theory and Computational Practice, 5th Conference on Computabil-
ity in Europe, CiE 2009, Heidelberg, Germany, July 19-24, 2009. Proceedings, pages
409–418, 2009.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, STOC ’73, pages 1–9, New York, NY, USA, 1973. ACM.

[Tra06] S. D. Travers. The complexity of membership problems for circuits over sets of
integers. Theor. Comput. Sci., 369(1-3):211–229, 2006.

[Wag84] K. Wagner. The complexity of problems concerning graphs with regularities (ex-
tended abstract). In Proceedings of the Mathematical Foundations of Computer
Science 1984, pages 544–552, London, UK, UK, 1984. Springer-Verlag.

[Yan01] K. Yang. Integer circuit evaluation is PSPACE-complete. Journal of Computer and
System Sciences, 63(2):288–303, 2001. An extended abstract of appeared at CCC
2000.

21

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

