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Abstract

The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of linear
codes over F2, which can be stated as follows: given a generator matrix A and an integer k,
determine whether the code generated by A has distance at most k. Here, k is the parameter of
the problem. The question of whether k-Even Set is fixed parameter tractable (FPT) has been
repeatedly raised in literature and has earned its place in Downey and Fellows’ book (2013) as
one of the “most infamous” open problems in the field of Parameterized Complexity.

In this work, we show that k-Even Set does not admit FPT algorithms under the (random-
ized) Gap Exponential Time Hypothesis (Gap-ETH) [Dinur’16, Manurangsi-Raghavendra’16].
In fact, our result rules out not only exact FPT algorithms, but also any constant factor FPT
approximation algorithms for the problem. Furthermore, our result holds even under the follow-
ing weaker assumption, which is also known as the Parameterized Inapproximability Hypothesis
(PIH) [Lokshtanov et al.’17]: no (randomized) FPT algorithm can distinguish a satisfiable 2CSP
instance from one which is only 0.99-satisfiable (where the parameter is the number of variables).

We also consider the parameterized k-Shortest Vector Problem (SVP), in which we are given a
lattice whose basis vectors are integral and an integer k, and the goal is to determine whether
the norm of the shortest vector (in the `p norm for some fixed p) is at most k. Similar to k-Even
Set, this problem is also a long-standing open problem in the field of Parameterized Complexity.
We show that, for any p > 1, k-SVP is hard to approximate (in FPT time) to some constant factor,
assuming PIH. Furthermore, for the case of p = 2, the inapproximability factor can be amplified
to any constant.
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1 Introduction
The study of error-correcting codes gives rise to many interesting computational problems. One
of the most fundamental among these is the problem of computing the distance of a linear code.
In this problem, which is commonly referred to as the Minimum Distance Problem (MDP), we are
given as input a generator matrix A ∈ Fn×m

2 of a binary1 linear code and an integer k. The goal is
to determine whether the code has distance at most k. Recall that the distance of a linear code is

min
0 6=x∈Fm

2

‖Ax‖0 where ‖ · ‖0 denote the 0-norm (aka the Hamming norm).

The study of this problem dates back to at least 1978 when Berlekamp et al. [BMvT78] conjectured
that it is NP-hard. This conjecture remained open for almost two decades until it was positively
resolved by Vardy [Var97a, Var97b]. Later, Dumer et al. [DMS03] strengthened this intractability
result by showed that, even approximately computing the minimum distance of the code is hard.
Specifically, they showed that, unless NP = RP, no polynomial time algorithm can distinguish
between a code with distance at most k and one whose distance is greater than γ · k for any constant
γ > 1. Furthermore, under stronger assumptions, the ratio can be improved to superconstants and
even almost polynomial. Dumer et al.’s result has been subsequently derandomized by Cheng and
Wan [CW12] and further simplified by Austrin and Khot [AK14] and Micciancio [Mic14].

While the aforementioned intractability results rule out not only efficient algorithms but also
efficient approximation algorithms for MDP, there is another popular technique in coping with
NP-hardness of problems which is not yet ruled out by the known results: parameterization.

In parameterized problems, part of the input is an integer that is designated as the parameter of
the problem, and the goal is now not to find a polynomial time algorithm but a fixed parameter
tractable (FPT) algorithm. This is an algorithm whose running time can be upper bounded by
some (computable) function of the parameter in addition to some polynomial in the input length.
Specifically, for MDP, its parameterized variant2 k-MDP has k as the parameter and the question is
whether there exists an algorithm that can decide if the code generated by A has distance at most k
in time T(k) · poly(mn) where T can be any computable function that depends only on k.

The parameterized complexity of k-MDP was first questioned by Downey et al. [DFVW99]3,4 who
showed that parameterized variants of several other coding-theoretic problems, including the Near-
est Codeword Problem and the Nearest Vector Problem5 which we will discuss in more details in
Section 1.1.1, are W[1]-hard. Thereby, assuming the widely believed W[1] 6= FPT hypothesis, these
problems are rendered intractable from the parameterized perspective. Unfortunately, Downey
et al. fell short of proving such hardness for k-MDP and left it as an open problem:

Open Question 1.1 Is k-MDP fixed parameter tractable?

Although almost two decades have passed, the above question remains unresolved to this day, de-

1Note that MDP can be defined over larger fields as well; we discuss more about this in Section 7.
2Throughout Sections 1 and 2, for a computational problem Π, we denote its parameterized variant by k-Π, where k

is the parameter of the problem.
3k-MDP is formulated slightly differently in [DFVW99]. There, the input contains a parity-check matrix instead of the

generator matrix, but, since we can efficiently compute one given the other, the two formulations are equivalent.
4k-MDP is commonly referred to in the area of parameterized complexity as the k-Even Set problem due to its graph

theoretic interpretation (see [DFVW99]).
5The Nearest Vector Problem is also referred to in the literature as the Closest Vector Problem.
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spite receiving significant attention from the community. In particular, the problem was listed as an
open question in the seminal book of Downey and Fellows [DF99] and has been reiterated numer-
ous times over the years [DGMS07, FGMS12, GKS12, DF13, CFJ+14, CFK+15, BGGS16, CFHW17,
Maj17]. In fact, in their second book [DF13], Downey and Fellows even include this problem as
one of the six6 “most infamous” open questions in the area of Parameterized Complexity.

Another question posted in Downey et al.’s work [DFVW99] that remains open is the parameterized
Shortest Vector Problem (k-SVP) in lattices. The input of k-SVP (in the `p norm) is an integer k ∈N

and a matrix A ∈ Zn×m representing the basis of a lattice, and we want to determine whether
the shortest (non-zero) vector in the lattice has length at most k, i.e., whether min

0 6=x∈Zm
‖Ax‖p 6 k.

Again, k is the parameter of the problem. It should also be noted here that, similar to [DFVW99],
we require the basis of the lattice to be integer-value, which is sometimes not enforced in literature
(e.g. [vEB81, Ajt98]). This is because, if A is allowed to be any matrix in Rn×m, then parameterization
is meaningless because we can simply scale A down by a large multiplicative factor.

The (non-parameterized) Shortest Vector Problem (SVP) has been intensively studied, motivated
partly due to the fact that both algorithms and hardness results for the problem have numerous
applications. Specifically, the celebrated LLL algorithm for SVP [LLL82] can be used to factor
rational polynomials, and to solve integer programming (parameterized by the number of un-
knowns) [Len83] and many other computational number-theoretic problems (see e.g. [NV10]). Fur-
thermore, the hardness of (approximating) SVP has been used as the basis of several cryptographic
constructions [Ajt98, AD97, Reg03, Reg05]. Since these topics are out of scope of our paper, we refer
the interested readers to the following surveys for more details: [Reg06, MR09, NV10, Reg10].

On the computational hardness side of the problem, van Emde-Boas [vEB81] was the first to show
that SVP is NP-hard for the `∞ norm, but left open the question of whether SVP on the `p norm
for 1 6 p < ∞ is NP-hard. It was not until a decade and a half later that Ajtai [Ajt96] showed,
under a randomized reduction, that SVP for the `2 norm is also NP-hard; in fact, Ajtai’s hardness
result holds not only for exact algorithms but also for (1 + o(1))-approximation algorithms as
well. The o(1) term in the inapproximability ratio was then improved in a subsequent work of Cai
and Nerurkar [CN99]. Finally, Micciancio [Mic00] managed to achieve a factor that is bounded
away from one. Specifically, Micciancio [Mic00] showed (again under randomized reductions)
that SVP on the `p norm is NP-hard to approximate to within a factor of p

√
2 for every 1 6 p < ∞.

Khot [Kho05] later improved the ratio to any constant, and even to 2log1/2−ε(nm) under a stronger
assumption. Haviv and Regev [HR07] subsequently simplified the gap amplification step of Khot
and, in the process, improved the ratio to almost polynomial. We note that both Khot’s and
Haviv-Regev reductions are also randomized and it is still open to find a deterministic NP-hardness
reduction for SVP in the `p norms for 1 6 p < ∞ (see [Mic12]); we emphasize here that such a
reduction is not known even for the exact (not approximate) version of the problem. For the `∞
norm, the following stronger result due to Dinur is known [Din02]: SVP in the `∞ norm is NP-hard
to approximate to within nΩ(1/ log log n) factor (under a deterministic reduction).

Very recently, fine-grained studies of SVP have been initiated [BGS17, AS18]. The authors of [BGS17,
AS18] showed that SVP for any `p norm cannot be solved (or even approximated to some constant

6So far, two of the six problems have been resolved: that of parameterized complexity of k-Biclique [Lin15] and that
of parameterized approximability of k-Dominating Set [KLM18].
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strictly greater than one) in subexponential time assuming the existence of a certain family of
lattices7 and the (randomized) Gap Exponential Time Hypothesis (Gap-ETH) [Din16, MR16], which
states that no randomized subexponential time algorithm can distinguish between a satisfiable
3CNF formula and one which is only 0.99-satisfiable. (See Hypothesis 3.10.)

As with MDP, Downey et al. [DFVW99] were the first to question the parameterized tractability
of k-SVP (for the `2 norm). Once again, Downey and Fellows included k-SVP as one of the open
problems in both of their books [DF99, DF13], albeit, in their second book, k-SVP was in the “tough
customers” list instead of the “most infamous” list that k-MDP belonged to. And again, as with
Open Question 1.1, this question remains unresolved to this day:

Open Question 1.2 Is k-SVP fixed parameter tractable?

1.1 Our Results

The main result of this paper is a resolution to the previously mentioned Open Question 1.1 and 1.2:
more specifically, we prove that k-MDP and k-SVP (on `p norm for any p > 1) do not admit any
FPT algorithm, assuming the aforementioned (randomized) Gap-ETH (Hypothesis 3.10). In fact,
our result is slightly stronger than stated here in a couple of ways:

(1) First, our result rules out not only exact FPT algorithms but also FPT approximation algo-
rithms as well.

(2) Second, our result works even under the so-called Parameterized Inapproximability Hypothesis
(PIH) [LRSZ17], which asserts that no (randomized) FPT algorithm can distinguish between
a satisfiable 2CSP instance and one which is only 0.99-satisfiable, where the parameter is
the number of variables (See Hypothesis 3.9). It is known (and simple to see) that Gap-ETH
implies PIH; please refer to Section 3.4, for more details regarding the two assumptions.

With this in mind, we can state our results starting with the parameterized intractability of k-MDP,
more concretely (but still informally), as follows:

Theorem 1.3 (Informal; see Theorem 5.1) Assuming PIH, for any γ > 1 and any computable function
T, no T(k) · poly(nm)-time algorithm, on input (A, k) ∈ Fn×m

2 ×N, can distinguish between

• the distance of the code generated by A is at most k
(

i.e., min
0 6=x∈Fm

2

‖Ax‖0 6 k
)

, and,

• the distance of the code generated by A is more than γ · k
(

i.e., min
0 6=x∈Fm

2

‖Ax‖0 > γ · k
)

.

Notice that our above result rules out FPT approximation algorithms with any constant approxima-
tion ratio for k-MDP. In contrast, we can only prove FPT inapproximability with some constant ratio
for k-SVP in `p norm for p > 1, with the exception of p = 2 for which the inapproximability factor
in our result can be amplified to any constant. These are stated more precisely below.

Theorem 1.4 (Informal; see Theorem 6.1) For any p > 1, there exists a constant γp > 1 such that,
assuming PIH, for any computable function T, no T(k) · poly(nm)-time algorithm, on input (A, k) ∈
Zn×m ×N, can distinguish between

7This additional assumption is only needed for 1 6 p 6 2. For p > 2, their hardness is conditional only on Gap-ETH.
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• the `p norm of the shortest vector of the lattice generated by A is 6 k
(

i.e., min
0 6=x∈Zm

‖Ax‖p 6 k
)

,

and,

• the `p norm of the shortest vector of the lattice generated by A is > γp · k
(

i.e., min
0 6=x∈Zm

‖Ax‖p > γp · k
)

.

Theorem 1.5 (Informal; see Theorem 6.2) Assuming PIH, for any computable function T and constant
γ > 1, no T(k) · poly(nm)-time algorithm, on input (A, k) ∈ Zn×m ×N, can distinguish between

• the `2 norm of the shortest vector of the lattice generated by A is6 k
(

i.e., min
0 6=x∈Zm

‖Ax‖2 6 k
)

, and,

• the `2 norm of the shortest vector of the lattice generated by A is > γ · k
(

i.e., min
0 6=x∈Zm

‖Ax‖2 > γ · k
)

.

We remark that our results do not yield hardness for SVP in the `1 norm and this remains an
interesting open question. Section 7 contains discussion on this problem. We also note that, for
Theorem 6.1 and onwards, we are only concerned with p 6= ∞; this is because, for p = ∞, the
problem is NP-hard to approximate even when k = 1 [vEB81]!

1.1.1 Nearest Codeword Problem and Nearest Vector Problem

As we shall see in Section 2, our proof proceeds by first showing FPT hardness of approximation of
the non-homogeneous variants of k-MDP and k-SVP called the k-Nearest Codeword Problem (k-NCP)
and the k-Nearest Vector Problem (k-NVP) respectively. For both k-NCP and k-NVP, we are given a
target vector y (in Fn

2 and Zn, respectively) in addition to (A, k), and the goal is to find whether
there is any x (in Fm

2 and Zm, respectively) such that the (Hamming and `p, respectively) norm of
Ax− y is at most k.

As an intermediate step of our proof, we show that the k-NCP and k-NVP problems are hard
to approximate8 (see Theorem 4.1 and Theorem 6.3 respectively). This should be compared
to [DFVW99], in which the authors show that both problems are W[1]-hard. The distinction here is
that our result rules out not only exact algorithms but also approximation algorithms, at the expense
of the stronger assumption than that of [DFVW99]. Indeed, if one could somehow show that k-
NCP and k-NVP are W[1]-hard to approximate (to some constant strictly greater than one), then
our reduction would imply W[1]-hardness of k-MDP and k-SVP (under randomized reductions).
Unfortunately, no such W[1]-hardness of approximation of k-NCP and k-NVP is known yet.

We end this section by remarking that the computational complexity of both (non-parameterized)
NCP and NVP are also thoroughly studied (see e.g. [Mic01, DKRS03, Ste93, ABSS97, GMSS99] in
addition to the references for MDP and SVP), and indeed the inapproximability results of these two
problems form the basis of hardness of approximation for MDP and SVP.

1.2 Organization of the paper

In the next section, we give an overview of our reductions and proofs. After that, in Section 3, we
define additional notations and preliminaries needed to fully formalize our proofs. In Section 4
we show the constant inapproximability of k-NCP. Next, in Section 5, we establish the constant

8While our k-MDP result only applies for F2, it is not hard to see that our intermediate reduction for k-NCP actually
applies for any finite field Fq too.
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inapproximability of k-MDP. Section 6 provides the constant inapproximability of k-NVP and k-SVP.
Finally, in Section 7, we conclude with a few open questions and research directions.

2 Proof Overview
In the non-parameterized setting, all the aforementioned inapproximability results for both MDP
and SVP are shown in two steps: first, one proves the inapproximability of their inhomogeneous
counterparts (i.e. NCP and NVP), and then reduces them to MDP and SVP. We follow this general
outline. That is, we first show, via relatively simple reductions from PIH, that both k-NCP and
k-NVP are hard to approximate. Then, we reduce k-NCP and k-NVP to k-MDP and k-SVP respec-
tively. In this second step, we employ Dumer et al.’s reduction [DMS03] for k-MDP and Khot’s
reduction [Kho05] for k-SVP. While the latter works almost immediately in the parameterized
regime, there are several technical challenges in adapting Dumer et al.’s reduction to our setting.
The remainder of this section is devoted to presenting all of our reductions and to highlight such
technical challenges and changes in comparison with the non-parameterized settings.

The starting point of all the hardness results in this paper is Gap-ETH (Hypothesis 3.10). As
mentioned earlier, it is well-known that Gap-ETH implies PIH (Hypothesis 3.9), i.e., PIH is weaker
than Gap-ETH. Hence, for the rest of this section, we may start from PIH instead of Gap-ETH.

2.1 Parameterized Intractability of k-MDP from PIH

We start this subsection by describing the Dumer et al.’s (henceforth DMS) reduction [DMS03]. The
starting point of the DMS reduction is the NP-hardness of approximating NCP to any constant
factor [ABSS97]. Let us recall that in NCP we are given a matrix A ∈ Fn×m

2 , an integer k, and a
target vector y ∈ Fn

2 , and the goal is to determine whether there is any x ∈ Fm
2 such that ‖Ax− y‖0

is at most k. Arora et al. [ABSS97] shows that for any constant γ > 1, it is NP-hard to distinguish
the case when there exists x such that ‖Ax− y‖0 6 k from the case when for all x we have that
‖Ax− y‖0 > γk. Dumer at al. introduce the notion of “locally dense codes” to enable a gadget
reduction from NCP to MDP. Informally, a locally dense code is a linear code L with minimum
distance d admitting a ball B(s, r) centered at s of radius9 r < d and containing a large (exponential
in the dimension) number of codewords. Moreover, for the gadget reduction to MDP to go through,
we require not only the knowledge of the code, but also the center s and a linear transformation T
used to index the codewords in B(s, r), i.e., T maps B(s, r) ∩ L onto a smaller subspace. Given an
instance (A, y, k) of NCP, and a locally dense code (L, T, s) whose parameters (such as dimension
and distance) we will fix later, Dumer et al. build the following matrix:

B =



ATL −y
...

...

ATL −y

L −s
...

...

L −s

 b copies

a copies

, (1)

9Note that for the ball to contain more than a single codeword, we must have r > d/2.
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where a, b are some appropriately chosen positive integers. If there exists x such that ‖Ax− y‖0 6 k
then consider z′ such that TLz′ = x (we choose the parameters of (L, T, s), in particular the
dimensions of L and T such that all these computations are valid). Let z = z′ ◦ 1, and note that
‖Bz‖0 = a‖Ax − y‖0 + b‖Lz − s‖0 6 ak + br. In other words, if (A, y, k) is a YES instance of
NCP then (B, ak + br) is a YES instance of MDP. On the other hand if we had that for all x, the
norm of ‖Ax− y‖0 is more than γk for some constant10 γ > 2, then it is possible to show that for
all z we have that ‖Bz‖0 > γ′(ak + br) for any γ′ < 2γ

2+γ . The proof is based on a case analysis
of the last coordinate of z. If that coordinate is 0, then, since L is a code of distance d, we have
‖Bz‖0 > bd > γ′(ak + br); if that coordinate is 1, then the assumption that (A, y, k) is a NO instance
of NCP implies that ‖Bz‖0 > aγk > γ′(ak + br). Note that this gives an inapproximability for MDP
of ratio γ′ < 2; this gap is then further amplified by a simple tensoring procedure.

We note that Dumer at al. were not able to find a deterministic construction of locally dense
code with all of the above described properties. Specifically, they gave an efficient deterministic
construction of a code L, but only gave a randomized algorithm that finds a linear transformation
T and a center s w.h.p. Therefore, their hardness result relies on the assumption that NP 6= RP,
instead of the more standard NP 6= P assumption. Later, Cheng and Wan [CW12] and Micciancio
[Mic14] provided constructions for such (families of) locally dense codes with an explicit center, and
thus showed the constant ratio inapproximability of MDP under the assumption of NP 6= P.

Trying to follow the DMS reduction in order to show the parameterized intractability of k-MDP, we
face the following three immediate obstacles. First, there is no inapproximability result known for
k-NCP, for any constant factor greater than 1. Note that to use the DMS reduction, we need the
parameterized inapproximability of k-NCP, for an approximation factor which is greater than two.
Second, the construction of locally dense codes of Dumer et al. only works when the distance is
linear in the block length (which is a function of the size of the input). However, we need codes
whose distance are bounded above by a function of the parameter of the problem (and not depend
on the input size). This is because the DMS reduction converts an instance (A, y, k) of k-NCP to
an instance (B, ak + br) of (ak + br)-MDP, and for this reduction to be an FPT reduction, we need
ak + br to be a function only depending on k, i.e., d, the distance of the code L (which is at most 2r),
must be a function only of k. Third, recall that the DMS reduction needs to identify the vectors in
the ball B(s, r) ∩ L with all the potential solutions of k-NCP. Notice that the number of vectors in
the ball is at most (nm)O(r) but the number of potential solutions of k-NCP is exponential in m (i.e.
all x ∈ Fm

2 ). However, this is impossible since r 6 d is bounded above by a function of k!

We overcome the first obstacle by proving the constant inapproximability of k-NCP under PIH.
Specifically, assuming PIH, we first show the parameterized inapproximability of k-NCP for some
constant factor greater than 1, and then boost the gap using a composition operator (self-recursively).
Note that in order to follow the DMS reduction, we need the inapproximability of k-NCP for some
constant factor greater than 2; in other words, the gap amplification for k-NCP is necessary, even if
we are not interested in showing the inapproximability of k-NCP for all constant factors.

We overcome the third obstacle by introducing an intermediate problem in the DMS reduction,
which we call the sparse nearest codeword problem. The sparse nearest codeword problem is a promise
problem which differs from k-NCP in only one way: in the YES case, we want to find x ∈ B(0, k)

10Note that in the described reduction, we need the inapproximability of NCP to a factor greater than two, even to just
reduce to the exact version of MDP.
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(instead of the entire space Fm
2 ), such that ‖Ax− y‖0 6 k. In other words, we only allow sparse x

as a solution. We show that k-NCP can be reduced to the sparse nearest codeword problem.

Finally, we overcome the second obstacle by introducing a variant of locally dense codes, which we
call sparse covering codes. Roughly speaking, we show that any code which nears the sphere-packing
bound (aka Hamming bound) in the high rate regime is a sparse covering code. Then we follow the
DMS reduction with the new ingredient of sparse covering codes (replacing locally dense codes) to
reduce the sparse nearest codeword problem to k-MDP.

We remark here that overcoming the second and third obstacles are our main technical contributions.
In particular, our result on sparse covering codes might be of independent interest.

The full reduction goes through several intermediate steps, which we will describe in more detail
in the coming paragraphs. The high-level summary of these steps is also provided in Figure 1.
Throughout this section, for any gap problem, if we do not specify the gap in the subscript, then
it implies that the gap can be any arbitrary constant. For every ε > 0, we denote by GAP2CSPε

the gap problem where we have to determine if a given 2CSP instance Γ, i.e., a graph G = (V, E)
and a set of constraints {Cuv}(u,v)∈E over an alphabet set Σ, has an assignment to its vertices that
satisfies all the constraints or if every assignment violates more than ε fraction of the constraints.
Here each Cuv is simply the set of all (σu, σv) ∈ Σ× Σ that satisfy the constraint. The parameter of
the problem is |V|. PIH asserts that there exists some constant ε > 0 such that no randomized FPT
algorithm can solve GAP2CSPε. (See Hypothesis 3.9 for a more formal statement.)

Gap-ETHδ PIHε GAPMLDγ GAPMLD

GAPSNC GAPMDP1.99 GAPMDP

Folklore Reduction
(Section 3.4.1) Section 4.1

Section 5.1

Gap Amplification
(Section 4.2)

Introducing SCC to
DMS reduction

(Sections 5.2 and 5.3)

Gap Amplification
(Proposition 5.6)

Figure 1: An overview of the reduction from Gap-ETH to the parameterized Minimum Distance
problem. First, PIH follows from Gap-ETH due to known reductions (see Section 3.4.1). Next,
we reduce GAP2CSPε to GAPMLDγ in Section 4.1, and then amplify the gap using a composition
operator in Section 4.2. Via a simple reduction from GAPMLD, in Section 5.1 we obtain the constant
parameterized inapproximability of GAPSNC. In Section 5.2, we formally introduce sparse covering
codes and show how to efficiently (but probabilistically) construct them. These codes are then used
in Section 5 to obtain the parameterized innapproximability of GAPMDP1.99. The final step is a
known gap amplification by tensoring (Proposition 5.6).

Reducing GAP2CSPε to GAPMLDγ. We start by showing the parameterized inapproximability
of k-NCP for some constant ratio. Instead of working with k-NCP, we work with its equivalent
formulation (by converting the generator matrix given as input into a parity-check matrix) which in
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the literature is referred to as the maximum likelihood decoding problem11. We define the gap version
of this problem (i.e., a promise problem), denoted by GAPMLDγ (for some constant γ > 1) as
follows: on input (A, y, k), distinguish between the YES case where there exists x ∈ B(0, k) such
that Ax = y, and the NO case where for all x ∈ B(0, γk) we have Ax 6= y. It is good to keep in
mind that this is equivalent to asking whether there exist k columns of A whose sum is equal to y
or whether any 6 γk columns of A do not sum up to y.

Now, we will sketch the reduction from an instance Γ = (G = (V, E), Σ, {Cuv}(u,v)∈E) of GAP2CSPε

to an instance (A, y, k) of GAPMLD1+ε/3. The matrix A will have |V||Σ|+ ∑
(u,v)∈E

|Cuv| columns

and |V|+ |E|+ 2|E||Σ| rows. The first |V||Σ| columns of A are labelled with (u, σu) ∈ V × Σ, and
the remaining columns of A are labeled by (e, σu, σv) where e = (u, v) ∈ E and (σu, σv) ∈ Cuv.

Before we continue with our description of A, let us note that, in the YES case where there is an
assignment φ : V → Σ that satisfies every constraint, our intended solution for our GAPMLD
instance is to pick the (u, φ(u))-column for every u ∈ V and the ((u, v), φ(u), φ(v))-column for
every (u, v) ∈ E. Notice that |V| + |E| columns are picked, and indeed we set k = |V| + |E|.
Moreover, we set the first |V|+ |E| coordinates of y to be one and the rest to be zero.

We also identify the first |V| rows of A with u ∈ V, the next |E| rows of A with e ∈ E, and the
remaining 2|E||Σ| rows of A with (e, σ, b) ∈ E× Σ× {0, 1}. Figure 2 provides an illustration of
the matrix A. The rows of A will be designed to serve the following purposes: the first |V| rows
will ensure that, for each u ∈ V, at least one column of the form (u, ·) is picked, the next |E| rows
will ensure that, for each e ∈ E, at least one column of the form (e, ·, ·) is picked, and finally the
remaining 2|E||Σ| rows will “check” that the constraint is indeed satisfied.

Specifically, each u-row for u ∈ V has only |Σ| non-zero entries: those in column (u, σu) for all
σu ∈ Σ. Since our target vector y has yu = 1, we indeed have that at least one column of the form
(u, ·) must be selected for every u ∈ V. Similarly, each e-row for e = (u, v) ∈ E has |Cuv| non-zero
entries: those in column (e, σu, σv) for all (σu, σv) ∈ Cuv. Again, these make sure that at least one
column of the form (e, ·, ·) must be picked for every e ∈ E.

Finally, we will define the entries of the last 2|E||Σ| rows. To do so, let us recall that, in the YES
case, we pick the columns (u, φ(u)) for all u ∈ V and ((u, v), φ(u), φ(v)) for all (u, v) ∈ E. The
goal of these remaining rows is to not only accept such a solution but also prevent any solution
that picks columns (u, σu), (v, σv) and ((u, v), σ′u, σ′v) where σu 6= σ′u or σv 6= σ′v. In other words,
these rows serve as a “consistency checker” of the solution. Specifically, the |Σ| rows of the form
((u, v), ·, 0) will force σu and σ′u to be equal whereas the |Σ| rows of the form ((u, v), ·, 1) will force
σv and σ′v to be equal. For convenience, we will only define the entries for the ((u, v), ·, 0)-rows; the
((u, v), ·, 1)-rows can be defined similarly. Each ((u, v), σ, 0)-row has only one non-zero entry within
the first |V||Σ| rows: the one in the (u, σ)-column. For the remaining columns, the entry in the
((u, v), σ, 0)-row and the (e, σ0, σ1)-column is non-zero if and only if e = (u, v) and σ0 = σ.

It should be clear from the definition that our intended solution for the YES case is indeed a
valid solution because, for each ((u, v), φ(u), 0)-row, the two non-zero entries from the columns
(u, φ(u)) and ((u, v), φ(u), φ(v)) cancel each other out. On the other hand, for the NO case, the

11The two formulations are equivalent but we use different names for them to avoid confusion when we use Sparse
Nearest Codeword Problem later on.
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A =

|V| × |Σ| ∑
(u,v)∈E

|Cuv|

|E| × |Σ| × {0, 1}

|E|

|V|

, y =

|E| × |Σ| × {0, 1}

|V|+ |E|

1

...

1

0
...
0

Figure 2: An illustration of A and y. All entries in the shaded area are zero. Each row in the brick
pattern area has one non-zero entry in that area, and each column in the star pattern area has two
non-zero entries in the area. Finally, each column has one non-zero entry in the lines pattern area.

main observation is that, for each edge (u, v) ∈ E, if only one column of the form (u, ·), one of
the form (v, ·) and one of the form ((u, v), ·, ·) are picked, then the assignment corresponding to
the picked columns satisfy the constraint Cuv. In particular, it is easy to argue that, if we can pick
(1 + ε/3)(|V|+ |E|) columns that sum up to y, then all but ε fraction of all constraints fulfill the
previous conditions, meaning that we can find an assignment that satisfies 1− ε fraction of the
constraints. Thus, we have also proved the soundness of the reduction.

Gap Amplification for GAPMLDγ. We have sketched the proof of the hardness of GAPMLDγ for
some constant γ > 1, assuming PIH. The next step is to amplify the gap and arrive at the hardness for
GAPMLDγ for every constant γ > 1. To do so, we define an operator ⊕ over every pair of instances
of GAPMLDγ with the following property: if two instances (A1, y1, k1) and (A2, y2, k2) are both
YES instances, then (A, y, k) := (A1, y1, k1)⊕ (A2, y2, k2) is a YES instance for GAPMLDγ′ where
γ′ ≈ γ2. On the other hand, if both (A1, y1, k1) and (A2, y2, k2) are NO instances, then (A, y, k)
is a NO instance for GAPMLDγ′ . Hence, we can apply ⊕ repeatedly to the GAPMLDγ instance
from the previous step (with itself) and amplify the gap to be any arbitrarily large constant. The
definition of ⊕, while simple, is slightly tedious to formalized and we defer it to Section 4.2.

Reducing GAPMLD to GAPSNC. Now we introduce the sparse nearest codeword problem that we
had briefly talked about. We define the gap version of this problem, denoted by GAPSNCγ (for
some constant γ > 1) as follows: on input (A′, y′, k), distinguish between the YES case where there
exists x ∈ B(0, k) such that ‖A′x− y′‖0 6 k, and the NO case where for all x (in the entire space),
we have ‖A′x− y′‖0 > γk. We highlight that the difference between k-NCP and GAPSNCγ is that,
in the YES case of the latter, we are promised that x ∈ B(0, k). We sketch below the reduction from
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an instance (A, y, k) of GAPMLDγ to an instance (A′, y′, k) of GAPSNCγ. Given A, y, let

A′ =


A
...

A

Id


γk + 1 copies

, y′ =


y
...

y

0


γk + 1 copies

.

Notice that for any x (in the entire space), we have

‖A′x− y′‖0 = (γk + 1)‖Ax− y‖0 + ‖x‖0,

and thus both the completeness and soundness of the reduction easily follow.

Sparse Covering Codes. Before reducing GAPSNC to GAPMDP1.99 we need to introduce in more
detail (but still informally) the notion of sparse covering codes that we previously mentioned.

A sparse covering code (SCC) is a linear code L of block length h with minimum distance d
admitting a ball B(s, r) centered at s of radius r < d and containing a large (i.e., about hk, where
k = Ω(d)) number of codewords. Moreover, for the reduction to k-MDP to go through, we require
not only the knowledge of the code, but also the center s and a linear transformation T used to
index the codewords in B(s, r), i.e., T(B(s, r) ∩ L) needs to contains the ball of radius k centered
at 0. Similar to how Dumer et al. only managed to show the probabilistic existence of the center,
we too cannot find an explicit s for the SCCs that we construct, but instead provide an efficiently
samplable distribution such that, for any x ∈ B(0, k), the probability (over s sampled from the
distribution) that x ∈ T(B(s, r) ∩ L) is non-negligible. This is what makes our reduction from
GAPSNC to GAPMDP1.99 randomized. We will not elaborate more on this issue here, but focus on
the (probabilistic) construction of such codes. For convenience, we will assume throughout this
overview that k is much smaller than d, i.e., k = 0.001d.

Recall that the sphere-packing bound (aka Hamming bound) states that a binary code of block
length h and distance d can have at most 2h/|B(0, d d−1

2 e)| codewords; this is simply because the
balls of radius d d−1

2 e at the codewords do not intersect. Our main theorem regarding the existence
of sparse covering code is that any code that is “near” the sphere-packing bound is a sparse covering
code with r = d d−1

2 e+ k ≈ 0.501d. Here “near” means that the number of codewords must be
at least 2h/|B(0, d d−1

2 e)| divided by f (d) · poly(h) for some function f that depends only on d.
(Equivalently, this means that the message length must be at least h− (d/2 + O(1)) log h.) The
BCH code over binary alphabet is an example of a code satisfying such a condition.

While we will not sketch the proof of the existence theorem here, we note that the general idea is to
set T and the distribution over s in such a way that the probability that x lies in T(B(s, r) ∩ L) is at
least the probability that a random point in Fh

2 is within distance r− k = d d−1
2 e of some codeword.

The latter is non-negligible from our assumption that L nears the sphere-packing bound.

Finally, we remark that our proof here is completely different from the DMS proof of existence of
locally dense codes. Specifically, DMS uses a group-theoretic argument to show that, when a code
exceeds the Gilbert–Varshamov bound, there must be a center s such that B(s, r) contains many
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codewords. Then, they pick a random linear map T and show that w.h.p. T(B(s, r) ∩ L) is the
entire space. Note that this second step does not use any structure of B(s, r) ∩ L; their argument is
simply that, for any sufficiently large subset Y, a random linear map T maps Y to an entire space
w.h.p. However, such an argument fails for us, due to the fact that, in SCC, we want to cover a ball
B(0, k) rather than the whole space, and it is not hard to see that there are very large subsets Y such
that no linear map T satisfies T(Y) ⊇ B(0, k). A simple example of this is when Y is a subspace of
Fh

2; in this case, even when Y is as large as exp(poly(h)), no desired linear map T exists.

Reducing GAPSNCγ to GAPMDP1.99. Next, we prove the hardness of GAPMDPγ′ for all constant
γ′ ∈ [1, 2), assuming PIH, using a gadget constructed from sparse covering codes.

Given an instance (A, y, k) of GAPSNCγ for some γ > 2 and a sparse covering code (L, T, s) we
build an instance (B, ak + br) of GAPMDPγ′ where γ′ < 2γ

2+γ , by following the DMS reduction
(which was previously described, and in particular see (1)). If there exists x ∈ B(0, k) such that
‖Ax−y‖0 6 k then consider z′ such that TLz′ = x. Note that the existence of such a z′ is guaranteed
by the definition of SCC. Consider z = z′ ◦ 1, and note that ‖Bz‖0 = a‖Ax− y‖0 + b‖Lz− s‖0 6
ak + br. In other words, as in the DMS reduction, if (A, y, k) is a YES instance of NCP, then
(B, ak + br) is a YES instance of MDP. On the other hand, similar to the DMS reduction, if we had
that ‖Ax− y‖0 > γk for all x, then ‖Bz‖0 > γ′(ak + br) for all z. The parameterized intractability
of GAPMDP1.99 is obtained by setting γ = 400 in the above reduction.

Gap Amplification for GAPMDP1.99. It is well known that the distance of the tensor product of
two linear codes is the product of the distances of the individual codes (see Proposition 5.6 for
a formal statement). We can use this proposition to reduce GAPMDPγ to GAPMDPγ2 for any
γ > 1. In particular, we can obtain, for any constant γ, the intractability of GAPMDPγ starting
from GAPMDP1.99 by just recursively tensoring the input code dlog1.99 γe times.

2.2 Parameterized Intractability of k-SVP from PIH

We begin this subsection by briefly describing Khot’s reduction. The starting point of Khot’s
reduction is the NP-hardness of approximating NVP in every `p norm to any constant factor
[ABSS97]. Let us recall that in NVP in the `p norm, we are given a matrix A ∈ Zn×m, an integer k,
and a target vector y ∈ Zn, and the goal is to determine whether there is any x ∈ Zm such that12

‖Ax− y‖p
p is at most k. The result of Arora et al. [ABSS97] states that for any constant γ > 1, it is

NP-hard to distinguish the case when there exists x such that ‖Ax− y‖p
p 6 k from the case when

for all (integral) x we have that ‖Ax− y‖p
p > γk. Khot’s reduction proceeds in four steps. First,

he constructs a gadget lattice called the “BCH Lattice” using BCH Codes. Next, he reduces NVP
in the `p norm (where p ∈ (1, ∞)) to an instance of SVP on an intermediate lattice by using the
BCH Lattice. This intermediate lattice has the following property. For any YES instance of NVP the
intermediate lattice contains multiple copies of the witness of the YES instance; For any NO instance
of NVP there are also many “annoying vectors” (but far less than the total number of YES instance
witnesses) which look like witnesses of a YES instance. However, since the annoying vectors
are outnumbered, Khot reduces this intermediate lattice to a proper SVP instance, by randomly
picking a sub-lattice via a random homogeneous linear constraint on the coordinates of the lattice
vectors (this annihilates all the annoying vectors while retaining at least one witness for the YES

12Previously, we use ‖Ax− y‖p instead of ‖Ax− y‖p
p. However, from the fixed parameter perspective, these two

versions are equivalent since the parameter k is only raised to the p-th power, and p is a constant in our setting.
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instance). Thus he obtains some constant factor hardness for SVP. Finally, the gap is amplified via
“Augmented Tensor Product”. It is important to note that Khot’s reduction is randomized, and thus
his result of inapproximability of SVP is based on NP 6= RP.

Trying to follow Khot’s reduction, in order to show the parameterized intractability of k-SVP,
we face only one obstacle: there is no known parameterized inapproximability of k-NVP for any
constant factor greater than 1. Let us denote by GAPNVPp,η for any constant η > 1 the gap version
of k-NVP in the `p norm. Recall that in GAPNVPp,η we are given a matrix A ∈ Zn×m, a target vector
y ∈ Zn, and a parameter k, and we would like to distinguish the case when there exists x ∈ Zm such
that ‖Ax− y‖p

p 6 k from the case when for all x ∈ Zm we have that ‖Ax− y‖p
p > ηk. As it turns

out, our reduction from GAP2CSPε to GAPSNC (with arbitrary constant gap), having GAPMLDγ

and GAPMLD as intermediate steps, can be translated to show the constant inapproximability of
GAPNVPp (under PIH) in a straightforward manner. We will not elaborate on this part of the proof
any further here and defer the detailed proof to Appendix B.

Once we have established the constant parameterized inapproximability of GAPNVPp, we follow
Khot’s reduction, and everything goes through as it is to establish the inapproximability for some
factor of the gap version of k-SVP in the `p norm (where p ∈ (1, ∞)). We denote by GAPSVPp,γ
for some constant γ(p) > 1 the the gap version of k-SVP (in the `p norm) where we are given a
matrix B ∈ Zn×m and a parameter k ∈ N, and we would like to distinguish the case when there
exists a non-zero x ∈ Zm such that ‖Bx‖p

p 6 k from the case when for all x ∈ Zm \ {0} we have
that ‖Bx‖p

p > γk. Let γ∗ := 2p

2p−1+1 . Following Khot’s reduction, we obtain the inapproximability of
GAPSVPp,γ∗ (under PIH). To obtain inapproximability of GAPSVP2 for all constant ratios, we use
the tensor product of lattices; the argument needed here is slightly more subtle than the similar step
in MDP because, unlike distances of codes, the `2 norm of the shortest vector of the tensor product
of two lattices is not necessarily equal to the product of the `2 norm of the shortest vector of each
lattice. Fortunately, Khot’s construction is tailored so that the resulting lattice is “well-behaved”
under tensoring [Kho05, HR07], and gap amplification is indeed possible for such instances.

We remark here that, for the (non-parameterized) inapproximability of SVP, the techniques
of [Kho05, HR07] allow one to successfully amplify gaps for `p norm where p 6= 2 as well.
Unfortunately, this does not work in our settings, as it requires the distance k to be dependent on
nm which is not possible for us since k is the parameter of the problem.

Summarizing, in Figure 3, we provide the proof outline of our reduction from Gap-ETH to
GAPSVPp with some constant gap, for every p ∈ (1, ∞) (with the additional gap amplification to
constant inapproximability for p = 2).

3 Preliminaries
We use the following notations throughout the paper.

Notations. For p ∈ N, we use 1p (respectively, 0p) to denote the all ones (respectively, all zeros)
vector of length p. We sometimes drop the subscript if the dimension is clear from the context.

For p, q ∈N, we use 0p×q to denote the all zeroes matrix of p rows and q columns. We use Idq to
denote the identity matrix of q rows and q columns.

For any vector x ∈ Rd, the `p norm of x is defined as `p(x) = ‖x‖p =
(

∑d
i=1 |xi|p

)1/p
. Thus,
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Gap-ETHδ PIHε GAPNVPp

GAPSVPp, 2p

2p−1+1
GAPSVPp

Folklore Reduction
(Section 3.4.1) Theorem 6.3

Khot’s Reduction

Lemma 6.5

Gap Amplification
for p = 2 (Section 6.2)

Figure 3: The figure provides an overview of the reduction from Gap-ETH to the parameterized
Shortest Vector problem in the `p norm, where p ∈ (1, ∞). First, recall that Gap-ETH implies
PIH (see Section 3.4.1). Next, we reduce GAP2CSPε to GAPNVPp in Appendix B. Lemma 6.5 (i.e.,
Khot’s reduction) then implies the parameterized inapproximability of GAPSVPp, 2p

2p−1+1

. The final

step (for p = 2) is the Haviv-Regev gap amplification via tensor product, which is described in
Section 6.2.

`∞(x) = ‖x‖∞ = maxi∈[d]{|xi|}. The `0 norm of x is defined as `0(x) = ‖x‖0 = |{xi 6= 0 : i ∈ [d]}|,
i.e., the number of non-zero entries of x. We note that the `0 norm is also referred to as the Hamming
norm. For a ∈ N, t ∈ N ∪ {0}, and s ∈ {0, 1}a, we use Ba(s, t) to denote the Hamming ball of
radius t centered at s, i.e., Ba(s, t) = {x ∈ {0, 1}a | ‖s− x‖0 6 t}. Finally, given two vectors x ∈ Fm

2
and y ∈ Fn

2 , we use x ◦ y ∈ Fm+n
2 to denote the concatenation of vectors x and y.

3.1 Parameterized Promise Problems and (Randomized) FPT Reductions

In this subsection, we briefly describe the various kinds of fixed-parameter reductions that are used
in this paper. We start by defining the notion of promise problems in the fixed-parameter world,
which is naturally analogues to promise problems in the NP world (see e.g. [Gol06]).

Definition 3.1 A parameterized promise problem Π is a pair of parameterized languages (ΠYES, ΠNO)
such that ΠYES ∩ΠNO = ∅.

Next, we formalize the notion of algorithms for these parameterized promise problems:

Definition 3.2 A deterministic algorithm A is said to be an FPT algorithm for Π if the following holds:

• On any input (x, k), A runs in time f (k)|x|c for some computable function f and constant c.
• (YES) For all (x, k) ∈ ΠYES, A(x, k) = 1.
• (NO) For all (x, k) ∈ ΠNO, A(x, k) = 0.

Definition 3.3 A Monte Carlo algorithm A is said to be a randomized FPT algorithm for Π if the
following holds:

• A runs in time f (k)|x|c for some computable function f and constant c (on every randomness).
• (YES) For all (x, k) ∈ ΠYES, Pr[A(x, k) = 1] > 2/3.
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• (NO) For all (x, k) ∈ ΠNO, Pr[A(x, k) = 0] > 2/3.

Finally, we define deterministic and randomized reductions between these problems.

Definition 3.4 A (deterministic) FPT reduction from a parameterized promise problem Π to a parameterized
promise problem Π′ is a (deterministic) procedure that transforms (x, k) to (x′, k′) that satisfies the following:

• The procedure runs in f (k)|x|c for some computable function f and constant c.
• There exists a computable function g such that k′ 6 g(k) for every input (x, k).
• For all (x, k) ∈ ΠYES, (x′, k′) ∈ Π′YES.
• For all (x, k) ∈ ΠNO, (x′, k′) ∈ Π′NO.

Definition 3.5 A randomized (one sided error) FPT reduction from a parameterized promise problem Π to
a parameterized promise problem Π′ is a randomized procedure that transforms (x, k) to (x′, k′) that satisfies
the following:

• The procedure runs in f (k)|x|c for some computable function f and constant c (on every randomness).
• There exists a computable function g such that k′ 6 g(k) for every input (x, k).Mi
• For all (x, k) ∈ ΠYES, Pr[(x′, k′) ∈ Π′YES] > 1/( f ′(k)|x|c′) for some computable function f ′ and

constant c′.
• For all (x, k) ∈ ΠNO, Pr[(x′, k′) ∈ Π′NO] = 1.

Note that the above definition corresponds to the notion of Reverse Unfaithful Random (RUR)
reductions in the classical world [Joh90]. The only difference (besides the allowed FPT running time)
is that the above definition allows the probability that the YES case gets map to the YES case to be
as small as 1/( f ′(k)poly(|x|)), whereas in the RUR reductions this can only be 1/poly(|x|). The
reason is that, as we will see in Lemma 3.7 below, FPT algorithms can afford to repeat the reduction
f ′(k)poly(|x|) times, whereas polynomial time algorithms can only repeat poly(|x|) times.

We also consider randomized two-sided error FPT reductions, which are defined as follows.

Definition 3.6 A randomized two sided error FPT reduction from a parameterized promise problem Π to
a parameterized promise problem Π′ is a randomized procedure that transforms (x, k) to (x′, k′) that satisfies
the following:

• The procedure runs in f (k)|x|c for some computable function f and constant c (on every randomness).
• There exists a computable function g such that k′ 6 g(k) for every input (x, k).
• For all (x, k) ∈ ΠYES, Pr[(x′, k′) ∈ Π′YES] > 2/3.
• For all (x, k) ∈ ΠNO, Pr[(x′, k′) ∈ Π′NO] > 2/3.

Note that this is not a generalization of the standard randomized FPT reduction (as defined in
Definition 3.5), since the definition requires the success probabilities for the YES and NO cases to
be constants independent of the parameter. In both cases, using standard techniques randomized
FPT reductions, can be used to transform randomized FPT algorithms for Π′ to randomized FPT
algorithm for Π, as stated by the following lemma:

Lemma 3.7 Suppose there exists a randomized (one sided/ two sided) error FPT reduction from a parameter-
ized promise problem Π to a parameterized promise problem Π′. If there exists a randomized FPT algorithm
A for Π′, there there also exists a randomized FPT algorithm for Π.

Proof. We prove this for one sided error reductions, the other case follows using similar arguments.
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Suppose there exists a randomized one sided error reduction from Π to Π′. Let f ′(·), c′ be as in
Definition 3.5. We consider the following subroutine. Given instance (x, k) of promise problem Π,
we apply the randomized reduction on (x, k) to get instance (x′, k′) of promise problem Π′. We run
A on (x′, k′) repeatedly 100 log( f ′(k)|x|c) times, and output the majority of the outcomes.

If (x, k) is a YES instance, then with probability at least 1/( f ′(k)|x|c′), (x′, k′) is also a YES instance
for Π′. Using Chernoff bound, conditioned on (x′, k′) being a YES instance, the majority of the
outcomes is YES with probability at least 1− e−10 log( f ′(k)|x|c′ ). Therefore using union bound, the
output of the above algorithm is YES with probability at least 1/( f ′(k)|x|c′)− e−10 log( f ′(k)|x|c′ ) >
1/2( f ′(k)|x|c′). Similarly, if (x, k) is a NO instance, then the subroutine outputs YES with probability
at most e−10 log( f ′(k)|x|c′ ).

Equipped with the above subroutine, our algorithm is simply the following: given (x, k), it runs
the subroutine 10 f ′(k)|x|c′ times. If at least one of the outcomes is YES, then the algorithm outputs
YES, otherwise it outputs NO. Again we can analyze this using elementary probability. If (x, k) is a
YES instance, then the algorithm outputs NO only if outcomes of all the trials is NO. Therefore, the
algorithm outputs YES with probability at least 1− (1− 1/2( f ′(k)|x|c′))10 f ′(k)|x|c′ > 0.9. Conversely,
if (x, k) is a NO instance, then by union bound, the algorithm outputs NO with probability at least
1− 10 f ′(k)|x|c′e−10 log( f ′(k)|x|c′ ) > 0.9. Finally, if A is FPT, then the running time of the proposed
algorithm is also FPT. Hence the claim follows13. �

Since the conclusion of the above proposition holds for both types of randomized reductions, we
will not be distinguishing between the two types in the rest of the paper.

3.2 Minimum Distance Problem

In this subsection, we define the fixed-parameter variant of the minimum distance problem and
other relevant parameterized problems. We actually define them as gap problems – as later in the
paper, we show the constant inapproximability of these problems.

For every γ > 1, we define the γ-gap minimum distance problem14 as follows:

γ-Gap Minimum Distance Problem (GAPMDPγ)

Input: A matrix A ∈ Fn×m
2 and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Fm
2 \ {0} such that ‖Ax‖0 6 k

• (NO) for all x ∈ Fm
2 \ {0}, ‖Ax‖0 > γ · k

13For the case of 2-sided error, we change the final step of the algorithm as follows; we invoke the subroutine
O(log 1/δ)-times (where δ is a constant) and again output the majority of the outcomes. The guarantees again follow by
a Chernoff bound argument.

14In the parameterized complexity literature, this problem is referred to as the k-Even set problem [DFVW99] and
the input to the problem is (equivalently) given through the parity-check matrix, instead of the generator matrix as
described in this paper.
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Next, for every γ > 1, we define the γ-gap maximum likelihood decoding problem15 as fol-
lows:

γ-Gap Maximum Likelihood Decoding Problem (GAPMLDγ)

Input: A matrix A ∈ Fn×m
2 , a vector y ∈ Fn

2 and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Bm(0, k) such that Ax = y
• (NO) for all x ∈ Bm(0, γk), Ax 6= y

For brevity, we shall denote the exact version (i.e., GAPMLD1) of the problem as MLD. Finally,
we introduce a “sparse” version of the GAPMLD problem called the sparsest nearest codeword
problem, and later in the paper we show a reduction from GAPMLD to this problem, followed by a
reduction from this problem to GAPMDP. Formally, for every γ > 1, we define the γ-gap sparsest
nearest codeword problem as follows:

γ-Gap Sparse Nearest Codeword Problem (GAPSNCγ)

Input: A matrix A ∈ Fn×m
2 , a vector y ∈ Fn

2 and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Bm(0, k) such that ‖Ax− y‖0 6 k
• (NO) for all x ∈ Fm

2 , ‖Ax− y‖0 > γ · k

3.3 Shortest Vector Problem and Nearest Vector Problem

In this subsection, we define the fixed-parameter variants of the shortest vector and nearest vector
problems. As in the previous subsection, we define them as gap problems, for the same reason that
later in the paper, we show the constant inapproximability of these two problems.

Fix p ∈ R>1. For every γ > 1, we define the γ-gap shortest vector problem in the `p-norm16 as
follows:

γ-Gap Shortest Vector Problem (GAPSVPp,γ)

Input: A matrix A ∈ Zn×m and a positive integer k ∈N

Parameter: k

15The maximum likelihood decoding problem is also equivalently known in the literature as the nearest codeword
problem.

16Note that we define GAPNVP and GAPSVP problems in terms of `p
p, whereas traditionally, it is defined in terms of

`p. However, it is sufficient for us to work with the `
p
p variant, since an α-factor inapproximability in `

p
p translates to an

α1/p-factor inapproximabillity in the `p norm, for any α > 1

17



Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Zm \ {0} such that ‖Ax‖p
p 6 k

• (NO) for all x ∈ Zm \ {0}, ‖Ax‖p
p > γ · k

For every γ > 1, we define the γ-gap nearest vector problem in the `p-norm as follows:

γ-Gap Nearest Vector Problem (GAPNVPp,γ)

Input: A matrix A ∈ Zn×m, vector y ∈ Zn and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Zm such that ‖Ax− y‖p
p 6 k

• (NO) for all x ∈ Zm, ‖Ax− y‖p
p > γ · k

3.4 CSPs and Parameterized Inapproximability Hypothesis

In this section, we will formally state the Parameterized Inapproximability Hypothesis (PIH). To do
so, we first have to define 2CSP and its corresponding gap problem, starting with the former:

Definition 3.8 (2CSP) An instance Γ of 2CSP consists of

• an undirected graph G = (V, E), which is referred to as the constraint graph,
• an alphabet set Σ,
• for each edge e = (u, v) ∈ E, a constraint Cuv ⊆ Σ× Σ.

An assignment of Γ is simply a function from V to Σ. An edge e = (u, v) ∈ E is said to be satisfied
by an assignment ψ : V → Σ if (ψ(u), ψ(v)) ∈ Cuv. A value of an assignment ψ, denoted by val(ψ),
is the fraction of edges satisfied by ψ, i.e., val(ψ) = 1

|E| · {(u, v) ∈ E | (ψ(u), ψ(v)) ∈ Cuv}. The
value of the instance Γ, denoted by val(Γ), is the maximum value among all possible assignments, i.e.,
val(Γ) = maxψ:V→Σ val(ψ).

The gap problem for 2CSP can then be defined as follows:

ε-Gap 2CSP (GAP2CSPε)

Input: A 2CSP instance Γ = (G = (V, E), Σ, {Cuv}(u,v)∈E).

Parameter: |V|

Question: Distinguish between the following two cases:

• (YES) val(ψ) = 1.
• (NO) val(ψ) < 1− ε.

Note that, when ε = 0, GAP2CSP0 is simply asking whether the input instance Γ is fully satisfiable.
It is easy to see that this problem generalizes the k-Clique problem, which is well known to be
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W[1]-hard; in other words, GAP2CSP0 is W[1]-hard, and hence does not admit FPT algorithm
unless W[1] = FPT. It is believed that GAP2CSPε remains W[1]-hard even for some constant
ε > 0; this belief has recently been formalized by Lokshtanov et al. [LRSZ17] as the Parameterized
Inapproximability Hypothesis (PIH). For the purpose of this work, we will use an even weaker version
of the hypothesis than Lokshtanov et al.’s. Namely, we will only assume that GAP2CSPε is not in
FPT for some ε > 0 (rather than assuming that it is W[1]-hard), as stated below.

Hypothesis 3.9 (Parameterized Inapproximability Hypothesis (PIH) [LRSZ17]) There exists ε >
0 such that there is no randomized FPT algorithm for GAP2CSPε.

3.4.1 Relation to Gap Exponential Time Hypothesis

There are several supporting evidences for PIH. One such evidence is that it follows from the Gap
Exponential Time Hypothesis hypothesis, which can be stated as follows.

Hypothesis 3.10 (Randomized Gap Exponential Time Hypothesis (Gap-ETH) [Din16, MR16])
There exist constants ε, δ > 0 such that any randomized algorithm that, on input a 3CNF formula ϕ on n
variables and O(n) clauses, can distinguish between SAT(ϕ) = 1 and SAT(ϕ) < 1− ε, with probability at
least 2/3, must run in time at least 2δn.

Gap-ETH itself is a strengthening of the Exponential Time Hypothesis (ETH) [IP01, IPZ01], which
states that deciding whether a 3CNF formula is satisfiable cannot be done in subexponential time.
We remark here that Gap-ETH would follow from ETH if a linear-size PCP exists; unfortunately, no
such PCP is known yet, with the shortest known PCP having quasi-linear size [BS08, Din07]. It has
also recently been shown that Gap-ETH would follow from ETH if we assume certain “smoothness”
conditions on instances from ETH [App17]. We will not discuss the evidences supporting Gap-ETH
in details here; we refer interested readers to [Din16].

As stated earlier, it is known that PIH follows from Gap-ETH (see e.g. [DM18, CFM17]17). Unfortu-
nately, the proofs in literature so far have been somewhat complicated, since the previous works on
the topic (e.g. [DM18, CCK+17, Man17]) put emphasis on achieving as large a factor hardness of
approximation for 2CSP as possible. On the other hand, some constant inapproximability factor
strictly greater than zero suffices to show PIH. For this regime, there is a (folklore) proof that is
much simpler than those in the literature. Since we are not aware of this proof being fully written
down anywhere, we provide it in Appendix A. Note that this proof also yields a running time
lower bound of T(k) · |Σ|Ω(k) of solving GAP2CSPε for some ε > 0; this running time lower bound
is better than those provided by the aforementioned previous proofs and is essentially optimal,
since one can solve 2CSP (even exactly) in time |Σ|O(k).

3.5 Error-Correcting Codes

An error correcting code C over alphabet Σ is a function C : Σm → Σh where m and h are positive
integers which are referred to as the message length and block length of C respectively. Intuitively, the
function C encodes an original message of length m to an encoded message of length h. The distance
of a code, denoted by d(C), is defined as min

x 6=y∈Σm
‖C(x)− C(y)‖0, i.e., the number of coordinates on

17Note that, in [CFM17], 2CSP is referred to as Maximum Colored Subgraph Isomorphism. Note also that the hardness
proof of [CFM17] relies heavily on the parameterized inapproximability of Densest k-Subgraph from [CCK+17], which
in turns relies on the reduction and the main lemma from [Man17].
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which C(x) and C(y) disagree. We also define the systematicity of a code as follows: Given s ∈N,
a code C : Σm → Σh is s-systematic if there exists a size-s subset of [h], which for convenience we
identify with [s], such that for every x ∈ Σs there exists w ∈ Σm in which x = C(w) |[s]. We use the
shorthand [h, m, d]|Σ| to denote a code of message length m, block length h, and distance d.

Additionally, we will need the following existence and efficient construction of BCH codes for
every message length and distance parameter.

Theorem 3.11 (BCH Code [Hoc59, BR60]) For any choice of h, d ∈N such that h + 1 is a power of two
and that d 6 h, there exists a linear code over F2 with block length h, message length h−

⌈
d−1

2

⌉
· log(h + 1)

and distance d. Moreover, the generator matrix of this code can be computed in poly(h) time.

Finally, we define the tensor product of codes which will be used later in the paper. Consider two
linear codes C1 ⊆ Fm

2 (generated by G1 ∈ Fm×m′
2 ) and C2 ⊆ Fn

2 (generated by G2 ∈ Fn×n′
2 ). Then

the tensor product of the two codes C1 ⊗ C2 ⊆ Fm×n
2 is defined as

C1 ⊗ C2 = {G1XG>2 |X ∈ Fm′×n′
2 }.

4 Parameterized Intractability of GAPMLD
In this section, we will show the parameterized intractibility of GAPMLD as stated below.

Theorem 4.1 Assuming PIH, there is no randomized FPT algorithm for GAPMLDγ for any γ > 1.

The proof proceeds in two steps. First, we reduce GAP2CSP to GAPMLDγ for some γ > 1 in
Section 4.1. Then, we boost the gap in the GAPMLD problem in Section 4.2.

4.1 Reducing GAP2CSP to GAPMLD

In this subsection, we show an FPT reduction from GAP2CSP to GAPMLD, as stated below:

Lemma 4.2 For any ε > 0, there is an FPT reduction from GAP2CSPε to GAPMLDγ where γ = 1+ ε/3.

Combining the reduction with PIH, we obtain the following hardness of GAPMLD:

Theorem 4.3 Assuming PIH, for some γ > 1, there is no randomized FPT algorithm for GAPMLDγ.

Proof of Lemma 4.2. Let Γ = (G = (V, E), Σ, {Cuv}(u,v)∈E) be the input for GAP2CSPε. We produce
an instance (A, y, k) of GAPMLDγ as follows. Let n = |V| + |E| + 2|E||Σ| and m = |V||Σ| +
∑(u,v)∈E |Cuv|; our matrix A will be of dimension (n×m). For convenience, let us label the first |V|
rows of A by the vertices u ∈ V, the next |E| rows by the edges e ∈ E, and the last 2|E||Σ| rows
by a tuple (e, σ, b) ∈ E× Σ× {0, 1}. Furthermore, we label the first |V||Σ| columns of A by (u, σu)
where u ∈ V and σu ∈ Σ, and the rest of the columns by (e, σ0, σ1) where e ∈ E and (σ0, σ1) ∈ Ce.
The entries of our matrix A ∈ Fn×m

2 can now be defined as follows.

• For each column of the form (u, σu), let the following entries be one:
– Au,(u,σu).
– A((u,v),σu,0),(u,σu) for every v ∈ V such that (u, v) ∈ E.
– A((v,u),σu,1),(u,σu) for every v ∈ V such that18 (v, u) ∈ E.

18For the clarity of presentation, we assume here that G is directed.
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The rest of the entries are set to zero.
• For each column of the form (e, σ0, σ1), let the following three entries be one: Ae,(e,σ0,σ1),

A(e,σ0,0),(e,σ0,σ1) and A(e,σ1,1),(e,σ0,σ1). The rest of the entries are set to zero.

Finally, we set y = 1|V|+|E| ◦ 02|E||Σ| and k = |V|+ |E|.

Parameter Dependency. The new parameter k is simply |V|+ |E| = O(|V|2).

Before we move on to prove the completeness and soundness of the reduction, let us state an
observation that will be useful in the analysis:

Observation 4.4 For any x ∈ Fm
2 , the following properties hold.

• For every row of the form u ∈ V, we have

(Ax)u = ∑
σ∈Σ

x(u,σ). (2)

• For every row of the form e ∈ E, we have

(Ax)e = ∑
(σ0,σ1)∈Ce

x(e,σ0,σ1). (3)

• For every row of the form (e = (u0, u1), σ, b), we have

(Ax)(e,σ,b) = x(ub,σ) + ∑
(σ0,σ1)∈Ce

σb=σ

x(e,σ0,σ1). (4)

Note that the above observation follows trivially from our definition of A.

Completeness. Suppose that val(Γ) = 1. That is, there exists an assignment ψ : V → Σ that
satisfies all the edges. We define the vector x ∈ Fm

2 as follows.

• For each (u, σ), let x(u,σ) = 1[ψ(u) = σ]
• For each (e = (u, v), σ0, σ1), let x(e,σ0,σ1) = 1[(ψ(u) = σ0) ∧ (ψ(v) = σ1)].

We claim that Ax = y. To see that this is the case, consider the following three cases of rows.

• For each row of the form u ∈ V, we have

(Ax)u
(2)
= ∑

σ∈Σ
x(u,σ) = ∑

σ∈Σ
1[ψ(u) = σ] = 1.

• For each row of the form e = (u, v) ∈ E, we have

(Ax)e
(3)
= ∑

(σ0,σ1)∈Ce

x(e,σ0,σ1) = ∑
(σ0,σ1)∈Ce

1[(ψ(u) = σ0) ∧ (ψ(v) = σ1)] = 1.

Note that, in the last equality, we use the fact that the edge e is satisfied (i.e. (ψ(u), ψ(v)) ∈ Ce).
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• For each row (e = (u0, u1), σ, b) ∈ E× Σ× {0, 1}, we have

(Ax)(e,σ,b)
(4)
= x(ub,σ) + ∑

(σ0,σ1)∈Ce
σb=σ

x(e,σ0,σ1) = 1[ψ(ub) = σ] + 1[ψ(ub) = σ] = 0,

where the second equality uses the fact that exactly one of x(e,σ0,σ1) is not zero among (σ0, σ1) ∈
Ce, which is x(e,ψ(u0),ψ(u1)).

Hence, Ax is indeed equal to y. Finally, observe that ‖x‖0 = |V|+ |E| as desired.

Soundness. We will prove this by contrapositive. Suppose that the constructed instance (A, y, k) is
not a NO instance of GAPMLDγ, i.e., for some x ∈ Bm(0, γk), Ax = y. We will show that Γ is not a
NO instance of GAP2CSPε, i.e., that val(Γ) > 1− ε.

First, for each vertex u ∈ V, let Su = {σ ∈ Σ | x(u,σ) = 1} and, for each e ∈ E, let Te = {(σ0, σ1) ∈
Ce | x(e,σ0,σ1) = 1}. From (2) and from (Ax)u = yu = 1, we can conclude that |Su| > 1 for all u ∈ V.
Similarly, from (3) and from (Ax)e = ye = 1, we have |Te| > 1 for all e ∈ E.

We define an assignment ψ : V → Σ of Γ by setting ψ(u) to be an arbitrary element of Su for all
u ∈ V. We will show that val(ψ) > 1− ε, which indeed implies val(Γ) > 1− ε.

To do so, let Eunique denote the set of e ∈ E such that |Te| = 1. Notice that

(γ− 1)k > ‖x‖0 − k (5)

= ∑
u∈V
|Su|+ ∑

e∈E
|Te| − k

= ∑
u∈V

(|Su| − 1) + ∑
e∈E

(|Te| − 1)

> ∑
e∈E\Eunique

(|Te| − 1)

> |E \ Eunique|, (6)

which implies that |Eunique| > |E| − (γ− 1)k, which, from our choice of γ, is at least |E| − εk
3 >

(1− ε)|E|. Note that the last inequality follows from |V| 6 2|E|, which can be assumed w.l.o.g.

Since |Eunique| > (1 − ε)|E|, to show that val(ψ) > 1 − ε, it suffices to show that ψ satisfies
every edge in Eunique. To see that this is the case, let e = (u, v) be any edge in Eunique. Let
(σ∗0 , σ∗1 ) be the only element of Te. Observe that, from (4) with σ = ψ(u) and b = 0 and from
(Ax)e,σ,b = ye,σ,b = 0, we can conclude that σ∗0 = ψ(u). Similarly, we can conclude that σ∗1 = ψ(v).
As a result, (ψ(u), ψ(v)) must be in Ce, meaning that ψ satisfies e, which completes our proof. �

4.2 Gap Amplification

In this subsection, we describe the gap amplification step for GAPMLD. Towards that end, we
define a composition operation ⊕ on GAPMLD instances, which can be used to efficiently amplify
the gap to any constant factor with only a polynomial blowup in the instance size.

The Composition Operator: Consider two GAPMLD instances given by coefficient matrices A ∈
Fu×v

2 , B ∈ Fu′×v′
2 and non-zero target vectors z ∈ Fu

2 , z′ ∈ Fu′
2 . Their composition is a GAPMLD in-

stance (C, w, k2(k1 + 1)) = (A, z, k1)⊕ (B, z′, k2), given by coefficient matrix C ∈ F
(u′+uv′)×(v′+vv′)
2 ,
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and target vector w ∈ Fu′+uv′
2 . They are constructed as follows. Consider the following partition

of [u′ + uv′] into blocks S0, S1, · · · , Sv′ , where S0 consists of the first u′ coordinates, and for every
i ∈ [v′] the block Si consists of coordinates u′ + (i− 1)v + 1, . . . , u′ + iv. Similarly, consider the par-
tition T0, T1, . . . , Tv′ of [v′ + vv′], where T0 consists of the first v′ coordinates, and blocks T1, . . . , Tv′

is the contiguous equipartition of the remaining coordinates. Furthermore, for any choice of Si, Tj,
let CSi ,Tj be the sub-matrix of C consisting of rows and columns indexed by Si and Tj respectively.

Extending the notation to vectors x ∈ Fv′+vv′
2 , we use xi to denote the restriction of the vectors

along the coordinates in Ti. Now we describe the construction of C and w in a row block wise
order.

1. Row block S0: We set CS0,T0 = B, and CS0,Ti = 0u′×v for every i ∈ [v′]. Additionally, we set
the corresponding sub-vector wS0 = z′.

2. Row block Si (for i > 1): Here CSi ,T0 contains z in the ith column and is zero everywhere else.
The sub-matrix CSi ,Ti is set to the coefficient matrix A, and for all blocks j /∈ {0, i}, we set
the sub-matrices CSi ,Tj = 0u×v. Finally, for the target vector we set the corresponding block
wSi = 0u.

The intuition underlying the above construction is as follows. For simplicity, let k = k1 = k2.
Consider the row block S0 in (C, w, k2 + k). By construction, the set of indices of non-zero column
of C along S0 is exactly T0, and by construction CS0,T0 = B. In particular, for any vector x ∈ Fv′×vv′

satisfying Cx = w, the constraints along rows in S0 enforce Bx0 = z′, and hence ‖x0‖0 > k.
Similarly, for any i ∈ [v′], the non-zero columns blocks corresponding to the row block S0 are T0
and Ti. Since CSi ,Ti = A, the row block Si forces the constrains Axi = xi

0z. Therefore, for any i ∈ [v]
such that xi

0 6= 0, the sub-vector xi must satisfy Axi = z, and hence ‖xi‖0 > k. Since this must
happen for every i ∈ [v′] such that x0

i 6= 0, the overall Hamming weight of the vector x must be at
least k + k2. These observations are made formal in the following lemma.

Lemma 4.5 Consider coefficient matrices A ∈ Fu×v
2 , B ∈ Fu′×v′

2 , and target vectors z ∈ Fv
2, z′ ∈ Fv′

2
corresponding to GAPMLDγ instances (A, z, k1) and (B, z′, k2). Then (C, w, k2(k1 + 1)) = (A, z, k1)⊕
(B, z′, k2) as constructed above satisfies the following properties:

• If (A, z, k1) and (B, z′, k2) are YES instances, then there exists x ∈ Bv′+vv′
(
0, k2 + k1k2

)
such that

Cx = w.
• If (A, z, k1) and (B, z′, k2) are NO instances, then for every x ∈ Bv′+vv′

(
0, γk2 + γ2k1k2

)
we have

Cx 6= w.

Proof. Suppose (A, z, k1) and (B, z′, k2) are NO instances. Consider any vector x ∈ Fv′+vv′
2 satisfying

Cx = w. By construction, it must satisfy the constraints corresponding to row-block S0 i.e., Bx0 = z′,
and therefore ‖x0‖0 > γk2. Let Ω = {i ∈ [v′] : x0

i 6= 0} be the set of non-zero indices in x0, and fix
any i ∈ Ω. It is easy to see that along row-block Si the only variables acting on non-zeros blocks
are the variable x0

i (acting on the sub-matrix CSi ,T0) and the vector xi (acting on the sub-matrix
CSi ,Ti = A). All together, this induces constraints Axi = x0

i · z. Since x0
i 6= 0, the vector xi must

satisfy Axi = z and therefore ‖xi‖0 > γk1. Moreover, since this must happen for every i ∈ Ω and
|Ω| > γk2, we have ‖x‖0 > γk2 + γ2k1k2 as desired.

It remains to be shown if (A, z, k1) and (B, z′, k2) are YES instances, then there exists a satisfying
solution with Hamming weight at most k2(k1 + 1). Let a ∈ Bv(0, k1) and b ∈ Bv′(0, k2) be such
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that Aa = z and Bb = z′. We construct x ∈ Fv′+vv′
2 as follows. We set x0 = b and for every i ∈ [v],

we set xi = bi · a. It can be easily verified that the vector x is a solution to (C, w). Indeed, along
row-block S0, we have Bx0 = Bb = z. Furthermore, if x0

i = 1 the corresponding row-block Si
satisfies Axi = Aa = z. Finally, if x0

i = 0, the corresponding row-block evaluates to Axi = 0u
which is trivially satisfied by the given construction. Since the vector x has Hamming weight at
most k2(k1 + 1), the claim follows. �

The above lemma can be used to amplify the gap for GAPMLDγ instances, as shown by the
following corollary.

Corollary 4.6 For all choices of γ > 1,η > 0 and k >
(

γη − 1
)−1

, there exists an FPT reduction from

k-GAPMLDγ to (k2 + k)-GAPMLDγ2−η .

Proof. Let (A, z, k) be a GAPMLDγ instance, where A ∈ Fu×v
2 . Let (C, w, k2 + k) = (A, z, k) ⊕

(A, z, k) be constructed as above. If (A, z, k) is a YES instance, then there exists x ∈ Bv+uv(0, k + k2)
of Hamming such that Cx = w. Conversely, if (A, z, k) is a NO instance, then every solution to
Cx = w has Hamming weight at least γ2k2 + γk > γ2−η(k2 + k) (by our choice of k). Hence the
claim follows. �

Theorem 4.1 is a direct consequence of the above lemma:

Proof of Theorem 4.1. Consider the hardness of GAPMLD as given in Theorem 4.3. For any γ >
1 + ε/3, applying Corollary 4.6 i > dlog(γ)/ log(1 + ε/3)e times on GAPMLD(1+ε/3) instance can
boost the gap to GAPMLDγ. Since all the steps in the reduction are FPT, the claim follows. �

5 Parameterized Intractability of Minimum Distance Problem
Next, we will prove our main theorem regarding parameterized intractability of GAPMDP:

Theorem 5.1 Assuming PIH, there is no randomized FPT algorithm for GAPMDPγ for any γ > 1.

This again proceeds in two steps. First, we provide an FPT reduction from GAPMLD to GAPSNC
in Section 5.1. Next, we formalize the definition of Sparse Covering Codes (SCC), prove their
existence, and show how to use them to reduce GAPSNC to GAPMDP in Section 5.2.

5.1 Reducing GAPMLD to GAPSNC

In this subsection, we show an FPT reduction GAPMLD to GAPSNC:

Lemma 5.2 For any constant γ > 1, there is an FPT reduction from GAPMLDγ to GAPSNCγ.

Proof. Given an instance (A, y, k) of GAPMLDγ where A ∈ Fn×m
2 . We create an instance (A′, y′, k′)

of GAPSNCγ by letting

A′ =

1dγk+1e ⊗A

Idm

 ∈ F
(dγk+1en+m)×m
2 , y′ =

1dγk+1e ⊗ y

0m

 ∈ F
dγk+1en+m
2
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and k′ = k.

Completeness Suppose that (A, y, k) is a YES instance of GAPMLDγ, i.e., there exists x ∈ Bm(0, k)
such that Ax = y. Consider A′x− y′. We have

A′x− y′ =

1dγk+1e ⊗ (Ax− y)

x

 =

0dγk+1en

x

 .

Hence, x is a vector in the ball Bm(0, k) such that ‖A′x− y′‖0 = ‖x‖0 6 k, meaning that (A′, y′, k′)
is a YES instance of GAPSNCγ.

Soundness Suppose that (A, y, k) is a NO instance of GAPMLDγ. Consider any x ∈ Bm(0, γk). To
show that ‖A′x− y‖0 > γk, let us consider two cases.

• Case 1: ‖x‖0 > γk. In this case, we have ‖A′x− y′‖0 > ‖x‖0 > γk.
• Case 2: ‖x‖0 6 γk. In this case, we have ‖A′x− y′‖0 > dγk + 1e‖Ax− y‖0 > dγk + 1e > γk,

where the third inequality comes from the fact that (A, y, k) is a NO instance of GAPMLDγ

and hence Ax 6= y.

As a result, we can conclude that (A′, y′, k′) is a NO instance of GAPSNCγ. �

5.2 Sparse Covering Codes

Below, we provide the definition of Sparse Covering Codes19 over F2.

Definition 5.3 A Sparse Covering Code (SCC) over F2 with parameters20 (m, q, t, d, r, δ) is a tuple
(L, T,D) where L ∈ Fh×m

2 is the basis of an m dimensional linear code with minimum distance (at
least) d, T ∈ F

q×h
2 is a linear transformation, and D is a poly(h) time samplable distribution over Fh

2 such
that for any x ∈ Bq(0, t), the following holds:

Pr
s∼D

[
x ∈ T

(
Bh(s, r) ∩ LFm

2

)]
> δ. (7)

We would like to note that SCC are closely related to Locally Dense Codes (see [DMS03] or [Mic14]
for the definition). A key difference in our definition is that the code is tailored towards covering
sparse vectors which allows us greater flexibility in the parameters. This is in direct contrast to
previous constructions which were designed to cover entire subspaces, with parameters which end
up having strong dependencies on the ambient dimension. Consequently, they are not directly
applicable to the parameterized setting.

Next, we show the existence of SCC for a certain range of parameters. Informally, the existence of
SCC follows from the existence of codes near the sphere-packing bound, such as BCH codes.

Lemma 5.4 For any q, t ∈ N and any ε > 0, there exist d, r, h, m ∈ N, two linear maps L ∈ Fh×m
2

and T ∈ F
q×h
2 , and a poly(h) time samplable distribution D over Fh

2 such that (L, T,D) is a SCC with

parameters
(

m, q, t, d, r, 1
dd/2

)
. Additionally, the following holds:

19The definition can be naturally extended to fields of larger size.
20We remark that the parameter h is implicit in specifying SCC.
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• r 6 (1/2 + ε)d,
• r, d 6 O(t/ε) and h, m 6 poly(q, t, 1/ε),
• L and T can be computed in poly(q, t, 1/ε) time for all ε > 0.

Proof. Let d = 2dt/εe+ 1 and let r =
(

d−1
2

)
+ t. Let h be the smallest positive integer such that

h+ 1 is a power of two and that h > max{2q, d}. Finally, we set m = h−
(

d−1
2

)
log(h+ 1). It is clear

that the chosen parameters satisfy the first two conditions, i.e., r 6 (1/2 + ε)d and r, d 6 O(t/ε),
and h, m 6 poly(q, t, 1/ε).

Let L be the generator matrix of the [h, m, d]2 linear code as given by Theorem 3.11. Without loss of
generality, we assume that the code is systematic on the first m coordinates. The linear map T is

defined as T def
=
[
Idq 0q×h−q

]
i.e., it is the matrix which projects onto the first q coordinates. The

distribution D is given as follows: we set the first q coordinates of the vector to 0 and each of the
remaining (h− q) coordinates is sampled uniformly and independently at random from F2. It is
clear that T is computed in poly(q, t, 1/ε) time and D is a poly(h) time samplable distribution over
Fh

2. From Theorem 3.11, we also have that L can be computed in poly(h) = poly(q, t, 1/ε) time.

It remains to show that for our choices of matrices L, T and distribution D, equation 7 holds for any

fixed choice of x ∈ Bq(0, t). Fix a vector x ∈ Bq(0, t) and define the set C =
{

z ∈ Fh−q
∣∣∣x ◦ z ∈ LFm

}
.

Since the code generated by L is systematic on the first m coordinates, we have that |C| = 2m−q.
Moreover, since the code generated by L has distance d, we have that every distinct pair of vectors
z1, z2 ∈ C are at least d-far from each other (i.e. ‖z1 − z2‖0 > d).

Recall that r− t = d−1
2 . Therefore, for any distinct pair of vectors z1, z2 ∈ C, the sets Bh−q(z1, r− t)

andBh−q(z2, r− t) are disjoint. Hence the number of vectors in the union of (r− t)-radius Hamming
balls around every z ∈ C is

2m−q
∣∣∣∣Bh−q

(
0,

d− 1
2

)∣∣∣∣ > 2m−q
(

h− q
d−1

2

)
> 2m−q

(
h/2
d−1

2

)
> 2m−q

( h
d− 1

) d−1
2

On the other hand, |Fh−q
2 | = 2h−q = 2m−q(h + 1)

d−1
2 . Hence, with probability at least(

h
(d−1)(h+1)

) d−1
2
> 1

dd/2 , a vector s′ sampled uniformly from Fh−q lies in Bh−q(p′, r − t) for some
vector p′ ∈ C. Fix such a vector s′ and consider the vectors s = 0q ◦ s′ and p = x ◦ p′. Then by
construction,

‖s− p‖0 = ‖s′ − p′‖0 + ‖x‖0 6 (r− t) + t = r,

and Tp = x. To complete the proof, we observe that the distribution of the vector s (as constructed
from s′) is identical to D, and hence the claim follows. �

5.3 Reducing GAPSNC to GAPMDP

In this subsection, we state and prove the FPT reduction from the GAPSNC problem to the
GAPMDP problem. It uses the basic template of the reduction from [DMS03], which is modified to
work in combination with SCC.
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Lemma 5.5 For any constants γ′ > 2 and γ > 1 such that γ < 2γ′

2+γ′ , there is a randomized FPT reduction
from GAPSNCγ′ to GAPMDPγ.

Proof. Let (B, y, t) be the input for GAPSNCγ where B ∈ F
n×q
2 , y ∈ Fn

2 , and t is the parameter.
Moreover, let ε > 0 be a sufficiently small constant such that γ < 2γ′

2+(1+2ε)γ′ . Let d, r, h, m ∈N, L ∈
Fh×m

2 , T ∈ F
q×h
2 and D be as in Lemma 5.4. Pick a′, b′ ∈N such that

γ

γ′ − γ
<

a′

b′
<

(d/r)− γ

γ
. (8)

To see that such a′ and b′ exists, observe the following:

ζ =
(d/r)− γ

γ
− γ

γ′ − γ
>

2γ′ − γ(2 + (1 + 2ε)γ′ + 2εγ)

(1 + 2ε)γ(γ′ − γ)
>

2εγ

(1 + 2ε) · (γ′ − γ)
> 0.

Moreover, we can always choose a′ and b′ so that they are at most 2/ζ = O(1).

Let a = a′r and b = b′t. Note that, condition (8) implies that γ(at + br) < min{γ′at, bd}. We
produce an instance (A, k) for GAPMDPγ by first sampling s ∼ D. Then, we set k = at + br and

A =

1a ⊗ BTL −1a ⊗ y

1b ⊗ L −1b ⊗ s

 ∈ F
(an+bh)×(m+1)
2 .

Parameter Dependencies. Notice that k = at + br = a′rt + b′rt = O(rt). Moreover, from
Lemma 5.4, we have that r 6 O(t). Hence, we can conclude that k = O(t2) (note that t is
the parameter of the input instance (B, y, t) of GAPSNCγ′).

Completeness. Suppose that (B, y, t) is a YES instance of GAPSNCγ′ . That is, there exists x ∈
Bq(0, t) such that ‖Bx− y‖0 6 t. Now, from Lemma 5.4, with probability at least 1/dd/2, we have
x ∈ T(Bm(s, r) ∩ LFm

2 ). This is equivalent to the following: there exists z′ ∈ Fm
2 such that TLz′ = x

and ‖Lz′ − s‖0 6 r. Conditioned on this event, we can pick z = z′ ◦ 1 ∈ Fm+1
2 , which yields

‖Az‖0 = a‖BTLz− y‖0 + b‖Lz− s‖0 = a‖Bx− y‖0 + b‖Lz− s‖0 6 at + br.

In other words, with probability at least 1/dd/2, (A, k) is a YES instance of GAPMDPγ as desired.

Soundness. Suppose that (B, y, t) is a NO instance of GAPSNCγ′ . We will show that, for all
non-zero z ∈ Fm+1

2 , ‖Az‖0 > γ(at + br); this implies that (A, k) is a NO instance of GAPMDPγ.

To show this let us consider two cases, based on the last coordinate zm+1 of z. Let z′ = [z1 · · · zm] ∈
Fm

2 be the vector consisting of the first m coordinates of z.

If zm+1 = 0, then ‖Az‖0 = a‖BTLz′‖0 + b‖Lz′‖0 > b‖Lz′‖0 > bd, where the last inequality comes
from the fact that L is a generator matrix of a code of distance d (and that z 6= 0). Finally, recall that
our parameter selection implies that bd > γ(at + br), which yields the desired result for this case.

On the other hand, if zm+1 = 1, then ‖Az‖0 = a‖BTLz′ − y‖0 + b‖Lz′ − s‖0 > a‖BTLz′ − y‖0 >
γ′at, where the last inequality simply follows from our assumption that (B, y, t) is a NO instance
of GAPSNCγ′ . Finally, recall that our parameter selection guarantees that γ′at > γ(at + br). This
concludes the proof. �
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Gap Amplification. Finally, the above gap hardness can be boosted to any constant using the now
standard technique of tensoring the code (c.f. [DMS03],[AK14]) using the following lemma:

Proposition 5.6 (E.g. [DMS03]) Given two linear codes C1 ⊆ Fm
2 and C2 ⊆ Fn

2 , let C1 ⊗ C2 ⊆ Fm×n be
the tensor product of C1 and C2. Then d(C1 ⊗ C2) = d(C1)d(C2).

We briefly show how the above proposition can be use to amplify the gap. Consider a GAPMDPγ

instance (A, k) where A ∈ Fm×n
2 . Let C ⊆ Fm

2 be the linear code generated by it. Let C⊗2 = C⊗ C
be the tensor product of the code with itself, and let A⊗2 be its generator matrix. By the above
proposition, if (A, k) is a YES instance, then d(C⊗2) 6 k2. Conversely, if (A, k) is a NO instance,
then d(C⊗2) > γ2k2. Therefore (A⊗2, k2) is a GAPMDPγ2 instance. Hence, for any α ∈ R+,
repeating this argument dlogγ αe-number of times gives us an FPT reduction from k-GAPMDPγ to

k2dlogγ αe-GAPMDPα. We have thereby completed our proof of Theorem 5.1.

6 Parameterized Intractability of Shortest Vector Problem
We begin by stating the intractability of GAPSVP, which is the main result of this section:

Theorem 6.1 (FPT Inapproximability of GAPSVP) Assuming PIH, any p > 1, there exists constant
γp > 1 (where γp depends on p), such that there is no randomized FPT algorithm for GAPSVPp,γp .

For p = 2, the gap can be boosted to any constant factor, as stated by the following:

Theorem 6.2 (Constant Inapproximability of GAPSVP2,γ) Assuming PIH, for all constants γ > 1,
there is no randomized FPT algorithm for GAPSVP2,γ.

The proof of Theorem 6.1 is essentially the same as that of Khot [Kho05], with only a small change
in parameter selection. We devote Subsection 6.1 to this proof. Theorem 6.2 follows by gap
amplification via tensor product of lattices. Unlike tensor products of codes, the length of the
shortest vector of the tensor product of two lattices is not necessarily equal to the product of
the length of the shortest vector of each lattice. Fortunately, Haviv and Regev [HR07] showed
that a strengthened notion of soundness from [Kho05], which will be described soon, allows gap
amplification via tensoring in the `2 norm. This is explained in more detail in Section 6.2.

6.1 Following Khot’s Reduction: Proof of Theorem 6.1

The proof of Theorem 6.1 goes through the following FPT inapproximability of GAPNVPp,η .

Theorem 6.3 (FPT Inapproximability of GAPNVP) Assuming PIH, for any γ, p > 1, there is no FPT
algorithm which on input (B, y, t) where B ∈ Zn×q, y ∈ Zn and t ∈N, can distinguish between

• (YES) there exists x ∈ Zq such that Bx− y ∈ {0, 1}n and ‖Bx− y‖p
p 6 t.

• (NO) for all choices of x ∈ Zq and w ∈ Z \ {0}, we have ‖Bx− w · y‖p
p > γ · t

Since the proof of the above theorem is identical to the FPT reduction of GAP2CSP to GAPSNC,
we defer it to Appendix B. Note that the reduction has stronger guarantees than a usual reduction
from GAP2CSPε to GAPNVPp,η in both the YES and NO cases. In the YES case, the witness ot the
GAPNVP instance is a {0, 1}-vector. Furthermore, in the NO case of the above lemma, the lower
bound guarantee is in terms of the Hamming norm. These properties are used crucially in the
analysis for the reduction from GAPNVPp,η to GAPSVPp,γ. The proof of Theorem 6.1 also requires
the following definition of annoying vectors from [Kho05].
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Definition 6.4 (Annoying Vectors) For a parameter l ∈N, we say that a vector z ∈ Zu for some u ∈N

is an Annoying Vector in the `p norm, if it violates all of the following conditions:

1. The Hamming norm of z is at least l.
2. All coordinates of z are even, and its Hamming norm is at least l/2p.
3. All coordinates of z are even, and it has at least one coordinate of magnitude at least l10l .

As shown in [Kho05, HR07], lattices without annoying vectors (for an appropriate value of l) are
“well behaved” with respect to tensor products of lattices. This notion will be useful later, when the
lattice tensor product is used to amplify the gap to any constant for p = 2 (Section 6.2).

The second step is a randomized FPT reduction from GAPNVPp,η to GAPSVPp,γ, as stated by the
following lemma. For succinctness, we define a couple of additional notations: let L(A) denote the
lattice generated by the matrix A ∈ Zn×m, i.e., L(A) = {Ax | x ∈ Zm}, and let λp(L) denote the
length (in the `p norm) of the shortest vector of the lattice L, i.e., λp(L) = min

0 6=y∈L
‖y‖p.

Lemma 6.5 Fix p > 1, and let η > 1 be such that 1
2 +

1
2p +

(2p+1)
η < 1. Let (B, y, t) be a GAPNVPp,η

instance, as given by Theorem 6.3. Then, there is a randomized FPT reduction from GAPNVPp,η instance
(B, y, t) to GAPSVPp,γ instance (Bsvp, γ−1

p l) with l = η · t such that

• Bsvp ∈ Z(n+h+g+1)×(q+h+g+2) where m = lO(l) · poly(n, q) and h = poly(l, n, q).
• If (B, y, t) is a YES instance (from Theorem 6.3), then with probability 0.8, λp(L(Bsvp))p 6 γ−1

p l.
• If (B, y, t) is a NO instance, then with probability 0.9, for all choices of x ∈ Zq+h+g+2 \ {0}, the

vector Bsvpx is not annoying. In particular, we have λp(L(Bsvp))p > l.

Here γp := 1
1
2+(2p+1)/η+1/2p is strictly greater than 1 by our choice of η.

Combining the above lemma with Theorem 6.3 gives us Theorem 6.1.

The reduction in the above lemma is nearly identical to the one from [Kho05]. We devote the rest
of this subsection to describing this reduction and proving Lemma 6.5. The rest of this section is
organized as follows. In Section 6.1.1, we define the BCH lattice, which is the key gadget used in
the reduction. Using the BCH lattice and the GAPNVPp,η instance, we construct the intermediate
lattice in Section 6.1.2. The intermediate lattice serves to blow up the number of “good vectors” for
the YES case, while controlling the number of annoying vectors for the NO case. In particular, this
step ensures that the number of good vectors (Lemma 6.7) far outnumber the number of annoying
vectors (Lemma 6.8). Finally, in Section 6.1.3 we compose the intermediate lattice with a random
homogeneous constraint (sampled from an appropriate distribution), to give the final GAPSVPp,γ
instance. The additional random constraint is used to annihilate all annoying vectors in the NO
case, while retaining at least one good vector in the YES case.

Setting: For the rest of the section, we fix (B, y, t) to be a GAPNVPp,η instance (as given by Theorem
6.3) and we set l := η · t.

6.1.1 The BCH Lattice gadget

We begin by defining the BCH lattices which is the key gadget used in the reduction. Given
parameters l, h ∈ N where h is a power of 2, the BCH lattice is defined by the generator BBCH
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defined as

BBCH =

 Idh 0h×g

Q · PBCH 2Q · Idg

 ∈ Z(h+g)×(h+g).

where PBCH ∈ {0, 1}g×h is the parity check matrix of a [h, h− g, l]2-BCH code (i.e., g is the codimen-
sion of the code whose parity check matrix is PBCH), and Q = l10l . By our choice of parameters it
follows that g 6 l

2 log h (see Theorem 3.11). The following lemma summarizes the key properties
of BCH lattices, as defined above.

Lemma 6.6 Let BBCH ∈ Z(h+g)×(h+g) be the BCH lattice constructed as above. Let r =
(

1
2 +

1
2p + 1

η

)
ηt.

Then there exists a randomized polynomial time algorithm, which with probability at least 0.99, returns
vector s ∈ Zh+g such that the following holds. There exists at least 1

100 2−g(h
r) distinct coefficient vectors

z ∈ Zh+g such that the vector
(
BBCHz− s

)
is a {0, 1}-vector of Hamming weight exactly r.

We skip the proof of the above lemma, since it is identical to proof of Lemma 4.3 in [Kho05]. Note
that this is in fact even weaker than Khot’s lemma, since we do not impose a bound on ‖z‖p.

6.1.2 The Intermediate Lattice

We now define the intermediate lattice. Let (B, y, t) be an instance of GAPNVPp,η , where B ∈ Zn×q.
The intermediate lattice Bint is constructed as follows. Let l = ηt. Let h be the smallest power of 2
such that h > max{210p+10n, (100l)100ηl}, and let BBCH be constructed as above. Then

Bint =

 2B 0n×(h+g) 2y

0(h+g)×q BBCH s

 ∈ Z(n+h+g)×(q+h+g+1).

where s ∈ Zh+g is the vector given by Lemma 6.6. The following lemmas bound the good and
annoying vectors in the YES and NO cases respectively.

Lemma 6.7 Let (B, y, t) be a YES instance, and let Bint be the corresponding intermediate lattice. Then,

with probability at least 0.99, there exists at least distinct hr
(

100hl/2ll
)−1

vectors x ∈ Zq+h+g+1 such that

Bintx are distinct {0, 1, 2}-vectors with `p norm at most (2pt + r)1/p.

Proof. Let x̃ ∈ Zq be vector such that Bx̃− y is a {0, 1}-vector of Hamming weight at most t. From
Lemma 6.6, there exists at least 2−g(h

r)/100 distinct vectors z ∈ Zh+g such that BBCHz − s is a
{0, 1}-vector of Hamming weight exactly r. For each such distinct coefficient vector, consider
the vector x = x̃ ◦ z ◦ −1. By construction, it follows that Bintx = (2Bx̃− 2y) ◦ (BBCHz− s) is a
{0, 1, 2}-vector and ‖Bintx‖p

p = 2p‖Bx̃− y‖p
p + ‖BBCHz− s‖p

p 6 2pt + r. Since the number of such
vectors is at least the number of distinct coefficient vectors z, it can be lower bounded by

1
100
· 2−g

(
h
r

)
>

1
100
· 2− l

2 log h
(

h
r

)
>

1
100
· hr

rrhl/2 >
1

100
· hr

llhl/2 .

Finally, observe that each z produces different BBCHz and hence all Bintv’s are distinct. �
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Lemma 6.8 Let (B, y, t) be a NO instance, and let Bint be the corresponding intermediate lattice. Then the

number of annoying vectors for Bint is at most 10−5hr
(

100hl/2ll
)−1

.

Proof. Consider x ∈ Zq+h+g+1 such that Bintx is an annoying vector. We partition the vector and
write it as x = x1 ◦ x2 ◦ x where x1 ∈ Zq, x2 ∈ Zm+h and x ∈ Z. Using this, we can express Bintx as
Bintx = (2Bx1 − 2x · y) ◦ (BBCHx2 − x · s).

Suppose x 6= 0. Since (B, y, t) is a NO instance, the vector [2B 0 2y] · x = 2Bx1 − 2x · y has Ham-
ming weight at least l. This would imply that Bintx cannot by annoying, which is a contradiction.

Henceforth we can assume that x = 0; note that we now have Bintx = (2Bx1) ◦ (BBCHx2). We further
claim that, if Bintx is annoying, then all of its coordinates must be even. To see that this is the case, let
us consider any x such that Bintx has at least one odd coordinate. From Bintx = (2Bx1) ◦ (BBCHx2),
BBCHx2 must have at least one odd coordinate. Let us further write x2 as x2 = w1 ◦w2 where
w1 ∈ Zm and w2 ∈ Zh. Notice that BBCHx2 = w1 ◦ (Q(PBCHw1 − 2w2)). Since every coordinate
of BBCHx2 must be less than Q in magnitude, it must be the case that PBCHw1 − 2w2 = 0. In other
words, (w1 mod 2) is a codeword of the BCH code. However, since the code has distance l, this
means that, if w1 has at least one odd coordinate, it must have at least l odd (non-zero) coordinates.
This contradicts to our assumption that Bintx is annoying.

Therefore, Bintx must have less than l/2p non-zero coordinates, all of which are bounded in
magnitude by l10l . Hence, we can bound the total number of annoying vectors by

(
2l10l + 1

)l/2p
(

n + h + g
b l

2p c

)
6 (2l)10l2

(n + h + g)l/2p
6 (2l)10l2

((1 + l/2p)h)l/2p
6 e(2l)10l2

hl/2p

where the second-to-last step holds since g 6 l
2 log h 6 lh

2p+1 and n 6 h
2p+1 . On the other hand,

hr

hl/2ll =
h
(

1
2+

1
η +

1
2p

)
l

hl/2ll = hl/2p
(h/lη)l/η > hl/2p

(100l)99l2
> 105

(
e(2l)10l2

hl/2p
)

.

which follows from our choice of h. Combining the bounds completes the proof. �

6.1.3 The GAPSVPp,γ-instance

Finally, we construct Bsvp from Bint by adding a random homogeneous constraint as in [Kho05].
For ease of notation, let Ng denote the lower bound on the number of distinct coefficient vectors
guaranteed by Lemma 6.7 in the YES case. Similarly, let Na denote the upper bound on the number
of annoying vectors as given in Lemma 6.8. Combining the two Lemmas we have Ng > 105Na,
which will be used crucially in the construction and analysis of the final lattice.
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Construction of the Final Lattice : Let ρ be any prime number in21
[
10−4Ng, 10−2Ng

]
. Further-

more, let r unif∼ [0, ρ− 1]n+h+g be a uniformly sampled lattice point. We construct Bsvp as

Bsvp =

 Bint 0

D · rBint D · ρ

 ∈ Z(n+h+g+1)×(q+h+g+2).

where D = l10l . In other words, this can be thought of as adding a random linear constraint to the
intermediate lattice. The choice of parameters ensures that with good probability, in the YES case, at
least one of the good vectors x ∈ Zq+h+g+1 evaluates to 0 modulo ρ on the random constraint, and
therefore we can pick u ∈ Z such that Bsvp(x ◦ u) = (Bintx) ◦ 0 still has small `p norm. On the other
hand, since Na � Ng, with good probability, all of annoying vectors evaluate to non-zeros, and
hence will contribute a coordinate of magnitude D = l10l . This intuition is formalized below.

Proof of Lemma 6.5. Let Bsvp be the corresponding final lattice of (B, y, t) as described above. Ob-
serve that given the GAPNVPp,η-instance (B, y, t), we can construct Bsvp in tO(t) · poly(n, q)-time.

Suppose that (B, y, t) is a NO instance and fix a vector x ◦ u ∈ Zq+h+g+2. If x is not an annoying
vector w.r.t. the intermediate lattice Bint, then it follows that x ◦ u is also not an annoying vector
w.r.t. the final lattice Bsvp. Therefore, it suffices to look at vectors x ◦ u such that x is annoying
w.r.t. Bint. By construction, (Bsvp(x ◦ u))(n+h+g+1) = 0 implies that rBintx = u · ρ, which in turn
is equivalent to rBintx ≡ 0 mod ρ. Since, xi < ρ for every i ∈ [q + h + g + 1], this event happens
with probability exactly 1/ρ over the random choice of r (for any arbitrary u ∈ Z). Therefore by
union bound, for every choice of annoying vector x and coefficient u, we have rBintx 6= u · ρ, with
probability at least 1− Na/ρ > 0.9. And therefore, with probability at least 0.9, for every annoying
x, the last coordinate of Bsvp(x ◦ u) has magnitude at least D.

Next, suppose that (B, y, t) is a YES instance. We condition on the event that there exists at least Ng

good vectors as guaranteed by Lemma 6.7. Consider any two distinct vectors x1, x2 ∈ Zq+h+g+1

provided by Lemma 6.7. Since Bintx1 and Bintx2 are distinct {0, 1, 2}-vectors, they are pairwise
independent modulo ρ > 2. Therefore, instantiating Lemma 5.8 from [Kho05] with the lower
bound on the number of good vectors Ng, and our choice of ρ, it follows that with probability at
least 0.9, there exists a good vector x such that rBintx ≡ 0 mod ρ. Therefore, by union bound, with
probability at least 0.8 (over the randomness of Lemma 6.7 and the choice of r, ρ), there exists x such
that, for some u ∈ Z, ‖Bsvp(x ◦ u)‖p

p = ‖Bintx‖p
p 6 2pt + r = γ−1

p l, which concludes the proof. �

6.2 Gap Amplification for GAPSVP2,γ

As in the case of GAPMDP, we can use tensor product of lattices to boost the hardness of GAPSVP2,γ
to any constant factor. The tensor product of lattices is defined similarly as in the case of linear
codes. Given A ∈ Zm×m′ , let L(A) be the lattice generated by A. Given matrices A ∈ Zm×m′ and

21Note that the density of primes in this range is at least 1/ log Ng = 1/r log h. Therefore, a random sample of size

O(r log h) in this range contains a prime with high probability. Since we can test primality for any ρ ∈
[
10−4Ng, 10−2Ng

]
in FPT time, this gives us an FPT algorithm to sample such a prime number efficiently .
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B ∈ Zn×n′ the tensor product of L(A) and L(B) is defined as

L(A)⊗L(B) = {AXB>|X ∈ Zm′×n′} (9)

For brevity, let L1 = L(A) and L2 = L(B). The following lemma from [HR07] summarizes the
properties of tensor product instances of GAPSVP2,γ.

Lemma 6.9 Let L1 and L2 be as above. Then we have that λ2(L1⊗L2) 6 λ2(L1) · λ2(L2). Furthermore,
suppose every vector y ∈ L1 satisfies at least one of the following conditions:

• The vector y has Hamming norm at least l.
• All coordinates of y are even and y has Hamming norm at least l/4.
• All coordinates of y are even and ‖y‖∞ > l4l .

Then, λ2(L1 ⊗L2) > l1/2 · λ2(L2)

It is easy to see that given a GAPSVP2,γ instance (A, k) (as in Lemma 6.5), the tensor product gives
an FPT reduction to GAPSVP2,γ2 . Indeed, if (A, k), then λ2(L(A)⊗ L(A))2 6 k2. Conversely, if
(A, k) is a NO instance, then setting l = γk in Lemma 6.9, we get λ2(L(A)⊗L(A))2 > l2 = γ2k2.
Therefore, by repeated tensoring, we have proved Theorem 6.2.

We remark here that, while there is an analogous statement as in Lemma 6.9 for p 6= 2, the third
case requires ‖y‖∞ to not only be large in terms of l, but also in terms of the dimension of the lattice.
However, to the best of our knowledge, this can only be achieved when l is polynomial in the
dimension. This is indeed the reason we fail to amplify the gap to all constants for p 6= 2.

7 Conclusion and Open Questions
In this work, we have shown the parameterized inapproximability of k-Minimum Distance Problem
(k-MDP) and k-Shortest Vector Problem (k-SVP) in the `p norm for every p > 1 based on the Parame-
terized Inapproximability Hypothesis (PIH), which in turns follows from the Gap Exponential Time
Hypothesis (Gap-ETH). While our results give an evidence of intractability of these problems, there
are still many questions that remain open. First and foremost, it is still open whether the hardness
of both problems can be based on more standard assumptions, such as ETH or W[1] 6= FPT. On
this front, we would like to note that the only reason we need PIH (or Gap-ETH) is to arrive at the
inapproximability of the non-homogeneous variants of the problems (Theorems 4.3 and 6.3), which
is needed for us even if we want to only rule out exact FPT algorithms for k-MDP and k-SVP. Hence,
if one could prove the hardness of approximation for these problems under weaker assumptions,
then the inapproximability of k-MDP and k-SVP would still follow.

Another obvious question from our work is whether k-SVP in the `1 norm is in FPT. Khot’s reduction
unfortunately does not work for `1; indeed, in the work of Haviv and Regev [HR07], they arrive at
the hardness of approximating SVP in the `1 norm by embedding SVP instances in `2 to instances in
`1 using an earlier result of Regev and Rosen [RR06]. The Regev-Rosen embedding inherently does
not work in the FPT regime either, as it produces non-integral lattices. Similar issue applies to an
earlier hardness result for SVP on `1 of [Mic00], whose reduction produces irrational bases.

An additional question regarding k-SVP is whether we can prove hardness of approximation for
every constant factor for p 6= 2. As described earlier, the gap amplification techniques of [Kho05,
HR07] require the distance k to be dependent on the input size nm, and hence are not applicable for
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us. To the best of our knowledge, it is unknown whether this dependency is necessary. If they are
indeed required, it would also be interesting to see whether other different techniques that work
for our settings can be utilized for gap amplification instead of those from [Kho05, HR07].

Furthermore, the Minimum Distance Problem can be defined for linear codes in Fp for any larger
field of size p > 2 as well. It turns out that our result does not rule out FPT algorithms for k-MDP
over Fp with p > 2. The issue here is that, in our proof of existence of Sparse Covering Codes
(Lemma 5.4), we need the co-dimension of the code to be small compared to its distance. In
particular, the co-dimension h−m has to be at most (d/2 + O(1)) logp h where d is the distance.
While the BCH code over binary alphabet satisfies this property, we are not aware of any linear
codes that satisfy this for larger fields. It is an intriguing open question to determine whether such
codes exist, or whether the reduction can be made to work without existence of such codes.

Since the current reductions for both k-MDP and k-SVP are randomized, it is still an intriguing open
question whether we can find deterministic reductions from PIH (or Gap-ETH) to these problems.
As stated in the introduction, even in the non-parameterized setting, NP-hardness of SVP through
deterministic reductions is not known. On the other hand, MDP is known to be NP-hard even to
approximate under deterministic reductions; in fact, even the Dumer et al.’s reduction [DMS03] that
we employ can be derandomized, as long as one has a deterministic construction for Locally Dense
Codes [CW12, Mic14]. In our settings, if one can deterministically construct Sparse Covering Codes
(i.e. derandomize Lemma 5.4), then we would also get a deterministic reduction for k-MDP.

Finally, another interesting research direction is to attempt to prove more concrete running time
lower bounds for k-MDP and k-SVP. For instance, it is easy to see that k-MDP can be solved (exactly)
in NO(k) time, where N = nm is the input size. On the other hand, while not stated explicitly above,
it is simple to check that our proof implies that k-MDP cannot be solved (or even approximated) in
time No(kc) for some small constant c > 0, assuming Gap-ETH. Would it be possible to improve
this running time lower bound to the tight No(k)? Similar questions also apply to k-SVP.
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A A Simple Proof of PIH from Gap-ETH
In this section, we provide a simple proof of PIH assuming Gap-ETH. The proof is folklore and is
known in the community, although we are not aware of it being fully written down anywhere. The
main technical ingredient is the following subexponential time reduction from 3SAT to 2CSP:

Lemma A.1 For any ε > 0 and ∆, k ∈N such that k > 2, there exists a randomized reduction that, given
any 3SAT instance Φ on n variables where each variable appears in at most ∆ clauses, produces a 2CSP
instance Γ = (G = (V, E), Σ, {Cuv}(u,v)∈E) such that

• (YES) If SAT(Φ) = 1, then val(Γ) = 1.
• (NO) If SAT(Φ) < 1− ε, then val(Γ) < 1− ε

3000∆4 with high probability.
• (Running Time) The reduction runs in time 2O∆,ε(n/k), and,
• (Parameter) The number of variables of Γ is equal to k, i.e., |V| = k.

Note that, for Gap-ETH, it can be assumed without loss of generality that each variable of the 3CNF
formula appears in at most O(1) number of clauses (see e.g. [MR16, page 21]). Observe that, since
the reduction runs in time 2O(n/k); Γ is of size at most 2O(n/k). This yields the following corollary,
which in fact provides a running time lower bound which is even stronger than PIH:

Corollary A.2 Assuming Gap-ETH, there exists ε > 0 such that, for any computable function T, there is
no T(k) · |Σ|o(k) algorithm for GAP2CSPε.

We note here that the running time lower bound in the above lemma is asymptotically optimal, be-
cause we can solve 2CSP exactly in poly(k) · |Σ|k time by just enumerating all possible assignments
and outputting the one that satisfies the maximum number of constraints.

We now turn our attention to the proof of Lemma A.1.

Proof of Lemma A.1. The reduction is simple and is in fact a special case of the reduction
from [DM18]. Let X and C denote the set of variables and the set of clauses of Φ respectively. We
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assume w.l.o.g. that each variable appears in at least one clause. For each C ∈ C, we use var(C) to
denote the variables appearing in C. Furthermore, for each S ⊆ C, let var(S) = ∪C∈S var(S). For
convenience, we will also assume that m is divisible by k where m = |C| is the number of clauses.

Randomly partition C into k parts S1, . . . , Sk each of size m/k. We can then define Γ as follows:

• The vertex set V is [k] and the constraint graph G is the complete graph over V.
• Let Σ = 23(m/k). For each i ∈ [k], we associate elements of Σ with the partial assignments

fi : var(Si) → {0, 1} that satisfies all clauses in Si. In other words, we view Σ as Σi = { fi :
var(Si)→ {0, 1} | fi satisfies all C ∈ Si}.
• For each edge {i, j} ⊆ [k], we define the constraint Cij to contain all fi ∈ Σi and f j ∈ Σj that

agree with each other, i.e., Cij = {( fi, f j) ∈ Σi × Σj | ∀x ∈ var(Si) ∩ var(Sj), fi(x) = f j(x)}.

It is clear that the reduction runs in 2O(m/k) = 2O(∆n/(εk)) time and |V| = k. Further, in the YES case
where there exists an assignment f : X→ {0, 1} that satisfies all the clauses of Φ, we can simply
pick fi to be f |var(Si), the restriction of f on var(Si). Clearly, ψ is a valid assignment for Γ and it
satisfies all the constraints. Hence, val(Γ) = 1.

To show the NO case of the reduction, we will need an additional property of a random partition
S1, · · · , Sk, which is formally stated below and proved later:

Proposition A.3 With high probability, for every i 6= j, we have var(Si) ∩ var(Sj) <
1000n∆3

k2 .

Now, conditioned on var(Si) ∩ var(Sj) <
1000n∆3

k2 for every i 6= j ∈ [k], we will prove the NO case
by showing the contrapositive of the statement. Suppose that there exists an assignment ψ : V → Σ
such that val(ψ) > 1− ε′ where ε′ = ε

3000∆4 . For notational convenience, let fi = ψ(i). Observe that
val(ψ) > 1− ε′ is simply equivalent to Pr{i,j}⊆[k][ fi � f j] 6 ε′ where fi � f j denote fi(x) 6= f j(x)
for some x ∈ var(Si) ∩ var(Sj).

We call a variable x ∈ X globally consistent if fi(x) is equal for every i ∈ [k] such that var(Si) contains
x. We claim that the number of globally consistent variables is at least (1− 1000ε′∆3)n. To see this,
let us count the number of (x, {i, j}) ∈ X× ([k]2 ) such that x ∈ var(Si) ∩ var(Sj) and fi(x) 6= f j(x).
Notice that such tuple exists only for {i, j} such that fi � f j, and there are only ε′(k

2) such pairs
{i, j}’s. Recall also that var(Si) ∩ var(Sj) 6 1000n∆3

k2 for any i 6= j ∈ [k]. As a result, the number of
such (x, {i, j})’s is at most ε′(k

2) ·
1000n∆3

k2 6 1000ε′∆3n. On the other hand, each variable x ∈ X that is
not globally consistent must contribute to at least one such pair; hence, at most 1000ε′∆3n variables
are not globally consistent.

Let us define a global assignment f : X → {0, 1} as follows: for each x ∈ X, pick an arbitrary
partition Si such that x ∈ var(Si) and let f (x) = fi(x). Observe that, for every clause C such that
all its variables are globally consistent, C is satisfied by f ; this is simply because, if C is in partition
Sj, then f (x) = f j(x) for all x ∈ var(C) due to global consistency of x and f j must satisfy C from
our definition of Γ. As a result, f satisfies all but at most 1000ε′∆4n 6 3000ε′∆4m clauses, which
means that val(Φ) > 1− 3000ε′∆4 = 1− ε as desired. �

Proof of Proposition A.3. For convenience, let ` = 1000n∆3

k2 . Let us fix a pair i 6= j. We will show that
var(Si) ∩ var(Sj) < ` with high probability; taking union bound over all {i, j}’s yields the desired
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statement.

To bound Pr[var(Si)∩ var(Sj) < `], let us define one more notation: we call a set T ⊆ X of variables
independent if no two variables in T appears in the same clause. We claim that, for any subset T′ of
at least ` variables, there exists an independent subset T ⊆ T′ of at least d`/(2∆ + 1)e variables.
This is true because we can use the following algorithm to find T: as long as T′ is not empty, pick
an arbitrary variable x ∈ T′, put x into T, and remove x and all variables that share at least one
clause with x from T′. Since each time we add an element to T, we remove at most 2∆ + 1 elements
from T′; we can conclude that |T′| > d`/(2∆ + 1)e as desired.

Hence, to show that var(Si) ∩ var(Sj) < ` w.h.p., it suffices to show that var(Si) ∩ var(Sj) does not
contain an independent set of variable of size d`/(2∆ + 1)e w.h.p.

Let r = d`/(2∆ + 1)e; notice that r > 100n∆2

k2 . Consider any independent subset of variables T ⊆ X
of size r. We will upper bound the probability that T is contained in var(Si) ∩ var(Sj). To do so,
first observe that the events T ⊆ var(Si) and T ⊆ var(Sj) are negatively correlated, i.e.,

Pr[T ⊆ var(Si) ∩ var(Sj)] 6 Pr[T ⊆ var(Si)]Pr[T ⊆ var(Sj)] = (Pr[T ⊆ var(Si)])
2 . (10)

Observe that since two distinct x, x′ ∈ T do not appear in the same clause, the events x ∈ var(Si)
and x′ ∈ var(Si) are negatively correlated. That is, if T = {xp1 , . . . , xpr}, then we can bound
Pr[T ⊆ var(Si)] as follows:

Pr[T ⊆ var(Si)] = ∏
j∈[r]

Pr[xpj ∈ Si | xp1 , . . . , xpj−1 ∈ Si] 6 ∏
j∈[r]

Pr[xpj ∈ Si]. (11)

Now, consider any x ∈ T. Since x is contained in at most ∆ clauses, we have

Pr[x ∈ Si] 6 1−
(m−∆

m/k )

( m
m/k)

6 1−
(

1− ∆
m−m/k

)m/k

6
∆(m/k)
m−m/k

=
∆

k− 1
. (12)

where the last inequality follows from Bernoulli’s inequality.

Combining (10), (11) and (12), we have

Pr[T ⊆ var(Si) ∩ var(Sj)] 6
(

∆
k− 1

)2r

.

Finally, by taking union bound over all r-size independent sets of variables, the probability that
var(Si) ∩ var(Sj) contains an r-size independent sets of variables is at most(

n
r

)(
∆

k− 1

)2r

6
( en

r

)r
(

∆
k− 1

)2r

=

(
en∆2

r(k− 1)2

)r

6 (1/2)r = o(1),

which concludes our proof. �
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B FPT Inapproximability of GAPNVP
In this section, we will prove the inapproximability of GAPNVP (Theorem 6.3). The reduction goes
through the following intermediate problem GAPLVS (analogous to the GAPMLD):

η-Gap Lattice Vector Sum (GAPLVSη)

Input: A matrix A ∈ Zm×n, a vector y ∈ {0, 1}m and a parameter k ∈N.

Parameter: k

Question: Distinguish between the following two cases:

• (YES) There exists x ∈ {0, 1}n such that ‖x‖0 6 k and Ax = y.
• (NO) For all choices of x ∈ Zn such that ‖x‖0 6 η · k and r ∈ Z \ {0}, we have Ax 6= r · y.

The above problem is well defined for any η > 1. The reduction for Theorem 6.3 goes through
the following steps. First, we use Lemma B.1 to give an FPT reduction from GAP2CSPε to
GAPLVS1+ε/3. Next, we use the gap amplification operation (Lemma B.2) to give a FPT reduction
from GAPLVS1+ε/3 to all GAPLVSη for all η ≥ 1. Finally, we use Lemma B.3 to reduce GAPLVSη

to GAPNVPp,η (for any p > 1).

Lemma B.1 For all ε > 0, there is an FPT reduction from GAP2CSPε to GAPLVS1+ε/3.

Proof. Let Γ = (G := (V, E), Σ, {Cuv}{(u,v)∈E}) be the GAP2CSPε instance. For clarity, we assume
that G is directed. From Γ, we construct A ∈ {−1, 0, 1}m×n, y ∈ {0, 1}m where m = |V|+ |E|+
2|E||Σ| and n = |V||Σ|+ ∑(u,v)∈E |Cuv| exactly the same as in the proof of Lemma 4.2 with only
one difference: we set A(e,σ0,0),(e,σ0,σ1) and A(e,σ1,1),(e,σ0,σ1) to be -1 instead of 1 as in Lemma 4.2.

We set the sparsity parameter to be k = |V|+ |E|. Note that the matrix A and the vector y here are
{−1, 0, 1}-objects over Z instead of F2. Additionally, by the construction of A, for every x ∈ Zn, the
vector Ax must satisfy equations (2) and (3) from Section 4 whereas, due to our change, equation
(4) now becomes

(Ax)(e,σ,b) = x(ub,σ) − ∑
(σ0,σ1)∈Ce

σb=σ

x(e,σ0,σ1).

We now argue completeness and soundness of the reduction.

Completeness. If Γ is a YES instance, let ψ : V 7→ Σ be the satisfying labeling. We construct
x ∈ {0, 1}n as follows: we set x(u,ψ(u)) = 1 for every vertex u ∈ V. Additionally, for every
e = (u, v) ∈ E, we set x((u,v),ψ(u),ψ(v)) = 1, and all the remaining coordinates of x are set to zero. It is
easy to see that x as constructed is (|V|+ |E|)-sparse, and satisfies Ax = y.

Soundness. Let x ∈ Zn be such that ‖x‖0 6
(
1 + ε/3

)
k and Ax = r · y for some r 6= 0. As before,

for every vertex u ∈ V, we construct the set Su : ={σ|x(u,σ) 6= 0}. Similarly, for every edge e ∈ E,
we construct the set Te := {(σ0, σ1)|x(e,σ0,σ1) 6= 0}. By construction it follows that for every u ∈ V,
(Ax)u = yu = r 6= 0 and therefore |Su| > 1. Similarly, for every edge e ∈ E we have |Te| > 1.
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Furthermore, we define Eunique := {e ∈ E||Te| = 1}. Since the arguments used in Equations
(5)-(6) (from proof of Lemma 4.2) depend only on the fact that ‖x‖0 6 (1 + ε/3)k, again we have
|Eunique| > (1− ε)|E|.

Now, consider any labeling ψ : V 7→ Σ such that ψ(u) ∈ Su for every u ∈ V. We shall show
that any such labeling must satisfy every edge e ∈ Eunique. Towards that end, we fix an edge
e = (u, v) ∈ Eunique and let Te = {(σ∗0 , σ∗1 )}. Since |Te| = 1, using equation (3) we have

r = ye = ∑
(σ0,σ1)∈Te

x(e,σ0,σ1) = x(e,σ∗0 ,σ∗1 )

Observe that Su = {σ∗0 }; this follows immediately from substituting (the new) equation (4) with
σ = σ∗0 , b = 0 and from y(e,σ∗0 ,0) = 0. Therefore, ψ(u) = σ∗0 and, similarly, ψ(v) = σ∗1 . Furthermore,
since (σ∗0 , σ∗1 ) ∈ C(u,v), ψ satisfies the edge e. Since, this happens for every e ∈ Eunique, the labeling
ψ satisfies every constraint in Eunique. This completes the proof. �

We now give the lemma for the gap amplification step.

Lemma B.2 For any c ∈N and η > 1, there exists an FPT reduction from GAPLVSη to GAPLVSηc .

Proof. As in Section 4.2, we define a composition operation ⊕L on GAPLVS instances. Given
GAPLVSη1 instance (A, y1, k1) (where A ∈ Zu×v, y1 ∈ Zu) and GAPLVSη2 instance (B, y2, k2)

(where B ∈ Zu′×v′ , y2 ∈ Zu′), we denote the composed instance as (C, y, k′) = (A, y1, k1) ⊕L
(B, y2, k2), with k′ = k2 + k1k2. The matrix C ∈ Z(u′+uv′)×(v′+vv′) and the vector y ∈ Zu′+uv′ is
constructed exactly as in Section 4.2. We argue the completeness and soundness properties of the
operator.

Completeness : Let (A, y1, k1) and (B, y2, k2) be YES instances. Then there exists vector x1 ∈
{0, 1}v such that ‖x1‖0 6 k1 and Ax1 = y1. Similarly there exists vector x2 ∈ {0, 1}v′ such that
‖x2‖0 6 k2 and Bx2 = y2. Borrowing notation from Section 4.2, for any x ∈ Zn, we define the
sub-vectors x0, x1, . . . , xv′ . We construct the vector x ∈ {0, 1}v′+vv′ as follows. We set x0 = x2 and for
every i ∈ [v′] we set xi = x0

i · x1. It is easy to check that x as constructed satisfies ‖x‖0 6 k2 + k1k2
and Cx = y.

Soundness : Let (A, y1, k2) and (B, y2, k2) be NO instances. As in the the proof of Lemma 4.5, we
consider the row-blocks S0, S1, . . . , Sv′ which form an identical partition of [u′+ uv′]. Let x ∈ Zv′+vv′

be any vector such that Cx = r · y for some r ∈ Z \ {0}. Since x0 satisfies the constraints along
S0, we have Bx0 = r · y2, and therefore ‖x0‖0 > η2 · k2. Fix any i ∈ [v′] such that x0

i 6= 0. Then the
sub-vector xi must satisfy the constraints along row-block Si i.e., Axi = rx0

i .y1 and therefore, we
have ‖xi‖0 > η1k1. Since, this happens for every such choice of i ∈ [v′] such that x0

i 6= 0, we have
‖x‖0 > η2k2 + η1η2k1k2.

Therefore, given GAPLVSη instance (A, y, k), we can construct the i-wise composed instance
(A(i), y(i), k(k + 1)i−1) = (A, y, k)⊕L (A(i−1), y(i−1), k(k + 1)i−2). Using the above arguments, it is
easy to check that (A(i), y(i), k(k + 1)i−1) is a GAPLVSη3i/2 instance. Setting i > d3c/2e gives us the
required gap. �
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Finally, the following lemma completes the reduction to GAPNVP.

Lemma B.3 For all choices of η > 1 and p > 1, there is an FPT reduction from k-GAPLVSη to k-
GAPNVPp,η . Furthermore, the resulting GAPNVPp,η instance (A′, y′, k) (where A′ ∈ Zn′×m and
y′ ∈ Zn′) satisfies the following properties:

• For the YES case, there exists x ∈ Zm such that (A′x− y′) is a {0, 1}-vector and ‖A′x− r · y′‖0 6 k.
• For the NO case, for all x ∈ Zm and r ∈ Z \ {0}, we have ‖A′x− r · y′‖0 > η · k

Proof. Let (A, y, k) be a GAPLVSη instance where A ∈ Zn×m and y ∈ Zn. We construct the matrix
A′ ∈ Z(dηk+1en+m)×m and y′ ∈ Zdηk+1en+m identical to the proof of Lemma 5.2, and claim that
(A′, x′, k) is a GAPNVPη instance with the additional properties as guaranteed by the lemma.

Indeed, if (A, y, k) is a YES instance, then there exists x ∈ {0, 1}m such that ‖x‖0 6 k such that
Ax = y. Consequently, A′x− y′ is 0 on the first dηk + 1en coordinates, and it is just x on the last
m coordinates. Conversely, if (A, y, k) is a NO instance, then as before we consider two cases. If
x ∈ Zm such that ‖x‖0 > ηk, then it is easy to see that A′x− y′ has Hamming weight greater than
ηk on the last m-coordinates. On the other hand if ‖x‖0 6 ηk, then we know that Ax 6= r · y for any
r ∈ Z \ {0} Therefore ‖Ax− r · y‖0 > 1 which implies that ‖A′x− r · y′‖0 > ηk.

Finally, since in the YES case the witness is a {0, 1}-vector and in the NO case the guarantees are in
the Hamming norm, the completeness and soundness properties are satisfied by (A′, y′, k) for any
value of p > 1. �

Putting Things Together: Given a GAP2CSPε-instance Γ, using Lemma B.1 we construct a
GAPLVS1+ε/3-instance. Using Lemma B.2, we reduce GAPLVS1+ε/3 to GAPLVSη for any choice of
η > 1 + ε/3. Finally, using Lemma B.3, we reduce the GAPLVSη instance to GAPNVPp,η instance.
Since all the steps in the reduction are FPT, this completes the proof.
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