
Amplification with One NP Oracle Query

Thomas Watson∗

November 26, 2021

Abstract

We provide a complete picture of the extent to which amplification of success probability
is possible for randomized algorithms having access to one NP oracle query, in the settings
of two-sided, one-sided, and zero-sided error. We generalize this picture to amplifying one-
query algorithms with q-query algorithms, and we show our inclusions are tight for relativizing
techniques.

1 Introduction

Amplification of the success probability of randomized algorithms is a ubiquitous tool in complexity
theory. We investigate amplification for randomized reductions to NP-complete problems, which
can be modeled as randomized algorithms with the ability to make queries to an NP oracle. The
usual amplification strategy involves running multiple independent trials, which would also increase
the number of NP oracle queries, so this does not generally work if we restrict the number of queries.
We study, and essentially completely answer, the following question:

If a language is solvable with success probability p by a randomized polynomial-time
algorithm with access to one NP oracle query, what is the highest success probability
achievable with one query (or q > 1 many queries) to an NP oracle?

The question makes sense for two-sided error (BPPNP[1]), one-sided error (RPNP[1]), and zero-sided
error (ZPPNP[1]), and it was mentioned in [CC06] as “an interesting problem worthy of further
investigation.” Partial results for zero-sided error were shown in [CP08]. The question is also
relevant to the extensive literature on bounded NP queries (the boolean hierarchy); e.g., ZPPNP[1]

shows up frequently in the context of the “two queries problem” [Tri10], which was the main
application area of the results from [CP08]. A complementary question (about lowering the success
probability in exchange for fewer NP queries) was studied in [Roh95].

Our first contribution characterizes the best amplification achievable by relativizing techniques
in the two-sided error setting. In general, the best strategy for amplifying plain randomized al-
gorithms is to take the majority vote of q independent trials, which in our setting would naively
involve q NP oracle queries. One may suspect this majority vote strategy is optimal for us. We
show this intuition is a red herring; it is possible to do better by “combining” NP oracle queries
across different trials. As an extreme example, consider the special case of randomized mapping
reductions to NP problems. These are equivalent to Arthur–Merlin games (AM), for which am-
plification is possible by running independent trials and simply having Merlin’s message consist
of certificates for a majority of the trials. However, if we allow one NP oracle query, but do not

∗Department of Computer Science, University of Memphis.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 58 (2018)

necessarily output the same bit the oracle returns, then combining queries is less straightforward,
and it turns out amplification is only possible to a limited extent.

Our main take-home message is that starting with success probability greater than 1
2 +

1
2 · 1

k+1 ,

where k is an integer, we can get arbitrarily close to 1
2 + 1

2 · 1
k success probability while still using

one NP query; using q nonadaptive queries, roughly a factor q improvement over this is possible.
We give precise definitions in § 2, but we now clarify our notation before stating the theorem. For

ǫ ∈ (0, 1] (the advantage), BPP
NP[1]
ǫ is the set of all languages solvable by a randomized polynomial-

time algorithm that may make one query to an NP oracle and produces the correct output with

probability ≥ 1
2 +

1
2ǫ on each input. For convenience, we define BPP

NP[1]
>ǫ by requiring that for some

constant c there exists such an algorithm with advantage ≥ ǫ + n−c, and we define BPP
NP[1]
ǫ> by

requiring that for every constant d there exists such an algorithm with advantage ≥ ǫ− 2−nd
; the

reason for these conventions is just that they naturally arise in the proofs (e.g., standard majority
amplification implies BPP>0 = BPP1>). We make similar definitions for BPPNP‖[q] but allowing
q nonadaptive NP oracle queries. Allowing q adaptive NP queries is equivalent to allowing 2q − 1
nonadaptive NP queries [Bei91].

Theorem 1 (Two-sided error). For integers 1 ≤ q ≤ k:

r If q is odd: BPP
NP[1]
>1/(k+1) ⊆ BPP

NP‖[q]
q/k> and BPP

NP[1]
1/k 6⊆ BPP

NP‖[q]
>q/k relative to an oracle.

r If q, k are even: BPP
NP[1]
>1/(k+1)

⊆ BPP
NP‖[q]
q/k>

and BPP
NP[1]
1/(k−1)

6⊆ BPP
NP‖[q]
>q/k

relative to an oracle.

The word “oracle” has two meanings here. Besides the bounded NP oracle queries of central
interest, “relative to an oracle” means there exists a language such that the separation holds when
all computations (the randomized algorithm and the NP verifier) can make polynomially many
adaptive queries to an oracle for that language. In particular, in the context of our relativized
separations, randomized algorithms have access to two oracles. The separations in Theorem 1 are
tight since the inclusions relativize. This implies that using “black-box simulation” techniques, it
is not possible to significantly improve any of our inclusions.

If we start with advantage > 1
k+1 where k is an integer, Theorem 1 tells us the best advantage

achievable with q nonadaptive NP queries using relativizing techniques: if k is even we can amplify
to essentially q

k ; if k is odd we can amplify to essentially q
k if q is odd, and q

k+1 if q is even.
(Theorem 1 does not explicitly mention the case where q is even and k is odd, but in this case the
best inclusion and separation are obtained by applying the theorem to the even integer k + 1.)

A subtle issue is whether “q/k>” in the inclusion subscripts can be improved to “q/k”; e.g., it

remains open to show that BPP
NP[1]
>1/3 ⊆ BPP

NP[1]
1/2 or that BPP

NP[1]
>1/3 6⊆ BPP

NP[1]
1/2 relative to an oracle.

The proof of Theorem 1 appears in § 3. No such nontrivial inclusion was known before; for
relativized separations, the case q = 1, k = 2 was shown in [Wat20].

One-sided error algorithms must always output 0 if the answer is 0, and must output 1 with
probability at least some ǫ ∈ (0, 1] if the answer is 1. We define the advantage (the subscript of

RPNP‖[q]) to be this ǫ. In contrast to BPP
NP‖[q]
ǫ (where the advantage ǫ measures how much better

than 1
2 the success probability is), for RP

NP‖[q]
ǫ the advantage ǫ measures how much better than 0

the success probability is.

Theorem 2 (One-sided error).

r RP
NP[1]
>1/2 ⊆ RP

NP[1]
1> .

r RP
NP[1]
>0 ⊆ RP

NP[1]
1/2 ∩ RP

NP‖[2]
1> and RP

NP[1]
1/2 6⊆ RP

NP[1]
>1/2 relative to an oracle.

2

The proof of Theorem 2 appears in § 4 and is relatively straightforward (and could serve as a

warm-up for Theorem 1 if the reader would like that). The inclusion RP
NP[1]
>0 ⊆ RP

NP[1]
1/2 (which is

stronger than RP
NP[1]
>0 ⊆ RP

NP[1]
1/2>) uses a trick described in [CP08] for getting a tiny boost in the

advantage.

Zero-sided error algorithms must output the correct bit with probability at least some ǫ ∈ (0, 1]
and output ⊥ (plead ignorance) with the remaining probability. We define the advantage (the
subscript of ZPPNP‖[q]) to be this ǫ.

[CP08] proved that ZPP
NP[1]
>0 ⊆ ZPP

NP[1]
1/4 and ZPP

NP[1]
>1/2 ⊆ ZPP

NP[1]
1> ,1 and left it unresolved what

happens between advantages 1
4 and 1

2 . We settle this decade-old open problem: amplification is
possible between 1

4 and 1
3 and between 1

3 and 1
2 .

Theorem 3 (Zero-sided error). For integers 1 ≤ q ≤ k ≤ 4:

r If k = 4: ZPP
NP[1]
>0 ⊆ ZPP

NP‖[q]
q/k> .

r If k ≤ 3: ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP‖[q]
q/k> .

r If q = 1: ZPP
NP[1]
1/k 6⊆ ZPP

NP‖[q]
>q/k relative to an oracle.

Moreover, the “q/k>” in the inclusion subscripts can be improved to “q/k” if q < k and k ≥ 3.

The proof of Theorem 3 appears in § 5. The “moreover” part uses the trick from [CP08] for
a tiny boost in the advantage. Like the situation with BPPNP[1], it remains open to show that

ZPP
NP[1]
>1/3 ⊆ ZPP

NP[1]
1/2 or that ZPP

NP[1]
>1/3 6⊆ ZPP

NP[1]
1/2 relative to an oracle. There is no reason to

consider k > 4 in Theorem 3, since then ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP[1]
>0 ⊆ ZPP

NP‖[q]
q/4> .

We conjecture that the third bullet in Theorem 3 also holds for q > 1 (i.e., the relativized

separations ZPP
NP[1]
1/4 6⊆ ZPP

NP‖[2]
>2/4 and ZPP

NP[1]
1/4 6⊆ ZPP

NP‖[3]
>3/4 and ZPP

NP[1]
1/3 6⊆ ZPP

NP‖[2]
>2/3). This

remains open, though we are aware of how to prove that ZPP
NP[1]
1/4 6⊆ ZPP

NP‖[2]
>3/4 . Anyway, q = 1 is

the most natural case, and we provide a complete proof for it.

Finally, we point out that none of the inclusions in this paper can be strengthened to yield

advantage exactly 1 via relativizing techniques, since BPP ⊆ ZPP
NP[1]
>1/2 relativizes [CC06] but BPP 6⊆

PNP relative to an oracle [Sto85].

2 Definitions

We formally define the relevant complexity classes in § 2.1 and their decision tree analogues (which
are used for relativized separations) in § 2.2.

2.1 Time complexity

We think of a randomized algorithm M as taking a uniformly random string s ∈ {0, 1}r (for some
number of coins r that depends on the input length); we let Ms(x) denote M running on input x
with outcome s.

1[Wat20] gave an alternative proof of the latter but with only 1− 1
poly

, rather than 1− 1
exp

, success probability.

3

For ǫ ∈ (0, 1] (the advantage) and integer q ≥ 1, language L is in BPP
NP‖[q]
ǫ iff there is a

polynomial-time randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a
language L′ ∈ NP such that the following hold.

Syntax: The computation of Ms(x) produces a tuple of query strings (z1, . . . , zq) and a truth
table out : {0, 1}q → {0, 1}; the output is then out(L′(z1), . . . , L′(zq)).

Correctness: The output is L(x) with probability ≥ 1
2 + 1

2ǫ.

RP
NP‖[q]
ǫ is defined similarly except for correctness, we require the output is always 0 if L(x) = 0, and

is 1 with probability ≥ ǫ if L(x) = 1. ZPP
NP‖[q]
ǫ is defined similarly except out : {0, 1}q → {0, 1,⊥}

and for correctness, we require the output is always L(x) or ⊥, and is L(x) with probability ≥ ǫ.
For C ∈

{

BPPNP‖[q],RPNP‖[q],ZPPNP‖[q]}, we define

C>ǫ =
⋃

constants c
Cǫ+n−c and Cǫ> =

⋂

constants d

C
ǫ−2−nd .

When q = 1 we may drop the ‖ from the superscripts.

2.2 Decision tree complexity

We think of a randomized decision tree T as the uniform distribution over a multiset of correspond-
ing deterministic decision trees Ts indexed by s ∈ {0, 1}r ; we denote this as T ∼

{

Ts : s ∈ {0, 1}r
}

.
In this setting, “query” actually has two meanings for us: a decision tree makes queries to individual
input bits, then it forms an NP-type (DNF) oracle query.

We define a BPP
NP‖[q]
ǫ -type decision tree T for f : {0, 1}n → {0, 1} on input x as follows.

Syntax: T ∼
{

Ts : s ∈ {0, 1}r
}

where each Ts makes queries to the bits of x until it reaches a
leaf, which is labeled with a tuple of DNFs (ϕ1, . . . , ϕq) and a function out : {0, 1}q →
{0, 1}; the output is then out(ϕ1(x), . . . , ϕq(x)).

Correctness: The output is f(x) with probability ≥ 1
2 +

1
2ǫ.

Cost: The maximum height of any Ts, plus the maximum width (maximum number of
literals in any term) of any DNF appearing at a leaf.

An RP
NP‖[q]
ǫ -type decision tree is defined similarly except for correctness we require the output is

always 0 if f(x) = 0, and is 1 with probability ≥ ǫ if f(x) = 1. A ZPP
NP‖[q]
ǫ -type decision tree

is defined similarly except out : {0, 1}q → {0, 1,⊥} and for correctness, we require the output is
always f(x) or ⊥, and is f(x) with probability ≥ ǫ.

We follow the convention of overloading complexity class names as decision tree complexity
measures: for C ∈

{

BPPNP‖[q],RPNP‖[q],ZPPNP‖[q]}, Cdt
ǫ (f) denotes the minimum cost of any Cǫ-

type decision tree for a partial function f , and Cdt
ǫ also denotes the class of all families of f ’s with

Cdt
ǫ (f) ≤ polylog(n), and we define

Cdt

>ǫ =
⋃

constants c
Cdt

ǫ+log−c n
and Cdt

ǫ> =
⋂

constants d

Cdt

ǫ−n−d.

3 Two-sided error

To prove Theorem 1, we first restate it in a more convenient form.

4

Theorem 1 (Two-sided error, restated). For integers 1 ≤ q ≤ k:

(i) If k, q are odd: BPP
NP[1]
>1/(k+1) ⊆ BPP

NP‖[q]
q/k> .

(ii) If k is even: BPP
NP[1]
>1/(k+1) ⊆ BPP

NP‖[q]
q/k> .

(iii) If q, k are even: BPP
NP[1]
1/(k−1) 6⊆ BPP

NP‖[q]
>q/k relative to an oracle.

(iv) If q is odd: BPP
NP[1]
1/k 6⊆ BPP

NP‖[q]
>q/k relative to an oracle.

We prove the inclusions (i) and (ii) in § 3.1 and the separations (iii) and (iv) in § 3.2.

3.1 Inclusions

We prove the q = 1 case of (i) in § 3.1.1 and the q = 1 case of (ii) in § 3.1.2 (together these show

that BPP
NP[1]
>1/(k+1) ⊆ BPP

NP[1]
1/k> for all integers k ≥ 1), then we generalize to the q > 1 case of (i) in

§ 3.1.3 and the q > 1 case of (ii) in § 3.1.4. The techniques from [CP08] for the zero-sided error
setting are not particularly helpful for the two-sided error setting, so we develop the ideas from
scratch.

We now describe the common setup. For some constant c we have L ∈ BPP
NP[1]
1/(k+1)+n−c , wit-

nessed by a polynomial-time randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r)
and a language L′ ∈ NP. For an arbitrary constant d, we wish to show L ∈ BPP

NP‖[q]
q/k−2−nd .

Fix an input x. The first step is to sample a sequence of m = O(n2c+d) many independent

strings s1, . . . , sm ∈ {0, 1}r , so with probability ≥ 1 − 2−nd−1, the sequence is good in the sense
that on input x, M still has advantage strictly greater than 1

k+1 when its coin tosses are chosen

uniformly from the multiset {s1, . . . , sm}. Then we design a polynomial-time randomized algorithm
which, given a good sequence, outputs L(x) with advantage ≥ q

k after making q nonadaptive NP
oracle queries. Hence, over the random s1, . . . , sm and the other randomness of our algorithm,

P[output is L(x)] ≥ P
[

output is L(x)
∣

∣ s1, . . . , sm is good
]

− P[s1, . . . , sm is bad]

≥
(

1
2 +

1
2 · q

k

)

− 2−nd−1 = 1
2 +

1
2

(q
k − 2−nd)

.

Henceforth fix a good sequence s1, . . . , sm, and let zh and outh : {0, 1} → {0, 1} be the query
string and truth table produced by Msh(x) (so the output is outh(L′(zh))). We assume w.l.o.g. that
each outh is nonconstant, and is hence either identity or negation. Henceforth assume that identity
is at least as common as negation among out 1, . . . , outm; the proof is completely analogous if
negation is more common.

Taking probabilities over a uniformly random h ∈ [m], we make the following definitions.

α = 1
2P[out

h = id] β = 1
2P[out

h = neg]

a = P
[

outh = id, L′(zh) = 1
]

− α b = P
[

outh = neg, L′(zh) = 1
]

− β

The key observation is now

(a+ α) + (β − b) = P
[

out h = id, output = 1
]

+
(

P[outh = neg]− P
[

outh = neg, output = 0
])

= P
[

out h = id, output = 1
]

+ P
[

outh = neg, output = 1
]

= P[output = 1]

and thus, defining ∆ = 1
2 · 1

k+1 , we have

a− b = (a+ α) + (β − b)− 1
2 = P[output = 1]− 1

2

{

> ∆ if L(x) = 1

< −∆ if L(x) = 0

5

because of M ’s advantage w.r.t. a good sequence s1, . . . , sm.
This figure shows an example of how these values may fall on the number line if L(x) = 1:

a

b0

>∆

P[outh = id, output = 1] P[outh = id, output = 0]

P[outh = neg, output = 0] P[outh = neg, output = 1]

−α

−β

α

β

The following summarizes the key properties so far.

α ≥ β a ∈ [−α,α] a− b > ∆ if L(x) = 1

α+ β = 1
2 b ∈ [−β, β] b− a > ∆ if L(x) = 0

Also, for any rational p, testing whether a ≥ p can be expressed as an NP oracle query: a witness
consists of a list of witnesses for L′(zh) = 1 for at least (p+α)m many h’s with out h = id. Similarly,
testing whether b ≥ p can be expressed as an NP oracle query.

3.1.1 Proof of (i): q = 1

For i ∈ [k] define γi = (i − k+1
2)∆. We have β − γk ≤ ∆ and γ1 − (−β) ≤ ∆ since β ≤ 1

4 =
(

(k + 1)− k+1
2

)

∆. This figure shows an example with k = 7:

γ1

γ2

γ3

γ4

γ5

γ6

γ7

≤∆ ≤∆

−α

−β

α

β

Our algorithm now picks one of these k possibilities uniformly at random:2

r for some odd i ∈ [k]: output 1 iff a ≥ γi,
r for some even i ∈ [k]: output 0 iff b ≥ γi.

First suppose L(x) = 1. We have a > γ1 since a − b > ∆ and b ≥ −β and γ1 − (−β) ≤ ∆.
Consider the greatest odd j ∈ [k] such that a ≥ γj; thus a ≥ γi for

j+1
2 many odd i’s (1, 3, . . . , j).

If j < k then b < γj+1 since a − b > ∆ and a < γj+2; thus b < γi for at least k−j
2 many even i’s

(j +1, j +3, . . . , k− 1). Hence the probability of outputting 1 is at least 1
k

(j+1
2 + k−j

2

)

= 1
2 +

1
2 · 1

k .
Now suppose L(x) = 0. We have a < γk since b− a > ∆ and b ≤ β and β − γk ≤ ∆. Consider

the least odd j ∈ [k] such that a < γj; thus a < γi for k−j+2
2 many odd i’s (j, j + 2, . . . , k). If

2Of course, if k is not a power of 2 and we insist on using uniform coin flips as our only source of randomness,
then we must incur a tiny error since it is not possible to exactly sample i ∈ [k] uniformly. We sweep this pedantic
issue under the rug throughout the paper.

6

j > 1 then b > γj−1 since b − a > ∆ and a ≥ γj−2; thus b ≥ γi for at least j−1
2 many even i’s

(2, 4, . . . , j − 1). Hence the probability of outputting 0 is at least 1
k

(k−j+2
2 + j−1

2

)

= 1
2 +

1
2 · 1

k .
That concludes the formal proof, but here is an intuitive way to visualize what is happening:

Call γi for odd i “upper marks,” and call γi for even i “lower marks,” and assume for convenience all
lower marks are in (−β, β). Suppose L(x) = 1 and b = −β so a > γ1; then at least one upper mark
is left of a and all k−1

2 lower marks are right of b, resulting in k+1
2 of the algorithm’s possibilities

outputting 1. Now as we continuously sweep a and b to the right, keeping a− b fixed, a passes each
upper mark before b passes the preceding lower mark, so at all times at least k+1

2 of the possibilities
output 1. Suppose L(x) = 0 and b = β so a < γk; then at least one upper mark is right of a and
all k−1

2 lower marks are left of b, resulting in k+1
2 of the algorithm’s possibilities outputting 0. Now

as we continuously sweep a and b to the left, keeping b− a fixed, a passes each upper mark before
b passes the succeeding lower mark, so at all times at least k+1

2 of the possibilities output 0.

3.1.2 Proof of (ii): q = 1

For i ∈ [k] define ζi = −β + i∆ and ηi = −α+ i∆. Note that α− ζk = ∆ (so ζ1, . . . , ζk divide the
interval [−β, α] into k + 1 subintervals each of length ∆) and β − ηk = ∆ (so η1, . . . , ηk divide the
interval [−α, β] into k+1 subintervals each of length ∆). This figure shows an example with k = 6:

ζ1

ζ2

ζ3

ζ4

ζ5

ζ6η1

η2

η3

η4

η5

η6−α

−β

α

β

Our algorithm now picks one of these 2k possibilities uniformly at random:

r for some odd i ∈ [k]: output 1 iff a ≥ ζi,
r for some even i ∈ [k]: output 0 iff b ≥ ζi,
r for some even i ∈ [k]: output 1 iff a ≥ ηi,
r for some odd i ∈ [k]: output 0 iff b ≥ ηi.

First suppose L(x) = 1. We have a > ζ1 since a − b > ∆ and b ≥ −β. Consider the greatest
odd j ∈ [k] such that a ≥ ζj; thus a ≥ ζi for

j+1
2 many odd i’s (1, 3, . . . , j). We have b < ζj+1 since

a−b > ∆ and either a < ζj+2 (if j < k−1) or a ≤ α and α−ζk = ∆ (if j = k−1); thus b < ζi for at

least k−j+1
2 many even i’s (j+1, j+3, . . . , k). Consider the greatest even j′ ∈ [k] such that a ≥ ηj′ ,

or let j′ = 0 if it does not exist; thus a ≥ ηi for
j′

2 many even i’s (2, 4, . . . , j′). If j′ < k then b < ηj′+1

since a− b > ∆ and a < ηj′+2; thus b < ηi for at least
k−j′

2 many odd i’s (j′ + 1, j′ + 3, . . . , k − 1).

Hence the probability of outputting 1 is at least 1
2k

(j+1
2 + k−j+1

2 + j′

2 + k−j′

2

)

= 1
2 + 1

2 · 1
k .

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such that a < ζj, or let j = k + 1 if it

does not exist; thus a < ζi for
k−j+1

2 many odd i’s (j, j +2, . . . , k− 1). If j > 1 then b > ζj−1 since

b− a > ∆ and a ≥ ζj−2; thus b ≥ ζi for at least
j−1
2 many even i’s (2, 4, . . . , j− 1). We have a < ηk

since b− a > ∆ and b ≤ β and β − ηk = ∆. Consider the least even j′ ∈ [k] such that a < ηj′ ; thus

a < ηi for
k−j′+2

2 many even i’s (j′, j′ + 2, . . . , k). We have b > ηj′−1 since b − a > ∆ and either

a ≥ ηj′−2 (if j′ > 2) or a ≥ −α (if j′ = 2); thus b ≥ ηi for at least
j′

2 many odd i’s (1, 3, . . . , j′ − 1).

Hence the probability of outputting 0 is at least 1
2k

(k−j+1
2 + j−1

2 + k−j′+2
2 + j′

2

)

= 1
2 + 1

2 · 1
k .

7

That concludes the formal proof, but here is an intuitive way to visualize what is happening:
Call ζi for odd i and ηi for even i “upper marks,” and call ζi for even i and ηi for odd i “lower
marks,” and assume for convenience all lower marks are in (−β, β). Suppose L(x) = 1 and b = −β
so a > ζ1; then at least one upper mark is left of a and all k lower marks are right of b, resulting
in k+1 of the algorithm’s possibilities outputting 1. Now as we continuously sweep a and b to the
right, keeping a − b fixed, a passes each upper mark (ζi or ηi) before b passes the corresponding
preceding lower mark (ζi−1 or ηi−1 respectively), so at all times at least k + 1 of the possibilities
output 1. Suppose L(x) = 0 and b = β so a < ηk; then at least one upper mark is right of a and all
k lower marks are left of b, resulting in k + 1 of the algorithm’s possibilities outputting 0. Now as
we continuously sweep a and b to the left, keeping b− a fixed, a passes each upper mark (ζi or ηi)
before b passes the corresponding succeeding lower mark (ζi+1 or ηi+1 respectively), so at all times
at least k + 1 of the possibilities output 0.

3.1.3 Proof of (i): q > 1

For i ∈ [k] define Ii as the set of q successive integers starting with i and wrapping around to 1 when
k is exceeded: Ii = {i, i+1, . . . , i+q−1} if i ≤ k−q+1, and Ii = {i, i+1, . . . , k, 1, 2, . . . , i+q−1−k}
if i > k− q+1. Define i →= min(odd i′ ∈ Ii)− k− 1 and i

→
= min(even i′ ∈ Ii)− k− 1; the −k− 1

is a simple way to ensure i →, i
→
< min(i′ ∈ Ii). Since k, q are odd, the sorted order of Ii ∪ {i →, i

→
}

alternates between odd and even numbers.
Our algorithm picks i ∈ [k] uniformly at random and for each i′ ∈ Ii does an oracle query to

see whether a ≥ γi′ if i
′ is odd, or whether b ≥ γi′ if i

′ is even. Consider the greatest odd i♯ ∈ Ii
such that a ≥ γi♯ , or let i♯ = i →if it does not exist. Consider the greatest even i♭ ∈ Ii such that
b ≥ γi♭ , or let i

♭ = i
→
if it does not exist. Our algorithm outputs 1 if i♯ > i♭, or 0 if i♭ > i♯.

The intuition is that if Ii were the whole set [k], then with certainty we would have i♯ > i♭ if
a − b > ∆, and i♭ > i♯ if b − a > ∆. Since Ii is a q-subset of [k], comparing i♯ and i♭ gives our
best guess for L(x) based on the “limited view” provided by these oracle queries. About q of the
Ii sets are close enough to a to detect whether a or b is larger. Among the other k − q sets, about
half get it right through luck. Thus q + k−q

2 out of the k sets lead to correct output, which implies
the advantage is q

k . Careful case analysis is needed for the Ii sets that wrap around. Here is the
formal proof.

First suppose L(x) = 1. Consider the greatest odd j ∈ [k] such that a ≥ γj (which exists since
a > γ1). We have i♯ > i♭ if one of the following mutually exclusive events holds:

(1) j ∈ Ii, since then i♯ = j and i♭ ≤ j − 1 (since b < γj+1 if j < k);

(2) i is odd and i ≤ j − q − 1, since then i♯ = i+ q − 1 and trivially i♭ ≤ i+ q − 2;

(3) i is even and j + 1 ≤ i ≤ j − q − 1 + k, since then either:
r i ≤ k − q, in which case i♯ = i →> i

→
= i♭, or

r i = k − q + 2, in which case i♯ = 1 and i♭ = i
→
< 1, or

r i ≥ k − q + 4, in which case i♯ = i+ q − 1− k and i♭ ≤ i+ q − 2− k.

There are q many type-(1) i’s. If j > q then there are j−q
2 many type-(2) i’s (1, 3, . . . , j − q − 1)

and k−j
2 many type-(3) i’s (j + 1, j + 3, . . . , k − 1). If j ≤ q then there are k−q

2 many type-(3) i’s

(j + 1, j + 3, . . . , j − q − 1 + k). Either way, i♯ > i♭ holds for at least q + k−q
2 = k+q

2 many i’s, and

hence the probability of outputting 1 is at least 1
k · k+q

2 = 1
2 + 1

2 ·
q
k .

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such that a < γj (which exists since

a < γk). As a special case, if j = 1 then i♯ = i →and so i♭ > i♯ if i
→
> i →, which happens for k+q

2

8

many i’s (1, 3, . . . , k − q + 1 and k − q + 2, k − q + 3, . . . , k). Now assume j > 1. We have i♭ > i♯ if
one of the following mutually exclusive events holds:

(1) j − 1 ∈ Ii, since then i♯ ≤ j − 2 and i♭ ≥ j − 1 (since b > γj−1 if j > 1);

(2) i is even and i ≤ j − q − 2, since then i♯ = i+ q − 2 and i♭ = i+ q − 1;

(3) i is odd and j ≤ i ≤ j − q − 2 + k, since then either:
r i ≤ k − q + 1, in which case i♯ = i →< i

→
≤ i♭, or

r i ≥ k − q + 3, in which case i♯ = i+ q − 2− k and i♭ ≥ i+ q − 1− k.

There are q many type-(1) i’s. If j > q then there are j−q−2
2 many type-(2) i’s (2, 4, . . . , j − q − 2)

and k−j+2
2 many type-(3) i’s (j, j + 2, . . . , k). If j ≤ q then there are k−q

2 many type-(3) i’s

(j, j +2, . . . , j− q− 2+ k). Either way, i♭ > i♯ holds for at least q+ k−q
2 = k+q

2 many i’s, and hence

the probability of outputting 0 is at least 1
k · k+q

2 = 1
2 +

1
2 · q

k .

3.1.4 Proof of (ii): q > 1

We retain the definition of Ii from § 3.1.3. Now we have separate cases for whether q is even or
odd. The case q is even involves a natural combination of the ideas from § 3.1.2 and § 3.1.3, but
the case q is odd is more subtle.

If q is even: Our algorithm picks i ∈ [k] uniformly at random, and with probability 1
2 each:

r Define i →= min(odd i′ ∈ Ii) − k and i
→
= min(even i′ ∈ Ii) − k. For each i′ ∈ Ii do an oracle

query to see whether a ≥ ζi′ if i
′ is odd, or whether b ≥ ζi′ if i

′ is even. Consider the greatest
odd i♯ ∈ Ii such that a ≥ ζi♯ , or let i

♯ = i →if it does not exist. Consider the greatest even i♭ ∈ Ii
such that b ≥ ζi♭ , or let i

♭ = i
→
if it does not exist. Output 1 if i♯ > i♭, or 0 if i♭ > i♯.

r Define i →= min(even i′ ∈ Ii)− k and i
→
= min(odd i′ ∈ Ii) − k. For each i′ ∈ Ii do an oracle

query to see whether a ≥ ηi′ if i
′ is even, or whether b ≥ ηi′ if i

′ is odd. Consider the greatest
even i♯ ∈ Ii such that a ≥ ηi♯ , or let i♯ = i →if it does not exist. Consider the greatest odd
i♭ ∈ Ii such that b ≥ ηi♭ , or let i

♭ = i
→
if it does not exist. Output 1 if i♯ > i♭, or 0 if i♭ > i♯.

First suppose L(x) = 1. Assume the algorithm picks the first bullet. Consider the greatest odd
j ∈ [k] such that a ≥ ζj (which exists since a > ζ1). We have i♯ > i♭ if one of the following mutually
exclusive events holds:

(1) j ∈ Ii, since then i♯ = j and i♭ ≤ j − 1 (since b < ζj+1);

(2) i is even and i ≤ j − q − 1, since then i♯ = i+ q − 1 and trivially i♭ ≤ i+ q − 2;

(3) i is even and j + 1 ≤ i ≤ j − q − 1 + k, since then either:
r i ≤ k − q, in which case i♯ = i →> i

→
= i♭, or

r i = k − q + 2, in which case i♯ = 1 and i♭ = i
→
< 1, or

r i ≥ k − q + 4, in which case i♯ = i+ q − 1− k and i♭ ≤ i+ q − 2− k.

There are q many type-(1) i’s. If j > q then there are j−q−1
2 many type-(2) i’s (2, 4, . . . , j − q − 1)

and k−j+1
2 many type-(3) i’s (j + 1, j + 3, . . . , k). If j ≤ q then there are k−q

2 many type-(3) i’s

(j + 1, j + 3, . . . , j − q − 1 + k). Either way, i♯ > i♭ holds for at least q + k−q
2 = k+q

2 many i’s.

Assume the algorithm picks the second bullet. As a special case, if a < η2 (so b < η1) then i♯ = i →

and i♭ = i
→
and so i♯ > i♭ happens for k+q

2 many i’s (1, 3, . . . , k−q+1 and k−q+2, k−q+3, . . . , k).

9

Otherwise, consider the greatest even j′ ∈ [k] such that a ≥ ηj′ . We have i♯ > i♭ if one of the
following mutually exclusive events holds:

(1) j′ ∈ Ii, since then i♯ = j′ and i♭ ≤ j′ − 1 (since b < ηj′+1 if j′ < k);

(2) i is odd and i ≤ j′ − q − 1, since then i♯ = i+ q − 1 and trivially i♭ ≤ i+ q − 2;

(3) i is odd and j′ + 1 ≤ i ≤ j′ − q − 1 + k, since then either:
r i ≤ k − q + 1, in which case i♯ = i →> i

→
= i♭, or

r i ≥ k − q + 3, in which case i♯ = i+ q − 1− k and i♭ ≤ i+ q − 2− k.

There are q many type-(1) i’s. If j′ > q then there are j′−q
2 many type-(2) i’s (1, 3, . . . , j′ − q − 1)

and k−j′

2 many type-(3) i’s (j′ +1, j′ +3, . . . , k− 1). If j′ ≤ q then there are k−q
2 many type-(3) i’s

(j′ + 1, j′ + 3, . . . , j′ − q − 1 + k). Either way, i♯ > i♭ holds for at least q + k−q
2 = k+q

2 many i’s.

In summary, out of the 2k possible random outcomes, at least k + q of them result in i♯ > i♭,
and hence the probability of outputting 1 is at least 1

2k (k + q) = 1
2 + 1

2 ·
q
k .

Now suppose L(x) = 0. Assume the algorithm picks the first bullet. Consider the least odd
j ∈ [k] such that a < ζj , or let j = k + 1 if it does not exist. As a special case, if j = 1

then i♯ = i →and so i♭ > i♯ if i
→
> i →, which happens for k+q

2 many i’s (1, 3, . . . , k − q + 1 and

k − q + 2, k − q + 3, . . . , k). Now assume j > 1. We have i♭ > i♯ if one of the following mutually
exclusive events holds:

(1) j − 1 ∈ Ii, since then i♯ ≤ j − 2 and i♭ ≥ j − 1 (since b > ζj−1 if j > 1);

(2) i is odd and i ≤ j − q − 2, since then i♯ = i+ q − 2 and i♭ = i+ q − 1;

(3) i is odd and j ≤ i ≤ j − q − 2 + k, since then either:
r i ≤ k − q + 1, in which case i♯ = i →< i

→
≤ i♭, or

r i ≥ k − q + 3, in which case i♯ = i+ q − 2− k and i♭ ≥ i+ q − 1− k.

There are q many type-(1) i’s. If j > q then there are j−q−1
2 many type-(2) i’s (1, 3, . . . , j − q − 2)

and k−j+1
2 many type-(3) i’s (j, j + 2, . . . , k − 1). If j ≤ q then there are k−q

2 many type-(3) i’s

(j, j + 2, . . . , j − q − 2 + k). Either way, i♭ > i♯ holds for at least q + k−q
2 = k+q

2 many i’s.
Assume the algorithm picks the second bullet. Consider the least even j′ ∈ [k] such that a < ηj′

(which exists since a < ηk). We have i♭ > i♯ if one of the following mutually exclusive events holds:

(1) j′ − 1 ∈ Ii, since then i♯ ≤ j′ − 2 and i♭ ≥ j′ − 1 (since b > ηj′−1);

(2) i is even and i ≤ j′ − q − 2, since then i♯ = i+ q − 2 and i♭ = i+ q − 1;

(3) i is even and j′ ≤ i ≤ j′ − q − 2 + k, since then either:
r i ≤ k − q, in which case i♯ = i →< i

→
≤ i♭, or

r i = k − q + 2, in which case i♯ = i →< 1 and i♭ ≥ 1, or
r i ≥ k − q + 4, in which case i♯ = i+ q − 2− k and i♭ ≥ i+ q − 1− k.

There are q many type-(1) i’s. If j′ > q then there are j′−q−2
2 many type-(2) i’s (2, 4, . . . , j′− q−2)

and k−j′+2
2 many type-(3) i’s (j′, j′ + 2, . . . , k). If j′ ≤ q then there are k−q

2 many type-(3) i’s

(j′, j′ + 2, . . . , j′ − q − 2 + k). Either way, i♭ > i♯ holds for at least q + k−q
2 = k+q

2 many i’s.

In summary, out of the 2k possible random outcomes, at least k + q of them result in i♭ > i♯,
and hence the probability of outputting 0 is at least 1

2k (k + q) = 1
2 + 1

2 ·
q
k .

10

If q is odd and β > α − ∆: We handle the case β ≤ α − ∆ later, in a different way. The
assumption β > α−∆ ensures the ζ and η marks are perfectly interspersed (as shown in the figure
in § 3.1.2), which is essential for the algorithm we now describe.

For this case, we form ζ1, . . . , ζk and η1, . . . , ηk into one big cycle, rather than two separate
cycles. Thus when Ii “wraps around,” we switch between making “ζ queries” and making “η
queries.” To facilitate this idea, we partition Ii as follows.

I≥,odd
i = {odd i′ ≥ i in Ii} I≥,even

i = {even i′ ≥ i in Ii}
I<,odd
i = {odd i′ < i in Ii} I<,even

i = {even i′ < i in Ii}

Our algorithm picks i ∈ [k] uniformly at random, and with probability 1
2 each:

r Define i →= min(I≥,odd
i ∪ I<,even

i)− k and i
→
= min(I≥,even

i ∪ I<,odd
i)− k. For each i′ ∈ Ii do an

oracle query to see whether

a ≥ ζi′ if i′ ∈ I≥,odd
i , b ≥ ζi′ if i′ ∈ I≥,even

i ,

b ≥ ηi′ if i′ ∈ I<,odd
i , a ≥ ηi′ if i′ ∈ I<,even

i .

Consider the greatest i♯ ∈ I≥,odd
i ∪ I<,even

i such that the corresponding oracle query returns 1,

or let i♯ = i →if it does not exist. Consider the greatest i♭ ∈ I≥,even
i ∪ I<,odd

i such that the

corresponding oracle query returns 1, or let i♭ = i
→
if it does not exist. Output 1 if i♯ > i♭, or 0

if i♭ > i♯.
r Define i →= min(I≥,even

i ∪ I<,odd
i)− k and i

→
= min(I≥,odd

i ∪ I<,even
i)− k. For each i′ ∈ Ii do an

oracle query to see whether

b ≥ ηi′ if i′ ∈ I≥,odd
i , a ≥ ηi′ if i′ ∈ I≥,even

i ,

a ≥ ζi′ if i′ ∈ I<,odd
i , b ≥ ζi′ if i′ ∈ I<,even

i .

Consider the greatest i♯ ∈ I≥,even
i ∪ I<,odd

i such that the corresponding oracle query returns 1,

or let i♯ = i →if it does not exist. Consider the greatest i♭ ∈ I≥,odd
i ∪ I<,even

i such that the

corresponding oracle query returns 1, or let i♭ = i
→
if it does not exist. Output 1 if i♯ > i♭, or 0

if i♭ > i♯.

First suppose L(x) = 1. As a special case, if a < η2 (so b < η1) then i♭ = i
→
and so i♯ > i♭ if either

i →> i
→
or i♯ ≥ 1, which happens for k+q+1

2 many i’s in the first bullet (1 and 2, 4, . . . , k − q + 1

and k − q + 2, k − q + 3, . . . , k) and k+q−1
2 many i’s in the second bullet (1, 3, . . . , k − q and

k − q + 2, k − q + 3, . . . , k).
Otherwise, consider the greatest odd j ∈ [k] such that a ≥ ζj and the greatest even j′ ∈ [k]

such that a ≥ ηj′ , and note that j′ ∈ {j − 1, j + 1} since β > α−∆.
Assume the algorithm picks the first bullet. We have i♯ > i♭ if one of the following mutually

exclusive events holds:3

(1) j ∈ I≥,odd
i , since then i♯ = j and i♭ ≤ j − 1 (since b < ζj+1);

(2) i is odd and i ≤ j − q − 1, since then i♯ = i+ q − 1 and trivially i♭ ≤ i+ q − 2;

(3) i is even and j + 1 ≤ i ≤ j′ − q − 1 + k, since then either:
r i ≤ k − q + 1, in which case i♯ = i →> i

→
= i♭, or

3(1) and (4) cannot happen simultaneously, since that would force q = k.

11

r i ≥ k − q + 3, in which case i♯ = i+ q − 1− k and i♭ ≤ i+ q − 2− k;

(4) j′ ∈ I<,even
i , since then i♯ = j′ (since i ≥ j′ + 2) and i♭ ≤ j′ − 1 (since b < ηj′+1).

If j′ > q then there are q many type-(1) i’s (j − q + 1, j − q + 2, . . . , j) and j−q
2 many type-(2) i’s

(1, 3, . . . , j−q−1) and k−j+1
2 many type-(3) i’s (j+1, j+3, . . . , k), so i♯ > i♭ holds for at least k+q+1

2

many i’s. If j′ ≤ q then there are j many type-(1) i’s (1, 2, . . . , j) and k−q+j′−j
2 many type-(3) i’s

(j + 1, j + 3, . . . , j′ − q − 1 + k) and q − j′ many type-(4) i’s (j′ − q + 1 + k, j′ − q + 2 + k, . . . , k),

so i♯ > i♭ holds for at least k+q−j′+j
2 many i’s.

Assume the algorithm picks the second bullet. We have i♯ > i♭ if one of the following mutually
exclusive events holds:3

(1) j′ ∈ I≥,even
i , since then i♯ = j′ and i♭ ≤ j′ − 1 (since b < ηj′+1 if j′ < k);

(2) i is even and i ≤ j′ − q − 1, since then i♯ = i+ q − 1 and trivially i♭ ≤ i+ q − 2;

(3) i is odd and j′ + 1 ≤ i ≤ j − q − 1 + k, since then either:
r i ≤ k − q, in which case i♯ = i →> i

→
= i♭, or

r i = k − q + 2, in which case i♯ = 1 and i♭ = i
→
< 1, or

r i ≥ k − q + 4, in which case i♯ = i+ q − 1− k and i♭ ≤ i+ q − 2− k;

(4) j ∈ I<,odd
i , since then i♯ = j (since i ≥ j + 2) and i♭ ≤ j − 1 (since b < ζj+1).

If j′ > q then there are q many type-(1) i’s (j′ − q+1, j′ − q+2, . . . , j′) and j′−q−1
2 many type-(2)

i’s (2, 4, . . . , j′ − q − 1) and k−j′

2 many type-(3) i’s (j′ + 1, j′ + 3, . . . , k − 1), so i♯ > i♭ holds for at

least k+q−1
2 many i’s. If j′ ≤ q then there are j′ many type-(1) i’s (1, 2, . . . , j′) and k−q+j−j′

2 many
type-(3) i’s (j′+1, j′+3, . . . , j−q−1+k) and q−j many type-(4) i’s (j−q+1+k, j−q+2+k, . . . , k),

so i♯ > i♭ holds for at least k+q−j+j′

2 many i’s.

In summary, out of the 2k possible random outcomes, at least k + q of them result in i♯ > i♭

(at least k+q+1
2 + k+q−1

2 if a < η2 or j′ > q, and at least k+q−j′+j
2 + k+q−j+j′

2 if j′ ≤ q), and hence
the probability of outputting 1 is at least 1

2k (k + q) = 1
2 + 1

2 ·
q
k .

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such that a < ζj, or let j = k + 1 if it
does not exist, and consider the least even j′ ∈ [k] such that a < ηj′ (which exists since a < ηk),
and note that j′ ∈ {j − 1, j + 1} since β > α−∆.

As a special case, if j = 1 then i♯ = i →and so i♭ > i♯ if either i
→
> i →or i♭ ≥ 1, which happens

for k+q−1
2 many i’s in the first bullet (1, 3, . . . , k− q and k− q+2, k− q+3, . . . , k) and k+q+1

2 many
i’s in the second bullet (1 and 2, 4, . . . , k− q+1 and k− q+2, k− q+3, . . . , k). Otherwise, assume
j > 1.

Assume the algorithm picks the first bullet. We have i♭ > i♯ if one of the following mutually
exclusive events holds:3

(1) j − 1 ∈ I≥,even
i , since then i♯ ≤ j − 2 and i♭ ≥ j − 1 (since b > ζj−1 if j > 1);

(2) i is even and i ≤ j − q − 2, since then i♯ = i+ q − 2 and i♭ = i+ q − 1;

(3) i is odd and j ≤ i ≤ j′ − q − 2 + k, since then either:
r i ≤ k − q, in which case i♯ = i →< i

→
≤ i♭, or

r i = k − q + 2, in which case i♯ = i →< 1 and i♭ ≥ 1, or
r i ≥ k − q + 4, in which case i♯ = i+ q − 2− k and i♭ ≥ i+ q − 1− k;

(4) j′ − 1 ∈ I<,odd
i , since then i♯ ≤ j′ − 2 (since i ≥ j′ + 1) and i♭ ≥ j′ − 1 (since b > ηj′−1).

12

If j > q then there are q many type-(1) i’s (j − q, j − q+1, . . . , j − 1) and j−q−2
2 many type-(2) i’s

(2, 4, . . . , j − q − 2) and k−j+1
2 many type-(3) i’s (j, j + 2, . . . , k − 1), so i♭ > i♯ holds for at least

k+q−1
2 many i’s. If j ≤ q then there are j− 1 many type-(1) i’s (1, 2, . . . , j − 1) and k−q+j′−j

2 many
type-(3) i’s (j, j+2, . . . , j′−q−2+k) and q−j′+1 many type-(4) i’s (j′−q+k, j′−q+1+k, . . . , k),

so i♭ > i♯ holds for at least k+q−j′+j
2 many i’s.

Assume the algorithm picks the second bullet. We have i♭ > i♯ if one of the following mutually
exclusive events holds:3

(1) j′ − 1 ∈ I≥,odd
i , since then i♯ ≤ j′ − 2 and i♭ ≥ j′ − 1 (since b > ηj′−1);

(2) i is odd and i ≤ j′ − q − 2, since then i♯ = i+ q − 2 and i♭ = i+ q − 1;

(3) i is even and j′ ≤ i ≤ j − q − 2 + k, since then either:
r i ≤ k − q + 1, in which case i♯ = i →< i

→
≤ i♭, or

r i ≥ k − q + 3, in which case i♯ = i+ q − 2− k and i♭ ≥ i+ q − 1− k;

(4) j − 1 ∈ I<,even
i , since then i♯ = j − 2 (since i ≥ j + 1) and i♭ ≥ j − 1 (since b > ζj−1).

If j > q then there are q many type-(1) i’s (j′ − q, j′ − q + 1, . . . , j′ − 1) and j′−q−1
2 many type-(2)

i’s (1, 3, . . . , j′ − q − 2) and k−j′+2
2 many type-(3) i’s (j′, j′ + 2, . . . , k), so i♭ > i♯ holds for at least

k+q+1
2 many i’s. If j ≤ q then there are j′−1 many type-(1) i’s (1, 2, . . . , j′−1) and k−q+j−j′

2 many
type-(3) i’s (j′, j′+2, . . . , j−q−2+k) and q−j+1 many type-(4) i’s (j−q+k, j−q+1+k, . . . , k),

so i♭ > i♯ holds for at least k+q−j+j′

2 many i’s.

In summary, out of the 2k possible random outcomes, at least k + q of them result in i♭ > i♯

(at least k+q−1
2 + k+q+1

2 if j = 1 or j > q, and at least k+q−j′+j
2 + k+q−j+j′

2 if j ≤ q), and hence the
probability of outputting 0 is at least 1

2k (k + q) = 1
2 +

1
2 ·

q
k .

If q is odd and β ≤ α−∆: We can reduce this case back to (i). Specifically, for i ∈ [k− 1] we
define γi = (i− k

2)∆ (where ∆ = 1
2 · 1

k+1) and use the algorithm from § 3.1.3 with the odd number

k− 1 in place of k. Note that β ≤ α−∆ ensures β ≤ k
2∆ (since α+β = 1

2) and thus β− γk−1 ≤ ∆
and γ1− (−β) ≤ ∆, which is all that is needed for the analysis to go through. Thus we can achieve
advantage q

k−1 , which is even better than q
k .

3.2 Separations

The relativized separations follow from the corresponding decision tree complexity separations:

(iii) If q, k are even: BPP
NP[1]dt
1/(k−1) 6⊆ BPP

NP‖[q]dt
>q/k .

(iv) If q is odd: BPP
NP[1]dt
1/k 6⊆ BPP

NP‖[q]dt
>q/k .

We prove (iii) in § 3.2.1 and (iv) in § 3.2.2; the arguments are similar in structure. Our proof of
(iv) also works if q is even, but in that case the result is subsumed by (iii). The case q = 1, k = 2
of (iv) was proven in [Wat20], but our proof is somewhat different even specialized to that case.

For completeness, in § 3.2.3 we explain the standard argument for translating these decision tree
separations into relativized separations for the corresponding time-bounded complexity classes. See
[Ver99] for a general discussion of this phenomenon.

Let wt(·) refer to Hamming weight. Henceforth fix the constants q and k, and assume q < k
since otherwise there is nothing to prove.

13

3.2.1 Proof of (iii)

Define the partial function f : {0, 1}n → {0, 1} that interprets its input as (x, y) ∈ {0, 1}n/2 ×
{0, 1}n/2, such that

f(x, y) =

{

1 if wt(x) = wt(y) + 1 ≤ k
2

0 if wt(x) = wt(y) ≤ k
2 − 1

.

Lemma 1. BPP
NP[1]dt
1/(k−1)(f) ≤ k

2 .

Lemma 2. BPP
NP‖[q]dt
q/k+δ (f) ≥ Ω(δn) for every δ(n).

The separation follows by taking δ = log−c n for any constant c.

Proof of Lemma 1. Given (x, y), pick one of these k − 1 possibilities uniformly at random:

r for some i ∈ [k2]: output 1 iff wt(x) ≥ i,
r for some i ∈ [k2 − 1]: output 0 iff wt(y) ≥ i.

The decision tree does not directly query any bits of (x, y), and the DNF has width i ≤ k
2 (it

is the or over all i-subsets of either x’s bits or y’s bits, of the and of those bits), so the cost
is k

2 . If f(x, y) = 1 with wt(x) = j and wt(y) = j − 1, then the probability of outputting 1

is j+((k/2−1)−(j−1))
k−1 = 1

2 + 1
2 · 1

k−1 since conditioned on picking x, the output is 1 iff i ≤ j, and
conditioned on picking y, the output is 1 iff i ≥ j. Similarly, if f(x, y) = 0 with wt(x) = wt(y) = j,

then the probability of outputting 1 is j+((k/2−1)−j)
k−1 = 1

2 − 1
2 · 1

k−1 .

Proof of Lemma 2. By the minimax principle, it suffices to show that for some distribution on
valid inputs (x, y) to f , every cost-o(δn) PNP‖[q]-type decision tree T has advantage < q

k + δ over
a random input. Let T (x, y) denote the output produced after T receives the answers to its DNF
queries. Let u be the leaf reached after seeing only 0’s, and say u is labeled with DNFs (ϕ1, . . . , ϕq)
and function out : {0, 1}q → {0, 1} (so if (x, y) leads to u then T (x, y) = out(ϕ1(x, y), . . . , ϕq(x, y))).

We generate the distribution on valid inputs (x, y) as follows. Let v0 = w0 ∈ {0, 1}n/2 be the
all-0 string, and for i = 1, . . . , k2 obtain vi by flipping a uniformly random 0 of vi−1 to a 1, and

for i = 1, . . . , k2 − 1 obtain wi by flipping a uniformly random 0 of wi−1 to a 1. Pick a uniformly

random j ∈ [k2], and then let (x, y) be either the 1-input (vj , wj−1) or the 0-input (vj−1, wj−1) with
probability 1

2 each.

Let v denote (v0, . . . , vk/2) and w denote (w0, . . . , wk/2−1), and call (v,w) good iff:

r for each j ∈ [k2]: both inputs (vj , wj−1) and (vj−1, wj−1) lead to u, and
r for each j ∈ [k2] and each i ∈ [q]: ϕi(v

j , wj−1) ≥ ϕi(v
j−1, wj−1) ≥ ϕi(v

j−1, wj−2)
(the latter inequality is only required if j > 1).

We claim that

(1) P[(v,w) is bad] < δ
2 , and

(2) P
[

T (x, y) = f(x, y)
∣

∣ (v,w) is good
]

≤ 1
2 + 1

2 ·
q
k ,

from which it follows that

P[T (x, y) = f(x, y)] ≤ P
[

T (x, y) = f(x, y)
∣

∣ (v,w) is good
]

+ P[(v,w) is bad] < 1
2 +

1
2(

q
k + δ).

14

We argue claim (1). Since the path to u queries o(δn) locations, with probability ≥ 1− o(kδ) >
1 − δ

4 each of the 1’s placed throughout v and w avoids these locations, in which case the first
bullet holds in the definition of good. Fixing j and i in the second bullet, if we condition on
ϕi(v

j−1, wj−1) = 1 and choose an arbitrary term of ϕi that accepts (vj−1, wj−1), then since the
term has width o(δn), with probability ≥ 1−o(δ) the 1 that is placed to obtain vj from vj−1 avoids
this term, in which case the term continues to accept (vj , wj−1) and so ϕi(v

j , wj−1) = 1. Thus
P
[

ϕi(v
j , wj−1) ≥ ϕi(v

j−1, wj−1)
]

≥ P
[

ϕi(v
j , wj−1) = 1

∣

∣ϕi(v
j−1, wj−1) = 1

]

≥ 1 − o(δ). Similarly,
P
[

ϕi(v
j−1, wj−1) ≥ ϕi(v

j−1, wj−2)
]

≥ 1− o(δ). A union bound over j and i shows that the second

bullet holds with probability ≥ 1 − o(kqδ) > 1 − δ
4 , so finally the two bullets hold simultaneously

with probability > 1− δ
2 .

We argue claim (2). Condition on any particular good (v,w). We abbreviate the q-tuple
(ϕ1(x, y), . . . , ϕq(x, y)) as ϕ(x, y) ∈ {0, 1}q . Consider the sequence of k inputs (v0, w0), (v1, w0),
(v1, w1), (v2, w1), . . . (like climbing a ladder but placing both feet on each rung). Each of these
possibilities for (x, y) leads to u and thus T (x, y) = out(ϕ(x, y)). Also, the corresponding sequence
of ϕ(x, y)’s is monotonically nondecreasing in each of the q coordinates. Thus the sequence of
inputs can be partitioned into segments of lengths say ℓ0, ℓ1, . . . , ℓq (which sum to k) such that for
the first ℓ0 (x, y)’s in the sequence, ϕ(x, y) has weight 0 (hence T (x, y) is the same), and for the
next ℓ1 (x, y)’s in the sequence, ϕ(x, y) is the same weight-1 string (hence T (x, y) is the same), and
so on. Since each segment alternates between 0-inputs and 1-inputs of f , we have T (x, y) = f(x, y)
for at most

⌈

ℓi
2

⌉

≤ ℓi+1
2 inputs in the ith segment.

Thus, out of the k possibilities for (x, y) given (v,w), at most
∑q

i=0
ℓi+1
2 = k

2 + q+1
2 are such

that T (x, y) = f(x, y). This implies that P
[

T (x, y) = f(x, y)
∣

∣ (v,w) is good
]

≤ 1
2 + 1

2 · q+1
k , which

is almost what we want. This issue can be fixed by observing that since k is even and q + 1 (the
number of segments) is odd, at least one segment must have even length, in which case

⌈

ℓi
2

⌉

= ℓi
2 .

Thus, out of the k possibilities for (x, y) given (v,w), T (x, y) = f(x, y) holds for at most k
2 + q

2 of
them, which gives (2).

3.2.2 Proof of (iv)

Define the partial function f : {0, 1}n → {0, 1} that interprets its input as (x, y) ∈ {0, 1}n/2 ×
{0, 1}n/2, such that

f(x, y) =

{

1 if wt(x) = wt(y) + 1 ≤ k

0 if wt(y) = wt(x) + 1 ≤ k
.

Lemma 3. BPP
NP[1]dt
1/k (f) ≤ k.

Lemma 4. BPP
NP‖[q]dt
q/k+δ (f) ≥ Ω(δn) for every δ(n).

The separation follows by taking δ = log−c n for any constant c.

Proof of Lemma 3. Given (x, y), pick one of these 2k possibilities uniformly at random:

r for some i ∈ [k]: output 1 iff wt(x) ≥ i,
r for some i ∈ [k]: output 0 iff wt(y) ≥ i.

The decision tree does not directly query any bits of (x, y), and the DNF has width i ≤ k (it
is the or over all i-subsets of either x’s bits or y’s bits, of the and of those bits), so the cost
is k. If f(x, y) = 1 with wt(x) = j and wt(y) = j − 1, then the probability of outputting 1 is

15

j+(k−(j−1))
2k = 1

2 +
1
2 · 1

k since conditioned on picking x, the output is 1 iff i ≤ j, and conditioned on
picking y, the output is 1 iff i ≥ j. The correctness argument is analogous if f(x, y) = 0.

Proof of Lemma 4. By the minimax principle, it suffices to show that for some distribution on
valid inputs (x, y) to f , every cost-o(δn) PNP‖[q]-type decision tree T has advantage < q

k + δ over
a random input. Let T (x, y) denote the output produced after T receives the answers to its DNF
queries. Let u be the leaf reached after seeing only 0’s, and say u is labeled with DNFs (ϕ1, . . . , ϕq)
and function out : {0, 1}q → {0, 1} (so if (x, y) leads to u then T (x, y) = out(ϕ1(x, y), . . . , ϕq(x, y))).

We generate the distribution on valid inputs (x, y) as follows. Let v0 = w0 ∈ {0, 1}n/2 be the
all-0 string, and for i = 1, . . . , k obtain vi by flipping a uniformly random 0 of vi−1 to a 1, and
obtain wi by flipping a uniformly random 0 of wi−1 to a 1. Pick a uniformly random j ∈ [k], and
then let (x, y) be either the 1-input (vj , wj−1) or the 0-input (vj−1, wj) with probability 1

2 each.
Let v denote (v0, . . . , vk) and w denote (w0, . . . , wk), and call (v,w) good iff:

r for each j ∈ [k]: both inputs (vj , wj−1) and (vj−1, wj) lead to u, and
r for each j ∈ [k − 1] and each i ∈ [q]: ϕi(v

j , wj+1) ≥ ϕi(v
j , wj−1) and

ϕi(v
j+1, wj) ≥ ϕi(v

j−1, wj).

We claim that

(1) P[(v,w) is bad] < δ
2 , and

(2) P
[

T (x, y) = f(x, y)
∣

∣ (v,w) is good
]

≤ 1
2 + 1

2 ·
q
k ,

from which it follows that

P[T (x, y) = f(x, y)] ≤ P
[

T (x, y) = f(x, y)
∣

∣ (v,w) is good
]

+ P[(v,w) is bad] < 1
2 +

1
2(

q
k + δ).

We argue claim (1). Since the path to u queries o(δn) locations, with probability ≥ 1− o(kδ) >
1 − δ

4 each of the 1’s placed throughout v and w avoids these locations, in which case the first
bullet holds in the definition of good. Fixing j and i in the second bullet, if we condition on
ϕi(v

j , wj−1) = 1 and choose an arbitrary term of ϕi that accepts (vj , wj−1), then since the term
has width o(δn), with probability ≥ 1 − o(δ) both of the 1’s placed to obtain wj+1 from wj−1

avoid this term, in which case the term continues to accept (vj , wj+1) and so ϕi(v
j , wj+1) = 1.

Thus P
[

ϕi(v
j , wj+1) ≥ ϕi(v

j , wj−1)
]

≥ P
[

ϕi(v
j , wj+1) = 1

∣

∣ϕi(v
j , wj−1) = 1

]

≥ 1− o(δ). Similarly,
P
[

ϕi(v
j+1, wj) ≥ ϕi(v

j−1, wj)
]

≥ 1−o(δ). A union bound over j and i shows that the second bullet

holds with probability ≥ 1 − o(kqδ) > 1 − δ
4 , so finally the two bullets hold simultaneously with

probability > 1− δ
2 .

We argue claim (2). Condition on any particular good (v,w). We abbreviate the q-tuple
(ϕ1(x, y), . . . , ϕq(x, y)) as ϕ(x, y) ∈ {0, 1}q . Consider the sequence of k inputs (v1, w0), (v1, w2),
(v3, w2), (v3, w4), . . . (climbing the ladder starting with the left foot). Each of these possibilities
for (x, y) leads to u and thus T (x, y) = out(ϕ(x, y)). Also, the corresponding sequence of ϕ(x, y)’s
is monotonically nondecreasing in each of the q coordinates. Thus the sequence of inputs can be
partitioned into segments of lengths say ℓ0, ℓ1, . . . , ℓq (which sum to k) such that for the first ℓ0
(x, y)’s in the sequence, ϕ(x, y) has weight 0 (hence T (x, y) is the same), and for the next ℓ1 (x, y)’s
in the sequence, ϕ(x, y) is the same weight-1 string (hence T (x, y) is the same), and so on. Since
each segment alternates between 0-inputs and 1-inputs of f , we have T (x, y) = f(x, y) for at most
⌈

ℓi
2

⌉

≤ ℓi+1
2 inputs in the ith segment.

Similarly, the sequence of k inputs (v0, w1), (v2, w1), (v2, w3), (v4, w3), . . . (climbing the ladder
starting with the right foot) can be partitioned into segments of lengths say ℓ′0, ℓ

′
1, . . . , ℓ

′
q such that

16

T (x, y) = f(x, y) for at most
ℓ′i+1
2 inputs in the ith segment. Thus, out of the 2k possibilities for

(x, y) given (v,w), at most
∑q

i=0

(

ℓi+1
2 +

ℓ′i+1
2

)

= k + q + 1 are such that T (x, y) = f(x, y). This

implies that P
[

T (x, y) = f(x, y)
∣

∣ (v,w) is good
]

≤ 1
2 + 1

2 ·
q+1
k , which is almost what we want.

This issue can be fixed using the following observation. Since there is only one string in {0, 1}q of
weight 0, T (x, y) must actually be the same for all ℓ0+ℓ′0 inputs in the union of the 0th segments from
the two sequences. Since the number of 0-inputs and the number of 1-inputs in this union differ by at

most 1, we have T (x, y) = f(x, y) for at most
ℓ0+ℓ′0+1

2 of these inputs. Now, out of the 2k possibilities

for (x, y) given (v,w), T (x, y) = f(x, y) holds for at most
ℓ0+ℓ′0+1

2 +
∑q

i=1

(

ℓi+1
2 +

ℓ′i+1
2

)

= k+ q+ 1
2

of them. Since this count is an integer, it is in fact at most k + q, which gives (2). (Alternatively,
the +1

2 can be removed using a similar observation for the qth segments.)

3.2.3 Decision tree separations imply relativized separations

To illustrate this, we just consider the case q = 1, k = 2, but exactly the same approach works for
all cases, as well as for the separations in Theorem 2 and Theorem 3.

We showed that BPP
NP[1]dt
1/2 6⊆ BPP

NP[1]dt
>1/2 . Now we explain how to construct an oracle language

O : {0, 1}∗ → {0, 1} such that
(

BPP
NP[1]
1/2

)O 6⊆
(

BPP
NP[1]
>1/2

)O
. For all even N , let fN : {0, 1}N → {0, 1}

be the partial function from § 3.2.2 with

fN ∈ BPP
NP[1]dt
1/2 and fN 6∈ BPP

NP[1]dt

1/2+log−c N
for every constant c.

For any O : {0, 1}∗ → {0, 1}, let On : {0, 1}n → {0, 1} be its restriction to input length n, and also
interpret this truth table as a bit string On ∈ {0, 1}N of length N = 2n indexed by the elements of
{0, 1}n. Say that O is valid iff On is a valid input to fN for every n. For any valid O, define the
unary language LO : {1}∗ → {0, 1} by LO(1

n) = fN (On). We claim that

∀O : LO ∈
(

BPP
NP[1]
1/2

)O
and ∃O : LO 6∈

(

BPP
NP[1]
1/2+n−c

)O
for every constant c

where the quantifiers are over valid O.

To see LO ∈
(

BPP
NP[1]
1/2

)O
, note that an algorithm for LO on input 1n can run the BPP

NP[1]
1/2 -

type decision tree for fN (from the proof of Lemma 3) on input On: Denoting the halves of On as
(x, y) ∈ {0, 1}N/2 × {0, 1}N/2, pick one of these 4 possibilities uniformly at random:

r ask the NPO oracle whether wt(x) ≥ 1, and output the same answer
r ask the NPO oracle whether wt(x) ≥ 2, and output the same answer
r ask the NPO oracle whether wt(y) ≥ 1, and output the opposite answer
r ask the NPO oracle whether wt(y) ≥ 2, and output the opposite answer

To achieve LO 6∈
(

BPP
NP[1]
1/2+n−c

)O
for every constant c, we design a valid O such that for every

polynomial-time randomized algorithm M , every polynomial-time nondeterministic algorithm M ′,
and every constant c, LO is not solved with advantage 1

2 +n−c by running M with oracle access to
O and one query to the language decided by M ′ with oracle access to O.

We enumerate the (M,M ′, c) triples in an arbitrary order, defining On for various input lengths
n as we go along (finitely many at a time). For each (M,M ′, c), we select some n such that On has
not been defined yet, and we use it to diagonalize against (M,M ′, c). For all n′ 6= n such that On′

has not been defined yet but running M(1n) with M ′ (for the NPO oracle) might cause a query to
a bit of On′ , we define On′ to be an arbitrary valid input to fN ′ (where N ′ = 2n

′

). Now when we

17

run M(1n) with M ′, both algorithms have oracle access to the bits of On, and all other bits of O
they might access have already been fixed.

We claim that if M(1n) with M ′ outputs fN(On) with advantage 1
2 +n−c for all valid On, then

we can turn the computation into a BPP
NP[1]
1/2+n−c-type decision tree for fN : First the decision tree

samples the same random string as M does. Then it adaptively queries bits of On as M does.
Then when M produces z and out, the decision tree uses the same out and forms a DNF ϕ which
evaluates M ′(z) as a function of On—for each possible witness, the computation of M ′(z) is a
deterministic decision tree that queries bits of On, and it is a standard fact that the disjunction of
these trees (over all possible witnesses) can be expressed as a DNF. (Each term in ϕ corresponds to
a root-to-leaf path that outputs 1 in one of these trees. Each positive literal is a query M ′ makes
to On that returns 1, and each negative literal is a query M ′ makes to On that returns 0.)

Since M and M ′ run in time poly(n), this BPP
NP[1]
1/2+n−c-type decision tree would have cost

polylog(N), but Lemma 4 says such a tree must have cost Ω(N/ logcN), which is a contradiction
if n is large enough. Thus there exists an On such that M(1n) with M ′ fails to compute LO(1

n) =
fN (On) with advantage 1

2 +n−c. We fix this choice of On and move on to the next triple (M,M ′, c).

4 One-sided error

We now prove Theorem 2, restated here for convenience.

Theorem 2 (One-sided error, restated).

(i) RP
NP[1]
>1/2 ⊆ RP

NP[1]
1> .

(ii) RP
NP[1]
>0 ⊆ RP

NP[1]
1/2 ∩ RP

NP‖[2]
1> .

(iii) RP
NP[1]
1/2 6⊆ RP

NP[1]
>1/2 relative to an oracle.

We prove the inclusions (i) and (ii) in § 4.1 and the separation (iii) in § 4.2.

4.1 Inclusions

We prove (i) in § 4.1.1 and (ii) in § 4.1.2.

4.1.1 Proof of (i)

For some constant c we have L ∈ RP
NP[1]
1/2+n−c , witnessed by a polynomial-time randomized algorithm

M (taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP. For an arbitrary constant

d, we wish to show L ∈ RP
NP[1]

1−2−nd .

Fix an input x. The first step is to sample a sequence of m = O(n2c+d) many independent

strings s1, . . . , sm ∈ {0, 1}r , so if L(x) = 1 then with probability ≥ 1 − 2−nd
, the sequence is good

in the sense that on input x, M still has advantage strictly greater than 1
2 when its coin tosses are

chosen uniformly from the multiset {s1, . . . , sm}. Then we design a polynomial-time deterministic
algorithm which, given s1, . . . , sm, makes one NP oracle query and outputs 1 if L(x) = 1 and
s1, . . . , sm is good, and outputs 0 if L(x) = 0. Hence, over the random s1, . . . , sm,

P[output is 1]

{

≥ P[s1, . . . , sm is good] ≥ 1− 2−nd
if L(x) = 1

= 0 if L(x) = 0
.

18

Henceforth fix a sequence s1, . . . , sm, and let zh and outh : {0, 1} → {0, 1} be the query string
and truth table produced by Msh(x) (so the output is out h(L′(zh))). We assume w.l.o.g. that outh

is nonconstant, and is hence either identity or negation.
If identity is more common among out 1, . . . , outm, then our algorithm makes an NP oracle

query to test whether there exists an h such that outh = id and L′(zh) = 1, and outputs 1 if so
and 0 otherwise. If L(x) = 1 and s1, . . . , sm is good, then there must exist such an h (since the
set of h’s for which Msh(x) outputs 1 has size > m

2 and so must intersect the set of h’s for which
outh = id). If L(x) = 0 then there is no such h (since otherwise M(x) would output 1 with positive
probability).

If negation is at least as common as identity among out 1, . . . , outm, then our algorithm makes
an NP oracle query to test whether there does not exist an h such that outh = neg and L′(zh) = 0
(a witness for the nonexistence of such an h consists of a witness for L′(zh) = 1 for each h such
that out h = neg), and outputs 0 if so and 1 otherwise. If L(x) = 1 and s1, . . . , sm is good, then
there must exist such an h (since the set of h’s for which Msh(x) outputs 1 has size > m

2 and so
must intersect the set of h’s for which out h = neg). If L(x) = 0 then there is no such h (since
otherwise M(x) would output 1 with positive probability).

4.1.2 Proof of (ii)

Let q ∈ {1, 2}. We show RP
NP[1]
>0 ⊆ RP

NP‖[q]
q/2> (the argument is very similar to (i)), then later we

show how to strengthen the q = 1 case using a trick from [CP08].

For some constant c we have L ∈ RP
NP[1]
n−c , witnessed by a polynomial-time randomized algorithm

M (taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP. For an arbitrary constant

d, we wish to show L ∈ RP
NP‖[q]
q/2−2−nd .

Fix an input x. The first step is to sample a sequence of m = O(nc+d) many independent strings

s1, . . . , sm ∈ {0, 1}r , so if L(x) = 1 then with probability ≥ 1 − 2−nd
, the sequence is good in the

sense that M still has advantage strictly greater than 0 when its coin tosses are chosen uniformly
from the multiset {s1, . . . , sm}. Then we design a polynomial-time randomized algorithm which,
given s1, . . . , sm, makes q nonadaptive NP oracle queries and outputs 1 with probability ≥ q

2 if
L(x) = 1 and s1, . . . , sm is good, and always outputs 0 if L(x) = 0. Hence, over the random
s1, . . . , sm and the other randomness of our algorithm,

P[output is 1]

{

≥ P[s1, . . . , sm is good] · q
2 ≥ q

2 − 2−nd
if L(x) = 1

= 0 if L(x) = 0
.

Henceforth fix a sequence s1, . . . , sm, and let zh and outh : {0, 1} → {0, 1} be the query string
and truth table produced by Msh(x) (so the output is out h(L′(zh))). We assume w.l.o.g. that outh

is nonconstant, and is hence either identity or negation.
If q = 2 then our algorithm does the “id” NP oracle query (∃h : outh = id and L′(zh) = 1 ?)

and the “neg” NP oracle query (¬∃h : outh = neg and L′(zh) = 0 ?). These two queries tell us
whether there exists an h for which Msh(x) outputs 1 (which is the case if L(x) = 1 and s1, . . . , sm

is good), so we output 1 if so and 0 otherwise.
If q = 1 then our algorithm picks one of the two queries with probability 1

2 each, and outputs 1
iff the result of that query indicates the existence of an h for which Msh(x) outputs 1. If L(x) = 1
and s1, . . . , sm is good, then at least one of the two queries will cause us to output 1.

To strengthen the q = 1 result to RP
NP[1]
>0 ⊆ RP

NP[1]
1/2

, suppose the bit length of witnesses for L′

is nb, and then use d = b+1 and consider the following algorithm: Pick uniformly random h ∈ [m]

19

and w ∈ {0, 1}nb
; if outh = id and w witnesses L′(zh) = 1, then output 1, otherwise do the “id”

query with probability 1
2 − 2−nd

and do the “neg” query with probability 1
2 + 2−nd

(and output 1
iff the query indicates the existence of an h for which Msh(x) outputs 1). If L(x) = 0, then this
still always outputs 0. If L(x) = 1 and s1, . . . , sm is good, then at least one of the following holds.

r There is an h with outh = id and L′(zh) = 1, in which case we find one with probability

≥ 1
m · 2−nb ≥ 2−nd+2 in the first phase, and thus output 1 with probability ≥ 2−nd+2 + (1 −

2−nd+2)(12 − 2−nd
) ≥ 1

2 + 2−nd
because of the “id” query.

r There is an h with outh = neg and L′(zh) = 0, in which case we output 1 with probability

≥ 1
2 + 2−nd

because of the “neg” query.

Either way, overall we have P[output is 1] ≥ P[s1, . . . , sm is good] · (12 + 2−nd
) ≥ 1

2 if L(x) = 1.

4.2 Separation: Proof of (iii)

We prove the corresponding decision tree complexity separation RP
NP[1]dt
1/2 6⊆ RP

NP[1]dt
>1/2 ; the rela-

tivized separation follows routinely from this by the same approach as in § 3.2.3.
Let wt(·) refer to Hamming weight. Define the partial function f : {0, 1}n → {0, 1} that inter-

prets its input as (x, y) ∈ {0, 1}n/2 × {0, 1}n/2, such that

f(x, y) =

{

1 if wt(x) = wt(y) ≤ 1

0 if wt(x) = 0 and wt(y) = 1
.

Lemma 5. RP
NP[1]dt
1/2 (f) ≤ 1.

Lemma 6. RP
NP[1]dt
1/2+δ (f) ≥ Ω(δn) for every δ(n).

The separation follows by taking δ = log−c n for any constant c.

Proof of Lemma 5. Given (x, y):

r with probability 1
2 , output 1 iff wt(x) ≥ 1,

r with probability 1
2 , output 0 iff wt(y) ≥ 1.

This has cost 1 (since the or function is a width-1 DNF), and it outputs 1 with probability 1
2 if

f(x, y) = 1 and with probability 0 if f(x, y) = 0.

Proof of Lemma 6. By the minimax principle, it suffices to show that for some distribution on 1-
inputs (x, y) to f , every cost-o(δn) PNP[1]-type decision tree T has either P[T (x, y) = 1] < 1

2 + δ
over this distribution or T (x, y) = 1 for some 0-input (x, y), where T (x, y) denotes the output
produced after T receives the answer to its DNF query. Let u be the leaf reached after seeing only
0’s, and say u is labeled with DNF ϕ and function out : {0, 1} → {0, 1} (so if (x, y) leads to u then
T (x, y) = out(ϕ(x, y))). W.l.o.g., out is nonconstant and ϕ contains no terms with multiple positive
literals from x or from y, since such terms would never accept a valid input to f .

We generate the distribution on 1-inputs (x, y) as follows. With probability 1
2 let x = y = 0n/2,

and with probability 1
2 let x and y be independent uniformly random weight-1 strings. If out = id

then either ϕ has a term with no positive literals, in which case some 0-input leads to u and is
accepted by ϕ, or every term has a positive literal, in which case 0n leads to u and is rejected by ϕ

20

and so P[T (x, y) = 1] ≤ P[(x, y) 6= 0n] = 1
2 < 1

2 + δ. Now assume out = neg and there is no 0-input

that leads to u and is rejected by ϕ. Note that if a 0-input (0n/2, y) leads to u and we choose an
arbitrary term of ϕ that accepts (0n/2, y), then with probability ≥ 1 − o(δ) the 1 that is placed
in a uniformly random weight-1 x avoids both this term and all the bits queried on the path to
u, in which case (x, y) continues to lead to u and be accepted by that term and hence by ϕ, so
T (x, y) = 0. Thus,

P[T (x, y) = 1] ≤ 1
2 + 1

2P
[

T (x, y) = 1
∣

∣ wt(x) = wt(y) = 1
]

≤ 1
2 + 1

2

(

P
[

(0n/2, y) does not lead to u
∣

∣ wt(y) = 1
]

+

P
[

T (x, y) = 1
∣

∣ wt(x) = wt(y) = 1 and (0n/2, y) leads to u
])

≤ 1
2 + 1

2(o(δ) + o(δ)) < 1
2 + δ.

5 Zero-sided error

We now prove Theorem 3, restated here for convenience.

Theorem 3 (Zero-sided error, restated). For integers 1 ≤ q ≤ k ≤ 4:

(i) If k = 4: ZPP
NP[1]
>0 ⊆ ZPP

NP‖[q]
q/k>

.

(ii) If k ≤ 3: ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP‖[q]
q/k> .

(iii) ZPP
NP[1]
1/k 6⊆ ZPP

NP[1]
>1/k relative to an oracle.

Moreover, the “q/k>” in the inclusion subscripts can be improved to “q/k” if q < k and k ≥ 3.

We prove the inclusions (i) and (ii) in § 5.1 and the separations (iii) in § 5.2.

5.1 Inclusions

Straightforwardly generalizing the proof of ZPP
NP[1]
>0 ⊆ ZPP

NP[1]
1/4 in [CP08] yields (i), but we take

a different tack by showing in § 5.1.1 that (i) follows directly from Theorem 2. We prove (ii) from
first principles in § 5.1.2; our proof for the case k = 1 is equivalent to the one in [CP08], but we
include it for completeness.

5.1.1 Proof of (i)

Let L ∈ ZPP
NP[1]
>0 ⊆ RP

NP[1]
>0 . By Theorem 2 and closure of ZPP

NP[1]
>0 under complement,

L ∈ RP
NP[1]
1/2 by some algorithm M1, L ∈ RP

NP‖[2]
1> by some algorithm M2,

L ∈ RP
NP[1]
1/2 by some algorithm M 1, L ∈ RP

NP‖[2]
1> by some algorithm M 2.

We let each of these four M -algorithms refer to the entire computation, including the NP oracle
queries, which we elide for convenience. (Note that M i does not mean “complement of M i”—it is a

different algorithm.) We assume M2 and M 2 have advantage ≥ 1− 2−nd
for an arbitrary constant

d. Furthermore, we assume all four algorithms have been modified to output ⊥ instead of 0, and
M 1 and M 2 have been modified to output 0 instead of 1.

If q = 1: L ∈ ZPP
NP[1]
1/4 by running M1 or M 1 with probability 1

2 each.

21

If q = 2: L ∈ ZPP
NP‖[2]
1/2 by running M1 and M 1, and if one of them outputs a bit, outputting

that bit or ⊥ otherwise.

If q = 4: L ∈ ZPP
NP‖[4]
1> by running M2 and M 2, and if one of them outputs a bit, outputting

that bit or ⊥ otherwise.

If q = 3: L ∈ ZPP
NP‖[3]
3/4> by running M1 and M 2 with probability 1

2 , or M2 and M 1 with prob-

ability 1
2 , and if one of them outputs a bit, outputting that bit or ⊥ otherwise. This

falls slightly short of our promise of showing L ∈ ZPP
NP‖[3]
3/4 , but that can be fixed by

noting that the proof of Theorem 2 actually shows that M1 and M 1 can have advantage
≥ 1

2 + 2−ne
for some constant e depending on L. Then taking d ≥ e ensures we get

advantage ≥ 1
2

(

1
2 + 2−ne)

+ 1
2

(

1− 2−nd) ≥ 3
4 .

5.1.2 Proof of (ii)

We just prove ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP‖[q]
q/k> ; the “moreover” part follows by exactly the same trick (due

to [CP08]) for strengthening RP
NP[1]
>0 ⊆ RP

NP[1]
1/2> to RP

NP[1]
>0 ⊆ RP

NP[1]
1/2 , which is described in § 4.1.2.

For some constant c we have L ∈ ZPP
NP[1]
1/(k+1)+n−c , witnessed by a polynomial-time randomized

algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a language L′ ∈ NP. For an arbitrary

constant d, we wish to show L ∈ ZPP
NP‖[q]
q/k−2−nd .

Fix an input x. The first step is to sample a sequence of m = O(n2c+d) many independent

strings s1, . . . , sm ∈ {0, 1}r , so with probability ≥ 1− 2−nd
, the sequence is good in the sense that

on input x, M still has advantage strictly greater than 1
k+1 when its coin tosses are chosen uniformly

from the multiset {s1, . . . , sm}. Then we design a polynomial-time randomized algorithm which,
given a good sequence, outputs L(x) with probability ≥ q

k after making q nonadaptive NP oracle
queries, and which has zero-sided error for all sequences (good and bad). Hence, over the random
s1, . . . , sm and the other randomness of our algorithm,

P[output is L(x)] ≥ P
[

output is L(x)
∣

∣ s1, . . . , sm is good
]

− P[s1, . . . , sm is bad] ≥ q
k − 2−nd

.

Henceforth fix a good sequence s1, . . . , sm, and let zh and outh : {0, 1} → {0, 1,⊥} be the query
string and truth table produced by Msh(x) (so the output is outh(L′(zh))). We assume w.l.o.g. that
outh is nonconstant. If there is an h such that out h ∈ {id, neg}, then our algorithm simply uses
the NP oracle to evaluate L′(zh) and then outputs outh(L′(zh)) = L(x). Otherwise, each outh is
one of the four functions outab (for ab ∈ {0, 1}2) that maps a to b and 1− a to ⊥:

out00 out01 out10 out11
0 0 1 ⊥ ⊥
1 ⊥ ⊥ 0 1

Now [m] is partitioned into four sets H00∪H01∪H10 ∪H11 where Hab = {h ∈ [m] : outh = outab}.
Let H = {h ∈ [m] : Msh(x) outputs L(x)} and note that |H| > m

k+1 by the assumption that

s1, . . . , sm is good. If h ∈ H ∩Hab then Msh(x) outputs b, so if we detect that H ∩Hab 6= ∅ then
we can safely output b. Note that H ⊆ H0b ∪H1b for b = L(x).

For each ab ∈ {0, 1}2 consider the “ab” query, which asks whether H ∩Hab 6= ∅:

∃h : outh = outab and L′(zh) = a ?

22

If a = 1 then the “ab” query can be expressed as an NP oracle query: a witness consists of an h
with outh = outab and a witness for L′(zh) = 1. If a = 0 then the “ab” query can be expressed as
the negation of an NP oracle query: a witness for the nonexistence of such an h consists of a witness
for L′(zh) = 1 for each h such that out h = outab. We say the “ab” query returns yes iff it indicates
the existence of an h ∈ H ∩Hab (i.e., the NP oracle returns the bit a). If the “ab” query returns
yes, we can safely output b since there exists an h such that out h(L′(zh)) = outab(a) = b = L(x).

Our algorithm is:

1. Identify a set P ⊆ {0, 1}2 of size k for which there is guaranteed to exist an ab ∈ P such that
the “ab” query would return yes.

2. Pick a uniformly random Q ⊆ P of size q.
3. For each ab ∈ Q do the “ab” query and output b if it returns yes.
4. Finally output ⊥ if all queries returned no.

This outputs L(x) with probability ≥ q
k . We just need to prove that we can indeed find such a P

in step 1.

If k = 3: Let P contain all ab’s except the one with the smallest Hab (which has size ≤ m
4),

breaking ties arbitrarily. Then H ∩Hab 6= ∅ for at least one ab ∈ P assuming |H| > m
4 .

If k = 2: If |H00 ∪ H10| ≤ m
3 then L(x) = 1 assuming |H| > m

3 , so we can let P = {01, 11}.
Similarly, if |H01 ∪H11| ≤ m

3 then we can let P = {00, 10}. (Although we know L(x)

in these cases assuming s1, . . . , sm is good, we must still do queries to ensure zero-sided
error if s1, . . . , sm is bad.) Otherwise, the smaller of H00,H10 has size ≤ m

3 , and the
smaller of H01,H11 has size ≤ m

3 , so we can let P contain the two ab’s corresponding
to the larger of H00,H10 and the larger of H01,H11, breaking ties arbitrarily.

If k = 1: If |H00 ∪H10| ≤ m
2 then L(x) = 1 assuming |H| > m

2 , and furthermore the smaller of
H01,H11 has size ≤ m

2 , so we can let P contain the ab corresponding to the larger of
H01,H11. Similarly, if |H01 ∪H11| < m

2 then we can let P contain the ab corresponding
to the larger of H00,H10.

5.2 Separations: Proof of (iii)

We prove the corresponding decision tree complexity separations ZPP
NP[1]dt
1/k 6⊆ ZPP

NP[1]dt
>1/k ; the

relativized separations follow routinely from these by the same approach as in § 3.2.3.4

Henceforth fix the constant k ∈ {2, 3, 4}. Define the partial function f : {0, 1}n → {0, 1} that
interprets its input as (a, b, x) ∈ {0, 1}

√
n × {0, 1}

√
n × {0, 1}n−2

√
n, viewing x as a

√
n× (

√
n− 2)

matrix and letting xi be the ith row, such that for B ∈ {0, 1},

f(a, b, x) = B if outaibi(or(xi)) ∈ {B,⊥} for all i, and

outaibi(or(xi)) = B for at least
√
n
k many i’s

where outaibi was defined in § 5.1.2.

Lemma 7. ZPP
NP[1]dt
1/k

(f) ≤ 3.

4For the k = 2 case of (iii), the slightly weaker relativized separation ZPP
NP[1]
1/2> 6⊆ ZPP

NP[1]
>1/2 follows from the facts

that AM ∩ coAM ⊆ ZPP
NP[1]

1/2> and ZPP
NP[1]

>1/2 ⊆ PP relativize [GPW18] and AM ∩ coAM 6⊆ PP relative to an oracle

[Ver95].

23

Proof. Pick a uniformly random i ∈
[√

n
]

, query the bits ai and bi and the DNF or(xi), and
output outaibi(or(xi)). The cost has a contribution of 2 from querying ai and bi, and 1 from the
width of or.

Lemma 8. ZPP
NP[1]dt
1/k+δ (f) ≥ Ω(δ

√
n) for every δ(n).

The separation follows by taking δ = log−c n for any constant c.
We prove Lemma 8 for the rest of this section. By the minimax principle, it suffices to show

that for some distribution on valid inputs (a, b, x) to f , every cost-o(δ
√
n) PNP[1]-type decision tree

T has either P[T (a, b, x) = f(a, b, x)] < 1
k + δ over this distribution or T (a, b, x) 6∈ {f(a, b, x),⊥} for

some valid input (a, b, x), where T (a, b, x) denotes the output produced after T receives the answer
to its DNF query.

For a leaf u, say u is labeled with DNF ϕu and function outu : {0, 1} → {0, 1,⊥} (so if (a, b, x)
leads to u then T (a, b, x) = outu(ϕu(a, b, x))). W.l.o.g., outu is nonconstant, and no term of ϕu is
violated by the bits read along the path to u, and if the path to u reads any bit from ai, bi, xi then
it reads both ai and bi, and if any term of ϕu has a literal using a variable from ai, bi, xi then that
term has literals using both ai and bi (at most tripling the cost of T). We call a leaf u blind iff the
path to u reads no 1’s from x.

Claim 1. If there exists a blind leaf u such that outu is identity or negation, then T (a, b, x) 6∈
{f(a, b, x),⊥} for some valid input (a, b, x).

Proof. We show that if u is blind then there exists an (a, b, x) that leads to u such that ϕu(a, b, x) 6=
f(a, b, x), which proves the claim for identity. By symmetry, interchanging the roles of 0 and 1 proves
the claim for negation.

If every term of ϕu contains ai ∧ bi ∧ xij for some i and j, then construct the following input:
For each i:

r If the path to u reads aibi ∈ {10, 01, 11} then let aibi be these bits, and let xi be all-0’s.
r If the path to u reads aibi = 00 then let aibi be these bits, and let xi be all-0’s except for a 1 in
a location not read on the path to u.

r If the path to u does not read aibi (or any bit of xi) then let aibi = 01, and let xi be all-0’s.

This (a, b, x) leads to u (since u is blind) and ϕu(a, b, x) = 0 and f(a, b, x) = 1 (since the path to

u touches o(δ
√
n) many i’s and hence outaibi(or(xi)) = 1 for (1− o(δ))

√
n ≥

√
n
k many i’s, namely

at least those with aibi = 01).
Otherwise, there exists a term C of ϕu such that for every i, if C contains ai ∧ bi then it does

not contain xij for any j. Then construct the following input: For each i:

r If C contains ai∧ bi or ai∧ bi or ai∧ bi then let aibi and any xij variables mentioned in C be set
consistent with satisfying C, and let all other bits of xi be 0’s except for a 1 in a location not
read on the path to u and not mentioned in C (though the latter is not necessary if C already
contains a positive xij literal).

r If the path to u reads aibi ∈ {10, 01, 00} but the previous case does not hold, then let aibi be
these bits, and let xi be all-0’s except for a 1 in a location not read on the path to u.

r If C contains ai ∧ bi or the path to u reads aibi = 11 then let aibi = 11, and let xi be all-0’s.
r If neither C nor the path to u mentions/reads aibi (or any bit of xi) then let aibi = 10, and let
xi have a 1 in any location.

This (a, b, x) leads to u (since u is blind) and ϕu(a, b, x) = 1 (since C is satisfied) and f(a, b, x) = 0
(since C and the path to u touch o(δ

√
n) many i’s and hence outaibi(or(xi)) = 0 for (1−o(δ))

√
n ≥√

n
k many i’s, namely at least those with aibi = 10).

24

Henceforth assume T (a, b, x) ∈ {f(a, b, x),⊥} for all valid inputs (a, b, x), so by Claim 1, outu ∈
{out00, out01, out10, out11} if u is a blind leaf.

If k = 4: We generate the distribution on valid inputs (a, b, x) as follows. With probability

1, let aibi = 00 for the first
√
n
4 i’s, aibi = 01 for the next

√
n
4 i’s, aibi = 10 for the next

√
n
4

i’s, and aibi = 11 for the last
√
n
4 i’s, and let x00, x01, x10, x11 ∈ {0, 1}(

√
n/4)×(

√
n−2) refer to the

corresponding groups of rows of x. Define w00, w01, w10, w11 ∈ {0, 1}(
√
n/4)×(

√
n−2) by letting each

row independently have a single 1 in a uniformly random column, and define 0̂ as the
√
n
4 ×(

√
n−2)

all-0 matrix. With probability 1
4 each, let x be one of:

0̂ w01 0̂ 0̂ (so f(a, b, x) = 0), w00 w01 w10 0̂ (so f(a, b, x) = 0),

w00 0̂ 0̂ 0̂ (so f(a, b, x) = 1), w00 w01 0̂ w11 (so f(a, b, x) = 1).

Let u denote the blind leaf reached after seeing only 0’s in x and seeing bits of a and b fixed as
in our distribution, and let ϕ = ϕu and out = outu. Let w denote (w00, w01, w10, w11), and call w
good iff:

r for each of the four possibilities of x, (a, b, x) leads to u, and
r ϕ

(

a, b, w00 w01 0̂w11
)

≥ ϕ
(

a, b, 0̂w01 0̂ 0̂
)

and ϕ
(

a, b, w00 w01 w10 0̂
)

≥ ϕ
(

a, b, w00 0̂ 0̂ 0̂
)

.

We claim that

(1) P[w is bad] < δ, and

(2) P
[

T (a, b, x) = f(a, b, x)
∣

∣w is good
]

≤ 1
4 ,

from which it follows that

P[T (a, b, x) = f(a, b, x)] ≤ P
[

T (a, b, x) = f(a, b, x)
∣

∣w is good
]

+ P[w is bad] < 1
4 + δ.

We argue claim (1). Since the path to u queries o(δ
√
n) locations of x, each of which has a 1√

n−2

probability of having a 1 in w, by a union bound with probability ≥ 1 − o(δ) > 1 − δ
2 each of the

1’s placed throughout w avoids these locations, in which case the first bullet holds in the definition
of good. For the second bullet, if we condition on ϕ

(

a, b, 0̂w01 0̂ 0̂
)

= 1 and choose an arbitrary

term of ϕ that accepts
(

a, b, 0̂w01 0̂ 0̂
)

, then since the term has width o(δ
√
n), with probability

≥ 1 − o(δ) all the 1’s in w00 and w11 avoid this term, in which case the term continues to accept
(

a, b, w00 w01 0̂w11
)

and so ϕ
(

a, b, w00 w01 0̂w11
)

= 1. Thus the first part of the second bullet, and

similarly also the second part, holds with probability ≥ 1 − o(δ) > 1 − δ
4 . By a union bound, the

second bullet holds with probability > 1 − δ
2 , so finally the two bullets hold simultaneously with

probability > 1− δ.
We argue claim (2). Condition on any particular good w. For each of the four possibilities of

x, out(ϕ(a, b, x)) = T (a, b, x) ∈ {f(a, b, x),⊥}.
r If out = out00 then T (a, b, x) = ⊥ for both 1-inputs, and T

(

a, b, w00 w01 w10 0̂
)

= ⊥ also since

otherwise ϕ
(

a, b, w00 0̂ 0̂ 0̂
)

≤ ϕ
(

a, b, w00 w01 w10 0̂
)

= 0, in which case T
(

a, b, w00 0̂ 0̂ 0̂
)

= 0 6=
1 = f

(

a, b, w00 0̂ 0̂ 0̂
)

.
r If out = out01 then T (a, b, x) = ⊥ for both 0-inputs, and T

(

a, b, w00 w01 0̂w11
)

= ⊥ also since

otherwise ϕ
(

a, b, 0̂w01 0̂ 0̂
)

≤ ϕ
(

a, b, w00 w01 0̂w11
)

= 0, in which case T
(

a, b, 0̂w01 0̂ 0̂
)

= 1 6=
0 = f

(

a, b, 0̂w01 0̂ 0̂
)

.

25

r If out = out10 then T (a, b, x) = ⊥ for both 1-inputs, and T
(

a, b, 0̂w01 0̂ 0̂
)

= ⊥ also since

otherwise ϕ
(

a, b, w00 w01 0̂w11
)

≥ ϕ
(

a, b, 0̂w01 0̂ 0̂
)

= 1, in which case T
(

a, b, w00 w01 0̂w11
)

=

0 6= 1 = f
(

a, b, w00 w01 0̂w11
)

.
r If out = out11 then T (a, b, x) = ⊥ for both 0-inputs, and T

(

a, b, w00 0̂ 0̂ 0̂
)

= ⊥ also since

otherwise ϕ
(

a, b, w00 w01 w10 0̂
)

≥ ϕ
(

a, b, w00 0̂ 0̂ 0̂
)

= 1, in which case T
(

a, b, w00 w01 w10 0̂
)

=

1 6= 0 = f
(

a, b, w00 w01 w10 0̂
)

.

If k = 3: We generate the distribution on valid inputs (a, b, x) as follows. With probability 1,

let aibi = 00 for the first
√
n
3 i’s, aibi = 01 for the next

√
n
3 i’s, and aibi = 10 for the last

√
n
3 i’s,

and let x00, x01, x10 ∈ {0, 1}(
√
n/3)×(

√
n−2) refer to the corresponding groups of rows of x. Define

w00, w01, w10 ∈ {0, 1}(
√
n/3)×(

√
n−2) by letting each row independently have a single 1 in a uniformly

random column, and define 0̂ as the
√
n
3 × (

√
n− 2) all-0 matrix. With probability 1

3 each, let x be
one of:

0̂ w01 0̂ (so f(a, b, x) = 0), w00 0̂ 0̂ (so f(a, b, x) = 1), w00 w01 w10 (so f(a, b, x) = 0).

Let u denote the blind leaf reached after seeing only 0’s in x and seeing bits of a and b fixed as
in our distribution, and let ϕ = ϕu and out = outu. Let w denote (w00, w01, w10), and call w good
iff:

r for each of the three possibilities of x, (a, b, x) leads to u, and
r ϕ

(

a, b, w00 w01 w10
)

≥ ϕ
(

a, b, w00 0̂ 0̂
)

.

We claim that

(1) P[w is bad] < δ, and

(2) P
[

T (a, b, x) = f(a, b, x)
∣

∣w is good
]

≤ 1
3 ,

from which it follows that

P[T (a, b, x) = f(a, b, x)] ≤ P
[

T (a, b, x) = f(a, b, x)
∣

∣w is good
]

+ P[w is bad] < 1
3 + δ.

The argument for claim (1) is essentially identical to the corresponding argument from the case
k = 4, so we omit it.

We argue claim (2). Condition on any particular good w. For each of the three possibilities of
x, out(ϕ(a, b, x)) = T (a, b, x) ∈ {f(a, b, x),⊥}.

r If out ∈ {out01, out11} then T (a, b, x) = ⊥ for both 0-inputs.

r If out = out00 then T
(

a, b, w00 0̂ 0̂
)

= ⊥ and hence also T
(

a, b, w00 w01 w10
)

= ⊥ since

ϕ
(

a, b, w00 w01 w10
)

≥ ϕ
(

a, b, w00 0̂ 0̂
)

= 1.
r If out = out10 then T

(

a, b, w00 0̂ 0̂
)

= ⊥, and T
(

a, b, 0̂w01 0̂
)

= ⊥ also since otherwise an
argument completely analogous to the proof of Claim 1 would show there exists a 1-input
(a′, b′, x′) that leads to u and ϕ(a′, b′, x′) ≥ ϕ

(

a, b, 0̂w01 0̂
)

= 1, in which case T (a′, b′, x′) = 0.

If k = 2: We generate the distribution on valid inputs (a, b, x) as follows. With probability 1, let

aibi = 00 for the first
√
n
2 i’s and aibi = 01 for the last

√
n
2 i’s, and let x00, x01 ∈ {0, 1}(

√
n/2)×(

√
n−2)

refer to the corresponding groups of rows of x. Define w00, w01 ∈ {0, 1}(
√
n/2)×(

√
n−2) by letting each

26

row independently have a single 1 in a uniformly random column, and define 0̂ as the
√
n
2 ×(

√
n−2)

all-0 matrix. With probability 1
2 each, let x be one of:

0̂ w01 (so f(a, b, x) = 0), w00 0̂ (so f(a, b, x) = 1).

Let u denote the blind leaf reached after seeing only 0’s in x and seeing bits of a and b fixed as
in our distribution, and let ϕ = ϕu and out = outu. Let w denote (w00, w01), and call w good iff
for both possibilities of x, (a, b, x) leads to u. We claim that

(1) P[w is bad] < δ, and

(2) P
[

T (a, b, x) = f(a, b, x)
∣

∣w is good
]

≤ 1
2 ,

from which it follows that

P[T (a, b, x) = f(a, b, x)] ≤ P
[

T (a, b, x) = f(a, b, x)
∣

∣w is good
]

+ P[w is bad] < 1
2 + δ.

The argument for claim (1) is as in the k = 4 and k = 3 cases. For claim (2), if out ∈
{out01, out11} then T

(

a, b, 0̂w01
)

= ⊥, and if out ∈ {out00, out10} then T
(

a, b, w00 0̂
)

= ⊥.

6 Open problems

For all integers k ≥ 1, we proved that BPP
NP[1]
>1/(k+1) ⊆ BPP

NP[1]
1/k> and BPP

NP[1]
1/k 6⊆ BPP

NP[1]
>1/k relative to

an oracle, but it remains open whether BPP
NP[1]
>1/(k+1) ⊆ BPP

NP[1]
1/k , and we do not have a conjecture

about whether this should hold.
We conjecture that the third bullet in Theorem 3 also holds for q > 1, which would mean all the

inclusions are essentially tight, leading to the following ideal statement (which echoes the statement
of Theorem 1).

Conjecture 1 (Zero-sided error). For integers 1 ≤ q ≤ k ≤ 4:

r If k ≤ 3: ZPP
NP[1]
>1/(k+1) ⊆ ZPP

NP‖[q]
q/k> and ZPP

NP[1]
1/k 6⊆ ZPP

NP‖[q]
>q/k relative to an oracle.

r If k = 4: ZPP
NP[1]
>0 ⊆ ZPP

NP‖[q]
q/k> and ZPP

NP[1]
1/k 6⊆ ZPP

NP‖[q]
>q/k relative to an oracle.

Acknowledgments

I thank anonymous referees for their comments. This work was supported by NSF grants CCF-
1657377 and CCF-1942742. An extended abstract of this paper was published as [Wat19].

References

[Bei91] Richard Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical Com-
puter Science, 84(2):199–223, 1991. doi:10.1016/0304-3975(91)90160-4.

[CC06] Jin-Yi Cai and Venkatesan Chakaravarthy. On zero error algorithms having oracle
access to one query. Journal of Combinatorial Optimization, 11(2):189–202, 2006.
doi:10.1007/s10878-006-7130-0.

27

https://doi.org/10.1016/0304-3975(91)90160-4
https://doi.org/10.1007/s10878-006-7130-0

[CP08] Richard Chang and Suresh Purini. Amplifying ZPPSAT[1] and the two queries problem. In
Proceedings of the 23rd Conference on Computational Complexity (CCC), pages 41–52.
IEEE, 2008. doi:10.1109/CCC.2008.32.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of com-
munication complexity classes. Computational Complexity, 27(2):245–304, 2018.
doi:10.1007/s00037-018-0166-6.

[Roh95] Pankaj Rohatgi. Saving queries with randomness. Journal of Computer and System
Sciences, 50(3):476–492, 1995. doi:10.1006/jcss.1995.1038.

[Sto85] Larry Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing,
14(4):849–861, 1985. doi:10.1137/0214060.

[Tri10] Rahul Tripathi. The 1-versus-2 queries problem revisited. Theory of Computing Systems,
46(2):193–221, 2010. doi:10.1007/s00224-008-9126-x.

[Ver95] Nikolai Vereshchagin. Lower bounds for perceptrons solving some separation prob-
lems and oracle separation of AM from PP. In Proceedings of the 3rd Israel Sym-
posium on Theory of Computing and Systems (ISTCS), pages 46–51. IEEE, 1995.
doi:10.1109/ISTCS.1995.377047.

[Ver99] Nikolai Vereshchagin. Relativizability in complexity theory. In Provability, Complexity,
Grammars, volume 192 of AMS Translations, Series 2, pages 87–172. American Mathe-
matical Society, 1999.

[Wat19] Thomas Watson. Amplification with one NP oracle query. In Proceedings of the 46th
International Colloquium on Automata, Languages, and Programming (ICALP), Track
A, pages 96:1–96:13. Schloss Dagstuhl, 2019. doi:10.4230/LIPIcs.ICALP.2019.96.

[Wat20] Thomas Watson. A ZPPNP[1] lifting theorem. ACM Transactions on Computation The-
ory, 12(4):27:1–27:20, 2020. doi:10.1145/3428673.

28
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.1109/CCC.2008.32
https://doi.org/10.1007/s00037-018-0166-6
https://doi.org/10.1006/jcss.1995.1038
https://doi.org/10.1137/0214060
https://doi.org/10.1007/s00224-008-9126-x
https://doi.org/10.1109/ISTCS.1995.377047
https://doi.org/10.4230/LIPIcs.ICALP.2019.96
https://doi.org/10.1145/3428673

