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Abstract

Promise CSPs are a relaxation of constraint satisfaction problems where the goal is to find an assign-
ment satisfying a relaxed version of the constraints. Several well known problems can be cast as promise
CSPs including approximate graph and hypergraph coloring, discrepancy minimization, and interesting
variants of satisfiability. Similar to CSPs, the tractability of promise CSPs can be tied to the structure of
associated operations on the solution space called (weak) polymorphisms. However, compared to CSPs
whose polymorphisms are well-structured algebraic objects called clones, weak polymorphisms in the
promise world are much less constrained — essentially any infinite family of functions obeying mild
conditions can arise as weak polymorphisms. Under the thesis that non-trivial polymorphisms govern
tractability, promise CSPs therefore provide a fertile ground for the discovery of novel algorithms.

In previous work, we classified all tractable cases of Boolean promise CSPs when the constraint
predicates are symmetric. The algorithms were governed by three kinds of polymorphism families: (i)
parity functions, (ii) majority functions, or (iii) a non-symmetric (albeit block-symmetric) family we
called alternating threshold. In this work, we provide a vast generalization of these algorithmic results.
Specifically, we show that promise CSPs that admit a family of “regional periodic” weak polymorphisms
are solvable in polynomial time, assuming that determining which region a point is in can be computed
in polynomial time. Such polymorphisms are quite general and are obtained by gluing together several
functions that are periodic in the Hamming weights in different blocks of the input. For example, we can
have functions that equal parity for relative Hamming weights up to 1/2, and Majority (so identically 1)
for weights above 1/2.

Our algorithm is based on a novel combination of linear programming and solving linear systems
over rings. We also abstract a framework based on embedding the promise CSP into a CSP over an
infinite domain, solving it there (via the said combination of LPs and ring equations), and then rounding
the solution to an assignment for the promise CSP instance. The rounding step is intimately tied to the
family of weak polymorphisms, and clarifies the connection between polymorphisms and algorithms in
this context. Along we way, we use a result due to Adler and Beling that linear programs over Z[

√
2]

and similar algebraic extensions (instead of Q) can be solved in weakly polynomial time.
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1 Introduction

Constraint satisfaction problems (CSPs) have driven some of the most influential developments in com-
putational complexity, from NP-completeness to the PCP theorem to the Unique Games conjecture to the
(recently settled [Bul17, Zhu17]) Feder-Vardi dichotomy conjecture. The dichotomy theorem for CSPs does
not just establish that all CSPs are either NP-complete or decidable in polynomial time, it also pinpoints the
mathematical structure that allows for efficient algorithms: when the solution space admits certain non-
trivial closure operations called polymorphisms, the CSP is tractable, and otherwise it is NP-hard. For
instance, for linear equations, if v1,v2,v3 are three solutions, then so is v1− v2 + v3, and the underlying
polymorphism is f (x,y,z) = x− y+ z.

Such polymorphisms and resulting CSP algorithms are unfortunately relatively rare. For instance,
in the Boolean case, where the dichotomy has been long known [Sch78], there are only three non-trivial
tractable cases: Horn SAT (along with its complement dual Horn SAT), 2-CNF satisfiability, and Linear
Equations mod 2. The situation for larger domains is similar, with even arity two CSPs like graph k-
colorability being NP-hard for k ≥ 3. One well-studied approach to cope with the prevalent intractability of
CSPs is to settle for approximation algorithms that satisfy a guaranteed fraction of constraints (the Max CSP
problem). This has been a very fruitful avenue of research from both the algorithmic and hardness sides.
In this context, a general algorithm based on semidefinite programming is known to deliver approximation
guarantees matching the performance of a variant of polymorphisms tailored to optimization (namely “low-
influence approximate polymorphisms”) [BR15], and the Unique Games conjecture implies this cannot be
improved upon [KKMO07, Rag08]. Thus, at least conditionally, we have a link between mathematical
structure and the existence of efficient approximation algorithms, although such work does not apply to the
approximation of satisfiable CSP instances.

1.1 Promise CSPs and Weak Polymorphisms

The Max CSP framework, however, does not capture problems like approximate graph coloring where one is
allowed more colors than the chromatic number of the graph, for example 10-coloring a 3-colorable graph.
An extension of CSPs, called promise CSPs, captures such problems. Informally, a promise CSP asks for an
assignment to a CSP instance that satisfies a relaxed version of the CSP instance. For instance, given a k-SAT
instance promised to have an assignment satisfying 3 literals per clause, we might settle for an assignment
satisfying an odd number of literals in each clause. (We will give formal and more general definitions in
Section 2, but briefly a promise CSP is defined by pairs of predicates (Pi,Qi) with Pi ⊆ Qi, and given an
instance of CSP with defining predicates {Pi}, we would like to find an assignment that satisfies the instance
when Pi is replaced with Qi.) A promise CSP called (2+ ε)-SAT (and a variant related to 2-coloring low-
discrepancy hypergraphs) was studied in [AGH17]. This work also brought to the fore the concept of weak
polymorphisms associated with the promise CSP, which are functions that are guaranteed to map tuples in
Pi into Qi for every i, generalizing the concept of polymorphisms from the case when Pi = Qi (again, see
Section 2 for formal definitions). Some new hardness results for graph and hypergraph coloring were then
obtained using the weak polymorphism framework in [BG16].

In [BG18], we undertook a systematic investigation of promise CSPs via the lens of weak polymor-
phisms, building some theory of their structure and interplay with computational complexity. For the latter,
there is a Galois correspondence implying that the complexity of a promise CSP is completely dictated by
its weak polymorphisms [Pip02]. Thus, from the perspective of classifying the complexity of promise CSPs,
one can just focus on weak polymorphisms and forget about the relations defining the CSP.

Our work, however, revealed that the space of weak polymorphisms is very rich. Therefore, the pro-
gram of classifying the complexity of promise CSPs via weak polymorphisms (along the lines of the success-
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ful theory establishing a complexity dichotomy in the case of CSPs) must overcome significant challenges
that go well beyond the CSP case. The polymorphisms associated with CSPs are closed under compositions
(since the output belongs to the same relation as the inputs), and as a result they belong to a well-structured
class of objects in universal algebra called clones. Weak polymorphisms inherently lose this closure un-
der composition (as the output no longer belongs to the same relation as the inputs). They are therefore
much less constrained — essentially any family of functions obeying mild conditions (projection-closed
and finitizable) can arise as weak polymorphisms [BG18, Pip02]. Further, whereas a single non-trivial poly-
morphism can suffice for tractability (as it can be composed with itself to give more complex and higher
arity functions), in the case of weak polymorphisms we really need an infinite family of them in order to
develop algorithms for the associated promise CSP. Indeed, the hardness results of [AGH17, BG18] proceed
by establishing a junta-like structure for the weak polymorphisms, and thus the lack of a rich infinite family
of them.

The vast variety of possible families of weak polymorphisms means that there are still numerous al-
gorithms, and possibly whole new algorithmic paradigms, yet to be discovered in the promise CSP frame-
work. This is the broad agenda driving this work. Our main result in [BG18] classified all tractable cases
of Boolean promise CSPs whose defining predicates (Pi,Qi) are symmetric.1 The algorithms were gov-
erned by (essentially) three nicely structured weak polymorphism families: (i) parity functions, (ii) majority
functions, or (iii) a non-symmetric (albeit block-symmetric) family we called alternating threshold (see
Theorem 2.2 for the precise statement).

1.2 Our results

This work is motivated by the program of more systematically leveraging families of weak polymorphisms
toward the development of new algorithmic approaches to promise CSP. In this vein, we provide a vast gen-
eralization of the above-mentioned algorithmic results for symmetric Boolean promise CSPs, by exhibiting
algorithms based on rather general (albeit still structured) families of weak polymorphisms.2 Specifically,
we show that promise CSPs that admit a family of “regional periodic” weak polymorphisms are polynomial
time solvable. Such polymorphisms are quite general; their precise description is a bit technical but at a high
level they are obtained by gluing together, for various ranges of Hamming weights in prescribed blocks of
the input, functions that are periodic in the Hamming weights in their respective block.3

Below we state a special case of this result when there is only one block, so that the weak polymor-
phisms are “threshold-periodic” symmetric functions (for simplicity, this case is treated first in Section 4,
before the more general block-symmetric case in Section 5). Namely, such polymorphisms look at the range
of the Hamming weight of its input, based on which it applies a certain periodic function of the Hamming
weight. We stress that imposing a symmetry requirement on the weak polymorphisms is very different from
imposing a symmetry condition on the predicates. At least for the Boolean domain, the latter was solved4

in our earlier work [BG18], whereas we are probably still quite far from handling general symmetric weak

1A predicate P is symmetric if for all (x1, . . . ,xm) ∈ P and all permutations π : [m]→ [m], we have that (xπ(1), . . . ,xπ(m)) ∈ P.
We say that (Pi,Qi) is symmetric if both Pi and Qi are symmetric.

2One possible concern is that no promise CSPs (or only “trivial” promise CSPs) admit such a family F of weak polymorphisms.
To see why this is not the case, pick a positive integer L. We can think of {0,1}2L

as the set of all function f : {0,1}L → {0,1}.
Let P = { f | f (x) = xi} be a set of L functions. We let Q = {g : {0,1}L→ E | exists f ∈F such that g is a projection of f}. (See
Section 2 for the definition of a projection.) Then F ⊂ poly(P,Q), and if F is reasonably structured (like “almost all” of the
families considered in this paper), then (P,Q) is a nontrivial problem (e.g., Q 6= E2L

). A more detailed discussion of this fact is
available in Appendix E of the full version of [BG18].

3While we focus on the case that the domain of the Pi’s is Boolean (although the Qi’s can be over any finite domain), this is
mostly for notational simplicity. Our methods are general enough to be readily adapted to any finite domain; see Section 6.

4This classification used an additional assumption that the predicates can be applied to negations of variables.
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polymorphism families (though this work is a step in that direction).

Theorem 1.1 (Informal version of Theorem 4.3). Let E be a finite set, let 0 = τ0 < τ1 < · · ·< τk−1 < τk = 1
be a sequence of rationals, let M = (M1,M2, . . . ,Mk) a sequence of positive integers, and let ηi :Z/MiZ→ E
be periodic functions for i = 1, . . . ,k. Consider a promise CSP {(Pi,Qi)} with the Pi’s and Qi’s defined
over the domains {0,1} and E, respectively. Further suppose the promise CSP admits a family of weak
polymorphisms fL : {0,1}L→ E for infinitely many L such that

fL(x) =


η1(0) Ham(x) = 0
ηi(Ham(x) mod Mi) Lτi−1 < Ham(x)< Lτi, i = 1,2, . . . ,k
ηk(L) Ham(x) = L.

where Ham(x) denotes the Hamming weight of x. Then the promise CSP can be solved in polynomial time.

As a concrete example, consider E = {0,1,2,3} and a promise CSP with a single pair of predicates
(P,Q), which are defined to be

P = {x ∈ {0,1}6 : Ham(x) = 3}

Q = {y ∈ {0,1,2,3}6 : yi 6∈ {0,3}6∪{1,2}6 and
6

∑
i=1

yi ≡ 1 mod 2.}

Note that P ⊆ Q, so (P,Q) is a valid pair of predicates for a promise CSP.5 At first, it is unclear what
algebraic structure (P,Q) has, but it turns out for all odd L to have the following weak polymorphism
gL : {0,1}L→{0,1,2,3}.

gL(x) =


0 Ham(x)< L/2 and Ham(x)≡ 0 mod 2
3 Ham(x)< L/2 and Ham(x)≡ 1 mod 2
2 Ham(x)> L/2 and Ham(x)≡ 0 mod 2
1 Ham(x)> L/2 and Ham(x)≡ 1 mod 2.

In Theorem 1.1, this corresponds to the choices k = 2, τ1 = 1/2, M1 = M2 = 2, η1(0) = 0, η1(1) = 3,
η2(0) = 2, and η2(1) = 1. We leave as an exercise to the reader to check why this family of gL’s are weak
polymorphisms of (P,Q). Below, we give an overview of our algorithm for this special case. This serves as
an illustration of the crux of our strategy, which involves blending together two broad approaches underlying
efficient CSP algorithms, namely linear programming and solving linear systems over rings.

It should be noted that at a high level, CSPs solvable by linear programming relaxations have a connec-
tion to “bounded width” constraint satisfaction problems (e.g., [KOT+12]) and CSPs representable as ring
equations have Mal’tsev polymorphisms (e.g., [BKW17]). Thus, by “synthesizing” these two techniques,
we are understanding promise CSPs (like the (P,Q) just mentioned) which neither method by itself would
resolve.

1.3 Overview of ideas for a special case

To give insight into the proof of Theorem 4.3, we give a high-level overview of how to solve promise
CSPs using the predicate (P,Q) mentioned in the previous subsection with P⊂ {0,1}6 and Q⊂ {0,1,2,3}6.
As stated, there is an infinite family of threshold-periodic weak polymorphisms gL : {0,1}L → {0,1,2,3}
(where L is odd).

5In Section 2, we allow for a more general mapping φ : {0,1}→ E such that φ(P)⊆ Q.
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Imagine we have an instance of a CSP with constraints from P on Boolean variables x1, . . . ,xn. We
seek to find y1, . . . ,yn ∈ {0,1,2,3}m which satisfies the corresponding CSP instance with respect to Q. We
first construct a Basic LP relaxation.

Basic LP Relaxation. In the Basic LP relaxation, for each xi ∈ {0,1} we consider a relaxed version
vi ∈ [0,1]. For every constraint P(xi1 , . . . ,xi6), we specify (vi1 , . . . ,vi6) must live in the convex hull of P. We
can find real-valued vi’s which satisfy these conditions in polynomial time.

Now consider if we try to round the vi’s right away. Consider a constraint P(xi1 , . . . ,xi6), then we know
there is a convex combination of elements of P which equals (vi1 , . . . ,vi6). A key idea introduced in our
previous work [BG18] was that the weights of the convex combination can, in the limit, be approximated by
an average of the elements of P using integer weights which sum to an odd number. Imagine this weighted
average being arranged as a matrix

x(1)i1 x(1)i2 x(1)i3 x(1)i4 x(1)i5 x(1)i6 ∈ P

x(2)i1 x(2)i2 x(2)i3 x(2)i4 x(2)i5 x(2)i6 ∈ P
...

...
...

...
...

...
x(L)i1 x(L)i2 x(L)i3 x(L)i4 x(L)i5 x(L)i6 ∈ P

Average ≈ vi1 ≈ vi2 ≈ vi3 ≈ vi4 ≈ vi5 ≈ vi6
gL ŷi1 ŷi2 ŷi3 ŷi4 ŷi5 ŷi6

The key observation is that since the L rows have elements of P, we can apply the weak polymorphism
gL to get an element of (ŷi1 , . . . , ŷi6) ∈ Qi.

Now think about what happens to xi1 . If vi1 > 1/2 then if L is sufficiently large and the integer weights
sufficiently accurate, then the Hamming weight of the column (x(1)i1 , . . . ,x(L)i1 ) will be greater than L/2, guar-
anteeing that ŷi1 is 1 or 2. Likewise, if vi1 < 1/2, then we can guarantee that ŷi1 is either 0 or 3. We can
deftly avoid the case vi1 = 1/2 from ever happening, by solving the linear program over a subring of R that
is dense but does not contain 1/2, such as Z[

√
2].6

Since the same variable can appear in many predicates in the instance, issues can arise. For the variable
xi1 note that the Basic LP made a global choice that either vi1 > 1/2 or vi1 < 1/2. Thus, for every clause that
xi1 appears in, the corresponding ŷi1 will always be in {0,3} (if vi1 < 1/2) or {1,2} (if vi1 > 1/2). However,
this approach on its own cannot globally ensure that ŷi1 is always equal to, say, 0 instead of 3. This due
to the current lack of control on the parity of how many times each element of P shows up in the matrix
above, since this parity is what the weak polymorphism gL looks at when deciding whether ŷi1 is 0 or 3.
Naive attempts to force a certain parity fail, as the same variable needs the same parity assigned across all
the constraints it appears in. To repair this, we also need to consider the Affine relaxation.

Affine Relaxation. Here, we let V be the smallest affine subspace (with respect to F2) which contains
P. Then, each constraint P(xi1 , . . . ,xim) is relaxed to (ri1 , . . . ,rim) ∈ V where ri ∈ F2. Solving these relaxed
constraints can be done in polynomial time using Gaussian Elimination over F2.

The beauty of utilizing this second relaxation is that whenever we run into the dilemma of ŷi1 ∈ {0,3}
or ŷi1 ∈ {1,2}, we can break the uncertainty by always setting yi1 to be element with the same parity as ri1!
The reason this works is subtle but powerful. When picking the integer weights of the elements of P, we
also require that the Hamming weight of each column modulo 2 is equal to the ri1’s. When L is really large,
changing the parity does not harm the approximation, so the “binning” of ŷi1 ∈ {0,3} or ŷi1 ∈ {1,2} still
works via the Basic LP. But now the addition of these ri1’s via the Affine relaxation further guarantees that
across clauses, the ŷi1 chosen always has consistent parity with ri1 . Thus, the ŷi1’s do indeed satisfy all Q

6Solving linear programs over such a ring is known to be efficient due to a result of Adler and Beling [AB92]. The authors
believe this is the first application of this fact to approximation algorithms. See Section 3.2 for more details.
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constraints. This completes the proof that (P,Q) is a tractable promise CSP template.
Note that each of these two relaxations was a “lifting” (or we call embedding) of the (P,Q) problem into

the Boolean-domain Gaussian elimination problem and the infinite-domain Basic LP relaxation. Section 3
more formally defines how this lifting process works.

1.4 Organization

In Section 2, we describe the notation used for CSPs and promise CSPs, particularly for polymorphisms and
weak polymorphisms. In Section 3, we formally define the Basic LP and Affine relaxations (and combined
relaxations) of a promise CSP via a notion we call a promise embedding. In Section 4, we prove that
having an infinite family of threshold-periodic weak polymorphisms implies tractability, proving “warm
up” results for threshold polymorphisms and periodic polymorphisms along the way. In Section 5, we
show how to extend these reductions to block-symmetric functions known as regional and regional periodic
polymorphisms. In Section 6, we briefly describe how these results can be extended to larger domains. In
Section 7, we describe the challenges in further developing the theory of promise CSPs. Appendix A proves
that the reductions to finite and infinite domains described in Section 3 are correct and efficient.

On a first reading, we recommend focusing on Section 4 after skimming Sections 2 and 3.

2 Preliminaries

In this section, we include the important definitions and results in the constraint satisfaction literature. In
order to accommodate both the theorist and the logician, we give the definitions from multiple perspectives.

2.1 Constraint Satisfaction

In this paper, a constraint satisfaction problem consists of a domain D and a set Γ = {Pi ⊆ Dari : i ∈ I} of
constraints or relations. Each ari is called the arity of constraint Pi and the collection σ = {(i,ari) : i ∈ I}
is called a signature. We say that (x1, . . . ,xari) satisfies a constraint Pi if (x1, . . . ,xari) ∈ Pi. This is written as
Pi(x1, . . . ,xari). This indexed set of constraints Γ is often referred to as the template.7

A Γ-CSP is a formula written in conjunctive normal form (CNF) with constraints from Γ. That is, for
some index set J

Ψ(x1, . . . ,xn) =
∧
j∈J

Pi j(x j1 , . . . ,x jari j
).

We say that the formula is satisfiable if there is an assignment of variables which satisfies every clause. The
decision problem CSP(Γ) corresponds to the language {Φ : Φ is a satisfiable Γ-CSP}. In other words, given
Φ, is it satisfiable?

Remark. In the CSP literature, another common way to define a Γ-CSP is consider the domain X = {x1, . . . ,xn}
and a template Ψ with signature σ . We say that Ψ is satisfiable, if there is a homomorphism (to be defined
soon) f : X → D from Ψ to Γ.

The famous Dichotomy Conjecture of Feder and Vardi [FV98] conjectured that for every finite domain
D and template Γ, Γ-CSP is either in P or in NP-complete.

The case |D| = 2 was first fully solved by Schaefer [Sch78]. This was later extended to the case
|D|= 3 by Bulatov [Bul06], and finally general finite D in the recent independent works by Bulatov [Bul17]

7The tuple (D,σ ,Γ) of the domain, signature and template is known as a structure.
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and Zhuk [Zhu17]. An extraordinarily important tool in the resolution of the Dichotomy conjecture is
polymorphisms (e.g., [Che06, BKW17]).

Given a relation P⊆ Dar and a function f : DL→ E (where D and E may be equal), we define f (P) to
be8

{( f (x(1)1 , . . . ,x(L)1 ), . . . , f (x(1)ar , . . . ,x
(L)
ar )) : x(1), . . . ,x(L) ∈ P}.

More pictorially (c.f., [BKW17])

(x(1)1 , x(1)2 , . . . , x(1)ar ) ∈ P
(x(2)1 , x(2)2 , . . . , x(2)ar ) ∈ P
...

...
...

(x(L)1 , x(L)2 , . . . , x(L)ar ) ∈ P
⇓ f ⇓ f . . . ⇓ f
y1 y2 . . . yk ∈ f (P)

Given this notion, we can now define both what a homomorphism and what a polymorphism are.

Definition 2.1. Let D and E be domains and σ = {(i,ari) : i ∈ I} be a signature. Let Γ = {Pi ⊆ Dari : i ∈ I}
and Γ′ = {P′i ⊆ Eari : i ∈ I} be templates with signature σ . A map f : D→ E is a homomorphism from Γ to
Γ′ if f (Pi)⊆ P′i for all i.

As an example, consider D = {0,1} and E = {0,1,2} and σ = {(1,2)}. Consider Γ2–col = {P1 =
{(0,1),(1,0)} ∈ D2} and Γ3–col = {Q1 = {(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)} ∈ E2}, which are the
templates for 2-coloring and 3-coloring respectively. Then, the map idD is a homomorphism from Γ2–col
to Γ3–col. In other words, any 2-colorable graph is also 3-colorable.

Definition 2.2. Let D be a domain and Γ = {Pi ⊆ Dari : i ∈ I} be a template. A polymorphism is a function
f : DL→ D for some positive integer L such that f (Pi)⊆ Pi for all i ∈ I. We let poly(Γ) denote the set of a
polymorphisms of Γ.

Intuitively, polymorphisms are algebraic objects which combine solutions of CSPs to produce another
solution. We now give a few standard examples.

1. Consider any template Γ. A trivial example of such an f is a projection function: for some i ∈ [L] :=
{1, . . . ,L}, for all x1, . . . ,xL ∈ D, we let f (x1, . . . ,xL) = xi. This function is a polymorphism for every
Γ. More generally, we say that a polymorphism is essentially unary (or a dictator) if f depends on
exactly one coordinate (in particular, this does not include constant functions).

2. Consider a polymorphism f : DL→D such that f ∈ poly(Γ). Let π : [L]→ [R] be any surjective map,
where R≤ L is a positive integer. Then, f π : DR→ D is defined to be

f π(x1, . . . ,xR) = f (y1, . . . ,yL) where y j = xπ( j) for all j ∈ L.

We have that f π ∈ poly(Γ) (e.g., [BG18]).

3. Linear Equations. Consider any finite field F. Let

ΓF–lin = {Pi ⊂ Fari : Pi affine subspace}

be a template of linear constraints. Then, the map f (x,y,z) = x−y+ z is a polymorphism. In the case
F= F2, this is called PAR3.

8This corresponds to the O f (P) notation from [BG18].
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4. 2-SAT. The template for 2-SAT can be expressed in a few ways, one is

Γ2–SAT = {P1 = {(1,1),(1,0),(0,1)},P2 = {(1,0),(0,1)}}.

Then MAJ3, the majority function on 3 bits, is a polymorphism (e.g., [Che06]).

One reason polymorphisms are so fundamental, is due to an elegant property known as a Galois cor-
respondence (or Galois connection). From a computational complexity perspective9, if two finite CSP tem-
plates Γ1 and Γ2 of the same domain, but not necessarily of the same signature, satisfy poly(Γ1)⊆ poly(Γ2),
then there is a polynomial-time reduction from CSP(Γ2) to CSP(Γ1). Thus, from a computational com-
plexity perspective, it is sufficient to think about the polymorphisms of a CSP rather than the individual
constraints. We can now state Schaefer’s theorem rather elegantly.

Theorem 2.1 ([Sch78], as stated in, e.g, [BJK05]). Let D = {0,1} and let Γ be a template. CSP(Γ) ∈ P if
and only if10 poly(Γ) has a non-dictator polymorphism. Otherwise, CSP(Γ) is NP-complete.

2.2 Promise Constraint Satisfaction

Next, we discuss an approximation variant of CSPs known as promise CSPs (or PCSPs), first studied sys-
tematically by the authors in [BG18]. Intuitively, a promise CSP is just like a CSP except that the constraints
have “slack” to them which allows for an algebraic form of approximation.

Definition 2.3. A promise domain is a triple (D,E,φ), where φ is a map from D to E.

The most commonly used promise domain in this article will be D = E = {0,1} and φ = idD is the
identity map.

Definition 2.4. Let (D,E,φ) be a promise domain and let σ = {(i,ari) : i ∈ I} be a signature. A promise
template Γ = (ΓP,ΓQ)is a pair of templates ΓP = {Pi ∈ Dari} and ΓQ = {Qi ∈ Eari} each with signature σ

such that φ is a homomorphism from ΓP to ΓQ. Each pair (Pi,Qi) is called a promise constraint.

In the simplest case, D = E and φ = idD, then the homomorphism condition is equivalent to Pi ⊆ Qi.
Note that in general φ could be an injection, surjection or neither.

Definition 2.5. Let Γ = {ΓP,ΓQ} be a promise template over the promise domain (D,E,φ). A Γ-PCSP is a
pair of CNF formulae ΨP and ΨQ with identical structure. That is, there is an index set J such that

ΨP(x1, . . . ,xn) =
∧
j∈J

Pi j(x j1 , . . . ,x jari j
)

ΨQ(y1, . . . ,yn) =
∧
j∈J

Qi j(y j1 , . . . ,y jari j
)

Remark. Just like a Γ-CSP, a Γ-PCSP can be expressed in the language of homomorphisms. Our domain
again X = {x1, . . . ,xn}, and Ψ is a template over the domain X with the same signature as ΓP and ΓQ.
Satisfying ΨP and ΨQ corresponds to finding homomorphisms from Ψ to ΓP and ΓQ, respectively.

Note that if x1, . . . ,xn satisfies ΨP, then φ(x1), . . . ,φ(xn) satisfies ΨQ. In particular, satisfying ΨQ is
“easier” (in a logical, not algorithmic, sense) than satisfying ΨP. Thus, we can define a promise problem.

9From a logic perspective, there is a primitive-positive reduction from Γ2 to Γ1.
10We assume in this paper that P 6= NP.
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Definition 2.6 (Promise CSP–decision version). Let Γ be a promise CSP. We define PCSP(Γ) to be the
following promise decision problem on promise formulae (ΨP,ΨQ).

• ACCEPT: ΨP is satisfiable.

• REJECT: ΨQ is not satisfiable.

This has a corresponding search variant

Definition 2.7 (Promise CSP–search version). Let Γ be a promise CSP. We define Search-PCSP(Γ) to be
the following promise search problem on promise formulae (ΨP,ΨQ).

• Given that ΨP is satisfiable, output a satisfying assignment to ΨQ.

Unlike classical CSPs, in which the decision and search versions are often11 polynomial-time equiva-
lent, it is not clear that the decision and search variants of PCSP(Γ) have the same computational complexity,
although there no known Γ for which the complexity differs. Even so, there is a reduction from the decision
version to the search version: run the algorithm for the search version, and check if it satisfies ΨQ.

The following are interesting examples of promise CSPs, (c.f., [BG18]). In the first five examples, the
domain is Boolean: (D = {0,1},D, idD).

1. CSPs. Let Γ = {Pi ∈ Dki} be a CSP over the domain D, then (D,D, idD) is a promise domain and
Λ = (Γ,Γ) is a promise CSP.

2. (2+ε)-SAT. Let NEQ= {(0,1),(1,0)}. Fix, a positive integer k, and let P1 = {x∈D2k+1 : Ham(x)≥ k}
and Q1 = {x ∈ D2k+1 : Ham(x) ≥ 1}. Then, Γ = ({P1,NEQ},{Q1,NEQ}) corresponds to a promise
variant of (2k + 1)-SAT: if every clause in a (2k + 1)-SAT instance is true for at least k variables,
can one find a “normal” satisfying assignment. This problem was shown to be NP-hard by Austrin,
Guruswami, and Håstad [AGH17].

3. Threshold conditions. Fix α,β such that 1/α + 1/β = 1. Let ΓP = {Pi ⊂ Dari : i ∈ {1,2}} and
ΓQ = {Qi ⊆Dari : {1,2}}, where the promise constraints are as follows (the choices of ar1,ar2,s, t are
arbitrary).

P1 = {x ∈ Dar1 : Ham(x)≤ s} Q1 = {x ∈ Dar1 : Ham(x)≤ αs}
P2 = {x ∈ Dar2 : Ham(x)≥ ar2−t} Q2 = {x ∈ Dar2 : Ham(x)≥ ar2−β t}.

We have that PCSP(ΓP,ΓQ) is tractable (this is also alluded to in [BG18]).

4. Embedding Linear Equations. Let A ⊆ Far
7 be an affine subspace. Specify a map h : F7 → {0,1}

such that h(0) = 0 and h(1) = 1. Let ΓP = {A∩Dar} and ΓQ = {h(A)}. Then, (ΓP,ΓQ) is tractable by
performing Gaussian elimination over F7, even though the domain is Boolean! This type of promise
CSP was briefly alluded to in [BG18], and in this work we systematically study such examples though
the theory of promise embeddings (see Section 3.1).

5. Hitting Set. Let ΓP := {Pi ∈Dari : i∈ I}, where Pi := {x∈Dari : Ham(x)= `i}where `i ∈{1, . . . ,ari−1}.
In other words, CSP(ΓP) corresponds to a generalized hitting set problem: given a collection of
hyperedges Si and targets `i, find a subset of the vertices S such that |S ∩ Si| = `i. Let ΓQ :=
{Qi = Dari \{0ari ,1ari}}. Then CSP(ΓQ) is hypergraph two-coloring (each color appears at least once
per hyperedge). Although neither CSP(ΓP) or CSP(ΓQ) is tractable in general, PCSP(ΓP,ΓQ) is
tractable [BG18].

11This requires that fixing a variable to a specific value leads to a constraint with the same polymorphisms.
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6. Approximate Graph Coloring. Let k ≤ ` be positive integer. Let D = [k] and E = [`]. Then,
(D,E, idD) is a promise domain. Let Γk–col = {P = {(x,y) ∈ D2 : x 6= y}} and Γ`–col = {Q = {(x,y) ∈
E2 : x 6= y}}. Then, Γ = (Γk–col,Γ`–col) is then the promise template for the well-studied approximate
graph coloring problem: given a graph of chromatic number k, find an `-coloring. This problem has
been studied for decades, and it is still unsolved in many cases (e.g., [GK04, KLS00, Hua13, BG16]).

7. Rainbow Coloring. Consider D = [k] and E = {0,1}, with φ : D → E being an arbitrary, non-
constant map. If ΓP = {P = {x ∈ Dk : x is a permutation of D}} and ΓQ = {Q = Ek \{0k,1k}}, then
PCSP(ΓP,ΓQ) is the following hypergraph problem: given a k-uniform hypergraph such that there is a
k-coloring in which every color appears in every edge, find a hypergraph 2-coloring. A random-walk-
based polynomial-time algorithm is reported in [McD93]; semidefinite programming gives another
folklore algorithm. A deterministic algorithm based on solving linear programming was found by
Alon [personal communication].

Analogous to the utility of polymorphisms for studying CSPs, weak polymorphisms are useful for
studying promise CSPs. The first formal definition of a weak polymorphism appeared in [AGH17].

Definition 2.8. Let (D,E,φ) be a promise domain and σ = {(i,ari) : i ∈ I} be a signature. and Γ = (ΓP =
{Pi ⊆Dari},ΓQ = {Qi ⊆ Eari}) be a promise template over this domain. A weak polymorphism is a function
f : DL→ E for some positive integer L such that for all i ∈ I, f (Pi) ⊆ Qi. We let poly(Γ) denote the set of
weak polymorphisms of Γ.

Like in the case of constraint satisfaction problems, there is a Galois correspondence for promise CSPs
([BG18], following from a result of [Pip02]). Thus, like for CSPs, it suffices to consider the collection of
weak polymorphisms and not the particulars of the constraints.

As pointed out in [AGH17], unlike the polymorphisms for “ordinary” CSPs, due to the change in do-
main of weak polymorphisms, they cannot be composed. Thus, unlike CSPs which deal with families of
CSPs closed under compositions and projections (known as clones), promise CSPs are determined by fami-
lies of CSPs closed under only projections12. Thus, while the techniques for studying CSPs are (universal)
algebraic, the necessary techniques for studying promise CSPs are topological. In particular, unlike results
such as Schaefer’s theorem for which the existence of one nontrivial polymorphism (e.g., PAR3) is enough
to imply tractability of promise CSPs, [AGH17] showed that an infinite sequence of weak polymorphisms
is necessary to imply tractability. One contribution of this work is that we show that having an infinite
sequences of weak polymorphisms which “converge” with respect to a particular topology is sufficient to
imply efficient algorithms. We now give a polymorphic reason for why each of the above examples is
tractable/non-tractable.

1. CSPs. The polymorphisms of Γ are exactly the same as the weak polymorphisms of (Γ,Γ).

2. (2+ε)-SAT. [AGH17] showed that MAJ2k−1 is a weak polymorphism, but MAJ2k+1 (or any function
that essentially depends on at least 2k + 1 variables) is not. They exploited this fact to show NP-
hardness via a reduction from the PCP theorem.

3. Threshold conditions. Consider L such that L/α is not an integer. Then,

fL(x1, . . . ,xL) =

{
0 Ham(x)< L/α

1 Ham(x)> L/α

12There is an additional constraint known as finitization, which comes as a technicality when Γ is finite. See the Conclusion for
a discussion on how this could be utilized to understand promise CSPs from a topological perspective.

9



is a weak polymorphism of this problem. This is known as a threshold polymorphism and is studied
in Section 4.1.

4. Embedding Linear Equations. Consider L≡ 1 mod 7 then

fL(x1, . . . ,xL) = h

(
L

∑
i=1

xi mod 7

)
is a family of weak polymorphisms. This is a periodic polymorphism, and it is studied in Section 4.2.

5. Hitting Set. [BG18] showed that for all odd integers L

ATL(x1, . . . ,xL) = 1[x1− x2 + x3−·· ·− xL−1 + xL ≥ 1],

is a weak polymorphism for this problem. In this paper, we have generalized weak polymorphisms
like these to regional polymorphisms, which are studied in Section 5.

6. Approximate Graph Coloring. As this question is still open, much is not yet understood about the
weak polymorphisms. [BG16] showed that when ` ≤ 2k− 2, then the weak polymorphisms “look”
dictatorial when restricted to some subset of the outputs. These polymorphisms are closely connected
to the independent sets of tensor powers of cliques (e.g., [ADFS04]).

7. Rainbow Coloring. This problem has many, many nontrivial weak polymorphisms. For example, for
odd L, fL : [k]L→{0,1} defined to be

fL(x1, . . . ,xL) = 1

[
L

∑
i=1

xi ≤
2k+3

4
·L

]
,

is a family of weak polymorphisms for this problem. This is an example of a non-Boolean regional
polymorphism, which is studied in Section 6.

The main result of our previous work [BG18] is as follows.

Theorem 2.2 ([BG18]). Consider the promise domain (D= {0,1},D, idD). Let Γ= (ΓP = {Pi ∈Dari},ΓQ =
{Qi ∈ Dari}) be a CSP with the following technical conditions.

• P1 = Q1 = {(0,1),(1,0)}. In other words, variables can be negated.

• For all i ∈ I, Pi and Qi are symmetric: if (x1, . . . ,xari) ∈ Ri then (xπ(1), . . . ,xπ(ari)) ∈ Ri for all permu-
tations π .

Then, either PCSP(Γ) is (promise) NP-hard or PCSP(Γ) is in P and has one of the following 6 infinite
sequences of weak polymorphisms (coming in 3 pairs).

1. MAJL for all odd L≥ 3 or13 ¬MAJL for all odd L≥ 3.

2. PARL for all odd L≥ 3 or ¬PARL for all odd L≥ 3.

3. ATL for all odd L≥ 3 or ¬ATL for all odd L≥ 3.

Although that paper tried to jointly understand both algorithmic and hardness results (with most of
the work coming in on the hardness side), the aim of this paper is to develop the algorithmic tools for
understanding tractable cases of promise CSPs. In particular, we more deeply explore the power of LP and
Affine (i.e., linear equations over a commutative ring) relaxations for solving promise CSPs.

13The negation symbol (¬) in front a polymorphism merely means to negate the output.
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3 Embeddings and Relaxations

In this section, we build on the theory described in Section 2 to rigorously connect promise CSPs with
relaxations of these problems (e.g., linear programming relaxations).

3.1 Promise Embedding

Often it is useful to reduce promise CSP to a tractable CSP in another domain, and then map the result back
to the original domain. We call this procedure a promise embedding.

Definition 3.1. Let (D,E,φ) be a promise domain and σ = {(i,ari) : i ∈ I} be a signature. Let Γ = (ΓP =
{Pi⊆Dari},ΓQ = {Qi⊆Dari}) be a promise template with this signature. Let F be another (possibly infinite)
domain, and let g : D→ F , h : F → E be maps. Let Λ be a set of relations over the domain F . We say that
(g,h) is a promise embedding of Γ into Λ if there is ΛΓ = {Ri ∈ Fari} ⊆ Λ with the signature σ such that g
is a homomorphism from ΓP to ΛΓ and h is a homomorphism from ΛΓ to ΓQ.

In practice, D and E will both be finite. Thus, g : D→ F is a finite map (often something canonical,
like the identity function) which tells how to express our promise CSP in the new domain. On the other
hand, h : F → E, which we call the rounding function, is where the “algorithmic magic” takes place. When
F is infinite, it is not a priori obvious that h has a computationally efficient description, so we often assume
that we have oracle access to this rounding function. Furthermore, the choice of rounding function h is
crucially tied to the weak polymorphisms of Γ. In fact, one can consider h to be the “limit” of a sequence of
weak polymorphisms of Γ, or alternatively poly(Γ) is a discretization of h. This connection between h and
weak polymorphisms is made more clear in Section 4.

To exemplify this definition, we give a few examples of promise embeddings.

1. Let Γ be any CSP over D, then the promise CSP (Γ,Γ) embeds into Γ via (g,h) = (idD, idD)

2. Recall from Example 6 of Section 2.2 that Γ = (Γk–col,Γ`–col) is the promise template for the k vs.
` approximate graph coloring problem. For any m ∈ {k, . . . , `}, we have that (id[k], id[m]) is promise
embedding of Γ into Γm–col. In other words, any algorithm which solves the m-coloring problem can
also solve the k vs. ` approximate graph coloring problem.

3. Consider Γ = (ΓP,ΓQ) from Example 4 of Section 2.2 with affine subspace A ≤ Far
7 and the map

h : F7→{0,1}. Then, (id{0,1},h) is a promise embedding from Γ to Λ = {A}.

To be the best of the authors’ knowledge, all known polynomial time algorithms for solving promise
CSPs, involve embedding the given promise template Γ into a judiciously chosen Λ for which CSP(Λ) is
polynomial-time tractable. In fact, the authors conjecture that any tractable promise CSP must embed into
some (possibly infinite) tractable CSP.

However, even though Γ has a finite domain, Λ often necessarily has infinite domain, even when Γ

is Boolean. In fact, the Basic LP and Affine relaxations, explained in the following sections, are instances
of embedding into an infinite Λ. This is another reason why classifying the computational complexity of
promise CSPs is so much more difficult than for ordinary CSPs, and perhaps partially explains the difficulty
of the computational complexity community’s struggle to resolve the approximate graph coloring problem.

3.2 Basic LP Relaxation

The Basic LP relaxation is a widespread tool in approximation algorithms, often giving optimal results. For
example, the resolution of the Finite-Valued CSP (VCSP) dichotomy due to Thapper and Živný [TZ16]
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showed that all tractable instances can be solved with a Basic LP relaxation. In [BG18], the Basic LP was
one of the classes of algorithms exhibited in tractable promise CSPs (used for the MAJ and AT families). In
this work, we vastly generalize the usage of such an algorithm.

Fix a template Γ = {Pi ⊆ Dari} and consider an instance of CSP(Γ)

Ψ(x1, . . . ,xn) :=
∧
j∈J

Pi j(x j1 , . . . ,x jari j
).

Fix a subring A⊂ R which is to be the domain of our Basic LP. (Typically, A =Q, but for reasons we
are soon to see, other commutative rings are useful.)

Fix a positive integer k ≥ 1 and a map g : D→ Ak. Then, for each Pi ∈ Γ, g(Pi) is a cloud of points in
(Ak)ari ⊆ Rk ari . Recall the notion of a convex hull of a set of points S ∈ Rn

Conv(S) =

{
`

∑
i=1

αizi : αi ∈ [0,1],zi ∈ S,
`

∑
i=1

αi = 1

}
.

We let ConvA(S) = Conv(S)∩An. If we assume that each Pi has constant size, then Conv(g(Pi)) can be
specified by a constant number of linear inequalities.

The following is the Basic LP relaxation.

• Input: Ψ(x1, . . . ,xn) :=
∧

j∈J Pi j(x j1 , . . . ,x jari j
), an instance of CSP(Γ).

• Variables: each xi is replaced by vi ∈ Ak.

• Constraints:

– For each xi, specify that vi ∈ Conv(g(D)).

– For each constraint Pi j(x j1 , . . . ,x jari j
) specify that

(v j1 , . . . ,v jari j
) ∈ Conv(g(Pi j)).

Relaxation 3.1. The Basic LP relaxation of CSP(Γ).

Remark. Since our primary goal is feasibility, our LP relaxations do not have objective functions.

If we assume that Γ is finite, each Pi has constant size, the size of this LP relaxation is linear in
the size of the input Ψ, with constant factors depending on the specific Γ. Note that if A = Q, we can test
feasibility and output a solution in polynomial time. Like most uses of linear programming in approximation
algorithms, an LP solution, once found, is rounded to solve the problem at hand. Due to technical restrictions
of the rounding algorithms in this paper, there are often edge cases, for which rounding will not work. For
example, the procedure “round to the nearest integer” does not work for vi, j = 1/2. In [BG18], the authors
used an ad-hoc approach for avoiding these 1/2 situations, but it turns out these can be solved in a more
principled manner by solving the LP over a different ring other than Q. Of course, linear programs over
certain rings such as A = Z, are not solvable in polynomial time unless P = NP, so we need to look at
so-called LP-solvable rings.

Definition 3.2. A countable subring A ⊂ Rk for some positive integer k is LP-solvable if linear programs
over A can be exactly solved in (weakly) polynomial time.
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Thus, A = Q is LP-solvable, but A = Z is not. For technical reasons, we assume that R is not LP-
solvable because, in general, elements of R do not have a finite description.

Even with these restrictions, there is still a diversity of A which are LP-solvable. Results of Adler and
Beling [AB92, Bel01], show that algebraic extensions of Z, such as Z[√q] for q non-square are LP-solvable.
The usefulness of this fact is that edge cases like rounding 1/2 can be avoided by solving the LP over, say,
the ring Z[

√
2]. The authors are unaware of a previous application of this fact to approximation algorithms

of CSPs.
This procedure of rewriting a CSP as a Basic LP and then rounding can be expressed in the language

of a promise embedding. Let A⊂Rk be an LP-solvable ring and let Γ be a promise relation over the promise
domain (D,E,φ). As first introduced in Section 3.1, let g : D→ A be any map, and let h : A→ E be our
rounding function. Let ΛA = {R : R = ConvA(S),S⊂ A` finite, `≥ 1} be the family of convex subsets of A.

Theorem 3.1. Let A⊂ Rk be an LP-solvable ring. Let (D,E,φ) be a finite promise domain. Let Γ = (ΓP =
{Pi ∈ Dari : i ∈ I},ΓQ = {Qi ∈ Eari}) be a finite promise CSP. Let (g : D→ A,h : A→ E) be a promise
embedding of Γ into ΛA. Then PCSP(Γ) ∈ Ph, in which Ph is the family promise languages which can be
computed in polynomial time given oracle access to h.

This result is proven in Appendix A. Intuitively, Theorem 3.1 abstracts away the fine details of working
with the Basic LP and reduces the task to showing the existence of a promise embedding.

3.3 Affine Relaxation

Another broad class of algorithms studied in the CSP literature correspond to solving system of linear
equations over some commutative ring. Such algorithms are captured in the CSP literature under the broader
class of CSPs with a Mal’tsev polymorphism: a function on three variables such that ϕ(x,y,y) =ϕ(y,y,x) = x
always. Such CSPs are known to be tractable (e.g., [BKW17]). For commutative rings, the canonical
Mal’tsev polymorphism is ϕ(x,y,z) = x− y+ z, when the domain is a finite ring. Such algorithms are
not restricted to finite domains: linear equations over Q can be solved in polynomial time using Gaussian
elimination, and linear equations over Z can be solved in polynomial time by computing the Hermite Normal
Form [KB79]. This leads to the natural notion of LE-solvable rings.

Definition 3.3. Define a commutative ring B to be LE-solvable, if systems of linear equations over R can be
efficiently solved in (weakly) polynomial time.

By the discussion above, all finite commutative rings are LE-solvable, as well as the infinite rings Zk

for any natural number k. Furthermore, every LP-solvable ring is LE-solvable as LPs are more expressive
than LEs. Just as LPs relax sets to the their convex hulls, linear equations relax sets to their affine hulls.
Given a subset S⊆ Rk, define the affine hull to be

Aff(S) =

{
r1s1 + · · ·+ rksk : ∀ j,s j ∈ S and

k

∑
j=1

r j = 1

}
.

Note that by design S⊆ Aff(S). Furthermore, if S is finite, checking whether x ∈ Aff(S) can constrained by
two linear conditions over R.

We can now define the Affine relaxation of any CSP. Fix a finite domain D and an LE-solvable ring R.
Also pick any embedding map g : D→ R. Let Γ = {Pi ⊆ Dari} be any template over D. Note that g(Pi) is
some finite subset of Rari . This leads to our description of an affine relaxation.
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• Input: Ψ(x1, . . . ,xn) :=
∧

j∈J Pi j(x j1 , . . . ,x jari j
), instance of CSP(Γ),

• Variables: each xi is replaced by wi ∈ R.

• Constraints: For each constraint Pi j(x j1 , . . . ,x jari j
) of Ψ, specify that

(w j1 , . . . ,w jari j
) ∈ Aff(g(Pi j)).

Relaxation 3.2. The Affine relaxation of CSP(Γ).

By definition, Aff(g(Pi)) has a constant-sized description, since each Pi is of constant size, and there
are finitely many possible values for g(Pi), a lookup table of the linear constraints can be formed. Thus,
the system can be generated in linear time, and so it can be solved in polynomial time whenever R is LE-
solvable. Let

ΘR = {Aff(S) : ∃k,S⊆ Rk finite}.

This leads to an analogue of Theorem 3.1 for the infinite template over R

Theorem 3.2. Let R be an LE-solvable ring. Let (D,E,φ) be a finite promise domain, and let Γ = (ΓP =
{Pi ∈ Dari},ΓQ = {Qi ∈ Eari}) be a finite promise CSP over this promise domain. Let (g,h) be a promise
embedding of Γ into ΘR. Then, PCSP(Γ) ∈ Ph.

This result is proven in Appendix A.

3.4 Combined Relaxation

The true power of this promise embedding perspective is revealed when these relaxations are combined
using direct products.

Consider CSP templates Λ1 and Λ2 over domains F1 and F2 (not necessarily finite), respectively. We
define the direct product Λ1×Λ2 to be the CSP template over the domain F1×F2 such that

Λ1×Λ2 = {R1×R2 ⊆ (F1×F2)
ar : R1 ∈ Λ1,R2 ∈ Λ2 same arity ar},

where (R1×R2)((x1,y1), . . . ,(xar,yar)) = R1(x1, . . . ,xar)∧R2(y1, . . . ,yar).

Note that up to relabeling coordinates, the direct product is commutative and associative, allowing the
seamless combination of two or more CSP templates.

Fix a sequence of LP-solvable rings A := (A1, . . . ,A`) and a sequence of LE-solvable rings R :=
(R1, . . . ,Rm). Now define the template

ΞA ,R := ΛA1×·· ·×ΛA`
×ΘR1×·· ·×ΘRm .

It turns out promise homomorphisms to this template correspond to algorithms which combine linear pro-
gramming and affine equation solving.

Theorem 3.3. Let A := (A1, . . . ,A`) be a sequence of LP-solvable rings, and let R := (R1, . . . ,Rm) be a
sequence of LE-solvable rings. Let (D,E,φ) be a finite promise domain, and let Γ = (ΓP,ΓQ) be a finite
promise CSP over this domain. Let (g,h) be a promise embedding of Γ into ΞA ,R . Then, PCSP(Γ) ∈ Ph.
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This result is proven in Appendix A. Theorems 3.1, 3.2, and 3.3 are useful in that if we can show for
a particular promise template Γ that a promise homomorphism (g,h) exists to a suitable ΛA,ΘR or ΞA ,R

and h is proven to be polynomial-time computable, then we can show that PCSP(Γ) ∈ P. The subsequent
sections establish this result for a variety of Γ. Due to the complexity of such Γ, we refer to them via the
structure of their weak polymorphisms poly(Γ).

4 Threshold-Periodic Weak Polymorphisms

In this section and the subsequent one, we assume that our promise domain (D,E,φ) satisfies D = {0,1}
and E is any finite domain with any inclusion map φ : D→ E. Restricting D to be Boolean allows for a
simplified presentation, the results of Sections 4 and 5 can be extended to larger domains, as described in
Section 6.

4.1 Threshold Polymorphisms

Many polymorphisms which are considered in classical CSP theory, such as the OR, AND, and MAJ func-
tions, can be thought of as threshold functions. That is, the value of each of these polymorphisms only
depends on whether the Hamming weight of the input is above a certain threshold. In this subsection, we
consider a generalization of such functions to multiple thresholds.

Definition 4.1. A threshold sequence is a finite sequence of rational14 numbers τ0 = 0 < τ1 < · · ·< τk = 1.

For x ∈ {0,1}L, we let Ham(x) be the Hamming weight of x, i.e., the number of bits of x set to 1.

Definition 4.2. Let T = {τ0,τ1, . . . ,τk} be a threshold sequence and η : {0,1, . . . ,k+1} → E be any map.
Let L be a positive integer such that Lτi is not an integer for any i ∈ {1, . . . ,k−1}. Then, define THRT,η ,L :
{0,1}L→{0,1} to be the following polymorphism.

THRT,η ,L(x) =


η(0) Ham(x) = 0
η(i) Lτi−1 < Ham(x)< Lτi,1≤ i≤ k
η(k+1) Ham(x) = L.

The function η is closely connected to the rounding function h from the definition of a promise em-
bedding (Section 3.1). In essence, η is finite description or discretization of h.

To get intuition, here are examples of common polymorphisms and their corresponding parameters as
threshold functions.

MAJL ORL ANDL

T {0,1/2,1} {0,1} {0,1}
η (0,0,1,1) (0,1,1) (0,0,1)

This now leads to our first main result.

Theorem 4.1. Let T = {τ0, . . . ,τk} be a threshold sequence with a corresponding map η : {0, . . . ,k+1}→
E. Let Γ = (ΓP = {Pi ∈ Dari ∈ I},ΓQ = {Qi ∈ Eari : i ∈ I}) be a promise template such that THRT,η ,L ∈
poly(Γ) for infinitely many L. Then, PCSP(Γ) ∈ P.

14These could also be real numbers under suitable computational assumptions, but for simplicity of exposition we assume all
thresholds are rational
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The proof is essentially a direct generalization of the arguments in Section 3.2 of [BG18].

Proof. Let A = Z[
√

2], which as previously stated is LP-solvable by a theorem of Adler and Beling [AB94].
We claim that there is a promise embedding from Γ into ΛA via the following maps15 g : D→ A and h : A→
E:

g(d) = d

h(v) =


η(0) v≤ 0
η(i) τi−1 < v < τi,1≤ i≤ k
η(k+1) v≥ 1

Define ΛΓ := {Ri := ConvA(g(Pi)) : Pi ∈ ΓP}. Since g(Pi)⊂ ConvA(g(Pi)), we have that g is a homo-
morphism from ΓP to ΛΓ. We claim that h is a homomorphism from ΛΓ to ΓQ. In other words, we seek
to show that h(ConvA(g(Pi))) ⊆ Qi. For any V ∈ ConvA(g(Pi)), since g(Pi) is finite, there exist elements
X1, . . . ,Xm ∈ Pi and weights16 α1, . . . ,αm ∈ (0,1] summing to 1 such that

V = α1g(X1)+ · · ·+αmg(Xm).

Fix L to be sufficiently large (to be specified later). We can pick nonnegative integers w1, . . . ,wm such
that w1+ · · ·+wm = L and |wi−αiL| ≤ 1 (start with wi = bαiLc for all i and then increase weights one-by-one
until the sum is L). Now compute

Y := THRT,η ,L(X1, . . . ,X1︸ ︷︷ ︸
w1 copies

, . . . ,Xm, . . . ,Xm︸ ︷︷ ︸
wm copies

) ∈ Qi.

Define for each coordinate j ∈ {1, . . . ,ari}

s j :=
1
L

Ham(X1
j , . . . ,X

1
j︸ ︷︷ ︸

w1 copies

, . . . ,Xm
j , . . . ,X

m
j︸ ︷︷ ︸

wm copies

).

Then, by design, Yj = h(s j). We also know that

1
L
|s j−Vj|=

m

∑
a=1

Xa
j =1

∣∣∣wa

L
−αa

∣∣∣≤ m
L

Since V ∈ Aari , we have three cases

1. If Vj ≤ 0, then Xa
j = 0 for all j. Then, Vj = s j = 0 so Yj = h(Vj).

2. If Vj ≥ 1, then Xa
j = 1 for all j. Then, Vj = s j = 1 so Yj = h(Vj).

3. If Vj ∈ (0,1), then τi−1 <Vj < τi for some i∈ {1, . . . ,k}. Thus, as L→∞, s j will get sufficiently close
to Vj that τi−1 < s j < τi. Thus, Yj = h(s j) = h(Vj).

Thus, since Y ∈ Qi, we have that h(V ) ∈ Qi, establishing the promise embedding is valid.
By Theorem 3.1, we have that PCSP(Γ) ∈ Ph. Note that h is polynomial-time computable, since

computing h involves checking a constant number of inequalities in A. Thus, PCSP(Γ) ∈ P, as desired.
15For type-theoretic reasons, we define h on the full domain of A rather than [0,1]∩A.
16Note that the weights might not be in A.
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4.2 Periodic Polymorphisms

Instead of having our threshold functions be piece-wise constant, we can consider periodic polymorphisms.

Definition 4.3. Let M be a positive integer, and let η : Z/MZ→ E be any map. Let L be a positive integer.
Define PERM,η ,L to be the following function

PERM,η ,L(x) = η(k) if Ham(x)≡ k mod M.

As stated earlier, Example 4 from Section 2.2 is a periodic polymorphism.

Theorem 4.2. Let M be a positive integer, and let η : Z/MZ→ E be any function. Let Γ = (ΓP = {Pi ⊆
Dari},ΓQ = {Qi ⊆ Eari}) be a promise template on the Boolean domain such that PERM,η ,L ∈ poly(Γ) for
infinitely many L. Then, PCSP(Γ) ∈ P.

Proof. For these infinitely many L, consider the remainders when they are divided by M. Since there are
only finitely many remainders, there exists r ∈ {0, . . . ,M−1} such that L≡ r mod M infinitely often.

Consider the ring R = Z/MZ. We seek to show that there is a promise embedding of Γ into ΘR via the
maps g : {0,1}→ R and h : R→ E where

g(x) =

{
0 x = 0
r x = 1

h = η .

Note that η is a “discretization” of h, but since R is a finite domain, η can be used for h.
Consider ΘΓ = {Ri := Aff(g(Pi)) : Pi ∈ ΓP}. Since g(Pi) ⊆ Aff(g(Pi)), we have that g is a homo-

morphism from ΓP to ΘΓ. We claim that h is a homomorphism from ΘΓ to ΓQ. In other words, for all
(Pi,Qi) ∈ Γ, we seek to show that h(Aff(g(Pi))) ⊆ Qi. For any V ∈ Aff(g(Pi)), we have that there exist
X1, . . . ,Xk ∈ Pi as well as ring elements r1, . . . ,rk ∈ R such that r1 + · · ·+ rk = 1 and

V = r1g(X1)+ . . .+ rkg(Xk).

For some sufficiently large L≡ r mod M for which PERM,η ,L ∈ poly(Γ), pick nonnegative integers w1, . . . ,wk
such that wi ≡ rir mod M and w1 + · · ·+wk = L. By starting with the wi’s as small as possible and then
increment by M, this is possible as long as L≥Mk. Now, since PERM,η ,L ∈ poly(Γ), we have that

Y := PERM,η ,L(X1, . . . ,X1︸ ︷︷ ︸
w1 copies

, . . . ,Xk, . . . ,Xk︸ ︷︷ ︸
wk copies

) ∈ Qi.

For each coordinate i ∈ {1, . . . ,ari}, we have that by definition of PER,

Yi = η

(
k

∑
j=1

w jX
j

i mod M

)
= η

(
k

∑
j=1

r j(rX j
i ) mod M

)
= h

(
k

∑
j=1

r jg(X j)

)
= h(Vi).

Since h(V ) = Y ∈ Qi, we know that h is a homomorphism from ΘΓ to ΓQ, as desired.
Since R is a finite commutative ring, we have that R is LE-solvable. Thus, by Theorem 3.2, we have

that PCSP(Γ) ∈ Ph. Since h = η is a constant-sized function, PCSP(Γ) ∈ P, as desired.
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4.3 Threshold-periodic Polymorphisms

It turns out that threshold polymorphisms and periodic polymorphisms can be combined in nontrivial ways

Definition 4.4. Let T = {τ0 = 0,τ1, . . . ,τk = 1} be a threshold sequence, M = (M0, . . . ,Mk) be a sequence
of positive integers, and H = (η1, . . . ,ηk) be a sequence of maps ηi : Z/MiZ→ E. Let L be a positive integer
such that Lτi is not an integer for any i ∈ {1, . . . ,k−1}. Then, define THR-PERT,M,H,L : {0,1}L→ E to be
the following polymorphism.

THR-PERT,M,H,L(x) =


η1(0) Ham(x) = 0
ηi(Ham(x) mod Mi) Lτi−1 < Ham(x)< Lτi,1≤ i≤ k
ηk(L) Ham(x) = L.

For technical reasons, we have to have that values at Hamming weights 0 and L be consistent with the
periodic patterns in the intervals (0,τ1) and (τk−1,1), respectively.

Theorem 4.3. Let T,M,H be defined as above. Let Γ be a promise template on the Boolean domain such
that THR-PERT,M,H,L ∈ poly(Γ) for infinitely many L. Then, PCSP(Γ) ∈ P.

Proof. Let Mlcm = lcm(M0, . . . ,Mk). Like in the periodic case, there must be some r ∈ Z/MlcmZ such that
L≡ r mod Mlcm for infinitely many L for which THR-PERT,M,H,L ∈ poly(Γ).

Pick an LP-solvable ring A such that τi 6∈ A for all i ∈ {1, . . . ,k−1}. Let R = Z/MlcmZ. We claim that
there is a promise embedding of Γ into ΞA,R via (g,h) where

g(0) = (0,0) ∈ A×R

g(1) = (1,r) ∈ A×R

h(x,y) =


η1(y mod M0) x≤ 0
ηi(y mod Mi) τi−1 < x < τi,1≤ i≤ k
ηk(y mod Mk) x≥ 1

The justification of the embedding is a merging of the methods of Theorem 4.1 and Theorem 4.2. Since we
desire ”access” to each coordinate of g, we let gA be the first coordinate and gR be the second coordinate.

Consider ΞΓ := {Ri := (ConvA(gA(Pi)1),AffR(gR(Pi))) : Pi ∈ ΓP} note that ΞΓ⊂ΞA,R. By design, g is a
homomorphism from ΓP to ΞΓ. Thus, it suffices to show that for any (V,W )∈ Ri, we have that h(V,W )∈Qi.

By definition, if (V,W ) ∈ Ri, there exists X1, . . . ,Xm ∈ Pi as well as α1, . . . ,αm ∈ [0,1] summing to 1
and r1, . . . ,rm ∈ R summing to 1 such that17

V = α1gA(X1)+ · · ·+αmgA(Xm)

W = r1gR(X1)+ · · ·+ rmgR(Xm).

Pick L sufficiently larger (to be specified) such that THR-PERT,M,H,L ∈ poly(Γ) with L≡ r mod Mlcm. We
now need to delicately find integer weights w1, . . . ,wm such that the following properties hold

m

∑
i=1

wi = L

wi ≡ rir mod M for all i

|wi−αiL| ≤M for all i.

17The reason these can be simultaneously true is that we can set some αi’s and ri’s to 0.
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Note that the first two conditions are consistent because ∑
m
i=1 rir ≡ r ≡ L mod M. Such wi’s can be con-

structed by first setting each wi to be the greatest integer at most αiL which is equivalent to rir mod M.
Then, one can increase the wi’s by M one-by-one until they sum to L.

With these in hand, consider

Y := THR-PERT,M,H,L(X1, . . . ,X1︸ ︷︷ ︸
w1 copies

, . . . ,Xm, . . . ,Xm︸ ︷︷ ︸
wm copies

) ∈ Qi.

Define for each coordinate j ∈ {1, . . . ,ari}

sA
j :=

1
L

Ham(X1
j , . . . ,X

1
j︸ ︷︷ ︸

w1 copies

, . . . ,Xm
j , . . . ,X

m
j︸ ︷︷ ︸

wm copies

)

sR
j :=

m

∑
a=1

waXa
j mod M

Then, by design, Yj = h(sA
j ,s

R
j ). We also know that

1
L
|sA

j −Vj|=
k

∑
a=1

Xa
j =1

∣∣∣wa

L
−αa

∣∣∣≤ Mm
L

as well as

sR
j =

m

∑
a=1

r j(rX j
i ) mod M =

m

∑
a=1

r jgR(X
j

i ) =Wj.

Since V ∈ Aari , we have that τi−1 < Vj < τi for i ∈ {2, . . . ,k− 1} or τ0 ≤ Vj < τ1 or τk−1 < Vj ≤ τk. In
any case, as L→ ∞, sA

j will get sufficiently close to Vj so that it falls into the same interval as Vj. Thus,
Yj = h(sA

j ,s
R
j ) = h(Vj,Wj). Therefore, h(V,W ) = Y ∈ Qi, establishing the promise embedding is valid.

Since A is LP-solvable and R is LE-solvable, by Theorem 3.3, we have that PCSP(Γ) ∈ Ph. Since h
only needs to check thresholds and then use a finite lookup table, h can be computed in polynomial time in
the description of the input. Thus, PCSP(Γ) ∈ P, as desired.

5 Regional Boolean polymorphisms

So far, all of the families of weak polymorphisms we have studied are Boolean, symmetric; that is, they
only depend on the Hamming weight of the input vector. This section describes how these results can be
extended to special kinds of block symmetric functions. Like in the previous section, our promise domain is
always (D = {0,1},E,φ).

Definition 5.1. Let b and L be positive integers. A function f : DL→ E is b-block symmetric, if there is a
partition [L] = B1∪B2∪ ·· · ∪Bb such that for all (x1, . . . ,xL) ∈ DL and any permutation π : [L]→ [L] such
that π(Bi) = Bi for all i.

f (x1, . . . ,xL) = f (xπ(1), . . . ,xπ(L)).

In other words, f is b-block symmetric with the corresponding partition B1 ∪ ·· · ∪Bb, then, f (x) de-
pends only on (HamB1(x), . . . ,HamBb(x)), where HamBi(x) is the sum of the coordinates with indices in Bi.
Analogous to how a symmetric function can be thought of as a function on the real interval [0,1], a b-block
symmetric function can be thought of as a function on [0,1]b.
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5.1 Regional Weak Polymorphisms

Even going from [0,1] to [0,1]2, the ways of splitting up space can become rather complex. Thus, instead of
giving an explicit description like for threshold polymorphisms, we discuss a generalization which we call
open partition weak polymorphisms. First, we need to define what an open partition is.

Definition 5.2. Let A1, . . . ,Ab ⊂ R be dense commutative rings. Let A := (A1×A2×·· ·×Ab)∩ [0,1]b. Let
E be a set. A function Part : A→ E is an open partition if for all x ∈ A, there exists ε > 0, such that for
all y ∈ A with |x− y| < ε , we have Part(y) = Part(x). In other words, for all e ∈ E, Part−1(e)is open in the
Euclidean topology induced by A.

We also have a slightly more general notion called an integer open partition which allows for arbitrary
values to be set at the corners of the hypercube [0,1]b.

Definition 5.3. Let A1, . . . ,Ab ⊂ R be dense commutative rings. Let A := (A1×A2× ·· · ×Ab)∩ [0,1]b.
Let E be a set. A function Part : A→ E is an integer open partition if for all x ∈ A \ {0,1}b, there exists
ε > 0, such that for all y ∈ A with |x− y| < ε , we have Part(y) = Part(x). In other words,for all e ∈ E,
Part−1(e)\{0,1}b is open in the Euclidean topology induced by A.

Going back to the 1-dimensional case, consider A1 = Z[
√

2] so that A= A1∩ [0,1]. Also, let our range
be E = {0,1}. The partition corresponding to the MAJ polymorphism is then

PartMAJ(x) =

{
0 x < 1/2
1 x > 1/2.

This function is an open partition because the apparent boundary element 1/2 does not exist in Z[
√

2]. On
the other hand, the partition corresponding to the AND polymorphism.

PartAND(x) =

{
0 x < 1
1 x = 1

is not an open partition because Part−1(1) has boundary. Yet, it is an integer open partition because the only
boundary term has integer coordinates.

A more complex example in two dimensions is as follows. Let A= (Z[
√

2]×Z[
√

3])∩ [0,1]2 and let

PartAT(x,y) =


0 x < y
1 x > y
0 x = y = 0
1 x = y = 1

See Figure 1. Note that since the two coordinates are in the rings Z[
√

2] and Z[
√

3], x = y if and only if
x and y are both integers. Thus, the only boundary terms have integer coordinates, so PartAT is an integer
open partition. As hinted by the name, PartAT is connected to the family of weak polymorphisms ATL. This
connection is made more explicit soon.

For a more nontrivial example, consider E = {0,1,2,3,4} and A= (Z[
√

2)2∩ [0,1]2. Let

Partcircle(x,y) =



0 x < 1/2 and y < 1/2 and (x−1/2)2 +(y−1/2)2 > 1/13
1 x < 1/2 and y > 1/2 and (x−1/2)2 +(y−1/2)2 > 1/13
2 x > 1/2 and y < 1/2 and (x−1/2)2 +(y−1/2)2 > 1/13
3 x > 1/2 and y > 1/2 and (x−1/2)2 +(y−1/2)2 > 1/13
4 (x−1/2)2 +(y−1/2)2 < 1/13

20



x

y

0

1

0

1

x

y

0

1

2

3

4

Figure 1: Plots of PartAT(x,y) and Partcircle(x,y). The dashed lines represent the boundary between the
regions. The 0 and 1 in the corners of the square for PartAT(x,y) represents the value chosen at those
corners.

In this case, Partcircle is an open partition, since the equations x = 1/2, y = 1/2 and (x−1/2)2 +(y−
1/2)2 = 1/13 have no solutions in (Z[

√
2])2.

Although an integer open partition Part is only defined in A, we can extend it to a substantial portion
of [0,1]b. This is useful when we desire to discretize Part by wanting know its value at particular rational
coordinates (which may not be in A).

Definition 5.4. Let Part : A→ E be an integer open partition. Define Part : [0,1]b → E ∪{⊥} to be the
partial function for which

Part(x) =


Part(x) x ∈ {0,1}n

e ∈ E ∃ε > 0,∀y ∈ A, |x− y|< ε implies Part(x) = e
⊥ otherwise.

Note that since Part is an integer open partition, Part(x) = Part(x) for all x ∈ A. Since A is dense in
[0,1]b, and A ⊂ (Part)−1(E) is open, we have that (Part)−1(⊥) = [0,1]b \ (Part)−1(E) is nowhere dense,
although it may have positive Lebesgue measure.

As alluded to earlier, these partitions Part, which will end up being our rounding functions, are dis-
cretized to form a collection of polymorphisms. Recall our domain D = {0,1} is Boolean for this section.

Definition 5.5. Let A1, . . . ,Ab ⊂ R be dense commutative rings. Let A = A1×·· ·×Ab∩ [0,1]b. Let Part :
A→ E be an integer open partition. Let L1, . . . ,Lb be positive integers such that for all ki ∈ {0,1, . . . ,Li} for
all ki ∈ [b], we have that Part

(
k1
L1
, . . . , kb

Lb

)
6=⊥. Let L = ∑

b
i=1 Li and let B = (B1, . . . ,Bb) be a partition of

[L] such that |Bi|= Li for all i ∈ {1, . . . ,b}. Define the regional weak polymorphism REGPart,B : DB1×·· ·×
DBb → E to be

REGPart,B(x) = Part
(

HamB1(x)
L1

, · · · HamBb(x)
Lb

)
.

For example, REGPartAT,({1,3,...,2k+1},{2,4,...,2k}) is the same as AT2k+1 up to a permutation of the coordi-
nates.

Now, we can prove that having an infinite collection of regional weak polymorphisms implies tractabil-
ity as long as Part is efficiently computable.
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Theorem 5.1. Let A1, . . . ,Ab ⊂R be LP-solvable subrings. Let A= A1×·· ·×Ab∩ [0,1]b. Let Part : A→ E
be an integer open partition. Let Γ = (ΓP = {Pi ∈ Dari : i ∈ I},ΓQ = {Qi ∈ Eari}) be a promise template.
Assume that for all positive integers `, there exists REGPart,B ∈ poly(Γ) such that |Bi| ≥ ` for all Bi ∈B.
Then, PCSP(Γ) ∈ PPart.

Proof. Let A = (A1, . . . ,Ab). By Theorem 3.3, it suffices to show that there is a promise embedding of Γ

into ΞA . The embedding map g : D→ A is just

g(d) =

{
(0, . . . ,0) d = 0
(1, . . . ,1) d = 1.

As suggested by the theorem statement, the rounding map is precisely18 the integer open partition h = Part.
Now, let ΞΓ = {Ri := ConvA1(g1(Pi))×·· ·×ConvAb(gb(Pi)) ∈ Aari : i ∈ I}. By design, g is a homo-

morphism from ΓP to ΞΓ. The heart of the argument is to show that h is a weak polymorphism from ΞΓ to
ΓQ. In other words, we need to show for all i ∈ I, that h(Ri) ⊆ Qi. Fix V ∈ Ri and view V = (V1, . . . ,Vb) ∈
Aari

1 ×·· ·×Aari
b . With Va = (Va,1, . . . ,Va,ari) ∈ Aari

a .
List the elements X1, . . . ,Xm ∈ Pi. For all a ∈ {1,2, . . . ,b}, because Va ∈ ConvAa(g1(Pi)), we have that

there exists weights αa, j ∈ [0,1] with j ∈ {1, . . . ,m} such that

Va =
m

∑
j=1

αa, jX j.

(Note that g can be omitted, since it is the identity map on each coordinate.) Pick ` sufficiently large (to be
determine later), such that REGh,B ∈ poly(Γ) and |Ba| ≥ ` for all Ba ∈B. Then, using a nearly identical
argument as the one in Theorem 4.1, we can find integer weights wa, j such that ∑

m
j=1 wa, j = |Ba| for all

a ∈ {1,2, . . . ,b} and ∣∣∣∣wa, j

|Ba|
−αa, j

∣∣∣∣≤ 1
|Ba|
≤ 1

`
.

Furthermore, we can ensure that wa, j = 0 whenever αa, j = 0 Fix k ∈ {1, . . . ,ari}. There are essentially two
cases to consider

• If Wk := (V1,k, . . . ,Vb,k)∈ [0,1]b\{0,1}b, consider ε > 0 such that Part(x) = Part(Wk) for all |x−Wk|<
ε . Then, if ` is chosen such that b

` < ε , then for each k ∈ {1, . . . ,ari}

REGPart,B(X1
k , . . . ,X

1
k︸ ︷︷ ︸

w1,1 copies

, . . . ,Xm
k , . . . ,Xm

k︸ ︷︷ ︸
w1,m copies

,X1, . . . ,X1︸ ︷︷ ︸
w2,1 copies

, . . . ,Xm
k , . . . ,Xm

k︸ ︷︷ ︸
w2,m copies

, . . .X1
k , . . . ,X

1
k︸ ︷︷ ︸

wb,1 copies

, . . . ,Xm
k , . . . ,Xm

k︸ ︷︷ ︸
wb,m copies

)

= Part

(
∑

m
j=1 w1, jX

j
k

|B1|
, . . . ,

∑
m
j=1 wb, jX

j
k

|Bb|

)

= Part

(
m

∑
j=1

α1, jX
j

k , . . . ,
m

∑
j=1

αb, jX
j

k

)
(within ε)

= Part(Wk)

= Part(Wk).

18Technically, the domain of h is A1×·· ·×Ab, whereas the domain of Part is [0,1]b. This can be “fixed” by having h return a
default value (e.g., 0) when the input is outside [0,1]b.
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• Otherwise, if Wk ∈ {0,1}b, whenever αa, j 6= 0, we must have that Va,k = X j
k . Since αa, j = 0 implies

wa, j = 0, we have that

REGPart,B(same as above)

= Part

(
∑

m
j=1 w1, jX

j
k

|B1|
, . . . ,

∑
m
j=1 w1, j

|Bb|

)

= Part

(
∑

m
j=1 w1, jV

j
k

|B1|
, . . . ,

∑
m
j=1 w1, j

|Bb|

)
= Part(Wk)

= Part(Wk) (because Wk ∈ {0,1}b.

In either case, we have that Part(V ) is the output of REGPart,B(Pi)⊆ Qi. Thus, we have the aforementioned
promise embedding.

5.2 Regional Periodic Weak Polymorphisms

Just as threshold polymorphisms can be generalized to threshold-periodic polymorphisms, we have that
regional polymorphisms can be generalized to regional periodic weak polymorphisms.

Recall that if A := A1×·· ·×Ab∩ [0,1], where the Ai’s are dense commutative rings, then Part : A→ E
is an open partition if for all e ∈ E, Part−1(e) is relatively open with respect to the Euclidean topology
induced by A. In other words, for all e∈ E, there exists Ωe ⊂Rb open such that Part−1(e) = Ωe∩A. We call
Ωe a region of Part. Note that for all x ∈ Ωe ∩ [0,1]b, Part(x) = e. Given this, we can now define regional
periodic weak polymorphisms.

Definition 5.6. Let A1, . . . ,Ab ⊂ R be dense commutative rings. Let A = A1× ·· · ×Ab be a product of
subrings of R. Let S be a finite set, and let Part : A→ S be an open partition. Let L1, . . . ,Lb be positive
integers such that for all ki ∈ {0,1, . . . ,Li} for all i ∈ [b], we have that Part

(
k1
L1
, . . . , kb

Lb

)
6=⊥. Let L = ∑

b
i=1 Li

and let B = (B1, . . . ,Bb) be a partition of [L] such that |Bi| = Li for all i ∈ [b]. For each k ∈ S, let Jk be an
ideal of Zb such that Zb/Jk is finite. Let M = {Mk : Zb/Jk→ E | k ∈ S} be a collection of maps. Define the
regional periodic polymorphism REG-PERPart,B,M : DB1×·· ·×DBb → E to be

REG-PERPart,B,M (x)=Mk((HamB1(x), . . . ,HamBb(x)) mod Jk) where k=Part
(

HamB1(x)
L1

, · · · HamBb(x)
Lb

)
.

Figure 2 shows an example of a partition with periodic functions added. Now, we can prove a more
general result.

Theorem 5.2. Let A1, . . . ,Ab ⊂ R be LP-solvable rings. Let A = A1× ·· ·×Ab ∩ [0,1]b. Let Part : A→ S
be an open partition. Let M = {Mk : Zb/Jk → E | k ∈ S} be a collection of maps. Let Γ = (ΓP = {Pi ∈
Dari : i ∈ I},ΓQ = {Qi ∈ Eari}) be a promise template. Assume that for all positive integers `, there exists
REGPart,B,M ∈ poly(Γ) such that |Bi| ≥ ` for all Bi ∈B. Then, PCSP(Γ) ∈ PPart.

The proof has similar structure to the proof of the threshold-periodic case, Theorem 4.3.

Proof. Given a sequence of blocks B, we can define its residue with respect to M to be the sequence

ResM (B) = (B mod Jk : k ∈ S).
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Figure 2: Plot of Partcircle(x,y) in the same style as Figure 1. Within each region is a function (a,b) 7→
Mi(a,b) whose domain is some quotient of Z2, where a and b represent the Hamming weights of each block
in the corresponding regional periodic polymorphism.

Note that since Zb/Jk is a finite quotient for all k ∈ S, the set of all possible residues is finite. Thus, there
exists a residue r̂ := (r̂k : k ∈ S) such that r̂ = ResM (B) for infinitely many B such that REGPart,B,M ∈
poly(Γ) and min{|Bi|} is arbitrarily large.

We now apply the ring-theoretic Chinese Remainder Theorem to our quotient rings. Let J =
⋂

k∈S Jk
be the intersection of the ideals of Zb. Note that J is also an ideal of Zb. Furthermore, Zb/J is finite, as any
two elements of x,y ∈ Zb with the same residue satisfy x−y ∈ Jk for all k ∈ S, so x−y ∈ J, implying a finite
number of cosets. This also implies that we can identify r̂ with an element of Zb/J.

Now, let A = (A1, . . . ,Ab) and R = (Zb/J). Recall that ΞA ,R is the direct product

ΞA ,R =

(
b

×
j=1

ΛA j

)
×ΘZb/J.

We claim that there is a promise embedding of Γ into ΞA ,R via the maps (g,h) where

g(0) = (0, . . . ,0︸ ︷︷ ︸
b terms

,0)

g(1) = (1, . . . ,1︸ ︷︷ ︸
b terms

, r̂)

h(x1, . . . ,xb,r) = Mk(r) where k = Part(x1, . . . ,xb). (1)

Analogous to the proof of Theorem 4.3, define

ΞΓ := {Ri := (ConvA1(g1(Pi)), . . . ,ConvAb(gb(Pi)),AffZb/J(gb+1(Pi))) : Pi ∈ ΓP}.

As before, by definition, g is a homomorphism from ΓP to ΞΓ. Thus, it suffices to show

for all (V1, . . . ,Vb,W ) ∈ Ri, we have that h(V1, . . . ,Vb,W ) ∈ Qi.

Let X1, . . . ,Xm be the elements of Pi. For all j ∈ [b], since Vj ∈ ConvA j(g j(Pi)), we have that there
exists α j,1, . . . ,α j,m ∈ [0,1] summing to 1 such that

Vj = α j,1ga(X1)+ · · ·+α j,mga(Xm).
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Likewise, since W ∈AffZb/J(gb+1(Pi)), we have that there exist r1, . . . ,rm ∈Zb/Jm which sum to the identity
(1, . . . ,1) ∈ Zb/Ja such that

W = r1gb+1(X1)+ · · ·+ rmgb+1(Xm).

Fix ` sufficiently large (to be specified later) and B = (B1, . . . ,Bb) with |B j| ≥ ` for all j ∈ [b] such that
ResM (B) = r̂ ∈Zb/J. For any such j ∈ [b] find19 weights w j,1, . . . ,w j,m satisfying the following conditions:

m

∑
k=1

w j,k = |B j| for all j ∈ [b] (cardinality condition)

(w1,k, . . . ,wb,k) ∈ rkr̂+ J for all k ∈ [m] (coset condition)∣∣w j,k−α j,k|B j,k|
∣∣≤ 2|Zb/J|bm for all j ∈ [b],k ∈ [m]. (approximation condition)

Now consider

Y := REG-PERPart,B,M (X1, . . . ,X1︸ ︷︷ ︸
w1,1 copies

, . . . ,Xm, . . . ,Xm︸ ︷︷ ︸
w1,m copies

,

X1, . . . ,X1︸ ︷︷ ︸
w2,1 copies

, . . . ,Xm, . . . ,Xm︸ ︷︷ ︸
w2,m copies

, . . .

X1, . . . ,X1︸ ︷︷ ︸
wb,1 copies

, . . . ,Xm, . . . ,Xm︸ ︷︷ ︸
wb,m copies

) ∈ Qi.

We seek to prove that h(V1, . . . ,Vb,W ) = Y , showing that h(V1, . . . ,Vb,W ) ∈ Qi.
For each j ∈ [b] and each coordinate k ∈ {1, . . . ,ari} (recall ari is the arity of Pi, Qi and Ri) we can

define

sA j
k :=

1
|B j|

Ham(X1
k , . . . ,X

1
k︸ ︷︷ ︸

w j,1 copies

, . . . ,Xm
k , . . . ,Xm

k︸ ︷︷ ︸
w j,m copies

).

=
1
|B j|

m

∑
β=1

w j,β Xβ

k

≈
m

∑
β=1

α j,β Xβ

k =Vj,k,

where ≈ means O(1
` ) error. Thus, if ` is sufficiently large, for all k ∈ [ari], (s

A1
k , . . . ,sAb

k ) will be in the same
region of Part as (V1,k, . . . ,Vb,k) because the regions are relatively open.

19This can be done by first estimating ŵ j,k = bα j,k|B j|c and then adjusting each as little as possible (at most |Zb/J|) so that
(ŵ1,k, . . . , ŵb,k) are in the appropriate cosets. Then, it is not hard to check by the compatibility of the conditions that

T := (|B1|, . . . , |Bb|)−

(
m

∑
k=1

w1,k, . . . ,
m

∑
k=1

wb,k

)
∈ J.

If we add T to (ŵ1,1, . . . , ŵb,1), then the cardinality and coset constraints are satisfied. Note that the entries of T are bounded by
|Zb/J|m, so the approximation condition is also still satisfied.
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Furthermore, for all k ∈ [ari] define

sR
k =

m

∑
β=1

(w1,β , . . . ,wb,β )X
β

k

∈ J+
m

∑
β=1

r j(r̂Xβ

k )

= J+
m

∑
β=1

r jgb+1(X
β

k ) =Wk.

Thus, for all k ∈ [ari],

Yk = M
Part(sA1

k ,...,s
Ab
k )

(sR
k )

= MPart(V1,k,...,Vb,k)(Wk) (by above discussion)

= hk(V1, . . . ,Vb,W ) (by (1)).

Thus, Y = h(V1, . . . ,Vb,W ), so we have established the promise embedding. Since each Ai is LP-solvable,
and Zb/J is a finite commutative ring (and so is LE-solvable), by Theorem 3.3, we have that PCSP(Γ) ∈
PPart.

6 Extending to Larger Domains

Given the established framework, the extension from Boolean to non-Boolean domains is not much more
difficult. The main change is that instead of embedding the domain D in the interval [0,1], we embed in the
standard D-simplex.

For a finite domain D, we denote RD as the set of possible |D|-tuples of real numbers, indexed by
elements of D. The standard D-simplex is defined to be ∆D := {x ∈RD : xd ≥ 0 for all d ∈D,∑d∈D xd = 1}.

Thus, for the Basic LP, working with symmetric or block-symmetric functions on non-Boolean do-
mains is similar to working with block-symmetric Boolean polymorphisms, except that the domains are
simplices or Cartesian products of simplices instead of the hypercube.

The Affine relaxations are also nearly identical, as we can embed our CSP over the domain D into
some quotient of ZD, since all finite commutative rings are LE-solvable.

As a result, regional and regional periodic weak polymorphisms can be extended to non-Boolean do-
mains with only minor changes in their definitions. Likewise, their corresponding theorems can be proved
with nearly identical proofs. As a result, we reserve giving the details of these extensions for a future version
of the paper.

7 Conclusion

Our algorithms show how rich and diverse algorithms can be for promise CSPs as in comparison to classical
CSP theory. In particular, finite promise CSPs can often demand algorithms which require infinite domains!
There are many challenges for extending these algorithmic results to wider classes of weak polymorphisms.
These challenges range from more topological inquiries to fundamental questions about infinite-domain
CSPs.

One aspect of promise CSPs that was not utilized in this paper is that when the template Γ is finite,
poly(Γ) is “finitizable” (c.f., [BG18]), which means that there exists a constant RΓ > 0, such that f ∈ poly(Γ)
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if and only if all of its projections of arity RΓ are in poly(Γ). Such a property may give a topological foothold
(e.g., compactness) which could allow for more general classification. For instance, it is certainly possible
that if a Γ is finite, and poly(Γ) contains (block) symmetric polynomials for arbitrarily large arities, then
poly(Γ) contains an infinite family of Regional or Regional Periodic (or some slight variant) polymorphisms
with consistent parameters. To prove such a result, a topological theory of weak polymorphisms needs to be
developed.

Another important question is whether generalizations of the Basic LP, such as the Sherali-Adams or
Sum-of-Squares hierarchies correspond to classes of infinite CSPs into which we can embed finite Promise-
CSPs. Semidefinite programming may be especially useful for non-Boolean domains, as there is an algo-
rithm known for Example 7 of Section 2.2, using SDPs [folklore].

From a polymorphic standpoint, one might wonder if block-symmetric functions are the only tractable
families? We conjecture that the tractable families may be captured by block transitive weak polymorphisms.
that is f : DB1×·· ·×DBd → E which have the property that for all i, j ∈ Bk for some k there is a permutation
π of the coordinates such that π(i) = j.

Note that there is still much work that needs to be done on the hardness side of the dichotomy. As
shown by the struggles of the hardness of approximation community to solve the approximate graph col-
oring problem, stronger versions of the PCP theorem are desired. The recent breakthrough on the 2–to–2
conjecture [DKK+16, KMS17, DKK+17, KMS18] is an encouraging step in this direction, although its im-
pact on promise CSPs such as the approximate graph coloring problem is limited due to the fact that the
current version lacks perfect completeness.

Another exciting direction for future exploration is understanding, for both CSPs and promise CSPs,
what insight these polymorphisms shed on the existence of ”fast” exponential-time algorithms for NP-hard
instances. Such questions have been investigated for CSPs, most notably the work of [JLNZ13], which
showed that the fundamental universal algebraic object in partial polymorphisms, maps f : DL→ D∪{⊥}
for which the tuples mapping to ⊥ are ignored. They also identified the “easiest” NP-hard templates, but
indicated that an exhaustive classification is currently out of reach. The perspective given in this work
of considering threshold-periodic and regional-periodic polymorphisms can be easily extended to partial
polymorphisms by adding ⊥ as an extra element of the domain. The study of these families of partial
polymorphisms and their utility in designing algorithms beating brute force will be the subject of future
work.
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A Proofs of the Promise Homomorphism Theorems

Theorem 3.1. Let A⊂ Rk be an LP-solvable ring. Let (D,E,φ) be a finite promise domain. Let Γ = (ΓP =
{Pi ∈ Dari : i ∈ I},ΓQ = {Qi ∈ Eari}) be a finite promise CSP. Let (g : D→ A,h : A→ E) be a promise
embedding of Γ into ΛA. Then PCSP(Γ) ∈ Ph, in which Ph is the family promise languages which can be
computed in polynomial time given oracle access to h.

Proof of Theorem 3.1. We give an algorithm for both the decision and search version.
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• Write the Basic LP relaxation of ΨP(x1, . . . ,xn).

• Solve the Basic LP over the ring A to get a solution (vi ∈ A)i∈[n]. Reject if no solution.

• For all i ∈ [n], set yi := h(vi). Accept and output (y1, . . . ,yn).

Algorithm A.1. Solving and rounding a Basic LP.

First we explain why this algorithm is correct. Assume ΨP has a satisfying assignment, then the
Basic LP must also have a satisfying assignment. Let ΛΓ = {Ri := ConvA(Si) : i ∈ I,Si ⊂ Aari}. Since g
is a homomorphism from ΓP to ΛΓ, we have that g(Pi) ⊂ Ri for all i ∈ I. In particular, this implies that
ConvA(g(Pi))⊂ Ri. Thus, any solution to the Basic LP is a satisfying assignment of

ΨR(x1, . . . ,xn) :=
∧
j∈J

Ri j(x j1 , . . . ,x jari j
).

Now, since h is a homomorphism is a from ΛΓ to ΓQ, any satisfying assignment to ΨR (and thus to the Basic
LP) maps via h to a satisfying assignment to ΨQ. Thus, the algorithm correctly solves the search problem,
and thus it also solves the decision problem.

Finally, we explain why this algorithm lies in Ph. Note that that Basic LP can be computed in linear
time in the size of ΨP, and thus the instance can be solved in polynomial time since A is LP-solvable. The
“rounding” step uses an oracle to h, so PCSP(Γ) ∈ Ph.

Theorem 3.2. Let R be an LE-solvable ring. Let (D,E,φ) be a finite promise domain, and let Γ = (ΓP =
{Pi ∈ Dari},ΓQ = {Qi ∈ Eari}) be a finite promise CSP over this promise domain. Let (g,h) be a promise
embedding of Γ into ΘR. Then, PCSP(Γ) ∈ Ph.

Proof of Theorem 3.2. Consider the following algorithm.

• Write the affine relaxation of ΨP(x1, . . . ,xn).

• Solve the affine relaxation over the ring R to get a solution r1, . . . ,rn ∈ R. Reject if no solution.

• For all i ∈ [n], set yi := h(ri). Accept and output (y1, . . . ,yn).

Algorithm A.2. Solving and rounding an affine relaxation.

First we explain why this algorithm is correct. Assume ΨP has a satisfying assignment, then the Affine
relaxation must also have a satisfying assignment. Let ΘΓ = {Ri := AffR(Si) : i ∈ I,Si ⊂ Rari}. Since g
is a homomorphism from ΓP to ΛΓ, we have that g(Pi) ⊂ Ri for all i ∈ I. In particular, this implies that
AffR(g(Pi))⊂ Ri. Thus, any solution to the Basic LP is a satisfying assignment of

ΨR(x1, . . . ,xn) :=
∧
j∈J

Ri j(x j1 , . . . ,x jari j
).

Now, since h is a homomorphism is a from ΛΓ to ΓQ, any satisfying assignment to ΨR (and thus to the
Affine relaxation) maps via h to a satisfying assignment to ΨQ. Thus, the algorithm correctly solves the
search problem, and thus it also solves the decision problem.
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Like in the previous proof, the relaxation has size linear in the input. Since R is LE-solvable, the
relaxation can be solved in polynomial time. The last step uses an oracle to h, so PCSP(Γ) ∈ Ph.

Theorem 3.3. Let A := (A1, . . . ,A`) be a sequence of LP-solvable rings, and let R := (R1, . . . ,Rm) be a
sequence of LE-solvable rings. Let (D,E,φ) be a finite promise domain, and let Γ = (ΓP,ΓQ) be a finite
promise CSP over this domain. Let (g,h) be a promise embedding of Γ into ΞA ,R . Then, PCSP(Γ) ∈ Ph.

Proof of Theorem 3.3. We use an algorithm which is a combination of the techniques in Theorem 3.1 and
Theorem 3.2.

• For each A j ∈A

– Write the Basic LP relaxation of ΨP(x1, . . . ,xn).

– Solve the Basic LP over the ring A to get a solution (v j,i ∈ A)i∈[n]. Reject if no solution.

• For each R j ∈R

– Write the affine relaxation of ΨP(x1, . . . ,xn).

– Solve the affine relaxation over the ring R to get a solution r j,1, . . . ,r j,n ∈ R. Reject if no
solution.

• For all i ∈ [n], set yi := h(v1,i, . . . ,v`,i,r1,i, . . . ,rm,i). Accept and output (y1, . . . ,yn).

Algorithm A.3. Solving multiple Basic LPs and affine relaxations with simultaneous rounding.

Let ΞΓ = {Ri : i ∈ I} be the particular CSP with signature the same signature as Γ such that g is a
homomorphism from ΓP to ΞΓ and h is a homomorphism from ΞΓ to ΓQ. Assume that ΨP has a satisfying
assignment, then each Basic LP and Affine relaxation is satisfiable. Then, by the same logic as the previous
two proofs, the solutions to all the linear programs and linear systems put together satisfies the corresponding
instance of ΞΓ:

ΨR(x1, . . . ,xn) :=
∧
j∈J

Ri j(x j1 , . . . ,x jari j
).

Finally, since h is a homomorphism from ΞΓ to ΓQ, any satisfying assignment to ΨR maps to a satisfying
assignment to ΨQ, so the algorithm is correct for the search version and thus also for the decision version.

Like in the previous proof, the relaxation has size linear in the input. Since each Ai is LP-solvable and
each Ri is LE-solvable, the relaxation can be solved in polynomial time. The last step uses an oracle to h, so
PCSP(Γ) ∈ Ph.
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