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Abstract

We show that for every small AC0 circuit C : {0, 1}` → {0, 1}m there exists a
multiset S of 2m−m

Ω(1)
restrictions that preserve the output distribution of C and

moreover polarize min-entropy: the restriction of C to any r ∈ S either is constant or
has polynomial min-entropy. This structural result is then applied to exhibit an explicit
boolean function h : {0, 1}n → {0, 1} such that for every small AC0 circuit C : {0, 1}` →
{0, 1}n+1 the output distribution of C for a uniform input has statistical distance
≥ 1/2− 1/nΩ(logn) from the distribution (U, h(U)) for U uniform in {0, 1}n. Previous
such “sampling lower bounds” either gave exponentially small statistical distance or
applied to functions h with large output length.

We also show that the output distribution of a d-local map f : [n]` → [n]n for a uni-
form input has statistical distance at least 1−2 ·exp(−n/ logexp(O(d)) n) from a uniform
permutation of [n]. Here d-local means that each output symbol in [n] = {1, 2, . . . , n}
depends only on d of the ` input symbols in [n]. This separates AC0 sampling from
local, because small AC0 circuits can sample almost uniform permutations. As an ap-
plication, we prove that any cell-probe data structure for storing permutations π of n
elements such that π(i) can be retrieved with d non-adaptive probes must use space
≥ log2 n! + n/ logexp(d) n.

∗This paper subsumes the unpublished manuscript [Vio17a].
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1 Introduction, results, and discussion

A classical objective of complexity theory is to prove lower bounds on the resources required
to compute a target function on a given, worst-case input. This goal has been achieved in
several restricted models, and it has been extended to other notions such as average-case
hardness. More recently, a series of papers [Vio12b, LV12, DW11, Vio14, Vio12c, BIL12,
BCS14, Vio16] study computational lower bounds for sampling tasks, that is, for sampling
a target distribution given uniform random bits. Proving lower bounds for sampling is
more challenging than proving standard lower bounds. For example, even though small
AC0 circuits cannot compute the parity function, there exists a poly(n)-size AC0 circuit
(in fact, every output bit depends on just two input bits) which samples the distribution
(U, parity(U)), where U is uniform in {0, 1}n [Bab87, Kil88]. Perhaps more surprisingly,
polynomial-size AC0 circuits can sample (U, f(U)) for every symmetric function f , such
as Majority (up to an exponentially small error) [Vio12b]. They can even do this for some
important non-symmetric functions f such as inner product [IN96]. These results, and others
discussed below, have several applications to algorithms [MV91, Hag91], complexity theory
[Bab87], and cryptography [Kil88, IN96, Vio05, BIVW16].

Despite recent progress, the study of “sampling lower bounds” remains largely uncharted.
It will require us to come up with new proof techniques, which may be useful even for
classical lower bounds. Moreover, the study has connections with other areas. For example,
it had an impact on the recent breakthrough for two-source extractors. Specifically, in
[Vio14] it was introduced a new class of sources (some bits are k-wise independent, the
others adversarially chosen), and an extractor was given for them (majority, analyzed using
[DGJ+10]), and finally it was asked if better extractors exist. Answering this question
affirmatively is a main step in the construction of two-source extractors for polylogarithmic
entropy by Chattopadhyay and Zuckerman [CZ16]. Follow-up work [Li16] gives better yet
extractors for the same sources. While subsequent papers [CS16, Coh16, BDT16] leading to
better and better two-source extractors use instead the original extractor from [Vio14].

A different connection to data-structure lower bounds is discussed below.

In this paper we prove two new sampling lower bounds. We start with a result about
AC0. The paper [LV12] showed that the output distribution of a small AC0 circuit is very
far from the the uniform distribution over an asymptotically good error-correcting code.
Specifically the statistical distance is ≥ 1− ε for ε polynomially small. The exciting follow-
up [BIL12] optimizes ε to exponentially small. However, their techniques are tailored to
error-correcting codes, and do not apply to other distributions. In particular, they do not
apply to distributions of the form (U, f(U)) where U is uniform in {0, 1}n and f is boolean.

The paper [Vio14] does prove a sampling lower bound for distributions of the form
(U, f(U)). However, the sampling lower bound only rules out sampling (U, f(U)) in AC0

with exponentially small statistical distance. In this work we strengthen this latter result to
an “average-case” lower bound. To illustrate, note that it is easy to sample (U, f(U)) with
statistical distance ≤ 1/2 (either (U, 0) or (U, 1) does the job). We give an explicit function
h such that the statistical distance must be 1/2− ε for a small ε. In other words, a function
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that cannot be computed much better than random guessing even by a circuit that is allowed
to sample the input.

We first define and fix the notation for statistical distance, and then we state the theorem.

Definition 1. The statistical distance between two distributions A and B on the same
probability space is denoted ∆(A,B) = maxT |P[A ∈ T ] − P[B ∈ T ]| = 1

2

∑
x |P[A = x] −

P[B = x]|.

Theorem 2. There is c > 0 and a polynomial-time computable function h : {0, 1}n → {0, 1}
such that for any circuit C : {0, 1}` → {0, 1}n+1 of depth d and size exp(nc/d) we have
∆ (C(U), (U, h(U))) ≥ 1/2− 1/nΩ(logn)/d.

We write exp(x) for 2x. The constants hidden in the O(.) and Ω(.) notation are absolute.
There is no restriction on `, though obviously it is at most the size of the circuit C.

As in [Vio14, DW12] the function h can be taken to be an extractor for bit-block sources
with polynomial min-entropy. Bit-block sources are a special case of affine sources whose def-
inition is not needed until much later in this paper (see Definition 15). An explicit extractor
for bit-block sources is given by Rao [Rao09] and subsequent optimizations [Vio14, DW12].
We note that Li [Li16] extracts from general affine sources of polylogarithmic entropy, how-
ever his error is polynomial (as opposed to quasipolynomial in our result). The paper [Vio16]
also shows the existence of a quadratic polynomial p that extracts from bit-block sources.
Hence there exists a quadratic polynomial h for which the above theorem holds, in con-
trast with the fact mentioned above that polynomial-size AC0 circuits can sample (exactly)
the distribution (U, p(U)) for the quadratic polynomial inner product (and in fact for any
read-once polynomial).

Sampling permutations. We mentioned earlier that polynomial-size AC0 circuits can
sample (U, f(U)) for any symmetric boolean function f . This result relies on surprising
algorithms by Matias and Vishkin [MV91] and Hagerup [Hag91] showing that poly(n)-size
AC0 circuits can generate a uniform random permutation of [n] = {1, 2, . . . , n}, up to an
exponentially small statistical error. (Their context is slightly different, for a streamlined
presentation of the said result see [Vio12b].) They give several algorithmic applications of
this result, and more applications have been found since then, including constructing efficient
secret-sharing schemes [BIVW16].

Another line of works studies generating random permutations using switching networks.
A recent paper by Czumaj [Czu15] gives an explicit construction of switching networks
with depth O(log2 n) and O(n log n) switches that generate a nearly-uniform permutation
on n elements, improving on previous work (see [Czu15] for discussion). The paper also
conjectures that the depth can be improved to O(log n), and proves a partial result in this
direction.

On the side of lower bounds apparently nothing was known, and the above algorithms
and conjectures arguably explain the difficulty of proving negative results. In this paper we
prove a lower bound in the cell-probe model, with the restriction that all probes are non-
adaptive. Specifically, we divide the memory into ` cells of log n bits (all logarithms in this
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paper are in base 2 unless otherwise noted), which are initialized uniformly at random. We
consider algorithms that output n cells representing a function from [n] to [n] in the natural
way. Each output cell only depends on a small number d of input cells. Again, there is no
restriction on the number ` of input cells the algorithm may use, though ` ≤ dn without loss
of generality.

Theorem 3. Let f : [n]` → [n]n be a d-local map, i.e., a map such that each output symbol
in [n] depends only on d input symbols in [n]. Let Π ∈ [n]n be a random permutation of n
elements. Let f(U) be the output distribution of f for a uniformly chosen U in [n]`. Then
∆ (f(U),Π) ≥ 1− 2 · exp(−n/ logexp(O(d)) n).

Theorem 3 remains nontrivial for locality up to d = ε log log n for a small enough constant
ε. (The factor 2 in the conclusion makes the bound trivially true if d is larger.) Note that
the 1-local identity map f(x) = x achieves statistical distance 1 − exp(O(n)), so for small
locality the statistical bound in Theorem 3 is not far from optimal.

Previously, lower bounds with statistical distance approaching 1 exponentially fast were
only known for the problem mentioned earlier of sampling error-correcting codes [BIL12].
These lower bounds applied to AC0 samplers. For distributions that can be sampled in AC0

the previous sampling lower bounds were much weaker [Vio12b]. Thus, this work gives a
new separation between the sampling power of AC0 and small-locality maps.

Another benefit of obtaining such a large statistical-distance lower bound is that it enables
an application discussed next.

Data structures. The work [Vio12b] shows that sampling lower bounds with large sta-
tistical distance such as in Theorem 3 imply lower bounds for static data structures. Some
data-structure lower bounds proved this way appear in [Vio12b, LV12, BIL12], however they
are either very weak or concern unnatural data structure problems.

Theorem 3 implies a data-structure lower bound for the problem of storing a permutation
π : [n] → [n] so that π(i) can be retrieved fast. At one extreme one can use n log2 n bits
to store the permutation and answer each query π(i) by reading just one cell of log2 n bits,
at the other extreme we can use the information-theoretic minimum amount dlog2 n!e =
n log2 n − Ω(n) of space and answer queries by reading the entire memory. The goal of
succinct data structures [MRRR12, GM07, GGG+07, GRR08, Pǎt08, Vio12a, Gol09, DPT10,
Vio09a, PV10, Pre18] is to understand what is the right tradeoff between the time it takes
to answer a query and the redundancy of the data structure, the amount of extra space
used over the information-theoretic minimum. As a corollary to Theorem 3 we obtain the
following tradeoff.

Corollary 4. Consider any cell-probe data structure for storing permutations π of n elements
such that π(i) can be retrieved with d non-adaptive probes in cells of log2 n bits. The data

structure must use space ≥ log2 n! + n/ logc
d

n bits.

We repeat the simple proof from [Vio12b].
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Proof. Suppose a data structure exists with redundancy r. Consider filling its dlog n!e + r
memory bits uniformly at random. With probability ≥ 2−r, the memory will be uniform
over encodings of permutations. Hence if we run the data structure algorithm on uniform
memory we obtain a sampler with statistical distance < 1 − 2−r. The result then follows
from Theorem 3.

In particular, for constant time d = O(1) the redundancy is r ≥ n/poly log n. By contrast,
for other important problems there are surprising data structures that achieve d = O(1) and
r = O(1), and are also non-adaptive [Pǎt08, DPT10, Pre18] (for an exposition of the relevant
result in [DPT10] see [Vio09b], Lectures 23-24). Corollary 4 shows that such amazing data
structures do not exist for storing permutations.

Related work and discussion. Previous work has studied the problem of storing π so
that π(i) and both π−1(i) can be retrieved fast. [MRRR11] give several data structures
for this problem. In particular, they give a data structure that can store a permutation
using log2 n! + n/ log2−o(1) n bits such that π(i) (and both π−1(i)) can be computed in time
O(log n)/ log log n. This data structure is based on a switching network known as the Benes
network. They achieve their saving by “brute-forcing” certain small components.

On the side of lower bounds, Golynski shows in [Gol09, Theorem 4.1] that any cell-probe
data structure for representing a permutation π : [n] → [n] so that π can be computed
with t cell probes and π−1 with t′ must use log2 n! + Ω(n)/(t · t′) as long as max{t, t′} ≤
c log2(n) log log n. This bound essentially matches the data structure in [MRRR11] for t =
log n, but tight bounds are not known in other parameter regimes. His technique is unlikely
to apply to our simpler problem where we do not have the inverse queries π−1(i). In fact,
none of the available techniques seems directly applicable for this problem: essentially, the
only other technique available is the one in [PV10]. That technique requires that the mutual
information between two sets of t queries is Ω(t), but a calculation shows that in the case of
permutations the mutual information is at most O(t(t/n)).

However, we thank an anonymous referee for pointing out that, in the case of non-adaptive
probes, the technique in [PV10] can be modified to obtain the same result in Corollary 4,
without mentioning sampling.

In this paper the data-structure lower bound is obtained as a consequence of a stronger
result: a sampling lower bound. We hope that this sampling approach can be useful to attack
some of the long-standing open problems on data structures. Two central open problems are
improving Siegel’s state-of-the-art 1989 lower bound (Theorem 3.1 in [Sie04], rediscovered in
[Lar12]; see [Vio17b, Lecture 18] for an exposition), or proving lower bounds for the succinct
dictionary problem (Problem 5 in Pǎtraşcu’s obituary [Tho13]). We emphasize that both
these problems are also open for non-adaptive probes, and, as also mentioned earlier, some
of the best-known data structures are non-adaptive. (The situation is entirely different for
dynamic data structures, see [BL15].) On the other hand, the succinct data structure for
permutations in [MRRR11] does use adaptivity to follow a path in a switching network.
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1.1 Techniques for Theorem 2

The starting point for our proof of Theorem 2 is a previous theorem [Vio14], already men-
tioned above, giving an explicit boolean function h : {0, 1}n → {0, 1} such that the distri-
bution (U, h(U)) cannot be sampled in AC0. The function h in the proof of this result is
an extractor for bit-block sources with polynomial min-entropy, where the min-entropy of a
distribution D is mina log2(1/P[D = a]). Note that if a circuit samples exactly (U, h(U))
then its output distribution has the same min-entropy of (U, h(U)), which is n, and the
extractor is useful.

However, this argument fails to give average-case sampling lower bounds: it only rules out
exponentially small statistical distance. The problem is that it’s possible that distributions
X and T over m bits are statistically close yet have antipodal min-entropies. For example, it
can be the case thatX has min-entropy 1 while T has min-entropym, and yet ∆(X,T ) ≤ 1/2:
just take T to be uniform over m bits and X which is 0m with probability 1/2 and uniform
otherwise.

Polarizing min-entropy. Computationally, the distribution X above can be sampled by
taking the bit-wise And of the uniform distribution with a single input bit b: X = (U1 ∧
b, U2 ∧ b, . . . , Un ∧ b) for U = (U1, U2, . . . , Un) uniform in {0, 1}n. An important observation
is that however the min-entropy of X can be “polarized” via restrictions. Specifically, if b is
fixed to 0 then X is also fixed and so has min-entropy zero, whereas if b is fixed to 1 then X
is uniform and so has min-entropy m.

A main theorem of this work shows how to polarize the min-entropy of any AC0 distribu-
tion using restrictions: for every small AC0 circuit C : {0, 1}` → {0, 1}m there exists a small
multiset S of restrictions that preserves the output distribution of C and yet the restricted
circuit always has either zero or polynomial min-entropy. This result would be useless if
we allow ourselves 2m restrictions, and a critical feature of our proof is that it guarantees a
much smaller number of restrictions.

We first formally define restrictions and fix notation that is used throughout, then state
the theorem. Restrictions have been a main tool in complexity theory since at least [Sub61].

Definition 5. A restriction r over ` bits is a string in {?, 0, 1}`. We denote by r(U) the
distribution over {0, 1}` obtained by replacing the ? in r with uniform bits. For a multi-set S
of restrictions we denote by S(U) the distribution obtained by picking a uniform restriction
r ∈ S and outputting r(U). For a function f : {0, 1}` → {0, 1}m we denote by fr the function
f restricted to r.

Theorem 6. [Polarizing min-entropy] There is c > 0 such that the following holds:
Let C : {0, 1}` → {0, 1}m be a depth-d circuit of size exp(mc/d). There exists a multiset

S of ≤ 2m−m
1−Ω(1)

restrictions such that:
(1) ∆ (C(S(U)), C(U)) ≤ m−Ω(logm)/d, and
(2) for every r ∈ S, either Cr is constant or has min-entropy ≥ m0.9.
Moreover, for every r ∈ S Cr is a depth-t forest for t = 0.1 logm.
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The “moreover” statement slightly simplifies some later arguments, but is not essential
now.

A distribution that does not satisfy this decomposition can be sampled as follows: pick m
random bits. If their parity is 1, output them. Otherwise output 0m. It does not satisfy the
decomposition because for every restriction of the input bits that leaves some variable unset,
the output distribution still has min-entropy 1 (which is neither zero nor polynomial). So
one would need restrictions that leave no variables unset. However then one needs ≥ Ω(2m)
restrictions to be close in statistical distance.

Let us sketch how from Theorem 6 one proves the average-case lower bound in Theorem
2. Reasoning similarly to arguments in [Vio12b], the test that witnesses the large statistical

distance is the union of two tests. The first contains the set of ≤ 2m−m
1−Ω(1)

possible outputs
corresponding to restrictions under which the circuit is constant. The second contains the
set of strings (x, b) where b 6= h(x). The target distribution (U, h(U)) never passes the
second test, and only rarely passes the first. Instead, the (distribution sampled by the)
circuit passes the union of the two tests with probability at least about 1/2. This is because
if after applying the restriction the circuit is constant then it passes the first test. If it is
not, then it has large min-entropy. At this point one can further restrict the input to fix the
output bit corresponding to h, without significantly changing the min-entropy. Because h is
an extractor for such sources, the value of h should be nearly uniform. But since it’s fixed,
the restricted circuit passes the second test with probability close to 1/2.

Theorem 6 is proved in two steps. In the first step we give a small set of restrictions
that preserves the output distribution of the AC0 circuit and also collapses it to a shallow
decision forest. In the second we further restrict the decision forest to either fix it or argue
that its output distribution has large min-entropy.

1.2 Techniques for Theorem 3

Theorem 3 is proved by induction on the locality d. Consider a d-local map f and write
f = (f1, f2, . . . , fn) where fi is the function outputting the cell i. In the induction step, we
start with a relatively standard covering argument. That says that either we have (A) a
small number of input cells C that intersect the probes made by all the fi, or else (B) we
have many fi whose set of probes are disjoint.

In case (A), suppose we fix the contents of the cells C. Because every fi probes a cell in
C, this reduces the locality of f . Thus, we can write our sampler f as a convex combination
of samplers with smaller locality, one for each possible fixing of the contents of the cells
in C. To analyze this step we show (Corollary 18) that if D is a distribution that is a
convex combination of 2s distributions Di (the samplers obtained by any possible fixing of
the s = |C| log n bits in the cells C) where each Di has statistical distance ≥ 1 − ε from a
target distribution T , then D has distance ≥ 1 − 2sε from T . By setting the parameters
appropriately, we can ensure that ε� 1/2s, concluding this case.

In case (B), we have many fi which are independent. We obtain large statistical distance
just considering these independent fi. The high-level idea is that if the fi have small entropy,
then the result follows because a uniform permutation has large entropy. Otherwise, if the
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fi have high entropy we can show by the birthday paradox that the outputs of the fi will
collide (i.e., fi = fj for some i 6= j) with high probability. Since this never happens for
permutations, we obtain statistical distance.

Formalizing case (B) requires finding the right notion of “high-entropy.” If we have t
independent fi, we define one fi to be “high-entropy” if for every set S of t/2 values, the
probability that fi ∈ S is Ω(|S|/n). Now, if there are t/2 functions fi that have high-
entropy, then we can run a folklore, simplified proof of the birthday paradox: fix the other
t/2 functions arbitrarily, and define S to be the set of values they take. By high-entropy and
independence, the probability of not having a collision will be

(1− Ω(|S|/n))t/2 ≤ e−Ω(t2/n)

which is small enough when t = n0.5+Ω(1). Since a uniform permutation by definition never
has a collision, we obtain statistical distance 1− e−Ω(t2/n).

If on the other hand we have t/2 functions which are low entropy, we use concentration
of measure to show that they will land in their sets S too often. Here again we obtain a
statistical distance 1− e−Ω(t2/n).

We shall start with t = Ω(n) for d = 0, and then progressively update it via t → t2/n
from the above abounds. Losing along the way log n factors that arise from having cells of
log n bits, this gives the bound in Theorem 3.

Organization. Theorems 6 and 2 are proved in Sections 2 and 3. Specifically, in Section
2 we make the first step towards proving Theorem 6 by exhibiting a small set of restrictions
that preserves the distribution of and collapses a given AC0 circuit to a small-depth forest.
Then in Section 3 we show that a small-depth forest can be restricted so that it is either
constant or has high min-entropy. Combining these results gives Theorem 6. Theorem 2
follows as a corollary.

Theorem 3 is proved in Section 4. We conclude in Section 5 by discussing a number of
open problems.

2 Polarizing min-entropy: from AC0 to decision trees

In this section we take the first step towards proving Theorem 6 by exhibiting for any
given AC0 circuit a small multiset of restrictions that preserves the output distribution and
collapses the circuit to a shallow decision forest. We call f : {0, 1}` → {0, 1}m a depth-t
forest if every output bit of f is a decision tree of depth t.

Theorem 7. There is c > 0 such that the following holds:
Let C : {0, 1}` → {0, 1}m be a circuit of depth d and size s. For any p, ε, t such that

pm ≥ c logm there exists a multiset S of restrictions such that:
(1) ∆ (C(U), C(S(U))) ≤ ε,
(2) |S| = (1/ε)O(1) · 2m(1−Ω(p)),
(3) for q := p1/(d+1) and α := s(5q log s)log s +m(5q log s)t, for all but a 2α fraction of the

restrictions r ∈ S, Cr is a depth-t forest.
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For the proof we shall use the following concentration inequality which is Theorem 7 in
[CL06].

Lemma 8. Let X1, X2, . . . , Xn be non-negative, independent random variables, and let X =∑n
i=1 Xi. It holds that

P[X ≤ E[X]− λ] ≤ e−λ
2/2

∑n
i=1 E[X2

i ].

We note that the corresponding bound for the upper tail (Theorem 6 in [CL06] – also
known as Bernstein’s inequality) requires an extra term in the exponent which makes it
useless for our application. However, we shall be able to get by using only an estimate for
the lower tail.

We shall also use a version of boolean hypercontractivity, cf. [O’D14]. To illustrate,
consider the “restriction experiment” where we sample a restriction from R`

p and then we
replace the stars with two independent uniform choices, to obtain two strings y and y′

in {0, 1}`. We are interested in the probability that both y and y′ land in the same set
A ⊆ {0, 1}` of density α. If y and y′ were uniform and independent in {0, 1}`, the probability
would be α2, whereas if it was the case that y = y′ always then this probability would just
be α. The restriction experiment is somewhere in the middle: y and y′ have some common
and some independent parts. With hypercontractivity we can show that in that case the
probability is smaller than α, depending on the parameter p of the restriction:

Lemma 9. Let A ⊆ {0, 1}` be a set of density α. Then

PR∈R`
p,U,U

′ [R(U) ∈ A ∧R(U ′) ∈ A] ≤ α1+Ω(p).

Starting with [LV12], where a proof of the lemma can be found, this result has been used
several times in the study of the complexity of distributions [Vio14, BIL12].

The key new lemma in this section is the following, stating that for every function f :
{0, 1}` → {0, 1}m we can find a multi-set S of much fewer than 2m restrictions such that
f(S(U)) is close to f(U).

Definition 10. We denote by R`
p be the uniform distribution on restrictions over ` bits

where the probabilities of ?, 0, 1 are p, (1−p)/2, (1−p)/2, and the symbols are independent.

Lemma 11. There is c > 0 such that the following holds:
Let f : {0, 1}` → {0, 1}m be a function. Suppose pm ≥ c logm. Let S be a multiset of

s = (1/ε)c2m(1−p/c) restrictions sampled independently from R`
p. Then

PS[∆ (f(S(U)), f(U)) ≥ ε] < 1/2.

Proof. For i ∈ {0, 1}m let A′i ⊆ {0, 1}
` be f−1(i). Further partition each A′i into sets Ai,j of

measure |Ai,j|/2` = α := ε2−m and set for Ai,0 of measure < α. The total number of sets
Ai,j is ≤ 1/α+ 2m ≤ 2/α. We shall show: (?) with probability at least 1/2 over S, for every
i and every j > 0, P[S(U) ∈ Ai,j] ≥ (1− ε)α. The latter probability is for a fixed S but over
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the choice of a uniform r ∈ S and U , cf. Definition 5. Claim (?) guarantees that the total
error from those sets is at most ε. And the sets Ai,0 will contribute at most ε to the error.

Formally, fix a set Ai,j with j > 0 and call it A. Let S = {R1, R2, . . . , Rs} be the random
restrictions. For every k ≤ s consider the function Xk of the random variable Rk defined as
Xk := PU [Rk(U) ∈ A]. We have

E[Xk] = ERk
[PU [Rk(U) ∈ A]] = PRk,U [Rk(U) ∈ A] = PU [U ∈ A] = α. (1)

For a fixed choice of S we have

P[S(U) ∈ A] =
1

s

∑
k≤s

Xk.

Our goal is to show that with high probability over S this quantity is very close to its
expectation, which by Equation 1 is α. The way in which we use restrictions is that they
reduce the second moment of the Xk. This allows us to drive the error below 2−m using fewer
than m samples.

For any k we have

E[X2
k ] = ERk

[PU,U ′ [Rk(U) ∈ A ∧Rk(U
′) ∈ A]] ≤ α1+Ω(p)

where the inequality is Lemma 9.
Now we can apply Lemma 8 with λ = sεα to get

PS[
1

s

∑
k≤s

Xk ≤ α− εα] ≤ exp(− s2ε2α2

2sα1+Ω(p)
)

= exp(−sεO(1) · 2−m(1−Ω(p)))

= exp(−(1/ε) · 2Ω(pm)),

where we use that α = ε/2m and we pick a suitable s = (1/ε)O(1) ·2m(1−Ω(p)). The number
of sets Ai,j with j > 0 is ≤ 2m/α = 22m/ε. Hence by a union bound the probability over S
that there exists a set A = Ai,j with j > 0 for which 1

s

∑
k≤sXk ≤ α− εα is at most

(22m/ε) · exp(−(1/ε) · 2Ω(pm)) ≤ 22m · exp(−2Ω(pm)) < 1/2

where the last inequality relies on the assumption that pm ≥ c logm. This proves (?).
Finally, we claim that for any fixed S as in (?) the statistical distance ∆(f(S(U)), f(U)) is
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at most 2ε. This can be verified as follows.

∆(f(S(U)), f(U))

=
1

2

∑
i∈{0,1}m

||Ai|2−` − P[S(U) ∈ Ai]|

≤1

2

∑
i,j

||Ai,j|2−` − P[S(U) ∈ Ai,j]| (by the triangle inequality)

=
∑

i,j:|Ai,j |2−`>P[S(U)∈Ai,j ]

(
|Ai,j|2−` − P[S(U) ∈ Ai,j]

)
=

∑
i,j>0:α>P[S(U)∈Ai,j ]

(α− P[S(U) ∈ Ai,j]) +
∑

i:|Ai,0|2−`>P[S(U)∈Ai,0]

(|Ai,0|2−` − P[S(U) ∈ Ai,0])

≤(1/α)(εα) +
∑
i

|Ai,0|2−`

≤(1/α)(εα) + 2m · α
=2ε.

Next we bound the probability that the circuit collapses, using the switching lemma. We
give a simple bound based on H̊astad’s 30-year-old analysis [H̊as87] of the switching lemma
[Ajt83, FSS84, Yao85]. We do this for simplicity and because there is not much gain in our
setting in using more refined analyses, including [H̊as14, IMP12, PRST16] (for discussions
of these results we recommend [ST18, O’D17]).

Definition 12. A function f : {0, 1}` → {0, 1}m is a depth-t forest if each output bit is a
decision tree of depth t.

Lemma 13. Let C : {0, 1}` → {0, 1}m be a circuit of depth d and size s. Let S be a multiset
of s restrictions sampled independently from R`

p. Call a restriction r good if Cr is a decision

forest of depth t. Let q := p1/(d+1) and α := s(5q log s)log s + m(5q log s)t. The probability
that more than s · 2α of the restrictions in S are not good is at most 1/2.

Proof. First we analyze the probability that a restriction is good. View r ∈ R`
p as d + 1

applications of restrictions from R`
q where q = p1/(d+1). The first d applications will collapse

C to a decision forest of depth log s except with probability

s(5q log s)log s.

This is a consequence of H̊astad’s analysis [H̊as87] of the switching lemma [Ajt83, FSS84,
Yao85]. The last application will collapse C to a forest of depth t except with probability

m(5q log s)t.

The lemma now follows by Markov’s inequality.

11



Combining the above two lemmas and using a union bound gives Theorem 7.

Proof. (Theorem 7.) Pick S at random. By lemmas 11 and 13, and a union bound, the
desired multi-set S of restrictions exists with non-zero probability.

3 Polarizing min-entropy of decision trees, and putting

things together

In this section we conclude the proof of Theorem 6, and then use it to prove Theorem 2.
First, we prove a result about decision forests. We show that they can be restricted so that
they are either fixed or sample a distribution with high min-entropy.

Theorem 14. Let f : {0, 1}` → {0, 1}m be a depth-t forest. Let b := m/2t. There exists a
multiset S of s = 2b+bt restrictions such that:

(1) f(S(U)) and f(U) have the same distribution, and
(2) for every r ∈ S, either fr is constant or fr has min-entropy ≥ m/2O(t).

A similar result in the special case of local sources is implicit in [Vio12b, DW12]. Our
dependence on t is exponentially better.

Proof. We say that a decision tree probes an input variable if the variable appears in the
tree. The number of input variables that are probed by more than 22t trees is < m2t/22t = b.

We begin by restricting those b bits arbitrarily. This gives a set of 2b restrictions. For
any such restriction z consider fz and reason as follows. If fz has at most b output bits
that are not fixed, then we further restrict fz to make it a constant. The number of such
restrictions is ≤ 2b·t. If we lump together all these restrictions we arrive at a final multiset
of restrictions of size 2b+bt, as desired.

There remains to address the functions fz which have more than b output bits that are
not fixed. We claim that in this case the output distribution of fz has high min-entropy.
Here is where we use that f and hence fz has depth t (as opposed to just being 2t local).
Pick any string a ∈ {0, 1}m. We shall show that P[fz(U) = a] is small. Consider any output
bit that is not constant. Since it corresponds to a non-constant tree of depth t, if takes the
corresponding value of a with probability at most 1 − 2−t. Sample a uniform path in that
tree by sampling the corresponding ≤ t variables. Now find another non-constant tree that
does not use any of the sampled variables, and repeat. Because each input variable is probed
by ≤ 22t trees, each repetition changes the output probability of at most t · 22t trees. We
started with ≥ b = m/2t trees. This means we can continue this process i times as long as

i · t · 22t < m/2t

for which it suffices that i < m/2O(t). Hence

P[fz(U) = a] ≤ (1− 2−t)m/2
O(t) ≤ e−m/2

O(t)

and the min-entropy of fz is at least m/2O(t).

12



Next we put things together and prove our structural result about AC0 distributions.

Proof. (Theorem 6) Set ε = m− logm, p = 1/mc′ , and t = c′′ logm for constants c′ and c′′

to be set later. We start by applying Theorem 7, whose hypothesis is satisfied for c′ < 1.
The fraction of restrictions that do not collapse C is at most 2α for α = s(5q log s)log s +
m(5q log s)t. Because log s ≤ mc/d, for c suitably smaller than c′ and d suitably smaller than
logm, this fraction is ≤ m−Ω(logm)/d.

Replace every restriction that does not collapse the circuit with the all zero string. This
only adds m−Ω(logm)/d to the statistical distance.

The number of restrictions is |S| = 2logc m+m(1−Ω(p)) = 2m(1−Ω(p)).
Now for every r ∈ S apply Theorem 14 to fr. That gives, for b = m/2t, a set Sr

of 2b+bt ≤ 22bt = 22·(m1−c′′ )·c′′ logm restrictions such that for every r′ ∈ Sr either (fr)r′ is a
constant or has entropy ≥ m/2O(t) = m/mO(c′′) ≥ m0.9 where the last inequality holds for
small enough c′′.

The total number of restrictions, including S and each Sr is

≤ |S| · 22bt ≤ 2m−Ω(m1−c′ )+2·(m1−c′′ )·c′′ logm.

Picking c′ smaller than c′′ concludes the proof.

We can now prove Theorem 2. We rely on a decomposition from [Vio14].

Definition 15. [Bit-block sources] A bit-block source over m bits is specified by an m-
tuple where each coordinate can be a value in {0, 1}, a variable Xi, or the complement of
a variable Xi. The block-size of the source is the maximum number of occurrences of any
single variable. A sample from a bit-block source is obtained by sampling the variables Xi

uniformly at random.

For example, (0, X5, X5, 1−X5, X3, 1) is a bit-block source on 6 bits with entropy 2 and
block size 3.

Lemma 16. [Vio14, Theorem 1.6] Let f : {0, 1}` → {0, 1}m be a log2 d-depth forest such
that f(U) has min-entropy ≥ k. Then for an s = Ω̃(k3/(n2d3)) we have that f is 2−s close
to a convex combination of bit-block sources with min-entropy s and block-size 2dn/k.

The notation Ω̃ hides polylogarithmic factors in the argument.

Proof. [Theorem 2 ] Let h : {0, 1}n → {0, 1} be an extractor for bit-block sources of entropy
n0.1 and block-size n0.9 with error n− logn. An explicit such extractor is given by Rao [Rao09]
and subsequent optimizations [Vio14, DW12].

Let S be the multiset of restrictions given by Theorem 6. Let T be the set of size ≤ |S|
of values fr for each r ∈ S such that fr is constant. The statistical distance is witnessed by
the test V := T

⋃
{(x, 1− h(x)) : x ∈ {0, 1}n}.

First note that P[(U, h(U)) ∈ V ] = Pr[(U, h(U)) ∈ T ] ≤ |T | · 2−n = 2m−m
Ω(1)−n = 2−m

Ω(1)
,

using that m = n+ 1.
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On the other hand we shall show that f(U) ∈ V with probability at least about 1/2. Fix
any r ∈ S. If fr is constant then P[fr(U) ∈ T ] = 1 and we are done. Otherwise, fr has
min-entropy ≥ m0.9, and is a depth-t forest for t = 0.1 logm. Let v be the depth-t tree in
that forest corresponding to the value of h. Sample a uniform path in v. This fixes the bit
corresponding to h but only reduces the min-entropy of fr by ≤ t. Call the resulting forest
g(U).

By Lemma 16, g(U) is in turn 2−s-close to a convex combination of bit-block sources
with entropy s and block-size ≤ w, for s = Ω̃((m0.9)3/(m2 · (m0.1)3)) ≥ Ω̃(m0.4) and w ≤
2m0.1m/m0.9 ≤ O(m0.2). Hence by the property of the extractor the value of h on the source
will be a bit at statistical distance ≤ m− logm from uniform. However, the corresponding bit
in g(U) is fixed. Hence g(U) will land in {(x, 1 − h(x)) : x ∈ {0, 1}n} and hence in V with
probability ≥ 1/2−m−Ω(logm)/d, concluding the proof.

4 Proof of Theorem 3

In this section we prove Theorem 3. First, in Section 4.1 we show that a convex combination
of distributions that are distant from a target distribution remains distant. Then in Section
4.2 we show that any collection of independent random variables is distant from uniform
variables conditioned on not colliding. Finally, in Section 4.3 we use these results to prove
Theorem 3.

4.1 Combo of far distributions is far

We start with a lemma about two distributions and then we obtain our main result as a
corollary.

Lemma 17. Let p and q and t be distributions over the same arbitrary domain. Let r =
1
2
(p + q) be a convex combination of p and q. If ∆(p, t) ≥ 1 − ε and ∆(q, t) ≥ 1 − ε then

∆(r, t) ≥ 1 − 2ε. Moreover, there exist distributions for which the conclusion is ∆(r, t) =
1− 2ε.

We thank the anonymous referee who suggested the following proof which improves the
constant in our original one.

Proof. We have

1− ε ≤ ∆(q, t) =
∑

x:t(x)>q(x)

(t(x)− q(x))

=
∑

x:t(x)>max{p(x),q(x)}

(t(x)− q(x)) +
∑

x:p(x)≥t(x)>q(x)

(t(x)− q(x)).

The second sum is ≤ ε, since otherwise t puts more than ε probability mass on points x
with t(x) ≤ p(x), and the distance of t and p is less than 1− ε, contradicting our hypothesis.
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Hence, ∑
x:t(x)>max{p(x),q(x)}

(t(x)− q(x)) ≥ 1− 2ε.

Repeating the same argument with p and q swapped we get∑
x:t(x)>max{p(x),q(x)}

(t(x)− p(x)) ≥ 1− 2ε.

Taking the average of these two inequalities we get∑
x:t(x)>max{p(x),q(x)}

(t(x)− (p(x) + q(x))/2) ≥ 1− 2ε,

as desired.
To prove the last sentence in the lemma statement, consider the domain {1, 2, 3, 4} and

distributions as follows:
p(1) = ε, q(1) = 0, t(1) = ε/2,
p(2) = 0, q(2) = ε, t(2) = ε/2,
p(3) = 0, q(3) = 0, t(3) = 1− ε,
p(4) = 1− ε, q(4) = 1− ε, t(4) = 0.
Note that r(i) = p(i) = q(i) for i ∈ {3, 4}. We have ∆(p, t) = ∆(q, t) = ε/2 + 1 − ε =

1− ε/2, but ∆(r, t) = 1− ε.

Corollary 18. Let r and t be distributions over the same arbitrary domain. Suppose that
r = 1

2s

∑2s

i=1 pi and that each pi is a distribution with ∆(pi, t) ≥ 1−ε. Then ∆(r, t) ≥ 1−2sε.

Proof. We proceed by induction on s. Write r = 1
2
(r1 + r2) where the ri are convex combi-

nations of 2s−1 distributions. By hypothesis ∆(r1, t) ≥ 1− 2s−1ε, and the same holds for r2.
By Lemma 17, ∆(r, t) ≥ 1− 2sε.

4.2 Independent vs. permutation

We shall need a lemma about concentration of measure.

Lemma 19. Let x1, x2, . . . , xm be boolean random variables such that for every i, conditioned
on any outcome of all the variables except xi, we have Pr[xi = 1] ≥ p. Then we have
Pr[
∑
xi ≤ 0.5pm] ≤ exp(−Ω(pm)).

Similar lemmas have been proved many times. For completeness we give a proof relying
on a bound in [PS97]. We use the presentation in [IK10].

Proof. Define yi := 1−xi. We have Pr[yi = 1] ≤ 1−p conditioned on any outcome of all the
y variables except yi. We need to bound Pr[

∑
yi ≥ m(1 − 0.5p)]. The variables yi satisfy

the property that for any set S ⊆ [m], Pr[∀i ∈ S, yi = 1] ≤ (1−p)|S|, because the probability
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can be written as Pr[yi1 = 1] · Pr[yi2 = 1|yi1 = 1] · · · , where i1, i2, . . . are the elements of S,
and each term is at most 1− p. So we can apply Theorem 1.1 in [IK10] to obtain

Pr[
∑

yi ≥ m(1− 0.5p)] ≤ e−mD(1−0.5p|1−p)

where D is the relative entropy defined as D(x|y) = x loge(x/y)+(1−x) loge((1−x)/(1−y)).
From the definition we observe D(x|y) = D(1 − x|1 − y), hence the above upper bound is
e−mD(0.5p|p). Finally, we claim that D(0.5p|p) ≥ Ω(p). This can be verified by calculus or
numerically.

We can now state and prove our main result of this subsection.

Lemma 20. Let x1, x2, . . . , xt be t independent random variables over [n]. Let Π be a ran-
dom, uniform permutation over [n]. The statistical distance between the xi and Π(1),Π(2), . . . ,Π(t)
is at least 1− exp(−Ω(t2/n)).

Proof. Let p := 0.5t/n. Call a variable xi low-entropy if there is a set Si of size t/2 = pn
such that Pr[xi ∈ Si] ≤ 0.1p. We consider two cases:

Case 1: There are t/2 low-entropy variables xi:
In this case select any b := 0.1t low-entropy variables. Without loss of generality assume

that they are x1, x2, . . . , xb and let Y1, Y2, . . . , Yb be the indicator variables corresponding to
the events “xi ∈ Si”. Consider the statistical test “

∑
i≤b Yi ≥ 0.2p · b”. In the sampler case,

E[
∑

i≤b Yi] ≤ 0.1p · b. The probability that the test passes is at most the probability that∑
Yi deviates from its expectation by a constant factor. Without loss of generality we can

assume that E[
∑

i≤b Yi] is exactly 0.1bp. The variables are independent, and so by a Chernoff
bound this probability is at most exp(−0.1bp) = exp(−Ω(t2/n)).

Now consider the permutation case and let Y1, Y2, . . . , Yb be the indicator variables corre-
sponding to the events “Π(i) ∈ Si”. We observe that regardless of the outcome of any other
r ≤ b variables Π(j), j 6= i, (note that Π(j) determines Yj)

Pr[Yi = 1] ≥ |Si| − r
n− r

=
0.5t− r
n− r

≥ 0.4t

n
= 0.8p.

The probability that the test does not pass is at most the probability that
∑

i Yi <
0.5(0.8p)b, and that by Lemma 19 is ≤ exp(−Ω(t/n) · b) = exp(−Ω(t2/n)).

Case 2: There are not t/2 low-entropy variables xi:
In this case there are ≥ t/2 high-entropy variables, i.e., variables such that for every set

Si of size t/2, the probability of landing in Si is ≥ 0.1p. Let H be the index set of t/2 of
these variables, and L be the index set of the other t/2 variables (which may or may not be
high entropy). The probability that the xi collide (i.e., two variables take the same value)
is at least the probability that the variables collide conditioned on the event that there is
no collision among the variables in L. Fix any outcome for the variables in L conditioned
on the event that they do not collide. Because they do not collide, they take t/2 distinct
values. Let S be the set of t/2 values they take. Now the probability that the xi variables
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collide is at least the probability that some variable in H lands in S. Because the variables
are independent, this probability is at least

1− (1− 0.1p)t/2 ≥ 1− e−Ω(pt) = 1− e−Ω(t2/n).

On the other hand, by definition, the variables Π(i) never collide. Hence the statistical test
that simply checks if the variables collide gives the desired statistical distance.

4.3 Proof of Theorem 3

We proceed by induction on d. We can take d = 0 as base case. In this case f is constant
and the statistical distance is 1− 1/n! which is larger than 1− 2−n/ logn.

For the induction step, you ask the question whether there are

t := n/ logc
d/4 n

variables with indexes T ⊆ [n] whose probes intersect the probes of all other variables. If
the answer is affirmative, then by considering any possible fixing for the values of the cells
probed by the variables in T your distribution is a convex combination of 2t·d·logn distributions
which are (d− 1)-local. By the induction hypothesis applied to each of these samplers, and
Corollary 18 the statistical distance will be

1− 2t·d·logn · 2−n/ logcd−1
n.

This quantity equals 1− 2−x where

x =
n

logc
d−1

n
− td log n = n

(
1

logc
d−1

n
− d log n

logc
d/4 n

)
≥ 0.5

n

logc
d−1

n
≥ n

logc
d
n
.

Here the inequalities hold for d ≤ log n say (for else the theorem is trivial) and a suitable
choice of c.

If the answer is no then there are t variables which are independent. (This can be shown
by iteratively collecting variables whose probes are disjoint. We can’t stop before we collect
t, for else the answer would have been yes.) By Lemma 20 just considering those variables

the statistical distance is at least 1 − exp(−Ω(t2/n)). Noting that t2/n = n/ logc
d/2 n ≥

(logc
d/2 n)n/ logc

d

n concludes the argument for all large enough n.

5 Open problems

The study of the complexity of distributions remains largely uncharted. We discuss next
several open problems that seem within reach.

An obvious open problem is to improve the statistical distance in Theorem 2 to exponen-
tially close to 1/2. We note that even if the corresponding improvement could be obtained

17



for Theorem 6, with the approach in this paper there would remain the problem of improving
the error of extractors for low-depth forests, already highlighted in [Vio14].

Another problem from [Vio14] that is still open is to extract from 2-local sources on n bits
with min-entropy ≤

√
n. The problem is that while such sources with min-entropy n1/2+Ω(1)

can be restricted to being affine sources with large entropy, this is not true if we start with
entropy

√
n. To see this, consider the 2-local source on n bits sampled from O(

√
n) bits by

taking the And of any possible pair. As long as the restriction leaves two input bits unfixed,
the output is not affine.

As our techniques for Theorem 2 are based on restrictions, it is natural to ask whether
one can prove average-case sampling lower bounds for other models which shrink under
restrictions, including various types of formulas, and branching programs. We refer the
reader to [IMZ12] for pointers ad a recent discussion of these models. For concreteness, the
reader can think of de Morgan’s formulas. We note that worst-case sampling lower bounds
for these models do follow from [Vio14]. However it does not seem immediate to obtain
average-case lower bounds via the approach in this paper, because the shrinkage parameter
is not large enough.

Another open problem is to efficiently reduce the input length of the samplers. This
was studied by Dubrov and Ishai [DI06] and later by Artemenko and Shaltiel [AS17]. The
latter paper shows that the output distribution of an AC0 circuit C : {0, 1}` → {0, 1}m

can be approximately sampled by another AC0 circuit C ′ : {0, 1}`
′
→ {0, 1}m using only

`′ = m1+α input bits, for any α > 0 and where the depth of C ′ depends on α. It would be
exciting to obtain `′ = O(m), and it would have an application to specific distributions such
as D = (U,Majority(U)): The AC0 sampler for D in [Vio12b] goes through the generation
of a nearly uniform permutation of [m] and thus uses ≥ m logm input bits. It is an open
question whether D can be sampled in AC0 using fewer input bits. A positive answer to this
question would follow from a strong derandomization of our Theorem 6. Specifically, if one
could construct an AC0 circuit that given m −mε input bits samples a uniform restriction
from the multiset S in Theorem 6, then it would be enough to fill the mε′ stars with bounded
independence to obtain `′ = m+m1−Ω(1).

It would also be interesting to extend Theorem 3 to the case of adaptive probes.

Challenge: Let f : [n]` → [n]n be a map such that each output symbol depends on d = O(1)
adaptively chosen input cells. Show that the output distribution of f has statistical distance
Ω(1) from a uniform random permutation.

Another question is to separate the power of adaptive and non-adaptive cell probes.
Consider the distribution D over [n]R+n where the first R cells Di are uniform in [n]R and
each other cell is sampled as follows: Pick a uniform, independent index j in {1, 2, . . . , R}
and output Dj. By definition D can be sampled with 2 adaptive probes. We conjecture that
for R = n1−Ω(1) sampling D requires a large number of non-adaptive probes.

Finally, recall that the statistical bound in Theorem 3 is not far from optimal for small
locality. At the other end of the spectrum, it is an interesting question what is the minimum
locality sufficient to reduce the statistical distance to 1− Ω(1).
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