
Simple Optimal Hitting Sets for Small-Success RL

William M. Hoza∗

Department of Computer Science,
University of Texas at Austin

whoza@utexas.edu

David Zuckerman†

Department of Computer Science,
University of Texas at Austin

diz@cs.utexas.edu

April 9, 2018

Abstract

We give a simple explicit hitting set generator for read-once branching programs of width w
and length r with known variable order. Our generator has seed length

O

(
log(wr) log r

max{1, log logw − log log r}
+ log(1/ε)

)
. (1)

This seed length improves on recent work by Braverman, Cohen, and Garg [BCG18]. In addition,
our generator and its analysis are dramatically simpler than the work by Braverman et al.
[BCG18]. Our generator’s seed length improves on all the classic generators for space-bounded
computation [Nis92, INW94, NZ96] when ε is small.

When r ≤ polylogw, our generator has optimal seed length O(logw + log(1/ε)). As a
corollary, we show that every RL algorithm that uses r random bits can be simulated by an
NL algorithm that uses only O(r/ logc n) nondeterministic bits, where c is an arbitrarily large
constant. Finally, we show that any RL algorithm with small success probability ε can be
simulated deterministically in space O(log3/2 n+ log n log log(1/ε)). This improves on work by

Saks and Zhou [SZ99], who gave an algorithm that runs in space O(log3/2 n+
√

log n log(1/ε)).

1 Introduction

1.1 The power of randomness for space-bounded algorithms

A fundamental goal of complexity theory is to understand the extent to which randomness is useful
for computation. After decades of research, it is widely conjectured that randomized decision
algorithms can always be made deterministic with only a polynomial factor slowdown (P = BPP)
and only a constant factor space blowup (L = BPL). In this paper, we focus on derandomizing
RL, the class of languages decidable by randomized log-space algorithms with one-sided error.

After an n-bit input to a randomized log-space algorithm has been fixed, the behavior of the
algorithm is described by a read-once branching program (ROBP). An ROBP of width w and length
r is a layered digraph with r + 1 layers and w vertices per layer. Each vertex not in the last layer
has two outgoing edges to the next layer, labeled 0 and 1. The program P starts at a designated
start vertex in the first layer, reads an r-bit string from left to right in the natural way, and either
accepts or rejects depending on what vertex it arrives at in the final layer. This defines a function
P : {0, 1}r → {0, 1}.
∗Supported by the NSF GRFP under Grant DGE-1610403 and by a Harrington Fellowship from UT Austin.
†Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investigator Award (#409864).

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 63 (2018)



A natural approach to derandomizing BPL is to design an efficient pseudorandom generator
(PRG). An ε-PRG for width-w, length-r ROBPs is a function Gen : {0, 1}s → {0, 1}r such that for
any such ROBP P ,1

|Pr[P (Ur) = 1]− Pr[P (Gen(Us)) = 1]| ≤ ε. (2)

A hitting set generator (HSG) is a relaxation of a PRG, still suitable for derandomizing RL, where
Eq. (2) is replaced with

Pr[P (Ur) = 1] ≥ ε =⇒ ∃x, P (Gen(x)) = 1. (3)

1.2 Previous generators

We will describe only some of the myriad generators that researchers have developed for ROBPs
[AKS87, BNS92, Nis92, INW94, NZ96, Arm98, KNW08, ŠŽ11, GMR+12, BDVY13, GR14, BCG18].
Perhaps the best known generator is Nisan’s PRG [Nis92], which has seed length

O(log(wr/ε) log r). (4)

Better generators are known when r � w, which corresponds to derandomizing algorithms that
only make a few coin tosses. For r ≤ O(log2w/ log logw) and ε ≥ 1/poly(w), Ajtai, Komlós,
and Szemerédi gave an HSG with optimal seed length O(logw) [AKS87].2 For r ≤ polylogw and

ε ≥ 2− log1−Ω(1) w, Nisan and Zuckerman gave a PRG with optimal seed length O(logw) [NZ96].
Armoni [Arm98] showed how to interpolate between Nisan’s generator [Nis92] and the Nisan-
Zuckerman generator [NZ96]. By improving an extractor in Armoni’s construction, Kane et al.
showed [KNW08] that for r ≥ logw, Armoni’s PRG can be implemented to have seed length

O

(
log(wr/ε) log r

max{1, log logw − log log(r/ε)}

)
. (5)

An ROBP that arises from a uniform randomized algorithm always satisfies w ≥ r, but the ROBP
model is still interesting even when w � r. Bogdanov et al. gave a PRG for w = 2 with optimal seed
length O(log(r/ε)) [BDVY13]. Š́ıma and Žák gave a 0.961-HSG for w ≤ 3 with seed length O(log r)
[ŠŽ11], and Gopalan et al. gave an HSG for w ≤ 3 with seed length Õ(log(r/ε)) [GMR+12].

When r = w, Armoni’s PRG is no better than Nisan’s. Indeed, for the quarter century after
Nisan announced his generator [Nis92], there was no improvement whatsoever for the case r = w.
In an exciting recent development, Braverman, Cohen, and Garg [BCG18] gave an HSG with seed
length

Õ(log(wr) log r + log(1/ε)). (6)

Equation (6) improves on all prior generators when, e.g., r = w and ε = w− logw. Unfortunately, as
Braverman et al. recognize in their 67-page paper, their construction is “fairly involved” and their
analysis “requires a significant amount of work” [BCG18].

1.3 Our results

1.3.1 A new HSG

In this paper, we explicitly construct a new HSG for ROBPs with seed length

O

(
log(wr) log r

max{1, log logw − log log r}
+ log(1/ε)

)
. (7)

1Un is the uniform distribution on {0, 1}n.
2Ajtai et al.’s generator [AKS87] was not entirely subsumed by any subsequent papers until this one!

2



This seed length improves on all the classic generators [AKS87, BNS92, Nis92, INW94, NZ96, Arm98]
and the recent generator by Braverman et al. [BCG18]. Our generator’s seed length has optimal
dependence on ε; this is the improvement over Eq. (5). When r ≤ polylogw, our generator has
optimal seed length O(logw + log(1/ε)). When r is large, our generator is still interesting; for
example, when r = w, our generator is the first with seed length O(log2w) for sub-polynomial
values of ε such as ε = w− logw. Our construction and analysis are very simple.

One respect in which the generator by Braverman et al. [BCG18] is superior to ours is that their
construction gives a pseudorandom pseudodistribution (PRPD). The notion of a PRPD, introduced
by Braverman et al. [BCG18], is intermediate between an HSG and a PRG and is suitable for
derandomizing BPL. Our construction does not give a PRPD.

1.3.2 Randomness vs. nondeterminism

An HSG can be thought of as stretching a short nondeterministic seed to a long pseudorandom
string. Using our HSG, we show that every RL algorithm that uses r random bits can be simulated
by an NL algorithm that uses only O(r/ logc n) nondeterministic bits, where c is an arbitrarily
large constant. In other words, for log-space algorithms, nondeterministic bits are worth at least
polylog(n) random bits apiece.

For comparison, the work of Ajtai et al. [AKS87] implies a simulation with O
(

r
logn/ log logn

)
nondeterministic bits. The work of Nisan and Zuckerman [NZ96] implies the incomparable statement

that for r ≤ 2log1−Ω(1) n, every RL algorithm that uses r random bits can be simulated by an RL
algorithm that uses only O(r/ logc n) random bits.

1.3.3 Derandomizing small-success algorithms

The standard definition of RL requires that given an input in the language, the algorithm should
accept with probability at least 1/2. We can more generally consider algorithms that merely
accept with probability at least ε. Saks and Zhou showed [SZ99] that such languages can be
decided deterministically in space O(log3/2 n +

√
log n log(1/ε)). Using the same technique we

use to analyze our HSG, we give a deterministic algorithm for such languages that runs in space
O(log3/2 n+log n log log(1/ε)). For example, the Saks-Zhou algorithm only runs in space O(log3/2 n)

if ε ≥ 1/ poly(n), whereas our algorithm runs in space O(log3/2 n) even when ε = 2−2Θ(
√

log n)
. In

the extreme limit ε = 2− poly(n), our algorithm recovers Savitch’s theorem NL ⊆ DSPACE(log2 n)
[Sav70]; indeed, our algorithm relies on Savitch’s algorithm [Sav70].

1.4 Techniques

Our results are based on an elementary structural lemma for ROBPs (Lemma 1). Roughly, the
lemma says that from any vertex v, there’s at least a 1/poly(r) chance of reaching a set Λ(v) of
vertices such that reaching Λ(v) represents making a lot of progress toward eventually accepting.
The interesting case is ε� 1/poly(r).

Based on this lemma, we show how to convert any (1/ poly(r))-PRG for ROBPs into an ε-HSG.
To explain our construction, for simplicity, consider r = w and ε = w− logw. Our HSG uses a “hitter,”
a randomized algorithm that produces a list of poly(w) seeds to the given PRG. Our HSG selects
O(logw) seeds from this list and outputs the concatenation of the corresponding pseudorandom
strings. This works, because if the hitter does its job and our HSG selects appropriate seeds, then
the first pseudorandom string leads from the start vertex, v0, to a vertex v1 ∈ Λ(v0). The second

3



pseudorandom string leads from v1 to some v2 ∈ Λ(v1). Then we go to v3 ∈ Λ(v2), etc., and
eventually accept.

Suppose we plug in Nisan’s generator [Nis92] as the (1/ poly(r))-PRG in this construction. It
has seed length O(log2w), so a high-quality hitter only needs O(log2w) random bits to produce its
list. Our HSG needs an additional O(log2w) nondeterministic bits to select O(logw) seeds from the
list. Finally, our HSG needs another O(log2w) nondeterministic bits to guess the distances from v0

to Λ(v0), from v1 to Λ(v1), etc. Thus, in total, our ε-HSG’s seed length is only O(log2w).
In general, if the given (1/poly(r))-PRG has seed length m, our ε-HSG has seed length

O(m+ log(wr/ε)). To get the best seed length, we plug in Armoni’s PRG [Arm98, KNW08].

2 Our generator

2.1 Construction

A (θ, δ)-hitter [Gol11] is a function Hit : {0, 1}`×{0, 1}d → {0, 1}m such that for any set E ⊆ {0, 1}m,

Pr[Um ∈ E] ≥ θ =⇒ Pr
x

[∃y,Hit(x, y) ∈ E] ≥ 1− δ. (8)

(This is equivalent to the notion of a disperser.) Our ε-HSG for width-w, length-r ROBPs is built
from two ingredients:

• A ( 1
r2 )-PRG for width-w, length-r ROBPs BaseGen : {0, 1}m → {0, 1}r.

• A ( 1
r2 ,

1
2wr )-hitter Hit : {0, 1}` × {0, 1}d → {0, 1}m.

A seed to our generator consists of a string x ∈ {0, 1}`, a positive integer t ∈
{

1, 2, . . . ,
⌈

log(1/ε)
log(r/4)

⌉
+ 1
}

,

positive integers r1, . . . , rt with r1 + · · ·+ rt = r, and strings y1, . . . , yt ∈ {0, 1}d. The output of our
generator is

Gen(x, t, r1, . . . , rt, y1, . . . , yt) = BaseGen(Hit(x, y1))|r1 ◦ · · · ◦ BaseGen(Hit(x, yt))|rt . (9)

Here, ◦ denotes string concatenation and z|ri denotes the truncation of z to the first ri bits. Our
construction draws inspiration from the Nisan-Zuckerman generator [NZ96].

2.2 Correctness

Let P be a width-w, length-r ROBP with layers L0, L1, . . . , Lr. Suppose i ≤ j. If u ∈ Li, v ∈ Lj , let
p(u, v) be the probability of landing at v when starting at u and reading Uj−i. If U ⊆ Li, V ⊆ Lj ,
let

p(U, V ) = min
u∈U

∑
v∈V

p(u, v). (10)

Let v∗ ∈ Lr be the accepting vertex of P , which we may assume is unique without loss of generality.
We now prove the structural lemma outlined in Section 1.4. Our lemma bears some resemblance to
a lemma by Ajtai et al. [AKS87, Lemma 1].

Lemma 1. Assume r > 4. Suppose v ∈ Li, i < r. There is a positive integer h(v) and a set
Λ(v) ⊆ Li+h(v) so that

1. p(v,Λ(v)) ≥ 2
r2 , and

2. Λ(v) = {v∗} or p(Λ(v), v∗) ≥ p(v, v∗) · (r/4).

4



Proof. Let α = p(v, v∗). If α ≥ 2/r, we can just let Λ(v) = {v∗} and h(v) = r − i, so assume
α < 2/r. For j > i, define

Λj = {u ∈ Lj : α · (r/4) ≤ p(u, v∗) ≤ α · (r/2)}. (11)

Say that Λj is unlikely if p(v,Λj) <
2
r2 . Consider starting at v and reading uniform randomness. If

Λj is unlikely, then the probability of passing through Λj and then ultimately accepting is given by∑
u∈Λj

p(v, u) · p(u, v∗) ≤ p(v,Λj) · α · (r/2) <
α

r
. (12)

There are at most r unlikely sets Λj . Therefore, by the union bound, the probability of passing
through some unlikely Λj and then ultimately accepting is strictly less than α. So there is some
path v = ui, ui+1, . . . , ur = v∗ that does not pass through any unlikely Λj .

Since uj+1 is an outneighbor of uj ,

p(uj , v∗) ≥ p(uj , uj+1) · p(uj+1, v∗) ≥ p(uj+1, v∗)/2. (13)

So as j runs from i to r, the quantity p(uj , v∗) goes from α to 1, and it at most doubles in each
step. Therefore, there must be some j > i such that α · (r/4) ≤ p(uj , v∗) ≤ α · (r/2) (recall α < 2/r
and r > 4.) It follows that uj ∈ Λj , so Λj is not unlikely. Let Λ(v) = Λj and h(v) = j − i.

Claim 1 (Correctness of Gen). Let v0 be the start vertex of P . Assume r > 4 and p(v0, v∗) ≥ ε.
Then there is some seed (x, t, r1, . . . , rt, y1, . . . , yt) so that P accepts Gen(x, t, r1, . . . , rt, y1, . . . , yt).

Proof. For a vertex v not in the last layer, define Ev ⊆ {0, 1}m by

Ev = {z : starting at v and reading BaseGen(z)|h(v) reaches Λ(v)}. (14)

Since p(v,Λ(v)) ≥ 2
r2 and BaseGen has error 1

r2 , Pr[Um ∈ Ev] ≥ 1
r2 . Therefore, by the hitting

condition,

Pr
x

[∃y,Hit(x, y) ∈ Ev] ≥ 1− 1

2wr
. (15)

There are fewer than 2wr vertices, so by the union bound, there is some x∗ so that for every v,
there is a string yv with Hit(x∗, yv) ∈ Ev.

We now inductively define strings y1, y2, . . . , numbers r1, r2, . . . , and vertices v1, v2, . . . so that for
every i, vi = v∗ or p(vi, v∗) ≥ ε·(r/4)i. We start with the start vertex, v0. Let yi+1 = yvi , ri+1 = h(vi),
and vi+1 = the vertex reached when starting at vi and reading BaseGen(Hit(x∗, yi+1))|ri+1 . That
way, vi+1 ∈ Λ(vi), so indeed, vi+1 = v∗ or p(vi+1, v∗) ≥ p(vi, v∗) · (r/4). Since probabilities cannot
exceed 1, the induction must terminate at i = t with vt = v∗ and ε · (r/4)t−1 ≤ 1. This implies that

t ≤ log(1/ε)
log(r/4) + 1. By construction, P accepts Gen(x∗, t, r1, . . . , rt, y1, . . . , yt).

2.3 Seed length

In this section, we plug in explicit constructions for BaseGen and Hit to prove our main result:

Theorem 1 (Main result). For every w, r, ε with r ≥ logw, there is an ε-HSG Gen : {0, 1}s → {0, 1}r
for width-w, length-r ROBPs, computable in space O(s), with

s ≤ O
(

log(wr) log r

max{1, log logw − log log r}
+ log(1/ε)

)
. (16)

5



Proof. For any m, θ, δ, Bellare, Goldreich, and Goldwasser constructed a (θ, δ)-hitter Hit : {0, 1}` ×
{0, 1}d → {0, 1}m with ` ≤ O(m+ log(1/δ)) and d ≤ O(log(1/θ) + log log(1/δ)), easily computable
in space O(m+ log(1/δ) + log(1/θ) [BGG93]. With the specified parameters θ = 1

r2 , δ = 1
2wr , these

lengths become ` ≤ O(m+ log(wr)) and d ≤ O(log r). Therefore, the seed length of our generator
is bounded by

`︸︷︷︸
for x

+O(log log(1/ε))︸ ︷︷ ︸
for t

+O(log(1/ε))︸ ︷︷ ︸
for r1,...,rt

+O

(
d log(1/ε)

log r

)
︸ ︷︷ ︸

for y1,...,yt

≤ O (m+ log(wr/ε)) . (17)

Recall that m is the seed length of BaseGen. We take BaseGen to be Armoni’s generator [Arm98] as
optimized by Kane et al. [KNW08, Theorem A.16]. Since we can tolerate error 1/r2 in BaseGen, its
seed length is

m ≤ O
(

log(wr) log r

max{1, log logw − log log r}

)
. (18)

Armoni’s generator is computable in space O(m), so Gen is computable in space O(s).

3 Simulating r random bits with r/ logc n nondeterministic bits

Definition 1. For a language L, an RL algorithm with success probability ε = ε(n) is a randomized
log-space algorithm A that always halts such that for every x ∈ {0, 1}∗,

x ∈ L =⇒ Pr[A(x) accepts] ≥ ε (19)

x 6∈ L =⇒ Pr[A(x) accepts] = 0. (20)

An RL algorithm (with no success probability specified) is an RL algorithm with success probability
1/ poly(n). An NL algorithm is a nondeterministic log-space algorithm A that always halts such
that x ∈ L if and only if there is some sequence of nondeterministic choices causing A(x) to accept.

We now show as a corollary to Theorem 1 that for log-space algorithms, r random bits can be
simulated with r/polylog(n) nondeterministic bits.

Corollary 1. Suppose a language L can be decided by an RL algorithm that uses at most r = r(n)
random bits. Then for any constant c ∈ N, L can be decided by an NL algorithm that uses
O(r/ logc n) nondeterministic bits.

Proof. Let w = poly(n) be such that the behavior of the RL algorithm on an n-bit input can be
modeled as a width-w, length-r ROBP P with w ≥ r. Let C be such that the RL algorithm’s success
probability is at least 2n−C . Let Gen : {0, 1}O(logn) → {0, 1}h be our ε-HSG with h = dlogc+1 ne
and ε = n−C/w. The NL algorithm repeatedly guesses3 a seed x and feeds Gen(x) to an ongoing
simulation of the RL algorithm.

The correctness of this algorithm follows inductively from the following claim. Let L0, L1, . . . , Lr

be the layers of P , and let v∗ ∈ Lr be the accept vertex. For any vertex v ∈ Li, there is some seed
x such that if u ∈ Li+h is the vertex reached from v by reading Gen(x), then

p(u, v∗) ≥ p(v, v∗)− ε. (21)

3Actually, to handle the case r < logc+1 n, the NL algorithm should first deterministically check whether there is
some x such that after reading Gen(x), the RL algorithm has not yet halted. If not, the NL algorithm should halt
and accept/reject depending on whether there is some x such that the RL algorithm accepts when reading Gen(x).

6



Proof of this claim: Let U = {u ∈ Li+h : p(u, v∗) ≥ p(v, v∗)− ε}. Then

p(v, v∗) =
∑
u∈U

p(v, u) · p(u, v∗) +
∑

u∈Li+h\U

p(v, u) · p(u, v∗) (22)

≤ p(v, U) + p(v, v∗)− ε. (23)

Therefore, p(v, U) ≥ ε, so the correctness of Gen completes the proof.

4 Derandomizing small-success RL algorithms

Saks and Zhou famously showed that RL ⊆ DSPACE(log3/2 n) [SZ99]. Suppose some lan-
guage L merely has an RL algorithm with small success probability ε. By amplification, L ∈
RSPACE(log(n/ε)), so by the Saks-Zhou theorem, L ∈ DSPACE(log3/2(n/ε)). In fact, Saks and
Zhou showed L ∈ DSPACE(log3/2 n+

√
log n log(1/ε)) [SZ99, Theorem 3.1].

We now show as a corollary of Lemma 1 that L ∈ DSPACE(log3/2 n+ log n log log(1/ε)), an
exponential improvement in terms of ε. Our derandomization smoothly interpolates between the
Saks-Zhou theorem [SZ99] and Savitch’s theorem NL ⊆ DSPACE(log2 n) [Sav70].

Corollary 2. Suppose a language L admits an RL algorithm with success probability ε = ε(n),
where dlog(1/ε)e can be constructed in space O(log3/2 n+ log n log log(1/ε)). Then

L ∈ DSPACE(log3/2 n+ log n log log(1/ε)). (24)

Proof. Let w = poly(n) be such that the behavior of the RL algorithm on an n-bit input can be
modeled as a width-w, length-w ROBP P with start vertex v0 and accept vertex v∗. By the results
of Saks and Zhou [SZ99], there is a deterministic algorithm A that runs in space O(log3/2 n) that,
given vertices u, v, will distinguish between the cases p(u, v) = 0 and p(u, v) ≥ 2

w3 . Define a digraph
G, where the vertices of G are the vertices of P , and we put an edge from u to v in G if A(u, v) = 1.
To deterministically decide L, use Savitch’s algorithm [Sav70] to check for the presence of a path
from v0 to v∗ through G of length at most dlog(1/ε)e.

Now we prove the correctness of this algorithm. Obviously, if p(v0, v∗) = 0, the algorithm will
reject, so assume p(v0, v∗) ≥ ε. For any vertex v, p(v,Λ(v)) ≥ 2

w2 , so there is some u ∈ Λ(v) so that
p(v, u) ≥ 2

w3 . That vertex u satisfies p(u, v∗) ≥ p(v, v∗) · (w/4) ≥ 2p(v, v∗). It follows inductively
that there is a path through G from v0 to v∗ of length at most dlog(1/ε)e.

5 Directions for further research

• Is there an explicit PRG with the same seed length as our HSG? This would imply BPL ⊆
DSPACE(log3/2 n/

√
log log n) [SZ99, Arm98, HU17], slightly improving the best known

derandomization of BPL [SZ99].

• A less ambitious goal is to construct a pseudorandom pseudodistribution (PRPD). As mentioned
in Section 1.3.1, Braverman et al. obtained an explicit PRPD with seed length Õ(log(wr) log r+
log(1/ε)) [BCG18]. An explicit PRPD with the same seed length as our HSG would imply
that every BPL algorithm using r random bits can be simulated by a BPL algorithm using
O(r/ logc n) random bits for any constant c, improving Corollary 1.

• Braverman et al. gave a PRG for regular ROBPs of width w = polylog(r) with seed length
Õ(log r log(1/ε)) [BRRY14]. Is there an explicit HSG for regular ROBPs of width polylog(r)
with seed length Õ(log r + log(1/ε))?

7



• Andreev, Clementi, and Rolim showed that an explicit HSG for circuits would imply P =
BPP, not just P = RP [ACR96]. (Researchers subsequently discovered simpler proofs
[BF99, ACRT99, GVW11].) Would an explicit HSG for ROBPs with seed length O(log(wr/ε))
imply L = BPL? This question is perhaps related to the problem of proving BPL ⊆ NL.

• It’s possible to prove a version of Lemma 1 with different parameters where Λ(v) is a single
vertex. It follows that the hitter in our construction can be replaced with an HSG for
combinatorial rectangles [LLSZ97], provided BaseGen has error only 1

w2r2 . Does this idea have
any applications?

6 Acknowledgments

The first author thanks Sumegha Garg for explaining to him the idea behind her work with
Braverman and Cohen [BCG18]. We discovered our generator in the process of studying the
generator by Braverman et al. [BCG18]. We thank Amnon Ta-Shma for a helpful discussion.

References

[ACR96] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim. Hitting sets
derandomize BPP. In Automata, languages and programming (Paderborn, 1996), volume
1099 of Lecture Notes in Comput. Sci., pages 357–368. Springer, Berlin, 1996.

[ACRT99] Alexander E. Andreev, Andrea E. F. Clementi, José D. P. Rolim, and Luca Trevisan.
Weak random sources, hitting sets, and BPP simulations. SIAM Journal on Computing,
28(6):2103–2116, 1999.

[AKS87] Miklós Ajtai, János Komlós, and Endre Szemerédi. Deterministic simulation in
LOGSPACE. In Proceedings of the 19th Annual Symposium on Theory of Computing,
pages 132–140. ACM, 1987.

[Arm98] Roy Armoni. On the derandomization of space-bounded computations. In Proceedings
of the 2nd International Workshop on Randomization and Computation, volume 1518 of
Lecture Notes in Computer Science, pages 47–59. Springer, Berlin, 1998.

[BCG18] Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-optimal error
for read-once branching programs. In Proceedings of the 50th Annual Symposium on
Theory of Computing, 2018. To appear.

[BDVY13] Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness
for width-2 branching programs. Theory of Computing, 9:283–292, 2013.

[BF99] H. Buhrman and L. Fortnow. One-sided versus two-sided error in probabilistic computa-
tion. In Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer
Science, volume 1563, pages 100–109. Berlin, 1999.

[BGG93] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Randomness in interactive proofs.
Computational Complexity, 3(4):319–354, 1993.

[BNS92] László Babai, Noam Nisan, and Márió Szegedy. Multiparty protocols, pseudorandom
generators for logspace, and time-space trade-offs. Journal of Computer and System
Sciences, 45(2):204–232, 1992.

8



[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators
for regular branching programs. SIAM Journal on Computing, 43(3):973–986, 2014.

[GMR+12] Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan.
Better pseudorandom generators from milder pseudorandom restrictions. In Proceedings
of the 53rd Annual Symposium on Foundations of Computer Science, pages 120–129.
IEEE Computer Soc., Los Alamitos, CA, 2012.

[Gol11] Oded Goldreich. A sample of samplers: a computational perspective on sampling. In
Studies in complexity and cryptography, volume 6650 of Lecture Notes in Comput. Sci.,
pages 302–332. Springer, Heidelberg, 2011.

[GR14] Anat Ganor and Ran Raz. Space pseudorandom generators by communication complex-
ity lower bounds. In Approximation, randomization, and combinatorial optimization,
volume 28 of LIPIcs. Leibniz Int. Proc. Inform., pages 692–703. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2014.

[GVW11] Oded Goldreich, Salil Vadhan, and Avi Wigderson. Simplified derandomization of BPP
using a hitting set generator. In Studies in complexity and cryptography, volume 6650 of
Lecture Notes in Comput. Sci., pages 59–67. Springer, Heidelberg, 2011.

[HU17] William M. Hoza and Chris Umans. Targeted pseudorandom generators, simulation
advice generators, and derandomizing logspace. In Proceedings of the 49th Annual
Symposium on Theory of Computing, pages 629–640. ACM, New York, 2017.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pages 356–364. ACM, 1994.

[KNW08] Daniel M Kane, Jelani Nelson, and David P Woodruff. Revisiting norm estimation in
data streams. arXiv preprint arXiv:0811.3648, 2008.

[LLSZ97] Nathan Linial, Michael Luby, Michael Saks, and David Zuckerman. Efficient construction
of a small hitting set for combinatorial rectangles in high dimension. Combinatorica,
17(2):215–234, 1997.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4:177–192, 1970.

[SZ99] Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of
Computer and System Sciences, 58(2):376–403, 1999.

[ŠŽ11] Jǐŕı Š́ıma and Stanislav Žák. Almost k-wise independent sets establish hitting sets for
width-3 1-branching programs. In Computer science—theory and applications, volume
6651 of Lecture Notes in Comput. Sci., pages 120–133. Springer, Heidelberg, 2011.

9
ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


