
Near-Optimal Strong Dispersers, Erasure List-Decodable
Codes and Friends

Avraham Ben-Aroya∗ Dean Doron† Amnon Ta-Shma‡

Abstract

A code C is (1 − τ, L) erasure list-decodable if for every codeword w, after erasing any
1 − τ fraction of the symbols of w, the remaining τ -fraction of its symbols have at most L
possible completions into codewords of C. Non-explicitly, there exist binary (1 − τ, L) erasure
list-decodable codes having rate O(τ) and tiny list-size L = O(log 1

τ). Achieving either of these
parameters explicitly is a natural open problem and was brought up in several works (e.g.,
[GI02, Gur03, Gur04]). While partial progress on the problem has been achieved, no explicit
construction up to this work achieved rate better than Ω(τ2) or list-size smaller than Ω(1/τ)
(for τ small enough). Furthermore, Guruswami showed that no linear code can have list-size
small than Ω(1/τ) [Gur03]. In this work we construct an explicit binary (1 − τ, L) erasure list-
decodable code having rate τ1+γ (for any constant γ > 0 and τ small enough) and list-size
poly(log 1

τ), answering simultaneously both questions, and exhibiting an explicit non-linear
code that provably beats the best possible linear one.

The binary erasure list-decoding problem is equivalent to the construction of explicit, low-
error, strong dispersers outputting one bit with minimal entropy-loss and seed-length. Specif-
ically, such dispersers with error ε have an unavoidable entropy-loss of log log(1

ε) and seed-
length at least log(1

ε). Similarly to the situation with erasure list-decodable codes, no explicit
construction achieved seed-length better than 2 log(1

ε) or entropy-loss smaller than 2 log(1
ε),

which are the best possible parameters for extractors. For every constant γ > 0 and every
small ε, we explicitly construct an ε-error one-bit strong disperser with near-optimal seed-
length (1 + γ) log(1

ε) and near-optimal entropy-loss O(log log 1
ε).

The main ingredient in our construction is a new (and almost-optimal) unbalanced two-
source extractor. The extractor extracts one bit with constant error from two independent
sources, where one source has length n and tiny min-entropy O(log log n) and the other source
has length O(log n) and arbitrarily small constant min-entropy rate. The construction incor-
porates recent components and ideas from extractor theory with a delicate and novel analysis
needed in order to solve dependency and error issues.

∗The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel. Supported by the Israel
science Foundation grant no. 994/14 and by Len Blavatnik and the Blavatnik Family foundation.
†The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel. Email: dean-

doron@mail.tau.ac.il. Supported by the Israel science Foundation grant no. 994/14, and by Len Blavatnik and the
Blavatnik Family foundation.
‡The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel. Email: amnon@tau.ac.il.

Supported by the Israel science Foundation grant no. 994/14.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 65 (2018)

1 Introduction

Extractors and dispersers are important derandomization tools with numerous applications (see,
e.g., [Sha02, Wig09]). Both extractors and dispersers are hash functions C : {0, 1}n × {0, 1}d →
{0, 1}m that take an input string x ∈ {0, 1}n and an auxiliary seed y ∈ {0, 1}d, and output an ele-
ment C(x, y) in a smaller universe {0, 1}m wherem� n. Both extractors and dispersers are meant
to hash any input distribution X that has some crude uniformity to a nearly uniform distribution.
The measure of crude uniformity is the same for both objects: We say a distributionX is a k-source
if it has k min-entropy, i.e., the probability of each x ∼ X is at most 2−k.

Extractors and dispersers differ in the way they measure the proximity of the output distri-
bution to the uniform distribution: Extractors use the total-variation distance, whereas dispersers
use support-size distance (that is, they count the number of elements not in the image of the hash
function). Thus, extractors are stronger objects than dispersers. Roughly speaking, extractors are
needed to derandomize two-sided error algorithms whereas dispersers suffice for one-sided error
derandomization.

More formally, a function C : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) extractor if for any k-
source X the output distribution (Ud, C(X,Ud)), containing the seed y along with output C(x, y),
is ε-close to the uniform distribution over {0, 1}d×{0, 1}m. In contrast, C is a strong (k, ε) disperser
if for any k-source X , the support of (Ud, C(X,Ud)) covers at least (1 − ε)2d+m elements from
{0, 1}d × {0, 1}m.

There are two natural parameters measuring the quality of extractors and dispersers:

1. Seed length. Both extractors and dispersers use an auxiliary uniform independent source
to extract the entropy from the weak source X . The length d of the auxiliary source is called
the seed-length. We would like the seed-length to be as small as possible.

2. Entropy loss. There are k+d bits of entropy in the system: k bits coming from the k-sourceX ,
and d bits from the independent uniform seed. The entropy-loss is k −m, i.e., the difference
between the entropy in the input system (including the seed) and the output system (of
length d+m).

As noted, strong dispersers are weaker objects than strong extractors. The interest in dispersers
stems from the fact that their parameters can outperform those of extractors. For extractors,
[RTS00] showed that every strong extractor requires seed-length d ≥ 2 log(1

ε) + log(n− k)− O(1)
and has an unavoidable entropy-loss of k − m ≥ 2 log(1

ε) − O(1). Non-explicitly there exist
strong extractors with seed-length d ≤ 2 log(1

ε) + log(n − k) + O(1) and entropy-loss k − m ≤
2 log(1

ε) + O(1). For strong dispersers, [RTS00] showed that every strong disperser requires seed-
length d ≥ log(1

ε)+log(n−k)−O(1) and has an unavoidable entropy-loss k−m ≥ log log(1
ε)−O(1).

Again, non-explicitly, there exist strong dispersers with seed-length d ≤ log(1
ε) + log(n−k) +O(1)

and entropy-loss k −m ≤ log log(1
ε) +O(1) [RTS00, MRZ14].

For strong dispersers, even the case of outputting just one bit in a way that outperforms extrac-
tors constructions has been widely open. Indeed, any construction of a disperser with parameters
beating those of the best possible extractor must yield a distribution that covers many strings but
is necessarily far from uniform, and it is not clear at all how to construct such an object. Grad-
wohl et al. [GKRTS05] noticed that such strong dispersers imply good Ramsey graphs, another
problem that withstood many attempts for many years, until the recent breakthrough result of
Chattopadhyay and Zuckerman [CZ16].

1

In this paper we go in the reverse direction of that taken in [GKRTS05]. By using the recent ma-
chinery of non-malleable extractors and their connection to two-source extractors [CZ16, BADTS17,
Coh16d, Li17, Li18], we construct near-optimal unbalanced two-source extractors (which imply
near-optimal unbalanced Ramsey graphs). We use these extractors to obtain explicit strong dis-
persers that output a single bit, with near-optimal seed-length and near-optimal entropy-loss.

Theorem 1.1 (see also Theorem 5.2). For every constant 0 < γ < 1 and ε = n−Ω(1) there exists an
explicit strong (k, ε) disperser Disp : {0, 1}n × {0, 1}d → {0, 1} with d = (1 + γ) log(1

ε) and k =
O(log log 1

ε), where the constant in the O(·) notation is independent of n but may depend on γ.

We remark that the dependence of the seed-length on the error is (1 + γ) log(1
ε) < 2 log(1

ε),
and the entropy-loss is O(log log 1

ε) < 2 log(1
ε) and both these bounds are optimal for dispersers

up to small factors and are unattainable for extractors. Most previous dispersers constructions
have not obtained parameters better than the extractors lower bounds, and we are only aware
of one exception: Meka et al. [MRZ14], extending the techniques in [GKRTS05], gave a strong
disperser with optimal entropy-loss. However, their construction works only for extremely high
min-entropy k = n−Θ(1) and has suboptimal seed-length.

1.1 Erasure List-Decodable Codes

We now turn our attention to binary list-decodable codes in the erasures model. A code C is a set
C ⊆ Fn2 . We call elements in Fn2 words and elements in C codewords. Two interesting parameters
of a code are its redundancy and its noise-resiliency. The redundancy is measured by the rate of the
code, log |C|

n . The noise-resiliency is measured according to the model of noise.

In the errors model: A code C is (τn, L) list-decodable if for every word w ∈ Fn2 there exist at most
L codewords in the Hamming ball of radius τn around w.

In the erasures model: A code C is (τn, L) erasure list-decodable if for every z ∈ F(1−τ)n
2 and every

set T ⊆ [n] of size (1− τ)n, the number of codewords that have z in the coordinates indexed
by T is at most L.

If C is (τn, L) list-decodable we can recover from τn errors in the following sense: Given a
word w ∈ Fn2 that was obtained by corrupting at most τn entries of some codeword c, one can
(perhaps non-efficiently) produce a small set of size L that necessarily contains c.

Similarly, if C is (τn, L) erasure list-decodable we can recover from τn erasures in the following
sense: Given a word w ∈ {0, 1, ?}n that was obtained by replacing at most τn entries of some
codeword c with the erasure sign ’?’, one can (perhaps non-efficiently) produce a small set of size
L that necessarily contains c.

A strong (k, ε) extractor with one output bit is roughly equivalent to a binary (1−ε
2 n,L = 2k)

list-decodable code [Tre01]. In the same spirit, Guruswami [Gur04] observed that strong dis-
persers with one output bit can be used to construct erasure list-decodable codes. In this paper we
complement his argument with the converse statement, showing that erasure list-decodable codes
are essentially equivalent to strong dispersers with one output bit. Specifically, Disp : {0, 1}n ×
{0, 1}d → {0, 1} is a strong (k, ε) disperser if and only if the code C : {0, 1}n → {0, 1}2

d

defined by
C(x)i = Disp(x, i) is ((1− 2ε)2d, 2k) erasure list-decodable.

2

As we can see, for both extractors and dispersers, the seed-length corresponds to the rate of
the code, whereas the entropy-loss corresponds to the list-size of the code. Thus, the gap between
the seed-lengths of dispersers (which is log(1

ε)) and extractors (which is 2 log(1
ε)) translates to a

difference between rate ε in the erasures model compared with rate ε2 in the errors model. Sim-
ilarly, the gap between the entropy-loss of dispersers (which is log log(1

ε)) and extractors (which
is 2 log(1

ε)) translates to a difference between list-size log(1
ε) in the erasures model compared with

list-size poly(1
ε) in the errors model. Formally:

• Non-explicitly there exist binary codes having rate Ω(ε2) that are (1−ε
2 · n,poly(1

ε)) list-
decodable and these parameters are tight.

• Non-explicitly there exist binary codes having rate Ω(ε) that are ((1− ε)n,O(log 1
ε)) erasure

list-decodable, and up to a constant multiplicative factor in the list-size these parameters are
tight [Gur03].

Thus, erasure list-decodable codes can have quadratically better rate and exponentially smaller
list-size than list-decodable codes. In fact, Guruswami proved that any linear erasure list-decodable
codes must have L = Ω(1/ε) [Gur03], and so the exponential improvement (or any better than
polynomial improvement) is necessarily only possible for non-linear constructions.

The state of affairs for explicit binary erasure list-decodable codes is similar to that of explicit
dispersers. That is, only few explicit binary erasure list-decodable codes are known to have
rate below Ω(ε2) or list-size below Ω(1/ε). Guruswami and Indyk [GI02] gave a probabilistic
polynomial-time algorithm that outputs with high probability an erasure list-decodable code of
rate Ω

(
ε2

log(1/ε)

)
and optimal list-size (their construction can be explicitly derandomized when ε is

constant). The natural open problem of obtaining erasure list-decodable codes having rate better
than ε2 was explicitly mentioned several times, e.g., in [GI02, Gur04]. More concretely, in [Gur01,
Open Question 10.2], Guruswami posed the open problem of constructing efficient erasure list-
decodable codes of rate ε2−a.

Incorporating the above discussion with Theorem 1.1, we get the best explicit construction to
date:

Theorem 1.2 (see also Theorem 5.8). For every constant 0 < γ < 1 and ε = n−Ω(1) there exists an
explicit ((1− ε)n̄, L = logO(1) 1

ε) erasure list-decodable code C : {0, 1}n → {0, 1}n̄ of rate ε1+γ , where the
asymptotic notation hides constants that may depend on γ.

Thus, Theorem 1.2 makes progress on resolving Guruswami’s question for the interesting
regime of polynomially-small ε. We stress that the codes we present are explicit in the sense that
they have explicit encoding, but we do not know whether the codes we construct admit efficient
erasure list-decoding algorithms. We also mention that the list-size poly log(1

ε) achieved by our
code is exponentially smaller than the best possible list-size by any linear code.

1.2 Two-Source Extractors

A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1} is an ((n1, k1), (n2, k2), ε) two-source extractor if for
any two independent sources X and Y , where X is an (n1, k1) source and Y is an (n2, k2) source,
the output distribution 2Ext(X,Y) is ε-close to uniform.

Often, the two-source extractor terminology is more expressive than the extractor notation, as
we explain now. Suppose Ext : {0, 1}k × {0, 1}d → {0, 1} is a strong (k, ε) extractor. Fix an (n, k)

3

source X , and let εi be the distance of the distribution Ext(X, i) from uniform. By the extractor
definition we know that E[εi] ≤ ε. However, the extractor definition does not distinguish between
the case where the ε error occurs because all seeds y ∈ Supp(Y) have the same error ε, and the case
where ε fraction of the seeds have constant error and the rest have none. The situation is different
with two-source extractors. Roughly speaking, in an ((n, k), (d, d′), ε) two-source extractor, there
are at most 2d

′−d bad seeds y with distance εy ≥ ε. Thus, the two-source extractor notation allows
separating the fraction of bad seeds from the quality of good seeds.

We would like to explicitly construct a strong (k, ε) disperser Disp : {0, 1}n×{0, 1}d → {0, 1}m
with parameters better than those of (k, ε) extractors. Thus, on the one hand, for almost every seed
y, Disp(X, y) covers almost all of {0, 1}m, and, on the other hand, Disp is not a strong extractor, so
for almost every seed y, Disp(X, y) is far from uniform. How can this happen?

The situation becomes clearer if we look at strong dispersers with only one additional out-
put bit, i.e., when m = 1. As Disp(X, y) is distributed over one bit, for almost every seed y,
Supp(Disp(X, y)) = {0, 1}. Yet, it is possible (even necessary, since Disp is not an extractor) that
for many seeds y, Disp(X, y) is ε0 away from uniform for some constant ε0 � ε > 0., e.g., when
Disp(X, y) has much more weight on 0 than on 1.

One clean way of capturing this is by using the two-source extractor terminology. We are
looking for a two-source extractor 2Ext where almost all seeds (except for ε fraction) are “good”
in the sense that y is good if 2Ext(X, y) covers both 0 and 1. Roughly speaking, this amounts to an
explicit construction of an ((n, k), (d, d′), ε0) two-source extractor having ε = 2d

′−d and any non-
trivial error ε0 < 1. Two-source extractors with arbitrary ε0 < 1 are also called bipartite Ramsey
graphs (see Claim 5.11).

Explicitly constructing two-source extractors (and Ramsey graphs) is a long standing and
important challenge. A long line of research (e.g., [CG88, Raz05, Bou05, BKS+10, BRSW12])
culminated in ((n, k), (n, k), ε0) two-source extractors supporting poly-logarithmic min-entropy
[Coh16c, CZ16, Mek17]. This was later improved to k = O(log n log logn

log log logn) [BADTS17, Coh16d,
Li17, Li18]. However, using the latter extractors gives dispersers with suboptimal entropy-loss
and long seed, or, equivalently, erasure list-decodable codes with large list-size and low rate.

Another natural two-source extractor is Raz’s two-source extractor [Raz05]. Raz’s extractor is
an ((n, k), (d = O(log n

ε), d′), εRaz) two-source extractor that has an unbalanced entropy require-
ment; the first source is long and very weak (k can be as small as, roughly, log log n

εRaz
), the second

source is short and somewhat dense with d′ ≥ δd, for any constant δ > 1
2 . The fact that k can be

very small corresponds to a disperser with small entropy-loss, which is good for us. Moreover,
d is small, which is again what we want because the length of the corresponding erasure list-
decodable code is 2d. The error εRaz of Raz’s extractor is exponentially-small in min {k, d′} which
is much better than the mere non-trivial error that we need. However, the second source must be
relatively dense, satisfying d′

d ≥
1
2 . This implies that the error ε of the disperser is given by 2−d+d′

and as a consequence d ≥ 2 log(1
ε).

In this paper we show how to explicitly construct the necessary two-source extractor. We show:

Theorem 1.3 (see also Theorem 4.1). For every two constants δ, ε0 > 0 and every k ≥ Ω(log logn)

there exists an explicit ((n, k), (d, δd), ε0) two-source extractor 2Ext : {0, 1}n × {0, 1}d → {0, 1} with
d = O(log n) .

Theorem 1.3 is interesting on its own right. The entropy requirement in both sources is optimal
up to constant factors, as both sources have entropy which is logarithmic in the length of the other

4

source. This property is also true for Raz’s extractor. On the negative side, Theorem 1.3 has a
large error ε0, whereas Raz’s extractor has a very small error. On the positive side, Raz’s extractor
works only when d′ = δd > 0.5d whereas Theorem 1.3 works with d′ = δd for any δ > 0, and it
is this feature that gives a disperser construction with parameters better than those possible for
extractors. Having Theorem 1.3 immediately gives the strong one output bit disperser and the
non-linear near-optimal erasure list-decodable code discussed above.

We also obtain a variant of Theorem 1.3 that gives a new construction of balanced two-source
extractors.

Theorem 1.4. For every two constants δ, ε0 > 0 and every k ≥ Ω(log n) there exists an explicit
((n, k), (n, δn), ε0) two-source extractor 2Ext : {0, 1}n × {0, 1}d → {0, 1}.

We see that one source has a minimal entropy requirement of O(log n) while the other has
arbitrarily small constant entropy rate. Again, this improves upon [Raz05] in terms of entropy
requirement but is worse in terms of error. Theorem 1.4 is also incomparable to [Li18] as there,
both sources require min-entropy at least O(log n log logn

log log logn).
Both Theorem 1.3 and Theorem 1.4 follow directly from Theorem 4.1.

1.3 The Two-Source Extractor Construction

We now give an informal presentation of the two-source extractor construction. We try to keep the
discussion intuitive, and for that we omit (or ignore) some technical details. We also assume some
familiarity with the field, sometimes using notions that will be formally presented in Section 2.

The input to the ((n, k), (d, δd), ε0) two-source extractor is an (n, k) source X and a (d, δd)
source Y , for some 0 < δ < 1

2 . We would like to do the following:

1. Increase the entropy rate of Y from δ to, say, 0.7. For that, we use a constant-error condenser.
We cannot do it deterministically (because the condenser needs a uniformly random seed)
and we still want to keep X fresh. Therefore, we apply the condenser on Y and every possi-
ble seed, letting the output of this procedure be a table Y ′ in which each row corresponds to
an application with a different seed. The table Y ′ has the guarantee that most of the rows of
Y ′ are close to having entropy rate 0.7.

2. Next, we would like to transform the dense rows of Y ′ to uniformly random strings. For
that, we use Raz’s extractor with the first source X and the rows of Y ′ as (independent)
seeds. Call the resulting table Y ′′ and note that it is a function of both X and Y . Also note
that although it is now guaranteed that a constant fraction of the rows of Y ′′ are uniform
(Raz’s extractor works with entropy rate above half), it is not guaranteed (and also not true)
that the rows of Y ′′ are independent of each other.

3. Now we wish to break the dependence between the rows of Y ′′ so that (ideally) every t
of them are uniform and independent (think of t as being poly-logarithmic in the number
of rows of Y ′′). For that, we use a correlation-breaker that outputs one bit. The correlation-
breaker requires two independent sources, which we do not have. Instead, we apply it on Y
and Y ′′. Call the output table Y ′′′. We shall prove that with high probability, Y ′′′ has many
good rows and every t good rows of Y ′′′ are very close to being uniform and independent.

5

4. Finally, we apply a resilient function f on the bits of Y ′′′. The output of our construction is the
function’s output f(Y ′′′).

The property that we want from f is that it is nearly balanced and that its output cannot
be heavily influenced by any small set of bad bits (the bad rows of Y ′′′). We need these
properties to hold not only when the “good” bits are perfectly uniform and independent,
but also under weaker conditions (e.g., that the good players are t-wise independent).

Our construction shares steps that are similar to Cohen’s construction [Coh16a] of three-source
extractors. The vital difference is that in [Coh16a], a third source is used to achieve complete
independence between the rows of a table and then a simple parity can be applied, even if only
one row is close to uniform. Here, we only use two sources. The use of only two sources raises
several delicate issues:

• First, there is the issue of lack of independence between the source Y and the seed Y ′′ in
item (3) of the construction. To overcome this, we show a conditioning under which Y ′′

is still good, Y is independent of Y ′′ and even after the conditioning the two sources have
enough min-entropy. In recent years, such prevalent conditioning methods were very suc-
cessful in constructing an abundance of primitives (e.g., correlation breakers, independence-
preserving mergers and non-malleable extractors).

• Next, there is a delicate issue with the errors. The error εcond of the condenser is high (think of
it as a constant). In a naive analysis we would argue that each t good rows are ε′ > εcond close
to uniform, and therefore the whole table Y ′′′ is Atε′-close to a table where the good rows
are perfectly t-wise independent, where A is the number of rows in the table Y ′′′. However,
such an approach is doomed to fail, as necessarily Aεcond > 1.

The solution for this problem is at the heart of the argument. We observe that some of
the errors in the construction depend on A, the number of rows in the table, while others
depend on the row length. In the construction we make sure that A is small (think of it as a
fixed constant) while the row length is unbounded (and, e.g., grows to infinity as n grows
to infinity). Thus, we have a natural separation between large errors that depend on the
number of rows A, and small errors that depend on the row length.

The condenser of step (1) and the resilient function of step (4) incur large errors. Raz’s
extractor (step (2)) and the correlation breaker with advice (step (3)) incur small errors that
are exponentially-small in the row length. We show that with some constant probability
we succeed in step (1), and that once we have succeed, the errors δ in steps (2) and (3) are
so small that Atδ is still small, hence Y ′′′ is close to a table with t-wise independent good
players, and so the resilient function in step (4) works (and incurs another constant error).
Thus, while the failure probability is high, when we succeed we are exponentially-close to
uniform.

• Finally, the argument used in the last bullet raises a difficulty treating the set of good rows.
Specifically, in [CZ16], the set of good rows is a function of one of the sources. In our analysis
the set of good rows is not just a function of the sources X and Y , but also depends on the
specific sample y ∼ Y .

6

1.4 Non-Strong Dispersers

Strong dispersers are the the focal point of this paper. One may wonder why we insist on the
strongness property, and whether the problem becomes easier when the strongness property is
dropped.

• The answer to the first question is that the srtongness property is essential. The equivalence
between erasure list-decodable codes and dispersers requires the dispersers to be strong (see
Lemma 5.6, and also notice the correspondence between code coordinates and seeds). Sim-
ilarly, the connection to Ramsey graphs also requires the disperser to be strong, as already
observed by Gradwohl et al. [GKRTS05]. [GKRTS05] constructed dispersers that are strong
in almost all of the seed, but not strong in some part of the seed, and this drawback is severe
enough that none of the applications go through.

• The answer to the second question is that it is easier to construct non-strong dispersers with
good parameters. In the paper we prove that it is possible to output more bits from the
source at the expense of being strong in only most of the bits (we are non-strong in only
O(1) bits of the seed). We prove:

Theorem 1.5. For every constant 0 < γ < 1 and ε = n−Ω(1) there exists an explicit (k, ε) disperser
Disp : {0, 1}n × {0, 1}d → {0, 1}m with d = (1 + γ) log(1

ε), k ≥ Ω(log log 1
ε) and m = d+ Ω(k),

where the constant in the O(·) notation may depend on γ. The disperser is strong in d−O(1) bits of
the seed.

We sketch a proof of the above theorem in Section 5.2.

1.5 Organization

The rest of the paper is organized as follows. Section 2 covers the preliminaries and notations
we use. Section 3 describes the constant degree condenser that is used in step (1). Following the
above discussion, it is important for us that A, the number of rows in the table, and equivalently
the seed-length of the condenser, is a constant independent of the row length. In that section we
show one can combine existing constructions of somewhere-random condensers and mergers to
achieve that. Next, in Section 4, we describe and analyze the new unbalanced two-source ex-
tractor. In Section 5 we use the new two-source extractor to obtain near-optimal strong seeded
dispersers, erasure list-decodable codes and unbalanced Ramsey graphs. We conclude with a few
open problems in Section 6.

2 Preliminaries

Throughout the paper we use the convention that lowercase variables are the logarithm (in base
2) of their corresponding uppercase variables, e.g., n = logN , d = logD. We denote by [A] the set
{1, . . . , A}. The density of a set B ⊆ A is ρ(B) = |B|

|A| . We say a function f : A → B is explicit if
there exists a deterministic polynomial algorithm that runs in time poly(log |A|) and computes f .

7

2.1 Random Variables and Min-Entropy

The statistical distance between two distributions X and Y on the same domain Ω is defined as
|X − Y | = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). If |X − Y | ≤ ε we say X is ε-close to Y and denote
it by X ≈ε Y . We denote by Un the random variable distributed uniformly over {0, 1}n. We say a
random variable is flat if it is uniform over its support.

For a function f : Ω1 → Ω2 and a random variable X distributed over Ω1, f(X) is the random
variable distributed over Ω2 obtained by choosing x according to X and computing f(x). For a
set A ⊆ Ω1, f(A) = {f(x) | x ∈ A}. For every f : Ω1 → Ω2 and two random variables X and Y
distributed over Ω1, it holds that |f(X)− f(Y)| ≤ |X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
.

A random variable X is an (n, k) source if X is distributed over {0, 1}n and has min-entropy at
least k. When n is clear from the context we sometimes omit it and simply say that X is a k-
source. Every k-source X can be expressed as a convex combination of flat distributions each with
min-entropy at least k.

Definition 2.1 (average conditional min-entropy). Let X,Y be two random variables. The average
conditional min-entropy of X given Y is

H̃∞(X|Y) = − log
(
Ey∼Y

[
2−H∞(X|Y=y)

])
.

We will use the following simple claim about average conditional min-entropy:

Claim 2.2. For any random variables X,Y ,

H̃∞(X|Y) ≥ H∞(X)− log |Supp(Y)|.

2.2 Condensers

Definition 2.3 (condenser). C : {0, 1}n × {0, 1}d → {0, 1}m is an (n, k) →εcond (m, k′) condenser, if
for every (n, k) source X , C(X,Ud) is εcond-close to an (m, k′) source. If k = δn and k′ = δ′m we say C
is a δ →εcond δ

′ condenser.

Lemma 2.4. Suppose C : {0, 1}n×{0, 1}d → {0, 1}m is an (n, k)→εcond (m, k′+d) condenser. Let X be
an (n, k) source. Let εi be the minimal distance ofC(X, i) to an (m, k′) source. Then, Ei∈{0,1}d [εi] ≤ εcond.

Proof: Fix an (n, k) source X . For i ∈ {0, 1}d, let Hi ⊆ {0, 1}m be the set of elements w ∈
{0, 1}m such that Prx∈X [C(x, i) = w] ≥ 2−k

′
. The distance of C(X, i) from a k′-source is εi =

Prx∈X [C(x, i) ∈ Hi]− 2−k
′ |Hi|. Let H =

⋃
i∈{0,1}d Hi. Then,

• For every w ∈ H , Prx∈X,i∈{0,1}d [C(x, i) = w] ≥ 2−d2−k
′

= 2−(k′+d), and,

8

• it holds that

εcond ≥ Pr
x∈X,i∈{0,1}d

[C(x, i) ∈ H]− |H|2−(k′+d)

=
∑

i∈{0,1}d
2−d Pr

x
[C(x, i) ∈ H]− |H|2−(k′+d)

≥
∑

i∈{0,1}d
2−d Pr

x
[C(x, i) ∈ Hi]− 2−(k′+d)

∑
i∈{0,1}d

|Hi|

=
∑

i∈{0,1}d
2−d

(
Pr
x

[C(x, i) ∈ Hi]− 2−k
′ |Hi|

)
=

∑
i∈{0,1}d

2−dεi = Ei∈{0,1}d [εi].

2.3 Two-Source Extractors

Definition 2.5 (two-source extractor). 2Ext : {0, 1}n1×{0, 1}n2 → {0, 1}m is an ((n1, k1), (n2, k2), ε)
two-source extractor if for every two independent sources X1 and X2 where X1 is an (n1, k1) source and
X2 is an (n2, k2) source, it holds that 2Ext(X1, X2) ≈ε Um. We say that 2Ext is strong if

(2Ext(X1, X2), X1) ≈ε (Um, X1)

and
(2Ext(X1, X2), X2) ≈ε (Um, X2).

In our construction, we will use the following two-source extractor:

Theorem 2.6 ([Raz05]). For every constant δRaz > 1
2 there exist constants c1 = c1(δRaz), c2 = c2(δRaz) >

1 such that for every n1, k1, n2, k2 satisfying

• k1 ≥ c1 log n2,

• k2 ≥ c2 log n1,

there exists an explicit strong ((n1, k1), (n2, k2 = δRazn2), εRaz) two-source extractor

Raz : {0, 1}n1 × {0, 1}n2 → {0, 1}m

with m = Ω(min {k1, k2}) and εRaz = 2−Ω(m), where the constants hiding in the asymptotic notation may
depend on δRaz.

Claim 2.7. Suppose
2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m

is a strong ((n1, k1), (n2, k2), ε) two-source extractor. Let X be an (n, k1) source. Call an element y ∈
{0, 1}n2 is bad if |2Ext(X, y)−Um| > ε, and let BY denote the set of all bad elements. Then, |BY | < 2k2 .

9

Proof: Assume towards contradiction that |BY | ≥ 2k2 and let Y be the uniform distribution over
the set BY . Then, H∞(Y) ≥ k2 and so (2Ext(X,Y), Y) ≈ε (Um, Y) which implies that

1

|BY |
∑
y∈BZ

|2Ext(X, y)− Um| ≤ ε.

However, |2Ext(X, y)− Um| > ε for every y ∈ BY , in contradiction.

2.4 Mergers

A merger takes as input a list of possibly correlated random variables along with a short uniform
seed and outputs one random variable which is close to having high min-entropy, provided at
least one of the input variables has high min-entropy. Formally:

Definition 2.8 (somewhere-random source). A sourceX = X1◦. . .◦XA is an (n, k, (α, β)) somewhere-
random (s.r.) source if there is a random variable I ∈ {0, . . . , A} such that for every i ∈ [A], (Xi|I = i)
is α-close to an (n, k) source and Pr[I = 0] ≤ β. The variable I is called the indicator of source. If
α = β = 0 we say X is a (n, k) s.r. source.

Definition 2.9 (merger). B : ({0, 1}n)D ×{0, 1}t → {0, 1}m is a (k, k′, ε)-merger, if for every (n, k) s.r.
source X = X1 ◦ . . . ◦XA, the output M(X,Ut) is ε-close to a k′-source.

There are explicit constructions of good mergers. Dvir and Wigderson [DW11] constructed the
curve merger and proved that it works with t = O(log n

ε). This was further improved in [DKSS13]
who proved that t = O(log D

ε) suffices. Notice that now t only depends on the number of sources
D and the requested error ε, but not on the source length n, and this remarkable property will turn
crucial for us. Formally,

Theorem 2.10 ([DW11, DKSS13]). There exists a constant cDKSS ≥ 1 such that the following holds. Fix
β, δ, ε > 0. There exists an explicit function B : ({0, 1}n)D × {0, 1}t → {0, 1}n that is a (k = δn, k′ =
(1− β)δn, ε) merger, with t = cDKSS · 1

β log D
ε .

2.5 Correlation Breakers with Advice

A correlation-breaker with advice is a function CBA : {0, 1}n × {0, 1}` × [A] → {0, 1}m where we
think of the first input as a weak source, the second as an independent short seed and the last as
an advice string. Roughly speaking, applying CBA on t possibly correlated seeds with t distinct
advice strings results in independent random variables. For example, CBA(X,Y, α) is (nearly)
independent of CBA(X,Y, α′) for any α 6= α′. Formally,

Definition 2.11. A function CBA : {0, 1}n×{0, 1}`× [A]→ {0, 1}m is a (t, k, εCBA) correlation-breaker
with advice if the following holds. If Y is a distribution over {0, 1}n, Z = (Z1, . . . , Zt) is a distribution on
({0, 1}`)t,H is a random variable and δ > 0 satisfying:

• Y and Z are independent, conditioned onH,

• H̃∞(Y |H) ≥ k + log(1/εCBA),

• (Z1,H) ≈δ (U`,H), and,

10

• α1, . . . , αt ∈ [A] are distinct strings.

Then, (
CBA(Y,Z1, α1), (CBA(Y, Zi, αi))

t
i=2 ,H

)
≈δ+2εCBA

(
Um, (CBA(Y,Zi, αi))

t
i=2 ,H

)
.

We use the following result:

Theorem 2.12 ([Coh16b, Theorem 4.12]). There exists a constant cCBA ≥ 1 such that the following
holds. Let n, a be integers and εCBA > 0. Then, there exists an explicit (t, kCBA, εCBA) correlation-breaker
with advice

CBA : {0, 1}n × {0, 1}` × [A]→ {0, 1}

with ` = cCBA · at · log n
εCBA

and kCBA ≥ `.

In our setting, the number of rows A is a constant independent of n. For this reason we work
with a “basic” correlation-breaker, where there is no attempt to optimize the dependence of ` on
a. This gives a seed-length which is optimal up to constant multiplicative factors.

We also need the following lemma.

Lemma 2.13. Let X1, . . . , Xt be random variables over {0, 1}m. Further suppose that for any i ∈ [t],(
Xi, {Xj}j 6=i

)
≈ε
(
Um, {Xj}j 6=i

)
.

Then, (X1, . . . , Xt) ≈tε Utm.

2.6 Limited Independence and Non-Oblivious Bit-Fixing Sources

Definition 2.14. A distribution X over {0, 1}A is called (t, γ)-wise independent if the restriction of X
to every t coordinates is γ-close to Ut. A sourceX over {0, 1}A is called a (q, t, γ) non-oblivious bit-fixing
source if there exists a subset Q ⊆ A of size at most q such that the joint distribution of the bits in A \ Q
is (t, γ)-wise independent. The bits in Q are allowed to arbitrarily depend on the bits in A \Q. If γ = 0 we
often say that X is a (q, t) non-oblivious bit-fixing source.

Lemma 2.15 ([AGM03]). A (t, γ)-wise distribution over A bits is (Atγ)-close to some t-wise independent
distribution.

Definition 2.16. Let f : {0, 1}A → {0, 1}, D a distribution over {0, 1}A and Q ⊆ A. Let IQ,D(f) denote
the probability that f is undetermined when the variables outsideQ are sampled fromD. We define Iq,t,γ(f)
to be the maximum of IQ,D(f) over all Q ⊆ A of size q and all D that is a (t, γ) independent distribution.
We say that f is (t, γ)-independent (q, ε)-resilient if Iq,t,γ(f) ≤ ε.

Theorem 2.17 ([CZ16, Mek17]). For every 0 < γ < 1 there exists a constant cγ ≥ 1 such that for all
A > 0 there exists an explicit function f : {0, 1}A → {0, 1} with the following property:

For every t ≥ cγ log4A,

• f is almost balanced: For any t-wise independent distribution D on {0, 1}A,

Pr
x∼D

[f(x) = 1] = 1/2±A−1/cγ , and,

• f is resilient: Iq,t,γ(f) ≤ cγ · q
A1−γ .

11

3 Constant Degree Condensers

In this section we prove:

Theorem 3.1. For every constant 0 < δ1 < δ2 = 0.7, every s ≥ s0(δ1) and every integer n1 and
εcond ≥ 2−Ω(n1) there exists an explicit δ1 →εcond δ2 condenser C : {0, 1}n1 × {0, 1}d → {0, 1}n2 with
n2 = (2

3)sn1 and d = 4cDKSS

(
s+ log 1

εcond

)
, where cDKSS is the constant from Theorem 2.10. Note that d

is independent of n1.

Note that, in particular, for every δ1 > 0 there exists an explicit δ1 →εcond δ2 = 0.7 condenser
C : {0, 1}n1 × {0, 1}d → {0, 1}n2 with n2 = Ω(n1) and d = O(log 1

εcond
). However, we will need the

more precise version that appears in Theorem 3.1.
The proof goes through somewhere-random condensers, so let us first discuss the similarities and

differences between condensers and somewhere-random condensers. We begin with the neces-
sary definitions:

Definition 3.2 (s.r. condenser). A function C : {0, 1}n → ({0, 1}m)A is an (n, k) →ε (m, k′) s.r.
condenser if for every (n, k) source X it holds that C(X) = C(X, 1) ◦ . . . ◦ C(X,A) is ε-close to a k′ s.r.
source. If k = δn and k′ = δm we say C is δ →ε δ

′ s.r. condenser.

We may take a condenser C : {0, 1}n × {0, 1}d → {0, 1}m and expand it to a table with the
outputs of all possible seeds, i.e., define S : {0, 1}n → ({0, 1}m)D, with D = 2d, where S(x)i =
C(x, i). The condenser property guarantees that for every k-source X , most rows in the table are
close to having k′ min-entropy. In contrast, a s.r. condenser is a weaker object, because it only
guarantees that one row has k′ entropy (or more precisely that we are in a convex combination of
such cases).

The major question we consider now is the dependence of the degree (2d for condensers and
D for s.r. condensers) on n,m, k, k′ and ε. We focus on the case where m = Ω(n), k = δn, k′ = δ′m
and δ < δ′ are constants. A-priori, we could have expected the degree to depend on n and ε, as
is indeed the case when m might be arbitrarily small. However, remarkably, things are drastically
different when m = Ω(n). In this case both condensers and s.r. condensers may be of degree that
is independent of n and this will be crucial for us. If we consider the dependence on the error,
then s.r. condensers may have exponentially-small error and constant D, whereas the degree of
a condenser is at least d ≥ log(1

ε). Remarkably, all of that can be explicitly achieved, as we now
explain.

The basic building block we use is the following beautiful result of Zuckerman, which is based
on additive combinatorics:

Theorem 3.3 ([Zuc06, Theorem 8.3]). For every constant 0 < c < 1 there exists a constant α = α(c)

such that for every constant δ ≤ c and integer n there exists an explicit function C : {0, 1}n → ({0, 1}
2
3
n)2

that is a δ →ε (1 + α)δ s.r. condenser with ε = 2−Ω(αδn).

Somewhere-random condensers can be easily composed. Specifically, Barak et al. [BKS+10]
showed that if C1 : {0, 1}n1 → ({0, 1}n2)`1 is a δ1 →ε1 δ2 s.r. condenser and C2 : {0, 1}n2 →
({0, 1}n3)`2 a δ2 →ε2 δ3 s.r. condenser then C2 ◦ C1 : {0, 1}n1 → ({0, 1}n3)`1·`2 defined by C2 ◦
C1(x)(i1,i2) = C2(C1(x)i1)i2 is a δ1 →ε1+ε2 δ3 s.r. condenser.

12

Composing the s.r condenser of Theorem 3.3 with itself s times we get an explicit function
C : {0, 1}n → ({0, 1}m)D with D = 2s and m = (2

3)sn that is a δ →ε δ
′ s.r. condenser with

ε =
∑s

i=1 2−Ω((1+α)iδ(2
3

)in) = 2−Ω(m) and δ′ ≥ (1 + α(δ′))sδ. Therefore:

Lemma 3.4. For every constants 0 < δ1 < δ2 < 1 there exists a constant s = s(δ1, δ2) and an explicit
function C : {0, 1}n1 → ({0, 1}n2)D that is a δ1 →ε δ2 s.r. condenser with D = 2s, n2 = (2

3)sn1 and
ε = 2−Ω(n2). Note that D is independent of n and ε.

Right now, ifX is a k-source, the table C(X) hasD rows, and, roughly speaking, the guarantee
is that one of these rows has density δ′. We want to change this to get a condenser, i.e., we are
willing to invest a short seed (that is independent of n) and we want to get one output which is
close to uniform. (Alternatively, we can write the condenser as a table with one row per seed, the
number of rows is independent of n and most rows are close to uniform.) This is exactly what a
merger does and applying the merger of Theorem 2.10 with β = 1

4 on the s.r. condenser of Lemma
3.4 (with δ2 close to 1) gives Theorem 3.1

4 The Unbalanced Two-Source Extractor Construction

The main result of this section is the following two-source extractor.

Theorem 4.1. For every integer n and two constants δ0, ε0 > 0 there exists a constant c such that for d ≥
c log n and k ≥ c log d there exists an explicit ((n, k), (d, δ0d), ε0) two-source extractor 2Ext : {0, 1}n ×
{0, 1}d → {0, 1}.

The extractor in the above theorem has constant error, and works when:

1. Each source’s entropy is in the order of the logarithm of the length of the other source.

2. The shorter source, of length d, has an arbitrarily small constant density δ0.

We think of n and d = d(n) as growing parameters while ε0 and δ0 are constants. We use
asymptotic notations (such as Ω(·)) to hide constants that are independent of n and d (but may
depend on ε0 and δ0).

4.1 The Construction

Recall that ε0 is the target error of the extractor 2Ext. The input to 2Ext is a pair (x, y) where x
is drawn from an (n, k) source X , and y is drawn from an independent (d, δ0d) source Y . Our
problem is that the y comes from a δ0d-source for some δ0 < 1

2 . To overcome this, we do the
following:

• We apply the condenser of Theorem 3.1 on y to get a table y′ that is 1-wise 0.7-dense. Notice
that the output of this step is a table rather than a single output.

• We apply Raz’s extractor (Theorem 2.6) on the table and the input x from the other source to
convert the table y′ to another table y′′ that is 1-wise uniform.

• We apply the t correlation-breaker with advice of Theorem 2.12 on y, using the table y′′ as
the seed, to get a table y′′′ that is t-wise uniform.

13

• Finally, we apply the resilient function f of Theorem 2.17 on the table y′′′ to collapse the
many rows of the table to a single, close to uniform, output.

Formally, these steps work as follows:

Condense the short source: We are given δ0 <
1
2 . Set δ′ = 0.69 and δ2 = 0.7.

By Theorem 3.1 there exists a constant s0 = s0(δ0) such that for every s ≥ s0 there exists an
explicit

C : {0, 1}d × {0, 1}a → {0, 1}d
′

that is a δ0 →εcond δ2 = 0.7 condenser with a = 4cDKSS(s+ log 1
εcond

) and d′ = (2
3)sd.

We set
γ =

1

25cDKSS
,

and this also fixes cγ as in Theorem 2.17. Notice that γ and cγ are fixed constants independent
of all other parameters in our system.

Now, choose εcond so that(
1

εcond

)log(3/2)

≥ 4

δ0
212cγc

4
DKSS log4 1

εcond
, (1)

and also so that εcond ≤ ξ(ε0, δ0), where

ξ(ε0, δ0) = min

{
2−s0 ,

(ε0

8

)2
,
(ε0

5

)cγ
,

(
ε0

5cγ

)1/γ
}
. (2)

Given εcond, we set

s = log
1

εcond
≥ s0,

giving a = 8cDKSS log 1
εcond

. Note that the degree of the condenser, A = 2a, satisfies

√
εcondA = 2

− 1
2

log 1
εcond

+a
= 2

− a
24cDKSS

+a
= A1−2γ .

Observe that s ≥ s0 and that d′ = Ω(d). Also, notice that (δ2 − δ′)d′ = d′/100 ≥ a = logA for
large enough d. Thus, C is a (d, δd)→εcond (d′, log(A) + δ′d′) condenser.

Define an A× d′ table Y ′ where

Y ′i = C(Y, i) ∈ {0, 1}d
′

for i = 1, . . . , A.

1-wise uniformity: Let c1, c2 be the constants from Theorem 2.6 for δRaz = 0.6.

Notice that δRazd′ = Ω(d′) = Ω(d). Therefore, for a constant c large enough, d ≥ c log n is
large enough so that δRazd′ ≥ c2 log n. We can, in particular, choose c such that in addition

14

c ≥ c1. Recalling that k ≥ c log d, we have k ≥ c1 log d′. By Theorem 2.6, there exists an
explicit function

Raz : {0, 1}n × {0, 1}d
′
→ {0, 1}d

′′

that is a strong ((n, k), (d′, δRazd
′), εRaz = 2−Ω(d′′)) two-source extractor with

d′′ = Ω(min
{
k, δRazd

′}) = Ω(k).1

Define an A× d′′ table Y ′′ where
Y ′′i = Raz(X,Y ′i)

for i = 1, . . . , A.

t-wise uniformity: Let kCBA = δ0d
8 and εCBA = 1

d . Set

t =
δ0

4

(
3

2

)s
.

Notice that for a large enough constant c we have d′′ = Ω(k) = Ω(c log d) ≥ cCBAat log d
εCBA

,
where the latter is the seed-length required by the correlation-breaker from Theorem 2.12.
Also, kCBA = δ0d

8 ≥ d′′ for large enough d, as d′′ = Ω(k) = Ω(log d). Hence, by Theorem 2.12
there exists an explicit function

CBA : {0, 1}d × {0, 1}d
′′
→ {0, 1}

that is a (t, kCBA, εCBA) correlation-breaker with advice.

Define an A× 1 table Y ′′′ where

Y ′′′i = CBA(Y, Y ′′i , i)

for i = 1, . . . , A.

Keep in mind that the entropy in Y suffices for CBA since H∞(Y) = 8kCBA.

Collapse: Take f : {0, 1}A → {0, 1} to be the (q = A1−2γ , t, εf = cγA
−γ) resilient function of

Theorem 2.17 and output f(y′′′1 , . . . , y
′′′
A).

4.2 Two Subtleties

As mentioned in the introduction, there are several delicate issues in the analysis:

1. Circular dependence: Y ′′ depends on both X and Y , and is used as a seed in the application
of the correlation-breaker with advice on Y .

2. We need Y ′′′ to be close to a perfect t-wise independent table, while the correlation-breaker
with advice only guarantees that every t good rows are close to uniform. To bridge the gap
we need the error to be at least polynomially-small in the number of rows, but some of the
steps incur a large constant error.

1Although k ≥ c log d we can always assume w.l.o.g. that k = c log d and so k ≤ δRazd
′ = Ω(d).

15

To overcome the first issue we show a conditioning under which Y ′′ is still good, Y is inde-
pendent of Y ′′ and even after the conditioning the two sources have enough min-entropy.

To overcome the second issue we distinguish between large errors that depend on the number
of rows A, and small errors that depend on the row length (see Section 1.3 in the introduction). In
particular, the errors are of three types:

• The probability p1 that a value we condition upon is bad. This error is incurred by the
condenser and is high (think of it as being a constant).

• We show that when we condition on a good value, every t good rows in Y ′′′ are p2-close to
uniform. We then claim that Y ′′′ as a table is Atp2-close to a table where the good rows are
truly t-wise independent (where A is the number of rows in the table Y ′′′). The error p2 is
incurred by Raz’s extractor and by the correlation-breaker, and can be made very small if we
deal with a source X having enough min-entropy. We make p2 small enough so that Atp2 is
also small.

• A third error p3 is incurred by the resilient function f . This error is large, say, a constant, and
we are fine with that.

Note that we cannot just accumulate all errors as Atp1 is way larger than 1. Instead, we argue
that with a constant probability 1−p1, we get extremely close to perfect behavior, and then we get
such a small error p2 so that Atp2 is also small.

4.3 The Analysis

Proof of Theorem 4.1: Fix an (n, k) sourceX and an independent (d, δd) source Y . We decompose
the proof into three parts:

• In the first part we prove that very often (except for a small constant probability) the table
Y ′′ contains many rows that are marginally close to uniform.

• Next, we prove that every set of t rows {i, j1, . . . , jt−1} in Y ′′′ are product in the sense that
if i is a good row (intuitively meaning that Y ′′i is close to uniform) and j1, . . . , jt−1 are t − 1
other rows, then in Y ′′′, Y ′′′i is close to uniform and independent of Y ′′′j1 , . . . , Y

′′′
jt−1

. This part
involves applying a correlation-breaker with advice on Y and Y ′′. In order to ensure that Y
and Y ′′ are independent, we condition on the values of Y ′ in the t rows {i, j1, . . . , jt−1}.

• Together, except for a small constant probability, there are many good rows, and every t
rows of Y ′′′ are product, hence the table Y ′′′ is close to a (q, t) non-oblivious bit-fixing source,
where every good row is a good bit in the bit-fixing source. Hence, f(Y ′′′) is close to uniform.

Part 1: Often, many rows in Y ′ are good

Let εi be the minimal distance of C(Y, i) from a δ′d′-source. According to Lemma 2.4,

Ei∈[A][εi] ≤ εcond.

Definition 4.2. We say z ∈ {0, 1}d
′

is good if Raz(X, z) is εRaz-close to uniform. Let GZ be the set of all
good z-s, and BZ the rest. We say i ∈ [A] is good for y ∈ {0, 1}d if C(y, i) ∈ GZ and bad otherwise. We
define a random variable Bi, where the sample space is Y , and Bi(y) = 1 if i is bad for y and 0 otherwise.

16

By Claim 2.7, |BZ| ≤ 2δRazd
′
. Therefore, in expectation, the number of bad rows for y is small:

Claim 4.3. Ey∈Y
[∑

i∈[A]Bi(y)
]
≤ 2εcondA.

Proof: Fix an i ∈ [A]. We have that C(Y, i) is εi-close to some δ′d′ = 0.69d′-source R. Hence:

Ey[Bi(y)] = Pr
y∈Y

[C(y, i) ∈ BZ] ≤ εi + Pr
r∈R

[r ∈ BZ] ≤ εi +
|BZ|
2δ′d′

= εi + 2−0.09d′ .

Thus, for d large enough,

Ey
[∑
i∈[A]

Bi(y)
]

=
∑
i∈[A]

Ey[Bi(y)] ≤
∑
i∈[A]

(
εi + 2−0.09d′

)
≤ εcondA+ 2−0.09d′A ≤ 2εcondA.

Definition 4.4. We say y ∈ Supp(Y) has many bad rows if
∑

i∈[A]Bi(y) ≥ √εcondA.

Denote p1,1 = ε0
4 .

Claim 4.5. Pry∈Y [y has many bad rows] ≤ p1,1.

Proof: By Markov,

Pr
y∈Y

[∑
i

Bi(y) ≥
√
εcondA

]
≤

E
[∑

iBi(y)
]

√
εcondA

≤ 2εcondA√
εcondA

= 2
√
εcond ≤

ε0

4
,

where the last inequality follows from the fact that εcond ≤ (ε08)2.

Part 2: The good rows are t-wise independent

We introduce some notations to simplify the expressions in the proof. For y0 ∈ {0, 1}d and k ∈ [A],
let Y ′′′k (y0) denote (Y ′′′k |Y = y0). Also, for a set S ⊆ [A], define Y ′′′S (y0) =

{
Y ′′′j (y0)

}
j∈S

. Denote

p2 = εRaz + 2εCBA.

Definition 4.6. Let y0 ∈ {0, 1}d (not necessarily in the support of Y). Let i ∈ [A] and S ⊆ [A] \ {i} of
cardinality t− 1. We say y0 violates the product rule for (i, S) if Bi(y0) = 0 and(

Y ′′′i (y0), Y ′′′S (y0)
)
6≈p2 U1 × Y ′′′S (y0).

Definition 4.7. Let y0 ∈ {0, 1}d (not necessarily in the support of Y). Let i ∈ [A] and S ⊆ [A] \ {i} of
cardinality t−1. We say y0 violates the product rule with distinguisher ∆ : {0, 1}t → {0, 1} for (i, S)
if Bi(y0) = 0 and ∣∣∣Pr[∆

(
Y ′′′i (y0), Y ′′′S (y0)

)
= 1]− Pr[∆(U1, Y

′′′
S (y0)) = 1]

∣∣∣ > p2.

Observe that if y0 violates the product rule then there exists some ∆ such that y0 violates the
product rule with distinguisher ∆.

17

Lemma 4.8. For every i and S as above, the number of y ∈ {0, 1}d that violate the product rule for (i, S)
is at most 2δ0d/2+2t .2

Proof: Suppose the lemma is false for some (i, S). Then, by the pigeonhole principle there exists
some ∆ such that the number of elements y ∈ {0, 1}d that violate the product rule for (i, S) with
distinguisher ∆ is at least 2δ0d/2. Let BY denote the set of these elements. Identify BY with the
uniform distribution over the set BY .

Let BY ′i = C(BY, i), BY ′′i = Raz(X,BY ′i) and BY ′′′i = CBA(BY,BY ′′i , i). For a subset T ⊆ [A]
LetBY ′T denote the sub-table ofBY ′ corresponding to the rows of T , and similarlyBY ′′T andBY ′′′T .
Since for every y ∈ BY , we have that

∆
(
BY ′′′i (y), BY ′′′S (y)

)
6≈p2 ∆(U1, BY

′′′
S (y)),

this holds also on average, that is

∆
(
BY ′′′i , BY

′′′
S

)
6≈p2 ∆(U1, BY

′′′
S).

Thus, it follows that
BY ′′′S∪{i} 6≈p2 U1 ×BY ′′′S . (3)

On the other hand, when we condition on the values of

H = BY ′S∪{i}

the conditions for the correlation-breaker with advice hold:

• BY andBY ′′S∪{i} are independent givenH = BY ′S∪{i}, sinceH is a function ofBY alone, and
given thatH = BY ′S∪{i} = h for some h, BY ′′S∪{i} is a function of X alone.

•

H̃∞(BY |H) ≥ H∞(BY)− log(|Supp(H)|)

= H∞(BY)− td′ ≥ δ0d

2
− td′ ≥ δ0d

4
,

because
td′

d
= t ·

(
2

3

)s
=
δ0

4
.

Now, since kCBA = δ0d
8 and εCBA = 1

d we also have for d large enough,

H̃∞(BY |H) ≥ δ0d

4
≥ kCBA + log

1

εCBA
.

• Bi(y) = 0, hence BY ′i ∈ GZ and BY ′′i = Raz(X,BY ′i) is εRaz-close to uniform.

2We could have used an alternative argument that avoids the 22t factor here by a minor deterioration in the error of
the CBA. However, since the t we use is constant the 22t factor is negligible.

18

Thus, by the correlation-breaker with advice property,(
CBA(BY,BY ′′i , i),

{
CBA(BY,BY ′′j , j)

}
j∈S

)
≈εRaz+2εCBA

(
U1,
{

CBA(BY,BY ′′j , j)
}
j∈S

)
,

or, equivalently, (
BY ′′′i , BY

′′′
S

)
≈p2 U1 ×BY ′′′S ,

in contradiction to Equation (3).

Definition 4.9. Say y ∈ {0, 1}d violates the product rule if it violates it for some i ∈ [A] and S ⊆
[A] \ {i} of cardinality t− 1.

As H∞(Y) ≥ δ0d, the probability y ∈ Y violates the product rule for a specific (i, S) is at most
2δ0d/2+2t−δ0d = 22t−δ0d/2. Let p1,2 = ε0

10 . Then, by the union bound, for d large enough:

Corollary 4.10. Pry∈Y [y violates the product rule] ≤ 22t−δ0d/2 ·At ≤ p1,2.

Part 3: Completing the proof

Definition 4.11. We say y is bad if it has many bad rows or if it violates the product rule. If y is not bad
we say it is good.

Let p1 = p1,1+p1,2. Clearly, by Claim 4.5 and Corollary 4.10, Pry∈Y [y is bad] ≤ p1 =
(

1
4 + 1

10

)
ε0.

Claim 4.12. Fix any good y ∈ Y . Then, Y ′′′(y) is a (q, t, tp2) non-oblivious bit-fixing source, for q =√
εcondA.

Proof: Let Q(y) ⊆ [A] be the set of bad rows for y. As y does not have many bad rows, |Q(y)| =∑
i∈[A]Bi(y) ≤ √εcondA = q.
Now, fix any set S ⊆ [A] \Q(y) of cardinality t. Let i ∈ S. As S ⊆ [A] \Q(y) and i ∈ S we have

i 6∈ Q(y) and therefore Bi(y) = 0. Also, y does not violate the product rule, hence,(
Y ′′′i (y), Y ′′′S\{i}(y)

)
≈p2 U1 × Y ′′′S\{i}(y).

As this is true for any i ∈ S, by Lemma 2.13,

Y ′′′S (y) ≈tp2 Ut.

Thus, Y ′′′(y) is a (q, t, tp2) non-oblivious bit-fixing source.

In particular, By Lemma 2.15, for every good y, Y ′′′(y) is tAtp2-close to a (q, t) non-oblivious
bit-fixing source. By the choices we have made above q =

√
εcondA ≤ A1−2γ . Equation (1) implies

that

t =
δ0

4

(
1

εcond

)log(3/2)

≥ cγ log4A.

Using the resiliency of f from Theorem 2.17 (and the fact that it is almost balanced), the output
when y is good is p3-close to uniform for p3 = tAtp2 + εf + A−1/cγ , where the first term is due to
the distance from a t-wise distribution, the second is due to the resiliency and the third is due to
the bias of f (see, e.g., Lemma 2.11 in [CZ16]). To that we also have to add the probability p1 that
y is not good. To finish the proof we notice that:

19

• It holds that

εf ≤ cγ
q

A1−γ ≤ cγ
A1−2γ

A1−γ = cγA
−γ ≤ cγ2

−γ log 1
εcond ≤ ε0

5
,

because εcond ≤ (ε0
5cγ

)1/γ .

• Also,
A−1/cγ ≤ 2

− 1
cγ

log 1
εcond = εcond

1/cγ ≤ ε0

5
,

because εcond ≤ (ε05)cγ .

• Finally, tp2 = t(εRaz + 2εCBA), εRaz = 2−Ω(k) = d−Ω(1), εCBA = 1
d . Thus, tp2 ≤ 4td−Ω(1). A and

t are constants, so for d large enough, tAtp2 ≤ ε0
5 .

Together, the error is at most p1 + p3 ≤ ε0 completing the proof of the theorem.

5 Strong Seeded Dispersers and Friends

5.1 Strong Seeded Dispersers

Definition 5.1 (strong disperser). Disp : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε) disperser, if for
every (n, k) source X ,

|Supp((Y,Disp(X,Y)))| > (1− ε)DM.

We say Disp is (source) linear if for every y ∈ {0, 1}d and every x1, x2 ∈ Fn2 , Disp(x1 + x2, y) =
Disp(x1, y) + Disp(x2, y).

We are interested in the important special case where m = 1. In this case, non-explicitly, a
random function is (w.h.p.) a strong (k, ε) disperser with d = log n+ log(1

ε) + O(1) provided that
k ≥ log log(1

ε) + O(1) [RTS00, MRZ14]. A matching lower bound, up to additive constant factors,
was given by [RTS00].

Using the translation between strong seeded dispersers and erasure list-decodable codes which
we discuss in Section 5.3, Guruswami and Indyk’s result [GI02] gives a probabilistic polynomial
time algorithm that outputs with high probability a strong seeded disperser with seed-length
d = 2 log(1

ε) + log n + log log(1
ε) and optimal entropy-loss. The construction can be made deter-

ministic, but with running time exponential in 1/ε. See Table 1 for a summary of previous results.

Required entropy k Seed length d

Lower-bound, non-explicit log log(1
ε) log(1

ε) + log n [RTS00, MRZ14]

[GI02] log log(1
ε) (2 + γ) log(1

ε) + log n Constant ε, or
prob. construction

This work (Theorem 5.2) O(log log 1
ε) (1 + γ) log(1

ε) poly(1/n) error

Table 1: Parameters of strong (k, ε) one-bit dispersers, up to additive O(1) terms. γ is an
arbitrarily small positive constant.

20

Note that as we discuss the one output bit case, the required entropy is essentially the entropy-
loss. Form Theorem 4.1 we can derive a better explicit construction of a strong disperser with small
error.

Theorem 5.2. For every constant 0 < γ < 1 there exists a constant c ≥ 1 such that for every integer n
and ε ≤ n

− c
1−γ there exists an explicit strong (k, ε) disperser Disp : {0, 1}n × {0, 1}d → {0, 1} where

d = (1 + γ) log(1
ε) and k = c log d.

Proof: Set ε0 = 1
4 and δ0 = γ

1+γ . Let c be the constant from Theorem 4.1 for δ0 and ε0 and let 2Ext :

[N] × [D] → {0, 1} be the ((n, k), (d, k2 = δ0d), ε0) two-source extractor where d = (1 + γ) log(1
ε)

and k = c log d. Notice that d ≥ c log n (because ε ≤ n−
c

1+γ) as required. Let Disp(x, y) = 2Ext(x, y).
Let X ⊆ [N] be a set of size K and call a value y ∈ [D] b-bad if Disp(X, y) = {b}. It follows that

the sets of 0-bad y-s and 1-bad y-s are each of size less than K2. Therefore,

|Supp
(
(Ud,Disp(X,Ud))

)
| > 2K2 + 2(D − 2K2) = 2D − 2K2 =

(
1− K2

D

)
2D = (1− ε)2D,

because K2
D = 2−(1−δ0)d = 2

− 1
1+γ

d
= 2− log(1

ε
) = ε.

5.2 Non-strong dispersers.

We now prove Theorem 1.5 and output more bits from the source at the expense of being strong
in only most of the seed. We construct

Disp : {0, 1}n × {0, 1}d1 × {0, 1}d2 → {0, 1}m ,

where we think of d1 and d2 as two parts of the seed. Disp will be strong in the first d1 bits of the
seed. Using the notations of Section 4 we let

Disp(x, y, i) =
(
y,Raz(x,C(y, i))

)
.

We now prove (in sketch) Theorem 1.5.

Proof: We adopt the notations of Section 4. In those notations, Disp(X,Y, I) = (Y, Y ′′I). First
note that the length of i ∈ {0, 1}d2 is the logarithm of the number of rows in the table Y ′′ which
is a = O(1). By Claim 4.5 we know that for nearly every y ∈ {0, 1}d1 we have many values
i ∈ {0, 1}d2 such that Raz(X,C(y, i)) is εRaz-close to uniform. In particular, for every y that has
many good rows, let iy be any such row. Then,

|Supp(Disp(X,Ud1 , Ud2))| ≥
∑

y has many good rows

|Supp(Disp(X, y, iy))|

≥
∑

y has many good rows

(1− εRaz)2d
′′
.

The theorem now follows since d′′ = Ω(k) and εRaz is smaller than 2−Ω(d′′), which implies that
we can truncate the output of Raz such that when Raz(X,C(y, i)) is εRaz-close to uniform it covers
its entire support.

21

5.3 Erasure List-Decodable Codes

An (n̄, n) (binary) code is a mapping C : {0, 1}n → {0, 1}n̄. The code C is linear if C is linear,
and is denoted by [n̄, n] . We identify a code with the image of C. For a linear C this image is a
linear subspace of Fn̄2 of dimension n. A generator matrix for an [n̄, n] code C is any matrix whose
columns form a basis for C. In the erasures noise model, an adversarially chosen subset of the
codeword’s symbols are erased and the positions where erasures have occurred are known.

Definition 5.3 (erasure list-decodable code). A code C ⊆ {0, 1}n̄ is (s, L) erasure list-decodable if for
every r ∈ {0, 1}n̄−s and every set T ⊆ [n̄] of size n̄− s,∣∣{c ∈ C ∣∣ c|T = r

}∣∣ < L,

where c|T denotes the projection of c to the coordinates in T .

The following folklore lemma (see, e.g., [Gur03, Lemma 1]) gives an alternative characteriza-
tion of linear erasure list-decodable codes.

Lemma 5.4. An [n̄, n]2 linear codeC is ((1−ε)n̄, L) erasure list-decodable if and only if its n̄×n generator
matrix G has the property that every εn̄× n sub-matrix of G has rank greater than n− logL.

Non-explicitly, we have:

Theorem 5.5 ([Gur03]). For every n and ε > 0, there exists an (n̄, n) binary code that is ((1 − ε)n̄, L)-
erasure list-decodable of rate n

n̄ = Ω(ε) and L = O(log(1/ε)).

See Table 2 for a summary of previous results.

Rate R = n/n̄ List size L

Lower-bound, non-explicit ε log(1
ε) [Gur03]

[GI02] ε2

log(1/ε) log(1
ε) Constant ε, or

prob. construction

This work (Theorem 5.8) ε1+γ logO(1)(1
ε) poly(1/n) error

Table 2: Parameters of (n̄, N)2 codes, ((1− ε)n̄, L) erasure list-decodable, up to constant
multiplicative factors. γ is an arbitrarily small positive constant.

Guruswami [Gur04] observed that strong dispersers can be used to construct erasure list-
decodable codes. Here we complement his argument, and note that strong dispersers are equiva-
lent to erasure list-decodable codes. Given a function Disp : [N] × [D] → {0, 1}, we consider the
(D,n) code CDisp : {0, 1}n → {0, 1}D defined by CDisp(x)i = Disp(x, i). Note that the code is linear
if and only if Disp is linear.

Lemma 5.6 (following [Gur04, Lemma 12]). The function Disp : [N]× [D]→ {0, 1} is a strong (k, ε)
disperser if and only if CDisp is ((1− 2ε)D,K) erasure list-decodable.

22

Proof: For one direction, assume Disp is a strong (k, ε) disperser. We wish to prove that CDisp is
((1− 2ε)D,K) erasure list-decodable. Let T = {t1, . . . , t2εD} ⊆ [D] be an arbitrary set of size 2εD

and r ∈ {0, 1}2εD an arbitrary string. Let XT,r ⊆ {0, 1}n denote the set of all the messages x for
which CDisp(x)|T = r. Then,

|Supp
(
(Ud,Disp(XT,r, Ud))

)
| ≤ |T | · 1 + (D − |T |) · 2 ≤ (1− ε)2D,

where the first inequality follows by considering seeds in T and seeds in [D] \ T . For a seed ti ∈ T
we have that Disp(XT,r, ti) is fixed, hence each such seed contributes 1 to the support size. For any
other seed y, the support size of Disp(XT,r, y) is at most 2. As Disp is a strong (k, ε) disperser, we
conclude that |XT,r| ≤ K as desired.

For the other direction assume Disp is a not a strong (k, ε) disperser. Then, there exists a set
X ⊆ {0, 1}n such that |X| ≥ K and |Supp

(
(Ud,Disp(X,Ud))

)
| ≤ (1 − 2ε)2D. Note that for every

y ∈ [D] we have |Supp(Disp(X, y))| ∈ {1, 2}. Therefore, following the above calculation, there
exists a set T ⊆ D of size at least 2εD such that for each y ∈ T , |Supp(Disp(X, y))| = 1. But this
means that for every x ∈ X , CDisp(x)|T is the same (punctured) codeword. It follows that CDisp is
not ((1− 2ε)D,K) erasure list-decodable.

Corollary 5.7. If Disp : {0, 1}n × {0, 1}d → {0, 1} is a strong (k, ε) disperser with seed-length d =
a1 log n + a2 log(1

ε) + a3 (for some a1 ≥ 1, a2 ≥ 1 and a3) then CDisp is a ((1 − 2ε)D,K) erasure list-
decodable code of rate 2−a3 · n1−a1 · εa2 .

When ε is much smaller than 1
n the dominant factor is determined by a2. As we mentioned

earlier (and as Guruswami also notes in [Gur04]) previous explicit constructions for binary codes
had a2 ≥ 2 (usually inherited from extractor constructions). Our construction is the first to get
arbitrary close to a2 = 1 and small list-size. Combining Corollary 5.7 and Theorem 5.2, we obtain:

Theorem 5.8. For every constant 0 < γ < 1 there exists a constant c ≥ 1 such that for every integer n
and ε ≤ n−

c
1−γ there exists an explicit code C : {0, 1}n → {0, 1}(

1
ε

)1+γ that is(
(1− 2ε)

(
1

ε

)1+γ

,

(
(1 + γ) log

1

ε

)c)

erasure list-decodable of rate nε1+γ .

5.4 Ramsey Graphs

Ramsey theory studies inevitable order that appears in large structures. It was initiated by Ramsey
[Ram30], who showed that any graph over N = 2n vertices must contain a clique or an indepen-
dent set of size n/2. A graph over N vertices is called K-Ramsey if it contains neither a clique nor
an independent set of size K. Inaugurating the probabilistic method, Erdős [Erd47] showed that
there are 2n-Ramsey graphs. He also offered a bounty of $100 for an explicit construction of an
O(n)-Ramsey graphs.

Erdős’s challenge initiated a line of beautiful constructions of Ramsey graphs [Abb72, Nag75,
Fra77, Chu81, FW81]. The study of pseudorandomness gave a new perspective on Ramsey graphs.
Specifically, any two-source disperser or extractor gives rise to a bipartite Ramsey graph (and
hence, also to a non-bipartite Ramsey graph [Sha11]). This connection led to to new constructions

23

of Ramsey graph [CG88, Nao92, Alo98, Raz05, Bou05, Bar06, Gop06, BKS+10, BRSW12, Coh16c,
CZ16, Mek17, Coh16d, Li17] culminating in (N,nO(log logn/ log log logn))-Ramsey graphs [BADTS17,
Li18].

In this section we tackle the problem of constructing unbalanced Ramsey graphs.

Definition 5.9 (Ramsey graph). A bipartite graph Ram : [N1] × [N2] → {0, 1} is a (K1,K2) bipartite
Ramsey graph if every K1 × K2 induced subgraph of Ram is neither a bipartite clique nor a bipartite
independent set.

While it is possible to interpret some pseudorandom objects as unbalanced Ramsey graphs,
they were less studied explicitly. See Table 3 for a summary of previous results.

K1 : N1 K2 : N2

Lower-bound (c− 1) log n : 2n n : nc By [RTS00] and Claim 5.11

Non-explicit O(c log n) : 2n n : nc Probabilistic method

[Raz05] logO(1) n : 2n N0.5+γ
2 : nO(1) O(1) terms depend on γ

This work (Theorem 4.1) logO(1) n : 2n Nγ
2 : nO(1) O(1) terms depend on γ

Table 3: Parameters of (K1,K2) Ramsey graphs in the unbalanced case, [N1 = 2n]× [N2]. c is any
large enough constant and γ is an arbitrarily small positive constant.

It is easy to see that a two-source extractor with any nontrivial error is, in fact, a bipartite
Ramsey graph, so as a corollary of Theorem 4.1, we obtain:

Corollary 5.10. For every integer N1 and a constant 0 < δ < 1 there exists a constant c = c(δ) ≥ 1 and
an explicit function Ram : [N1] × [N2] → {0, 1} that is a bipartite (K1,K2 = N δ

2) Ramsey graph, for
N2 = logcN1 and K1 = logcN2.

We start with the easy claim that bipartite Ramsey graphs are equivalent to strong one-bit
dispersers.

Claim 5.11. If Ram : [N1] × [N2] → {0, 1} is a (K1,K2) bipartite Ramsey graph then Ram is a strong
(k1, ε ≥ K2

N2
) disperser with seed-length n2 = k2 + log(1

ε). Also, if Ram is a strong (k1, ε = K2
2N2

) disperser
then it is a (K1,K2) bipartite Ramsey graph.

Proof: The first claim follows from the proof of Theorem 5.2.
For the other claim, which was already observed in [GKRTS05], assume Ram is a (k1, ε = K2

2N2
)

disperser and assume towards contradiction that it is not a (K1,K2 = 2εN2) bipartite Ramsey
graph. Hence, there exist some S ⊆ [N1] and T ⊆ [N2] so that |S| ≥ K1 and |T | ≥ K2 such that
either Ram(S, T) = {0} or Ram(S, T) = {1}. Assume w.l.o.g. that Ram(S, T) = {0}, so for every
t ∈ T , (t, 1) /∈ Supp

(
(Un2 ,Ram(S,Un2))

)
. But then,

|Supp
(
(Un2 ,Ram(S,Un2))

)
| ≤ 2(N2 − |T |) + |T | ≤ (1− ε)2N2,

a contradiction.

24

As observed in [GKRTS05], the quality of the Ramsey graph implied by the above theorem
crucially depends on the seed-length of the given disperser. Specifically, if the seed-length depen-
dence on the error ε is 2 · log(1

ε) then K2 = 2εN2 >
√
N2 and if it is 1 · log(1

ε) then K2 can be very
small.

We mention a more frugal way of obtaining Ramsey graphs from linear dispersers. The ar-
gument is a straightforward adaptation of an argument of Alon [Gur01, Proposition 10.15].3 The
parameters we obtain are identical to the above claim (and [GKRTS05]), except that one side of the
graph is scaled down (from N to n) as is its entropy (from K to k).

Theorem 5.12. Suppose Disp : {0, 1}n×{0, 1}d → {0, 1} is a linear strong (K, ε) disperser. Let G be the
D×n generating matrix of the [D,n]2 linear code CDisp. Then,G is a (2εD, k+1) bipartite-Ramsey-graph.

Proof: Assume Disp is a linear strong (K, ε) disperser. By Lemma 5.6, CDisp is a ((1 − 2ε)D,K)
erasure list-decodable code. Assume towards contradiction that G is not a (2εD, k + 1) bipartite
Ramsey graph. Let M ′ be a monochromatic 2εD × k + 1 sub-matrix of G. Assume that M ′ is
the all-ones matrix (a similar argument handles the all-zeros matrix). Denote by M the 2εD × n
sub-matrix of G that is formed by taking the rows of M ′ and all columns of G. On the one hand,
by Lemma 5.6 and Lemma 5.4, rank(M) > n − logK = n − k. On the other hand, as M contains
k + 1 columns of rank 1, rank(M) ≤ n− k, a contradiction.

It is natural to ask whether the other direction also holds, namely whether an adjacency matrix
of a bipartite Ramsey graph is in fact a generating matrix of a linear, erasure list-decodable code.
Stated differently, whether a low-rank matrix must contain large monochromatic rectangles. That
question received much attention, as it is tightly related to the famous “log-rank conjecture” in
communication complexity [Lov14, NW95]. Unfortunately, the acclaimed unconditional upper
bound of Lovett [Lov16] still does not give us a meaningful result.

6 Concluding Remarks and Open Problems

• The strong disperser we construct in this paper outputs one bit, and for k = O(log log 1
ε),

– has O(log log 1
ε) entropy-loss, and,

– (1 + γ) · log(1
ε) dependence of the seed-length on the error.

It is natural to ask to extend the results of the paper to arbitrarily large values of k, matching
(up to multiplicative factors) the non-explicit results.

• Our dispersers are inherently non-linear, and therefore we also get non-linear erasure list-
decodable codes. How can we obtain near optimal linear codes?

• The erasure list-decodable code we construct is explicit in the sense that the code can be
efficiently encoded. Does it also admit an efficient erasure list-decoding algorithm?

3Alon’s argument is aimed at obtaining balanced Ramsey graphs, while we are more concerned with the entropy
they can handle.

25

• The seed-length of our strong disperser is c log n+ log(1
ε). Pushing c closer to 1 is an impor-

tant open problem. In particular it would imply erasure list-decodable codes of near-optimal
rate even for relarively large ε. Such a disperser with many output bits can also be used for
simulating one-sided error randomized algorithms using weak random sources with nearly
linear overhead [Zuc96].

References

[Abb72] HL Abbott. Lower bounds for some ramsey numbers. Discrete Mathematics, 2(4):289–
293, 1972.

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence ver-
sus k-wise independence. Information Processing Letters, 88(3):107–110, 2003.

[Alo98] Noga Alon. The shannon capacity of a union. Combinatorica, 18(3):301–310, 1998.

[BADTS17] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. An efficient reduction from
two-source to non-malleable extractors: achieving near-logarithmic min-entropy. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
1185–1194. ACM, 2017.

[Bar06] Boaz Barak. A simple explicit construction of an nõ(logn)-ramsey graph. arXiv preprint
math/0601651, 2006.

[BKS+10] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Sim-
ulating independence: New constructions of condensers, ramsey graphs, dispersers,
and extractors. Journal of the ACM (JACM), 57(4):20, 2010.

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its appli-
cations. International Journal of Number Theory, 1(01):1–32, 2005.

[BRSW12] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2-source dispersers for
no(1) entropy, and ramsey graphs beating the frankl-wilson construction. Annals of
Mathematics, 176(3):1483–1544, 2012.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–
261, 1988.

[Chu81] Fan RK Chung. A note on constructive methods for ramsey numbers. Journal of Graph
Theory, 5(1):109–113, 1981.

[Coh16a] Gil Cohen. Local correlation breakers and applications to three-source extractors and
mergers. SIAM Journal on Computing, 45(4):1297–1338, 2016.

[Coh16b] Gil Cohen. Non-malleable extractors-new tools and improved constructions. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 50. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

26

[Coh16c] Gil Cohen. Two-source dispersers for polylogarithmic entropy and improved ramsey
graphs. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 278–284. ACM, 2016.

[Coh16d] Gil Cohen. Two-source extractors for quasi-logarithmic min-entropy and improved
privacy amplification protocols. In Electronic Colloquium on Computational Complexity
(ECCC), volume 23, page 114, 2016.

[CZ16] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, pages 670–683. ACM, 2016.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to kakeya sets and mergers. SIAM Journal
on Computing, 42(6):2305–2328, 2013.

[DW11] Zeev Dvir and Avi Wigderson. Kakeya sets, new mergers, and old extractors. SIAM
Journal on Computing, 40(3):778–792, 2011.

[Erd47] Paul Erdös. Some remarks on the theory of graphs. Bulletin of the American Mathemat-
ical Society, 53(4):292–294, 1947.

[Fra77] Peter Frankl. A constructive lower bound for ramsey numbers. Ars Combinatoria,
3(297-302):28, 1977.

[FW81] Peter Frankl and Richard M. Wilson. Intersection theorems with geometric conse-
quences. Combinatorica, 1(4):357–368, 1981.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 812–821. ACM, 2002.

[GKRTS05] Ronen Gradwohl, Guy Kindler, Omer Reingold, and Amnon Ta-Shma. On the error
parameter of dispersers. In Approximation, Randomization and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 294–305. Springer, 2005.

[Gop06] Parikshit Gopalan. Constructing ramsey graphs from boolean function representa-
tions. In Computational Complexity, 2006. CCC 2006. Twenty-First Annual IEEE Confer-
ence on, pages 14–pp. IEEE, 2006.

[Gur01] Venkatesan Guruswami. List decoding of error-correcting codes. PhD thesis, Mas-
sachusetts Institute of Technology, 2001.

[Gur03] Venkatesan Guruswami. List decoding from erasures: Bounds and code construc-
tions. IEEE Transactions on Information Theory, 49(11):2826–2833, 2003.

[Gur04] Venkatesan Guruswami. Better extractors for better codes? In Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, pages 436–444. ACM, 2004.

27

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, pages 1144–1156, New York, NY, USA, 2017. ACM.

[Li18] Xin Li. Pseudorandom correlation breakers, independence preserving mergers and
their applications. Electronic Colloquium on Computational Complexity (ECCC), 2018.

[Lov14] Shachar Lovett. Recent advances on the log-rank conjecture in communication com-
plexity. Bulletin of EATCS, 1(112), 2014.

[Lov16] Shachar Lovett. Communication is bounded by root of rank. Journal of the ACM
(JACM), 63(1):1, 2016.

[Mek17] Raghu Meka. Explicit resilient functions matching Ajtai-Linial. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1132–1148.
SIAM, 2017.

[MRZ14] Raghu Meka, Omer Reingold, and Yuan Zhou. Deterministic coupon collection and
better strong dispersers. In LIPIcs-Leibniz International Proceedings in Informatics, vol-
ume 28. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[Nag75] Zs Nagy. A constructive estimation of the ramsey numbers. Mat. Lapok, 23:301–302,
1975.

[Nao92] Moni Naor. Constructing ramsey graphs from small probability spaces. IBM Research
Report RJ, 8810, 1992.

[NW95] Noam Nisan and Avi Wigderson. On rank vs. communication complexity. Combina-
torica, 15(4):557–565, 1995.

[Ram30] FP Ramsey. On a problem of formal logic. Proceedings of the London Mathematical
Society, 2(1):264–286, 1930.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 11–20. ACM, 2005.

[RTS00] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors,
and depth-two superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2–24,
2000.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin
of the EATCS, 77(67-95):10, 2002.

[Sha11] Ronen Shaltiel. An introduction to randomness extractors. In International Colloquium
on Automata, Languages, and Programming, pages 21–41. Springer, 2011.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879, 2001.

[Wig09] Avi Wigderson. Randomness extractors–applications and constructions. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 4. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2009.

28

[Zuc96] David Zuckerman. Simulating BPP using a general weak random source. Algorith-
mica, 16(4):367–391, 1996.

[Zuc06] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. In Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, pages 681–690. ACM, 2006.

29

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

