
Constant-round interactive proof systems for AC0[2] and NC1

Oded Goldreich∗ Guy N. Rothblum†

April 16, 2018

Abstract

We present constant-round interactive proof systems for sufficiently uniform versions of
AC0[2] and NC1. Both proof systems are doubly-efficient, and offer a better trade-off between
the round complexity and the total communication than the work of Reingold, Rothblum, and
Rothblum (STOC, 2016). Our proof system for AC0[2] supports a more relaxed notion of unifor-
mity and offers a better trade-off between the number of rounds and the round complexity that
our proof system for NC1. We observe that all three aforementioned systems yield constant-
round doubly-efficient proof systems for the All-Pairs Shortest Paths problem.

Contents

1 Introduction 1
1.1 Our main result: A proof system for AC0[2] . 1
1.2 Notions of sufficiently uniform circuits . 3
1.3 Overview of our main construction . 4
1.4 The proof system for NC1 . 6

2 The interactive proof system for AC0[2] 6

3 The interactive proof system for NC1 12
3.1 Overview . 13
3.2 The actual construction . 13

Acknowledgements 16

References 17

Appendix: The Sum-Check protocol 19

∗Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel.
oded.goldreich@weizmann.ac.il
†Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel. rothblum@alum.mit.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 69 (2018)

1 Introduction

The notion of interactive proof systems, put forward by Goldwasser, Micali, and Rackoff [9], and
the demonstration of their power by Lund, Fortnow, Karloff, and Nisan [13] and Shamir [17] are
among the most celebrated achievements of complexity theory. Recall that an interactive proof
system for a set S is associated with an interactive verification procedure, V , that can be made
to accept any input in S but no input outside of S. That is, there exists an interactive strategy
for the prover that makes V accepts any input in S, but no strategy can make V accept an input
outside of S, except with negligible probability. (See [3, Chap. 9] for a formal definition as well as
a wider perspective.)

The original definition does not restrict the complexity of the strategy of the prescribed prover
and the constructions of [13, 17] use prover strategies of high complexity. Seeking to make interac-
tive proof systems available for a wider range of applications, Goldwasser, Kalai and Rothblum [8]
put forward a notion of doubly-efficient interactive proof systems. In these proof systems the pre-
scribed prover strategy can be implemented in polynomial-time and the verifier’s strategy can be
implemented in almost-linear-time. (We stress that unlike in argument systems, the soundness
condition holds for all possible cheating strategies, and not only for feasible ones.) Restricting
the prescribed prover to run in polynomial-time implies that such systems may exist only for sets
in BPP, and thus a polynomial-time verifier can check membership in such sets by itself. How-
ever, restricting the verifier to run in almost-linear-time implies that something can be gained by
interacting with a more powerful prover, even though the latter is restricted to polynomial-time.

The potential applicability of doubly-efficient interactive proof systems was demonstrated by
Goldwasser, Kalai and Rothblum [8], who constructed such proof systems for any set that has
log-space uniform circuits of bounded depth (e.g., log-space uniform NC). A more recent work
of Reingold, Rothblum, and Rothblum [16] provided such (constant-round) proof systems for any
set that can be decided in polynomial-time and a bounded amount of space (e.g., for all sets in
SC). In our prior works [5, 7], we presented simpler and more efficient constructions of doubly-
efficient interactive proof systems for some special cases: In particular, in [5] we considered a class of
“locally-characterizable sets”, and in [7] we considered the problem of counting t-cliques in graphs.

In this work we consider the construction of constant-round doubly-efficient interactive proof
systems for (sufficiently uniform) versions of AC0[2] and NC1. We mention that the proof systems
for NC constucted by Goldwasser, Kalai and Rothblum [8] use O(d(n) log n) rounds, where d(n) is
the depth of the nth circuit. Building on their techniques, Kalai and Rothblum have observed the
existence of a constant-round proof system for a highly-uniform version of NC1, but their notion
of uniformity was quite imposing and they never published their work [12]. In Section 3, we use
similar ideas towards presenting a constant-round proof system for a sufficiently uniform version
of NC1, which we believe to be less imposing (see also the overview in Section 1.4), but our main
contribution is in presenting such a proof system for a sufficiently uniform version of AC0[2]: The
latter proof system is more efficient and refers to a more relaxed notion of uniformity.

1.1 Our main result: A proof system for AC0[2]

We present constant-round doubly-efficient interactive proof systems for sets acceptable by (suffi-
ciently uniform) constant-depth polynomial-size Boolean circuits of unbounded fan-in and parity
gates (i.e., the class AC0[2]). Note that this class contains “seemingly hard problems in P” (e.g.,
the t-CLIQUE problem for n-vertex graphs can be expressed as a highly uniform DNF with nt terms

1

(each depending on
(
t
2

)
variables)). Postponing, for a moment, a clarification of what is meant by

“sufficiently uniform”, our result reads

Theorem 1 (constant-round doubly-efficient interactive proofs for AC0[2], loosely stated): For
constants c, d ∈ N, suppose that {Cn : {0, 1}n → {0, 1}} is a sufficiently uniform family of Boolean
circuits with unbounded fan-in parity and conjunction gates such that Cn has size at most nc and
depth d. Then, for every δ ∈ (0, 1], the set {x : C|x|(x)=1} has a O(cd/δ)-round interactive proof

system in which the verifier runs in time O(n1+o(1)), the prescribed prover can be implemented in
time O(nc+o(1)), and the total communication is nδ.

We mention that the work of Reingold, Rothblum, and Rothblum [16] implies that log-space uni-
form AC0[2] (actually, even log-space uniform NC1)1 has constant-round doubly-efficient interactive
proof systems. One advantage of our construction over [16] is that, being tailored to AC0[2], it is
much simpler and more transparent. In addition, the round complexity of our proof systems is
considerably better than the round-complexity in [16]; specifically, we present a O(1/δ)-round
system with total communication nδ, whereas in [16] obtaining total communication nδ requires
exp(Õ(1/δ)) many rounds.

Corollaries. Using Theorem 1, we obtain a constant-round doubly-efficient interactive proof
system for the All Pairs Shortest Path (APSP) problem (see background in [19]). Such a proof
system follows also from the work of [16], but this fact was not observed before. The key observation
is that verifying the value of APSP can be reduced to matrix multiplication in the (min,+)-algebra
via a doubly-efficient NP-proof system.

Recall that matrix multiplication in the (min,+)-algebra refers to the case that multiplication
is replace by addition and the sum is replace by the minimum; that is, the product of the matrices
A = (ai,j)i,j∈[n] and B = (bi,j)i,j∈[n], denoted A ∗ B, equals C = (ci,j)i,j∈[n] such that ci,j =
mink∈[n]{ai,k + bk,j} for every i, j ∈ [n]. Given a possibly weighted n-vertex digraph G, we consider
the matrix W = (wi,j)i,j∈[n] such that wi,j denotes the weight (or length) of the edge from i to
j, whereas wi,i = 0 and wi,j = ∞ if there is no edge from i to j. Then, the shortest paths in
G can be read from An, and the foregoing NP-proof consists of the prover sending the matrices
A1, A2, ..., Adlog2 ne such that A0 = A and Ai = Ai−1 ∗ Ai−1 for all i. Hence, the verification of
APSP is reduced to the verification of log n claims regarding matrix multiplication in the (min,+)-
algebra, which can be verified in parallel. Focusing on the latter problem, or rather on the set
{(A,B,A ∗B) : A,B ∈

⋃
n∈NRn×n}, we observe that membership can be recognized in SC (hence

the result of [16] applies) as well as by highly uniform AC0 circuits.

Corollary 2 (a constant-round doubly-efficient interactive proof for APSP): Let APSP consists of
pairs (G,L) such that L is a matrix recoding the lengths of the shortest paths between each pair of
vertices in the weighted graph G. For every constant δ > 0, the APSP has a O(1/δ)-round interactive
proof system in which the verifier runs in time O(n2+o(1)), the prescribed prover can be implemented
in time O(n4+o(1)), where n denotes the number of vertices in the graph and weights are restricted
to [− exp(no(1), exp(no(1)]. Furthermore, except for the first prover message, in each subsequent
round, the prover sends nδ bits.

1Actually, the result of [16] can be applied to NC1 circuits that can be constructed in polynomial time and
no(1)-space.

2

As with Theorem 1, the application of [16] to APSP would have yielded exp(Õ(1/δ)) rounds.
Another problem to which Theorem 1 is applicable is set of graphs having no t-cliques, denoted

t-no-CLIQUE. For any contant t, constant-round doubly-efficient interactive proof systems for t-
no-CLIQUE are implicit or explicit in several prior works. In particular, such proof systems are
implied by the aforementioned result of [16] as well as by [5, Sec. 4.3], and were explicitly presented
in [7, Sec. 2]. Noting that the said set can be recognized by highly uniform CNFs of size O(nt) and
using Theorem 1, we obtain yet another alternative proof system for t-no-CLIQUE.

Corollary 3 (a constant-round doubly-efficient interactive proof for t-no-CLIQUE): For every con-
stants t ∈ N and δ > 0, the set t-no-CLIQUE has a O(t/δ)-round interactive proof system in which
the verifier runs in time O(n2+o(1)), the prescribed prover can be implemented in time O(nt+o(1)),
and the total communication is nδ, where n denotes the number of vertices in the graph.

In Table 1.1, we compare Corollary 3 to the prior proof systems known for the t-no-CLIQUE problem.

rounds total comm. verifier time prover time
obtained (in)

via SC [16] exp(Õ(1/δ)) nδ Õ(m) poly(nt)

via “local characterization” [5] t/δ nδ Õ(m) nt+1

directly [7] t Õ(n) Õ(m) n0.791t

via AC0[2] (this work) O(t/δ) nδ+o(1) n2+o(1) nt+o(1)

Table 1: Comparison of different constant-round interactive proof systems for the t-no-CLIQUE
problem, for the constants t and δ > 0, where n (resp., m > n) denotes the number of vertices
(resp., edges).

Our proof system for t-no-CLIQUE is very similar to the one in [5]. The difference is that we
apply the sum-check protocol to an arithmetic circuit defined over an extension field (of size n2δ)
of GF(2), whereas in [5] it is implicitely applied to an arithmetic circuit defined over a field of
prime characteristic that is larger than

(
n
t

)
. Furthermore, here the arithmetic circuit is a pseudo-

random linear combination of the
(
n
t

)
tiny circuits that identify specific t-cliques, whereas in [5] the

arithmetic circuit counts these t-cliques.

1.2 Notions of sufficiently uniform circuits

Some notion of uniformity is essential for a result such as Theorem 1, since the claim regarding
the input x refers to satisfying a poly(|x|)-sized circuit C|x|, whereas the verifier is restricted to
almost-linear time. In the context of this work, we seek the most liberal notion that we can support.

Our notion of uniformity is stronger than the notion of log-space uniformity used in [8] (let alone
even weaker notions of uniformity that can be supported when applying the result of Reingold,
Rothblum, and Rothblum [16] (see Footnote 1)). Specifically, we consider the complexity of a
succinct (implicit) representation of the circuit, rather than the complexity of constructing the
circuit itself (i.e., its explicit representation). We consider three such succinct representations,
where in all cases we assume that the circuits are layered (in the sense detailed below):

3

Adjacency predicate: Such a predicate indicates, for each pair of gates (u, v), whether or not
gate u is fed by gate v. Specifically, dealing with circuits of size s(n) = poly(n), we consider
the adjacency predicate adj : [s(n)]× [s(n)]→ {0, 1},

Incidence function: Such a function indicates, for each gate u and index i, the identity of the ith

gate that feeds the gate u, where 0 indicates that u is fed by less than i gates. Specifically,
for fan-in bound b(n) ≤ s(n) − 1, we consider the incidence function inc : [s(n)] × [s(n)] →
[b(n)] ∪ {0}.

Input assignment in canonical formulae: Here we consider a fixed structure of the circuit as
a formula, and specify only the input bit assigned to each leaf of the formula, where the
same bit is typically assigned to many leaves. The assignment is merely a function from leaf
names to bit locations in the input. Specifically, we consider the input assignment function
ia : [s(n)] → [n] ∪ {0, n + 1}, where 0 and 1 are viewed as residing in locations 0 and n + 1
of the “augmented” n-bit input (which holds n+ 2 bits).

In all cases, we assume that the (depth d) circuit is layered in the sense that, for each i ∈ [d], gates
at layer i−1 are fed by gates at layer i only, where layer i consists of all gates at distance i from the
output gate. Indeed, the output gate is the only gate at layer 0, and the gates at layer d are called
leaves, since they are not fed by gates but are rather assigned input bits.2 (Indeed, for simplicity,
we do not allow leaves at other layers.)3 Furthermore, when using the adjacency predicate and
the incidence function representations, we shall assume that the ith leaf is assigned the ith input
bit; but in the canonical formulae representation the assignment of input bits to leaves is the only
aspects of the circuit that varies.

In all three cases, we make two additional simplifying assumptions. The first is that the circuit
contains no “negation” gates (i.e., not-gates). This can be assumed, without loss of generality,
because we can replace not-gates by parity-gates (fed by the desired gate and the constant 1,
which is the reason for allowing to feed leaves with the constant 1). The second assumption is that,
for each i ∈ [d], all gates at layer i− 1 have the same functionality (gate-type).4

Theorem 1 holds under each of the three representations, when requiring that the corresponding
function, which implicitly describes the poly(n)-size circuit Cn, can be represented by a formula of
size no(1) than can be constructed in time n1+o(1). (Recall that the input to the latter formula is
of length O(log n).)

1.3 Overview of our main construction

The construction underlying Theorem 1 combines a central ingredient of the interactive proof
system of Goldwasser, Kalai, and Rothblum [8] with the approximation method of Razborov [15]
and Smolensky [18]. Specifically, we first reduce the verification of the claim that the input satisfies
the predetermined Boolean circuit to an analogous claim regarding an Arithmetic circuit (over
GF(2)) that is derived from the Boolean circuit using the approximation method. The crucial fact

2We stress that the term ‘leaf’ is used here also in the case that the circuit is not a formula (i.e., does not have a
tree structure). One may prefer using the terms ‘terminal’ or ‘source’ instead.

3This can be assumed, without loss of generality, by replacing such a potential leaf at layer i with an auxiliary
path of dummy gates that goes from layer d to layer i so that it indirectly feeds the value of the desired input bit to
the corressponding gate at layer i.

4This can be assumed, without loss of generality, by replacing each layer by three consecutive layers so that one
layer is devoted to and-gates, one to or-gates, and one to parity-gates.

4

is that that all multiplication gates in the Arithmetic circuit have small fan-in (whereas the fan-in
of addition gates may be large). With high probability, this approximation does not affect the
computation on the given input, but it does introduces a “completeness error” in the verification
procedure, which we eliminate later (so to obtained perfect completeness).

Next, following [8], we consider a computation of the Arithmetic circuit (on the given input),
and encode the values of the gates at each layer by a low degree polynomial over a large (extension)
field (of GF(2)). Here we use the fact that, by virtue of the approximation method, the gates
in the Arithmetic circuit compute polynomials of low degree, whereas in [8] obtaining low degree
polynomials relied on “refreshing the variables” after each layer of the circuit (see also Eq. (11)
in Section 3). That is, unlike in [8], we do not use a generic low-degree extension of the Boolean
values (computed by the gates of the Boolean circuit), but rather use the polynomials that are
computed by the gates of the Arithmetic circuit (i.e., the formal polynomials that are defined
by the circuit). More importantly (and in fact crucially), relying on the foregoing uniformity
condition, we express the relation between the values of the gates at adjacent layers (of the circuit)
by low degree polynomials. These polynomials are derived from the small Boolean formulas that
compute the adjacency relation.

Lastly, following [8], we reduce the verification of a claim regarding the values at layer i − 1
in the circuit to a claim regarding the values at layer i, by using the Sum-Check protocol in each
reduction step. Specifically, we use the Sum-Check protocol with respect to variables in a relatively
large alphabet (of size nδ), so that the number of rounds is a constant (i.e., O(1/δ)). Actually,
this refers to the way in which addition gates of unbounded fan-in are handled, where each such
poly(n)-way addition is written as a sum over a O(1/δ)-long sequence over an alphabet of size
nδ. In contrast, multiplication gates, which are of logarithmically bounded fan-in, are treated in a
straightforward manner (i.e., we branch to verify each of the logarithmically many claimed values).5

To summarize: Using the approximation method allows us to replace or-gates (and/or and-
gates) of unbounded fan-in by multiplication gates of logarithmic fan-in, while introducing parity
gates of unbounded fan-in. Each layer of parity gates can be handled by the Sum-Check protocol
such that each iteration of this protocol cuts the fan-in of the parity gates by a factor of nδ. The
degree bound on which the Sum-Check protocol relies is due to the uniformity of the original
Boolean circuit and to the fact that the multiplication gates have small fan-in. Specifically, a
sufficient level of uniformity of the Boolean circuit implies an upper bound on the degree of the
polynomials that relate the values of the gates at adjacent layers (of the circuit), wherae the small
fan-in of the multiplication gates implies an upper bound on the degree of the polynomial that
expresses the values of the various gates.

We mention that the idea of using the approximation method towards emulating AC0[2] by low
degree arithmetic circuits, in the context of interactive proof systems, was used before by Kalai
and Raz [11]. Both in [11] and here, this causes a (small) error probability (in the completeness
condition).6 We regain perfect completeness by letting the prover point out a gate in which the
approximation error occurs (with respect to the input), and prove its claim.

5Indeed, we could reduce the verification of these logarithmically many claims to the verification of a single claim,
by using a curve that passes through all the point in these claims, as done in [8]. But since here the number of rounds
is a constant, we can afford an overhead that is exponential in the number of rounds.

6In contrast, when using the approximation method in the context of worst-case to average-case reduction for
the class AC0[2] presented in [6, Apdx A.2], the approximation error is absorbed by the (larger) error rate of the
average-case solver.

5

1.4 The proof system for NC1

Generalizing and somewhat simplifying the proof systems constructed by Goldwasser, Kalai, and
Rothblum [8], we obtain constant-round doubly-efficient interactive proof systems for sufficiently
uniform NC1 (specifically, canonical formulas with a sufficiently uniform input assignment function
as discussed in Section 1.2). The simplification is due to relying on a stronger notion of uniformity
than the one used in [8], whereas the generalization allows us to reduce the round complexity of [8]
by a log-squared factor. Recall that, when handling a (bounded fan-in) circuit Cn : {0, 1}n → {0, 1}
of depth d(n), the proof system of [8] has O(d(n) · log n) rounds. This is due to invoking the Sum-
Check Protocol for each layer in the circuit, and using a version that handles summations over
the binary alphabet. Instead, for any constant δ > 0, we invoke the Sum-Check protocol for each
block of δ log n consecutive layers in the circuit, and use a version that handles summations over
an alphabet of size nδ. Hence, we cut the number of rounds by a factor of (δ log n)2.

Theorem 4 (constant-round doubly-efficient interactive proofs for NC1, loosely stated): Let {Cn :
{0, 1}n → {0, 1}} be a sufficiently uniform family of canonical Boolean circuits of fan-in two and
logarithmic depth. Then, for every δ ∈ (0, 1], the set {x : C|x|(x) = 1} has a O(1/δ2)-round

interactive proof system in which the verifier runs in time O(n1+o(1)), the prescribed prover can be
implemented in polynomial-time, and the total communication is nδ+o(1).

We stress that Theorem 4 does not subsume Theorem 1. First, the proof system in Theorem 4 uses
a larger number of rounds as a function of total communication complexity (i.e., O(1/δ2) rather
than O(1/δ) rounds). Second, the uniformity condition in Theorem 4 is stronger (cf., Theorem 10
and Theorem 7).

2 The interactive proof system for AC0[2]

Recall that we consider a sufficiently uniform family of layered circuits {Cn} of constant depth
d ∈ N and unbounded fan-in. For simplicity of our presentation, we work with the adjacency
predicate representation, while noting that the handling of other representations can be reduced to
it (as detailed in Remarks 8 and 9). We also assume, for simplicity, that the circuit has only gates
of the or and parity type, since and-gates can be emulated by these. Letting s = s(n) = poly(n)
be a bound on the number of gates in Cn, for each i ∈ [d], we consider the no(1)-sized formula
ψi : [s]× [s]→ {0, 1} such that ψi(j, k) = 1 if and only if gate j resides in layer i− 1 and is fed by
the gate k (which resides in layer i). In doing so, we associate [s] with {0, 1}`, where ` = log s, and
view ψi as a function over {0, 1}2`.

On input x ∈ {0, 1}n, we proceed in three steps: First, we reduce the Boolean problem (of
verifying that Cn(x) = 1) to an Arithmetic problem (of verifying that a related Arithmetic circuit
An evaluates to 1 on a related input (x, s)). Next, we express the latter problem as a sequence of
O(d) equations that relate the value of gates at adjacent layers of the circuit An. Here we shall
use low degree polynomials that extend the ψi’s, while deriving succinct representations of these
polynomials from the corresponding Boolean formulas that compute the ψi’s. Last, we present a
constant-round doubly-efficient interactive proof system for the verification of each equation. Hence,
we obtain a constant-round doubly-efficient interactive proof system for the set {x : C|x|(x)=1}.

Step 1: Approximation by Arithmetic circuits. The first step is a randomized reduction of solving
the Boolean problem to solving a corresponding Arithmetic problem. This reduction follows the

6

ideas underlying the approximation method of Razborov [15] and Smolensky [18], while working
with the field GF(2) (as [15], rather than with GF(p) for some prime p > 2 as [18]). When doing
so, we replace the random choices made at each layer by pseudorandom choices that are generated
by a small bias generator [14]; specifically, we use a highly uniform generator that uses a seed of
logarithmic (i.e., O(log n)) length and produces each output bit by a small (i.e., no(1)-size) circuit
of constant depth [1, 10].7 Hence, for a fixed Boolean circuit Cn, on input x ∈ {0, 1}n, we randomly
reduce the question of whether Cn(x) = 1 to the question of whether An(x, y) = 1, where An is the

resulting Arithmetic circuit and y ∈ {0, 1}nδ represents a uniformly distributed sequence of seeds
for the said generator (i.e., logarithmically different seeds are used for each layer, and the same
seeds are used for all gates of that layer). Specifically, the choice of y will be made by the verifier,
and we observe that Pry[An(x, y) =Cn(x)] = 1 − s(n) · exp(−O(log n)) = 1 − o(1). In the rest of
the analysis, we assume that the verifier was not extremely unlucky (in its choice of y), and so that
An(x, y) = Cn(x) holds.

Let us stop for a moment and take a closer look at An. Recall that each or-gate in Cn is
essentially replaced by a O(log n)-way multiplication gate that is fed by the inner product of the
values of the original feeding gates and a pseudorandom sequence, where each element in the latter
sequence is a simple function of y (computed by a small constant-depth circuit). Specifically, if the
or-gate indexed j (at layer i − 1 of Cn) was fed by gates indexed k1, ..., kn′ (of layer i), then it is
replaced in An by the formula

1 +
∏
j′∈[`′]

1 +
∑
k∈[s]

ψi(j, k) · gk · p
(i,j′)
k

 which equals 1 +
∏
j′∈[`′]

1 +
∑
t∈[n′]

gkt · p
(i,j′)
kk

where `′ = O(log n) is the arity of the multiplication gate, gk is the output of the gate indexed k

(at layer i of Cn), and p
(i,j′)
k is the kth bit in the pseudorandom sequence generated based on the

j′th seed of layer i (which is a part of y).8 Note that if
∨
t∈[n′] gkt = 0, then the forgoing expression

simplifies to 1 + (1 + 0)`
′

= 0. On the other hand, if
∨
t∈[n′] gkt = 0, then, with probability at

least 1 − 0.6`
′
, the forgoing expression simplifies to 1 + 0 = 1. Hence, the result of the `′-way

multiplication gate is 1 if
∨
t∈[n′] gkt = 0 and is likely to be 0 otherwise, and so we will not use

the output of the foregoing multiplication gate but rather its “negation” (i.e., its value plus 1). To
summarize, the multiplication gate indexed j (in the corresponding layer of An) is fed by gates

indexed 〈j, 1〉, ..., 〈j, `′〉, and the gate indexed 〈j, j′〉 computes 1 +
∑

k∈[s] ψi(j, k) · gk · p
(i,j′)
k .

We highlight the following features of the Arithmetic circuit An: Its depth is O(d), its size is
O(log n)d · s(n), it computes a polynomial of degree O(log n)d, and it has a succinct representation
of size no(1) that can be constructed in time n1+o(1). Furthermore, each of its gates computes a
polynomial of degree O(log n)d.

Indeed, An : GF(2)n+nδ → GF(2) as defined above is an arithmetic circuit, over GF(2), consist-
ing solely of addition and multiplication gates. But we can view An as an arithmetic circuit over

7Using the third constriction in [1], we need to perform exponentiation in a field of size 2`, where ` = O(logn) is
half the length of the seed. Using [10], this operation can be performed by highly uniform constant-depth circuits

(with parity gates) and size exp(Õ(
√
`)) = no(1). The same pseudorandom sequences can be used for all gates in the

same layer of the circuit, since logarithmically many independent choices guarantee sufficiently small error probability
(allowing the application of a union bound).

8Indeed, we use `′ different seeds per each layer, and use each of these seeds for all gates of the layer. Furthermore,
we use the same pseudorandom bits for all gates in the layer (although we could afford using disjoint parts of the
same pseudorandom sequence for different gates).

7

F = GF(22δ logn), and consider its value at (x, y) ∈ {0, 1}n+nδ , which is viewed as an (n+ nδ)-long
sequence over F . (It suffices to have |F| ≥ nδ+Ω(1); on the other hand, we also use log |F| ≤ no(1).)

Step 2: Relating the values of layers in the computation. Letting αi−1(j) denote the value of gate
j at layer i − 1, in a computation of An(x, y), we can relate these values as already hinted above.
Specifically, in case j ∈ [s] is an `′-way multiplication gate, we have αi−1(j) =

∏
j′∈[`′] αi(〈j, j′〉)

and
αi(〈j, j′〉) = 1 +

∑
k∈[s]

ψi(j, k) · αi+1(k) · αi+1(j′s+ k), (1)

where αi+1(j′s + k) holds the value of the kth bit of the j′th pseudorandom sequence. (For sake
of simplicity, our presentation merges the layer that computes the s-way sum with the layer that
computes the quadratic forms αi+1(k) · αi+1(j′s+ k); that is, Eq. (1) refers to a fictitious bilinear
gate. In addition, our description ignores the small circuits that compute the pseudorandom bits
αi+1(j′s+ k).)9 In the case of an addition gate (i.e., a layer of addition gates), we have

αi−1(j) =
∑
k∈[s]

ψi(j, k) · αi(k). (2)

Recall that we actually consider j, k ∈ {0, 1}`, where ` = log s. (Actually, we should let `′ =
log((`′ + 1) · s), in order to account also for the gates computing the bits of the pseudorandom
sequences.) Furthermore, we consider the arithmetic formula ψ̂i : F `+` → F that is derived from
ψi : {0, 1}`+` → {0, 1} in the obvious manner (i.e., replacing and-gates by multiplication gates and
negation gates by gates that add the constant 1). Recalling that ψi is a formula of size no(1), it
follows that ψ̂i computes a polynomial of degree no(1). Now, Eq. (2) is replaced by

αi−1(j) =
∑

k∈{0,1}`
ψ̂i(j, k) · αi(k), (3)

where j ∈ {0, 1}`, and Eq. (1) is replaced analogously.
At this point, the standard approach taken in [8] (and followed also in Section 3) is to extend

Eq. (3) to any j ∈ F ` by using a low-degree extension (see also Eq. (5)-(6)). This is redundent in
the case of Eq. (3), since the r.h.s of this equation is well defined also when j ∈ F `. Hence, for
z ∈ F `, we have

α̂i−1(z) =
∑

k∈{0,1}`
ψ̂i(z, k) · αi(k). (4)

Assuming that αi is also extended to a low-degree polynomial, denoted α̂i, we can replace αi(k) by
α̂i(k). In the case of Eq. (1), the foregoing consideration applies to j ∈ {0, 1}`, but not to j′ ∈ [`′].
Applying a low-degree extension to the dependence of the expression on j′, we have, for z ∈ F `
and z′ ∈ F ,

α̂i(〈z, z′〉) = 1 +
∑
k∈[s]

ψ̂i(z, k) · αi+1(k) ·
∑
j′∈[`′]

 ∏
j′′∈[`′]\{j′}

j′′ − z′

j′′ − j′

 · αi+1(j′s+ k), (5)

9The issue is not describing these small circuits, since this was addressed in Footnote 7, but rather presenting a
single equation that interpolates both their operation and the bulk of the computation. For example, Eq. (2)-(4)
refer to the value of αi−1(j) for j ∈ [s] ≡ {0, 1}`, whereas for j ∈ [(`′ + 1) · s] \ [s] the value of αi−1(j) refers to this
auxiliary computations. That is, αi−1(j) is defined in different ways depending on whether or not j ∈ [s], and these
different formulas are combined by a selection circuit (actually, a single gate that check a relevant bit in the binary
expansion of j will do).

8

where the product equals 1 if z′ = j′ and equals 0 if z′ ∈ [`′] \ {j′}. (As with Eq. (4), assuming
that αi+1 is also extended to a low-degree polynomial, denoted α̂i+1, we can replace αi+1(j′s+ k)
by α̂i+1(j′s+ k).) Lastly, in the case of αi−1(j) =

∏
j′∈[`′] αi(〈j, j′〉), we can just replace both αi−1

and αi by the corresponding polynomials α̂i−1 and α̂i, obtaining α̂i−1(z) =
∏
j′∈[`′] α̂i(〈z, j′〉), and

infer that α̂i−1 has low degree since so does α̂i.
Note, however, that the foregoing can not be applied to αd, which is well-defined only over

[s] ≡ {0, 1}`; specifically, recall that αd(j) = xj for j ∈ [n], whereas αd(n + 1) = 1 and αd(j) = 0
for j ∈ [s] \ [n + 1].10 Hence, we augment the foregoing definitions by postulating that α̂d is a
low-degree extension of the values of αd at {0, 1}`; that is, for z ∈ F `, we have

α̂d(z) =
∑

k∈{0,1}`
EQ(z, k) · αd(k), (6)

where EQ is the bilinear polynomial that extends the function that tests equality over {0, 1}` (e.g.,
EQ(σ1 · · ·σ`, τ1 · · · τ`) =

∏
i∈[`](σiτi + (1− σi)(1− τi))). Note that r.h.s of Eq. (6) depends only on

n+ 1 terms, since α̂d(j) = 0 for j 6∈ [n+ 1].
Lastly, we wish to replace summation over {0, 1}` by summation over Hm, where |H| = nδ

(and m = `
δ logn = O(1/δ)). Towards this end, we introduce a mapping µ : H → {0, 1}`′′ , where

`′′ = δ log n = `/m. This mapping can be extended to a sequence of polynomials of degree |H| − 1
over F , and to an m-long sequence of such sequences; that is, we use µ̂ : Fm → (F `′′)m such
that for every v = (v1, ..., vm) ∈ Hm it holds that µ̂(v) = (µ(v1), ..., µ(vm)) ∈ {0, 1}m·`′′ , whereas
m`′′ = `. Hence, for example, Eq. (4) is replaced by

α̂i−1(z) =
∑
k∈Hm

ψ̂i(z, µ̂(k)) · α̂i(µ̂(k)) (7)

where again z ∈ F `. (Recall that α̂i is defined over F ` by virtue of subsequent expressions of similar
type.) With these preliminaries in place, we can describe the basic interactive proof system.

Step 3: Interactive proof system (with imperfect completeness). On input x ∈ {0, 1}n, the verifier

selects uniformly y ∈ {0, 1}nδ , and sends y to the prover. The prover now attempts to prove that
An(x, y) = 1, where a succinct representation of An (of size no(1)) can be constructed in time
n1+o(1). The initial claim is re-interpreted as α̂0(1`) = 1, where α̂i : F ` → F . The parties proceed
in O(d) steps such that the ith step starts with a claim regarding the value of α̂i−1 at few points,
and ends with a claim regarding the value of α̂i at few points, where the said number of points may
increase by at most a logarithmic factor. We distinguish between the case that the current layer is
of addition gates and the case that it is of multiplication gates.

Handling a layer of addition gates: (Recall that these gates are supposed to satisfy Eq. (7).) For
each claim of the form α̂i−1(j) = v, where i ∈ [O(d)], j ∈ F ` and v ∈ F are known, we invoke
the Sum-Check protocol on the r.h.s of Eq. (7). The execution of the (m-round) protocol
results in a claim regarding the value ψ̂i(j, µ̂(r)) · α̂i(µ̂(r)) for a random r ∈ Fm selected via

10Recall that we need to provide the circuit with the constant 1, hence we set αd(n+1) = 1. The setting of αd(j) = 0
for j ∈ [s] \ [n + 1] is used in order to facilitate the evaluation of r.h.s of Eq. (6), as discussed below. Alternatively,
we could have used the setting αd(j) = 1 for j ∈ [s] \ [n], and rely on the fact that for every j = (j1, ..., j`) ∈ F` the
sum

∑
k∈{0,1}` EQ(j, k) equals 1.

9

the execution. Since the verifier can evaluate µ̂ and ψ̂i, it is left with a claim regarding the
value of α̂i at one point.

Recall that the Sum-Check protocol proceeds in m = O(1/δ) rounds, where in each round the
prover sends the value of the relevant univariate polynomial. This is a polynomial of degree
|H| · no(1) = nδ+o(1), where the degree bound is due to the composition of the polynomials µ̂
and ψ̂i (and likewise of µ̂ and α̂i).

11

Handling a layer of multiplication gates: For each claim of the form α̂i−1(j) = v, where i, j and
v are known, we let the prover send the values α̂i(〈j, 1〉), ..., α̂i(〈j, `′〉). The verifier checks
that their product equals v, and obtains `′ = O(log n) claims to be verified next (i.e., claims
regarding the values α̂i(〈j, j′〉) for j′ ∈ [`′]).

The handling of “bilinear gates” (or rather the computation of αi+1(k) · αi+1(j′s + k) that
takes place in Eq. (1)) is similar, except that here we have only two factors.12

After O(d) steps, the verifier is left with polylogarithmically (i.e., O(log n)d) many claims, where
each claim refers to the value of α̂d at a single point j ∈ F `. Such a claim can be checked by the
verifier itself by using the revised form of Eq. (6), which reads

α̂d(z) =
∑
k∈Hm

EQ(z, µ̂(k)) · αd(µ̂(k)). (8)

Recall that α̂d(k) = xk for every k ∈ [n], α̂d(n + 1) = 1, and α̂d(k) = 0 for every k ∈ [s] \ [n + 1].
Hence, per each point j ∈ F `, computing α̂d(j) reduces to evaluating EQ(j, µ̂(k)) · α̂d(µ̂(k)) at n+ 1
points (only); that is, letting I denote the subset of Hm ≡ [2`] that correspond to [n + 1], the
verifier just computes

∑
k∈I EQ(j, µ̂(k)) · α̂d(µ̂(k)).

Analysis of the forgoing interactive proof system. We first observe that the complexities of the
foregoing protocol are as stated in Theorem 1. Specifically, the protocol proceeds in O(d) steps
and in each step a Sum-Check protocol is invoked on a sum that ranges over Hm, where m =
O(1/δ) and |H| = nδ. Since the relevant polynomial is of degree nδ+o(1), the total (m-round)
communication is of this order.13 The verification time is dominated by the final check (i.e.,
evaluating α̂d on few points), which runs in time O(n1+o(1)). The complexity of the prescribed
prover is dominated by its operation in the Sum-Check protocol, which can be implemented in
time |H|m · no(1) = s(n)1+o(1). Next, we show that this protocol constitutes an interactive proof
system (with imprefect completeness) for {x : C|x|(x)=1}.

Claim 5 (imperfect completeness): If Cn(x) = 1 and the prover follows the presecribed strategy,
then the verifier accepts with probability 1− o(1).

Proof: The probability that the value of an or-gate, under a fixed setting of its input wires, is
correctly emulated by the multiplication of t random affine combinations of these wires is at least 1−

11Note that the degree of ψ̂i is upper bounded by no(1), since it is obtained by arithmetizing the formula ψi
which has size no(1), whereas µ̂ has degree |H| − 1. Likewise, the composition of µ̂ and α̂i is a polynomial of degree

poly(logn) · |H| = Õ(nδ), since the polynomial α̂i has degree O(logn)2.
12Indeed, Eq. (5), which extends Eq. (1), is not used. Recall that Eq. (5) actually merges two layers: A layer

of addition gates that performs the s-way sums, which is handled as in the previous item, and a layer of two-way
multiplication gates that is handled as a layer of `′-way multiplication gates.

13This dominates the length of the initial verifier-message y ∈ {0, 1}n
δ

.

10

2−t, where in case all wires feed 0 the emulation is always correct.14 The same holds (approximately)
when the random linear combinations are replaced by inner products with a small biased sequence;
specifically, if the sequence is 0.1-biased, then the emulation is correct with probability at least
1− (0.5 + 0.1)t. Using t = 2 log s(n) = O(log n) and employing a union bound, it follows that with

probability 1− o(1) over the choice of y ∈ {0, 1}nδ , it holds that An(x, y) = Cn(x). Observing that
the verifier always accepts when An(x, y) = 1 (and the prover follows the prescribed strategy), the
claim follows.

Claim 6 (soundness): If Cn(x) = 0, then, no matter what strategy the prover employs, the verifier
accepts with probability at most o(1).

Proof: As shown in the proof of Claim 5, with probability 1−o(1) it holds that An(x, y) = Cn(x).
Recalling that the soundness error of the Sum-Check protocol is proportional to the ratio of the
degree of the polynomial over the size of the field, it follows that the prover can fool the verifier
into accepting a wrong value of An(x, y) with proability O(dm) · |H| ·no(1)/|F| = nδ+o(1)−2δ = o(1),
where we used the setting |F| = n2δ. The claim follows.

Getting rid of the completeness error. Claims 5 and 6 assert that the foregoing protocol
constitutes a proof system for {x : C|x|(x)=1}, but this proof system carries a completeness error
(see Claim 5). Recalling that this error is only due to the (unlikely) case that An(x, y) 6= Cn(x), the
begging fix is to have the prover prove to the verifier that this case has occurred (with respect to
the random string y chosen by the verifier). Specifically, the (unlikely) case that An(x, y) 6= Cn(x)
may occur only when at least one or-gate of Cn is badly emulated by An; that is, the value of
this gate is 1 in the computation of Cn(x) whereas the corresponding (negated multiplication) gate
in An(x, y) evaluates to 0. This means that at least one of the gates (in An) that correspond to
the children of the or-gate in Cn evaluates to 1, whereas the gate (in An) that corresponds to the
or-gate (of Cn) evaluates to 0. So all that the prover needs to do is point out these two gates
in An, and prove that their values are as stated. Hence, we regain perfect completeness, whereas
the soundness claim remains valid (since in order to cheat the prover has to prove a false claim
regarding the value of a gate in An). Thus, we obtain:

Theorem 7 (Theorem 1, restated): For constants c, d ∈ N, let {Cn : {0, 1}n → {0, 1}} be a family
of layered Boolean circuits with unbounded fan-in conjunction and parity gates such that Cn has
size at most nc and depth d. Suppose that Cn can be described by an adjacency predicate that is
computable by a no(1)-size formula that can be constructed in n1+o(1)-time. Then, for every δ ∈
(0, 1], the set {x : C|x|(x)=1} has a O(cd/δ)-round interactive proof system of perfect completeness

14Recall that we actually refer to the “negation” of the output of the multiplication gate (i.e., the value of the
output plus 1). That is, for fixed b ∈ {0, 1}w, we consider the probability

p
def
= Prr(1),...,r(t)∈{0,1}w

1 +
∏
i∈[t]

(1 + 〈b, r(i)〉2) = 1

where 〈b, r〉2 denotes the inner product mod 2 of b and r. In other words, p equals the probability that

∏
i∈[t](1 +

〈b, r(i)〉2) = 0. Note that
∏
i∈[t](1 + 〈0w, r(i)〉2) = 1 for every r(1), ..., r(t) ∈ {0, 1}w, which implies that p = 0 when

b = 0w. On the other hand, for any b ∈ {0, 1}w \ {0w}, it holds that Prr∈{0,1}w [1 + 〈b, r〉2 = 0] = 1/2, which implies
that p = 1− 2−t.

11

in which the verifier runs in time O(n1+o(1)), the prescribed prover can be implemented in time
O(nc+o(1)), and the total communication is nδ+o(1).

Note that the foregoing adjacency predicate refers to gates of Cn, which are identified by `-bit long
strings, where ` = O(log n). Thus, the uniformity condition postulates that this predicate can be
computed by a formula of size exp(o(`)) (equiv., by a bounded fan-in circuit of depth o(`)) that
can be constructed in time exp(`/O(1)).

Remark 8 (from incidence functions to adjacency predicate): The foregoing presentation refers to
the adjacency predicates ψi : {0, 1}2` → {0, 1}, which were extended to ψ̂i : F2` → F . Suppose that
we are given, instead, incidence functions of the form φi : [s]× [s]→ [s]∪{0}, which we view as φi :
{0, 1}2` → {0, 1}`+1, where [s] ≡ {0, 1}` ≡ {1σ : σ ∈ {0, 1}`} and 0 ≡ 0`+1. In such a case, we may
simply replace ψ̂i(j, k) by

∑
p∈{0,1}` EQ(φ̂i(j, p), 1k) (or actually by

∑
p∈Hm EQ(φ̂i(j, µ̂(p)), 1k)).15

This means that, in invocations of the Sum-Check protocol, the relevant summations are over H2m

rather than over Hm.

Remark 9 (the case of canonical circuits): In this case, the s-sized circuit of depth d has the
form of a w-ary tree of depth d such that w = s1/d, and the input assignment is represented by
the function φ : {0, 1}` → [n] ∪ {0, n + 1}. Hence, we effectively refer to the adjacency predicate
ψi : [w]d × [w]d → {0, 1} such that ψi(j1 · · · jd, k1 · · · kd) = 1 if and only if j1 · · · ji−1ji+1 · · · jd =
k1 · · · ki−1ki+1 · · · kd (or rather ψi : [w]i−1 × [w]i → {0, 1} such that ψi(j1 · · · ji−1, k1 · · · ki) = 1 if
and only if j1 · · · ji−1 = k1 · · · ki−1).16 In addition, instead of Eq. (8), for z ∈ F `, we have

α̂d(z) =
∑
k∈Hm

EQ(z, µ̂(k)) · I(µ̂(k)). (9)

where I(z′)
def
=
∑

v∈[n+1] EQ(v, φ̂(z′)) · xv and φ̂ is polynomial that is obtained by transforming the

Boolean formula that computes φ to a corresponding arithmetic formula. (Hence, for k′ ∈ {0, 1}`,
it holds that I(k′) = xφ(k′), where x0 = 0 and xn+1 = 1.)17 Recall that once the O(d) iterations are
completed, the verifier is left with the verification of polylogarithmically many claims, where each
claim refers to the value of α̂d at a single point j ∈ F `. Here we cannot afford having the verifier
evaluating α̂d at j by itself (since |H|m = s). Instead, we instruct the parties to run the Sum-Check
protocol on Eq. (9), and the verifier is left with a claim referring to the value of EQ(j, µ̂(k)) ·I(µ̂(j))
at a random point k ∈ Fm, which can be done in Õ(n)-time since I is the sum of n + 1 easily
computable terms.

3 The interactive proof system for NC1

In this section we prove the following result.

Theorem 10 (Theorem 4, restated): For a logarithmic function d : N → N, let {Cn : {0, 1}n →
{0, 1}} be a family of canonical Boolean circuits of fan-in two and depth d. Suppose that the input

15Recall that k ∈ [s] ≡ {1σ : σ ∈ {0, 1}`}, whereas 0 is encoded as 0`+1.
16Indeed, we can replace Eq. (2) by αi−1(j1 · · · jd) =

∑
ki∈[w] αi(j1 · · · ji−1kiji+1 · · · jd) (or rather by

αi−1(j1 · · · ji−1) =
∑
ki∈[w] αi(j1 · · · ji−1ki)), and ditto for Eq. (5).

17Note that if φ(k′) = 0 ∈ {0, 1}` \ [n+ 1], then I(k′) = 0 = x0.

12

assignment of Cn can be computed by a no(1)-size formula that can be constructed in n1+o(1)-time.
Then, for every δ ∈ (0, 1], the set {x : C|x|(x) = 1} has a O(d(n)/δ log n)2-round interactive proof

system of perfect completeness in which the verifier runs in time O(n1+o(1)), the prescribed prover
can be implemented in polynomial-time, and the total communication is nδ+o(1).

We leave open the question of whether the round complexity can be reduced toO(δ−1·(d(n)/ log n)2),
meeting the bound in Theorem 7.

3.1 Overview

The construction generalizes and somewhat simplifies the proof systems constructed by Goldwasser,
Kalai, and Rothblum [8]. The simplification is due to working with canonical circuits rather than
with general (log-space) uniform circuits as in [8], whereas the generalization allows us to reduce
the round complexity of [8] by a log-squared factor. Specifically, the canonical form of the circuit
allows us to relate the values of layers in the circuit that are at distance δ log n apart, whereas [8]
relate values at adjacent layers (only). In addition, we use a version of the sum-check protocol that
handles summations over an alphabet of size nδ (rather than over the alphabet {0, 1}).

Fixing a constant δ ∈ (0, 1), let `′ = δ log n. The core of the proof system asserted in Theorem 10
is an iterative process in which a claim about the values of the gates that are at layer (i− 1) · `′ is
reduced to a claim about the values of the gates at layer i · `′. We stress that each of these claims
refers to the values of the polynomially many gates at a specific layer of the circuit C|x| during the
computation on input x, but these poly(|x|) values are not communicated explicitly but rather only
referred to. Nevertheless, in t = d(|x|)/`′ iterations, the claim regarding the value of the output
gate (i.e., the value C|x|(x)) is reduced to a claim regarding the values of the bits of the input x,
whereas the latter claim (which refers to x itself) can be verified in almost linear time.

Each of the aforementioned claims regarding the values of the gates at layer i · `′, where i ∈
{0, 1, ..., t}, is actually a claim about the value of a specified location in the corresponding encoding
of the (string that describing all the) gate-values at layer i · `′. Specifically, the encoding used is
the low degree extension of the said string (viewed as a function), and the claims are claims about
the evaluations of these polynomials at specific points.

The different codewords (or polynomials) are related via the structure of the circuit C|x|, which
is the case of canonical circuit is straightforward to implement (avoiding a main source of technical
difficulty in [8] (see also [4])). Indeed, this reduces a claim regarding one value in the encoding of
layer (i−1) · `′ to 2`

′
= nδ analogous claims regarding layer i · `′, but (as in [8]) “batch verification”

is possible, reducing these 2`
′

claims to a single claim.

3.2 The actual construction

For simplicity (and w.l.o.g.), we assume that Cn contains only NAND-gates of (fan-in two), where
NAND(a, b) = ¬(a ∧ b). Viewing this gate as operating in a finite field that contains {0, 1}, we have
NAND(a, b) = 1− (a · b) for a, b ∈ {0, 1}. The function computed by tree of depth i of such gates is
given by

NANDi(b1, ..., b2i) = 1− (NANDi−1(b1, ..., b2i−1) · NANDi−1(b2i−1+1, ..., b2i)), (10)

where b1, ..., b2i ∈ {0, 1} are the values at its leaves and NAND0(b) = b; indeed, NAND1 = NAND.
By augmenting the circuit with gates that are fed by no gate (and feed no gate), we can

present the circuit as having d(n) + 1 layers of gates such that each layer has exactly k(n) =

13

2d(n) = poly(n) gates, where (by convention) gates that are fed nothing always evaluate to 0. As
usual, the gates at layer i are only fed by gates at layer i + 1, and the leaves (at layer d(n))
are input-variables or constants. Recall that the latter assignment is represented by the function
φ : {0, 1}` → [n] ∪ {0, n+ 1}, where ` = d(n) and [k(n)] ≡ {0, 1}`, such that the jth leaf is fed the
variable xφ(j) if φ(j) ∈ [n] (and the constant φ(j) mod n otherwise). The output is produced at
the first gate of layer zero.

The high level protocol. On input x ∈ {0, 1}n, the prescribed prover computes the values of
all layers. Letting d = d(n) and k = k(n), we denote the values at the ith layer by αi ∈ {0, 1}k; in
particular, α0 = Cn(x)0k−1 and αd is the sequence of values given by xφ(0`), ..., xφ(1`), where x0 = 0
and xn+1 = 1. For a sufficiently large finite field, denoted F , consider an arbitrary fixed set H ⊂ F
of size 2`

′
, where `′ = δ · log n, and let m = log|H| k = (log k)/ log |H| = d/`′ = O(1/δ).18 For each

i ∈ {0, 1, ..., d − 1}, viewing αi as a function from Hm ≡ [k] to {0, 1}, the prover encodes αi by a
low degree polynomial α̂i : Fm → F that extends it (i.e., α̂i(σ) = αi(σ) for every σ ∈ Hm); that is,

α̂i(z1, ..., zm) =
∑

σ1,...,σm∈H
EQ(z1 · · · zm, σ1 · · ·σm) · αi(σ1, ..., σm) (11)

where EQ is a low degree polynomial in the zi’s that tests equality overHm (i.e., EQ(z1 · · · zm, σ1 · · ·σm) =∏
i∈[m] EQσi(zi) and EQσ(z) =

∏
β∈H\{σ}(z − β)/(σ − β)). Actually, recalling that all but the first

2i gates of layer i evaluate to 0, for i’s that are multiples of `′, we re-write Eq. (11) as

α̂i′·`′(z1, ..., zm) =
∑

σ1,...,σi′∈H
EQ(z1 · · · zm, 1m−i

′
σ1 · · ·σi′) · αi(1, ..., 1, σ1, ..., σi′) (12)

Either way, α̂i is a polynomial of individual degree |H| − 1.
In light of the foregoing, proving that Cn(x) = 1 is equivalent to proving that α̂0(1m) = 1, where

1m ∈ Hm corresponds to the fixed (e.g., first) location of the output gate in the zero layer. This
proof is conducted in t = d/`′ iterations, where in each iteration a multi-round interactive protocol
is employed. Specifically, in ith iteration, the correctness of the claim α̂(i−1)·`′(ri−1) = vi−1, where
ri−1 ∈ Fm and vi−1 ∈ F are known to both parties, is reduced (via the interactive protocol) to
the claim α̂i·`′(ri) = vi, where ri ∈ Fm and vi ∈ F are determined (by this protocol) such that
both parties get these values. We stress that, with the exception of i = t, the α̂i·`′ ’s are not known
(or given) to the verifier; still, the claims made at the beginning (and at the end) of each iteration
are well defined (i.e., each claim refers to a predetermined low degree polynomial that extends the
values assigned to the gates (of a certain layer) of the circuit in a computation of the circuit on
input x ∈ {0, 1}n).

Once the last iteration is completed, the verifier is left with a claim of the form α̂d(rt) = vt,
where α̂d is defined as in Eq. (9). Recall that Eq. (9) reads α̂d(y) =

∑
k∈{0,1}` EQ(y, k) · I(k),

where I(z)
def
=
∑

v∈[n+1] EQ(v, φ̂(z)) · xv and φ̂ is polynomial that is obtained by transforming the
Boolean formula that computes φ to a corresponding arithmetic formula.) Hence, the verifier cannot
evaluate α̂d by itself, but it can verify its value via the Sum-Check protocol, since I is a low degree
polynomial that can be evaluated in almost linear (in n) time. So, at this point, the parties run
the Sum-Check protocol (as in Remark 9).

18The setting of |H| = 2`
′

simplifies the exposition. Actually, we may use arbitrary t = d/`′ and m = d/ log |H|,
although letting m be an integer multiple of t (equiv., `′ be an integer multiple of log |H|) simplifies the exposition.

In the general case, we obtain a O(tm)-round protocol of total communication Õ(2d/t · 2d/m).

14

A single iteration. The core of the iterative proof is the interactive protocol that is performed
in each iteration. This protocol is based on the relation between subsequent αi’s, which is based
on the canonical structure of the circuit. Specifically, recall that the ith iteration reduces a claim
regarding α̂(i−1)·`′ to a claim regarding α̂i·`′ , where these polynomials encode the values of the
corresponding layers in the circuit (i.e., layers (i − 1) · `′ and i · `′). The relation between these
layers is given by

α(i−1)·`′(1, ..., 1, u1, ..., ui−1) = NAND`′((αi·`′(1, ..., 1, u1, ..., ui−1, u))u∈H) (13)

where u1, ..., ui−1 ∈ H ≡ {0, 1}`
′

and NAND`′ is as defined in Eq. (10). Combining Eq. (12) with
Eq. (13), it holds that α̂(i−1)·`′(z1, ..., zm) equals∑

u1,...,ui−1∈H
EQ(z1 · · · zm, 1m−(i−1)u1 · · ·ui−1) · NAND`′((α̂i·`′(1, ..., 1, u1, ..., ui−1, u))u∈H). (14)

In preparation to applying the Sum-Check protocol to Eq. (14), we observe that the corresponding
(i− 1)-variate is of individual degree O(2`

′ · |H|) = O(n2δ). This is the case because, for any fixed
point (r′, r′′) ∈ Fm−i+1 ×F i−1, we can write Eq. (14) as

EQ(r′, 1m−i+1) ·
∑

u1,...,ui−1∈H
EQ(r′′, u1 · · ·ui−1) · NAND`′((α̂i·`′(1, ..., 1, u1, ..., ui−1, u))u∈H)

= EQ(r′, 1m−i+1) ·
∑

u1,...,ui−1∈H
Pr′′(u1, ..., ui−1),

where Pr′′(y1, ..., yi−1)
def
= EQ(r′′, y1 · · · yi−1) ·NAND`′((α̂i·`′(1, ..., 1, y1, ..., yi−1, u))u∈H) is a low degree

(i − 1)-variate polynomial; specifically, its individual degree is dominated by the product of the
total degree of NAND`′ and the individual degree of α̂i·`′ , which are 2`

′
and |H| − 1, respectively.

Applying the Sum-Check protocol to Eq. (14) allows to reduce a claim regarding the value of
α̂(i−1)·`′ at a specific point ri−1 = (r′i−1, r

′′
i−1) ∈ Fm−i+1 × F i−1 to a claim regarding the value of

the polynomial Pr′′i−1
at a random point (r′′1 ,, r

′′
i−1) in F i−1, which in turn depends on the values

of α̂i·`′ at 2`
′

points in Fm (i.e., the points ((1, ..., 1, r′′1 , ..., r
′′
i−1, u))u∈H)).

To reduce this claim to a claim regarding the value of α̂i·`′ at a single point, we let the prover
send these 2`

′
values and perform “batch verification” for them. Specifically, the prover provides a

low degree polynomial that describes the value of α̂i·`′ on the axis-parallel line that goes through
these points, and the claim to be proved in the next iteration is that the value of α̂i·`′ at a random
point on this line equals the value provided by the polynomial sent by the prover.19 Hence, the full
protocol that is run in iteration i is as follows.

Construction 11 (reducing a claim about α̂(i−1)·`′ to a claim about α̂i·`′): For known ri−1 ∈ Fm
and vi−1 ∈ F , the entry claim is α̂(i−1)·`′(ri−1) = vi−1. The parties proceed as follows.

19We mention that the fact that these 2`
′

points reside on a line makes the argument simpler, but not in a
fundamental way. In general, the prover could have picked a curve of degree 2`

′
− 1 that goes through any 2`

′
points

of interest, and provide a low degree polynomial describing the value of α̂i·`′ on this curve. In this case, the claim to
be proved in the next iteration would have been that the value of α̂i·`′ at a random point on this curve equals the
value provided by the polynomial sent by the prover.

15

1. Applying the Sum-Check protocol to the entry claim, when expanded according to Eq. (14),
determines r′ ∈ F i−1 and a value v ∈ F such that the residual claim for verification is

EQ(ri−1, 1
m−(i−1)r′) · NAND`′((α̂i·`′(1, ..., 1, r′, u))u∈H) = v. (15)

2. The prover sends a univariate polynomial p′ of degree smaller than m · |H| such that p′(z) =
α̂i(1, ..., 1, r

′, z).

3. Upon receiving the polynomial p′, the verifier checks whether v equals

EQ(ri−1, 1
m−(i−1)r′) · NAND`′((p′(u))u∈H), (16)

and continues only if equality holds (otherwise it rejects).

4. The verifier selects a random r ∈ F , and sends it to the prover. Both parties set ri =
(1, ..., 1, r′, r) and vi = p′(r).

The exit claim is α̂i·`′(ri) = vi.

The complexities of Construction 11 are dominated by the application of the Sum-Check protocol,
which refers to a polynomial of degree O(2`

′ · |H|) = O(n2δ). In particular, this implies that
the verifier’s strategy can be implemented in time Õ(n2δ), provided that |F| = poly(n). In this
case, the prescribed prover strategy (as defined in Construction 11) can be implemented in time
Õ(2d(n)) = poly(n),

Recall that after the last iteration of Construction 11, the resulting claim is checked by the
Sum-Check protocol (applied to Eq. (9)), which leaves the verifier with the task of evaluating I,

where I(z)
def
=
∑

v∈[n]∪{0,n+1} EQ(v, φ̂(z)) · xv. Using the hypothesis regarding φ, it follows that the

verifier runs in n1+o(1)-time. The round complexity of the ith iteration of Construction 11 is i ≤ m,
and so the total round complexity is m ·m+m = O(d(n)/δ log n)2.

One can readily verify that if the entry claim is correct, then the exit claim is correct, whereas
if the entry claim is false, then with probability at least 1 − O(m · 2`′ · |H|/|F|) the exit claim is
false. Recall that the soundness error of the entire protocol is upper-bounded by the probability
that there exists an iteration in which the entry claim is false but the exist claim is true. Hence,
the total soundness error is O(n2δ/|F|) = o(1).

Acknowledgements

As noted in the body of the paper, an unpublished work by Yael Kalai and Guy Rothblum [12]
proposed a constant-round doubly-efficient proof system for NC1 under a very strict notion of uni-
formity. This unpublished work has inspired our own work, and we thank Yael for her contribution
to it as well as for many other helpful conversations on these topics.

16

References

[1] Noga Alon, Oded Goldreich, Johan Hastad, and Rene Peralta. Simple Construction of Almost
k-wise Independent Random Variables. Random Structures and Algorithms, Vol. 3 (3), pages
289–304, 1992.

[2] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On Uniformity within
NC1. Journal of Computer and System Science, Vol. 41 (3), pages274–306, 1990.

[3] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008.

[4] Oded Goldreich. On the doubly-efficient interactive proof systems of GKR. ECCC, TR17-101,
2017.

[5] Oded Goldreich and Guy N. Rothblum. Simple doubly-efficient interactive proof systems for
locally-characterizable sets. ECCC, TR17-018, 2017.

[6] Oded Goldreich and Guy N. Rothblum. Worst-case to Average-case reductions for subclasses
of P. ECCC TR17-130, 2017.

[7] Oded Goldreich and Guy N. Rothblum. Counting t-cliques: Worst-case to average-case reduc-
tions and direct interactive proof systems. ECCC TR18-046, 2018.

[8] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating Computation: In-
teractive Proofs for Muggles. Journal of the ACM, Vol. 62(4), Art. 27:1-27:64, 2015. Extended
abstract in 40th STOC, pages 113–122, 2008.

[9] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version
in 17th STOC, 1985.

[10] Alexander Healy and Emanuele Viola. Constant-Depth Circuits for Arithmetic in Finite Fields
of Characteristic Two. ECCC TR05-087, 2005.

[11] Yael Tauman Kalai and Ran Raz. Interactive PCP. In 35th International Colloquium on
Automata, Languages and Programming (Part II), pages 536–547, 2008.

[12] Yael Tauman Kalai and Guy N. Rothblum. Constant-round interactive proofs for NC1. Un-
published observation, 2009.

[13] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, Vol. 39, No. 4, pages 859–868, 1992. Extended
abstract in 31st FOCS, 1990.

[14] Joseph Naor and Moni Naor. Small-Bias Probability Spaces: Efficient Constructions and
Applications. SIAM Journal on Computing, Vol. 22 (4), pages 838–856, 1993. Preliminary
version in 22nd STOC, 1990.

17

[15] Alexander A. Razborov. Lower bounds on the size of bounded-depth networks over a complete
basis with logical addition. In Matematicheskie Zametki, Vol. 41, No. 4, pages 598–607, 1987
(in Russian). English translation in Mathematical Notes of the Academy of Sci. of the USSR,
Vol. 41 (4), pages 333–338, 1987.

[16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. In 48th ACM Symposium on the Theory of Computing, pages
49–62, 2016.

[17] Adi Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869–877, 1992.
Preliminary version in 31st FOCS, 1990.

[18] Roman Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity. In 19th ACM Symposium on the Theory of Computing pages 77–82, 1987.

[19] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In 46th ACM Symposium
on the Theory of Computing, pages 664–673, 2014.

18

Appendix: The Sum-Check protocol

The Sum-Check protocol, designed by Lund, Fortnow, Karloff, and Nisan [13], is a key ingredient
in the constructions that we present.

Fixing a finite field F and a set H ⊂ F (e.g., H may be a two-element set), we consider an
m-variate polynomial P : Fm → F of individual degree d. Given a value v, the Sum-Check protocol
is used to prove that ∑

σ1,...,σm∈H
P (σ1, ..., σm) = v, (17)

assuming that the verifier can evaluate P by itself. The Sum-Check protocol proceeds in m iter-
ations, such that in the ith iteration the number of summations (over H) decreases from m−i+1 to
m−i. Specifically, the ith iteration starts with a claim of the form

∑
σi,...,σm∈H P (r1, ..., ri−1, σi, ..., σm) =

vi−1, where r1, ..., ri−1 and vi−1 are as determined in prior iterations (with v0 = v), and ends with
a claim of the form

∑
σi+1,...,σm∈H P (r1, ..., ri, σi+1, ..., σm) = vi, where ri and vi are determined in

the ith iteration. Initializing the process with v0 = v, in the ith iteration the parties act as follows.

Prover’s move: The prover computes a univariate polynomial of degree d over F

Pi(z)
def
=

∑
σi+1,...,σm∈H

P (r1, ..., ri−1, z, σi+1, ..., σm) (18)

where r1, ..., ri−1 are as determined in prior iterations, and sends Pi to the verifier (claiming
that

∑
σ∈H Pi(σ) = vi−1).

Verifier’s move: Upon receiving a degree d polynomial, denoted P̃ , the verifier checks that∑
σ∈H P̃ (σ) = vi−1 and rejects if inequality holds. Otherwise, it selects ri uniformly in

F , and sends it to the prover, while setting vi ← P̃ (ri).

If all m iterations are completed successfully (i.e., without the verifier rejecting in any of them),
the verifier conducts a final check. It computes the value of P (r1, ..., rm) and accepts if and only if
this value equals vm.

Clearly, if Eq. (17) holds (and the prover acts according to the protocol), then the verifier accepts
with probability 1. Otherwise, no matter what the prover does, the verifier accepts with probability
at most m · d/|F|, because in each iteration if the prover provides the correct polynomial, then the
verifier rejects (since

∑
σ∈H Pi(σ) = Pi−1(ri−1) 6= vi−1), and otherwise the (degree d) polynomial

sent agrees with Pi on at most d points.20

The complexity of verification is dominated by the complexity of evaluating P (on a single
point). As for the prescribed prover, it may compute the relevant Pi’s by interpolation, which is
based on computing the value of P at (d + 1) · |H|m−i points, for each i ∈ [m]. (That is, the
polynomial Pi is computed by obtaining its values at d + 1 points, where the value of Pi at each
point is obtained by summing the values of P at |H|m−i points.)21

20If Pi does not satisfy the current claim (i.e.,
∑
σ∈H Pi(σ) 6= vi−1), then the prover can avoid upfront rejection

only if it sends P̃ 6= Pi. But in such a case, P̃ and Pi (both being degree d polynomials) may agree on at most d

points. Hence, if the chosen ri ∈ F is not one of these points, it holds that vi = P̃ (ri) 6= Pi(ri), which means that
the next iteration will also start with a false claim. Hence, starting with a false claim (i.e.,

∑
σ∈H P1(σ) 6= v0 since

Eq. (17) does not hold), with probability at least 1 −m · d/|F|, after m iterations we reach a false claim regarding
the value of P at a single point.

21Specifically, the value of Pi at p is obtained from the values of P at the points (r1, ..., ri−1, p, σ), where σ ∈ Hm−i.

19

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

