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Abstract

We present explicit constructions of non-malleable codes with respect to the following tam-
pering classes. (i) Linear functions composed with split-state adversaries: In this model, the
codeword is first tampered by a split-state adversary, and then the whole tampered codeword is
further tampered by a linear function. (ii) Interleaved split-state adversary: Here the codeword
is partitioned in an unknown (but fixed) way, and then tampered by a split-state adversary.
(iii) Bounded communication split-state model: In this model, the split-state adversaries are
allowed to participate in a communication protocol (with bounded communication budget) to
tamper the codeword. Our results are the first explicit constructions of non-malleable codes in
any of these tampering models.

We derive all our non-malleable codes from explicit constructions of seedless non-malleable
extractors. We believe that our results on seedless non-malleable extractors and the techniques
developed are of independent interest. Using our techniques, we also give an improved extractor
for an unknown interleaving of two independent sources.
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1 Introduction

1.1 Non-malleable Codes

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs [DPW10] as a relaxation
of error correcting codes, with the motivation of being able to handle more complex tamperings of
the codeword. Traditional notions of error correction can only provide meaningful guarantees when
the tampered codeword is close in hamming distance to actual codeword, where as in practice
the adversarial functions acting on codewords could be of arbitrary complexity. Non-malleable
codes bridge this gap, and informally provide the guarantee that either the codeword decodes
back to the original message or decodes to a message that is independent of the original message.
This captures the intuition that an adversary cannot change the codeword in a way such that the
tampered codeword decodes back to a message of her choice.

The original intended use of non-malleable codes is to tamper-resilient cryptography. Subse-
quently, non-malleable codes have also found uses in non-malleable commitments [GPR16] and other
areas of cryptography [CMTV15]. Further, interesting connections were found to non-malleable ex-
tractors [CG14]. Various components developed in constructing non-malleable codes make use of
sophisticated ideas from combinatorics [ADL14,CZ14], and some of these components have found
applications in constructing extractors for independent sources [Li17]. This makes it particularly
interesting to study non-malleable codes on its own right, and possibly find more connections to
other well studied objects.

We need to introduce some notions before formally defining non-malleable codes.

Definition 1.1. For any function f : S → S, f has a fixed point at s ∈ S if f(s) = s. We say
f has no fixed points in T ⊆ S, if f(t) 6= t for all t ∈ T . f has no fixed points if f(s) 6= s for all
s ∈ S.

Definition 1.2 (Tampering functions). For any n > 0, let Fn denote the set of all functions
f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering functions.

We use statistical distance to measure distance between distributions.

Definition 1.3. The statistical distance between two distributions D1 and D2 over some universal
set Ω is defined as |D1 −D2| = 1

2

∑
d∈Ω |Pr[D1 = d]−Pr[D2 = d]|. We say D1 is ε-close to D2 if

|D1 −D2| ≤ ε and denote it by D1 ≈ε D2.

We are now almost ready to formally define non-malleable codes. We need to define the following
function.

copy(x, y) =

{
x if x 6= same?

y if x = same?

We follow the treatment in [DPW10] and first define coding schemes before introducing non-
malleable codes.

Definition 1.4 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {⊥}
be functions such that Enc is a randomized function (i.e., it has access to private randomness) and
Dec is a deterministic function. We say that (Enc,Dec) is a coding scheme with block length n and
message length k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1, where the probability is taken over
the randomness in Enc.
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Definition 1.5 (Non-malleable codes). A coding scheme C = (Enc,Dec) with block length n and
message length k is a non-malleable code with respect to a family of tampering functions F ⊂ Fn
and error ε if for every f ∈ F there exists a random variable Df on {0, 1}k ∪ {same?} which is
independent of the randomness in Enc such that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s)))− copy(Df , s)| ≤ ε.

The rate of C is given by k/n.

We define some tampering function families that we are concerned with in this paper. We use
the notation that for any permutation π : [n]→ [n] and any string x ∈ [r]n, let y = xπ denote the
length n string such that yπ(i) = xi.

• The family of 2-split-state functions 2SS ⊂ F2n: Any f ∈ 2SS comprises of two functions f1 :
{0, 1}n → {0, 1} and f2 : {0, 1}n → {0, 1}, and for any x, y ∈ {0, 1}n, f(x, y) = f1(x) ◦ f2(x).

• The family of linear functions Lin ⊂ Fn: Any f ∈ Lin is a linear function from {0, 1}n to
{0, 1}n.

• The family of interleaved 2-split-state 2ISS ⊂ F2n: Any f ∈ 2SS comprises of two functions
f1 : {0, 1}n → {0, 1} and f2 : {0, 1}n → {0, 1}, and a permutation π : [2n]→ [2n] such that for
any z = x◦y, where x, y ∈ {0, 1}n, let x′ be the first n bits of zπ and y′ be the last n bits of zπ.
Then, f(z) = f1(x′)◦f2(y′). This model extends the split-state model and captures the model
of split-state tampering where the codeword is partitioned into two halves in an unknown way
(and then tampered using a 2-split-state adversary). Constructing non-malleable codes with
respect to such adversaries was raised by Cheraghchi and Guruswami [CG14].

• The family of bounded communication 2-split-state functions (2, t, `) − CSS: Consider the
following natural extension of the 2-split-state model where the two tampering functions are
allowed to participate in a communication protocol. Let c = (x, y) be a codeword in {0, 1}2n,
where x is the first n bits of C and y is the remaining n bits of c. Let Alice and Bob be
two tampering agents who can communicate, with Alice having access to x and Bob having
access y. Alice and Bob run a communication protocol with parameters t, ` runs for ` rounds,
with each round comprising Alice sending Bob t bits (that depend on x and the transcript of
the communication so far) and Bob sends back t bits (that depend on y and the transcript
of the communication so far) to Alice. Finally, Alice outputs x′ ∈ {0, 1}n and Bob outputs
y′ ∈ {0, 1}n, and the tampered codeword is c′ = (x′, y′).

• For any tampering function families F ,G ⊂ Fn, define the composed family F ◦ G ⊂ Fn to
be the set of all functions of the form f ◦ g, where f ∈ F and g ∈ G.

The following are our main results on non-malleable codes.

Theorem 1. There exists a constant δ > 0 such that for all integers n > 0 there exists an efficient
non-malleable code with respect to 2ISS with rate 1/nδ and error 2−n

δ
.

Theorem 2. There exists a constant δ > 0 such that for all integers n > 0 there exists an efficient
non-malleable code with respect to Lin ◦ 2SS with rate 1/nδ and error 2−n

δ
.

Theorem 3. There exists a constant δ > 0 such that for all integers n, t, ` > 0 with t · ` ≤ δn,
there exists an efficient non-malleable code with respect to (2, t, `) − CSS with rate log logn/ log n
and error 2−n log logn/ logn.

Prior to our work, no such efficient non-malleable code construction was known (for any rate)
with respect to the tampering classes 2SS, 2ISS or (2, t, `)− CSS.
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Relevant prior work on non-malleable codes There has been a lot of exciting progress on ex-
plicit constructions of non-malleable codes, and we do not attempt to provide a comprehensive sur-
vey of them. In particular, we focus on relevant explicit constructions in the information theoretic
model. By a very successful line of work [DKO13,ADL14,CG14,CZ14,ADKO15,CGL16,Li17,Li18],
we now have explicit constructions of non-malleable codes with respect to 2-split-state adversaries
with rate Ω(log log n/ log n). A recent work of Kanukurthi, Obbattu, and Sruthi [KOS17] gave
explicit constructions of non-malleable codes in the 4-split-state model that almost achieve optimal
rates. The number of states required in this construction was improved to 3 by Gupta, Maji and
Wang [GMW17].

Recently, there has been more progress towards handling tampering functions that have more
global access to the bits of the codeword. A work of Agrawal, Gupta, Maji, Pandey and Prab-
hakaran [AGM+15] gave explicit constructions of non-malleable codes with respect to tampering
functions that permute or flip bits. Ball, Dachman-Soled, Kulkarni and Tal Malkin [BDKM16] gave
explicit construction of non-malleable codes against t-local functions for t ≤ n1−ε. A recent work
of Chattopadhyay and Li [CL17] gave explicit constructions of non-malleable codes with respect
to linear functions and small depth circuits. The rate of the non-malleable code was exponentially
improved by a recent work of Ball, Dachman-Soled, Guo, Malkin, and Tan [BDG+18]. Our explicit
non-malleable code for Lin ◦ 2SS is another step towards handling more global tampering of the
codeword.

1.2 Seedless non-malleable extractors

Our results on non-malleable codes are based on new constructions of seedless non-malleable ex-
tractors. We believe these constructions should be of independent interest. We begin by recalling
basics notions from the area of randomness extraction before introducing seedless non-malleable
extractors.

The area of randomness extraction is motivated by the problem of purifying imperfect (or
defective) sources of randomness. The concern stems from the fact that naturally occurring sources
of randomness often produce low quality bits of randomness, while for most applications, one
requires bits that are uniform and independent bits. The standard way of measuring the randomness
of a source is using min-entropy.

Definition 1.6. The min-entropy of a source X is defined to be: H∞(X) = minx(− log(Pr[X =
x])). The min-entropy rate of a source X on {0, 1}n is H∞(X)/n. Any source X on {0, 1}n with
min-entropy at least k is called an (n, k)-source.

It turns out that it is impossible to extract from a single random source. To bypass this
difficulty, a particularly useful and well studied notion is that of a seeded extractor that takes in
some additional amount of randomness to extract from the weak source.

Definition 1.7. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded extractor if for
any source X of min-entropy k, |Ext(X,Ud)−Um| ≤ ε. Ext is called a strong seeded extractor if
|(Ext(X,Ud),Ud)− (Um,Ud)| ≤ ε, where Um and Ud are independent.

Further, if for each s ∈ Ud, Ext(·, s) : {0, 1}n → {0, 1}m is a linear function, then Ext is called
a linear seeded extractor.

A significantly stronger notion is that of a seeded non-malleable extractor introduced by Dodis
and Wichs [DW09] in the context of achieving privacy amplification in the presence of an active

3



adversary. Informally, such an extractor satisfies a stronger property that for most pairs of seeds,
the output of the extractor are pair-wise independent and uniform. A seedless variant of non-
malleable extractors were introduced by Cheraghchi and Guruswami [CG14] as a way of efficiently
constructing non-malleable codes. Apart from applications to non-malleable codes, such extractors
are of independent interest and have applications to constructions of extractors for independent
sources [Li17].

We now define seedless non-malleable extractors. For simplicity, the definition presented here
assumes that the tampering functions has no fixed points. See Section 3 for a more formal definition.

Definition 1.8 (Seedless non-malleable extractors). Let F ⊂ Fn be a family of tampering functions
such that no function in F has any fixed points. A function nmExt : {0, 1}n → {0, 1}m is a
seedless non-malleable extractor with respect to F and a class of sources X with error ε if for every
distribution X ∈ X and every tampering function f ∈ F ,

|nmExt(X), nmExt(f(X))−Um,nmExt(f(X))| ≤ ε.

Further, we say that nmExt is ε′-invertible, if there exists an efficient sampling algorithm A that
takes as input y ∈ {0, 1}m, and outputs a sample from a distribution that is ε′-close to the uniform
distribution on the set nmExt−1(y).

The following theorem was proved by Cheraghchi and Guruswami [CG14].

Theorem 1.9 ([CG14]). Let nmExt : {0, 1}n → {0, 1}m be an efficient seedless non-malleable
extractor that works for min-entropy n with error ε with respect to a class of tampering functions
F acting on {0, 1}n. Further suppose nmExt is ε′-invertible.

Then there exists an efficient construction of a non-malleable code with respect to the tampering
family F with block length = n, relative rate m

n and error 2mε+ ε′.

The following are our main results on explicit constructions of seedless non-malleable extractors.

Theorem 4. For all n > 0 there exists an efficiently computable seedless (n, nΩ(1), 2−n
Ω(1)

)-non-

malleable extractor with respect to that 2ISS is 2−n
Ω(1)

-invertible.

Theorem 5. For all n > 0 there exists an efficiently computable seedless (n, nΩ(1), 2−n
Ω(1)

)-non-

malleable extractor with respect to Lin ◦ SS that is 2−n
Ω(1)

-invertible.

Theorem 6. There exists δ > 0 such for all integers n, t, ` > 0 with t · ` ≤ δn, there exists an
efficiently computable seedless (n, log logn/ log n, 2−n

Ω(1)
)-non-malleable extractor with respect to

(2, t, `)− CSS that is 2−n log logn/ logn-invertible.

We give the first explicit construction of seedless non-malleable extractors with respect to the
tampering classes 2ISS,Lin ◦ 2SS and (2, t, `)−CSS. The non-malleable extractors with respect to
2ISS,Lin ◦ 2SS are fundamentally new constructions. The non-malleable extractor with respect to
the tampering family (2, t, `) − CSS is obtained by showing a reduction to seedless non-malleable
extractors for 2SS, where excellent constructions are known (e.g., a recent construction of Li [Li18]).

Relevant prior work on seedless non-malleable extractors The problem of constructing
seedless non-malleable extractors was raised by Guruswami and Cheraghchi [CG14] as a way to
construct non-malleable codes. The first such construction was given by Chattopadhyay and Zuck-
erman [CZ14] with respect to the class of 10-split-state adversaries. Subsequently, a series of works

4



starting with the work of Chattopadhyay, Goyal and Li [CGL16] gave explicit seedless non-malleable
extractors for 2-split-state adversaries. The only other known construction of seedless non-malleable
extractors (with respect to a different tampering class) is from a work of Chattopadhyay and Li
[CL17]. They constructed explicit seedless non-malleable extractors with respect to Lin and with
respect to small depth circuits. We note that constructing seedless non-malleable extractors with
respect to 2ISS was posed as an open problem in [CG14].

1.3 Extractors for interleaved sources

Our techniques yield improved explicit constructions of extractors for interleaved sources. Inter-
leaved sources generalize the problem of extracting from independent sources in the following way:
we assume that the extractor gets a sample that is an unknown (but fixed) interleaving of samples
from a few independent sources. Raz and Yehudayoff [RY11] showed that constructing explicit
extractors for such interleaved sources have applications in communication complexity and proving
lower bounds for arithmetic circuits. In subsequent work, Chattopadhyay and Zuckerman [CZ16b]
showed that extractors for interleaved sources can be used to construct extractors for certain sam-
plable sources, extending a line of work initiated by Trevisan and Vadhan [TV00]. We now define
interleaved sources formally.

Definition 1.10 (Interleaved Sources). Let X1, . . . ,Xr be arbitrary independent sources on {0, 1}n
and let π : [rn]→ [rn] be any permutation. Then Z = (X1 ◦ . . . ◦Xr)t is an r-interleaved source.

Our main result is an explicit extractor that works for 2-interleaved sources with both sources
having min-entropy at least 2n/3. The extractor outputs Ω(n) bits that are 2−n

Ω(1)
-close to uniform.

More formally, we have the following result.

Theorem 7. For any constant δ > 0 and all integers n > 0, there exists an efficiently computable
function i`Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that for any two independent sources X and
Y, each on n bits with min-entropy at least (2/3 + δ)n, and any permutation π : [2n] → [2n], we
have

|i`Ext((X ◦Y)π)−Um| ≤ 2−n
Ω(1)

.

Relevant prior work on interleaved extractors Raz and Yehudayoff [RY11] gave explicit
extractors for 2-interleaved sources that works when both the sources have min-entropy at least
(1 − δ)n, for a tiny δ that results out of sum-product estimates in additive combinatorics. They
can output Ω(n) bits with exponentially small error. Subsequently, Chattopadhyay and Zuckerman
constructed extractors for 2-interleaved sources when one of source has entropy (1−γ)n for a small
constant γ and the other source has entropy Ω(log n). They achieve output length of O(log n) bits
with error 1/nO(1).

There is a much better result known (in terms of the min-entropy one can handle) when one
has access to an interleaving of more sources. For a large enough constant C, Chattopadhyay
and Li [CL16] gave an explicit extractor for C-interleaved sources with each source having entropy
k ≥ poly(log n). They achieve error 1/nO(1) and can output kΩ(1) bits.

1.4 Open questions

Non-malleable codes for composition of function classes We gave efficient constructions
of non-malleable codes for the tampering class Lin ◦ 2SS. Many natural questions remain to be
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answered. For instance, one open problem is to efficiently construct non-malleable codes for the
tampering class 2SS◦Lin. It looks like one needs substantially new ideas to give such constructions.
More generally, for what other interesting classes of functins F and G can we construct non-
malleable codes for the composed class F ◦ G? Is it possible to efficiently construct non-malleable
codes for the tampering class F ◦ G if we have efficient non-malleable codes for the classes F and
G?

Other applications for seedless non-malleable extractors The explicit seedless non-malleable
extractors that we construct satisfy strong pseudorandom properties and appear to be objects with
strong combinatorial properties. A natural question is to find more applications of these non-
malleable extractors in explicit constructions of other interesting combinatorial objects.

Improved seedless extractors We construct an extractor for 2-interleaved sources that works
for min-entropy rate 2/3. It is easy to verify that there exists extractors for sources with min-entropy
as low as C log n, and a natural question here is to come up with such explicit constructions. Given
the success in constructing 2-source extractors for low min-entropy [CZ16a, Li18], we are hopeful
that more progress can be made on this problem.

1.5 Organization

We present an overview of our constructions and techniques in Section 2. We use Section 3 to
introduce some background and notation. We present a new advice correlation breaker in Section 4.
We present the construction of a seedless non-malleable extractor with respect to 2ISS in Section 5.
We present our seedless non-malleable extractor construction with respect to Lin◦2SS in Section 6.
The new advice correlation breaker from Section 4 is a crucial ingredient in this construction. We
use Section 7 to present our non-malleable extractor construction with respect to (2, t, `) − CSS.
We present efficient sampling algorithms for our seedless non-malleable extractor constructions in
Section 8. We use Section 9 to present an explicit construction of an extractor for interleaved
sources.

2 Overview of Constructions and techniques

Our results on non-malleable codes are derived from explicit constructions of invertible seedless non-
malleable extractors (see Theorem 3.16). Thus we focus on the explicit constructions of seedless
non-malleable extractors with respect to the relevant classes. We conclude by discussing the explicit
extractor for interleaved sources.

Seedless non-malleable extractors with respect to 2ISS The setup is as follows. We want to
construct a non-malleable extractor nmExt : {0, 1}2n → {0, 1}m, m = nΩ(1) such that the following
hold: Let X and Y be independent (n, k)-sources with k ≥ n− nδ for a small constant δ > 0. Let
f : {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n be two arbitrary functions and let π : [2n] → [2n]
be an arbitrary partition. Further, assume that f has no fixed points1, i.e., ∀x ∈ {0, 1}n, f(x) 6= x.
Then,

nmExt((X,Y)π),nmExt((f(X) ◦ g(Y))π) ≈ε Um,nmExt((f(X) ◦ g(Y))π),

1We can assume this without loss of generality. See Section 5 for the more details.
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where ε = 2−n
Ω(1)

.

The high level idea is to use framework introduced by Chattopadhyay, Goyal and Li [CGL16]
for constructing non-malleable extractors. This involves two two steps: (a) explicit construction of
an advice generator, and (b) explicit construction of an advice correlation breaker. We now explain
these steps in more details tailored to our setting.

For simplicity, we use introduce some notation. Let Z = (X ◦Y)π. We use Z′ to denote the
random variable (f(X)◦g(Y))π. Further, for any function ν, if Q = ν(Z), then we use Q′ to denote
ν(Z′). We use the notation Slice(x, `) to denote a slice (or prefix) of size ` taken from a string x,

The advice generator advGen : {0, 1}2n → {0, 1}a satisfies the guarantee that advGen(Z) 6=
advGen(Z′) with high probability. Further, we require a to be small (nγ , for small γ). We construct
advGen in the following way. Take a large enough slice Z1 (say of length n2δ) from the source Z.
Let Z2 be the remaining part of Z after slicing off Z1. Recalling that we can sample using weak
sources (by a result of Zuckerman [Zuc97]), we now encode Z using a good linear error correcting
code and sample nγ coordinates from Z2 using a sampler (that takes Z1 as input). The output of
the advice generator is Z1 concatenated with the sampled bits from encoding of Z2.

The proof that this indeed works is as follows. We start out by observing that the interesting
case is when Z1Z

′
1. Indeed, the proof is trivial otherwise. Assume without loss of generality that

there are more bits of X in this slice Z1 than bits from Y. We fix the bits from Y in Z1 and it is
now a deterministic function of X. We also fix the bits of X in Z that are not in Z1. We claim that
Z1 has min-entropy at least n2δ/2−nδ. This is direct from the fact that X has min-entropy at least
n− nδ and Z1 contains at least n2δ/2 bits from X. We now fix Y. This fixes the random variable
Z2. Now since f has no fixed points and Z1 = Z′1, it must be the case that Z2 6= Z′2. Hence, once
we encode it using a good error correcting code, the encoded strings differ on Ω(1) fraction of the

coordinates. Thus, with probability 1−2−n
Ω(1)

, at least one of the sampled bits from the encodings
must differ. This completes the proof of correctness of the advice generator.

Next, we move on to the construction of the advice correlation breaker. This is a relaxed notion
of non-malleable extractors where we also supply it with an additional advice2. More formally, we
construct a function ACB : {0, 1}2n × {0, 1}a → {0, 1}m such that

ACB(Z, w),ACB(Z′, w′) ≈ε Um,ACB(Z′, w′),

for any fixed strings w,w′ ∈ {0, 1}a and w 6= w′.

We sketch some high level ideas for in the construction of ACB and refer the reader to Section 5
for more details. The idea is to construct a use an advice correlation breaker from a previous work
of Chattopadhyay and Li [CL16]. Informally, they show the following: Suppose X is a weak source
that is independent of random variables Y1,Y2, . . . ,Yr and Z. Suppose Y1 is uniform. Further,
let id1, . . . , idr be fixed advice strings such that id1 is distinct from idj , j ∈ [2, r]. For appropriate
parameters, they construct a function ACB1 such that

ACB1(X + Z,Y1, id1),ACB1(X + Z,Y2, id2), . . . ,ACB(X + Z,Yr, idr) ≈
Um,ACB1(X + Z,Y2, id2), . . . ,ACB1(X + Z,Yr, idr).

A very informal sketch of our construction is as follows. We first take a slice of Z and convert it
into a somewhere random source of appropriate dimensions (with longer rows than columns) using
linear seeded extractors. The idea then is to use ACB1 with the original source Z and each row

2see Section 4 for more details on advice correlation breakers
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of the somewhere random source (assuming, magically that we have access to advice strings). The
final output would then be a bit-wise XOR of the outputs of the advice correlation breaker (used
on each row of the matrix).

We show that this can indeed be made to work. Further, the advice for each row can be
generated by using the advice generator sketched above (with the row number concatenated to it).
This completes the sketch of the seedless non-malleable extractor for interleaved sources.

Note that it is far from obvious how to efficiently sample from the pre-image of this non-
malleable extractor. This is an important problem, since the encoder of the corresponding non-
malleable code is exactly this sampler. We use Section 8 to suitably modify our extractors to
support efficient sampling. We briefly sketch some high level ideas involved in efficiently sampling
from the pre-image of this extractor. A crucial observation is the fact that we can use smaller
disjoint slices of Z to carry out the various steps outlined in the construction. In particular, for
the steps where we use the entire source Z (in getting a somewhere random source of the right
dimensions and the advice correlation breaker step) it can be carried out with a large enough slice
from Z. Note that this is problematic deterministically (since then we would need a slice of length
more than n to ensure we have bits from both X and Y). We get around this by pseudorandomly
sampling a enough coordinates from Z (by first taking small slice of Z and using a sampler that
works for weak sources). We now use an elegant trick introduced by Li [Li17] where the output of
the non-malleable extractor described above (with the modifications that we have specified) is now
used as a seed to a linear seeded extractor applied on an even larger pseudorandom slice of Z. The
linear seeded extractor that we use has the property that for any fixing of the seed, the rank of the
linear map corresponding to the linear seeded extractor is the same. Further, note that one can
efficiently algorithm to sample from this subspace. The final idea is to use a Reed-Solomon code
to encode the source Z in the construction of the advice generator. This allows us to argue that
the rank of the linear restriction imposed on the free variables of Z does not depend on the value
of the bits fixed so far.

Seedless non-malleable extractors with respect to Lin ◦ 2SS We construct a seedless non-
malleable extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}m, m = nΩ(1) such that the following hold:
Let X and Y be independent uniform sources, each on n bits. Let L : {0, 1}2n → {0, 1}2n be a
linear function and let f : {0, 1}n → {0, 1}n, g : {0, 1}n → {0, 1}n be two arbitrary functions. Then,

nmExt(X,Y), nmExt(L(f(X), g(Y))) ≈ε Um,nmExt(L(f(X), g(Y))),

where ε = 2−n
Ω(1)

. Notice that such an extractor is not possible to construct in general, and we
need some guarantees on the fixed point of the composition of functions L and (f, g). For simplicity,
we mostly ignore these issues now. We mention a reduction below which takes care ofthis problem
and we refer the reader to Section 6 for more details.

Our first step is to reduce the problem to constructing non-malleable extractors with the fol-
lowing guarantee. Let X and Y to be independent (n, n − nδ)-sources and f1, f2, g1, g2 to satisfy
the following condition:

• ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x or

• ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) 6= y.

8



Then,

|nmExt(X,Y),nmExt(f1(X) + g1(Y), f2(X) + g2(Y))−

Um, nmExt(f1(X) + g1(Y), f2(X) + g2(Y))| ≤ 2−n
Ω(1)

.

The reduction can be seen in the following way: Define f(x) = L(f(x), 0n) and g(y) = L(0n, y).
Thus, L(f(x), g(y)) = f(x) + g(y). Define functions L1 : {0, 1}2n → {0, 1}n and L2 : {0, 1}2n →
{0, 1}n such that L(f(x), g(y)) = L1(x, y), L2(x, y). Since L(f(x), g(y)) = f(x) + g(y), it follows
that there exists functions f1, g1, f2, g2 ∈ Fn such that for all x, y ∈ {0, 1}n, the following hold:

• L1(x, y) = f1(x) + g1(y), and

• L2(x, y) = f2(x) + g2(y).

Thus, L(f(x), g(y)) = f1(x) +g1(y), f2(x) +g2(y). The loss of entropy in X and Y in the reduction
(from uniform to n − nδ) is because of the fact that we have handle issues related to fixed points
of the tampering functions and we ignore it for the proof sketch here.

The idea now is to use the framework of advice generators and advice correlation breakers as
before to construct the non-malleable extractor. It turns out that we have to work harder than
before for constructing both the components.

We start out with the construction of the advice generator. We discuss the proof while describing
the construction to provide more intuition for the steps involved in the construction. Without loss
of generality, suppose that ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x. Let n0 = nδ.
We take two slices from X, say X1 and X2 of lengths n1 = 50n0 and n2 = 5n0. Similarly, we take
slices from Y1 and Y2. Now using a good two-source extractor for high min-entropy (say, the inner
product function IP on an appropriate field), compute R1 = IP(X1,Y1) and R2 = IP(X2,Y2).
Next, use a good linear error correcting code to encode X and sample nγ coordinates (let T denote
this set) from this encoding using R1. Here γ > 0 is an appropriately chosen small constant. Let the
sampled bits be the random variable W1,x. Similarly sample coordinates W1,y from an encoding
of Y using R1. Finally, let W2,x be the output of a linear seeded extractor (with output length
nγ) on X with R2 as the seed and W2,y be the output of the linear seeded extractor on Y with R2

as the seed. The output of the advice generator is X1 ◦X2 ◦Y1 ◦Y2 ◦W1,x ◦W2,x ◦W1,y ◦W2,y.

The intuition that this works is as follows. The lemma is direct if either X1 6= X′1 or Y1 6= Y′1.
Thus, assume X1 = X′1 and Y1 = Y′1. Similarly, the lemma is direct if either X2 6= X′2 or Y2 6= Y′2.
Thus, assume X2 = X′2 and Y2 = Y′2. It follows that R1 = R′1, R2 = R′2 and hence T = T′. Since
E is a linear code and LExt is a linear seeded extractor, the following hold:

W1,x −W′
1,x = (E(X− f1(X)− g1(Y)))T,

W2,x −W′
2,x = LExt(X− f1(X)− g1(Y),R2).

The idea is the following: Either (i) we can fix g1(Y) and claim that Y1 still has enough min-
entropy or (ii) claim that g1(Y) has enough min-entropy conditioned on Y2. Let us first discuss
why these this is enough. Suppose we are in the first case. Then, we can fix X1 and R1 becomes
a deterministic function of Y. Further, it is uniform since IP is a strong two-source extractor.
Now, we can fix X and by the fixed point guarantees(recall ∀x ∈ support(X) and y ∈ support(Y),
f1(x) + g1(y) 6= x), it follows that W1,x−W′

1,x 6= ~0. Now supose we are in the second case. We fix
Y2, and it follows that R2 is uniform and a deterministic function of X. Further, g1(Y) has enough
min-entropy. Thus, LExt(g1(Y),R2) is close to uniform and we can fix R2 and subsequently X.

9



It follows that W2,x −W′
2,x is close uniform and hence ~0 with probability 1− 2−n

Ω(1)
probability,

which completes the proof. The fact that always we are either in case (i) or (ii) requires work and
relies on a convex combination argument based on the pre-image size of the function g1.

We now discuss the other component in the construction, which is the advice correlation breaker.
We construct a function ACB : {0, 1}2n × {0, 1}a → {0, 1}m such that

ACB(X,Y, w),ACB(f1(X) + g1(Y), f2(X) + g2(Y), w′) ≈ε
Um,ACB(f1(X) + g1(Y), f2(X) + g2(Y), w′),

for any fixed strings w,w′ ∈ {0, 1}a and w 6= w′. The construction of this relies on the method of
alternating extraction and uses the flip-flop primitive introduced by Cohen [Coh16]. In particular,
we use it in a way similar to [CL17], and show that the construction works even in this more general
setting. We refer the reader to Section 4 for more details.

Finally, the non-malleable extractor is constructed by using the above advice correlation breaker
function with the advice being supplied by the advice generator discussed above. As before, it is
not at all clear how to efficiently sample from the pre-image of this extractor. We show in Section
8 that using similar ideas as before and a by careful choice of the error correcting code that we use
to encode the sources (we use a dual BCH code to ensure a good trade-off between distance and
dual distance of the code) in the construction of the advice generator, we can efficiently sample
from the pre-image of the extractor.

Non-malleable extractors for (2, t, `)−CSS We show that any 2-source non-malleable extractor
that works for min-entropy n − 2δn can be used as non-malleable extractor with respect to (2, t,
`) − CSS for t` ≤ δn. The tampering function ht,` that is based on the communication protocol
can be phrased in terms of functions in the following way: there exist deterministic functions
fi : {0, 1}n × {0, 1}(2i−2)t → {0, 1}t and gi : {0, 1}n × {0, 1}(2i−1)t → {0, 1}t for i = 1, . . . , `, and
f : {0, 1}n × {0, 1}2`t → {0, 1}n and g : {0, 1}n × {0, 1}2`t → {0, 1}n such that the communication
protocol between Alice and Bob corresponds to computing the following random variables: S1 =
f1(X),R1 = g1(Y,S1),S2 = f2(X,S1,R1), . . . ,Si = fi(X,S1, . . . ,Si−1,R1, . . . ,Ri−1),Ri = gi(Y,
S1, . . . ,Si,Ri,, . . . ,Ri−1), . . . ,R` = g`(Y,S1, . . . ,S`,R1, . . . ,R`−1).

Finally, X′ = f(X,R1, . . . ,R`,S1, . . . ,S`) and Y′ = g(Y,R1, . . . ,R`,S1, . . . ,S`) correspond to
the output of Alice and the output of Bob respectively. Thus, ht,`(X,Y) = (X′,Y′).

Similar to the way one argues about alternating extraction protocols, we fix random variables
as follows: Fix S1, and it follows that R1 is now a deterministic function of Y. We fix R1, and thus
S2 is now a deterministic function of X. Thus, continuing in this we way, we fix all the random
variables S1, . . . ,S` and R1, . . . ,R` while maintaining that X and Y remain independent sources.
Further, invoking Lemma 3.1, with probability at least 1−2−Ω(n), both X and Y have min-entropy
at least n− ` · t− δn ≥ n− 2δn.

Note that now, X′ = η(X) for some deterministic function η and Y′ = ν(X) for some deter-
ministic function ν. Thus, any invertible 2-source non-malleable extractor for min-entropy n− 2δn
with error ε can be used. Our result follows by using such a construction from a recent work of Li
[Li18].

Extractors for interleaved sources We construct an explicit extractor i`Ext : {0, 1}2n →
{0, 1}m, m = Ω(n) that satisfies the following: Let X and Y be independent (n, k)-sources with
k ≥ (2/3 + δ)n, for any constant δ > 0. Let π : [2n]→ [2n] be any permutation. Then,

|i`Ext((X ◦Y)π)−Um| ≤ ε.
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We present our construction and also explain the proof along the way. This gives more intuition to
the different steps of the construction. Let Z = (X ◦Y)π. We start by taking a large enough slice
Z1 from Z (say, of length (2/3 + δ/2)n). Let X have more bits in this slice than Y. Let X1 be the
bits of X in Z1 and X2 be the remaining bits of X. Similarly define Y1 and Y2. Notice that X1

has linear entropy and also that it X2 has linear entropy conditioned on X1. We fix Y1 and use a
condenser (from the work of Barak et al. [BRSW12] and Zuckerman [Zuc07]) to condense Z1 into
a matrix with a constant number such that at least one of the row has entropy rate at least 0.9.
Notice that this matrix is a deterministic function of X. The next step is to Z and each row of
the matrix as a seed to a linear seeded extractor get longer rows. This requires some care for the
choice of the linear seeded extractor since the seed has some deficiency in entropy. After this step,
we use the advice correlation breaker from [CL16] on Z and each row of the somewhere random
source with the row number as the advice (similar to as done before in the construction of seedless
non-malleable extractors for 2ISS), and compute the bit-wise XOR of the different outputs that we
produce. Let V denote this random variable. Finally, to output Ω(n) bits we use a linear seeded
extractor on Z with V as the seed. The correctness of various steps in the proof exploit the fact
that Z can be written as the bit-wise sum of two independent sources, and the fact that we use
linear seeded extractors. We refer the reader to Section 9 for more details.

3 Background and notation

We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the projection of y to the
coordinates indexed by S.
We use bold capital letters for random variables and samples as the corresponding small letter,
e.g., X is a random variable, with x being a sample of X.
For strings x, y ∈ {0, 1}n, we use x+ y to denote the bit-wise xor of the two strings.

3.1 A probability lemma

The following result on min-entropy was proved by Maurer and Wolf [MW97].

Lemma 3.1. Let X,Y be random variables such that the random variable Y takes at ` values.
Then

Pry∼Y[H∞(X|Y = y) ≥ H∞(X)− log `− log(1/ε)] > 1− ε.

3.2 Conditional Min-Entropy

Definition 3.2. The average conditional min-entropy of a source X given a random variable W
is defined as

H̃∞(X|W) = − log
(
Ew∼W

[
max
x

Pr[X = x|W = w]
])

= − log
(
E
[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et al. [DORS08].

Lemma 3.3 ([DORS08]). For any ε > 0,

Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W)− log(1/ε)

]
≥ 1− ε.
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Lemma 3.4 ([DORS08]). If a random variable Y has support of size 2`, then H̃∞(X|Y) ≥
H∞(X)− `.

We require extractors that can extract uniform bits when the source only has sufficient condi-
tional min-entropy.

Definition 3.5. A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m
for min-entropy k and error ε satisfies the following property: For any source X and any arbitrary
random variable Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.

It was shown in [DORS08] that any seeded extractor is also an average case extractor.

Lemma 3.6 ([DORS08]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is also a
(k + log(1/δ), ε+ δ)-seeded average case extractor.

3.3 Samplers and extractors

Zuckerman [Zuc97] showed that seeded extractors can be used as samplers given access to weak
sources. This connection is best presented by a graph theoretic representation of seeded extractors.
A seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m can be viewed as an unbalanced bipartite
graph GExt with 2n left vertices (each of degree 2d) and 2m right vertices. Let N (x) denote the set
of neighbors of x in GExt.

Theorem 3.7 ([Zuc97]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a seeded extractor for min-entropy
k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩R| − µRD| > εD}| < 2k,

where µR = |R|/2m.

Theorem 3.8 ([Zuc97]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a seeded extractor for min-entropy
k and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define Samp(x) = {Ext(x, r1), . . . ,Ext(x, rD)}.
Let X be an (n, 2k)-source. Then for any set R ⊆ {0, 1}m,

Prx∼X[||Samp(x) ∩R| − µRD| > εD] < 2−k,

where µR = |R|/2m.

3.4 Explicit extractors from prior work

We recall an optimal construction of strong-seeded extractors.

Theorem 3.9 ([GUV09]). For any constant α > 0, and all integers n, k > 0 there exists a
polynomial time computable strong-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
O(log n+ log(1/ε)) and m = (1− α)k.

The following are explicit constructions of linear seeded extractors.

Theorem 3.10 ([Tre01, RRV02]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there exists
an explicit strong linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-entropy k and
error ε, where d = O

(
log2(n/ε)/ log(k/m)

)
.
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A drawback of the above construction is that the seeded length is ω(log n) for sub-linear min-
entropy. A construction of Li [Li15] achieves O(log n) seed length for even polylogarithmic min-
entropy.

Theorem 3.11 ([Li15]). There exists a constant c > 1 such that for every n, k ∈ N with c log8 n ≤
k ≤ n and any ε ≥ 1/n2, there exists a polynomial time computable linear seeded extractor LExt : {0,
1}n × {0, 1}d → {0, 1}m for min-entropy k and error ε, where d = O(log n) and m ≤

√
k.

A different construction achieves seed length O(log(n/ε)) for high entropy sources.

Theorem 3.12 ([CGL16, Li17]). For all δ > 0 there exist α, γ > 0 such that for all integers
n > 0, ε ≥ 2−γn, there exists an efficiently computable linear strong seeded extractor LExt :
{0, 1}n×{0, 1}d → {0, 1}αd, d = O(log(n/ε)) for min-entropy δn. Further, for any y ∈ {0, 1}d, the
linear map LExt(·, y) has rank αd.

The above theorem is stated in [Li17] for δ = 0.9, but it is straightforward to see that the proof
extends for any constant δ > 0.

We use a property of linear seeded extractors proved by Rao [Rao09].

Lemma 3.13 ([Rao09]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a linear seeded extractor for
min-entropy k with error ε < 1

2 . Let X be an affine (n, k)-source. Then

Pr
u∼Ud

[|Ext(X,u)− Um| > 0] ≤ 2ε.

We recall a two-source extractor construction for high entropy sources based on the inner
product function.

Theorem 3.14 ([CG88] ). For all m, r > 0, with q = 2m, n = rm, let X,Y be independent sources
on Frq with min-entropy k1, k2 respectively. Let IP be the inner product function over the field Fq.
Then, we have:

|IP(X,Y),X−Um,X| ≤ ε, |IP(X,Y),Y −Um,Y| ≤ ε

where ε = 2−(k1+k2−n−m)/2.

3.5 Non-malleable codes via seedless non-malleable extractors

We first recall the definition of a general seedless non-malleable extractor with respect to a class of
tampering functions.

Definition 3.15 (Seedless Non-Malleable Extractor). A function nmExt : {0, 1}n → {0, 1}m is
a (k, ε)-seedless non-malleable extractor with respect to a class X of sources over {0, 1}n and a
class F of tampering functions acting on {0, 1}n, if for every X ∈ X with min-entropy k and every
f ∈ F , there is a distribution D over {0, 1}m ∪ {same?} such that for an independent Y sampled
from D, we have

(nmExt(X),nmExt(f(X))) ≈ε (Um, copy(Y, Um)),

where the second Um is the same random variable as the first one.

The following connection was discovered between non-malleable codes and seedless non-malleable
extractors by Cheraghchi and Guruswami [CG14].
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Theorem 3.16. Let nmExt : {0, 1}n → {0, 1}m be a polynomial time computable seedless non-
malleable extractor that works for min-entropy n with error ε with respect to a class of tampering
functions F acting on {0, 1}n. Further suppose there is a sampling algorithm Samp that on any
input z ∈ {0, 1}m runs in time poly(n) and samples from a distribution that is ε′-close to uniform
on the set nmExt−1(s).

Then there exists an efficient construction of a non-malleable code with respect to the tampering
family F with block length = n, relative rate m

n and error 2mε+ ε′.

The non-malleable code is define in the following way: For any message s ∈ {0, 1}m, the encoder
of the non-malleable code outputs Samp(s). For any codeword c ∈ {0, 1}n, the decoder outputs
nmExt(c).

4 Advice correlation breakers

We use a primitive called ‘correlation breaker’ in our construction. Consider a situation where
we have arbitrarily correlated random variables Y1, . . . ,Yr, where each Yi is on ` bits. Further
suppose Y1 is a ‘good’ random variable (typically, we assume Y1 is uniform or has almost full min-
entropy). A correlation breaker CB is an explicit function that takes some additional resource X,
where X is typically additional randomness (an (n, k)-source) that is independent of {Y1, . . . ,Yr}.
Thus using X, the task is to break the correlation between Y1 and the random variables Y2, . . . ,
Yr, i.e., CB(Y1,X) is independent of {CB(Y2,X), . . . ,CB(Yr,X)}. A weaker notion is that of an
advice correlation breaker that takes in some advice for each of the Yi’s as an additional resource
in breaking the correlations. This primitive was implicitly constructed in [CGL16] and used in
explicit constructions of non-malleable extractors, and has subsequently found many applications
in explicit constructions of extractors for independent sources and non-malleable extractors.

We recall an explicit advice correlation breaker constructed in [CL16]. This correlation breaker
works even with the weaker guarantee that the ‘helper source’ X is now allowed to be correlated
to the sources random variables Y1, . . . ,Yr in a structured way. Concretely, we assume the source
to be of the form X + Z, where X is assumed to be an (n, k)-source that is uncorrelated with
Y1, . . . ,Yr,Z. We now state the result more precisely.

Theorem 4.1 ([CL16]). For all integers n, n1, n2, k, k1, k2, t, d, h, λ and any ε > 0, such that d =
O(log2(n/ε)), k1 ≥ 2d + 8tdh + log(1/ε), n1 ≥ 2d + 10tdh + (4ht + 1)n2

2 + log(1/ε), and n2 ≥
2d+ 3td+ log(1/ε), let

• X be an (n, k1)-source, X′ a r.v on n bits, Y1 be an (n1, n1 − λ)-source, Z,Z′ are r.v’s on n
bits, and Y2, . . . ,Yt be r.v’s on n1 bits each, such that {X,X′} is independent of {Z,Z′,Y1,
. . . ,Yt},

• id1, . . . , idt be bit-strings of length h such that for each i ∈ {2, t}, id1 6= idi.

Then there exists an efficient algorithm ACB : {0, 1}n1×{0, 1}n×{0, 1}h → {0, 1}n2 which satisfies
the following: let

• Y1
h = ACB(Y1,X + Z, id1),

• Yi
h = ACB(Yi,X′ + Z′, idi), i ∈ [2, t]

Then,
Y1
h,Y

2
h, . . . ,Y

t
h,X,X

′ ≈O((h+2λ)ε) Un2 ,Y
2
h, . . . ,Y

t
h,X,X

′.
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4.1 A new advice correlation breaker

We build a new correlation breaker that is crucial in our non-malleable extractor constructions.
Consider the following situation: X,Y are independent (n, k)-sources and X1,X2,Y1,Y2 are arbi-
trary random variables (each on n bits) such that {X,X1,X2} is independent of {Y,Y1,Y2}. The
task is to build a function f : {0, 1}n × {0, 1}n × {0, 1}h → {0, 1}m such that f(X,Y), f(X1 + Y1,
X2 + Y2) ≈ Um, f(X1 + Y1,X2 + Y2). As is the case with previous constructions, we actually
consider the weaker notion when the function f takes as input an advice string as well.

The following is our main result.

Theorem 4.2. There exist constants δ, δ1, δ2 > 0 such that for all integers n, λ, h, λ and any
0 < ε < 2−n

δ1 , with λ ≤ nδ, h < n1/10, there exists an efficient algorithm ACB : {0, 1}n ×
{0, 1}n ×{0, 1}h → {0, 1}n1, n1 = nδ2, which satisfies the following: let X,Y be (n, n− λ)-sources,
X′,X′′,Y′,Y′′ be arbitrary random variables on n bits such that {X,X1,X2} is independent of
{Y,Y1,Y2}, id, id′ be bit-strings of length h such that id 6= id′. Then,

|ACB(X,Y, id),ACB(X1 + Y1,X2 + Y2, id′)−Um,ACB(X1 + Y1,X2 + Y2, id′)| ≤ O((h+ 2λ)ε).

We use the rest of the section to prove the above theorem. The construction of the function
ACB is based on the using alternating extraction, and uses the flip-flop primitive introduced by
Cohen [Coh15].

We first define the method of alternating extraction. Assume that there are two parties, Quentin
with a source Q and a uniform seed S0, and Wendy with a source W. The protocol is an interactive
process between Quentin and Wendy, and starts off with Quentin sending the seed S0 to Wendy.
Wendy uses S0 and a strong seeded extractor Extw to extract a seed R0 using W, and sends R0

back to Quentin. This constitutes a round of the alternating extraction protocol. In the next
round, Quentin uses a strong extractor Extq to extract a seed S1 from Q using S0, and sends it
to Wendy and so on. The protocol is run for h steps, where h is an input parameter. Thus, the
following sequence of random variables is generated:

S0,R0 = Extw( S0),S1 = Extq(Q,R0), . . . ,Su = Extq(Q,Rh−1),Rh = Extw(W,Sh).

The look-ahead extractor is defined as follows:

laExt(W, (Q,S0)) = R1, . . . ,Rh.

The flip-flop primitive is presented in Algorithm 1 uses alternating extraction. We construct the
advice correlation breaker in Algorithm 2, and the basic idea is to chain together several flip-flop
steps.

We setup some ingredients for Algorithm 1.

1. Let d = O(log2(n/ε)), n1 = n100δ, k = 2d and k1 = 2n1.

2. Let LExt1 : {0, 1}n × {0, 1}d → {0, 1}d, LExt2 : {0, 1}n1 × {0, 1}d → {0, 1}d be (k, ε)-strong
linear seeded extractors.

3. Let LExt3 : {0, 1}n × {0, 1}d → {0, 1}n1 be a (k1, ε)-strong linear seeded extractor.

4. Let laExt : {0, 1}n × {0, 1}n1+d → {0, 1}2d be a look-ahead extractor for an alternating
extraction protocol run for 2 rounds using LExt1,LExt2 as the seeded extractors.

15



Algorithm 1: flip-flop(yi, x, y, b)

Input: Bit strings yi, x, y of length n1, n, n respectively, and a bit b.
Output: Bit string yi+1 of length n1.

1 Let si0 = Slice(yi, d), laExt(x, (yi, si0)) = ri0, r
i
1

2 Let yi1 = LExt3(y, rib)

3 Let si0 = Slice(yi1, d), laExt(w, (yi1, s
i
0)) = ri0, r

i
1

4 Output yi+1 = LExt3(y, ri1−b)

Algorithm 2: ACB(x, y, id)

Input: Bit strings x, y, id of length n, n, h respectively.
Output: Bit string yh+1 of length n1.

1 Let z1 = Slice(y, n1)
2 for j = 1 to h do
3 zj+1 = flip-flop(zj , x, y, id[j])
4 end

5 Output zh+1.

We use the following notation: if W = g(X,Y, id) (for some function g), then we use to W′ or
(W)′ to denote the random variable g(X1 + Y1,X2 + Y2, id′).

Let ` ∈ [h] be the smallest index such that id(`) 6= id′(`). The existence of such an ` is
guaranteed by the fact that id 6= id′.

For i ∈ [h], define kx,i = ky,i = n− nδ − i(d+ n1)− log(1/ε).

The proof of correctness of our construction follows by combining Claim 4.3, Claim 4.4, and
Claim 4.5. The first claim shows that we can condition random variables appropriately till the
(` − 1)’th iteration of Algorithm 2. The second claim shows that we ‘gain independence’ in the
`’th iteration, i.e., Z`+1 is uniform even conditioned on (Z`+1)′. The final claim shows that this
gain of independence continues for the next iterations. The proof of these claims goes via careful
conditioning of random variables, and crucially uses the fact that we use linear seeded extractors
in the alternating extraction game. We prove the lemma for λ = 0. When λ > 0, this adds a term
of 2λε to the overall error analyis3.

Claim 4.3. For all i ≤ `, conditioned on the random variables {Sja : a ∈ {0, 1}, j ∈ [i − 1]},
{Rj

a : a ∈ {0, 1}, j ∈ [i− 1]}, {Sja : a ∈ {0, 1}, j ∈ [i− 1]}, {Rj : a ∈ {0, 1}, j ∈ [i− 1]}, {Sja : a ∈ {0,
1}, j ∈ [i − 1]}, {(Rj

a)′ : a ∈ {0, 1}, j ∈ [i − 1]}, {(Sja)′ : a ∈ {0, 1}, j ∈ [i − 1]}, {(Rj)′ : a ∈ {0, 1},
j ∈ [i−1]}, {Zj : j ∈ [i−1]}, {Zj : j ∈ [i−1]}, {(Zj)′ : j ∈ [i−1]}, {(Zj)′ : j ∈ [i−1]}, the following
hold:

• {X,X1,X2} is independent of {Y,Y1,Y2},

• H̃∞(X) ≥ kx,i−1, H̃∞(Y) ≥ ky,i−1.

• Zi is O((i− 1)ε)-close to uniform, and is a deterministic function of Y.

3this follows from the fact that a (k, ε)-strong seeded extractor with seed-length d also works for when supplied
with a seed with min-entropy d− λ, but has error 2λε.
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Proof. We prove this by induction on i. The base case for i = 1 is direct. Assume the claim to be
true for i < `, and we prove it for i + 1. Fix the random variables: {Sja : a ∈ {0, 1}, j ∈ [i − 1]},
{Rj

a : a ∈ {0, 1}, j ∈ [i− 1]}, {Sja : a ∈ {0, 1}, j ∈ [i− 1]}, {Rj : a ∈ {0, 1}, j ∈ [i− 1]}, {Sja : a ∈ {0,
1}, j ∈ [i − 1]}, {(Rj

a)′ : a ∈ {0, 1}, j ∈ [i − 1]}, {(Sja)′ : a ∈ {0, 1}, j ∈ [i − 1]}, {(Rj)′ : a ∈ {0,
1}, j ∈ [i − 1]}, {Zj : j ∈ [i − 1]}, {Zj : j ∈ [i − 1]}, {(Zj)′ : j ∈ [i − 1]}, {(Zj)′ : j ∈ [i − 1]}. By
induction hypothesis, we have that

• {X,X1,X2} is independent of {Y,Y1,Y2},

• H̃∞(X) ≥ kx,i−1, H̃∞(Y) ≥ ky,i−1.

• Zi is O(iε)-close to uniform, and is a deterministic function of Y.

Note that (Zi)′ = LExt3(X2 + Y2, (Ri−1
1−b′)

′) = X3 + Y3, where X3 and Y3 are random variables
each on n1 bits such that {X,X1,X2,X3} is independent of {Y,Y1,Y2,Y3}. This follows from

the fact that we have fixed (Ri−1
1−b′)

′ and that LExt3 is a linear seeded extractor. Fix the X3, and
it follows that X has conditional min-entropy at least kx,i−1 − n1.

We note that id(i) = id′(i) since i < `. We split the proof according to the value of id(i).

Case 1: Suppose id(i) = 0. We have, Ri
0 = LExt1(X,Si0) and (R0

i )
′ = LExt(X1, (Si0)′) +

LExt(Y1, (Si0)′). We fix Si0, and use the fact that LExt1 is a strong extractor to conclude that Ri
0

is close to uniform. Further, we fix (Si0)′ without affecting Ri
0 which is now a deterministic function

of X. Since (Ri
0)′′ = LExt1(X1, (Si0)′′) + LExt1(Y1, (Si0)′), we fix LExt1(Y1, (Si0)′) and this does

not affect the distribution of Ri
0. Further note that (Ri

0)′ is now a deterministic function of X.
At this point note that X has conditional min-entropy at least kx,i−1 − n1 and Y has conditional
min-entropy at least ky,i−1 − 3d.

Next, we have, Zi = LExt3(Y,Ri
0) and Zi

′
= LExt3(X2, (Ri

0)′) + LExt3(Y2, (Ri
0)′)). Fix Ri

0,
and Zi remains close to uniform and is now a deterministic function of Y. Thus we fix the random
variable (Ri

0)′ without affecting Zi. Note that after this conditioning, Zi
′
= X4 +Y4, where X4 and

Y4 are random variables each on n1 bits such that {X,X1,X2,X3,X4} is independent of {Y,Y1,
Y2,Y3,Y4}. Fix the random variable X4, and note that X has conditional min-entropy at least
kx,i−1 − 2n1. For convenience of notation, let the source Y4 denote x4 + Y4. This does not affect

any part of the argument that follows. Continuing with the argument, we have Ri
0 = LExt1(X,Si0)

and (R0
i )
′ = LExt(X1, (Si0)

′
) + LExt(Y1, (Si0)

′
). We fix Si0 and use the fact that LExt1 is a strong

seeded extractor to conclude that Ri
0 is to uniform. Note that Ri

0 is now a deterministic function of

X. Next fix (S0
i )
′ which is deterministic function of Y. We also fix the random variable LExt(Y1,

(Si0)
′
) without affecting the distribution of Ri

0. Thus, (R0
i )
′ is now a deterministic function of

X. Next, S1
i = LExt2(Zi,Ri

0) and (S1
i )
′ = LExt2(Y4,Ri

0

′
). Using arguments as before, we fix

Ri
0,R

i
0

′
, and the random variable S1

i is close to uniform and deterministic function of Y. Further,

(S1
i )
′ is a deterministic function of Y. Next, we have Ri

1 = LExt1(X,S1
i ) and Ri

1

′
= LExt1(X1,

(S1
i )
′) + LExt1(Y1, (S1

i )
′). Fix S1

i , and Ri
1 is close to uniform and a deterministic function of X.

Further fix the random variables (S1
i )
′ and LExt1(Y1, (S1

i )
′). Note that the distribution of Ri

1 is not

affected. Further, (Ri
1)′ is a deterministic function of X. Finally, we have Zi+1 = LExt3(Y,Ri

1) and

(Zi+1)′ = LExt3(X2, (Ri
1)′) + LExt3(Y2, (Ri

1)′). Fix the random variables Ri
1, (R

i
1)′, and it follows

that Zi+1 is close to uniform and is a deterministic function of Y. After all these conditioning, it
can be verified that X has conditional min-entropy at least kx,i−10n1−10d and Y has conditional
min-entropy at least ky,i − 10n1 − 10d.
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Case 2: Suppose id(i) = 1. Since X3 is fixed, (Zi)′ is a deterministic function of Y. We have
Ri

0 = LExt1(X,Si0) and (R0
i )
′ = LExt(X1, (Si0)′)+LExt(Y1, (Si0)′). We fix Si0 and since LExt1 is a

strong seeded extractor, it follows that Ri
0 close is to uniform. Ri

0 is now a deterministic function of
X, and we fix (S0

i )
′ which is deterministic function of Y. We also fix the random variable LExt(Y1,

(Si0)′) without affecting the distribution of Ri
0. Thus, (R0

i )
′ is now a deterministic function of

X. S1
i = LExt2(Zi,Ri

0) and (S1
i )
′ = LExt2(x3 + Y3,Ri

0
′
). We now fix Ri

0,R
i
0
′
, and the random

variable S1
i is close to uniform and is a deterministic function of Y. Further, (S1

i )
′ is a deterministic

function of Y. We now have Ri
1 = LExt1(X,S1

i ) and (Ri
1)′ = LExt1(X1, (S1

i )
′) + LExt1(Y1, (S1

i )
′).

Fix S1
i , and Ri

1 is close to uniform and a deterministic function of X. Further fix the random

variables (S1
i )
′ and LExt1(Y1, (S1

i )
′). Note that the distribution of Ri

1 is not affected. Further,

(Ri
1)′ is a deterministic function of X. Finally, we have Zi = LExt3(Y,Ri

1) and (Zi)′ = LExt3(X2,
(Ri

1)′) + LExt3(Y2, (Ri
1)′). Fix the random variables Ri

1, (R
i
1)′, and it follows that Zi is close to

uniform and is a deterministic function of Y. Thus, (Zi)′ = X4 +Y4 where X4 and Y4 are random
variables each on n1 bits such that {X,X1,X2,X3,X4} is independent of {Y,Y1,Y2,Y3,Y4}. We
fix X4, and (Zi+1)′ is now a deterministic function of Y.

Continuing, we have Ri
0 = LExt1(X,Si0) and (Ri

0)′ = LExt1(x4 +Y4,Si0
′
). We fix Si0 and (Si0)′,

and it follows that Ri
0 is close to uniform. Further, Ri

0 and (Ri
0)′ are now deterministic functions

of X. We fix Ri
0, (R

i
0)′, and it follows that Zi+1 = LExt(Y,Ri

0) is close to uniform. Further, Zi+1

is a deterministic function of Y. Finally, it can be verified that after all these conditioning, X
has conditional min-entropy at least kx,i − 10n1 − 10d and Y has conditional min-entropy at least
ky,i − 10n1 − 10d. This completes the proof of the claim.

Claim 4.4. Conditioned on the random variables {Sja : a ∈ {0, 1}, j ∈ [`]}, {Rj
a : a ∈ {0, 1},

j ∈ [`]}, {Sja : a ∈ {0, 1}, j ∈ [`]}, {Rj : a ∈ {0, 1}, j ∈ [`]}, {Sja : a ∈ {0, 1}, j ∈ [`]}, {(Rj
a)′ : a ∈ {0,

1}, j ∈ [`]}, {(Sja)′ : a ∈ {0, 1}, j ∈ [`]}, {(Rj)′ : a ∈ {0, 1}, j ∈ [`]}, {Zj : j ∈ [`]}, {Zj : j ∈ [`]},
{(Zj)′ : j ∈ [`]}, {(Zj)′ : j ∈ [`+ 1]}, the following hold:

• {X,X1,X2} is independent of {Y,Y1,Y2},

• H̃∞(X) ≥ kx,`, H̃∞(Y) ≥ ky,`.

• Z`+1 is O(`ε)-close to uniform, and is a deterministic function of Y.

Proof. Fix the random variables: {Sja : a ∈ {0, 1}, j ∈ [` − 1]}, {Rj
a : a ∈ {0, 1}, j ∈ [` − 1]},

{Sja : a ∈ {0, 1}, j ∈ [`−1]}, {Rj : a ∈ {0, 1}, j ∈ [`−1]}, {Sja : a ∈ {0, 1}, j ∈ [`−1]}, {(Rj
a)′ : a ∈ {0,

1}, j ∈ [` − 1]}, {(Sja)′ : a ∈ {0, 1}, j ∈ [` − 1]}, {(Rj)′ : a ∈ {0, 1}, j ∈ [` − 1]}, {Zj : j ∈ [` − 1]},
{Zj : j ∈ [`− 1]}, {(Zj)′ : j ∈ [`− 1]}, {(Zj)′ : j ∈ [`− 1]}. By Claim 4.3, we have

• {X,X1,X2} is independent of {Y,Y1,Y2},

• H̃∞(X) ≥ kx,`−1, H̃∞(Y) ≥ ky,`−1.

• Z` is O(`ε)-close to uniform, and is a deterministic function of Y.

Note that (Z`)′ = LExt3(X2 +Y2, (R`−1
1−id(`)′)

′) = X3 +Y3, where X3 and Y3 are random variables

each on n1 bits such that {X,X1,X2,X3} is independent of {Y,Y1,Y2,Y3}. This follows from

the fact that we have fixed (Ri−1
1−id(`)′)

′ and that LExt3 is a linear seeded extractor. Fix the random

variable X3, and it follows that X has conditional min-entropy at least kx,`−1 − n1.
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We note that id(`) 6= id′(`). We split the proof according to the value of id(`).

Case 1: Suppose id(`) = 0. We have, R`
0 = LExt1(X,S`0) and (R0

` )
′ = LExt(X1, (S`0)′) +

LExt(Y1, (S`0)′). We fix S`0, and use the fact that LExt1 is a strong extractor to conclude that R`
0

is close to uniform. Further, we fix (S`0)′ without affecting R`
0 which is now a deterministic function

of X. Since (R`
0)′′ = LExt1(X1, (S`0)′′) + LExt1(Y1, (S`0)′), we fix LExt1(Y1, (S`0)′) and this does

not affect the distribution of R`
0. Further note that (R`

0)′ is now a deterministic function of X.
Note that (S`1)′ = LExt2(x3 + Y3, (R`

0)′) and (Ri
1)′ = LExt1(X1, (S`1)′) + LExt1(Y1, (S`1)′).

Next, we have, Z` = LExt3(Y,R`
0) and (Z`)′ = LExt3(X2, (R`

1)′) + LExt3(Y2, (R`
1)′)). Fix R`

0,

and Z` remains close to uniform and is now a deterministic function of Y. We now fix the random
variables LExt3(X2, (R`

1)′), (R`
0)′ noting that they are deterministic functions of X. Further note

that (S`1)′ and (S`0)′ are now deterministic functions of Y. Continuing with the argument, we have

Ri
0 = LExt1(X,Si0) and (R`

0)′ = LExt(X1, (S`0)
′
) + LExt(Y1, (S`0)

′
). We fix Si0 and use the fact

that LExt1 is a strong seeded extractor to conclude that Ri
0 is to uniform. Note that R`

0 is now

a deterministic function of X. Fix (S`1)′ and (S`0)′ which are deterministic functions of Y. We

also fix the random variables LExt(Y1, (S`1)′),LExt(Y1, (S`0)
′
) without affecting the distribution of

R`
0. Thus, (R`

1)′ and (R`
0)′ are now deterministic function of X. Next, we have S`1 = LExt2(Z`,

R`
0). We fix Ri

0,, and the random variable S`1 is close to uniform and is a deterministic function

of Y. We now fix (R1
i )
′, (R`

0)′ recalling that they are deterministic functions of X. We have,

(Z`+1)′ = LExt3(X2, (R`
0)′) + LExt3(Y2, (R`

0)′). Fix the random variable LExt3(X2, (R`
0)′), and

this does not affect the distribution of S`1. Thus, (Z`+1)′ is now a deterministic function of Y. Next,

we have R`
1 = LExt1(X,S`1). Fix S`1; it follows that R`

1 is close to uniform and a deterministic
function of X. We now fix (Z`+1)′ which is a deterministic function of Y. Finally, we have

Z`+1 = LExt3(Y,R`
1). Fix the random variables R`

1, and it follows that Z`+1 is close to uniform
and is a deterministic function of Y. After all these conditioning, it can be verified that X has
conditional min-entropy at least kx,` − 10n1 − 10d and Y has conditional min-entropy at least
ky,` − 10n1 − 10d.

Case 2: Suppose id(`) = 1. Since X3 is fixed, (Z`)′ is a deterministic function of Y. We have,
R`

0 = LExt1(X,S`0) and (R`
0)′ = LExt1(X1, (Si0)′) + LExt1(Y1, (Si0)′). By arguments as before,

we fix S`0 and (Si0)′, and R`
0 is close to uniform and a deterministic function of X. Further, fix

LExt1(Y1, (Si0)′), and thus (R`
0)′ is now a deterministic function of X. Continuing, we fix R`

0, (R
`
0)′,

and the random variable S`1 = LExt2(Y,R`
0) is close uniform and is a deterministic function of Y.

Recall that (Z`)′ = LExt3(X2, (R`
0)′) + LExt3(Y2, (R`

0)′). Thus we fix LExt3(X2, (R`
0)′) as well,

and (Z`)′ is now a deterministic function of Y. Next, we have R`
1 = LExt1(X,S`1). We fix S`1 and

we have R`
1 is close to uniform and a deterministic function of X. We fix also fix (Z`)′ which is

a deterministic function of Y. Recall that (R`
0)′ = LExt1(X1, (S`0)′) + LExt1(Y1, (S`0)′), where we

have fixed (S`0)′. Next we fix LExt1(Y1, (S`0)′) and note that this does not affect the distribution
of R`

1. Thus (R`
0)′ is now a deterministic function of X.

Next, we have that Z` = LExt3(Y,R`
1). We fix R`

1 and it follows that Z` is a deterministic
function of Y and is close to uniform. We fix (R`

0)′ which is a deterministic function of X. Observe

that (S`1)′ = LExt2((Z`)′, (R`
0)′) is fixed. Next, noting that (R`

1)′ = LExt2(X1, (S`1)′) + LExt2(Y1,

(S`1)′), we fix LExt2(X1, (S`1)′) and thus (R`
1)′ is now a deterministic function of Y. Continuing,

we fix S`0, and we have that R`
0 = LExt1(X,S`0) is close to uniform and is a deterministic function

of X. We fix the random variables (R`
1)′,LExt3(Y2, (R`

1)′) noting that (Z`+1)′ = LExt3(X2,
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(R`
1)′)+LExt3(Y2, (R`

1)′) is now a deterministic function of X. Finally, note that Z`+1 = LExt3(Y,

R`
0). We fix R`

0 and it follows that Z`+1 is close to uniform and is a determistic function of Y. We

fix (Z`+1)′ noting that it is a deterministic function of X and hence does not affect the distribution
of Z`+1. Finally, it can be verified that after all these conditioning, X has conditional min-entropy
at least kx,i − 10n1 − 10d and Y has conditional min-entropy at least ky,i − 10n1 − 10d. This
completes the proof of the claim.

The following claim can be proved using arguments that are very similar to the ones used in
the proof of Claim 4.3 and Claim 4.4, and we skip the proof.

Claim 4.5. For all i ∈ [`+1, h+1], conditioned on the random variables {Sja : a ∈ {0, 1}, j ∈ [i−1]},
{Rj

a : a ∈ {0, 1}, j ∈ [i− 1]}, {Sja : a ∈ {0, 1}, j ∈ [i− 1]}, {Rj : a ∈ {0, 1}, j ∈ [i− 1]}, {Sja : a ∈ {0,
1}, j ∈ [i − 1]}, {(Rj

a)′ : a ∈ {0, 1}, j ∈ [i − 1]}, {(Sja)′ : a ∈ {0, 1}, j ∈ [i − 1]}, {(Rj)′ : a ∈ {0, 1},
j ∈ [i − 1]}, {Zj : j ∈ [i − 1]}, {Zj : j ∈ [i − 1]}, {(Zj)′ : j ∈ [i − 1]}, {(Zj)′ : j ∈ [i]}, the following
hold:

• {X,X1,X2} is independent of {Y,Y1,Y2},

• H̃∞(X) ≥ kx,i−1, H̃∞(Y) ≥ ky,i−1.

• Zi is O((i− 1)ε)-close to uniform, and is a deterministic function of Y.

5 Non-malleable extractors in the interleaved model

Our main result in this section is a non-malleable extractor for 2-interleaved sources.

Theorem 5.1. For all integers n > 0 with there exists an efficiently computable function i`NM :
{0, 1}2n → {0, 1}m, m = nΩ(1), such that the following holds: Let X and Y be independent uniform
sources on n bits each, and let Z = (X ◦Y)π be an interleaving of X and Y, where π : [2n]→ [2n]
is permutation. Let f, g ∈ Fn be arbitrary functions. Then, there exists a distribution Df,g on
{0, 1}m ∪ {same?} that is independent of X and Y such that

|i`NM((X ◦Y)π), i`NM((f(X) ◦ g(Y))π)− copy(Df,g,Um)| ≤ 2−n
Ω(1)

.

We impose constraint that at least one of tampering functions has no fixed points and prove
the following theorem.

Theorem 5.2. There exists a small constant δ > 0 such that for all positive integers n, k with
n ≥ k ≥ n−nδ there exists an efficiently computable function i`NM : {0, 1}2n → {0, 1}m, m = nΩ(1),
such that the following holds: Let X and Y be independent (n, k)-sources, and let Z = (X ◦Y)π
be an interleaving of X and Y, where π : [2n] → [2n] is permutation. Let f : {0, 1}n → {0, 1}n
and g : {0, 1}n → {0, 1}n be arbitrary functions such that at least one of f and g does not have any
fixed points. Then,

|i`NM((X ◦Y)π), i`NM((f(X) ◦ g(Y))π)−Um, i`NM((f(X) ◦ g(Y))π)| ≤ 2−n
Ω(1)

.

Theorem 5.1 is can be derived from Theorem 5.2 in the following way: Let Γ1 = {x ∈ {0, 1}n :
f(x) = x} and Γ2 = {0, 1}n \Γ1. Further, let ∆1 = {y ∈ {0, 1}n : g(y) = y} and ∆2 = {0, 1}n \∆1.
Let Xi be flat on Γi for i = 1, 2 and Yi be flat on ∆i for i = 1, 2.
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Clearly, ((X ◦Y)π, (f(X) ◦ g(Y))π) is a convex combination of ((Xi ◦Yj)π, (f(Xi) ◦ g(Yj))π),
for i = 1, 2 and j = 1, 2. If the weight of any of these distributions in the convex combination
is less that 2−n

δ
, we ignore it in and add an error of 2−n

δ
to our analysis. Thus, we can assume

that the entropy of each of the sources X1,X2,Y1,Y2 is at least n − nδ. Note that ((X1 ◦Y1)π,
(f(X1) ◦ g(Y1))π) = ((X1 ◦ Y1)π, (X1 ◦ Y1)π), and in each of the other convex combinations it
holds that at least one f or g has no fixed points. Thus, Theorem 5.1 is now direct using Theorem
5.2.

The rest of the Section is used to prove Theorem 5.2. Our extractor construction uses the
framework developed in [CGL16] for constructing non-malleable extractors. Very informally, the
framework is the following: The first step is to produce a short string that (with high probability)
is different from the corresponding tampered string. This is produced by a primitive called as an
advice generator. The next step is to use a primitive called as an advice correlation breaker, which
informally, breaks correlations between random variables using the short string produced in the
previous step as ‘advice’.

We use the following notation for the rest of this section: We use Z′ to denote the random
variable (f(X) ◦ g(Y))π. Further, for any function ν, if Q = ν(Z), then we use Q′ to denote ν(Z′).

5.1 An explicit advice generator

A key ingredient in our construction is an explicit advice generator. This primitive has been
extensively used in recent constructions of non-malleable extractors. Informally, the advice gen-
erator on input Z produces a short string W such that the corresponding tampered variable
W′ = advGen(Z′) is different from W with high probability. In particular, we prove the following.

Lemma 5.3. There exist a constant C > 0 such that for any δ > 0 and positive integers n, k
with n ≥ k ≥ n − nδ there exists an efficiently computable function advGen : {0, 1}2n → {0, 1}n4,
n4 = nδ2, δ2 = Cδ, such that the following holds: Let X and Y be independent (n, k)-sources, and
let Z = (X ◦Y)π be an arbitrary interleaving of X and Y, where π : [2n]→ [2n] is a permutation.
Let f : {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n be arbitrary tampering functions such that at

least one of f and g does not have any fixed points. Then, with probability at least 1− 2−n
Ω(1)

over
the fixing of the random variables advGen(Z), advGen(Z′),

• advGen(Z) 6= advGen(Z′),

• {X,X′} independent of {Y,Y′},

• H∞(X) ≥ k − 3n4, H∞(Y) ≥ k − 3n4.

We prove the above lemma in the rest of this subsection. We claim that the function advGen
computed by Algorithm 3 satisfies the above lemma. We first set up some parameters and ingre-
dients.

• Let E : {0, 1}2n → {0, 1}n1 be the encoding function of a linear error correcting code C with
constant rate α1 and constant distance β1.

• Let n2 = nδ1 , where δ1 = 2δ.

• Let Ext1 : {0, 1}n2 × {0, 1}d1 → {0, 1}log(n1−n2) be a (n2/8, β1/10)-seeded extractor instanti-
ated using Theorem 3.9. Thus d1 = C3 log n2, for some constant C3.
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• Let Samp : {0, 1}n2 → [n1 − n2]n3 be the sampler obtained from Theorem 3.8 using Ext1.
Thus n3 = 2d1 = nC3δ1 .

Algorithm 3: advGen(z)

Input: Bit-string z = (x ◦ y)π of length 2n, where x and y are each n bit-strings, and
π : [2n]→ [2n] is a permutation.
Output: Bit string w of length n4 = n2 + n3.

1 Let z1 = Slice(z, n2). Let z2 be the remaining part of z.
2 Let v = E(z2).
3 Let T = Samp(z1).
4 Output w = z1 ◦ vT .

Lemma 5.4. With probability at least 1− 2−n
Ω(1)

, W 6= W′.

Proof. Let X1 be the bits of X in Z1 and X2 be the bits of X in remaining part of Z. Define
Y1 and Y2 similarly. Without loss of generality, suppose |X1| ≥ |Y1|. If Z1 6= Z′1, then clearly
W 6= W′. Thus suppose Z1 = Z′1.

Fix the random variable Y1. Thus Z1 is now a deterministic function of X. Next we fix the
random variable X2. Note that sinceH∞(X) ≥ n−nδ, it follows by Lemma 3.1 that with probability

at least 1− 2−n
δ

over the fixing of X2, H∞(X1) ≥ n2/2. Further fix the random variables Y2,Y
′
2

noting it does not affect the distribution of X2. Note that this fixes Z2 and Z′2. Assume without
loss of generality that the function f has no fixed points. Since X 6= X′ and X1 = X′1, it follows
that X2 6= X2 and hence Z2 6= Z2.

Now, using the fact E is an encoding function of a code with constant distance, it follows that
there exists a subset S ⊂ [n1], |S| ≥ β(n1−n2) such that for any i ∈ S, (Z2)i 6= (Z′2)i. It now follows
from Theorem 3.8 that with probability at least 1− 2−n2/4, |Samp(Z1)∩S| ≥ β(n1−n2)/2 > 1. It

follows that with probability at least 1− 2−n
Ω(1)

, VT 6= VT′ . This completes the proof.

5.2 The extractor construction

We are now ready to present the construction of i`NM that satisfies the requirements of Theorem 5.2.
We first set up some parameters and ingredients. We are now ready to present the construction
of i`NM that satisfies the requirements of Theorem 5.2. We first set up some parameters and
ingredients.

• Let δ > 0 be a small enough constant.

• Let advGen : {0, 1}2n → {0, 1}n1 be the advice generator from Lemma 5.3 using δ5.3 = δ.
Thus n1 = nδ1 , where δ1 = C5.3δ5.3.

• Let n2 = nδ2 , where δ2 = 2δ1.

• Let LExt1 : {0, 1}n2 ×{0, 1}d → {0, 1}d1 , d1 =
√
n2, be a linear-seeded extractor instantiated

from Theorem 3.10 set to extract from entropy k1 = n2/10 with error ε1 = 1/10. Thus
d = C1 log n2, for some constant C1. Let D = 2d = nδ3 , δ3 = 2C1δ1.

• Set δ′ = 20C5.3C1δ.
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• Let LExt2 : {0, 1}2n×{0, 1}d1 → {0, 1}n4 , n4 = n8δ3 be a linear-seeded extractor instantiated

from Theorem 3.10 set to extract from entropy k2 = 0.9k with error ε2 = 2−Ω(
√
d1) = 2−n

Ω(1)
,

such that the seed length of the extractor LExt2 (by Theorem 3.10) is d1.

• Let ACB : {0, 1}n1,acb ×{0, 1}nacb ×{0, 1}hacb → {0, 1}n2,acb , be the advice correlation breaker
from Theorem 4.1 set with the following parameters: nacb = 2n, n1,acb = n4, n2,acb = m =

O(n2δ3), tacb = 2D,hacb = n1 + d, εacb = 2−n
δ1 , dacb = O(log2(n/εacb)), λacb = 0. It can be

checked that by our choice of parameters, the conditions required for Theorem 4.1 indeed
hold for k1,acb ≥ n2δ3 .

Algorithm 4: i`NM(z)

Input: Bit-string z = (x ◦ y)π of length 2n, where x and y are each n bit-strings, and
π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let w = advGen(z).
2 Let z1 = Slice(z, n2).
3 Let v be a D × n3 matrix, with its i’th row vi = LExt1(z1, i).
4 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z, vi).
5 Let s be a D ×m matrix, with its i’th row si = ACB(ri, z, w ◦ i).
6 Output ⊕Di=1si.

We now prove that the function i`NM computed by Algorithm 4 satisfies the conclusion of
Theorem 5.2. Let X1 be the bits of X in Z1 and X2 be the remaining bit of X. Define Y1 and
Y2 similarly. Without loss of generality suppose that |X1| ≥ |Y1|. Define X = (X ◦ 0n)π and
Y = (Y ◦ 0n)π. Further, let X1 = Slice(X, n2) and Y1 = Slice(Y, n2). It follows that Z = X + Y,
and Z1 = X1 + Y1 (recall that we use the + operation to denote bitwise xor).

Claim 5.5. Conditioned on the random variables W,W′,Y1,Y
′
1, {LExt2(X,LExt1(X1 + Y1,

i))}Di=1, {LExt2(X
′
,LExt1(X

′
1 + Y

′
1, i))}i∈[D], X1 and X′1, the following hold:

• the matrix R is 2−n
Ω(1)

-close to a somewhere random source,

• R and R′ are deterministic functions of Y,

• H∞(X) ≥ n− nδ′, H∞(Y) ≥ n− nδ′.

Proof. Fix the random variables W,W′. By Lemma 5.3, it follows that {X,X′} remains indepen-

dent of {Y,Y′}, and with probability at least 1−2−n
Ω(1)

, H∞(X) ≥ k−3n1 and H∞(Y) ≥ k−3n1.

It follows that with probability at least 1− 2−n
Ω(1)

, H∞(X1) ≥ n2
2 − 3n1− 2nδ ≥ n2

2 − 5n1 ≥ 0.4n2.

Now, by construction, we have that for any j ∈ [D],

Rj = LExt2(Z,LExt1(Z1, j))

= LExt2(X + Y,LExt1(X1 + Y1, j))

= LExt2(X,LExt1(X1 + Y1, j)) + LExt2(Y,LExt1(X1 + Y1, j))

Fix the random variables Y1,Y
′
1. Note that after these fixings, Y has min-entropy at least n −

3n1−n2 > 0.9k. Now, since LExt2 is a strong seeded extractor for entropy 0.9k, it follows that there
exists a set T ⊂ {0, 1}d1 , |T | ≥ (1−√ε2)2d1 , such that for any j ∈ [T ], |LExt2(Y, j)−Un4 | ≤

√
ε2.
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Now viewing LExt1 as a sampler (see Section 3.3) using the weak source X1,y1 = X1 + y1, it
follows by Theorem 3.8 that

Pr[|{LExt1(X1,y1 , i) : i ∈ {0, 1}d} ∩ T | > (1−
√
ε2 − ε1)D] ≥ 1− 20.2n2 = 1− 2−n

Ω(1)
.

We fix X1, and it follows that with probability at least 1 − 2−n
Ω(1)

, {LExt1(X1,y1 , i) : i ∈
{0, 1}d}∩T 6= ∅, and thus there exists a j ∈ [D] such that LExt2(Y,LExt1(X1 + Y1, j)) is 2−n

Ω(1)
-

close to Un2 and is a deterministic function of Y.

We now fix the random variables X
′
1, {LExt2(X,LExt1(X1+Y1, i))}Di=1, {LExt2(X

′
,LExt1(X1

′
+

Y1
′
, i))}Di=1, and note that LExt2(Y,LExt1(X1 + Y1, j)) continues to be 2−n

Ω(1)
-close to Un2 . It

follows that Rj is 2−n
Ω(1)

-close to Un2 . Further, for any i ∈ [D], the random variables Ri and R′i
are deterministic functions of Y. Finally, note that {X,X′} remain independent after these condi-
tionings, and H∞(X) ≥ n−3n1−2n2−2Dn4 ≥ n−n10δ3 and H∞(Y) ≥ n−3n1−n2 > n−nδ3 .

Theorem 5.2 is direct from the next claim.

Claim 5.6. There exists j ∈ [D] such that

Sj , {Si}i∈[D]\j ≈2−n
Ω(1) Um, {Si}i∈[D]\j .

Proof. Fix the random variables: W,W′,Y1,Y
′
1, {LExt2(X,LExt1(X1 + Y1, i))}Di=1, {LExt2(X

′
,

LExt1(X
′
1 + Y

′
1, i))}i∈[D], X1 and X′1. By Lemma 5.3, we have that with probability at least

1 − 2−n
Ω(1)

, W 6= W′. Further, by Claim 5.5 we have that R and R′ are deterministic functions
of Y, and with probability at least 1 − 2−n

Ω(1)
, there exists j ∈ [D] such that Rj is 2−n

Ω(1)
-close

to uniform, and H∞(X) ≥ 1
2nacb − n

δ′ > n2δ3 . Recall that Z = X + Y and Z′ = X
′
+ Y

′
. It now

follows by Theorem 4.1 that

ACB(Rj ,Z,W ◦ j), {ACB(Ri,X + Y,W ◦ i)}i∈[D]\j , {ACB(R′i,X
′
+ Y

′
,W′ ◦ i)}i∈[D] ≈2−n

Ω(1)

Um, {ACB(Ri,X + Y,W ◦ i)}i∈[D]\j , {ACB(R′i,X
′
+ Y

′
,W′ ◦ i)}i∈[D]

This completes the proof of the claim.

6 NM extractors for linear composed with split-state adversaries

The main result of this section is an explicit non-malleable extractor against the tampering family
Lin ◦ 2SS ⊂ F2n.

Theorem 6.1. For all integers n > 0 there exists an explicit function nmExt : {0, 1}2n → {0, 1}m,
m = nΩ(1), such that the following holds: For any linear function h : {0, 1}2n → {0, 1}2n, and
arbitrary functions f, g ∈ Fn, and independent uniform sources X and Y each on n bits, there
exists a distribution Dh,f,g on {0, 1}m ∪ {same?}, such that

|nmExt(X,Y),nmExt(h(f(X), g(Y)))−Um, copy(Dh,f,g,Um)| ≤ 2−n
Ω(1)

.

Our first step is to show that in order to prove Theorem 6.1 it is enough to construct a non-
malleable extractor satisfying Theorem 6.2.
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Theorem 6.2. There exists a δ > 0 such that for all integers n, k > 0 with n ≥ k ≥ n − nδ,
there exists an explicit function nmExt : {0, 1}2n → {0, 1}m, m = nΩ(1), such that the following
holds: Let X and Y to be independent (n, n− nδ)-sources and f1, f2, g1, g2 to satisfy the following
condition:

• ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x or

• ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) 6= y.

Then,

|nmExt(X,Y),nmExt(f1(X) + g1(Y), f2(X) + g2(Y))−

Um, nmExt(f1(X) + g1(Y), f2(X) + g2(Y))| ≤ 2−n
Ω(1)

.

Proof of Theorem 6.1 assuming Theorem 6.2. Define f(x) = h(f(x), 0n) and g(y) = h(0n, y). Thus,
h(f(x), g(y)) = f(x) + g(y). Define functions h1 : {0, 1}2n → {0, 1}n and h2 : {0, 1}2n → {0, 1}n
such that h(f(x), g(y)) = h1(x, y), h2(x, y). Since h(f(x), g(y)) = f(x) + g(y), it follows that there
exists functions f1, g1, f2, g2 ∈ Fn such that for all x, y ∈ {0, 1}n, the following hold:

• h1(x, y) = f1(x) + g1(y), and

• h2(x, y) = f2(x) + g2(y).

Thus, h(f(x), g(y)) = f1(x) + g1(y), f2(x) + g2(y).

Now, the idea is to show that ((X,Y), (f1(X)+g1(Y), f2(X)+g2(Y))) is 2−n
Ω(1)

-close to a convex
combination of ((X,Y), (X,Y)) and distributions of the form ((X′,Y′), (η1(X) + ν1(Y), η2(X) +
ν2(Y))), where X′ and Y′ are independent (n, n − nδ)-sources and η1, η2, ν1, ν2 are deterministic
functions satisfying the condition that:

• ∀x ∈ support(X′) and y ∈ support(Y′), η1(x) + ν1(y) 6= x or

• ∀x ∈ support(X′) and y ∈ support(Y′), η2(x) + ν2(y) 6= y.

Theorem 6.1 is then direct from from Theorem 6.2.

Let n0 = nδ. For any y ∈ {0, 1}n and any function η : {0, 1}n → {0, 1}n, let η−1(y) denote the
set {z ∈ {0, 1}n : η(z) = y}. We partition {0, 1}n into the following two sets:

Γ1 = {y ∈ {0, 1}n : |g−1
1 (g1(y))| ≥ 2n−n0}, Γ2 = {0, 1}n \ Γ1.

Let Y1 be uniform on Γ1 and Y2 be uniform on Γ2. Clearly, Y is a convex combination of Y1 and
Y2 with weights wi = |Γ1|/2n, i = 1, 2. If wi ≤ 2−n0/2, we ignore the corresponding source and
add an error of 2−n0/2 to the extractor. Thus, suppose wi ≥ 2−n0/2 for i = 1, 2. Thus, Y1 and Y2

each have min-entropy at least n− n0/2.

We claim that g1(Y2) has min-entropy at least n0/2. This can be seen in the following way.
For any y ∈ Γ2, |g−1

1 (g1(y))| ≤ 2n−n0 , and hence it follows g1(Y2) has min-entropy at least (n −
n0/2) − (n − n0) = n0/2. Thus, clearly for any x ∈ {0, 1}n, x + g1(Y2) 6= x with probability

at least 1 − 2−n0/2. We add a term of 2−n
Ω(1)

to the error and assume that X + g1(Y2) 6= X.

Thus, (X,Y2), (f1(X) + g1(Y2), f1(X) + g1(Y2)) is indeed 2−n
Ω(1)

close to a convex combination of
distributions of the required form.
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Next, we claim that for any fixing of g1(Y1), the random variable Y1 has min-entropy at least
n− n0. This is direct from the fact that for any y ∈ Γ2, |g−1

1 (g1(y))| > 2n−n0 . We fix g1(Y1) = g,
and let f1,g(x) = f1(x) + g. Thus, f1,g(X) = f1(X) + g1(Y1). We now partition {0, 1}n according
to the fixed points of f1,g. Let

∆1 = {x : f ′1(x) = x}, ∆2 = {0, 1}n \∆1.

Let X1 be a flat distribution on ∆1 and X2 be a flat distribution on ∆2. If |∆1| < 2n−n0/2,
we ignore the distribution X1 and add an error of 2n−n0/2 to the analyis of the non-malleable
extractor. Further, it is direct from definition that f1(X2) + g 6= X2. We now handle to case when
∆1 > 2n−n0/2. Note that in this case, H1(X1) ≥ n − n0/2. The idea is now to partition ∆1 into
two sets based on the pre-image size of f2 similar to the way we partioned the support of Y based
on the pre-image size of g1. Define the sets

∆11 = {x ∈ ∆1 : |f−1
2 (f2(x)) ∩∆1| ≥ 2n−n0}, ∆12 = ∆1 \∆11.

Let X11 be flat on ∆11 and X12 be flat on ∆12. Clearly, X1 is a convex combination of
the sources X11 and X12. If ∆11 or ∆12 is smaller than 2n−3n0/4, we ignore the corresponding
distribution and add an error of 2−n0/4 to the error analysis of the non-malleable extractor. Thus
suppose ∆1i ≥ 2n−3n0/4 for i = 1, 2. Thus, X11 and X12 both have min-entropy at least n− 3n0/4.

We claim that f2(X12) has min-entropy at least n0/4. This can be seen in the following way.
For any x ∈ ∆12, |f−1

2 (f2(x))∩∆1| ≤ 2n−n0 , and hence it follows f2(X12) has min-entropy at least
(n − 3n0/4) − (n − n0) = n0/4. Thus, clearly f2(X12) + g2(Y1) 6= Y1 with probability at least

1− 2−n0/4. As before, we add an error of 2−n
Ω(1)

to the error, and assume that f2(X12) + g2(Y1) 6=
Y1. Thus, (X12,Y1), (f1(X12) + g1(Y2), f1(X12) + g1(Y2)) is indeed 2−n

Ω(1)
-close to a convex

combination of distributions of the required form.

Next, we claim that for any fixing of f2(X11), the random variable X11 has min-entropy at
least n − n0. This is direct from the fact that for any x ∈ ∆1, |f−1

2 (f1(x)) ∩∆1| > 2n−n0 . We fix
f2(X11) = λ, and let g2,λ(y) = λ + g2(y). Thus, g2,λ(Y) = f1(X) + g1(Y1). We now partition Γ1

according to the fixed points of f1,g. Let

Γ11 = {y : g2,λ(y) = y}, Γ12 = {0, 1}n \ Γ11.

Let Y11 be a flat distribution on Γ11 and Y12 be a flat distribution on Γ12. It follows from
definition that (f1(X11) + g1(Y11), f2(X11) + g2(Y11)) = (X11,Y11). Further, f2(X11) + g2(Y12) 6=
Y12, and hence (X11,Y12) is 2−n

Ω(1)
-close to a convex combination of distributions of the required

form. This completes the proof.

In the rest of the section, we prove the following Theorem 6.2. We use the following notation:
if W = h(X,Y) (for some function h), then we use to W′ or (W)′ to denote the random variable
h(f1(X) + g1(Y), f2(X) + g2(Y)). In Section 6.1 we construct a new advice generator, and present
the non-malleable extractor construction in Section 6.2.

6.1 A new advice generator

Lemma 6.3. There exist a constant C > 0 and an efficiently computable function advGen :
{0, 1}n×{0, 1}n → {0, 1}n5, n5 = Cnδ, such that with probability at least 1−2−n

Ω(1)
over the fixing

of the random variables {advGen(X,Y), advGen(f1(X) + g1(Y), f2(X) + g2(Y))}, the following
hold:
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• advGen(X,Y) 6= advGen(f1(X) + g1(Y), f2(X) + g2(Y)),

• X and Y are independent,

• H∞(X) ≥ n− 3Cnδ, H∞(Y) ≥ n− 3Cnδ.

We prove the above lemma in the rest of this subsection. We claim that the function advGen
computed by Algorithm 3 satisfies the above lemma. We first set up some parameters and ingre-
dients.

• Let n0 = nδ, n1 = 50n0, n2 = 5n0.

• Let IP1 : {0, 1}n1 × {0, 1}n1 → {0, 1}n0 be a two-source extractor instantiated from Theorem
3.14.

• Let IP2 : {0, 1}n2 × {0, 1}n2 → {0, 1}n0 be a two-source extractor instantiated from Theorem
3.14.

• Let LExt : {0, 1}n × {0, 1}n2 → {0, 1}n0 be a linear seeded extractor instantiated from Theo-
rem 3.14 set to extract from min-entropy n2 and error 2Ω(

√
n2) .

• Let E : {0, 1}n → {0, 1}n3 be the encoding function of a linear error correcting code C with
constant rate α and constant distance β.

• Let Samp : {0, 1}n0 → [n3]n4 , n4 = n0/ log n3 be a sampler that splits its input bit-string of
length n0 into log n3 sized strings and outputs the corresponding elements from [n3].

Algorithm 5: advGen(x, y)

Input: Bit-string x and y are each n bit-strings.
Output: Bit string v of length n5 = 2n1 + 2n0 + 2n4.

1 Let x1 = Slice(x, n1), y1 = Slice(y, n1), x2 = Slice(x, n2), y2 = Slice(y, n2).
2 Let r1 = IP(x1, y1) and r2 = IP(x2, y2).
3 Let T = Samp(r1).
4 Let w1,x = (E(x))T and w1,y = (E(y))T .
5 Let w2,x = LExt(x, r2) and w2,y = LExt(y, r2).
6 Output v = x1 ◦ y1 ◦ x2 ◦ y2 ◦ w1,x ◦ w1,y ◦ w2,x ◦ w2,y.

Lemma 6.4. With probability at least 1− 2−n
Ω(1)

, V 6= V′.

Proof. We prove the lemma assuming f1(X) + g1(Y) 6= X. The proof in the other case (i.e.,
f2(X) + g2(Y) 6= Y) is similar and we skip it.

The lemma is direct if either X1 6= X′1 or Y1 6= Y′1. Thus, assume X1 = X′1 and Y1 = Y′1.
Similarly, the lemma is direct if either X2 6= X′2 or Y2 6= Y′2. Thus, assume X2 = X′2 and Y2 = Y′2.
It follows that R1 = R′1, R2 = R′2 and hence T = T′. Since E is a linear code and LExt is a linear
seeded extractor, the following hold:

W1,x −W′
1,x = (E(X− f1(X)− g1(Y)))T,

W2,x −W′
2,x = LExt(X− f1(X)− g1(Y),R2).
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Without loss of generality we can assume that Y is flat source on a set Γ ⊂ {0, 1}n, |Γ| ≥ 2n−n0 .
We partition Γ into two sets Γa and Γb according to the pre-image size of the function g1 in the
following way. For any y ∈ {0, 1}n, let g−1

1 (y) denote the set {z ∈ {0, 1}n : g1(z) = y}.
Let np = 15n0. Define

Γa = {y ∈ Γ : |g−1
1 (g1(y)) ∩ Γ| ≥ 2n−np}, Γb = Γ \ Γ1.

Let Ya be the flat source supported on Γa and Yb be the flat source supported on Γb. Clearly Y is a
convex combination of the distributions Ya and Yb, with weights wa = |Γa|/|Γ| and wa = |Γa|/|Γ|.
If any of wa or wb is less that 2−ne , we ignore the corresponding source and add it to the error. Thus
suppose both wa and wb are at least 2−n0 . This implies that both Ya and Yb have min-entropy at
least n− 2n0.

We introduce some notation. For any random variable ν = η(X,Y) (where η is an arbitrary
deterministic function), we add an extra a or b to the subscript and use νa and νb to denote the
random variable η(X,Ya) and νb to denote the random variables η(X,Yb) η(X,Yb) respectively.
For example, we use W′

1,x,a to denote the random variable E(f1(X) + g1(Ya))T′a , where T′a =
Samp(Ra)

′, and Ra = IP(X, g1(Ya)).

We prove the following two statements:

1. W1,x,a −W′
1,x,a 6= 0 with probability 1− 2−n

Ω(1)
.

2. W2,x,b −W′
2,x,b 6= 0 with probability 1− 2−n

Ω(1)
.

It is direct that the lemma follows from the above two estimates.

We begin with the proof of (1). Consider any fixing of g1(Ya) = g. By definition of Ya, it
follows that there are at least 2n−np strings in the support of Ya such that g1 maps each of these
strings to g. Thus, it follows that after this conditioning, Ya has min-entropy at least n− np. Let
Ya = Y1,a◦Y1,a, i.e., Y1,a is the remaining bits of Ya after slicing off Y1,a. Since the length of Y1,a

is n−n1, it follows that Y1,a has min-entropy at least (n−np)−(n−n1) = n1−np = 35n0 = 7n1/10.
Further, X1 has min-entropy at least n − n0 − (n − n1) = n1 − n0 = 49n1/50. It follows by

Theorem 3.14 that Ra = IP(X1,Y1,a) is 2−n
Ω(1)

-close to uniform even conditioned on X1. We fix
X1 and X − f1(X). It follows that X − f1(X) − g1Ya is now a fixed non-zero string, and hence
E(X−f1(X)−g1Ya) has 1’s in at least β fraction of its coordinates. Since Ra is uniform, it follows

that with probability at least 1 − 2−n
Ω(1)

, (W1,x,a −W1,x,a)Ta is not the all zero string. Thus,

W1,x,a −W′
1,x,a 6= 0 with probability 1− 2−n

Ω(1)
.

We now prove (2). Note that by definition, for any yb ∈ Yb, |g−1
1 (g1(Yb))| ≤ 2n−np . Since Yb has

min-entropy at least n−2n0, it follows that g1(Yb) has min-entropy at least n−2n0−(n−np) = np−
2n0 = 13n0. Next, note that Y2,b has min-entropy at least (n−2n0)− (n−n2) = n2−2n0 = 3n2/5
and X2,b has min-entropy at least (n−n0)− (n−n2) = 4n2/5. Fix Y2,b, and it follows by Theorem

3.14 that R2,b is 2−n
Ω(1)

-close to uniform and is a deterministic function of X. Now, g1(Yb) has

min-entropy at least 13n0 − n2 − n0 = 7n0 > n2 with probability at least 1 − 2−n
Ω(1)

. It follows
by our choice of parameters that LExt(g1(Yb),R2,b) is 2−n

Ω(1)
-close to uniform. We fix R2,b, and

thus LExt(g1(Yb),R2,b) is now a deterministic function of Y. Further, LExt(X − f1(X),R2,b) is
now a deterministic function of X, and we fix it. Note that this does not affect the distribution of
LExt(g1(Yb),R2,b). It follows that W2,x,b −W2,x,b = LExt(g1(Yb),R2,b) + LExt(X− f1(X),R2,b)

is close to uniform, and hence W2,x,b−W′
2,x,b 6= 0 with probability 1− 2−n

Ω(1)
. This completes the

proof.
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The proof of Lemma 6.3 is now direct from the construction in the following way: Fix X1,
Y1, Slice(f1(X), n1), Slice(f2(X), n1),Slice(g1(Y), n1),Slice(g2(Y), n1). Note that this fixes T,T′,
R2,R

′
2. Further fix the random variables E(X)T , E(Y)T , E(f1(X))T ′ , E(f2(X))T ′ , E(g1(Y))T ′ ,

E(f2(Y))T ′ . This clearly fixes V,V′ and we have maintained that X and Y are still independent

sources. Further, it can be verified that with probability at least 1 − 2−n
Ω(1)

, X and Y each have
min-entropy at least n− 200n0.

6.2 The extractor construction

We are now ready to present the construction of i`NM that satisfies the requirements of Theorem 5.2.
We first set up some parameters and ingredients. We are now ready to present the construction
of i`NM that satisfies the requirements of Theorem 5.2. We first set up some parameters and
ingredients.

• Let δ > 0 be a small enough constant.

• Let advGen : {0, 1}2n → {0, 1}n1 be the advice generator from Lemma 6.3. Thus n1 = O(nδ).

• Let ACB : {0, 1}nacb × {0, 1}nacb × {0, 1}hacb → {0, 1}n1,acb be the advice correlation breaker
from Theorem 4.2 set with the following parameters: nacb = n, n1,acb = m = nδ2 , for some

small enough δ2 > 0, hacb = n1, εacb = 2−n
2δ

, dacb = O(log2(n/εacb)), and λacb = Cnδ for
some large constant C.

Algorithm 6: nmExt(x, y)

Input: Bit-strings x, y each of length n,
Output: Bit string v of length m.

1 Let w = advGen(x, y).
2 Output v = ACB(x, y, w).

We prove that nmExt computed by Algorithm 6 is the required construction for Theorem 6.2.
The proof is almost direct. By Lemma 6.3, it follows that W 6= W′ with probability at least
1− 2−n

Ω(1)
. Further, fixing W,W′, we are guaranteed that X and Y remain independent sources,

each with min-entropy at least n − O(nδ). Using Theorem 4.2, it now follows that |V,V′ −Um,

V′| ≤ 2−n
Ω(1)

which completes the proof.

7 Non-malleable extractors for split-state adversaries with bounded
communication

Let Fn,t,` ⊂ F2n be the set of all functions that can be computed by such a communication protocol
with parameters t, `. The following is our main result.

Theorem 7.1. There exists a constant δ > 0 such that for all integers n, t, ` > 0 with t · ` ≤ δn,
there exists an efficiently computable function nmExt : {0, 1}n×{0, 1}n → {0, 1}m, m = Ω(n), such
that the following holds: let X and Y be uniform independent sources each on n bits, and let ht,` be
an arbitrary tampering function in Fn,t,`. Then, there exists a distribution Dh on {0, 1}m∪{same?}
that is independent of X and Y such that

|nmExt(X,Y),nmExt(ht,`(X,Y))−Um, copy(Dh,Um)| ≤ 2−n log logn/ logn.
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Further, nmExt is 2−n log logn/ logn-invertible.

Proof. We show that any 2-source non-malleable extractor that works for min-entropy n− 2δn can
be used as the required non-malleable extractor in the above theorem. The tampering function
ht,` that is based on the communication protocol can be phrased in terms of functions in the
following way: there exist deterministic functions fi : {0, 1}n × {0, 1}(2i−2)t → {0, 1}t and gi :
{0, 1}n×{0, 1}(2i−1)t → {0, 1}t for i = 1, . . . , `, and f : {0, 1}n×{0, 1}2`t → {0, 1}n and g : {0, 1}n×
{0, 1}2`t → {0, 1}n such that the communication protocol between Alice and Bob corresponds to
computing the following random variables: S1 = f1(X),R1 = g1(Y,S1),S2 = f2(X,S1,R1), . . . ,
Si = fi(X,S1, . . . ,Si−1,R1, . . . ,Ri−1),Ri = gi(Y,S1, . . . ,Si,Ri,, . . . ,Ri−1), . . . ,R` = g`(Y,S1,
. . . ,S`,R1, . . . ,R`−1).

Finally, X′ = f(X,R1, . . . ,R`,S1, . . . ,S`) and Y′ = g(Y,R1, . . . ,R`,S1, . . . ,S`) correspond to
the output of Alice and the output of Bob respectively. Thus, ht,`(X,Y) = (X′,Y′).

Similar to the way we argue about alternating extraction protocols, we fix random variables as
follows: Fix S1, and it follows that R1 is now a deterministic function of Y. We fix R1, and thus
S2 is now a deterministic function of X. Thus, continuing in this we way, we fix all the random
variables S1, . . . ,S` and R1, . . . ,R` while maintaining that X and Y remain independent sources.
Further, invoking Lemma 3.1, with probability at least 1−2−Ω(n), both X and Y have min-entropy
at least n− ` · t− δn ≥ n− 2δn.

Note that now, X′ = η(X) for some deterministic function η and Y′ = ν(X) for some determin-
istic function ν. Thus, for any 2-source non-malleable extractor nmExt that works for min-entropy
n− 2δn with error ε, we have that there exists a distribution Dη,ν over {0, 1}m ∪ {same?} that is
independent of X and Y such that

|nmExt(X,Y), nmExt(η(X), ν(Y))−Um, copy(Dη,ν ,Um)| ≤ ε.

The theorem now follows by plugging in such a construction from a recent work of Li ([Li18], Theo-
rem 1.12). We note the non-malleable construction in [Li18] is indeed 2−n log logn/ logn-invertible.

8 Efficient sampling algorithms

In this section, we provide efficient sampling algorithms for the seedless non-malleable extractor
constructions presented in Section 5 and Section 6. This is crucial to get efficient encoding algo-
rithms for the corresponding non-malleable codes. We do not know how to invert the non-malleable
extractor constructions in Theorem 5.1 and Theorem 6.1, but we show that the constructions can
suitably modified in a way that admits efficient sampling from the pre-image of the extractor.

8.1 An invertible non-malleable extractor with respect to interleaved adver-
saries

The main idea is to ensure that on fixing appropriate random variables that are generated in
computing the non-malleable extractor, the source is now restricted onto a known subspace of fixed
dimension (i.e., the dimension does not depend on value of the fixed random variables). Once we
can ensure this, sampling from the pre-image can simply be done by first uniformly sampling the
fixed random variables, and then sampling the other variables uniformly from the known subspace.
To carry this out, we need an efficient construction of a linear seeded extractor that has the property
that for any fixing of the seed the linear map corresponding linear seeded extractor has the same
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rank. Such a linear seeded extractor was constructed in prior works [CGL16, Li17] (see Theorem
3.12).

We now set up some parameters and ingredients for our construction of an invertible non-
malleable extractor.

• Let δ > 0 be a small enough constant and C a large constant.

• Let n1 = nδ, n2 = nCδ, n3 = nC
2δ/5, n4 = nC

3δ, n5 = n−
∑4

i=1 ni. We ensure that n5 ≥ 3n/2.

• Let F be the finite field F2log(n+1) . Let n7 = (2n− n1)/ log(n+ 1). Let RS : Fn4 → Fn be the
Reed-Solomon code encoding n7 symbols of F to n symbols in F, where we use RS to denote
the code as well as the encoder. Thus, RS is a [n, n7, n− n7 + 1]n error correcting code.

• Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}logn be a (n1/8, β1/10)-seeded extractor instantiated
using Theorem 3.9. Thus d1 = C1 log n1, for some constant C1.

• Let Samp1 : {0, 1}n1 → [n]n8 be the sampler obtained from Theorem 3.8 using Ext1. Thus
n8 = 2d1 = nC1δ. Let δ1 = C1δ.

• Let Ext2 : {0, 1}n3 × {0, 1}d2 → {0, 1}log(n5) be a (n3/8, 1/100)-seeded extractor instantiated
using Theorem 3.9. Thus d1 = C1 log n3.

• Let Samp2 : {0, 1}n3 → [n5]n9 be the sampler obtained from Theorem 3.8 using Ext2. Thus
n9 = 2d2 = nC1

3 = nC1C2δ. Let δ2 = C1C
2δ.

• Let Ext3 : {0, 1}n4 × {0, 1}d3 → {0, 1}n5−n9 be a (n4/8, 1/100)-seeded extractor instantiated
using Theorem 3.9. Thus d3 = C1 log n4.

• Let Samp3 : {0, 1}n4 → [n5 − n9]n10 be the sampler obtained from Theorem 3.8 using Ext3.
Thus n10 = 2d3 = nC1

4 = nC1C3δ. Let δ3 = C1C
3δ.

• Let LExt1 : {0, 1}n2 ×{0, 1}d → {0, 1}d4 , d4 =
√
n2, be a linear-seeded extractor instantiated

from Theorem 3.10 set to extract from entropy k1 = n2/10 with error ε1 = 1/10. Thus
d = C2 log n2, for some constant C2. Let D = 2d = nδ4 , δ4 = 2C2Cδ.

• Let LExt2 : {0, 1}n9×{0, 1}d4 → {0, 1}m1 , m1 = n8δ4 be a linear-seeded extractor instantiated

from Theorem 3.10 set to extract from entropy k2 = n9/100 with error ε2 = 2−Ω(
√
d4) =

2−n
Ω(1)

, such that the seed length of the extractor LExt2 (by Theorem 3.10) is d4.

• Let ACB : {0, 1}n1,acb ×{0, 1}nacb ×{0, 1}hacb → {0, 1}n2,acb , be the advice correlation breaker
from Theorem 4.1 set with the following parameters: nacb = n9, n1,acb = m1, n2,acb = n11 =

O(n2δ4), tacb = 2D,hacb = n1 + d, εacb = 2−n
δ1 , dacb = O(log2(n/εacb)), λacb = 0. It can be

checked that by our choice of parameters, the conditions required for Theorem 4.1 indeed
hold for k1,acb ≥ n2δ4 .

• Let LExt3 : {0, 1}n10 ×{0, 1}n11 → {0, 1}m be the linear seeded extractor from Theorem 3.12
set to extract from min-entropy rate 0.1 and error ε = 2−Ω(n11) (such that the seed-length is
indeed m). Thus, m = αn11, for some small contant α that arises out of Theorem 3.12.
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Algorithm 7: i`NM(z)

Input: Bit-string z = (x ◦ y)π of length 2n, where x and y are each n bit-strings, and
π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let zi = z1 ◦ z2 ◦ z3 ◦ z4 ◦ z5, where zi is of length ni.
2 Let T1 = Samp1(z1).
3 Let w = z1 ◦ (RS(z2 ◦ z3 ◦ z4 ◦ z5))T1 .
4 Let v be a D × d4 matrix, with its i’th row vi = LExt1(z2, i).
5 Let T2 = Samp2(z3) and T3 = Samp3(z4).
6 Let z3 = (z5)T2

7 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z3, vi).
8 Let s be a D ×m matrix, with its i’th row si = ACB(ri, z3, w ◦ i).
9 Let s̃ = ⊕Di=1si.

10 Let z6 be the bits in z5 outside T2.
11 Let z6 = (z6)T3

12 Output g = LExt3(z6, s̃).

Theorem 8.1. There exists a small constant δ > 0 such that for all positive integers n, k with
n ≥ k ≥ n−nδ, the function i`NM : {0, 1}2n → {0, 1}m, computed by Algorithm 7 has the following
property: Let X and Y be independent (n, k)-sources, and let Z = (X ◦Y)π be an interleaving of
X and Y, where π : [2n]→ [2n] is permutation. Let f : {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n
be arbitrary functions such that at least one of f and g does not have any fixed points. Then,

|i`NM((X ◦Y)π), i`NM((f(X) ◦ g(Y))π)−Um, i`NM((f(X) ◦ g(Y))π)| ≤ 2−n
Ω(1)

.

The proof of the above theorem is very similar to the proof of Theorem 5.2, and we omit the
details and include a brief discussion on the differences from the construction given in Algorithm
4. One differences is that in the steps where we transform the somewhere random matrix v into a
matrix with longer rows, and the subsequent step where the advice correlation breaker is applied is
now done using a pseudorandomly sampled subset of coordinates from Z (as opposed to the entire
Z which we did before). It is not hard to prove that this does not make a difference as long as we
sample enough bits. The other difference is the final step where we use a linear seeded extractor,
with Z6 as the seed. As done many times in the paper, we use the sum structure of Z6 (into a
source that depends on X and a source that depends on Y) along with the fact that LExt3 is linear
seeded to show that the output is close to uniform.

We now focus on the problem of efficiently sampling from the pre-image of this extractor. The
following lemma almost immediately implies a simple sampling algorithm.

Lemma 8.2. For any fixing of the variables z1, z2, z3, z3, z4, w, g, the set nmExt−1(g) is a linear
subspace of fixed dimension.

Proof. We note that fixing z1, z2 fixes v. Further, fixing z3 fixes T3 and subsequently fixing z4

fixes T4. Next, we fix the remaining part of w and also z3. Thus, we can now compute s̃. Next,
we sample z6 uniformly from the set (LExt3(·, s̃))−1(g). Note that this can be done efficiently
by Theorem 3.12, and further the dimension of the sub-space from which z6 is sampled does not
depend on the value of s̃. Finally, we are left to sample the bits in z5 not indexed by T3. Let
z7 denote this string. Note that by our choice of parameters the length of z7 is at least n. We
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think of z7 to be in F. Thus, there are at least n/ log(n + 1) free variables. The number of linear
constraints imposed on the bits of z7 by fixing w is n8 which is much smaller than the number of
n/ log(n+ 1). Further, note that the number of linear constraints is exactly equal to the number of
variables sampled from z6 (and does not depend on the values of the fixed variables). This follows
from the fact that the generator matrix of the RS code is a Vandermonde matrix, and hence any
subset of columns are linearly independent. This completes the proof.

Given Lemma 8.2, the sampling algorithm is now straightforward:

Input g ∈ {0, 1}m; Output z that is uniform on the set i`NM−1(g).

1. Sample z1, z2, z3, z4, w uniformly at random.

2. Compute s̃ using Algorithm 7.

3. Sample z5 uniformly from (LExt(·, s̃))−1(g).

4. Sample z6 as discussed in Lemma 8.2.

5. Output z = z1 ◦ z2 ◦ z3 ◦ z4 ◦ z5 ◦ z6.

8.2 An invertible non-malleable extractor with respect to linear composed with
split-state adversaries

The modifications to the non-malleable extractor we make in this section is similar to the ones made
in the previous section. One additional care we need to take is the choice of the error correcting
code we use in the advice generator construction. We ensure that the linear constraints imposed
by fixing the advice string does not depend on the value of the advice string. This is more subtle
than before since the advice generator now comprises of a sample from an error correction of the
sources as well as the output of the a linear seeded extractor on the sources. The basic idea is
to remove a few sampled coordinates of the error corrected sources and show that this suffices to
remove any linear dependencies. Let L : {0, 1}r → {0, 1}s be a linear map given by L(α) = Mα
for some matrix M . We use conL to denote a maximal set of linearly independent rows of M . We
first set up some parameters and ingredients.

• Let δ > 0 be a small enough constant.

• Let n0 = nδ, n1 = 50n0, n2 = 5n0, n3 =
√
n, n4 = n3/4. Let n5 = n −

∑4
i=1 ni. Thus,

n5 > 9n/10.

• Let IP1 : {0, 1}n1 × {0, 1}n1 → {0, 1}n0 be a two-source extractor instantiated from Theorem
3.14.

• Let IP2 : {0, 1}n2 × {0, 1}n2 → {0, 1}n0 be a two-source extractor instantiated from Theorem
3.14.

• Let LExt : {0, 1}n × {0, 1}n2 → {0, 1}
√
n0 be a linear seeded extractor instantiated from

Theorem 3.14 set to extract from min-entropy n2 and error 2Ω(
√
n2) .

• Let C be a BCH code with parameters: [nb, nb− tb log nb, 2tb]2, tb =
√
nb/100, where we fix nb

in the following way. Let dBCH be the dual code. From standard literature, it follows that
dBCH is a [nb, tb log nb,

nb
2 − tb

√
nb]2-code. Set nb such that tb · log nb =

√
nb log nb = n. Let

E be the encoder of dBCH.
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• Let Samp : {0, 1}n0 → [nb]
n7 , n7 = n0/ log nb be a sampler that splits its input bit-string of

length n0 into log nb sized strings and outputs the corresponding elements from [nb].

• Let ACB : {0, 1}nacb × {0, 1}nacb × {0, 1}hacb → {0, 1}n1,acb be the advice correlation breaker
from Theorem 4.2 set with the following parameters: nacb = n3, n1,acb = n8 = nδ2 , for some

small enough δ2 > 0, hacb = n1, εacb = 2−n
2δ

, dacb = O(log2(n/εacb)), and λacb = Cnδ for
some large constant C.

• Let LExt1 : {0, 1}n4 × {0, 1}n8 → {0, 1}m be the linear seeded extractor from Theorem 3.12
set to extract from min-entropy rate 0.1 and error ε = 2−Ω(n8) (such that the seed-length is
indeed m). Thus, m = αn8, for some small contant α that arises out of Theorem 3.12.

Algorithm 8: nmExt(x, y)

Input: Bit-strings x, y each of length n,
Output: Bit string v of length m.

1 Let x = x1 ◦ x2 ◦ x3 ◦ x4 ◦ x5, where zi is of length ni.
2 Let y = y1 ◦ y2 ◦ y3 ◦ y4 ◦ y5, where zi is of length ni.
3 Let r1 = IP(x1, y1) and r2 = IP(x2, y2).
4 Let T = Samp(r1).
5 Let g1(x) = LExt(x, r2) and g2(y) = LExt(y, r2).
6 For any set Q, define EQ(x) = (E(x))Q and EQ(y) = (E(y))Q.

7 Pick a subset T ⊂ T of size n7 − 2
√
n0 such that conT is linearly independent of

cong1 ∪ cong2 . If there is no such set T , then output 0m.
8 Let w1,x = (E(x))T and w1,y = (E(y))T .
9 Let w2,x = g1(x) and w2,y = g2(y).

10 Let v = x1 ◦ y1 ◦ x2 ◦ y2 ◦ w1,x ◦ w1,y ◦ w2,x ◦ w2,y.
11 Let z = ACB(x3, y3, v).
12 Output z̃ = LExt1(x4, z).

The existence of the subset T is guaranteed by the fact that E has dual distance tb = Ω(n/ log n).
Thus, any ConT is a set of size |T | = n7. Further, Cong1 ∪ Cong2 is a set with cardinality at most
2
√
n0. Thus, indeed there exists such a set T . Following the proof of Theorem 6.1, it is now

direct to show that the function nmExt computed by Algorithm 8 indeed satisfies the conclusion
of Theorem 6.1. An important detial to notice is that |T \ T | = 2

√
n0 = o(n7) and the distance of

the code computed by E is Ω(1). Thus, the fact that we discard the bits indexed by the set T \ T
from the encoded X and Y (and thus the output of the advice generator) does not affect the proof.
The rest of the proof is straightforward and we omit the details.

We now focus on the problem of efficiently sampling from the pre-image of this extractor. The
following lemma almost immediately implies a simple sampling algorithm.

Lemma 8.3. With probability at least 1− 2−n
Ω(1)

over uniformly randomly fixing x1, x2, x3, y1, y2,
y3, y4, w1,x, w1,y, w2,x, w2,y, the set nmExt−1(z̃) ⊂ {0, 1}2n is a linear subspace of fixed dimension.

Proof. Fix x1, y1 and x2, y2. Note that this fixes r1, r2 and the set T . Now fix w2,x and w2(y).

Note that by Lemma 3.13, with probability at least 1 − 2−n
Ω(1)

, cong1 and cong2 are each sets of
cardinality exactly

√
n0. Next fix w2,x and w2,y and a subset T ⊂ T satisfying Step (7) of Algorithm

8. Fix the variables x3, y3 and compute z using Algorithm 8. Next, sample x4 uniformly from the
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set (LExt1(·, z))−1(z̃). Note that this can be done efficiently by Theorem 3.12, and further the
dimension of the sub-space from which x4 is sampled does not depend on the variables fixed so far.
Now, we are left with sampling x5, y4, y5. Note that (with probability 1 − 2−n

Ω(1)
) the number of

linearly independent constraints imposed on x5 is exactly
√
n0 + n7 − 2

√
n0 = n7 −

√
n0, and the

number of linearly independent constraints imposed on y4 ◦ y5 is also n7 −
√
n0. Thus, we sample

x5 and y4 ◦ y5 from the appropriate subspaces noting that the number of constraints n7 −
√
n0 is

much smaller than the lengths of x5 and y4 ◦y5. It is clear from the argument that with probability
at least 1 − 2−n

Ω(1)
, the dimension of sub-space from which x ◦ y is sampled does not depend on

the values of x1, x2, x3, y1, y2, y3, y4, w1,x, w1,y, w2,x, w2,y.

Given Lemma 8.3, the sampling algorithm is now straightforward:

Input z̃ ∈ {0, 1}m; Output x, y that is uniform on the set nmExt−1(z̃).

1. Sample x1, x2, x3, y1, y2, y3, y4, w1,x, w1,y, w2,x, w2,y uniformly at random.

2. Compute z using Algorithm 8.

3. Sample x4 uniformly from (LExt(·, z))−1(z̃).

4. Pick an appropriate set T and sample x5, y4, y5 as discussed in Lemma 8.3.

5. Output x = x1 ◦ x2 ◦ x3 ◦ x4 ◦ x5, y = y1 ◦ y2 ◦ y3 ◦ y4 ◦ y5.

9 Extractors for interleaved sources

Our techniques yield improved explicit constructions of extractors for interleaved sources. Our
extractor works when both sources have entropy at least 2n/3, and outputs Ω(n) bits that are

2−n
Ω(1)

-close to uniform.

The following is our main result.

Theorem 9.1. For any constant δ > 0 and all integers n > 0, there exists an efficiently computable
function i`Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that for any two independent sources X and
Y, each on n bits with min-entropy at least (2/3 + δ)n, and any permutation π : [2n] → [2n], we
have

|i`Ext((X ◦Y)π)−Um| ≤ 2−n
Ω(1)

.

We use the rest of the section to prove Theorem 9.1. An important ingredient in our construction
is an explicit somewhere condenser for high-entropy sources constructed in the works of Barak et
al. [BRSW12] and Zuckerman [Zuc07].

Theorem 9.2. For all constants β, δ and all integers n > 0, there exists an efficiently computable
function Con : {0, 1}n×{0, 1}d → {0, 1}`, d = 0(1) and ` = Ω(n) such that the following holds: for
any (n, δn)-source X there exists a y ∈ {0, 1}d such that Con(X, y) is 2−Ω(n)-close to a source with
min-entropy (1− β)`.
We call such a function Con to be a (δ, 1− β)-condenser.

We prove that Algorithm 9 computes the required extractor. We begin by setting up some
ingredients and parameters.

• Let κ > 0 be a small enough constant.
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• Let n1 = (2/3 + δ/2)n and n2 = n5κ.

• Let β be a parameter which we fix later. Let Con : {0, 1}n1 × {0, 1}d → {0, 1}` be a (δ/4,
1− β)-condenser instantiated from Theorem 9.2. Thus ` = n/C ′, for some constant C ′ that
depends on δ, β. Let D = 2d. Note that D = O(1).

• Let LExt1 : {0, 1}2n×{0, 1}` → {0, 1}n2 be the linear seeded extractor from Theorem 3.12 set
to extract from min-entropy rate 1/12 and error ε1 = 2−2β`. The seed-length is at most 3Cβ`,
some constant C that arises out of Theorem 3.12. We choose β = min{1/3C, γ}, where γ is
the constant in Theorem 3.12. Note that the seed-length of LExt1 is indeed at most `.

• Let ACB : {0, 1}n1,acb ×{0, 1}nacb ×{0, 1}hacb → {0, 1}n2,acb , be the advice correlation breaker
from Theorem 4.1 set with the following parameters: nacb = 2n, n1,acb = n2, n2,acb = n3 = n2κ,
tacb = D,hacb = d, εacb = 2−n

κ
, dacb = O(log2(n/εacb)), λacb = 0. It can be checked that by our

choice of parameters, the conditions required for Theorem 4.1 indeed hold for k1,acb ≥ n2κ.

• Let LExt2 : {0, 1}2n×{0, 1}n3 → {0, 1}m, m = Ω(n), be a linear-seeded extractor instantiated
from Theorem 3.10 set to extract from entropy k1 = n/10 with error ε1 = 2−α

√
n3 , for an

appropriately picked small constant α.

Algorithm 9: i`Ext(z)

Input: Bit-string z = (x ◦ y)π of length 2n, where x and y are each n bit-strings, and
π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let z1 = Slice(z, n1).
2 Let v be a D × n2 matrix, with its i’th row vi = Con(z1, i).
3 Let r be a D × n3 matrix, with its i’th row ri = LExt1(z, vi).
4 Let s be a D ×m matrix, with its i’th row si = ACB(ri, z, i).
5 Let s̃ = ⊕Di=1si.
6 Output LExt2(z, s̃).

We use the following notation: Let X1 be the bits of X in Z1 and X2 be the remaining bit of
X. Let Y1 be the bits of Y in Z1 and Y2 be the remaining bits of Y. Without loss of generality
assume |X1| ≥ |Y1|. Define X = (X ◦ 0n)π and Y = (Y ◦ 0n)π. Further, let X1 = Slice(X, n1) and
Y1 = Slice(Y, n1). It follows that Z = X+Y, and Z1 = X1+Y1. Further, let kx = ky = (2/3+δ)n.

We begin by proving the following claim.

Claim 9.3. Conditioned on the random variables X1,Y1, {LExt1(X,Con(X1 + Y1, i))}Di=1, the
following hold:

• the matrix R is 2−Ω(n)-close to a somewhere random source,

• R is a deterministic functions of Y,

• H∞(X) ≥ δn/4, H∞(Y) ≥ n/6.
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Proof. By construction, we have that for any j ∈ [D],

Rj = LExt1(Z,Con(Z1, j))

= LExt1(X + Y,Con(X1 + Y1, j))

= LExt2(X,Con(X1 + Y1, j)) + LExt2(Y,Con(X1 + Y1, j))

Fix the random variables Y1, and Y has min-entropy at least ky − n1/2 ≥ n/6 + 3δn/4. Further,
note that X1 has min-entropy at least n1/2 − (n − kx) ≥ δn/4. Now, by Theorem 9.2, we know
that there exists a j ∈ [D] such that Con(X1 + Y1, j) is 2−Ω(n)-close to a source with min-entropy
at least (1− β)`. Further, note that V is a deterministic function of X.

Now, since LExt1 is a strong seeded extractor set to extract from min-entropy n/6, it follows
that

|LExt1(Y,Con(X1 + Y1, j))−Un2 | ≤ 2β`ε1 + 2−Ω(n) ≤ 2−β`+1.

We now fix the random variables X1 and note that LExt1(Y,Con(X1 + Y1, j)) continues to
be 2−Ω(`)-close to Un2 . This follows from the fact that LExt1 is a strong seeded extractor. Note
that the random variables {Con(X1 + Y1, i)) : i ∈ [D]} are now fixed. Next, fix the random
variables {LExt1(X,Con(X1 + Y1, i))}Di=1 noting that they are deterministic functions of X. Thus
Rj is 2−Ω(n)-close to Un2 and for any i ∈ [D], the random variables Ri are deterministic functions
of Y. Finally, note that X and Y remain independent after these conditionings, and H∞(X) ≥
kx − n1 −Dn2 and H∞(Y) ≥ ky − n1/2.

The next claim almost gets us to Theorem 9.1.

Claim 9.4. There exists j ∈ [D] such that

Sj , {Si}i∈[D]\j ,X ≈2−n
Ω(1) Un3 , {Si}i∈[D]\j ,X.

Proof. Fix the random variables: X1,Y1, {LExt1(X,Con(X1 + Y1, i))}Di=1. By Claim 9.3 we have
that R is a deterministic function of Y, and with probability at least 1−2−Ω(n), there exists j ∈ [D]

such that Rj is 2−n
Ω(1)

-close to uniform, and H∞(X) ≥ δn/4. Recall that Z = X + Y. It now
follows by Theorem 4.1 that

ACB(Rj ,Z,W ◦ j), {ACB(Ri,X + Y,W ◦ i)}i∈[D]\j ,X ≈2−n
Ω(1)

Un3 , {ACB(Ri,X + Y,W ◦ i)}i∈[D]\j ,X.

It follows by Claim 9.4 that S̃ is 2−n
Ω(1)

-close to uniform even conditioned on X. Thus, noting
that LExt2(Z, S̃) = LExt2(X, S̃) + LExt2(Y, S̃), it follows that we can fix S̃ and LExt2(X, S̃)

remains 2−n
Ω(1)

-close to uniform and is a deterministic function of X. Next, we fix LExt2(Y, S̃)

without affecting the distribution of LExt2(X, S̃). It follows that LExt2(Z, S̃) is 2−n
Ω(1)

-close to
uniform. This completes the proof of Theorem 9.1.
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