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Abstract

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs (JACM 2018) as a
generalization of standard error correcting codes to handle severe forms of tampering on codewords.
This notion has attracted a lot of recent research, resulting in various explicit constructions, which have
found applications in tamper-resilient cryptography and connections to other pseudorandom objects in
theoretical computer science.

We continue the line of investigation on explicit constructions of non-malleable codes in the infor-
mation theoretic setting, and give explicit constructions for several new classes of tampering functions.
These classes strictly generalize several previously studied classes of tampering functions, and in par-
ticular extend the well studied split-state model which is a “compartmentalized” model in the sense that
the codeword is partitioned a prior into disjoint intervals for tampering. Specifically, we give explicit
non-malleable codes for the following classes of tampering functions.

• Interleaved split-state tampering: Here the codeword is partitioned in an unknown way by an
adversary, and then tampered with by a split-state tampering function.

• Affine tampering composed with split-state tampering: In this model, the codeword is first tam-
pered with by a split-state adversary, and then the whole tampered codeword is further tampered
with by an affine function. In fact our results are stronger, and we can handle affine tampering
composed with interleaved split-state tampering.

Our results are the first explicit constructions of non-malleable codes in any of these tampering models.
As applications, they also directly give non-malleable secret sharing schemes with binary shares in
the split-state joint tampering model and the stronger model of affine tampering composed with split-
state joint tampering. We derive all these results from explicit constructions of seedless non-malleable
extractors, which we believe are of independent interest.

Using our techniques, we also give an improved seedless extractor for an unknown interleaving of
two independent sources.
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1 Introduction

1.1 Non-malleable Codes

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [DPW18] as an elegant relax-
ation and generalization of standard error correcting codes, where the motivation is to handle much larger
classes of tampering functions on the codeword. Traditionally, error correcting codes only provide mean-
ingful guarantees (e.g., unique decoding or list-decoding) when part of the codeword is modified (i.e., the
modified codeword is close in Hamming distance to an actual codeword), whereas in practice an adversary
can possibly use much more complicated functions to modify the entire codeword. In the latter case, it is
easy to see that error correction or even error detection becomes generally impossible, for example an adver-
sary can simply change all codewords into a fixed string. On the other hand, non-malleable codes can still
provide useful guarantees here, and thus partially bridge this gap. Informally, a non-malleable code guaran-
tees that after tampering, the decoding either correctly gives the original message or gives a message that is
completely unrelated and independent of the original message. This captures the notion of non-malleability:
that an adversary cannot modify the codeword in a way such that the tampered codeword decodes back to a
related but different message.

The original intended application of non-malleable codes is in tamper-resilient cryptography [DPW18],
where they can be used generally to prevent an adversary from learning secret information by observing
the input/output behavior of modified ciphertexts. Subsequently, non-malleable codes have found ap-
plications in non-malleable commitments [GPR16], non-malleable encryption [CDTV16], public-key en-
cryptions [CMTV15], non-malleable secret sharing schemes [GK18a], and privacy amplification protocols
[CKOS18]. Furthermore, interesting connections were found to non-malleable extractors [CG17], and very
recently to spectral expanders [RS18]. Along the way, the constructions of non-malleable codes used various
components and sophisticated ideas from additive combinatorics [ADL18,CZ14] and randomness extraction
[CGL16], and some of these techniques have also found applications in constructing extractors for indepen-
dent sources [Li17]. As such, non-malleable codes have become fundamental objects at the intersection of
coding theory and cryptography. They are well deserved to be studied in more depth in their own right, as
well as to find more connections to other well studied objects in theoretical computer science.

We first introduce some notation before formally defining non-malleable codes.

Definition 1.1. For any function f : S → S, f has a fixed point at s ∈ S if f(s) = s. We say f has no fixed
points in T ⊆ S, if f(t) 6= t for all t ∈ T . f has no fixed points if f(s) 6= s for all s ∈ S.

Definition 1.2 (Tampering functions). For any n > 0, let Fn denote the set of all functions f : {0, 1}n →
{0, 1}n. Any subset of Fn is a family of tampering functions.

We use the statistical distance to measure the distance between distributions.

Definition 1.3. The statistical distance between two distributions D1 and D2 over some universal set Ω is
defined as |D1 −D2| = 1

2

∑
d∈Ω |Pr[D1 = d]−Pr[D2 = d]|. We say D1 is ε-close to D2 if |D1 −D2| ≤ ε

and denote it by D1 ≈ε D2.

To introduce non-malleable codes, we need to define a function called copy that takes in two inputs. If
the first input is the special symbol “same?”, the copy function just outputs its second input. Else it outputs
its first input. This is useful in defining non-malleable codes where one wants to model the situation that
the decoding of the tampered codeword is either the original message or a distribution independent of the
message. Thus, we define a distribution on the message space and the special symbol same?, where the
probability that the distribution takes on the value same? corresponds to the probability that the tampered
codeword is decoded back to the original message. More formally, we have

1



copy(x, y) =

{
x if x 6= same?

y if x = same?

Following the treatment in [DPW18], we first define coding schemes.

Definition 1.4 (Coding schemes). Let Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k ∪ {⊥} be
functions such that Enc is a randomized function (i.e., it has access to private randomness) and Dec is a
deterministic function. We say that (Enc,Dec) is a coding scheme with block length n and message length
k if for all s ∈ {0, 1}k, Pr[Dec(Enc(s)) = s] = 1, where the probability is taken over the randomness in
Enc.

We can now define non-malleable codes.

Definition 1.5 (Non-malleable codes). A coding scheme C = (Enc,Dec) with block length n and message
length k is a non-malleable code with respect to a family of tampering functions F ⊂ Fn and error ε if
for every f ∈ F there exists a random variable Df on {0, 1}k ∪ {same?} which is independent of the
randomness in Enc such that for all messages s ∈ {0, 1}k, it holds that

|Dec(f(Enc(s)))− copy(Df , s)| ≤ ε.

We say the code is explicit if both the encoding and decoding can be done in polynomial time. The rate of C
is given by k/n.

Relevant prior work on non-malleable codes in the information theoretic setting. There has been
a lot of exciting research on non-malleable codes, and it is beyond the scope of this paper to provide a
comprehensive survey of them. Instead we focus on relevant explicit (unconditional) constructions in the
information theoretic setting, which is also the focus of this paper. One of the most studied classes of
tampering functions is the so called split-state tampering, where the codeword is divided into (at least two)
disjoint intervals and the adversary can tamper with each interval arbitrarily but independently. This model
arises naturally in situations where the codeword may be stored in different parts of memory or different
devices. Following a very successful line of work [DKO13,ADL18,Agg15,AB16,CG17,CZ14,ADKO15a,
CGL16, Li17, Li18], we now have explicit constructions of non-malleable codes in the 2-split state model
with constant rate and constant error, or rate Ω(log log n/ log n) with exponentially small error [Li18]. For
larger number of states, a recent line of work [KOS17, KOS18, GMW18] gave explicit constructions of
non-malleable codes in the 3-split-state model with constant rate and negligible error.

The split state model is a “compartmentalized” model, where the codeword is partitioned a prior into
disjoint intervals for tampering. Recently, there has been progress towards handling non-compartmentalized
tampering functions. A work of Agrawal, Gupta, Maji, Pandey and Prabhakaran [AGM+15] gave explicit
constructions of non-malleable codes with respect to tampering functions that permute or flip the bits of
the codeword. Ball, Dachman-Soled, Kulkarni and Malkin [BDKM16] gave explicit constructions of non-
malleable codes against t-local functions for t ≤ n1−ε. However in all these models, each bit of the tam-
pering function only depends on part of the codeword. A recent work of Chattopadhyay and Li [CL17]
gave the first explicit constructions of non-malleable codes where each bit of the tampering function may
depend on all bits of the codeword. Specifically, they gave constructions for the classes of affine functions
and small-depth (unbounded fain-in) circuits. The rate of the non-malleable code with respect to small-depth
circuits was exponentially improved by a subsequent work of Ball, Dachman-Soled, Guo, Malkin, and Tan
[BDSG+18].
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Given all these exciting results, a major goal of the research on non-malleable codes remains to give
explicit constructions for broader classes of tampering functions, as one can use the probabilistic method to
show the existence of non-malleable codes with rate close to 1 − δ for any class F of tampering functions
with |F| ≤ 22δn [CG16].

Our results. We continue the line of investigation on explicit constructions of non-malleable codes, and
give explicit constructions for several new classes of non-compartmentalized tampering functions, where in
some classes each bit of the tampering function can depend on all the bits of the codeword. In Section 1.2,
we discuss motivations and applications of our new non-malleable codes in cryptography. The new classes
strictly generalize several previous studied classes of tampering functions. In particular, we consider the
following classes.

1. Interleaved 2-split-state tampering, where the adversary can divide the codeword into two arbitrary
disjoint intervals and tamper with each interval arbitrarily but independently. This model generalizes
the split-state model and captures the situation where the codeword is partitioned into two blocks (not
necessarily of the same length) in an unknown way by the adversary before applying a 2-split-state
tampering function. Constructing non-malleable codes for this class of tampering functions was left
as an open problem by Cheraghchi and Guruswami [CG17].

2. Composition of tampering, where the adversary takes two tampering functions and compose them
together to get a new tampering function. We note that function composition is a natural strategy for
an adversary to achieve more powerful tampering, and it has been studied widely in other fields (e.g.,
computational complexity and communication complexity). We believe that studying non-malleable
codes for the composition of different classes of tampering functions is also a natural and important
direction.

We now formally define these classes and some related classes below. For notation, given any permutation
π : [n]→ [n] and any string x of length n, we let y = xπ denote the length n string such that yπ(i) = xi.

• The family of 2-split-state functions 2SS ⊂ F2n: Any f ∈ 2SS comprises of two functions f1 :
{0, 1}n → {0, 1}n and f2 : {0, 1}n → {0, 1}n, and for any x, y ∈ {0, 1}n, f(x, y) = (f1(x), f2(y)).
This family of tampering functions has been extensively studied, with a long line of work achieving
near optimal explicit constructions of non-malleable codes.

• The family of affine functions Lin ⊂ Fn: Any f ∈ Lin is an affine function from {0, 1}n to {0, 1}n
(viewing {0, 1}n as Fn2 ).

• The family of interleaved 2-split-state functions (2, t)-ISS ⊂ Fn: Any f ∈ (2, t)-ISS comprises of
two functions f1 : {0, 1}n1 → {0, 1}n1 , f2 : {0, 1}n2 → {0, 1}n2 such that n1 + n2 = n and
min{n1, n2} ≥ t (i.e both partitions are of length at least t), and a permutation π : [n] → [n]. For
any z = (x ◦ y)π ∈ {0, 1}n, where x ∈ {0, 1}n1 , y ∈ {0, 1}n2 , let f(z) = (f1(x) ◦ f2(y))π (where ◦
denotes string concatenation). In this paper we require that t ≥ nβ for some fixed constant 0 < β < 1.
Note this includes as a special case the situation where the two states have the same size, which we
denote by 2ISS, and in particular 2SS.

• For any tampering function families F ,G ⊂ Fn, define the family F ◦ G ⊂ Fn to be the set of all
functions of the form f ◦ g, where f ∈ F , g ∈ G and ◦ denotes function composition.

We now formally state our results. Our most general result is an explicit non-malleable code with respect
to the tampering class of Lin ◦ (2, nβ)-ISS, i.e, an affine function composed with an interleaved 2-split-state
tampering function. Specifically, we have the following theorem.
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Theorem 1. There exist constants β, δ > 0 such that for all integers n > 0 there exists an explicit non-
malleable code with respect to Lin ◦ (2, nβ)-ISS with rate 1/nδ and error 2−n

δ
.

We immediately have the following corollary, which records the classes of functions for which no ex-
plicit non-malleable codes were known (for any rate) prior to this work.

Corollary 2. There exist constants β, δ > 0 such that for all integers n > 0 there exists an explicit non-
malleable code with respect to the following classes of functions with rate 1/nδ and error 2−n

δ
:

• 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS and Lin ◦ 2SS.

1.2 Motivations and applications in cryptography

Just as standard non-malleable codes for split-state tampering arise from natural cryptographic applications,
our non-malleable codes for interleaved 2-split-state tampering and affine tampering composed with inter-
leaved split-state tampering also have natural cryptographic motivations and applications.

It is known that any non-malleable code in the 2-split-state model gives a 2 out of 2 secret sharing
scheme, if one views the two split states as two shares [ADKO15b]. We show that any non-malleable code
in the interleaved 2-split state model gives a non-malleable secret sharing scheme with binary shares. Secret
sharing schemes [Bla79,Sha79] are fundamental objects in cryptography, and building blocks for many other
more advanced applications such as secure multiparty computation. In short, a secret sharing scheme shares
a message secretly among n parties, such that any qualified subset can reconstruct the message, while any
unqualified subset reveals nothing (or almost nothing) about the message. Equivalently, one can view this
as saying that any leakage function which leaks the shares in an unqualified subset reveals nothing. In the
standard threshold or t out of n secret sharing, any subset of size at most t is an unqualified subset while any
subset of size larger than t is a qualified subset. However, it is known that in such a scheme, the share size
has to be at least as large as the message size. Thus, a natural and interesting question is whether the share
size can be smaller under some relaxed notion of secret sharing. This is indeed possible when one considers
the notion of (r, t) -ramp secret sharing, where r > t+ 1. In this setting, any subset of size at most t reveals
nothing about the message, while any subset of size at least r can reconstruct message. Thus t is called the
privacy threshold and r is called the reconstruction threshold. Subsets of size between t+ 1 and r − 1 may
reveal some partial information about the message. Again, it is not hard to see that the share size in this case
has to be at least as large as m/(r − t), where m is the message length. Thus, if one allows a sufficiently
large gap between r and t, then it is possible to achieve a secret sharing scheme even with binary shares.

Secret sharing schemes are also closely related to error correcting codes. For example, the celebrated
Shamir’s scheme [Sha79] is based on Reed-Solomon codes. Similarly, binary secret sharing schemes are
largely based on binary error correcting codes, and they are studied in a series of recent works [BIVW16,
BW17, CIL17, LCG+18] in terms of the tradeoff between the message length, the privacy threshold t, the
reconstruction threshold r, and the complexity of the sharing and reconstruction functions.

However, standard secret sharing schemes only allow an adversary to passively observe some shares,
thus one can ask the natural question of whether it is possible to protect against even active adversaries
who can tamper with the shares. In this context, the notion of robust secret sharing schemes (e.g., [RBO89,
CSV93]) allows qualified subsets to recover the message even if the adversary can modify part of the shares.
More recently, by generalizing non-malleable codes, Goyal and Kumar [GK18a] introduced non-malleable
secret sharing schemes, where the adversary can tamper with all shares in some restricted manner. Naturally,
the guarantee is that if tampering happens, then the reconstructed message is either the original message or
something completely unrelated. In particular, they constructed t out of n non-malleable secret sharing
schemes in the following two tampering models. In the independent tampering model, the adversary can
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tamper with each share independently. In the joint tampering model, the adversary can divide any subset
of t + 1 shares arbitrarily into two sets of different size, and tamper with the shares in each set jointly, but
independently across the two sets. Note that the adversary in the second model is strictly stronger than the
adversary in the first one, since for reconstruction one only considers subsets of size t + 1. Several follow
up works [GK18b, BS18, ADN+18] studied different models such as non-malleable secret sharing schemes
for general access structures, and achieved improvements in various parameters.

However, in all known constructions of non-malleable secret sharing schemes the share size is always
larger than 1 bit. In other words, no known non-malleable secret sharing scheme can achieve binary shares.
This is an obstacle that results from the techniques in all known constructions. Indeed, even if one allows (r,
t)-ramp non-malleable secret sharing with an arbitrarily large gap between r and t, no known constructions
can achieve binary shares, because they all need to put at least two shares of some standard secret sharing
schemes together to form a single share in the non-malleable scheme. Thus it is a natural question to see if
one can construct non-malleable secret sharing schemes with binary shares using different techniques.

Our non-malleable codes for interleaved 2-split-state tampering directly give non-malleable secret shar-
ing schemes with binary shares that protect against joint tampering. We have the following theorem.

Theorem 3. There exist constants 0 < α < β < 1 such that for all integers n > 0 there exists an explicit
(r, t)-ramp non-malleable secret sharing scheme with binary shares, where r = n, t = n − nβ and the
message length is nα. The scheme has statistical privacy with error 2−n

Ω(1)
, and is resilient with error

2−n
Ω(1)

to joint tampering where the adversary arbitrarily partitions the r shares into two blocks, each with
at most t shares, and tampers with each block independently using an arbitrary function.

Intuitively, any n-bit non-malleable code for interleaved 2-split-state tampering gives a ramp non-
malleable secret sharing scheme with reconstruction threshold r = n, as follows. If the code protects against
an adversary who can partition the codeword into two disjoint sets and tamper with each set arbitrarily but
independently, then each set must reveal (almost) nothing about the secret message. Otherwise, the adver-
sary can simply look at one set and use the leaked information to modify the shares in this set, and make the
reconstructed message become a different but related message. In particular, the same proof in [ADKO15b]
for the standard 2-split state model also works for the interleaved 2-split state model. Since our code works
for interleaved 2-split-state tampering and the size of one set can be as large as n− nβ , this implies privacy
threshold at least n− nβ , with the small error in privacy coming from the error of the non-malleable code.

It is an interesting open question to construct explicit non-malleable secret sharing schemes with binary
shares where the reconstruction threshold r < n. We note that this question is closely related to constructing
non-malleable codes for the tampering class 2SS ◦Lin or 2ISS ◦Lin (i.e., reverse the order of composition).
This is because to get such a scheme, one natural idea is to apply another secret sharing scheme on top of
our non-malleable code. If one uses a linear secret sharing scheme as in many standard schemes, then the
tampering function on the codeword becomes 2SS ◦ Lin or 2ISS ◦ Lin.

We also note that in an (r, t)-ramp secret sharing scheme with binary shares, unless the message has
only one bit, we must have r > t+ 1. Thus in the joint tampering model, instead of allowing the adversary
to divide r shares arbitrarily into two sets, one must put an upper bound t on the size of each set as in our
theorem. For example, one cannot allow an adversary to look at a set of shares with size r − 1, because
r − 1 > t and this set of shares may already leak some information about the secret message.

In both standard secret sharing and non-malleable secret sharing, in addition to looking at sets of shares,
researchers have also studied other classes of leakage function or tampering function. For example, the work
of Goyal et al. [GIM+16] studied secret sharing schemes that are resilient to affine leakage functions on
all shares, and used them to construct parity resilient circuits and bounded communication leakage resilient
protocols. A recent work of Lin et. al [LCG+19] also studied non-malleable secret sharing schemes where
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the adversary can tamper with all shares jointly using some restricted classes of functions. Specifically,
[LCG+19] considered the model of “adaptive” affine tampering, where the adversary is allowed to first
observe the shares in some unqualified subset, and then choose an affine function based on this to tamper
with all shares. In this sense, our non-malleable codes for affine tampering composed with interleaved 2-
split-state tampering also directly give non-malleable secret sharing schemes with binary shares that protect
against affine tampering composed with joint tampering, which is strictly stronger than both the joint tam-
pering model and the affine tampering model (although our affine tampering is non-adaptive compared to
[LCG+19]). Specifically, we have the following theorem.

Theorem 4. There exist constants 0 < α < β < 1 such that for all integers n > 0 there exists an explicit
(r, t)-ramp non-malleable secret sharing scheme with binary shares, where r = n, t = n − nβ and the
message length is nα. The scheme has statistical privacy with error 2−n

Ω(1)
, and is resilient with error

2−n
Ω(1)

to an adversary that tampers in two stages: In the first stage, the adversary partitions the r shares
arbitrarily into two blocks, each with at most t shares, and tampers with each block independently using an
arbitrary function. In the second stage, the adversary applies an arbitrary affine tampering function jointly
on all the already tampered (from the first stage) r shares.

Again, it is an interesting open question to construct explicit non-malleable secret sharing schemes
where the order of tampering is reversed.

1.3 Seedless non-malleable extractors

Our results on non-malleable codes are based on new constructions of seedless non-malleable extractors,
which we believe are of independent interest. Before defining seedless non-malleable extractors formally,
we first recall some basic notation from the area of randomness extraction.

Randomness extraction is motivated by the problem of purifying imperfect (or defective) sources of
randomness. The concern stems from the fact that natural random sources often have poor quality, while
most applications require high quality (e.g., uniform) random bits. We use the standard notion of min-
entropy to measure the amount of randomness in a distribution.

Definition 1.6. The min-entropy H∞(X) of a probability distribution X on {0, 1}n is defined to be
minx(− log(Pr[X = x])). We say X is an (n,H∞(X))-source and the min-entropy rate is H∞(X)/n.

It turns out that it is impossible to extract from a single general weak random source even for min-
entropy n− 1. There are two possible ways to bypass this barrier. The first one is to relax the extractor to be
a seeded extractor, which takes an additional independent short random seed to extract from a weak random
source. The second one is to construct deterministic extractors for special classes of weak random sources.

Both kinds of extractors have been studied extensively. Recently, they have also been generalized to
stronger notions where the inputs to the extractor can be tampered with by an adversary. Specifically,
Dodis and Wichs [DW09] introduced the notion of seeded non-malleable extractor in the context of privacy
amplification against an active adversary. Informally, such an extractor satisfies the stronger property that
the output of the extractor is independent of the output of the extractor on a tampered seed. Similarly, and
more relevant to this paper, a seedless variant of non-malleable extractors was introduced by Cheraghchi
and Guruswami [CG17] as a way to construct non-malleable codes. Apart from their original applications,
both kinds of non-malleable extractors are of independent interest. They are also related to each other and
have applications in constructions of extractors for independent sources [Li17].

We now define seedless non-malleable extractors. For simplicity, the definition here assumes that the
tampering function has no fixed points. See Section 3 for a more formal definition.
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Definition 1.7 (Seedless non-malleable extractors). Let F ⊂ Fn be a family of tampering functions such
that no function in F has any fixed points. A function nmExt : {0, 1}n → {0, 1}m is a seedless (n,m, ε)-
non-malleable extractor with respect to F and a class of sources X if for every distribution X ∈ X and
every tampering function f ∈ F ,

|nmExt(X), nmExt(f(X))−Um, nmExt(f(X))| ≤ ε.

Further, we say that nmExt is ε′-invertible, if there exists a polynomial time sampling algorithmA that takes
as input y ∈ {0, 1}m, and outputs a sample from a distribution that is ε′-close to the uniform distribution on
the set nmExt−1(y).

In the above definition, when the class of sources X is the distribution Un, we simply say that nmExt is
a seedless (n,m, ε)-non-malleable extractor with respect to F .

Relevant prior work on seedless non-malleable extractors. The first construction of seedless non-
malleable extractors was given by Chattopadhyay and Zuckerman [CZ14] with respect to the class of 10-
split-state tampering. Subsequently, a series of works starting with the work of Chattopadhyay, Goyal and
Li [CGL16] gave explicit seedless non-malleable extractors for 2-split-state tampering. The only known
construction with respect to a class of tampering functions different from split state tampering is the work
of Chattopadhyay and Li [CL17], which gave explicit seedless non-malleable extractors with respect to the
tampering class Lin and small depth circuits. We note that constructing explicit seedless non-malleable
extractors with respect to 2ISS was also posed as an open problem in [CG17].

Our results. As our most general result, we give the first explicit constructions of seedless non-malleable
extractors with respect to the tampering class Lin ◦ (2, nβ)-ISS.

Theorem 5. There exists a constant β > 0 such that for all n > 0 there exists an efficiently computable seed-
less (n, nΩ(1), 2−n

Ω(1)
)-non-malleable extractor with respect to Lin ◦ (2, nβ)-ISS, that is 2−n

Ω(1)
-invertible.

This immediately yields the first explicit non-malleable extractors against the following classes of tam-
pering functions.

Corollary 6. For all n > 0 there exists an efficiently computable seedless (n, nΩ(1), 2−n
Ω(1)

)-non-malleable
extractor with respect to the following classes of tampering functions:

• 2ISS, (2, nβ)-ISS, Lin ◦ 2ISS, and Lin ◦ 2SS.

We derive our results on non-malleable codes using the above explicit constructions of non-malleable
extractors based on a beautiful connection discovered by Cheraghchi and Gurswami [CG17] (see Theo-
rem 3.19 for more details).

1.4 Extractors for interleaved sources

Our techniques also yield improved explicit constructions of extractors for interleaved sources, which gen-
eralize extractors for independent sources in the following way: the inputs to the extractor are samples from
a few independent sources mixed (interleaved) in an unknown (but fixed) way. Raz and Yehudayoff [RY11]
showed that such extractors have applications in communication complexity and proving lower bounds for
arithmetic circuits. In a subsequent work, Chattopadhyay and Zuckerman [CZ16b] showed that such extrac-
tors can also be used to construct extractors for certain samplable sources, extending a line of work initiated
by Trevisan and Vadhan [TV00]. We now define interleaved sources formally.
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Definition 1.8 (Interleaved Sources). Let X1, . . . ,Xr be arbitrary independent sources on {0, 1}n and let
π : [rn]→ [rn] be any permutation. Then Z = (X1 ◦ . . . ◦Xr)π is an r-interleaved source.

Relevant prior work on interleaved extractors. Raz and Yehudayoff [RY11] gave explicit extractors
for 2-interleaved sources when both the sources have min-entropy at least (1 − δ)n for a tiny constant
δ > 0. Their construction is based on techniques from additive combinatorics and can output Ω(n) bits with
exponentially small error. Subsequently, Chattopadhyay and Zuckerman [CZ16b] constructed extractors for
2-interleaved sources where one source has entropy (1−γ)n for a small constant γ > 0 and the other source
has entropy Ω(log n). They achieve output length O(log n) bits with error n−Ω(1).

A much better result (in terms of the min-entropy) is known if the extractor has access to an interleaving
of more sources. For a large enough constant C, Chattopadhyay and Li [CL16] gave an explicit extractor for
C-interleaved sources where each source has entropy k ≥ poly(log n). They achieve output length kΩ(1)

and error n−Ω(1).

Our results. Our main result is an explicit extractor for 2-interleaved sources where each source has min-
entropy at least 2n/3. The extractor outputs Ω(n) bits with error 2−n

Ω(1)
.

Theorem 7. For any constant δ > 0 and all integers n > 0, there exists an efficiently computable function
i`Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that for any two independent sources X and Y, each on n
bits with min-entropy at least (2/3 + δ)n, and any permutation π : [2n]→ [2n],

|i`Ext((X ◦Y)π)−Um| ≤ 2−n
Ω(1)

.

2 Overview of constructions and techniques

Our results on non-malleable codes are derived from explicit constructions of invertible seedless non-
malleable extractors (see Theorem 3.19). In this section, we illustrate our main ideas used to give explicit
constructions of seedless non-malleable extractors with respect to the relevant classes of tampering func-
tions, and explicit extractors for interleaved sources.

We first focus on the main ideas involved in constructing non-malleable extractors against 2-split-state
adversaries when the partition are of equal length (we denote this by 2ISS). This serves to illustrate the
important ideas that go into all our explicit non-malleable extractor constructions.

2.1 Seedless non-malleable extractors with respect to interleaved 2-split-state tampering

We construct a seedless non-malleable extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}m, m = nΩ(1) such
that the following hold: let X and Y be two independent uniform sources, each on n bits. Let f : {0, 1}n →
{0, 1}n, g : {0, 1}n → {0, 1}n be arbitrary functions, and π : [2n] → [2n] be an arbitrary permutation.
Then,

nmExt((X ◦Y)π), nmExt((f(X) ◦ g(Y))π)) ≈ε Um, nmExt((f(X) ◦ g(Y))π) (1)

where ε = 2−n
Ω(1)

. Note that such an extractor is impossible to construct in general, for example when both
f and g are the identify function. For simplicity, we ignore this issue of fixed points here, and just mention
that it can be reduced to the problem of constructing a non-malleable extractor for functions with no fixed
points by assuming that the sources X and Y have high entropy (instead of being uniform). Thus, under the
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assumption that at least one of f and g has no fixed points, it is enough to solve the following problem: Let
X and Y be two independent (n, n− nδ)-sources, construct nmExt that satisfies (1).

Our construction is based on the framework of advice generators and correlation breakers set up in
the work [CGL16], and used in various follow-up works on non-malleable extractors and codes. Before
explaining this framework, we introduce some notation for ease of presentation. Let Z = (X◦Y)π. We use
the notation that if W = h((X◦Y)π) (for some function h), then W′ or (W)′ stands for the corresponding
random variable h((f(X) ◦ g(Y))π). Thus, Z′ = (f(X) ◦ g(Y))π.

On a very high level, the task of constructing a non-malleable extractor can be broken down into the
following two steps:

1. Generating advice: the task here is to construct a function advGen : {0, 1}2n → {0, 1}a, a ≤ nδ,
such that advGen(Z) 6= advGen(Z′) with high probability.

2. Breaking correlation: here we construct an object that can be seen as a relaxation of a non-malleable
extractor, in the sense that we supply the non-malleable extractor with a short advice string. This
object is called an advice correlation breaker. We require that for all distinct strings s, s′ ∈ {0, 1}a,

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′).

Given the above components, the non-malleable extractor is defined as:

nmExt(Z) = ACB(Z, advGen(Z)).

The fact that the above satisfies (1) is not direct, but relies on further properties of the function advGen.
In particular, we require that with high probability over the fixings of the random variables advGen(Z) and
advGen(Z′), X and Y remain independent high min-entropy sources.

2.1.1 An explicit advice generator

A natural first idea to construct an advice generator can be as follows: Take a slice (prefix) of Z, say Z1,
and use this to sample some coordinates from an encoding (using a good error correcting code) of Z. A
similar high level strategy has for example been used in [CGL16], and other follow-up works. The intuition
behind such a strategy is that since we assume Z 6= Z′, encoding it will ensure that they differ on a lot
of coordinates. Thus, sampling a random set of coordinates will include one such coordinate with high
probability. However, in the present case, it is not clear why this should work since it could be that Z1

contains all bits from say X, and the set of coordinates where the encoding of Z and Z′ differ may be a
function of X, which leads to unwanted correlations.

The next natural idea could be the following: First use the slice Z1 to sample a few coordinates from
Z. Let Z2 indicate Z projected onto the sampled coordinates. Now, it is not hard to prove that Z2 contains
roughly equal number of bits from both the sources X and Y. A strategy could be to now use Z2 to
sample coordinates from an encoding of Z. However, in this case, we run into similar problems as before:
there may be unwanted correlations between the randomness used for sampling, and the random variable
corresponding to the set of coordinates where the encoding of Z and Z′ differ.

It turns out that the following subtler construction works:
Let n0 = nδ

′
for some small constant δ′ > 0. We take two slices from Z, say Z1 and Z2 of lengths

n1 = nc00 and n2 = 10n0, for some constant c0 > 1. Next, we use a good linear error correcting code
(let the encoder of this code be E) to encode Z and sample nγ coordinates (let S denote this set) from this
encoding using Z1 (the sampler is based on seeded extractors [Zuc97]). Let W1 = E(Z)S. Next, using Z2,
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we sample a random set of indices T ⊂ [2n], and let Z3 = ZT. We now use an extractor for interleaved
sources, i.e., an extractor that takes as input an unknown interleaving of two independent sources and outputs
uniform bits (see Section 1.4). Let i`Ext be this extractor (say from Theorem 7), and we apply it to Z3 to get
R = i`Ext(Z3). Finally, let W2 be the output of a linear seeded extractor1 LExt on Z with R as the seed.
The output of the advice generator is Z1 ◦ Z2 ◦ Z3 ◦W1 ◦W2.

We introduce some more notation: Define x = (x, 0n)π and y = (0n, y)π. Similarly, define f(x) =
(f(x), 0n)π and g(y) = (0n, g(y))π. Thus, (x, y)π = x + y and (f(x), g(y))π = f(x) + g(y). Let Xi be
the bits of X in Zi for i = 1, 2, 3 and X4 be the remaining bits of X. Similarly define Yi’s, i = 1, 2, 3, 4.

We now proceed to argue the correctness of the above construction. Note that the correctness of advGen
is direct if Zi 6= Z′i for some i ∈ {1, 2, 3}. Thus, assume Zi = Z′i for i = 1, 2, 3. It follows that S = S′,
T = T′ and R = R′. Recall that (X,Y)π = X + Y and h((f(X), g(Y))π) = f(X) + g(Y). Since E is
a linear code and LExt is a linear seeded extractor, the following hold:

W1 −W′
1 = (E(X + Y − f(X)− g(Y)))S,

W2 −W′
2 = LExt(X + Y − f(X)− g(Y),R).

Suppose that Z1 contains more bits from X than Y, i.e., |X1| ≥ |Y1| (where |α| denotes the length of
the string α).

Now the idea is the following: Either (i) we can fix X − f(X) and claim that X1 still has enough
min-entropy, or (ii) we can claim that X − f(X) has enough min-entropy conditioned on the fixing of
(X2,X3). Let us first discuss why this is enough. Suppose we are in the first case. Then, we can fix
X − f(X) and Y and argue that Z1 is a deterministic function of X and contains enough entropy. Note
that X + Y − f(X) − g(Y) is now fixed, and in fact it is fixed to a non-zero string (using the assumption
that f1(x) + g1(y) 6= x). Thus, E(X + Y − f(X) − g(Y)) is a string with a constant fraction of the
coordinates set to 1 (since E is an encoder of a linear error correcting code with constant relative distance),
and it follows that with high probability (E(X + Y − f(X) − g(Y)))S contains a non-zero entry (using
the fact that S is sampled using Z1, which has enough entropy). This finishes the proof in this case since it
implies W1 6= W′

1 with high probability.
Now suppose we are in case (ii). We use the fact that Z2 contains entropy to conclude that the sampled

bits Z3 contain almost equal number of bits from X and Y (with high probability over Z2). Now we can
fix Z2 without loosing too much entropy from Z3 (by making the size of Z3 to be significantly larger than
Z2). Next, we observe that Z3 is an interleaved source, and hence R is close to uniform. We now fix
X3, and argue that R continues to be uniform. This follows roughly from the fact that any extractor for
an interleaving of 2-sources is strong (see Theorem 3.17). Thus, R now becomes a deterministic function
of Y while at the same time, X − f(X) still has enough min-entropy. Hence, LExt(X − f(X),R) is
close to uniform even conditioned on R. We can now fix R and LExt(Y − g(Y),R) without affecting
the distribution LExt(X − f(X),R), since LExt(Y − g(Y),R) is a deterministic function of Y while
LExt(X − f(X),R) is a deterministic function of X conditioned on the previous fixing of R. It follows
that after these fixings, W2 −W′

2 is close to a uniform string and hence W2 −W′
2 6= 0 with probability

1− 2−n
Ω(1)

, which completes the proof.
The fact that it is enough to consider case (i) and case (ii) relies on a careful convex combination analysis

based on the pre-image size of the function f(x)− x. In addition, for the above argument to work we need
to carefully adjust the sizes of Z1, Z2 and Z3. We skip the details here, and refer the interested reader to
later parts of the paper for more details.

1A linear seeded extractor is a seeded extractor where for any fixing of the seed, the output is a linear function of the source.
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2.1.2 An explicit advice correlation breaker

We now discuss the other crucial component in the construction, the advice correlation breaker ACB :
{0, 1}2n × {0, 1}a → {0, 1}m. Informally, the advice correlation breaker we construct takes 2 inputs, the
interleaved source Z (that contains some min-entropy) and an advice string s ∈ {0, 1}a, and outputs a
distribution on {0, 1}m with the following guarantee. If s′ ∈ {0, 1}a is another advice such that s 6= s′, then

ACB(Z, s),ACB(Z′, s′) ≈ Um,ACB(Z′, s′) (2)

Our construction crucially relies on an explict advice correlation breaker constructed in [CL17] that
satisfies the following property: Let A be an (n, k)-source, and A′ = f(A) be a tampered version of A.
Further let B be a uniform random variable, and B′ = g(B). Finally, let C,C′ be arbitrary random variables
such that {A,A′} is independent of {B,B′,C,C′}. Then [CL17] constructed an advice correlation breaker
ACB1 such that for advice strings s 6= s′,

ACB1(B,A + C, s),ACB1(B′,A′ + C′, s′) ≈ Um,ACB1(B′,A′ + C′, s′). (3)

The construction of ACB1 is based on the powerful technique of alternating extraction introduced by
Dziembowski and Pietrzak [DP07], and later used in almost all recent works on non-malleable extractors.
In particular, the construction in [CL17] relies on linear seeded extractors and an elegant primitive known
as the flip-flop alternating extraction, which was introduced by Cohen [Coh16].

Recall that since Z = X + Y and Z′ = f(X) + g(Y), (2) can be stated as

ACB(X + Y, s),ACB(f(X) + g(Y), s′) ≈ε Um,ACB(f(X) + g(Y), s′)

Our main idea of reducing (2) to (3) is as follows: we again take a short slice from Z, say Z4 (larger than
the size of {Z1,Z2,Z3}), and use a linear seeded extractor LExt to convert Z4 into a somewhere random
source (i.e, a matrix, where some rows are uniform). This can be done by defining row i of the matrix to be
Wi = LExt(Z4, i). The idea now is to simply apply ACB1 on each row Wi, using the source Z, and the
concatenation of s and the index of the row as the new advice string, i.e., compute ACB1(Wi,Z, s ◦ i). By
appealing to a slightly more general version of (3), where we allow multiple tampering, it follows that the
output of ACB1 corresponding to some uniform row is now independent of the output of ACB1 on all other
rows (including tampered rows). Thus, we can simply output ⊕i(ACB1(Wi,Z, s ◦ i)).

This almost works, modulo a technical caveat–the somewhere random source constructed out of Z4 is a
tall matrix, with more rows than columns, but the parameters of ACB1 require us to work with a fat matrix,
with more columns that rows. This is roughly because, we want the uniform row to have more entropy than
the total size of all tampered random variables. To fix this, we use another linear seeded extractor on the
source Z with each row Wi as the seed to obtain another somewhere random source of the right shape.

2.2 From non-malleable extractors to non-malleable codes

To obtain our non-malleable codes, the decoding function corresponds to computing the extractor, which is
already efficient. On the other hand, the encoding function corresponds to sampling from the pre-image of
any given output of the non-malleable extractor. Thus we need to find an efficient way to do this, which
is quite non-trivial. We use Section 6 to suitably modify our extractor to support efficient sampling. Here
we briefly sketch some high level ideas involved. Recall Z = (X ◦ Y)π. The first modification is that
in all applications of seeded extractors in our construction, we specifically use linear seeded extractors.
This allows us to argue that the pre-image we are trying to sample from is in fact a convex combination of
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distributions supported on subspaces. The next crucial observation is the fact that we can use smaller disjoint
slices of Z to carry out various steps outlined in the construction. This is to ensure that the dimensions of
the subspaces that we need to sample from, do not depend on the values of the random variables that we fix.
For the steps where we use the entire source Z (in the construction of the advice correlation breaker), we
replace Z by a large enough slice of Z. However this is problematic if we choose the slice deterministically,
since in an arbitrary interleaving of two sources, a slice of length less than n might have bits only from one
source. We get around this by pseudorandomly sampling enough coordinates from Z (by first taking a small
slice of Z and using a sampler that works for weak sources [Zuc97]).

We now use an elegant trick introduced by Li [Li17] where the output of the non-malleable extractor
described above (with the modifications that we have specified) is now used as a seed in a linear seeded
extractor applied to an even larger pseudorandom slice of Z. The linear seeded extractor that we use has
the property that for any fixing of the seed, the rank of the linear map corresponding to the extractor is the
same, and furthermore one can efficiently sample from the pre-image of any output of the extractor. The final
modification needed is a careful choice of the error correcting code used in the advice generator. For this we
use a dual BCH code, which allows us to argue that we can discard some output bits of the advice generator
without affecting its correctness (based on the dual distance of the code). This is crucial in order to argue
that the rank of the linear restriction imposed on the free variables of Z does not depend on the values of the
bits fixed so far. We refer the reader to Section 6 where we provide more intuition and complete details of
the modified non-malleable extractor and sampling procedure.

2.3 Extractors for interleaved sources

Here we give a sketch of our improved extractor for interleaved sources Z = (X ◦ Y)π. We present our
construction and also explain the proof along the way, as this gives more intuition to the different steps of
the construction. The high level idea is the following: transform Z into a matrix of random variables (called
a somewhere random source) such that at least one of the random variables is uniform, and the matrix is of
the right shape, i.e, a fat matrix with more columns than rows. Once we have such a matrix, the idea is to
use the advice correlation breaker from [CL17] mentioned above to break the correlation among the rows of
the matrix. The final output will just be a bit-wise XOR of the output of the advice correlation breaker on
each row of the matrix. We now give some more details on how to make this approach work.

Let Z = (X ◦Y)π. We start by taking a large enough slice Z1 from Z (say, of length (2/3 + δ/2)n).
Let X have more bits in this slice than Y. Let X1 be the bits of X in Z1 and X2 be the remaining bits
of X. Similarly define Y1 and Y2. Notice that X1 has linear entropy and also that X2 has linear entropy
conditioned on X1. We fix Y1 and use a condenser (from works of Barak et al. [BRSW12] and Zuckerman
[Zuc07]) to condense Z1 into a matrix with a constant number of rows such that at least one row has entropy
rate at least 0.9. Notice that this matrix is a deterministic function of X. The next step is to use Z and each
row of the matrix as a seed to a linear seeded extractor to get longer rows. This requires some care for the
choice of the linear seeded extractor since the seed has some deficiency in entropy. After this step, we use
the advice correlation breaker from [CL17] on Z and each row of the somewhere random source, with the
row index as the advice (similar to what is done in the construction of non-malleable extractors sketched
above). Finally we compute the bit-wise XOR of the different outputs that we obtain. Let V denote this
random variable. To output Ω(n) bits, we use a linear seeded extractor on Z with V as the seed. The
correctness of various steps in the proof exploits the fact that Z can be written as the bit-wise sum of two
independent sources, and the fact that we use linear seeded extractors.
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2.4 Organization

The rest of the paper is organized as follows. We use Section 3 to introduce some background and notation.
We present our seedless non-malleable extractors with respect to interleaved split-state tampering in Sec-
tion 4. In Section 5, we show how to construct non-malleable extractors with respect to affine tampering
composed with split-state tampering. We derive non-malleable codes from our non-malleable extractors
in Section 6. We use Section 7 to present an explicit construction of an extractor for interleaved sources.
Finally we conclude with some open problems in Section 8.

3 Background and notation

We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the projection of y to the coordinates
indexed by S.
We use bold capital letters for random variables and samples as the corresponding small letter, e.g., X is a
random variable, with x being a sample of X.
For strings x, y ∈ {0, 1}n, we use x+ y (or equivalently x− y) to denote the bit-wise xor of the two strings.

3.1 A probability lemma

The following result on min-entropy was proved by Maurer and Wolf [MW97].

Lemma 3.1. Let X,Y be random variables such that the random variable Y takes at most ` values. Then

Pry∼Y[H∞(X|Y = y) ≥ H∞(X)− log `− log(1/ε)] > 1− ε.

3.2 Conditional min-entropy

Definition 3.2. The average conditional min-entropy of a source X given a random variable W is defined
as

H̃∞(X|W) = − log
(
Ew∼W

[
max
x

Pr[X = x|W = w]
])

= − log
(
E
[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et al. [DORS08].

Lemma 3.3 ([DORS08]). For any ε > 0,

Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W)− log(1/ε)

]
≥ 1− ε.

Lemma 3.4 ([DORS08]). If a random variable Y has support of size 2`, then H̃∞(X|Y) ≥ H∞(X)− `.

3.3 Seeded Extractors

Definition 3.5. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded extractor if for any source
X of min-entropy k, |Ext(X,Ud) − Um| ≤ ε. Ext is called a strong seeded extractor if |(Ext(X,Ud),
Ud)− (Um,Ud)| ≤ ε, where Um and Ud are independent.

Further, if for each s ∈ Ud, Ext(·, s) : {0, 1}n → {0, 1}m is a linear function, then Ext is called a
linear seeded extractor.
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We require extractors that can extract uniform bits when the source only has sufficient conditional min-
entropy.

Definition 3.6. A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m for min-
entropy k and error ε satisfies the following property: For any source X and any arbitrary random variable
Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.

It was shown in [DORS08] that any seeded extractor is also an average case extractor.

Lemma 3.7 ([DORS08]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is also a (k + log(1/δ),
ε+ δ)-seeded average case extractor.

We record a folklore lemma, and include a proof for completeness.

Lemma 3.8. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) strong seeded. Then, for any source
(n, k)-source X and any independent (d, d− λ)-source Y,

|Ext(X,Y),Y −Um,Y| ≤ 2λε.

Proof. Suppose Y is uniform over a set A ⊂ {0, 1}d of size 2d−λ. We have,

|Ext(X,Y),Y −Um,Y| =
1

2d−λ
·
∑
y∈A
|Ext(X, y)−Um|

≤ 1

2d−λ
·
∑

y∈{0,1}d
|Ext(X, y)−Um|

=
1

2d−λ
· 2d · |Ext(X,Ud),Ud −Um,Ud|

= 2λ · ε,

where the last inequality follows from the fact that Ext is a (k, ε) strong seeded extractor.

3.4 Samplers and extractors

Zuckerman [Zuc97] showed that seeded extractors can be used as samplers given access to weak sources.
This connection is best presented by a graph theoretic representation of seeded extractors. A seeded extractor
Ext : {0, 1}n×{0, 1}d → {0, 1}m can be viewed as an unbalanced bipartite graphGExt with 2n left vertices
(each of degree 2d) and 2m right vertices. Let N (x) denote the set of neighbors of x in GExt.

Theorem 3.9 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-entropy k
and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩R| − µRD| > εD}| < 2k,

where µR = |R|/2m.

Theorem 3.10 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-entropy k
and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define Samp(x) = {Ext(x, r1), . . . ,Ext(x, rD)}. Let X
be an (n, 2k)-source. Then for any set R ⊆ {0, 1}m,

Prx∼X[||Samp(x) ∩R| − µRD| > εD] < 2−k,

where µR = |R|/2m.
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3.5 Explicit extractors from prior work

We recall an optimal construction of strong-seeded extractors.

Theorem 3.11 ([GUV09]). For any constant α > 0, and all integers n, k > 0 there exists a polynomial
time computable strong-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n+ log(1/ε))
and m = (1− α)k.

The following are explicit constructions of linear seeded extractors.

Theorem 3.12 ([Tre01, RRV02]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there exists an
explicit strong linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-entropy k and error ε,
where d = O

(
log2(n/ε)/ log(k/m)

)
.

A drawback of the above construction is that the seeded length is ω(log n) for sub-linear min-entropy.
A construction of Li [Li16] achieves O(log n) seed length for even polylogarithmic min-entropy.

Theorem 3.13 ([Li16]). There exists a constant c > 1 such that for every n, k ∈ N with c log8 n ≤ k ≤ n
and any ε ≥ 1/n2, there exists a polynomial time computable linear seeded extractor LExt : {0, 1}n × {0,
1}d → {0, 1}m for min-entropy k and error ε, where d = O(log n) and m ≤

√
k.

A different construction achieves seed length O(log(n/ε)) for high entropy sources.

Theorem 3.14 ([CGL16, Li17]). For all δ > 0 there exist α, γ > 0 such that for all integers n > 0,
ε ≥ 2−γn, there exists an efficiently computable linear strong seeded extractor LExt : {0, 1}n × {0, 1}d →
{0, 1}αd, d = O(log(n/ε)) for min-entropy δn. Further, for any y ∈ {0, 1}d, the linear map LExt(·, y) has
rank αd.

The above theorem is stated in [Li17] for δ = 0.9, but it is straightforward to see that the proof extends
for any constant δ > 0.

We use a property of linear seeded extractors proved by Rao [Rao09].

Lemma 3.15 ([Rao09]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear seeded extractor for min-entropy
k with error ε < 1

2 . Let X be an affine (n, k)-source. Then

Pr
u∼Ud

[|Ext(X,u)− Um| > 0] ≤ 2ε.

We recall a two-source extractor construction for high entropy sources based on the inner product func-
tion.

Theorem 3.16 ([CG88] ). For all m, r > 0, with q = 2m, n = rm, let X,Y be independent sources on Frq
with min-entropy k1, k2 respectively. Let IP be the inner product function over the field Fq. Then, we have:

|IP(X,Y),X−Um,X| ≤ ε, |IP(X,Y),Y −Um,Y| ≤ ε

where ε = 2−(k1+k2−n−m)/2.

Rao [Rao07] showed that every two-source extractor is strong. It is easy to observe that the proof
generalizes to the case of interleaved two-source extractors.

Theorem 3.17 ([Rao07]). Let i`Ext : {0, 1}2n → {0, 1}m be an extractor for 2-interleaved sources, when
both sources have entropy at least k, with error ε. Then, i`Ext is strong in any of the two-sources, for entropy
k′, with error 2m(2k

′−k
ε ).
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3.6 Advice correlation breakers

We use a primitive called ‘correlation breaker’ in our construction. Consider a situation where we have
arbitrarily correlated random variables Y1, . . . ,Yr, where each Yi is on ` bits. Further suppose Y1 is a
‘good’ random variable (typically, we assume Y1 is uniform or has almost full min-entropy). A correlation
breaker CB is an explicit function that takes some additional resource X, where X is typically additional
randomness (an (n, k)-source) that is independent of {Y1, . . . ,Yr}. Thus using X, the task is to break the
correlation between Y1 and the random variables Y2, . . . ,Yr, i.e., CB(Y1,X) is independent of {CB(Y2,
X), . . . ,CB(Yr,X)}. A weaker notion is that of an advice correlation breaker that takes in some advice
for each of the Yi’s as an additional resource in breaking the correlations. This primitive was implicitly
constructed in [CGL16] and used in explicit constructions of non-malleable extractors, and has subsequently
found many applications in explicit constructions of extractors for independent sources and non-malleable
extractors.

We recall an explicit advice correlation breaker constructed in [CL16]. This correlation breaker works
even with the weaker guarantee that the ‘helper source’ X is now allowed to be correlated to the sources
random variables Y1, . . . ,Yr in a structured way. Concretely, we assume the source to be of the form
X + Z, where X is assumed to be an (n, k)-source that is uncorrelated with Y1, . . . ,Yr,Z. We now state
the result more precisely.

Theorem 3.18 ([CL16]). For all integers n, n1, n2, k, k1, k2, t, d, h, λ and any ε > 0, such that d =
O(log2(n/ε)), k1 ≥ 2d + 8tdh + log(1/ε), n1 ≥ 2d + 10tdh + (4ht + 1)n2

2 + log(1/ε), and n2 ≥
2d+ 3td+ log(1/ε), let

• X be an (n, k1)-source, X′ a r.v on n bits, Y1 be an (n1, n1 − λ)-source, Z,Z′ are r.v’s on n bits,
and Y2, . . . ,Yt be r.v’s on n1 bits each, such that {X,X′} is independent of {Z,Z′,Y1, . . . ,Yt},

• id1, . . . , idt be bit-strings of length h such that for each i ∈ {2, t}, id1 6= idi.

Then there exists an efficient algorithm ACB : {0, 1}n1 × {0, 1}n × {0, 1}h → {0, 1}n2 which satisfies the
following: let

• Y1
h = ACB(Y1,X + Z, id1),

• Yi
h = ACB(Yi,X′ + Z′, idi), i ∈ [2, t]

Then,
Y1
h,Y

2
h, . . . ,Y

t
h,X,X

′ ≈O((h+2λ)ε) Un2 ,Y
2
h, . . . ,Y

t
h,X,X

′.

3.7 A connection between non-malleable codes and extractors

The following theorem proved by Cheraghchi and Guruswami [CG17] that connects non-malleable extrac-
tors and codes.

Theorem 3.19 ([CG17]). Let nmExt : {0, 1}n → {0, 1}m be an efficient seedless (n,m, ε)-non-malleable
extractor with respect to a class of tampering functions F acting on {0, 1}n. Further suppose nmExt is ε′-
invertible. Then there exists an efficient construction of a non-malleable code with respect to the tampering
family F with block length = n, relative rate m

n and error 2mε+ ε′.
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4 NM extractors for interleaved split-state adversaries

The main result of this section is an explicit non-malleable extractor for interleaved 2-split-state tampering
families with equal length partitions, which we denote by 2ISS ⊂ F2n.

Theorem 4.1. For all integers n > 0 there exists an explicit function nmExt : {0, 1}2n → {0, 1}m, m =
nΩ(1), such that the following holds: for arbitrary tampering functions f, g ∈ Fn, any permutation π :
[2n]→ [2n] and independent uniform sources X and Y each on n bits, there exists a distribution Df,g,π on
{0, 1}m ∪ {same?}, such that

|nmExt((X ◦Y)π), nmExt((f(X) ◦ g(Y))π))−Um, copy(Df,g,π,Um)| ≤ 2−n
Ω(1)

.

In such settings, it was show in [CG17] that it is enough to construct non-malleable extractors assuming
that at least one of f and g does not have any fixed points, assuming that the sources X and Y have entropy
at least n− nδ. We thus prove the following theorem, from which Theorem 4.1 is direct.

Theorem 4.2. There exists a δ > 0 such that for all integers n, k > 0 with n ≥ k ≥ n − nδ, there exists
an explicit function nmExt : {0, 1}2n → {0, 1}m, m = nΩ(1), such that the following holds: for arbitrary
tampering functions f, g ∈ Fn, any permutation π : [2n]→ [2n] and independent (n, k)-sources X and Y,
the following holds:

|nmExt((X ◦Y)π), nmExt((f(X) ◦ g(Y))π))−Um, nmExt((f(X) ◦ g(Y))π)| ≤ 2−n
Ω(1)

.

We will prove a slightly more general result which is a direct by-product of our proof technique for
proving the above theorem, and lets us re-use this non-malleable extractor for the class of linear adversaries
composed with split-state adversaries. We prove the following theorem.

Theorem 4.3. There exists a δ > 0 such that for all integers n, k > 0 with n ≥ k ≥ n − nδ, there exists
an explicit function nmExt : {0, 1}2n → {0, 1}m, m = nΩ(1), such that the following holds: Let X and Y
be independent (n, n − nδ)-sources, π : [2n] → [2n] any arbitrary permutation and arbitrary tampering
functions f1, f2, g1, g2 ∈ Fn that satisfy the following condition:

• ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x or

• ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) 6= y.

Then,

|nmExt((X ◦Y)π), nmExt(((f1(X) + g1(Y)) ◦ (f2(X) + g2(Y)))π)−

Um, nmExt(((f1(X) + g1(Y)) ◦ (f2(X) + g2(Y)))π)| ≤ 2−n
Ω(1)

.

Clearly, Theorem 4.2 follows directly from the above theorem by setting g1(y) = 0 for all y and f2(x) =
0 for all x. We use the rest of the section to prove Theorem 4.3.

Our high level ideas in constructing the non-malleable extractor is via the framework set up in [CGL16]
of using advice generators and correlation breakers. We give intuition behind our construction in Section
2. We use Section 4.1 to construct an advice generator and Section 4.2 to construct an advice correlation
breaker. Finally, we present the non-malleable extractor construction in Section 4.3.

Notation: If W = h((X ◦Y)π) (for some function h), then we use W′ or (W)′ to denote the random
variable h(((f1(X) + g1(Y)) ◦ (f2(X) + g2(Y)))π). Further, define X = (X ◦ 0n)π, Y = (0n ◦ Y)π,
f1(X) = (f1(X) ◦ 0n)π, f2(X) = (0n ◦ f2(X))π, g1(Y) = (g1(Y) ◦ 0n)π and g2(Y) = (0n ◦ g2(Y))π. It
follows that Z = X + Y and Z′ = f1(X) + g1(Y) + f2(X) + g2(Y).
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4.1 An advice generator

Lemma 4.4. There exists an efficiently computable function advGen : {0, 1}n × {0, 1}n → {0, 1}n4 , n4 =

nδ, such that with probability at least 1−2−n
Ω(1)

over the fixing of the random variables {advGen((X◦Y)π),
advGen(((f1(X) + g1(Y)) ◦ (f2(X) + g2(Y)))π)}, the following hold:

• {advGen((X ◦Y)π) 6= advGen(((f1(X) + g1(Y)) ◦ (f2(X) + g2(Y)))π)},

• X and Y are independent,

• H∞(X) ≥ k − 2nδ, H∞(Y) ≥ k − 2nδ.

We prove the above lemma in the rest of this subsection. We claim that the function advGen computed
by Algorithm 1 satisfies the above lemma. We first set up some parameters and ingredients.

• Let C be a large enough constant and δ′ = δ/C.

• Let n0 = nδ
′
, n1 = nc00 , n2 = 10n0, for some constant c0 that we set below.

• LetE : {0, 1}2n → {0, 1}n3 be the encoding function of a linear error correcting code C with constant
rate α and constant distance β.

• Let Ext1 : {0, 1}n1 ×{0, 1}d1 → {0, 1}log(n3) be a (n1/20, β/10)-seeded extractor instantiated using
Theorem 3.11. Thus d1 = c1 log n1, for some constant c1. Let D1 = 2d1 = nc11 .

• Let Samp1 : {0, 1}n1 → [n3]D1 be the sampler obtained from Theorem 3.10 using Ext1.

• Let Ext2 : {0, 1}n2 ×{0, 1}d2 → {0, 1}log(2n) be a (n2/20, 1/n0)-seeded extractor instantiated using
Theorem 3.11. Thus d2 = c2 log n2, for some constant c2. Let D2 = 2d2 . Thus D2 = 2d2 = nc22 .

• Let Samp2 : {0, 1}n2 → [2n]D2 be the sampler obtained from Theorem 3.10 using Ext2.

• Set c0 = 2c2.

• Let i`Ext : {0, 1}D2 → {0, 1}n0 be the extractor from Theorem 7.1.

• Let LExt : {0, 1}2n × {0, 1}n0 → {0, 1}n0 be a linear seeded extractor instantiated from Theorem
3.16 set to extract from min-entropy n1/100 and error 2−Ω(

√
n0) .

Lemma 4.5. With probability at least 1− 2−n
Ω(1)

, V 6= V′.

Proof. We prove the lemma assuming f1(X) + g1(Y) 6= X. The proof in the other case (i.e., f2(X) +
g2(Y) 6= Y) is similar and we skip it.

First observe that the lemma is direct if Z1 6= Z′1 or Z2 6= Z′2 or Z3 6= Z′3. Thus, we can assume
Zi = Z′i for i = 1, 2, 3. It is easy to see that S = S′,T = T′.

Now observe that

Z− Z′ = X + Y − f1(X)− g1(Y)− f2(X)− g2(Y).

Note that Z− Z′ 6= 0 which follows from our assumption that f1(X) + g1(Y) 6= X.
Now define the function h1 : {0, 1}2n → {0, 1}2n as h1(z) = z − f1(z) − f2(z) and h2 : {0, 1}2n →

{0, 1}2n as h2(z) = z − g1(z)− g2(z).
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Algorithm 1: advGen(z)

Input: Bit-string z = (x ◦ y)π of length 2n, where x and y are each n bit-strings and π : [2n]→ [2n]
is a permutation.
Output: Bit string v of length n4.

1 Let z1 = Slice(z, n1), z2 = Slice(z, n2).
2 Let S = Samp1(z1).
3 Let T = Samp2(z2) and z3 = zT .
4 Let r = i`Ext(z3).
5 Let w1 = (E(z))S .
6 Let w2 = LExt(z, r).
7 Output v = z1 ◦ z2 ◦ z3 ◦ w1 ◦ w2.

Thus,

Z− Z′ = h1(X) + h2(Y).

Let Xi be the bits of X in Zi for i = 1, 2, 3 and X4 be the remaining bit of X. Similarly define Yi’s,
i = 1, 2, 3, 4. Without loss of generality suppose that |X1| ≥ |Y1|, (where |α| denotes the length of the
string α).

Let Γ ⊂ {0, 1}2n denote the support of the source X. We partition Γ into two sets Γa and Γb according
to the pre-image size of the function h1 in the following way. For any z ∈ {0, 1}2n, let h−1

1 (z) denote the
set {y ∈ {0, 1}2n : h1(y) = z}.

Let np = n1/50. Define

Γa = {z ∈ Γ : |h−1
1 (h1(z)) ∩ Γ| ≥ 2n−np}, Γb = Γ \ Γ1.

Let pa = Pr[X ∈ Γa] and pb = Pr[X ∈ Γb]. Let Xa be the source supported on Γa with the probability
law Pr[Xa = z] = 1

pa
·Pr[X = z]. Also define Xb supported on Γb with the probability law Pr[Xa = z] =

1
pb
· Pr[X = z].

Clearly X is a convex combination of the distributions Xa and Xb, with weights pa and pb respectively.
If any of pa or pb is less that 2−n0 , we ignore the corresponding source and add it to the error. Thus suppose
both pa and pb are at least 2−n0 . This implies that both Xa and Xb have min-entropy at least n − 2n0. We
record the following two bounds that are direct from the above definitions.

• For any fixing of h1(Xa) = xa, Xa has min-entropy at least n− np.

• The distribution h1(Xb) has min-entropy at least np − 2n0.

We introduce some notation. For any random variable ν = η(X,Y) (where η is an arbitrary determin-
istic function), we add an extra a or b to the subscript and use νa to denote the random variable η(Xa,Y)
and νb to denote the random variables η(Xb,Y) respectively. For example, Z′1,a = f1(Xa) + g1(Y) +

f2(Xa) + g2(Y). Further we use Xa to denote the distribution on n bits such that Xa = (Xa ◦ 0n)π. We
similarly define the distribution Xb.

We prove the following two statements:

1. W1,a −W′
1,a 6= 0 with probability 1− 2−n

Ω(1)
.
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2. W2,b −W′
2,b 6= 0 with probability 1− 2−n

Ω(1)
.

It is direct that the lemma follows from the above two inequalities.
We begin with the proof of (1). Since E is a linear code, we have

W1,a −W′
1,a = (E(Za − Z′a))Sa .

= (E(h1(Xa) + h2(Y)))Sa .

Now fix the random h1(Xa), and it follows that Xa has min-entropy at least n−np. Recall that we assumed
|X1| ≥ |Y1|. Thus, X1,a has min-entropy at least n1/2 − np − n0 > n1/10 with probability at least
1− 2−n0 . Further fix Y, and note that this does not affect the distribution of X1,a. This fixes E(Za − Z′a).
Further since Za 6= Z′a (follows from our assumption that Z 6= Z′), the string E(Za−Z′a) has 1’s in at least
β fraction of its coordinates. Recalling that Sa = Samp1(Z1,a), it now follows from Theorem 3.10 that with
probability at least 1 − 2−n

Ω(1)
, (E(Za − Z′a))S is a non-zero string (and hence W1,a −W′

1,a 6= 0). This
completes the proof of this case.

We now proceed to prove (2). Using the fact that LExt is a linear seeded extractor, it follows that

W2,b −W′
2,b = LExt(Zb − Z′b,Rb)

= LExt(h1(Xb),Rb) + LExt(h2(Yb),Rb).

Without loss of generality, suppose X has more bits in Z2 (the argument is identical in the other case). Since
X2,b has min-entropy at least n − 2n0, it follows that X2,b has min-entropy at least n2

2 − 3n0 >
n2
10 with

probability at least 1−2−n0 . Fix the bits of Y in Z2, and thus Z2,b is a deterministic function of X2,b. Recall
that Tb = Samp2(Z2). We now claim that (with high probability), at least half of the coordinates in Tb

belong to X (since exactly n of the coordinates in Z belong to X, and the remaining coordinates belong to
Y, and we are pseudorandomly sampling coordinates in the set [2n]). This is straightforward by appealing
to the fact that Samp2 is good sampler. By Theorem 3.10, it follows that with probability 1 − 2−n

Ω(1)
over

the fixing of X2,b,

|Tb| · (1/2− 1/n0)) ≤ |Tb ∩ π([n])| ≤ |Tb| · (1/2 + 1/n0).

Recall |Tb| = D2. We fix X2,b such that (1/2 − 1/n0)D2 ≤ |Tb ∩ π([n])| ≤ (1/2 + 1/n0)D2. Thus,
Z3 contains at least (1/2 − o(1))D2 bits from both Xb and Y. It follows that both X3,b and Y both have
min-entropy at least (1/2 − o(1))D2 − 2n0 − n2 = (1/2 − o(1))D2 (even with the conditionings so far),
and hence Rb is 2−n

Ω(1)
-close to uniform. We argue this hold even conditioned on X3,b. This follows from

Theorem 3.17 which shows that every extractor for 2-interleaved sources is strong. We fix X3,b, and thus
Rb is now a deterministic function of Y.

Next, we note that h1(Xb) has min-entropy at least (n−2n0)−(n−np)−n2−D2−n0 = np−3n0−D2−
n2 > np/2 (with probability 1− 2−n

Ω(1)
). Thus, LExt(h1(Xb),Rb) is 2−n

Ω(1)
-close to uniform. We fix Rb

and LExt(h1(Xb),Rb) continues to be close to uniform using the fact that LExt is a strong-seeded extractor.
Further, LExt(h1(Xb),Rb) is now a deterministic function of Xb and we can fix LExt(h2(Yb),Rb) which
is a deterministic function of Y. It thus follows that W2,b −W′

2,b 6= 0 with probability 1 − 2−n
Ω(1)

using
the fact that LExt(h1(Xb),Rb) is close to uniform. This completes the proof of (2). The fact that V and
V′ can be fixed such that X and Y remain independent with min-entropy at least k − 2nδ (with probability
1− 2−n

Ω(1)
) is easy to verify from the construction. This completes the proof of Lemma 4.5.

4.2 An Advice Correlation Breaker

We recall the setup of Theorem 4.3. X and Y are independent (n, k)-sources, k ≥ n− nδ, π : [2n]→ [2n]
is an arbitrary permutation and f1, f2, g1, g2 ∈ Fn satisfy the following conditions:
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• ∀x ∈ support(X) and y ∈ support(Y), f1(x) + g1(y) 6= x or

• ∀x ∈ support(X) and y ∈ support(Y), f2(x) + g2(y) 6= y.

Further, we defined the following: X = (X ◦ 0n)π, Y = (0n ◦Y)π, f1(X) = (f1(X) ◦ 0n)π, f2(X) =
(0n ◦ f2(X))π, g1(Y) = (g1(Y) ◦ 0n)π and g2(Y) = (0n ◦ g2(Y))π. It follows that Z = X + Y and
Z′ = f1(X) + g1(Y) + f2(X) + g2(Y). Thus, for some functions f, g ∈ F2n, Z′ = f(X) + g(Y). Let
X′ = f(X) and Y′ = g(Y).

The following is the main result of this section. Assume that we have some random variables such that
X and Y continue to be independent, and H∞(X), H∞(Y) ≥ k − 2nδ.

Lemma 4.6. There exists an efficiently computable function ACB : {0, 1}2n×{0, 1}n1 → {0, 1}m, n1 = nδ

and m = nΩ(1), such that

ACB(X + Y, w),ACB(f(X) + g(Y), w′) ≈ε Um,ACB(f(X) + g(Y), w′),

for any fixed strings w,w′ ∈ {0, 1}n1 with w 6= w′.

We use the rest of the section to prove the above lemma. In particular, we prove that the function ACB
computed by Algorithm 2 satisfies the conclusion of Lemma 4.6.

We start by setting up some ingredients and parameters.

• Let δ > 0 be a small enough constant.

• Let n2 = nδ1 , where δ1 = 2δ.

• Let LExt1 : {0, 1}n2 × {0, 1}d → {0, 1}d1 , d1 =
√
n2, be a linear-seeded extractor instantiated from

Theorem 3.12 set to extract from entropy k1 = n2/10 with error ε1 = 1/10. Thus d = C1 log n2, for
some constant C1. Let D = 2d = nδ2 , δ2 = 2C1δ.

• Set δ′ = 20C1δ.

• Let LExt2 : {0, 1}2n × {0, 1}d1 → {0, 1}n4 , n4 = n8δ3 be a linear-seeded extractor instantiated from
Theorem 3.12 set to extract from entropy k2 = 0.9k with error ε2 = 2−Ω(

√
d1) = 2−n

Ω(1)
, such that

the seed length of the extractor LExt2 (by Theorem 3.12) is d1.

• Let ACB′ : {0, 1}n1,acb′ × {0, 1}nacb′ × {0, 1}hacb′ → {0, 1}n2,acb′ , be the advice correlation breaker
from Theorem 3.18 set with the following parameters: nacb′ = 2n, n1,acb′ = n4, n2,acb′ = m =

O(n2δ2), tacb′ = 2D,hacb′ = n1 + d, εacb′ = 2−n
δ
, dacb′ = O(log2(n/εacb′)), λacb′ = 0. It can be

checked that by our choice of parameters, the conditions required for Theorem 3.18 indeed hold for
k1,acb′ ≥ n2δ2 .

Let X1 be the bits of X in Z1 and X2 be the remaining bit of X. Define Y1 and Y2 similarly. Without
loss of generality suppose that |X1| ≥ |Y1|. Let X1 = Slice(X, n2) and Y1 = Slice(Y, n2). Define
X
′
1 = Slice(f(X), n2) and Y1

′
= Slice(g(Y), n2). It follows that Z1 = X1 + Y1 and Z′1 = X

′
1 + Y

′
1.

Claim 4.7. Conditioned on the random variables Y1,Y
′
1, {LExt2(X,LExt1(X1 +Y1, i))}Di=1, {LExt2(X

′
,

LExt1(X
′
1 + Y

′
1, i))}i∈[D], X1 and X

′
1, the following hold:

• the matrix R is 2−n
Ω(1)

-close to a somewhere random source,

21



Algorithm 2: ACB(z, w)

Input: Bit-strings z = (x ◦ y)π of length 2n and bit string w of length n1, where x and y are each n
bit-strings and π : [2n]→ [2n] is a permutation.
Output: Bit string of length m.

1 Let z1 = Slice(z, n2).
2 Let v be a D × n3 matrix, with its i’th row vi = LExt1(z1, i).
3 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z, vi).
4 Let s be a D ×m matrix, with its i’th row si = ACB′(ri, z, w ◦ i).
5 Output ⊕Di=1si.

• R and R′ are deterministic functions of Y,

• H∞(X) ≥ n− nδ′ , H∞(Y) ≥ n− nδ′ .

Proof. By construction, we have that for any j ∈ [D],

Rj = LExt2(Z,LExt1(Z1, j))

= LExt2(X + Y,LExt1(X1 + Y1, j))

= LExt2(X,LExt1(X1 + Y1, j)) + LExt2(Y,LExt1(X1 + Y1, j))

Similarly,

R′j = LExt2(X
′
,LExt1(X

′
1 + Y

′
1, j)) + LExt2(Y

′
,LExt1(X

′
1 + Y

′
1, j)).

Fix the random variables Y1,Y
′
1. Note that after these fixings, Y has min-entropy at least k − 2n1 − n2 >

0.9k. Now, since LExt2 is a strong seeded extractor for entropy 0.9k, it follows that there exists a set
T ⊂ {0, 1}d1 , |T | ≥ (1−√ε2)2d1 , such that for any j ∈ [T ], |LExt2(Y, j)−Un4 | ≤

√
ε2.

Now viewing LExt1 as a sampler (see Section 3.4) using the weak source X1,y1 = X1 + y1, it follows
by Theorem 3.10 that

Pr[|{LExt1(X1,y1 , i) : i ∈ {0, 1}d} ∩ T | > (1−
√
ε2 − ε1)D] ≥ 1− 20.2n2 = 1− 2−n

Ω(1)
.

We fix X1, and it follows that with probability at least 1−2−n
Ω(1)

, {LExt1(X1,y1 , i) : i ∈ {0, 1}d}∩T 6=
∅, and thus there exists a j ∈ [D] such that LExt2(Y,LExt1(X1 + Y1, j)) is 2−n

Ω(1)
-close to Un2 and is a

deterministic function of Y.
We now fix the random variables X

′
1, {LExt2(X,LExt1(X1 + Y1, i))}Di=1, {LExt2(X

′
,LExt1(X1

′
+

Y1
′
, i))}Di=1, and note that LExt2(Y,LExt1(X1 + Y1, j)) continues to be 2−n

Ω(1)
-close to Un2 . It follows

that Rj is 2−n
Ω(1)

-close to Un2 . Further, for any i ∈ [D], the random variables Ri and R′i are deterministic
functions of Y. Finally, note that X and Y remain independent after these conditionings, and H∞(X) ≥
n− 3n1 − 2n2 − 2Dn4 ≥ n− n10δ2 and H∞(Y) ≥ n− 3n1 − n2 > n− nδ2 .

Lemma 4.6 is now direct from the next claim.

Claim 4.8. There exists j ∈ [D] such that

Sj , {Si}i∈[D]\j ≈2−n
Ω(1) Um, {Si}i∈[D]\j .
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Proof. Fix the random variables: W,W′,Y1,Y
′
1, {LExt2(X,LExt1(X1+Y1, i))}Di=1, {LExt2(X

′
,LExt1(X

′
1+

Y
′
1, i))}i∈[D], X1 and X

′
1. By Lemma 4.4, we have that with probability at least 1 − 2−n

Ω(1)
, W 6= W′.

Further, by Claim 4.7 we have that R and R′ are deterministic functions of Y, and with probability at least
1 − 2−n

Ω(1)
, there exists j ∈ [D] such that Rj is 2−n

Ω(1)
-close to uniform, and H∞(X) ≥ 1

2nacb − n
δ′ >

n2δ2 . Recall that Z = X + Y and Z′ = X
′
+ Y

′. It now follows by Theorem 3.18 that

ACB′(Rj ,Z,W ◦ j), {ACB′(Ri,X + Y,W ◦ i)}i∈[D]\j , {ACB′(R′i,X
′
+ Y

′
,W′ ◦ i)}i∈[D] ≈2−n

Ω(1)

Um, {ACB′(Ri,X + Y,W ◦ i)}i∈[D]\j , {ACB′(R′i,X
′
+ Y

′
,W′ ◦ i)}i∈[D]

This completes the proof of the claim.

4.3 The non-malleable extractor

We are now ready to present the construction of i`NM that satisfies the requirements of Theorem 4.3.

• Let δ > 0 be a small enough constant, n1 = nδ and m = nΩ(1).

• Let advGen : {0, 1}2n → {0, 1}n1 , n1 = nδ, be the advice generator from Lemma 4.4.

• Let ACB : {0, 1}2n × {0, 1}n1 → {0, 1}m be the advice correlation breaker from Lemma 4.6.

Algorithm 3: i`NM(z)

Input: Bit-string z = (x ◦ y)π of length 2n, where x and y are each n bit-strings, and π : [2n]→ [2n]
is a permutation.
Output: Bit string of length m.

1 Let w = advGen(z).
2 Output ACB(z, w)

We prove that the function i`NM computed by Algorithm 3 satisfies the conclusion of Theorem 4.3 as
follows. Fix the random variables W,W′. By Lemma 4.4, it follows that X remains independent of Y,
and with probability at least 1− 2−n

Ω(1)
, H∞(X) ≥ k − 2n1 and H∞(Y) ≥ k − 2n1 (recall k ≥ n− nδ).

Theorem 4.3 is now direct using Lemma 4.6.

4.4 Unequal length interleaved-split-state adversaries

Our techniques above directly generalize to the case of interleaved split-state adversaries under unequal
partitions. In particular, we can handle the situation when one of the parts is polynomially smaller than the
other part. We have the following theorem.

Theorem 4.9. There exists a constant β > 0 such that for all integers n > 0 there exists an explicit function
nmExt : {0, 1}n → {0, 1}m, m = nΩ(1), such that the following holds: let n1 = nβ and n2 = n− n1.

Then, for arbitrary tampering functions f ∈ Fn1 , g ∈ Fn2 , any permutation π : [n] → [n], and
independent uniform sources X and Y on n1 and n2 bits respectively, there exists a distribution Df,g,π on
{0, 1}m ∪ {same?}, such that

|nmExt((X ◦Y)π), nmExt((f(X) ◦ g(Y))π))−Um, copy(Df,g,π,Um)| ≤ 2−n
Ω(1)

.

We skip the proof of the above theorem since it is straightforward to check that the proof of Theorem
4.1 generalizes to the above setting.
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5 Non-malleable extractors for linear composed with split-state adversaries

The main result of this section is an explicit non-malleable extractor against the tampering family Lin ◦
2ISS ⊂ F2n. Our main idea is to show that Theorem 5.1 follows directly from Theorem 4.3. The proof
relies on a careful convex combination argument.

Theorem 5.1. For all integers n > 0 there exists an explicit function nmExt : {0, 1}2n → {0, 1}m, m =
nΩ(1), such that the following holds: For any linear function h : {0, 1}2n → {0, 1}2n, arbitrary tampering
functions f, g ∈ Fn, any permutation π : [2n] → [2n] and independent uniform sources X and Y each on
n bits, there exists a distribution Dh,f,g,π on {0, 1}m ∪ {same?}, such that

|nmExt((X ◦Y)π), nmExt(h((f(X) ◦ g(Y))π))−Um, copy(Dh,f,g,π,Um)| ≤ 2−n
Ω(1)

.

Proof. Define f(x) = h((f(x) ◦ 0n)π) and g(y) = h((0n ◦ y)π). Thus, h((f(x) ◦ g(y))π) = f(x) + g(y).
Define functions h1 : {0, 1}2n → {0, 1}n and h2 : {0, 1}2n → {0, 1}n such that h((f(x)◦g(y))π) = (h1(x,
y)◦h2(x, y))π. Since h(f(x), g(y)) = f(x)+g(y), it follows that there exists functions f1, g1, f2, g2 ∈ Fn
such that for all x, y ∈ {0, 1}n, the following hold:

• h1(x, y) = f1(x) + g1(y), and

• h2(x, y) = f2(x) + g2(y).

Thus, h((f(x) ◦ g(y))π) = ((f1(x) + g1(y)) ◦ (f2(x) + g2(y)))π.

Now, the idea is to show that ((X ◦ Y)π, ((f1(X) + g1(Y)) ◦ (f2(X) + g2(Y)))π) is 2−n
Ω(1)

-close
to a convex combination of ((X ◦ Y)π, (X ◦ Y)π) and distributions of the form ((X′ ◦ Y′)π, ((η1(X) +
ν1(Y)) ◦ (η2(X) + ν2(Y)))π), where X′ and Y′ are independent (n, n− nδ)-sources and η1, η2, ν1, ν2 are
deterministic functions in Fn satisfying the conditions that:

• ∀x ∈ support(X′) and y ∈ support(Y′), η1(x) + ν1(y) 6= x or

• ∀x ∈ support(X′) and y ∈ support(Y′), η2(x) + ν2(y) 6= y.

Theorem 5.1 is then direct from Theorem 4.3.
Let n0 = nδ. For any y ∈ {0, 1}n and any function η : {0, 1}n → {0, 1}n, let η−1(y) denote the set

{z ∈ {0, 1}n : η(z) = y}. We partition {0, 1}n into the following two sets:

Γ1 = {y ∈ {0, 1}n : |g−1
1 (g1(y))| ≥ 2n−n0}, Γ2 = {0, 1}n \ Γ1.

Let Y1 be uniform on Γ1 and Y2 be uniform on Γ2. Clearly, Y is a convex combination of Y1 and Y2 with
weights wi = |Γi|/2n, i = 1, 2. If wi ≤ 2−n0/2, we ignore the corresponding source and add an error of
2−n0/2 to the extractor. Thus, suppose wi ≥ 2−n0/2 for i = 1, 2. Thus, Y1 and Y2 each have min-entropy
at least n− n0/2.

We claim that g1(Y2) has min-entropy at least n0/2. This can be seen in the following way. For any
y ∈ Γ2, |g−1

1 (g1(y))| ≤ 2n−n0 , and hence it follows g1(Y2) has min-entropy at least (n−n0/2)−(n−n0) =
n0/2. Thus, clearly for any x ∈ {0, 1}n, x + g1(Y2) 6= x with probability at least 1 − 2−n0/2. We add a
term of 2−n

Ω(1)
to the error and assume that X + g1(Y2) 6= X. Thus, (X ◦ Y2)π, ((f1(X) + g1(Y2)) ◦

(f1(X) + g1(Y2)))π is indeed 2−n
Ω(1)

close to a convex combination of distributions of the required form.
Next, we claim that for any fixing of g1(Y1), the random variable Y1 has min-entropy at least n − n0.

This is direct from the fact that for any y ∈ Γ2, |g−1
1 (g1(y))| > 2n−n0 . We fix g1(Y1) = g, and let
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f1,g(x) = f1(x) + g. Thus, f1,g(X) = f1(X) + g1(Y1). We now partition {0, 1}n according to the fixed
points of f1,g. Let

∆1 = {x : f ′1(x) = x}, ∆2 = {0, 1}n \∆1.

Let X1 be a flat distribution on ∆1 and X2 be a flat distribution on ∆2. If |∆1| < 2n−n0/2, we ignore
the distribution X1 and add an error of 2n−n0/2 to the analyis of the non-malleable extractor. Further, it is
direct from definition that f1(X2) + g 6= X2. We now handle to case when ∆1 > 2n−n0/2. Note that in this
case, H1(X1) ≥ n− n0/2. The idea is now to partition ∆1 into two sets based on the pre-image size of f2

similar to the way we partioned the support of Y based on the pre-image size of g1. Define the sets

∆11 = {x ∈ ∆1 : |f−1
2 (f2(x)) ∩∆1| ≥ 2n−n0}, ∆12 = ∆1 \∆11.

Let X11 be flat on ∆11 and X12 be flat on ∆12. Clearly, X1 is a convex combination of the sources X11

and X12. If ∆11 or ∆12 is smaller than 2n−3n0/4, we ignore the corresponding distribution and add an error
of 2−n0/4 to the error analysis of the non-malleable extractor. Thus suppose ∆1i ≥ 2n−3n0/4 for i = 1, 2.
Thus, X11 and X12 both have min-entropy at least n− 3n0/4.

We claim that f2(X12) has min-entropy at least n0/4. This can be seen in the following way. For
any x ∈ ∆12, |f−1

2 (f2(x)) ∩ ∆1| ≤ 2n−n0 , and hence it follows f2(X12) has min-entropy at least (n −
3n0/4) − (n − n0) = n0/4. Thus, clearly f2(X12) + g2(Y1) 6= Y1 with probability at least 1 − 2−n0/4.
As before, we add an error of 2−n

Ω(1)
to the error, and assume that f2(X12) + g2(Y1) 6= Y1. Thus,

(X12◦Y1)π, ((f1(X12)+g1(Y2))◦(f1(X12)+g1(Y2)))π is indeed 2−n
Ω(1)

-close to a convex combination
of distributions of the required form.

Next, we claim that for any fixing of f2(X11), the random variable X11 has min-entropy at least n−n0.
This is direct from the fact that for any x ∈ ∆1, |f−1

2 (f1(x)) ∩∆1| > 2n−n0 . We fix f2(X11) = λ, and let
g2,λ(y) = λ+ g2(y). Thus, g2,λ(Y) = f1(X) + g1(Y1). We now partition Γ1 according to the fixed points
of f1,g. Let

Γ11 = {y : g2,λ(y) = y}, Γ12 = {0, 1}n \ Γ11.

Let Y11 be a flat distribution on Γ11 and Y12 be a flat distribution on Γ12. It follows from definition that
(f1(X11) + g1(Y11), f2(X11) + g2(Y11)) = (X11,Y11). Further, f2(X11) + g2(Y12) 6= Y12, and hence
(X11 ◦Y12)π, ((f1(X11) + g1(Y12)) ◦ (f1(X11) + g1(Y12)))π is 2−n

Ω(1)
-close to a convex combination of

distributions of the required form. This completes the proof.

5.1 Linear composed with unequal length interleaved-split-state adversaries

As in the case of non-malleable extractors for interleaved advervaries, our techniques generalize to the case
of linear functions composed with interleaved split-state adversaries under unequal partitions. We have the
following theorem.

Theorem 5.2. There exists a constant β > 0 such that for all integers n > 0 there exists an explicit function
nmExt : {0, 1}n → {0, 1}m, m = nΩ(1), such that the following holds: let n1 = nβ and n2 = n− n1.

Then, for arbitrary tampering functions f ∈ Fn1 , g ∈ Fn2 , any permutation π : [n] → [n], any linear
function h : {0, 1}n → {0, 1}n, and independent uniform sources X and Y on n1 and n2 bits respectively,
there exists a distribution Dh,f,g,π on {0, 1}m ∪ {same?}, such that

|nmExt((X ◦Y)π), nmExt(h((f(X) ◦ g(Y))π))−Um, copy(Dh,f,g,π,Um)| ≤ 2−n
Ω(1)

.

We skip the proof since the it is straightforward to check that our proof for the case when the length of
the partitions are equal generalizes to the above setting.
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6 Non-malleable codes from invertible non-malleable extractors

In this section, we provide an efficient sampling algorithm for the seedless non-malleable extractor construc-
tion presented in Theorem 4.3. This is crucial to get efficient encoding algorithms for the corresponding
non-malleable codes. We do not know how to invert the non-malleable extractor constructions in Theorem
4.3, but we show that the constructions can suitably modified in a way that admits efficient sampling from
the pre-image of the extractor. We present our construction of the non-malleable extractor in the setting of
equal partitions, but note that it is easy to verify that our proofs work in the more general setting of unequal
length partitions (see Section 5.1).

6.1 An invertible non-malleable extractor with respect to linear composed with interleaved
adversaries

The main idea is to ensure that on fixing appropriate random variables that are generated in computing the
non-malleable extractor, the source is now restricted onto a known subspace of fixed dimension (i.e., the
dimension does not depend on value of the fixed random variables). Once we can ensure this, sampling
from the pre-image can simply be done by first uniformly sampling the fixed random variables, and then
sampling the other variables uniformly from the known subspace.

To carry this out, we need to modify the non-malleable extractor that was constructed in Section 4. The
construction in Section 4 is already fairly complicated, and the high level ideas to execute the strategy hinted
at in the previous paragraph are: (i) carrying out different parts of the construction using disjoint parts of
the source, and (ii) carefully choosing the sub-routines (e.g., seeded extractors, error correcting codes) used
in the construction. It turns out that ensuring that we act on disjoint parts of the source for various parts of
the construction is not completely possible, which leads to further complications. We first give an informal
description of the modified construction before presenting the actual construction. Let Z be the 2-interleaved
source.

1. Recall that the advice generator developed in Section 4 can be informally (and slightly inaccurately)
described as follows: we take two slices from the source Z, and use them in following way: the first
slice is used to sample bits from an encoding of Z. The other slice is used to to sample bits from
the source Z, which is then used as a seed for a linear seeded extactor that extracts from Z. Our
modifications to this part are as follows:

• We reserve a large portion/slice of Z which we use to carry out all the steps that involve ‘sample
a subset of coordinates from Z’. Thus, in the above description, when we use the second slice
to sample bits from Z, we sample from this ‘reserved slice’ of Z instead of Z. Further, once a
subset of coordinates are sampled from this reserved slice, we remove these bits so that in the
later parts of construction the same subset of bits are not used.

• Sampling from an encoding of Z is problematic to our strategy of using disjoint parts of the
source to carry out different parts of the construction. In particular, the sampled set of coordi-
nates represent a set of linear constraints on the source Z if we think about it from perspective
of sampling from a pre-image. We deal with this by keeping track of the set of linear constraints
imposed by the sampled set of constraints, and ensuring that in later parts of our construction,
the new constraints imposed are linearly independent of this set.

• As indicated above, another part of the advice is the output of a linear seeded extractor on Z
using as seed a sample of coordinates from Z. This again goes against our strategy of using
disjoint parts of the source Z, and places a global linear constraints on Z (for every fixing of

26



the seed). In particular, the constraints imposed can have arbitrary intersection with the linear
constraints imposed in the step above. To deal with this, we throw away all the bits from the
sampled coordinates in the above step that are linearly dependent with the constraints imposed
in this step. Here we crucially use that the error correcting code we use is the dual of a BCH
code which lets us argue that we do not throw away fewer bits than the distance of the code.
This lets us argue correctness of the advice generator.

2. The next step in the construction of the non-malleable extractor is the advice correlation break. The
main modification from the construction from Section 4, is that instead of using the source Z, we
sample a relatively large set of coordinates from the reserve slice of Z (that we mentioned in the step
above) and use this sample instead of Z. This fits into our approach of using disjoint parts of Z for
carrying out different parts of the construction.

3. Finally, we use a trick from [Li17] where we feed the output of the advice correlation breaker as
seed to a linear seeded extractor that extracts from the untouched bits of the reserve slice of Z. This
lets us treat the inner workings of the advice correlation breaker in a black box way, which greatly
simplifies the sampling process since the advice correlation breaker uses multiple rounds of alternating
extraction. The reason we can do this is because the linear seeded extractor we use has the special
property that for every fixing of the seed, the linear function has the same rank (and thus the pre-image
size does not depend on the seed). Such an extractor was constructed in [CGL16,Li17] (see Theorem
3.14). This finishes our informal description of the modified non-malleable extractor.

We now present the modified non-malleable extractor. We use the following notation: For any linear
map L : {0, 1}r → {0, 1}s given by L(α) = Mα for some matrix M , we use conL to denote a maximal set
of linearly independent rows of M .

We now set up some parameters and ingredients for our construction of an invertible non-malleable
extractor.

• Let δ > 0 be a small enough constant and C a large constant.

• Let δ′ = δ/C.

• Let C be a BCH code with parameters: [nb, nb − tb log nb, 2tb]2, tb =
√
nb/100, where we fix nb

in the following way. Let dBCH be the dual code. From standard literature, it follows that dBCH is
a [nb, tb log nb,

nb
2 − tb

√
nb]2-code. Set nb such that tb · log nb =

√
nb log nb = 2n. Let E be the

encoder of dBCH. Note that by our choice of parameters, the relative minimum distance of dBCH is
at least 1/3.

• Let n0 = nδ
′
, n1 = nc00 , n2 = 10n0, for some constant c0 that we set below.

• Let n3 = nCδ, n4 = nC
2δ/5, n5 = nC

3δ, n6 = n−
∑5

i=1 ni. We ensure that n6 = n(2− o(1)).

• Let Ext1 : {0, 1}n1 ×{0, 1}d1 → {0, 1}log(nb) be a (n1/20, 1/10)-seeded extractor instantiated using
Theorem 3.11. Thus d1 = c1 log n1, for some constant c1. Let D1 = 2d1 = nc11 .

• Let Samp1 : {0, 1}n1 → [nb]
D1 be the sampler obtained from Theorem 3.10 using Ext1.

• Let Ext2 : {0, 1}n2 ×{0, 1}d2 → {0, 1}log(n6) be a (n2/20, 1/n0)-seeded extractor instantiated using
Theorem 3.11. Thus d2 = c2 log n2, for some constant c2. Let D2 = 2d2. Thus D2 = 2d2 = nc22 .

• Let Samp2 : {0, 1}n2 → [n6]D2 be the sampler obtained from Theorem 3.10 using Ext2.
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• Set c0 = 2c2.

• Let i`Ext : {0, 1}D2 → {0, 1}n0 be the extractor from Theorem 7.1.

• Let LExt0 : {0, 1}2n × {0, 1}n0 → {0, 1}
√
n0 be a linear seeded extractor instantiated from Theo-

rem 3.12 set to extract from min-entropy n1/100 and error 2−Ω(
√
n0).

• Let Ext3 : {0, 1}n3 × {0, 1}d3 → {0, 1}log(n6−D2) be a (n3/8, 1/100)-seeded extractor instantiated
using Theorem 3.11. Thus d3 = C1 log n3, for some constant C1.

• Let Samp3 : {0, 1}n3 → [n6 −D2]n7 be the sampler obtained from Theorem 3.10 using Ext3. Thus
n7 = 2d3 = nC1

3 .

• Let Ext4 : {0, 1}n4 × {0, 1}d4 → {0, 1}n6−n7−D2 be a (n4/8, 1/100)-seeded extractor instantiated
using Theorem 3.11. Thus d3 = C1 log n4.

• Let Samp4 : {0, 1}n4 → [n5 − n7 −D2]n8 be the sampler obtained from Theorem 3.10 using Ext4.
Thus n8 = 2d3 = nC1

4 .

• Let LExt1 : {0, 1}n5 × {0, 1}d → {0, 1}d5 , d5 =
√
n5, be a linear-seeded extractor instantiated from

Theorem 3.12 set to extract from entropy k1 = n2/10 with error ε1 = 1/10. Thus d = C2 log n5, for
some constant C2. Let D = 2d.

• Let LExt2 : {0, 1}n7 × {0, 1}d5 → {0, 1}m1 , m1 =
√
n7 be a linear-seeded extractor instantiated

from Theorem 3.12 set to extract from entropy k2 = n7/100 with error ε2 = 2−Ω(
√
d4) = 2−n

Ω(1)
,

such that the seed length of the extractor LExt2 (by Theorem 3.12) is d5.

• Let ACB : {0, 1}n1,acb × {0, 1}nacb × {0, 1}hacb → {0, 1}n2,acb , be the advice correlation breaker
from Theorem 3.18 set with the following parameters: nacb = n7, n1,acb = m1, n2,acb = n9 = D2,

tacb = 2D,hacb = nδ + d, εacb = 2−n
δ′

, dacb = O(log2(n/εacb)), λacb = 0. It can be checked that
by our choice of parameters, the conditions required for Theorem 3.18 indeed hold for k1,acb ≥ nCδ.

• Let LExt3 : {0, 1}n8 × {0, 1}n9 → {0, 1}m be the linear seeded extractor from Theorem 3.14 set to
extract from min-entropy rate 1/10 and error ε = 2−n

Ω(1)
(such that the seed-length is indeed n9).

Thus, m = αn9, for some small contant α that arises out of Theorem 3.14.

The proof that i`NM computed by Algorithm 4 satisfies Theorem 4.3 is very similar, and we omit the
details. We include a discussion of the key differences and subtleties that arise from the modifications done
in the above construction as compared to Algorithm 2.

The first key difference is Step 7, where we discard some bits from the advice generator’s output. The
existence of the subset T 1 is guaranteed by the fact that E has dual distance tb = Ω(n/ log n). (Thus, we
never fall into the case of non-existence of such a set T 1 in Step 7.) Thus, for any T , it must be that ConET1

is a set of size |T1| = D1. Further, conLExt0(·,z′2) is a set with cardinality at most
√
n0. Thus, indeed there

exists such a set T 1. An important detail to notice is that |T1 \ T1| = o(D1) and the distance of the code
computed by E is Ω(1). Thus, the fact that we discard the bits indexed by the set T1 \ T1 from the string
E(Z)T1 (and thus from the output of the advice generator) does not affect the correctness of the advice
generator.

Another difference is that in the steps where we transform the somewhere random matrix v into a matrix
with longer rows, and the subsequent step where the advice correlation breaker is applied is now done using
a pseudorandomly sampled subset of coordinates from Z (as opposed to the entire Z which we did before).
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Algorithm 4: i`NM(z)

Input: Bit-string z = (x ◦ y)π of length 2n, where x and y are each n bit-strings, and π : [2n]→ [2n]
is a permutation.
Output: Bit string of length m.

1 Let zi = z1 ◦ z2 ◦ z3 ◦ z4 ◦ z5 ◦ z6, where zi is of length ni.
2 Let Ti = Sampi(zi), i = 1, 2, 3, 4.
3 Let z2 = (z6)T2 .
4 Let z′2 = i`Ext(z2).
5 Let z′′2 = LExt0(z, z′2).
6 For any set Q ⊆ [2n], define the linear function E : {0, 1}2n → {0, 1}|Q| as EQ(x) = (E(x))Q.
7 Pick a subset T1 ⊂ T1 of size D1 −

√
n0 such that conET1

is linearly independent of conLExt0(·,z′2).

If there is no such set T1, then output 0m.
8 Let w = z1 ◦ z2 ◦ z2 ◦ (E(z))T1

◦ z′′2 .
9 Let v be a D × d4 matrix, with its i’th row vi = LExt1(z5, i).

10 Let z′6 be the bits in z6 outside T2. Let z6 = (z′6)T3 .
11 Let r be a D × n4 matrix, with its i’th row ri = LExt2(z6, vi).
12 Let s be a D ×m matrix, with its i’th row si = ACB(ri, z6, w ◦ i).
13 Let s̃ = ⊕Di=1si.
14 Let z7 be the bits in z6 outside the coordinates T2 ∪ T3.
15 Let z7 = (z7)T4 . Let z8 be the bits in z6 outside the coordinates T2 ∪ T3 ∪ T4.
16 Output g = LExt3(z7, s̃).

It is not hard to prove that this does not make a difference as long as we sample enough bits. Finally, another
difference is the final step where we use a linear seeded extractor, with Z6 as the seed. As done many times
in the paper, we use the sum structure of Z7 (into a source that depends on X and a source that depends on
Y) along with the fact that LExt3 is linear seeded to show that the output is close to uniform.

We now focus on the problem of efficiently sampling from the pre-image of this extractor. The following
lemma almost immediately implies a simple sampling algorithm.

Lemma 6.1. With probability 1− 2−n
Ω(1)

over the fixing of the variables z1, z2, z2, z
′′
2 , z3, z4, z5, z6, w, and

any g ∈ {0, 1}m, the set i`NM−1(g) is a linear subspace of fixed dimension.

Proof. Consider any fixing of z1, z2, z3, z4. Clearly, these fix the sets Ti, i = 1, 2, 3, 4. Next, note that given
z2, we have the value of z′2. We note that by Lemma 3.15 that with probability 1− 2−n

Ω(1)
, the linear map

LExt0(, z′2) has full rank. Using Algorithm 2, determine the set T1 (if it exists). Fix E(z)T 1
and z′′2 , noting

that the value of w is now determined. Now given z5, z6, we can compute r, s, s̃. Next observe that given
g and s̃, Theorem 3.14 implies the value of z7 belongs to a subspace whose dimension does not depend on
the values of g and s̃. Finally, we are left to see how to compute z8. Note that the constraints on z8 are
imposed by the fixings of z′′2 and E(C)T1

. However, by construction (Step 7 of our algorithm), the number
of independent linear constraints on z8 is exactly equal to D1 as long as LExt0(, z′2) has full rank (which as
noted before occurs with probability at least 1− 2−n

Ω(1)
). This completes the proof.

Given Lemma 6.1, the sampling algorithm is now straightforward:
Input g ∈ {0, 1}m; Output z that is uniform on the set i`NM−1(g).

1. Sample zi, i = 1, 2, 3, 4, 5 uniformly at random. Compute T1, T2, T3, T4 following Algorithm 2.
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2. Sample z2 uniformly, and compute z′2. Further, sample z′′2 uniformly.

3. Compute T1, and sample (E(z))T1
uniformly at random.

4. Compute w, v, r, s, s̃ using Algorithm 2.

5. Sample z7 from (LExt3(·, s̃))−1(g) efficiently using Theorem 3.14.

6. Sample z8 as described in Lemma 6.1. Compute the string z6.

7. Output z = z1 ◦ z2 ◦ z3 ◦ z4 ◦ z5 ◦ z6.

7 Extractors for interleaved sources

Our techniques yield improved explicit constructions of extractors for interleaved sources. Our extractor
works when both sources have entropy at least 2n/3, and outputs Ω(n) bits that are 2−n

Ω(1)
-close to uniform.

The following is our main result.

Theorem 7.1. For any constant δ > 0 and all integers n > 0, there exists an efficiently computable function
i`Ext : {0, 1}2n → {0, 1}m, m = Ω(n), such that for any two independent sources X and Y, each on n
bits with min-entropy at least (2/3 + δ)n, and any permutation π : [2n]→ [2n], we have

|i`Ext((X ◦Y)π)−Um| ≤ 2−n
Ω(1)

.

We use the rest of the section to prove Theorem 7.1. An important ingredient in our construction is an
explicit somewhere condenser for high-entropy sources constructed in the works of Barak et al. [BRSW12]
and Zuckerman [Zuc07].

Theorem 7.2. For all constants β, δ and all integers n > 0, there exists an efficiently computable function
Con : {0, 1}n × {0, 1}d → {0, 1}`, d = O(1) and ` = Ω(n) such that the following holds: for any (n,
δn)-source X there exists a y ∈ {0, 1}d such that Con(X, y) is 2−Ω(n)-close to a source with min-entropy
(1− β)`.
We call such a function Con to be a (δ, 1− β)-condenser.

We prove that Algorithm 5 computes the required extractor. We begin by setting up some ingredients
and parameters.

• Let κ > 0 be a small enough constant.

• Let n1 = (2/3 + δ/2)n and n2 = n5κ.

• Let β be a parameter which we fix later. Let Con : {0, 1}n1 × {0, 1}d → {0, 1}` be a (δ/4, 1 − β)-
condenser instantiated from Theorem 7.2. Thus ` = n/C ′, for some constant C ′ that depends on δ, β.
Let D = 2d. Note that D = O(1).

• Let LExt1 : {0, 1}2n × {0, 1}` → {0, 1}n2 be the linear seeded extractor from Theorem 3.14 set to
extract from min-entropy rate 1/12 and error ε1 = 2−2β`. The seed-length is at most 3Cβ`, some
constant C that arises out of Theorem 3.14. We choose β = min{1/3C, γ}, where γ is the constant
in Theorem 3.14. Note that the seed-length of LExt1 is indeed at most `.
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• Let ACB : {0, 1}n1,acb × {0, 1}nacb × {0, 1}hacb → {0, 1}n2,acb , be the advice correlation breaker
from Theorem 3.18 set with the following parameters: nacb = 2n, n1,acb = n2, n2,acb = n3 = n2κ,
tacb = D,hacb = d, εacb = 2−n

κ
, dacb = O(log2(n/εacb)), λacb = 0. It can be checked that by our

choice of parameters, the conditions required for Theorem 3.18 indeed hold for k1,acb ≥ n2κ.

• Let LExt2 : {0, 1}2n×{0, 1}n3 → {0, 1}m, m = Ω(n), be a linear-seeded extractor instantiated from
Theorem 3.12 set to extract from entropy k1 = n/10 with error ε1 = 2−α

√
n3 , for an appropriately

picked small constant α.

Algorithm 5: i`Ext(z)
Input: Bit-string z = (x ◦ y)π of length 2n, where x and y are each n bit-strings, and π : [2n]→ [2n]
is a permutation.
Output: Bit string of length m.

1 Let z1 = Slice(z, n1).
2 Let v be a D × n2 matrix, with its i’th row vi = Con(z1, i).
3 Let r be a D × n3 matrix, with its i’th row ri = LExt1(z, vi).
4 Let s be a D ×m matrix, with its i’th row si = ACB(ri, z, i).
5 Let s̃ = ⊕Di=1si.
6 Output LExt2(z, s̃).

We use the following notation: Let X1 be the bits of X in Z1 and X2 be the remaining bit of X. Let Y1

be the bits of Y in Z1 and Y2 be the remaining bits of Y. Without loss of generality assume |X1| ≥ |Y1|.
Define X = (X ◦ 0n)π and Y = (Y ◦ 0n)π. Further, let X1 = Slice(X, n1) and Y1 = Slice(Y, n1). It
follows that Z = X + Y, and Z1 = X1 + Y1. Further, let kx = ky = (2/3 + δ)n.

We begin by proving the following claim.

Claim 7.3. Conditioned on the random variables X1,Y1, {LExt1(X,Con(X1 +Y1, i))}Di=1, the following
hold:

• the matrix R is 2−Ω(n)-close to a somewhere random source,

• R is a deterministic functions of Y,

• H∞(X) ≥ δn/4, H∞(Y) ≥ n/6.

Proof. By construction, we have that for any j ∈ [D],

Rj = LExt1(Z,Con(Z1, j))

= LExt1(X + Y,Con(X1 + Y1, j))

= LExt2(X,Con(X1 + Y1, j)) + LExt2(Y,Con(X1 + Y1, j))

Fix the random variables Y1, and Y has min-entropy at least ky − n1/2 ≥ n/6 + 3δn/4. Further, note that
X1 has min-entropy at least n1/2 − (n − kx) ≥ δn/4. Now, by Theorem 7.2, we know that there exists a
j ∈ [D] such that Con(X1 + Y1, j) is 2−Ω(n)-close to a source with min-entropy at least (1− β)`. Further,
note that V is a deterministic function of X.

Now, since LExt1 is a strong seeded extractor set to extract from min-entropy n/6, it follows by Lemma
3.8 that

|LExt1(Y,Con(X1 + Y1, j))−Un2 | ≤ 2β`ε1 + 2−Ω(n) ≤ 2−β`+1.
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We now fix the random variables X1 and note that LExt1(Y,Con(X1 +Y1, j)) continues to be 2−Ω(`)-
close to Un2 . This follows from the fact that LExt1 is a strong seeded extractor. Note that the random
variables {Con(X1 +Y1, i)) : i ∈ [D]} are now fixed. Next, fix the random variables {LExt1(X,Con(X1 +
Y1, i))}Di=1 noting that they are deterministic functions of X. Thus Rj is 2−Ω(n)-close to Un2 and for any
i ∈ [D], the random variables Ri are deterministic functions of Y. Finally, note that X and Y remain
independent after these conditionings, and H∞(X) ≥ kx − n1 −Dn2 and H∞(Y) ≥ ky − n1/2.

The next claim almost gets us to Theorem 7.1.

Claim 7.4. There exists j ∈ [D] such that

Sj , {Si}i∈[D]\j ,X ≈2−n
Ω(1) Un3 , {Si}i∈[D]\j ,X.

Proof. Fix the random variables: X1,Y1, {LExt1(X,Con(X1 + Y1, i))}Di=1. By Claim 7.3 we have that
R is a deterministic function of Y, and with probability at least 1 − 2−Ω(n), there exists j ∈ [D] such that
Rj is 2−n

Ω(1)
-close to uniform, and H∞(X) ≥ δn/4. Recall that Z = X + Y. It now follows by Theorem

3.18 that

ACB(Rj ,Z, j), {ACB(Ri,X + Y, i)}i∈[D]\j ,X ≈2−n
Ω(1)

Un3 , {ACB(Ri,X + Y, i)}i∈[D]\j ,X.

It follows by Claim 7.4 that S̃ is 2−n
Ω(1)

-close to uniform even conditioned on X. Thus, noting that
LExt2(Z, S̃) = LExt2(X, S̃) + LExt2(Y, S̃), it follows that we can fix S̃ and LExt2(X, S̃) remains 2−n

Ω(1)
-

close to uniform and is a deterministic function of X. Next, we fix LExt2(Y, S̃) without affecting the
distribution of LExt2(X, S̃). It follows that LExt2(Z, S̃) is 2−n

Ω(1)
-close to uniform. This completes the

proof of Theorem 7.1.

8 Open questions

Non-malleable codes for composition of functions. Here we give efficient constructions of non-malleable
codes for the tampering class Lin ◦ 2ISS. Many natural questions remain to be answered. For instance, one
open problem is to efficiently construct non-malleable codes for the tampering class 2SS◦Lin or 2ISS◦Lin,
which as explained before is closely related to the question of constructing explicit (r, t) ramp non-malleable
secret sharing schemes with binary shares, where r < t. It looks like one needs substantially new ideas to
give such constructions. More generally, for what other interesting classes of functions F and G can we
construct non-malleable codes for the composed class F ◦ G? Is it possible to efficiently construct non-
malleable codes for any tampering class F ◦ G as long as we have efficient non-malleable codes for the
classes F and G?

Other applications of seedless non-malleable extractors. The explicit seedless non-malleable extractors
that we construct satisfy strong pseudorandom properties. A natural question is to find more applications of
these non-malleable extractors in explicit constructions of other interesting objects.
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Improved seedless extractors. We construct an extractor for 2-interleaved sources that works for min-
entropy rate 2/3. It is easy to verify that there exists extractors for sources with min-entropy as low as
C log n, and a natural question here is to come up with such explicit constructions. Given the success in
constructing 2-source extractors for low min-entropy [CZ16a, Li18], we are optimistic that more progress
can be made on this problem.
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