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Abstract

Let H be an arbitrary family of hyper-planes in d-dimensions. We show that the
point-location problem for H can be solved by a linear decision tree that only uses a
special type of queries called generalized comparison queries. These queries correspond
to hyperplanes that can be written as a linear combination of two hyperplanes from
H; in particular, if all hyperplanes in H are k-sparse then generalized comparisons
are 2k-sparse. The depth of the obtained linear decision tree is polynomial in d and
logarithmic in |H|, which is comparable to previous results in the literature that use
general linear queries.

This extends the study of comparison trees from a previous work by the authors
[Kane et al., FOCS 2017]. The main benefit is that using generalized comparison queries
allows to overcome limitations that apply for the more restricted type of comparison
queries.

Our analysis combines a seminal result of Forster regarding sets in isotropic position
[Forster, JCSS 2002], the margin-based inference dimension analysis for comparison
queries from [Kane et al., FOCS 2017], and compactness arguments.
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1 Introduction

Let H ⊂ Rd be a family of |H| = n hyper-planes. H partitions Rd into O(nd) cells. The
point-location problem is to decide, given an input point x ∈ Rd, to which cell it belongs.
That is, to compute the function

AH(x) := (sign(〈x, h〉) : h ∈ H) ∈ {−1, 0, 1}n.

A well-studied computation model for this problem is a linear decision tree (LDT): this is
a ternary decision tree whose input is x ∈ Rd and its internal nodes v make linear/threshold
queries of the form sign(〈x, q〉) for some q = q(v) ∈ Rd. The three children of v correspond
to the three possible outputs of the query : “−”,“0”,“+”. The leaves of the tree are labeled
with {−1, 0, 1}n with correspondence to the cell in the arrangement that contains x. The
complexity of a linear decision tree is its depth, which corresponds to the maximal number
of linear queries made on any input.

Comparison queries. A comparison decision tree is a special type of an LDT, in which
all queries are of one of two types:

• Label query: “sign (〈x, h〉) = ?” for h ∈ H.

• Comparison query: “sign (〈x, h′ − h′′〉) = ?” for h′, h′′ ∈ H.

In [KLMZ17] it is shown that when H is “nice” then there exist comparison decision trees
that computed AH(·) and has nearly optimal depth (up to logarithmic factors). For example,
for any H ⊂ {−1, 0, 1}d there is a comparison decision tree with depth O(d log d log|H|). This
is off by a log d factor from the basic information theoretical lower bound of Ω(d log|H|).
Moreover, it is shown there that certain niceness conditions are necessary. Concretely, they
give an example of H ⊂ R3 such that any comparison decision tree that computes AH(·)
requires depth Ω(|H|). This raises the following natural problem: can comparison decision
trees be generalized in a way that allows to handle arbitrary point-location problems?

Generalized comparisons. This paper addresses the above question by considering gen-
eralized comparison queries. A generalized comparison query allows to re-weight its terms:
namely, it is query of the form

“sign (〈x, αh′ − βh′′〉) =?”

for h′, h′′ ∈ H and some α, β ∈ R. Note that it may be assumed without loss of generality that
|α|+|β| = 1. A generalized comparison decision tree, naturally, is a linear decision tree whose
internal linear queries are restricted to be generalized comparisons. Note that generalized
comparison queries include as special cases both label queries (setting α = 1, β = 0) and
comparison queries (setting α = β = 1/2).

Geometrically, generalized comparisons are 1-dimensional in the following sense: let q =
αh′ − βh′′, with α, β ≥ 0 then q lies on the interval connecting h′ and −h′′. If α and β have

2



different signs, q lies on an interval between some other ±h′ and ±h′′. So comparison queries
are linear queries that lies on the projective lines intervals spanned by {±h : h ∈ H}. In
particular, if each h ∈ H has sparsity at most k (namely, at most k nonzero coordinates)
then each generalized comparison has sparsity at most 2k.

Our main result is:

Theorem 1.1 (Main theorem). Let H ⊂ Rd. Then there exists a generalized comparison
decision tree of depth O(d4 log d log |H|) that computes AH(x) for every input x ∈ Rd.

Why consider generalized comparisons? We consider generalized comparisons for a
number of reasons:

• The lower bound against comparison queries in [KLMZ17] was achieved by essentially
scaling different elements of H ⊂ R3 with exponentially different scales. Allowing for
re-scaling (which is what generalized comparisons allow to do) solves this problem.

• Generalized comparisons may be natural from a machine learning perspective, in par-
ticular in the context of active learning. A common type of queries used in practice
it to give a score to an example (say 1-10), and not just label it as positive (+) or
negative (-). Comparing the scores for different examples can be viewed as a “coarse”
type of generalized comparisons.

• If the set of original hyperplanes H was “nice”, then generalized comparisons maintain
some aspects of niceness in the queries performed. As an example that was already
mentioned, if all hyperplanes in H are k-sparse then generalized comparisons are 2k-
sparse. This is part of a more general line of research, studying what types of “simple
queries” are sufficient to obtain efficient active learning algorithms, or equivalently
efficient linear decision trees for point-location problems.

1.1 Proof outline

Our proof consists of two parts. First, we focus on the case when H ⊂ Rd is in general posi-
tion, namely, every d vectors in it are linearly independent. Then, we extend the construction
to arbitrary H.

The second part is fairly abstract and is derived via compactness arguments. The tech-
nical crux lies in the first part: let H ⊆ Rd be in general position; we first construct a
randomized generalized comparison decision tree for H, and then derandomize it. The ran-
domized tree is simple to describe: it proceeds by steps, where in each step about d2 elements
from H are drawn, labelled, and sorted using generalized comparisons. Then, it is shown
that the labels of some 1/d-fraction of the remaining elements in H are inferred, on average.
The inferred vectors are then removed from H and this step is repeated until all labels in H
are inferred.

A central technical challenge lies in the analysis of a single step. It hinges on a result
by Forster [For02] that transforms a general-positioned H to an isotropic-positioned H ′ (see
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formal definition below) in a way that comparison queries on H ′ correspond to generalized
comparison queries on H. Then, since H ′ is in isotropic position, it follows that a significant
fraction of H ′ has a large margin with respect to the input x. This allows us to employ
a variant of the margin-based inference analysis by [KLMZ17] on H ′ to derive the desired
inference of some Ω(1

d
)-fraction of the remaining labels in each step.

The derandomization of the above randomized LDT is achieved by a double-sampling
argument due to [VC71]. A similar argument was used in [KLMZ17], however here several
new technical challenges arise, as in each iteration in the above randomized algorithm, we
only label a small fraction of the elements on average.

1.2 Related work

The point-location problem has been studied since the 1980s, starting from the pioneering
work of Meyer auf der Heide [MadH84], Meiser [Mei93], Cardinal et al. [CIO15] and most
recently Ezra and Sharir [ES17]. This last work, although not formally stated as such, solves
the point-location problem for an arbitrary H ⊂ Rd by a linear decision tree whose depth is
O(d2 log d log |H|). However, in order to do so, the linear queries used by the linear decision
tree could be arbitrary, even when the original family H is very simple (say 3-sparse). This
is true for all previous works, as they are all based on various geometric partitioning ideas,
which may require the use of quite generic hyperplanes. This should be compared with our
results (Theorem 1.1). We obtain a linear decision tree of a bigger depth (by a factor of d2),
however the type of linear queries we use remain relatively simple; e.g., as discussed earlier,
they are 1-dimensional and preserve sparseness.

1.3 Open problems

Our work addresses a problem raised in [KLM17], of whether “simple queries” can be suf-
ficient to solve the point-location problem for general hyperplanes H, without making any
“niceness” assumptions on H. The solution explored here is to allow for generalized com-
parisons, which are a 1-dimensional set of allowed queries. An intriguing question is whether
this is necessary, or whether there are some 0-dimensional gadgets that would be sufficient.

In order to formally define the problem, we need the notion of gadgets. A t-ary gadget in
Rd is a function g : (Rd)t → Rd. Let G = {g1, . . . , gr} be a finite collection of gadgets in Rd.
Given a set of hyperplanes H ⊂ Rd, a G-LDT that solves AH(·) is a LDT where any linear
query is of the form sign(〈q, ·〉) for q = g(h1, . . . , ht) for some g ∈ G and h1, . . . , ht ∈ H. For
example, a comparison decision tree corresponds to the gadgets g1(h) = h (label queries) and
g2(h1, h2) = h1−h2 (comparison queries). A generalized comparison decision tree corresponds
to the 1-dimensional (infinite) family of gadgets {gα(h1, h2) = αh1 − (1− α)h2 : α ∈ [0, 1]}.
It was shown in [KLMZ17] that comparison decision trees are sufficient to efficiently solve
the point-location problem in 2 dimensions, but not in 3 dimensions. So, the problem is
already open in R3.
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Open problem 1. Fix d ≥ 3. Is there a finite set of gadgets G in Rd, such that for every
H ⊂ Rd there exists a G-LDT which computes AH(·), whose depth is logarithmic in |H|?
Can one hope to get to the information theoretic lower bound, namely to O(d log |H|)?

Another open problem is whether randomized LDT can always be derandomized, without
losing too much in the depth. To recall, a randomized (zero-error) LDT is a distribution
over (deterministic) LDTs which each computes AH(·). The measure of complexity for a
randomized LDT is the expected number of queries performed, for the worst-case input x.
The derandomization technique we apply in this work (see Lemma 3.9 and its proof for
details) loses a factor of d, but it is not clear whether this loss is necessary.

Open problem 2. Let H ⊂ Rd. Assume that there exists a randomized LDT which computes
AH(·), whose expected query complexity is at most D for any input. Does there always exist
a (deterministic) LDT which computes AH(·), whose depth is O(D)?

2 Preliminaries and some basic technical lemmas

2.1 Linear decision trees

Let T be a linear decision tree defined on input points x ∈ Rd. For a vertex u of T let
C(u) denote the set of inputs x whose computation path contains u. Let Z(u) denote the
queries “sign(〈x, q〉) =?” on the path from the root to u that are replied by “0”, and let
V (u) ≤ Rd denote the subspace {x : 〈x, q〉 = 0,∀q ∈ Z(u)}. We say that u is full dimensional
if dim (V (u)) = d (i.e. no query on the path towards u is replied by a 0).

Observation 2.1. C(u) is convex (as an intersection of open halfspaces and hyperplanes).

Observation 2.2. C(u) ⊆ V (u) and is open with respect to V (u) (that is, it is the intersec-
tion of an open set in Rd with V (u)).

We say that T computes sign(〈h, ·〉) if for every leaf ` of T , the restriction of the function
x 7→ sign(〈h, x〉) to C(`) is constant. Thus, T computes AH(·) if and only if it computes
sign(〈h, ·〉) for all h ∈ H. We say that T computes sign(〈h, ·〉) almost everywhere if the
restriction of x 7→ sign(〈h, x〉) to C(`) is constant, for every full dimensional leaf `.

We will use the following corollary of Observations 2.1 and 2.2. It shows that if sign(h, ·)
is not constant in C(u) then it must take all three possible values. In Section 3.4, we show
that a linear decision tree that computes AH(·) almost everywhere can be “exteneded” to
a LDT that computes AH(·) everywhere, without increasing the depth or introducing new
queries. It relies on the following lemma.

Lemma 2.3. Let u be a vertex in T , and assume that the restriction of x 7→ sign(〈h, x〉)
to C(u) is not constant. Then there exist x−1, x0, x+1 ∈ C(u) such that sign(〈h, xi〉) = i for
every i ∈ {−1, 0,+1}.
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Proof. Let x′, x′′ ∈ C(u) with sign(〈h, x′〉) 6= sign(〈h, x′′〉). If {sign(〈h, x′〉), sign(〈h, x′′〉)} =
{±1} then by continuity of x 7→ sign(〈h, x〉) there exists some x0 on the interval between
x′, x′′ such that sign(〈h, x0〉) = 0, and x0 ∈ C(u) by convexity.

Else, without loss of generality, sign(〈h, x′〉) = 0 and sign(〈h, x′′〉) = +1. Therefore, since
C(u) is open relative to V (u):

x′ − ε · x′′ ∈ C(u)

for some small ε > 0. This finishes the proof since sign(〈h, x′ − ε · x′′〉) = −1.

2.2 Inferring from comparisons

Let x, h ∈ Rd and let S ⊆ Rd.

Definition 2.4 (Inference). We say that S infers h at x if sign(〈h, x〉) is determined by the
linear queries sign(〈h′, x〉) for h′ ∈ S. That is, if for any point y in the set{

y ∈ Rd : sign(〈h′, y〉) = sign(〈h′, x〉) ∀h′ ∈ S
}

it holds that sign(〈h, y〉) = sign(〈h, x〉). Define

infer(S;x) := {h ∈ Rd : h is inferred from S at x}.

The notion of inference has a natural geometric perspective. Consider the partition of
Rd induced by S. Then, S infers h at x if the cell in this partition that contains x is either
disjoint from h or otherwise is contained in h (so in either case, the value of sign(〈h, ·〉) is
constant on the cell).

Our algorithms and analysis are based on inferences from comparisons. Let S−S denote
the set {h′ − h′′ : h′, h′′ ∈ S}.

Definition 2.5 (Inference by comparisons). We say that comparisons on S infer h at x if
S ∪ (S − S) infers h at x. Define

InferComp(S;x) := infer
(
S ∪ (S − S);x

)
.

Thus, InferComp(S;x) is determined by querying sign(〈h′, x〉) and sign(〈h′ − h′′, x〉) for
all h′, h′′ ∈ S. Naively, this requires some O(|S|2) linear queries. However, using efficient
sorting algorithm (e.g. merge-sort) achieves it with just O(|S| log |S|) comparison queries. A
further improvement, when |S| > d, is obtained by Fredman’s sorting algorithm that uses
just O(|S|+ d log |S|) comparison queries [Fre76].

2.3 Vectors in isotropic position

Vectors h1, . . . , hm ∈ Rd are said to be in general position if any d of them are linearly
independent. They are said to be in isotropic position if for any unit vectors v ∈ Sd,

1

m

m∑
i=1

〈hi, v〉2 =
1

d
.
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Equivalently, if 1
m

∑
hih

T
i is 1

d
times the d × d identity matrix. An important theorem of

Forster [For02] (see also Barthe [Bar98] for a more general statement) states that any set of
vectors in general position can be scaled to be in isotropic position.

Theorem 2.6 ([For02]). Let H ⊂ Rd be a finite set in general position. Then there exists
an invertible linear transformation T such that the set

H ′ :=

{
Th

‖Th‖2
: h ∈ H

}
is in isotropic position. We refer to such a T as a Forster transformation for H.

We will also need a relaxed notion of isotropic position. Given vectors h1, . . . , hm ∈ Rd

and some 0 < c < 1, we say that the vectors are in c-approximate isotropic position, if for
all unit vectors v ∈ Sd it holds that

1

m

m∑
i=1

〈hi, v〉2 ≥
c

d
.

We note that this condition is easy to test algorithmically, as it is equivalent to the statement
that the smallest eigenvalue of the positive semi-definite d × d matrix 1

m

∑m
i=1 hih

T
i is at

least c
d
.

We summarize it in the following lemma, which follows from basic real linear algebra.

Claim 2.7. Let h1, . . . , hm ∈ Rd be unit vectors. Then the following are equivalent.

• h1, . . . , hm are in c-approximate isotropic position.

• λ1
(

1
m

∑m
i=1 hih

T
i

)
≥ c/d,

where λ1(M) denotes the minimal eigenvalue of a positive semidefinite matrix M .

We will need the following basic claims. The first claim shows that a set of unit vectors in
an approximate isotropic position has many vectors with non-negligible inner product with
any unit vector.

Claim 2.8. Let h1, . . . , hm ∈ Rd be unit vectors in a c-approximate isotropic position, and
let x ∈ Rd be a unit vector. Then, at least a c

2d
-fraction of the hi’s satisfy |〈hi, x〉| >

√
c
2d

.

Proof. Assume otherwise. It follows that

1

m

m∑
i=1

|〈h, xi〉|2 ≤
c

2d
· 1 +

(
1− c

2d

) c

2d
<

c

2d
+

c

2d
=
c

d
.

This contradicts the assumption that the hi’s are in c-approximate isotropic position.

The second claim shows that a random subset of a set of unit vectors in an approximate
isotropic position is also in approximate isotropic position, with good probability.
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Claim 2.9. Let h1, . . . , hm be unit vectors in c-approximate isotropic position. Let
i1, . . . , ik ∈ [m] be independently and uniformly sampled. Then for any δ > 0, the vectors
hi1 , . . . , hik are in ((1− δ)c)-approximate isotropic position with probability at least

1− d ·
[

e−δ

(1− δ)1−δ

]ck/d
.

Proof. This is an immediate corollary of Matrix Chernoff bounds [Tro12]. By Claim 2.7

the above event is equivalent to that λ1

(
1
k

∑k
i=1 hih

T
i

)
≥ (1 − δ) c

d
. By assumption,

λ1
(

1
m

∑m
i=1 hih

T
i

)
≥ c

d
. Now, by the Matrix Chernoff bound, for any δ ∈ [0, 1] it holds

that

Pr

[
λ1

(
1

k

k∑
i=1

hih
T
i

)
≤ (1− δ) · c

d

]
≤ d ·

[
e−δ

(1− δ)1−δ

]ck/d
.

We will use two instantiations of Claim 2.9: (i) c ≥ 3/4, and (1 − δ)c = 1/2, and (ii)
c = 1 and (1− δ)c = 3/4. In both cases the bound simplifies to

1− d ·
(

99

100

)k/d
. (1)

3 Proof of main theorem

Let H ⊂ Rd. We prove Theorem 1.1 in four steps:

1. First, we assume that H is in general position. In this case, we construct a random-
ized generalized comparison LDT which computes AH(·), whose expected depth is
O(d3 log d log |H|) for any input. This is achieved in Section 3.1, see Lemma 3.1.

2. Next, we derandomize the construction. This gives for any H in general position a
(deterministic) generalized comparison LDT which computes AH(·), whose depth is
O(d4 log d log |H|). This is achieved in Section 3.2, see Lemma 3.9.

3. In the next step, we handle an arbitrary H (not necessarily in general position),
and construct by a compactness argument a generalized comparisons LDT of depth
O(d4 log d log |H|) which computes it almost everywhere. This is achieved in Sec-
tion 3.3, see Lemma 3.14.

4. Finally, we show that any LDT which computes AH(·) almost everywhere can be
“fixed” to a LDT which computes AH(·) everywhere. This fixing procedure maintains
both the depth of the LDT, as well as the set of queries performed by it. This is
achieved in Section 3.4, see Lemma 3.15.
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3.1 A randomized LDT for H in general position

In this section we construct a randomized generalized comparison LDT for H in general
position. Here, by a randomized LDT we mean a distribution over (deterministic) LDT
which compute AH(·). The corresponding complexity measure is the expected number of
queries it makes, for the worst-case input x.

Lemma 3.1. Let H ⊆ Rd be a finite set in general position. Then there exists a randomized
LDT that computes AH(·), which makes O (d3 log d log|H|) generalized comparison queries
on expectation, for any input.

The proof of Lemma 3.1 is based on a variant of the margin-based analysis of the inference
dimension with respect to comparison queries as in [KLMZ17] (The analysis in [KLMZ17]
assumed that all vectors have large margin, where here we need to work under the weaker
assumption that only a noticeable fraction of the vectors have large margin). The crux of
the proof relies on scaling every h ∈ H by a carefully chosen scalar αh such that drawing
a sufficiently large random subset of H, and sorting the values 〈αhh, x〉 using comparison
queries (which correspond to generalized comparisons on the h’s) allows to infer, on aver-
age, at least Ω(1/d) of the labels of H. The scalars αh are derived via Forster’s theorem
(Theorem 2.6). More specifically, αh = 1

‖Th‖2 , where T is a Forster transformation for H.

9



Randomized generalized-comparisons tree for H in general position

Let H ⊆ Rd in general position.

Input: x ∈ Rd, given by oracle access for sign(〈·, x〉)
Output: AH(x) = (sign(〈h, x〉))h∈H

(1) Initialize: H0 = H, i = 0, v(h) =? for all h ∈ H. Set k = Θ(d2 log(d)).

(2) Repeat while |Hi| ≥ k:

(2.1) Let Ti be the Forster transformation for Hi. Define H ′i =
{

h
‖Tih‖2 : h ∈ Hi

}
.

(2.2) Sample uniformly Si ⊂ H ′i of size |Si| = k.

(2.3) Query sign(〈h, x〉) for h ∈ Si (using label queries).

(2.4) Sort 〈h, x〉 and 〈−h, x〉 for h ∈ Si (using generalized comparison queries).

(2.5) For all h ∈ Hi, check if h ∈ InferComp(±Si;x), and in case it is, set v(h) ∈
{−, 0,+} to be the inferred value of h.

(2.6) Remove all h ∈ Hi for which sign (〈h, x〉) was inferred, set Hi+1 to be the
resulting set and go to step (2).

(3) Query sign(〈h, x〉) for all h ∈ Hi, and set v(h) accordingly.

(4) Return v as the value of AH(x).

In order to understand the intuition behind the main iteration (2) of the algorithm,
define x′ = (T−1i )Tx and for each h ∈ Hi let h′ = Tih

‖Tih‖ . Then sign(〈h, x〉) = sign(〈h′, x′〉),
and so it suffices to infer the sign for many h′ ∈ Hi with respect to x′. The main benefit
is that we may assume in the analysis that the set of vectors H ′i is in isotropic position;
and reduce the analysis to that of using (standard) comparisons on H ′i and x′. These then
translate to performing generalized comparison queries on Hi and the original input x. The
following lemma captures the analysis of the main iteration of the algorithm. Below, we
denote by ±S := S ∪ (−S).

Lemma 3.2. Let x ∈ Rd, let H ⊆ Rd be a finite set of unit vectors in c-approximate isotropic
position with c ≥ 3/4, and let S ⊂ H be a uniformly chosen subset of size k = Ω (d2 log d).
Then

ES [|InferComp(±S;x) ∩H|] ≥ |H|
40d

.

Note that this proves a stronger statement than needed for Lemma 3.1. Indeed, it would
suffice to consider only H that is in (a complete) isotropic position. This stronger version
will be used in the next section for derandomizing the above algorithm. Let us first argue
how Lemma 3.1 follows from Lemma 3.2, and then proceed to prove Lemma 3.2.
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Proof of Lemma 3.1 given Lemma 3.2. By Lemma 3.2, in each iteration (2) of the algorithm,
we infer on expectation at least Ω(1/d) fraction of the h ∈ H ′i with respect to x′ = T−1i x.
By the discussion above, this is the same as inferring an Ω(1/d) fraction of the hi ∈ Hi

with respect to x. So, the total expected number of iterations needed is O(d log |H|). Next,
we calculate the number of linear queries performed at each iteration. The number of label
queries is O(k) and the number of comparison queries on H ′i (which translate to generalized
comparison queries on Hi) is O(k log k) if we use merge-sort, and can be improved to O(k+
d log k) by using Fredman’s sorting algorithm [Fre76]. So, in each iteration we perform
O(d2 log d) queries, and the expected number of iterations is O(d log |H|). So the expected
total number of queries by the algorithm is O(d3 log d log |H|).

From now on, we focus on proving Lemma 3.2. To this end, we assume from now that
H ⊂ Rd is in c-isotropic position for c ≥ 3/4. Note that h is inferred from comparisons on
±S if and only if −h is, and that replacing an element of S with its negation does not affect
±S. Therefore, negating elements of H does not change the expected number of elements
inferred from comparisons on ±S. Therefore, we may assume in the analysis that 〈h, x〉 ≥ 0
for all h ∈ H. Under this assumption, we will show that

ES [|InferComp(S;x) ∩H|] ≥ |H|
40d

.

It is convenient to analyze the following procedure for sampling S:

• Sample h1, . . . hk+1 random points in H, and r ∈ [k + 1] uniformly at random.

• Set S = {hj : j ∈ [k + 1] \ {r}}.

We will analyze the probability that comparisons on S infer hr at x. Our proof relies on the
following observation.

Observation 3.3. The probability, according to the above process, that hr ∈ InferComp(S;x)
is equal to the expected fraction of h ∈ H whose label is inferred. That is,

Pr [hr ∈ InferComp(S;x)] = E
[
|InferComp(S;x) ∩H|

|H|

]
.

Thus, it suffices to show that Pr [hr ∈ InferComp(S;x)] ≥ 1/40d. This is achieved
by the next two propositions as follows. Proposition 3.4 shows that S is in a (1/2)-
approximate isotropic position with probability at least 1/2, and Proposition 3.5 shows
that whenever S is in (1/2)-approximate isotropic position then hr ∈ InferComp(S;x)
with probability at least 1/20d. Combining these two propositions together yields that
Pr [hr ∈ InferComp(S;x)] ≥ 1/40d and finishes the proof of Lemma 3.2.

Proposition 3.4. Let H ⊂ Rd be a set of unit vectors in c-approximate isotropic position
for c ≥ 3/4. Let S ⊂ H be a uniformly sampled subset of size |S| ≥ Ω(d log d). Then S is in
(1/2)-approximate isotropic position with probability at least 1/2.
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Proof. The proof follows from Claim 2.9 by plugging k = Ω(d log d) in Equation (1) and
calculating that the bound on the right hand side becomes at least 1/2.

Proposition 3.5. Let x ∈ Rd, S ⊂ Rd be in (1/2)-approximate isotropic position, where
|S| ≥ Ω (d2 log d). Let h ∈ S be sampled uniformly. Then

Pr
h∈S

[h ∈ InferComp (S \ {h};x)] ≥ 1

20d
.

Proof. We may assume that x is a unit vector, namely ‖x‖2 = 1. Let s = |S| and assume
that S = {h1, . . . , hs} with

〈h1, x〉 ≥ 〈h2, x〉 ≥ . . . ≥ 〈hs, x〉 ≥ 0.

Set ε = 1
2
√
d
. As S is in (1/2)-approximate isotropic position, Claim 2.8 gives that 〈hi, x〉 ≥ ε

for at least |S|/4d many hi ∈ S. Set t = |S|/8d and define

T = {h1, . . . , ht},

where by out assumption 〈ht, x〉 ≥ ε. Note that in this case, we can compute T from
comparison queries on S. We will show that

Pr
h∈T

[h ∈ InferComp (S \ {h};x)] ≥ 1

2
,

from which the proposition follows. This in turn follows by the following two claims, whose
proof we present shortly.

Claim 3.6. Let ha ∈ T . Assume that there exists a non-negative linear combination v of
{hi − hi+1 : i = 1, . . . , a− 2} such that

‖ha − (h1 + v)‖2 ≤ ε/4.

Then ha ∈ InferComp (S \ {ha};x).

Claim 3.7. The assumption of Claim 3.6 holds for at least half the vectors in T .

Clearly, Claim 3.6 and Claim 3.7 together imply that for at least half of ha ∈ T , it holds
that ha ∈ InferComp (S \ {ha};x). This concludes the proof of the proposition.

Next we prove Claim 3.6 and Claim 3.7.

Proof of Claim 3.6. Let S ′ = S \ {ha} and T ′ = T \ {ha}. As S is in (1/2)-approximate
isotropic position then S ′ is in c-approximate isotropic position for c = 1/2 − d/|S|. In
particular, as |S| ≥ 4d we have c ≥ 1/4. By applying comparison queries to S ′ we can
sort {〈hi, x〉 : hi ∈ S ′}. Then T ′ can be computed as the set of the t − 1 elements with
the largest inner product. Claim 2.8 applied to S ′ then implies that 〈hi, x〉 ≥ ε/2 for all
hi ∈ T ′. Crucially, we can deduce this just from the comparison queries on S ′, together with
our initial assumption that S is in (1/2)-approximate isotropic position. Thus we deduced
from our queries that:
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• 〈h1, x〉 ≥ ε/2.

• 〈v, x〉 ≥ 0.

In addition, from our assumption it follows that |〈ha − (h1 + v), x〉| ≤ ε/4. These together
infer that 〈ha, x〉 > 0.

The proof of Claim 3.7 follows from the applying the following claim iteratively. We note
that this claim appears in [KLMZ17] implicitly, but we repeat it here for clarity.

Claim 3.8. Let h1, . . . , ht ∈ Rd be unit vectors. For any ε > 0, if t ≥ 16d ln(2d/ε) then
there exist a ∈ [t] and α1, . . . , αa−2 ∈ {0, 1, 2} such that

ha = h1 +
i−2∑
j=1

αj(hj+1 − hj) + e,

where ‖e‖2 ≤ ε.

In order to derive Claim 3.7 from Claim 3.8, we assume that |T | ≥ 32d ln((2d)/(ε/4)) =
Ω(d log d). Then we can apply Claim 3.8 iteratively |T |/2 times with parameter ε/4, at each
step identify the required ha, remove it from T and continue. Next we prove Claim 3.8.

Proof of Claim 3.8. Let B := {h ∈ Rd : ‖h‖2 ≤ 1} denote the Euclidean ball of radius 1,
and let C denote the convex hull of {h2 − h1, . . . , ht − ht−1}. Observe that C ⊂ 2B, as each
hi is a unit vector. For β ∈ {0, 1}t−1 define

hβ =
∑

βj(hj+1 − hj).

We claim that having t ≥ 16d ln(2d/ε) guarantees that there exist distinct β′, β′′ for which

hβ′ − hβ′′ ∈ ε

4
(C − C).

This follows by a packing argument: if not, then the sets hβ + ε
4
C for β ∈ {0, 1}t−1 are

mutually disjoint. Each has volume (ε/4)dvol(C), and they are all contained in tC which
has volume tdvol(C). As the number of distinct β is 2t−1 we obtain that 2t−1(ε/4)d ≤ td,
which contradicts our assumption on t.

Let i ∈ [t] be maximal such that β′i−1 6= β′′i−1. We may assume without loss of generality
that β′i−1 = 0, β′′i−1 = 1, as otherwise we can swap the roles of β′ and β′′. Thus we have

i−1∑
j=1

(β′j − β′′j )(hj+1 − hj) ∈
ε

4
(C − C) ⊂ εB.

Adding hi − h1 =
∑i−1

j=1(hj+1 − hj) to both sides gives

i−1∑
j=1

(β′j − β′′j + 1)(hj+1 − hj) ∈ hi − h1 + εB,
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which is equivalent to

hi − h1 ∈
i−1∑
j=1

(β′j − β′′j + 1)(hj+1 − hj) + εB.

The claim follows by setting αj = β′j − β′′j + 1 and noting that by our construction αi−1 = 0,
and hence the sum terminates at i− 2.

3.2 A deterministic LDT for H in general position

In this section, we derandomize the algorithm from the previous section. We still assume
that H is in general position, this assumption will be removed in the next sections.

Lemma 3.9. Let H ⊆ Rd be a finite set in general position. Then there exists an LDT that
computes AH(·) with O (d4 log d log|H|) generalized comparison queries.

Note that the this bound is worse by a factor of d than the one in Lemma 3.1. In Open
problem 2 we ask whether this loss is necessary, or whether it can be avoided by a different
derandomization technique.

Lemma 3.9 follows by derandomizing the algorithm from Lemma 3.1. Recall that
Lemma 3.1 boils down to showing that h ∈ InferComp(Si;x) for an Ω(1/d) fraction of h ∈ Hi

on average. In other words, for every input vector x, most of the subsets Si ⊆ H ′i of size
Ω(d2 log d) allow to infer from comparisons the labels of some Ω(1/d)-fraction of the points
in Hi. We derandomize this step by showing that there exists a universal set Si ⊆ H ′i of size
O(d3 log d) that allows to infer the labels of some Ω(1/d)-fraction of the points in Hi, with
respect to any x. This is achieved by the next lemma.

Lemma 3.10. Let H ⊆ Rd be a set of unit vectors in isotropic position. Then there ex-
ists S ⊆ H of size O(d3 log d) such that(

∀x ∈ Rd
)

: |InferComp(S;x) ∩H| ≥ |H|
100d

.

Proof. We use a variant of the double-sampling argument due to [VC71] to show that a
random S ⊆ H of size s = O(d3 log d) satisfies the requirements. Let S = {h1, . . . , hs} be a
random (multi-)subset of size s, and let E = E(S) denote the event

E(S) :=
[
∃x ∈ Rd : |InferComp(S;x) ∩H| < |H|/100d

]
.

Our goal is showing that Pr[E] < 1. To this end we introduce an auxiliary event F . Let
t = Θ(d2 log d), and let T = {h1, . . . , ht} ⊆ S be a subsample of S, where each hi is drawn
uniformly from S and independently of the others. Define F = F (S, T ) to be the event

F (S, T ) :=
[
∃x ∈ Rd : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d
]
.

The following claims conclude the proof of Lemma 3.10.
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Claim 3.11. If Pr[E] ≥ 9/10 then Pr[F ] ≥ 1/200d.

Claim 3.12. Pr[F ] ≤ 1/250d.

This concludes the proof, as it shows that Pr[E] < 9/10. We next move to prove
Claim 3.11 and Claim 3.12.

Proof of Claim 3.11. Assume that Pr[E] ≥ 9/10. Define another auxiliary event G = G(S)
as

G(S) := [S is in (3/4)-approximate isotropic position] .

Applying Claim 2.9 by plugging m ≥ 100d ln(10d) in Equation (1) gives that Pr[G] ≥ 9/10,
which implies that Pr[E ∧G] ≥ 8/10. Next, we analyze Pr[F |E ∧G].

To this end, fix S such that both E(S) and G(S) hold. That is: S is in (3/4)-approximate
isotropic position, and there exists x = x(S) ∈ Rd such that |InferComp(S;x) ∩ H| <
|H|/100d. If we now sample T ⊂ S, in order for F (S, T ) to hold, we need that (i)
|InferComp(T ;x) ∩H| < |H|/100d , which holds with probability one, as |InferComp(S;x) ∩
H| < |H|/100d; and (ii) that |InferComp(T ;x) ∩ S| ≥ |S|/50d. So, we analyze this event
next.

Applying Lemma 3.2 to the subsample T with respect to S gives that

ET [|InferComp(T ;x) ∩ S|] ≥ |S|/40d.

This then implies that

Pr [|InferComp(T ;x) ∩ S| ≥ |S|/100d] ≥ 1/100d.

To conclude: we proved under the assumptions of the lemma that PrS[E(S) ∧ G(S)] ≥
8/10; and that for every S which satisfies E(S)∧G(S) it holds that PrT [F (S, T )|S] ≥ 1/100d.
Together these give that Pr[F (S, T )] ≥ 1/200d.

Proof of Claim 3.12. We can model the choice of (S, T ) as first sampling T ⊂ H of size t,
and then sampling S \T ⊂ H of size s− t. We will prove the following (stronger) statement:
for any choice of T ,

Pr [F (S, T )|T ] < 1/250d.

So from now on, fix T and consider the random choice of T ′ = S \T . We want to show that:

Pr
T ′

[
(∃x ∈ Rd) : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1/250d.

We would like to prove this statement by applying a union bound over all x ∈ Rd. However,
Rd is an infinite set and therefore a naive union seems problematic. To this end we introduce
a suitable equivalence relation that is based on the following observation.

Observation 3.13. InferComp(T ;x) is determined by sign(〈h, x〉) for h ∈ T ∪ (T − T ).
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We thus define an equivalence relation on Rd where x ∼ y if and only if sign(〈h, x〉) =
sign(〈h, y〉) for all h ∈ T ∪ (T −T ). Let C be a set of representatives for this relation. Thus,
it suffices to show that

Pr
T ′

[
(∃x ∈ C) : |InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1/250d.

Since C is finite, a union bound is now applicable. Sepcifically, it is enough to show that

(∀x ∈ C) : Pr
T ′

[
|InferComp(T ;x) ∩H| < |H|/100d and

|InferComp(T ;x) ∩ S| ≥ |S|/50d.
]
≤ 1

250d|C|
.

Now, (a variant of) Sauer’s Lemma (see e.g. Lemma 2.1 in [KLM17]) implies that

|C| ≤ (2e · |T ∪ (T − T )|)d ≤
(
2e · t2

)d ≤ (20t)2d. (2)

Fix x ∈ C. If |InferComp(T ;x) ∩H| ≥ |H|
100d

then we are done (note that InferComp(T ;x)
is fixed since it depends only on T and x and not on T ′). So, we may assume that

|InferComp(T ;x) ∩H| < |H|
100d

. Then we need to bound

Pr

[
|InferComp(T ;x) ∩ S| ≥ |S|

50d

]
≤ Pr

[
|InferComp(T ;x) ∩ T ′| ≥ |T

′|
75d

]
,

where the inequality follows if t ≤ s
150d

, which can be satisfied since t = Θ(d2 log d) and s =

Θ(d3 log d). To bound this probability we use the Chernoff bound: let p = |InferComp(T ;x)∩H|
|H| ;

note that |InferComp(T ;x) ∩ T ′| is distributed like Bin(s − t, p). By assumption, p ≤ 1
100d

,
and therefore:

Pr

[
|InferComp(T ;x) ∩ T ′| ≥ |T

′|
75d

]
≤ exp

(
−(1/3)2 · (t/100d)

3

)
≤ 1

250d · (20t)2d
≤ 1

250d · |C|
,

where the second inequality follows because t = Θ(d2 ln(d)) with a large enough constant,
and the last inequality follows by Section 3.2.

3.3 An LDT for every H that is correct almost everywhere

In the next two sections we extend the generalized comparison decision tree to arbitrary
sets H. Let H ⊆ Rd be an arbitrary finite set (not necessarily in a general position). The
first step is to use a compactness argument to derive a decision tree that computes AH(x)
for almost every x in the following sense. Recall that a linear decision tree T computes
the function x → sign (〈h, x〉) almost everywhere if this function is constant on every full
dimensional leaf of T .
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Lemma 3.14. Let H ⊆ Rd be a finite set. Then there exists a generalized comparison LDT
of depth O (d4 log d log|H|) that computes AH(·) almost everywhere.

Proof. If H is in general position then this follows from Lemma 3.9. So, assume that H is not
in general position. For every n ∈ N, pick Hn ⊂ Rd with |Hn| = |H| in general position such
that for every h ∈ H there exists hn = hn(h) ∈ Hn with ‖h−hn‖2 ≤ 1/n. By Lemma 3.9 each
Hn has a generalized comparisons tree Tn of depth D = O (d4 log d log|H|) that computes
AHn(·). A standard compactness1 argument imply the existence of a sequence of isomorphic
trees {Tnk

}∞k=1, such that for every vertex v, the sequence of the Hnk
-generalized comparisons

queries corresponding to v converges to an H-generalized comparison query. Let T∞ denote
the limit tree. One can verify that T∞ satisfies the following property:

C∞(`) ⊆
∞⋃
j=1

∞⋂
k=j

Cnk
(`), for every full dimensional leaf ` of T∞. (3)

In words, every x ∈ C∞(`) belongs to all except finitely many of the Cnk
(`). We claim that

Equation (3) implies that T∞ computes sign(〈h, ·〉) almost everywhere, for every h ∈ H.
Indeed, let ` be a full dimensional leaf of T∞, and let x′, x′′ ∈ C∞(`). Assume towards con-
tradiction that sign(〈h, x′〉) 6= sign(〈h, x′′〉) for some h ∈ H. By Corollary 2.3 we may assume
that sign(〈h, x′〉) = −1 and sign(〈h, x′′〉) = +1. By Equation (3), both x′, x′′ belong to all but
finitely many of the Cnk

(`). Moreover, since sign(〈h, x′〉), sign(〈h, x′′〉) 6= 0 and hnk
(h)→k→∞

h it follows that sign(〈h, x′〉) = sign(〈hnk
(h), x′〉), and sign(〈h, x′′〉) = sign(〈hnk

(h), x′′〉) for
all but finitely many k’s. Thus, for such k’s the function sign(〈hnk

, ·〉) is not constant on
Cnk

(`), which contradicts the assumption that Tnk
computes sign(〈hnk

, ·〉).

3.4 An LDT for every H

In this section we derive the final generalized comparison decision tree for arbitrary H, which
implies Theorem 1.1. This is achieved by the next lemma that derives the final tree from
the one in Lemma 3.14.

Lemma 3.15. For every LDT T there exists an LDT T ′ such that

• T ′ uses the same queries as T and has the same depth as T .

• For every h ∈ Rd, if T computes sign(〈h, ·〉) almost everywhere then T ′ computes
sign(〈h, ·〉) everywhere.

Proof. Without loss of generality, we may assume that T is not redundant, in the sense that
each query in it is informative. Namely, that C(u) 6= ∅ for every vertex u ∈ T .

1For the compactness argument to carry, each generalized comparison query is normalized so that its
coefficient α, β are bounded, e.g. α+ β = 1
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Derivation of T ′. Given an input point x, follow the corresponding computation path in T
with the following modification: once a vertex v whose query q = q(v) satisfies sign(〈q, x〉) =
0 is reached, define in T ′ a new child of v that corresponds to this case, and continue following
the same queries like in the subtree of T that corresponds to the case “sign(〈q, x〉) = +”.

Correctness. We prove that T ′ computes sign(〈h, ·〉) everywhere. Consider a leaf ` in T ′,
and let x′, x′′ ∈ C(`). Assume toward contradiction that sign(〈h, x′〉) 6= sign(〈h, x′′〉). By
Corollary 2.3 we may assume that sign(〈h, x′〉) = −1 and sign(〈h, x′′〉) = +1. Let q1, . . . , qr
denote the queries on the path towards ` whose query is replied by 0. Since T is not
redundant, it follows that the qi’s are linearly independent. Thus, there is a solution z to
the system 〈qi, z〉 = +1 for 1 ≤ i ≤ r. Let y′ = x′ + ε · z and y′′ = x′′ + ε · z where ε > 0 is
sufficiently small such that

(i) sign(〈h, x′〉) = −1 and sign(〈h, x′′〉) = +1, and

(ii) sign(〈q, y′〉) = sign(〈q, x′〉) = sign(〈q, x′′〉) = sign(〈q, y′′〉) for every query q on the path
towards ` whose sign query is replied by a ±1.

Thus, by (ii) above and since ε > 0 it follows that y′, y′′ belong to the same full dimen-
sional leaf of T . However, (i) above implies that the function x 7→ sign(〈h, x〉) is not constant
on this leaf, which contradicts the assumption on T .
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