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Abstract

We initiate the study of Boolean function analysis on high-dimensional expanders. We describe an
analog of the Fourier expansion and of the Fourier levels on simplicial complexes, and generalize the
FKN theorem to high-dimensional expanders.

Our results demonstrate that a high-dimensional expanding complex X can sometimes serve as a
sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean
function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a
derandomization of the Boolean slice, containing |X(k)| = O(n) points in comparison to ( n

k+1) points
in the (k + 1)-slice (which consists of all n-bit strings with exactly k + 1 ones).

1 Introduction

Boolean function analysis is an essential tool in theory of computation. Traditionally, it studies func-
tions on the Boolean cube {−1, 1}n. Recently, the scope of Boolean function analysis has extended fur-
ther, encompassing groups [EFF15b, EFF15a, Pla15, EFF17], association schemes [OW13, Fil16a, Fil16b,
FM16, FKMW16, DKK+18a, KMS18], error-correcting codes [BGH+15], and quantum Boolean func-
tions [MO10]. Boolean function analysis on extended domains has led to progress in learning the-
ory [OW13] and on the unique games conjecture [DKK+18b, KMS17, BKS18, KMS18].

Another essential tool in theory of computation is expander graphs. Recently, high-dimensional ex-
panders, originally constructed by Lubotzky et al. [LSV05b, LSV05a], have been introduced into theory
of computation, with applications to property testing [DK17] and lattices [KM18]. Just as expander
graphs are sparse models of the complete graph, so are high-dimensional expanders sparse models of
the complete hypergraph, and hence can be used both for derandomization and to improve constructions
of objects such as PCPs. The goal of this work is to connect these two threads of research, introducing Boolean
function analysis on high-dimensional expanders.

We study Boolean functions on simplicial complexes. A pure d-dimensional simplicial complex X
is a set system consisting of an arbitrary collection of sets of size d + 1 together with all their subsets.
The sets in a simplicial complex are called faces, and it is standard to denote by X(i) the faces of X
whose cardinality is i + 1. Our simplicial complexes are weighted by a probability distribution Πd on
the top-level faces, which induces in a natural way probability distributions Πi on X(i) for all i. Our
main object of study is the space of functions f : X(d) → R (which are often called R-cochains), and in
particular, Boolean functions f : X(d)→ {0, 1}.

While much of our work applies to arbitrary complexes, our goal is to study complexes which are
high-dimensional expanders. There are several different non-equivalent ways to define high-dimensional
expanders, generalizing various properties of expander graphs. The notion most appropriate to us is
the two-sided1 spectral definition of high-dimensional expanders, due to Dinur and Kaufman [DK17],
who also show how to construct such complexes using the Ramanujan complexes of Lubotzky, Samuels
and Vishne [LSV05b, LSV05a].
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There are several works on random walks on high dimensional expanders which naturally lead
to analyzing both real-valued and Boolean valued functions on X(d), for example see [KM18, DK17,
KO17]. The most related work is by Kaufman and Oppenheim [KO17], which we discuss in Section 4.3.

Every function on the Boolean cube {−1, 1}n has a unique representation as a multilinear poly-
nomial, known as its Fourier expansion. The multilinear monomials can be partitioned into “levels”
according to their degree, and this corresponds to an orthogonal decomposition of a function into a
sum of its homogeneous parts, f = ∑

deg f
i=0 f=i, a decomposition which is a basic concept in Boolean

function analysis.
These concepts have known counterparts for the complete complex, which consists of all subsets of

[n] size at most d + 1, where d + 1 ≤ n/2. The facets (top-level faces) of this complex comprise the slice
(as it is known for computer scientists) or the Johnson scheme (as it is known for coding theorists), whose
spectral theory has been elucidated by Dunkl [Dun76]. For |t| ≤ d + 1, let yt(s) = 1 iff t ⊆ s (these are
the analogs of monomials). Every function on the complete complex has a unique representation as a
linear combination of monomials ∑t f̃ (t)yt (of various degrees) satisfying the harmonicity condition: for
all i ≤ d and all t ∈ X(i),

∑
a∈[n]\t

f̃ (t ∪ {a}) = 0.

(If we identify yt with the product ∏i∈t xi of “variables” xi, then harmonicity of a multilinear polyno-
mial P translates to the condition ∑n

i=1
∂P
∂xi

= 0.) As in the case of the Boolean cube, this unique repre-
sentation allows us to orthogonally decompose a function into its homogeneous parts (corresponding
to the contribution of monomials yt with fixed |t|), which plays the same essential part in the com-
plete complex as its counterpart does in the Boolean cube. Moreover, this unique representation allows
extending a function from the “slice” to the Boolean cube (which can be viewed as a superset of the
“slice”), thus implying further results such as invariance principle [FKMW16, FM16].

We generalize these concepts for complexes satisfying a technical condition we call properness, which
is satisfied by both the complete complex as well as high-dimensional expanders. We show that the re-
sults on unique decomposition for the complete complex hold for arbitrary proper complexes, with a
generalized definition of harmonicity which incorporates the distributions Πi. In contrast to the case of
the complete complex (and the Boolean cube), the homogeneous parts are only approximately orthog-
onal.

The homogeneous components in our decomposition are “approximate eigenfunctions” of the Lapla-
cian, and this allows us to derive an approximate identity relating the total influence (defined through
the Laplacian) to the norms of the components in our decomposition, in complete analogy to the same
identity in the Boolean cube (expressing the total influence in terms of the Fourier expansion). All of
this is summarized in Theorem 4.1.

As a demonstration of the power of this setup, we generalize the fundamental result of Friedgut,
Kalai, and Naor [FKN02] on Boolean functions almost of degree 1. We view this as a first step toward
developing a full-fledged theory of Boolean functions on high-dimensional expanders. An easy exercise
shows that a Boolean degree 1 function on the Boolean cube is a dictator, that is, depends on at most
one coordinate; we call this the exact FKN theorem. The FKN theorem states that a Boolean function on
the Boolean cube which is close to a degree 1 function is in fact close to a dictator, where closeness is
measured in L2.

The exact FKN theorem holds for the complete complex as well. Recently, the second author [Fil16a]
extended the FKN result to the complete complex. Surprisingly, the class of approximating functions
has to be extended beyond just dictators.

We prove an exact FKN theorem for arbitrary proper complexes, and an FKN theorem for high-
dimensional expanders. In contrast to the complete complex, Boolean degree 1 functions on arbitrary
complexes correspond to independent sets rather than just single points, and this makes the proof of
the exact FKN theorem non-trivial. Our proof of the FKN theorem for high-dimensional expanders is
very different from existing proofs. It follows the same general plan as our recent work on the biased
Kindler–Safra theorem [DFH17]. The idea is to view a high-dimensional expander as a convex com-
bination of small sub-complexes, each of which is isomorphic to the complete k-dimensional complex
on O(k) vertices. We can apply the known FKN theorem separately on each of these, and deduce that
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our function is approximately well structured on each sub-complex. Finally, we apply the agreement
theorem of Dinur and Kaufman [DK17] to show that the same thing is true on a global level.

1.1 Results

We have the following unique decomposition into approximate eigenfunctions:

Theorem 1.1. Let X be a d-dimensional expander. Every function f : X(`) → R for ` ≤ d, can be written
uniquely as f = f−1 + · · ·+ f` such that:

• fi is a linear combination of the functions ys(t) = [t ⊇ s] for s ∈ X(i).

• Interpreted as a function on X(i), fi lies in the kernel of the “Down” operator.

• ‖ f ‖2 ≈ ‖ f−1‖2 + · · ·+ ‖ f`‖2.

• If ` < k then 〈DU f , f 〉 ≈ ∑`
i=−1

`−i+1
`+2 ‖ fi‖2.

Here are our exact and approximate FKN theorems:

Theorem 1.2. Let X be a d-dimensional expander. If f : X(d) → {0, 1} has degree 1, then f is the indicator of
either intersecting or not intersecting an independent set of X.

Theorem 1.3. Let X be a d-dimensional expander. If F : X(d)→ {0, 1} is ε-close (in L2
2) to a degree-1 function

then there exists a degree-1 function g on X(d) such that Pr[F 6= g] = O(ε).

Paper organization

We describe our general setup in Section 2. We describe the property of properness and its implica-
tions — a unique representation theorem and decomposition of functions into homogeneous parts —
in Section 3, discussing the issue of orthogonality of the homogeneous parts in Section 4. Theorem 4.1
summarizes these results. We discuss high-dimensional expanders from our perspective in Section 5.
We prove our exact FKN theorem in Section 6, and our FKN theorem in Section 7.

Theorem 1.1 is a combination of Theorem 3.2 (first two items), Theorem 4.1 (other two items),
Lemma 4.7 (calculation of the coefficients in the last item) and Theorem 5.1 (showing that high-dimensional
expanders satisfy the prerequisites of the preceding results). Theorem 1.2 is a restatement of Theo-
rem 6.1. Theorem 1.3 is a restatement of Theorem 7.3.

2 Basic setup

A d-dimensional complex X is a non-empty collection of sets of size at most d + 1. We call a set of
size i + 1 an i-dimensional face (or i-face for short), and denote the collection of all i-faces by X(i). A
d-dimensional complex X is pure if every i-face is a subset of some d-face. We will only be interested in
pure complexes.

Let X be a pure d-dimensional complex. Given a probability distribution Πd on its top-dimensional
faces X(d), for each i < d we define a distribution Πi on the i-faces using the following experiment:
choose a top-dimensional face according to Πd, and remove d− i points at random. We can couple all
of these distributions to a random vector ~Π = (Πd, . . . , Π−1) of which the individual distributions are
marginals.

Let Ci = { f : X(i)→ R} be the space of functions on X(i). It is convenient to define X(−1) := {∅},
and we also let C−1 = R. We turn Ci to an inner product space by defining 〈 f , g〉 := EΠi [ f g] and the
associated norm ‖ f ‖2 := EΠd [ f 2].

For −1 ≤ i < d, we define the Up operator Ui : Ci → Ci+1 as follows:

Uig(s) :=
1

i + 2 ∑
x∈s

g(s \ {x}) = E
t⊂s

[g(t)] ,

where t is obtained from s by removing a random element. Note that if s ∼ Πi+1 then t ∼ Πi.
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Similarly, we define the Down operator Di+1 : Ci+1 → Ci for −1 ≤ i < d as follows:

Di+1 f (t) :=
1

(i + 2) ·Πi(t)
∑

x/∈t : t∪{x}∈X(i+1)
Πi+1(t ∪ {x}) · f (t ∪ {x}) = E

s⊃t
[ f (s)] ,

where s is obtained from t by conditioning the vector ~Π on Πit and taking the (i + 1)th component.
The operators Ui, Di+1 are adjoint to each other. Indeed, if f ∈ Ci+1 and g ∈ Ci then

〈g, Di+1 f 〉 = E
(t,s)∼(Πi ,Πi+1)

[g(t) f (s)] = 〈Uig, f 〉 .

When the domain is understood, we will use U, D instead of Ui, Di+1.
The function ys is the indicator function of containing s. Our definition of the Up operator guaran-

tees the correctness of the following lemma.

Lemma 2.1. Let s ∈ X(i). We can think of ys as a function in Cj for all j ≥ i. Using this convention,
Ujys = (1− i+1

j+2 )ys.

Proof. Direct calculation shows that

(Ujys)(t) =
1

j + 2 ∑
x∈t

ys(t \ {x}) =
|t| − |s|

j + 2
ys(t) ,

and so Ujys = (1− i+1
j+2 )ys.

For 0 ≤ i ≤ k, the space of harmonic functions on X(i) is

Hi := ker Di = { f ∈ Ci : Di f = 0} .

We also define H−1 = C−1. We are interested in decomposing Ck, so let us define for each −1 ≤ i ≤ k,

Vi := Uk−i Hi = {Uk−i f : f ∈ Hi} .

We can describe Vi, a sub-class of functions of ck, in more concrete terms.

Lemma 2.2. Every function h ∈ Vi has a unique representation of the form

h = ∑
s∈X(i)

h̃(s)ys ,

where the coefficients h̃(s) satisfy the following harmonicity condition: for all t ∈ X(i− 1),

∑
s⊃t

Πi(s)h̃(s) = 0 .

Proof. First, let us show that every function of the form given above is in Vi. Lemma 2.1 shows that
a function h is of the form ∑s∈X(i) h̃(s)ys where h̃ satisfies the harmonicity condition if and only if
h = Uk−ir, where r ∈ Ci is of similar form r = ∑s∈X(i) r̃(s)ys, where r̃ satisfies the harmonicity condition.
In fact, it is easy to see that r = r̃, and so the fact that r ∈ Hi follows directly from the definition of the
Down operator.

We have shown above that if h = Uk−ir then the coefficients h̃ are a constant multiple of the values
of r, hence this representation is also unique.

3 Decomposition of the space Ck and a convenient basis

We can now state our decomposition theorem.

Definition 3.1. A k-dimensional complex is proper if it is pure and ker Ui is trivial for −1 ≤ i ≤ k− 1.
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Theorem 3.2. If X is a proper k-dimensional complex then we have the following decomposition of Ck:

Ck = Vk + Vk−1 + · · ·+ V−1 .

In other words, for every function f ∈ Ck there is a unique choice of hi ∈ Hi such that the functions fi = Uk−ihi
satisfy f = f−1 + f0 + . . . + fk.

Proof. We first prove by induction that every function f ∈ C` has a representation f = ∑`
i=−1 U`−ihi,

where hi ∈ Hi. This trivially holds when ` = −1. Suppose now that the claim holds for some ` < k,
and let f ∈ C`+1. Since D`+1 : C`+1 → C` is a linear operator, we have C`+1 = ker D`+1 + im D∗`+1 =

ker D`+1 + im U`, and therefore we can write f = h`+1 +Ug, where h`+1 ∈ H`+1 and g ∈ C`. Applying
induction, we get that g = ∑`

i=−1 U`−ihi, where hi ∈ Hi. Substituting this in f = h`+1 + Ug completes
the proof.

It remains to show that the representation is unique. Since ker Ui−1 = ker D∗i is trivial, dim Hi =

dim Ci − dim Ci−1 for i ≥ 0. This shows that ∑k
i=−1 dim Hi = dim Ck. Therefore the operator ϕ : H−1 ×

· · · × Hk → Ck given by ϕ(h−1, . . . , hk) = ∑k
i=−1 Uk−ihi is not only surjective but also injective. In other

words, the representation of f is unique.

Corollary 3.3. If X is a proper k-dimensional complex then every function f ∈ Ck has a unique representation
of the form

f = ∑
s∈X

f̃ (s)ys ,

where the coefficients f̃ (s) satisfy the following harmonicity conditions: for all 0 ≤ i ≤ k and all t ∈ X(i− 1):

∑
s∈X(i)

s⊃t

Πi(s) f̃ (s) = 0 .

Proof. Follows directly from Lemma 2.2.

We can now define the degree of a function.

Definition 3.4. The degree of a function f is the maximal cardinality of a face s such that f̃ (s) 6= 0 in the
unique decomposition given by Corollary 3.3.

Thus a function has degree d if its decomposition only involves faces whose dimension is less than d.
The following lemma shows that the functions ys, for all (d− 1)-dimensional faces s, span the space of
all functions of degree at most d.

Lemma 3.5. If X is a proper k-dimensional complex then the space of functions on X(k) of degree at most d + 1
has the functions {ys : s ∈ X(d)} as a basis.

Proof. The space of functions on X(k) of degree at most d + 1 is spanned, by definition, by the functions
yt for t ∈ X(−1) ∪ X(0) ∪ · · · ∪ X(d). This space has dimension ∑d

i=−1 dim Hi. Since X is proper,
dim Hi = dim Ci − dim Ci−1 for i > 0, and so ∑d

i=1 dim Hi = dim Cd = |X(d)|.
Given the above in order to complete the proof it suffices to show that every yt, t ∈ X(i), i ≤ d, can

be written as a linear combination of ys for s ∈ X(d). This will show that {ys : s ∈ X(d)} spans the
space of functions of degree at most d + 1. Since this set contains |X(d)| functions, it forms a basis.

Recall that yt(r) = 1r⊃t, where r ∈ X(k). If r contains t then it contains exactly (k+1−|t|
d+1−|t|) many d-faces

containing r, and so

yt =
1

(k+1−|t|
d+1−|t|)

∑
s⊃t

s∈X(d)

ys.

This completes the proof.

We call fi the “level i” part of f , and denote the weight of f above level i by

wt>i( f ) := ∑
j>i
‖ f j‖2

2.
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4 Orthogonality of decomposition

When X is the complete k-dimensional complex, the decomposition in Theorem 3.2 is orthogonal. For a
general complex, this no longer need be the case. However, under certain conditions, the decomposition
is almost orthogonal, as we show in this subsection, proving the following result:

Theorem 4.1. Let~r,~δ be vectors such that pointwise~r >~0 and ~δ <~1.
Let X be a proper k-dimensional complex, and define

γ := max
0≤i≤k−1

‖Di+1Ui − (1− δi)Ui−1Di − ri‖.

For every function f on C` for ` ≤ k, the decomposition f = f−1 + · · ·+ f` of Theorem 3.2 satisfies the following
properties:

• For i 6= j, |〈 fi, f j〉| = O(γ)‖ fi‖‖ f j‖.

• ‖ f ‖2 = (1±O(γ))(‖ f−1‖2 + · · ·+ ‖ f`‖2), and for all i, ‖ f ‖2 = (1±O(γ))(‖ f≤i‖2 + ‖ f>i‖2).

• If ` < k then 〈DU f , f 〉 = (1±O(γ))∑`
i=−1 λi‖ fi‖2, where~λ depends only on `,~r,~δ.

In other words, the decomposition of Theorem 3.2 is almost orthogonal, and its parts are almost
eigenfunctions of the Laplacian operator DU. The (unnormalized) Laplacian operator is used in classi-
cal Boolean function analysis to define both the total influence Inf[ f ] = 〈DU f , f 〉 and the noise operator
(in the semigroup formulation, Tt = e−tDU).

As we show in Section 4.4 and Section 5, for both the complete complex and high-dimensional
expanders we can take ri = δi =

1
i+2 , and given ` < k, we get λi = 1− i+1

`+2 .
Since the first two properties for arbitrary ` follow from the case ` = k by truncating the complex,

we concentrate below on proving this special case.

4.1 Sequentially differential posets

Let us first discuss sequentially differential posets [Sta88, Sta90], using the example of the unnormalized
complete complex whose top-level faces consists of all subsets of [n] of size k + 1, weighted according to
the counting measure. The top-level faces of this complex form the “slice” ( [n]

k+1) (as it is known by com-
puter scientists) of the Johnson scheme J(n, k + 1) (as it is known by coding theorists). The Up operator
Ũi : Ci → Ci+1 is given by

Ũig(s) := ∑
x∈s

g(s \ {x}),

and the Down operator D̃i+1 : Ci+1 → Ci is given by

D̃i+1 f (t) := ∑
y/∈t

f (t ∪ {y}).

A simple calculation shows that

D̃i+1Ũig(t) = ∑
y/∈t

∑
x∈t∪{y}

g(t ∪ {y} \ {x}) = (n− i− 1)g(t) + ∑
r : |r\t|=|t\r|=1

g(r),

Ũi−1D̃ig(t) = ∑
x∈t

∑
y/∈t\{x}

g(t \ {x} ∪ {y}) = (i + 1)g(t) + ∑
r : |r\t|=|t\r|=1

g(r).

Comparing the two expressions, we see that

D̃i+1Ũi − Ũi−1D̃i = ri I, where ri = n− 2(i + 1),

where I is the identity operator. Posets satisfying this property, for an arbitrary vector~r = r0, . . . , rk−1,
are known as sequentially differential posets. An important example is the Grassmann lattice of all sub-
spaces of a finite-dimensional vector space over a finite field.
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In the setup considered in this paper, the top-level faces are weighted by a distribution rather than
an arbitrary measure. We therefore consider the (normalized) complete complex, in which the top-level
faces are weighted by the uniform distribution. It is easy to check that all distributions Πi are uniform,
and therefore

Uig(s) =
1

i + 2 ∑
x∈s

g(s \ {x}),

Di+1 f (t) =
1

n− i− 1 ∑
y/∈t

f (t ∪ {y}).

As before, we can calculate

Di+1Uig(t) =
1

(n− i− 1)(i + 2) ∑
y/∈t

∑
x∈t∪{y}

g(t ∪ {y} \ {x})

=
1

i + 2
g(t) +

1
(n− i− 1)(i + 2) ∑

r : |r\t|=|t\r|=1
g(r),

Ui−1Dig(t) =
1

(i + 1)(n− i) ∑
x∈t

∑
y/∈t\{x}

g(t \ {x} ∪ {y})

=
1

n− i
g(t) +

1
(i + 1)(n− i) ∑

r : |r\t|=|t\r|=1
g(r).

Comparing the two expressions, we see that

Di+1Ui − (1− δi)Ui−1Di = ri I, where ri = δi =
1

i + 2
− i + 1

i + 2
· 1

n− i− 1
. (1)

Since Ui−1 and Di are adjoint, Ui−1Di is positive semidefinite. When 2(i + 1) < n, the constant ri is
positive, and so Di+1Ui is positive definite, which in particular implies that Ui has trivial kernel. This
shows that the complete complex is proper when k < n/2.

4.2 Almost sequentially differential posets

High-dimensional expanders do not satisfy an identity of the form (1). However, they satisfy an approx-
imate version for of this identity, as we show in Section 5. The classical theory of sequentially differential
posets shows that the decomposition of Theorem 3.2 is orthogonal. We will now show that an approxi-
mate version of (1) suffices for approximate orthogonality.

Given a positive vector ~r, a vector ~δ with coordinates less than 1, and a parameter γ, let us say
that a k-dimensional complex is (~r,~δ, γ)-almost sequentially differential, or (~r,~δ, γ)-ASD for short, if for
0 ≤ i ≤ k− 1,

‖Di+1Ui − (1− δi)Ui−1Di − ri‖ ≤ γ,

where the norm is the spectral norm.
We start by showing that in such a complex, any two distinct parts in the decomposition of Theo-

rem 3.2 are approximately orthogonal, in some sense.

Lemma 4.2. Suppose that X is a proper k-dimensional complex which is (~r,~δ, γ)-ASD, and let f ∈ Ck have the
decomposition f = f−1 + · · ·+ fk for fi = Uk−ihi, as in Theorem 3.2. For i 6= j,

〈 fi, f j〉 = O(γ)‖hi‖‖hj‖.

where the hidden constant depends only on k,~r,~δ but not on n = |X(0)|.

Proof. Recall that hi ∈ Hi = ker Di. Given this, it is easy to see that fk is orthogonal to fk−1, indeed
〈 fk, fk−1〉 = 〈hk, Uhk−1〉 = 〈Dhk, hk−1〉 = 0 because Dhk = 0. To warm up let us first prove the claim
for fk−1 = Uhk−1 and fk−2 = U2hk−2. In this case 〈 fk−1, fk−2〉 = 〈Uhk−1, U2hk−2〉 = 〈D2Uhk−1, hk−2〉.
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If we could replace D2Uhk−1 by (1− δk−1)DUDhk−1 + rk−1Dhk−1 = 0 as in a sequentially differential
poset, we would be done. However, this is not necessarily true. We instead use the property of being
(~r,~δ, γ)-ASD and replace DDUhk−1 with (1− δk−1)DUDhk−1 + rk−1Dhk−1 = 0, incurring an error of
O(γ) and completing the argument in this case.

Now move to general i, j and suppose without loss of generality that j < i, and so k− j > k− i. We
have 〈 fi, f j〉 = 〈Dk−jUk−ihi, hj〉. Let us denote Ei = Di+1Ui −Ui−1Di − ri. We expand Dk−jUk−i into a
sum of terms, using the following algorithm. We start with the sum containing one term, Dk−jUk−i. At
each step, we pick a term not containing E and not of the form UaDb, and isolate one of the occurrences
of DU, say the term is cαDUβ (here c is a real number and α, β are products of operators). We replace
this term with the terms c(1 − δd)αUDβ, crdαβ (for the appropriate d), and cαEβ (this corresponds
to the identity Di+1Ui = (1− δi)Ui−1Di + ri + Ei). This process clearly terminates eventually. Since
k− j > k− i, eventually all terms either contain E or end with D. The terms ending with D vanish since
hi ∈ Hi. All other terms are of the form c〈αEβhi, hj〉 = c〈Eβhi, α∗hj〉, where β, α∗ are products of Ds and
Us. Since D and U are contractions, we can estimate

|〈Eβhi, α∗hj〉| ≤ ‖Eβhi‖‖α∗hj‖ ≤ γ‖hi‖‖hj‖.

The lemma immediately follows.

The preceding lemma gives an error estimate in terms of the norms ‖hi‖. The following lemma will
enable us to express the error in terms of the norms ‖ fi‖.

Lemma 4.3. Suppose that X is a proper k-dimensional complex which is (~r,~δ, γ)-ASD, and let f ∈ Ck have the
decomposition f = f−1 + · · ·+ fk for fi = Uk−ihi, as in Theorem 3.2. For every i there exists a constant ρi,
depending only on~r,~δ, such that

‖ fi‖ = (1±O(γ))ρi‖hi‖,
where the hidden constant depends only on k,~r,~δ.

Proof. The argument is very similar to that of Lemma 4.2. This time we are computing ‖ fi‖2 = 〈Dk−iUk−ihi, hi〉.
Executing the same algorithm as before, we will be left with many terms of the form 〈hi, hi〉, with var-
ious coefficients depending only on~r,~δ. The end result will be that ‖ fi‖2 = ρ2

i ‖hi‖2 ±O(γ)‖hi‖2 for
some ρi (note that the coefficient is positive since~r is positive and all entries of ~δ are less than 1). The
lemma follows.

Combining both lemmata, we obtain the following corollary.

Corollary 4.4. Suppose that X is a proper k-dimensional complex which is (~r,~δ, γ)-ASD, and let f ∈ Ck have
the decomposition f = f−1 + · · ·+ fk, as in Theorem 3.2. If γ is small enough (as a function of k,~r,~δ) then for
i 6= j,

〈 fi, f j〉 = O(γ)‖ fi‖‖ f j‖,

where the hidden constant depends only on k,~r,~δ.

As a consequence, we obtain an approximate L2 mass formula:

Corollary 4.5. Under the conditions of Corollary 4.4, for every i ≤ j we have

‖ fi + · · ·+ f j‖2 = (1±O(γ))(‖ fi‖2 + · · ·+ ‖ f j‖2),

where the hidden constant depends only on k,~r,~δ.
In particular,

‖ f ‖2 = (1±O(γ))(wt≤i( f ) + wt>i( f )) = (1±O(γ))(‖ f≤i‖2 + ‖ f>i‖2).

Proof. Expanding ‖ fi + · · ·+ f j‖2, we obtain

‖ fi + · · ·+ f j‖2 − ‖ fi‖2 − · · · − ‖ f j‖2 = 2 ∑
i≤a<b≤j

〈 fa, fb〉 = O(γ) ∑
i≤a<b≤j

‖ fa‖‖ fb‖ ≤

O(γ)
(
‖ fi‖+ · · ·+ ‖ f j‖

)2 ≤ O(γ)(‖ fi‖2 + · · ·+ ‖ f j‖2),

swallowing a factor of k in the last inequality.
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4.3 Laplacian

The (upper) Laplacian is the operator DU, used to define a random walk on a specific level ` < k
of the complex (the lower Laplacian UD defines another random walk). In the complete complex,
indeed in arbitrary complexes satisfying (1), the functions in the decomposition f = f−1 + · · · + f`
are eigenfunctions of the Laplacian. The same holds approximately for almost sequentially differential
posets, using arguments very similar to the foregoing.

An analog of Lemma 4.2 shows that for i 6= j,

〈U fi, U f j〉 = O(γ)‖hi‖‖hj‖,

which as in Corollary 4.4 shows that

〈U fi, U f j〉 = O(γ)‖ fi‖‖ f j‖.

The argument of Corollary 4.5 shows that

〈DU f , f 〉 = ‖U f ‖2 = (1±O(γ))(‖U f−1‖2 + · · ·+ ‖U f`‖2).

Conversely, an analog of Lemma 4.3 shows that there is are positive constants λi, depending only
on~r,~δ, such that for each i,

‖U fi‖2 = (1±O(γ))λiρ
2
i ‖hi‖2 = (1±O(γ))λi‖ fi‖2,

using Lemma 4.3. Putting everything together, we get the following result:

Lemma 4.6. Suppose that X is a proper k-dimensional complex which is (~r,~δ, γ)-ASD, let ` < k, and let f ∈ C`

have the decomposition f = f−1 + · · ·+ f`, as in Theorem 3.2. For every i there exists a constant λi, depending
only on~r,~δ, such that

〈DU f , f 〉 = (1±O(γ))
`

∑
i=−1

λi‖ fi‖2,

where the hidden constant depends only on k,~r,~δ.

This result is analogous to [KO17, Theorem 6.2], in which a similar decomposition is obtained. How-
ever, whereas our decomposition is to functions f−1, . . . , f` in C`, the decomposition of [KO17] is anal-
ogous to our functions h−1, . . . , h`, which live in different spaces.

4.4 Eigenvalues of the Laplacian

Section 4.1 shows that the complete d-dimensional complex is (~r,~δ, γ)-ASD, where ri = δi =
1

i+2 and
γ = O( 1

n−d−1 ), the same parameters as high-dimensional expanders, as we show in Section 5. This
allows us to compute the eigenvalues ~λ of the Laplacian in Lemma 4.6 for both the complete complex
and high-dimensional expanders.

The classical theory of the “slice” (see for example [Fil16b, FM16]) shows that Vi is spanned by func-
tions of the form ∏i+1

j=1(yaj − ybj
), where the 2i indices aj, bj are distinct. (Recall that in the decomposition

of f , the component fi belongs to Vi.)

Lemma 4.7. Let φi ∈ C` be the function

φi = (y1 − y2)(y3 − y4) · · · (y2i+1 − y2i+2).

On the complete complex,

DUφi =

(
1− i + 1

n− `− 1

)(
1− i + 1

`+ 2

)
φi.
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Proof. Let s ∈ X(`), and recall that

DUφi(s) = E
a/∈s

E
b∈s∪{a}

φi(s ∪ {a} \ {b}).

For brevity, we use ra,b := s ∪ {a} \ {b}.
We consider several cases. Suppose first that 2j − 1, 2j ∈ s for some j, so that φi(s) = 0. If b 6=

2j − 1, 2j then φi(ra,b) = 0. Conversely, φi(ra,2j−1) = −φi(ra,2j) for any choice of a. Since Pr[b =
2j− 1] = Pr[b = j], we see that DUφi(s) = 0.

Suppose next that 2j− 1, 2j /∈ s for some j, so that again φi(s) = 0. If a /∈ 2j− 1, 2j then φi(ra,b) = 0.
Conversely, φi(r2j−1,b) = −φi(r2j,b) for any b ∈ s, and φi(r2j−1,2j−1) = φi(r2j,2j) = 0. Once again, this
shows that DUφi(s) = 0.

Finally, suppose that 1, 3, . . . , 2i + 1 ∈ s and 2, 4, . . . , 2i + 2 /∈ s, so that φi(s) = 1. If a = 2j for
some j then φi(ra,2j−1) = −1, φi(ra,2j) = 1, and φi(ra,b) = 0 for b 6= 2j− 1, 2j. Thus φi(r2j,b) vanishes
in expectation. When a 6= 2, 4, . . . , 2i + 2, we have φi(ra,b) = 1 if b 6= 1, 3, . . . , 2i + 1, and φi(ra,b) = 0
otherwise. Thus DUφi(s) is the probability that a 6= 2, 4, . . . , 2i + 2 and that b 6= 1, 3, . . . , 2i + 1, which
is (1− i+1

n−`−1 )(1−
i+1
`+2 ).

Taking the limit n→ ∞, we see that the value of λi in Lemma 4.6 is

λi = 1− i + 1
`+ 2

.

5 High-dimensional expanders

Let X be a d-dimensional complex with an associated probability distribution Πd on X(d), which
induces probability distributions on X(−1), . . . , X(d − 1) as we have described above. For every i-
dimensional face s ∈ X(i) for i < d− 1, the link of s is the weighted graph Xs defined as follows:

• The vertices are points x /∈ s such that s ∪ {x} ∈ X(i + 1) is a face.

• The edges are pairs of points {x, y} such that s ∪ {x, y} ∈ X(i + 1) is a face. (Since the complex is
pure, x and y are vertices.)

• The weight of the directed edge (x, y) is

ws(x, y) :=
1
2

Pr
t∼Πi+1

[t = s ∪ {x, y} | t ⊃ s].

Note that the weights define a probability distribution ws on the (directed) edges. We denote the
marginal of ws on its first coordinate by

ws(x) := ∑
y 6=x

ws(x, y) = Pr
t∼Πi+1

[t ⊃ s ∪ {x} | t ⊃ s] = Pr
(u,v)∼(Πi+1,Πi)

[u = s ∪ {x} | v = s].

This is also the marginal of ws on its second coordinate. We turn the space of function on vertices into
an inner product space by defining

〈 f , g〉 := E
x∼ws

[ f (x)g(x)].

We define an operator As on functions on vertices by the matrix As(x, y) := ws(x, y)/ws(x), which
corresponds to the quadratic form

〈 f , Asg〉 = ∑
x,y

ws(x, y) f (x)g(y).

By definition, As fixes constant functions, and so it is a Markov operator. Since ws(x, y) = ws(y, x), it is
also self-adjoint with respect to the inner product above. Thus As has eigenvalues λ1 = 1, λ2, . . . , λm,
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where m is the number of vertices. We define λ(As) = max(|λ2|, |λm|). Orthogonality of eigenspaces
guarantees that

|〈 f , Asg〉 −E[ f ]E[g]| ≤ λ(As)‖ f ‖‖g‖.

We say that X is a γ-two-sided high-dimensional expander (called γ-HD expander in [DK17]) if every
link Xs of X satisfies λ(AS) ≤ γ.

Let f be a function on X(i), where i < d− 1. We have

〈DU f , f 〉 = 〈U f , U f 〉 = E
t∼Πi+1

E
x,y∈t

[ f (t \ {x}) · f (t \ {y}].

The probability that x is equal to y is exactly 1/(i + 2), and so

〈DU f , f 〉 = 1
i + 2

E
t∼Πi+1

E
x∈t

[ f (t \ {x})2] +
i + 1
i + 2

E
t∼Πi+1

E
x 6=y∈t

[ f (t \ {x}) · f (t \ {y}].

If t ∼ Πi+1 and x ∈ t is chosen at random, then t \ {x} ∼ Πi. Therefore the first term is equal to
1

i+2‖ f ‖2. TO compute the second term, let s = t \ {x, y}. Since t ∼ Πi+1 and x 6= y ∈ t are chosen at
random, we have s ∼ Πi−1. Given such an s, the probability to get specific (t, x, y) is exactly ws(x, y)
(the factor 1/2 accounts for the relative order of x, y), and so

〈DU f , f 〉 = 1
i + 2

‖ f ‖2 +
i + 1
i + 2

E
s∼Πi−1

E
(x,y)∼ws

[ f (s ∪ {x}) f (s ∪ {y})].

We now note that
E

x∼ws
[ f (s ∪ {x})] = (D f )(s).

Therefore we have

| E
(x,y)∼ws

[ f (s ∪ {x}) f (s ∪ {y})]− (D f )(s)2| ≤ λ(As) E
x∼ws

[ f (s ∪ {x})2].

If X is a γ-two-sided high-dimensional expander then λ(As) ≤ γ for all s, and so (using I for the
identity operator)

|〈(DU − 1
i+2 I − i+1

i+2 UD) f , f 〉| ≤ γ E
s∼Πi−1

E
x∼ws

[ f (s ∪ {x})2] = γ‖ f ‖2.

We have proved the following result.

Theorem 5.1. Suppose that X is a d-dimensional γ-two-sided high-dimensional expander. Then its (d − 1)-
skeleton Y is (~r,~δ, γ)-ASD, where ri = δi =

1
i+2 . Moreover, if γ < 1

d then Y is proper.

Proof. The first part follows from the foregoing. For the second part, note that Ui−1Di is positive
semidefinite, and so all eigenvalues of i+1

i+2 Ui−1Di +
1

i+2 are at least 1
i+2 . This implies that all eigen-

values Di+1Ui are at least 1
i+2 − γ > 0, and in particular Ui has trivial kernel.

Dinur and Kaufman [DK17] prove that such expanders do exist.

Theorem 5.2 ([DK17, Lemma 1.5]). For every λ > 0 and every d ∈ N there exists an explicit infinite family
of bounded degree d-dimensional complexes which are λ-two-sided high-dimensional expanders.

6 Boolean degree 1 functions

In this section we characterize all Boolean degree 1 functions in nice complexes.

Theorem 6.1. Suppose that X is a proper k-dimensional complex, where k ≥ 2. A function f ∈ Ck is a Boolean
degree 1 function if and only if there exists an independent set I such that f is the indicator of intersecting I or of
not intersecting I.
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Proof. If f is the indicator of intersecting an independent set I then f = ∑v∈I yv, and so deg f ≤ 1. If f
is the indicator of not intersecting an independent set I then f = ∑v∈X(0) yv/(k + 1)−∑v∈I yv, and so
again deg f ≤ 1.

Suppose now that f is a Boolean degree 1 function. If |X(0)| ≤ 2 then the theorem clearly holds, so
assume that |X(0)| > 2. Lemma 3.5 shows that f has a unique representation of the form

f = ∑
v∈X(0)

cvyv.

Since f is Boolean, it satisfies f 2 = f . Note that

f 2 = ∑
{u,v}∈X(1)

2cucvy{u,v} + ∑
v∈X(0)

c2
vyv.

Moreover, since every input x to f which contains v contains exactly k other members of X(0), and since
X(1) contains all pairs of points from x, we have

yv = ∑
u∈X(0)\{v}

y{u,v}
k

.

This shows that

0 = f 2 − f = ∑
{u,v}∈X(1)

2cucvy{u,v} +
1
k ∑

v∈X(0)
(c2

v − cv) ∑
u∈X(0)\{v}

y{u,v} =

1
k ∑
{u,v}∈X(1)

(2kcucv + c2
u − cu + c2

v − cv)y{u,v}.

Lemma 3.5 shows that the coefficients of all y{u,v} must vanish, that is, for all u 6= v we have

2kcucv = cu(1− cu) + cv(1− cv).

Consider now a triple of points u, v, w such that {u, v, w} ∈ X(2), and the corresponding system of
equations:

2kcucv = cu(1− cu) + cv(1− cv),
2kcucw = cu(1− cu) + cw(1− cw),
2kcvcw = cv(1− cv) + cw(1− cw).

Subtracting the second equation from the first, we obtain

2kcu(cv − cw) = cv(1− cv)− cw(1− cw) = (cv − cw)− (c2
v − c2

w) = (cv − cw)(1− cv − cw).

This shows that either cv = cw or 2kcu = 1− cv − cw.
If cu 6= cv, cw then 2kcw + cu + cv = 2kcv + cu + cw = 1, which implies that cv = cw. Thus cu, cv, cw

can consist of at most two values. If c := cu = cv = cw then 2kc2 = 2c(1− c), and so c ∈ {0, 1/(k + 1)}.
If c := cv = cw 6= cu then 2c2 = 2c(1− c), and so c ∈ {0, 1/(k + 1)} as before. We also have 2kcuc =
cu(1− cu) + c(1− c). If c = 0 then this shows that cu(1− cu) = 0, and so cu = 1. If c = 1/(k + 1) then
one can similarly check that cu = 1/(k + 1)− 1.

Summarizing, one of the following two cases must happen:

1. Two of cu, cv, cw are equal to 0, and the remaining one is either 0 or 1.

2. Two of cu, cv, cw are equal to 1/(k + 1), and the remaining one is either 1/(k + 1) or 1/(k + 1)− 1.

Let us say that a vertex v ∈ X(0) is of type A if cv ∈ {0, 1}, and of type B if cv ∈ {1/(k + 1), 1/(k +
1) − 1}. Since the complex is pure and at least two-dimensional, every vertex must participate in a
triangle (two-dimensional face), and so every vertex is of one of the types. In fact, all vertices must be of
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the same type. Otherwise, there would be a vertex v of type A incident to a vertex w of type B. However,
since the complex is pure, {v, w}must participate in a triangle, contradicting the classification above.

Suppose first that all vertices are type A, and let I = {v : cv = 1}. Note that f indicates that the
input face intersects I. Clearly I must be an independent set, since otherwise f would not be Boolean.
When all vertices are type B, the function 1− f = ∑v∈X(0)(1/(k + 1)− cv)yv is of type A, and so f must
indicate not intersecting an independent set.

When G is not connected, every face is always wholly contained inside a connected component, and
so in effect every function in Ck decomposes into a function on every connected component. Using
this, the reader can formulate and proof a generalization of this theorem to the case in which G is
disconnected.

7 FKN-theorem on high dimensional expanders

In this section, we prove an analog of the classical result of Friedgut, Kalai and Naor [FKN02] to high
dimensional expanders. The FKN theorem that states that any Boolean function F on the hypercube that
is close to a degree-1 function f (not necessarily Boolean) in the L2

2-sense must agree with some Boolean
degree-1 function (which must be a dictator) at most points. This result for the Boolean hypercube can
be easily extended to functions on k-slices of the hypercube provided k = Θ(n).

Theorem 7.1 (FKN theorem on the slice [Fil16a]). Let n, k ∈ Z≥0 and ε ∈ (0, 1) such that n/4 ≤ k ≤ n/2.
Let F : ([n]k ) → {0, 1} be a Boolean function such that E[(F − f )2] < ε for some degree-1 function f : ([n]k ) →
{0, 1}. Then there exists a degree-1 function g : ([n]k )→ R such that

Pr[F 6= g] = O(ε).

Furthermore, g ∈ {0, 1, yi, 1− yi}, that is, g is a Boolean dictator (1-junta).

Remark 7.2. 1. The function g promised by the theorem satisfies E[(g− F)2] = Pr[g 6= F] = O(ε)
and hence, by the L2

2-triangle inequality we have E[( f − g)2] ≤ 2 E[( f − F)2] + 2 E[(g− F)2] =
O(ε). This is the way that the FKN theorem is traditionally stated, but we prefer the above formu-
lation as this is the one we are able to generalize to the high-dimensional expander setting.

2. The function 1 can also be written as ∑j(1/k)yj. The function 1 − yi can also be written as
∑j 6=i(1/k)yj + (1/k− 1)yi.

3. The result of [Fil16a] is quite a bit stronger: for every k ≤ n/2, it promises the existence of a
function g : ([n]k ) → R, not necessarilly Boolean, such that E[( f − g)2] = O(ε). Moreover, either g
or 1− g is of the form ∑i∈S yi for |S| ≤ max(1,

√
ε · n/k). The bound on the size of S ensures that

Pr[g ∈ {0, 1}] = 1−O(ε).

Our main theorem is an extension of the above theorem to k-faces of a high-dimensional expander.

Theorem 7.3 (FKN theorem for high dimensional expanders). Let X be a d-dimensional λ-two-sided high-
dimensional expander, and let 4k2 < d and λ < 1/d. Let F : X(k) → {0, 1} be a function such that E[(F −
f )2] < ε for some degree-1 function f : X(k) → R. Then there exists a degree-1 function g : X(k) → R such
that

Pr[F 6= g] = Oλ(ε).

Furthermore, the degree-1 function g can be written as g(y) = ∑i diyi, where di ∈ {0, 1, 1
k+1 , 1

k+1 − 1}.

The high-dimensional analog of the FKN theorem is obtained from the FKN theorem for the slice
using the agreement theorem of Dinur and Kaufman [DK17].
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7.1 Agreement theorem for high dimensional expanders

Dinur and Kaufman [DK17] prove an agreement theorem for high-dimensional expanders. The setup is
as follows. For each k-face s we are given a local function fs : s→ Σ that assigns values from an alphabet
Σ to each point in s. Two local functions fs, fs′ are said to agree if fs(v) = fs′(v) for all v ∈ s∩ s′. LetDk,2k
be the distribution on pairs (s1, s2) obtained by choosing a random t ∼ Π2k and then independently
choosing two k-faces s1, s2 ⊂ t. The theorem says that if a random pair pair of faces (s, s′) ∼ Dk,2k
satisfies with high probability that fs agrees with fs′ on their intersection, then there must be a global
function g : X(0)→ Σ such that almost always g|s ≡ fs. Formally:

Theorem 7.4 (Agreement theorem for high-dimensional expanders [DK17]). Let X be a d-dimensional
λ-two-sided high-dimensional expander, and let k2 < d and λ < 1/d and Σ some fixed finite alphabet. Let
{ fs : s→ Σ}s∈X(k) be an ensemble of local functions on X(k), i.e. fs ∈ Σs for each s ∈ X(k). If

Pr
(s1,s2)∼Dk,2k

[ fs1 |s1∩s2 ≡ fs2 |s1∩s2 ] > 1− ε

then there is a g : X(0)→ Σ such that

Pr
s∼Πk

[ fs ≡ g|s] ≥ 1−Oλ(ε).

While Dinur and Kaufman state the theorem for a binary alphabet, the general version follows in a
black box fashion by applying the theorem for binary alphabets dlog2 |Σ|emany times.

7.2 Proof of Theorem 7.3

Let f , F ∈ Ck, where F is a Boolean function and f is a degree-1 function as in the hypothesis of Theo-
rem 7.3. Let

ε f := E
s
[dist( f (s), {0, 1})2]. (2)

We have ε f ≤ ε. Since f is a degree-1 function, Lemma 3.5 guarantees that there exist ai ∈ R such that
f (y) = ∑i∈n aiyi. Note that here we view the inputs of f as n-bit strings with exactly k + 1 ones, the rest
being zero.

We begin by defining an ensemble of pairs of local functions {( f |t, F|t)}t∈X(2k), {( f |u, F|u)}u∈X(4k)
which are the restrictions of ( f , F) to the 2k-face t and 4k-face u. Formally, for any t ∈ X(2k) and
u ∈ X(4k), consider the restriction of f to t and u defined as follows:

f |t, F|t :
(

t
k

)
→ R, f |t(y) = f (y) = ∑

i∈t
aiyi, F|t(y) = F(y),

f |u, F|u :
(

u
k

)
→ R, f |u(y) = f (y) = ∑

i∈u
aiyi, F|u(y) = F(y).

Observe that the f |t’s are degree-1 functions while the F|t’s are Boolean functions (similarly for f |u’s
and F|u’s).

Now, define the following quantities

εt := E
s : s⊂t

[dist( f |t(s), F|t(s))2], δu := E
s : s⊂u

[dist( f |u(s), F|u(s))2].

Clearly, Et[εt] = Eu[δu] = ε f ≤ ε, where ε f is as in (2).
Let αk = 1

k+1 . Applying Theorem 7.1 (along with Remark 7.2) to the functions ( f |t, F|t) for each
t ∈ X(2k) we have the following claim:

Claim 7.5. For every t ∈ X(2k), there exists a degree-1 dictator gt : (t
k)→ {0, 1} such that

E
s : s⊂t

[( f |t − gt)
2] = O(εt).

Furthermore, there exists a function dt : t→ {0, 1, αk, αk − 1} such that gt(y) = ∑i∈t dt(i)yi.
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Similarly for each u ∈ X(4k) we have:

Claim 7.6. For every u ∈ X(4k), there exists a degree-1 dictator hu : (u
k)→ {0, 1} such that

E
s : s⊂u

[( f |u − hu)
2] = O(δu).

Furthermore, there exists a function eu : u→ {0, 1, αk, αk − 1} such that hu(y) = ∑i∈u eu(i)yi.

We will now prove that the collection of local functions {dt}t typically agree with each other. We will
then be able to use the agreement theorem Theorem 7.4 to sew these different local functions together
to yield a single function d : X(0) → {0, 1, αk, αk − 1}. This d will determine a global degree-1 function
g defined as follows: g(y) = ∑i∈X(0) d(i)yi.

Claim 7.7. There exists a function d : X(0)→ {0, 1, αk, αk − 1} such that Prt[dt ≡ d|t] = 1−Oλ(ε).

Proof. To sew the various dt together via the agreement theorem, we would like to first bound the
probability

Pr
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2 ] .

Recall the definition of the distribution D2k,4k: we first pick a set u ∈ X(4k) according to Π4k and
then two 2k-faces t1, t2 of u uniformly and independently. Consider the three functions dt1 , dt2 and eu.
Clearly, if dt1 |t1∩t2 6≡ dt2 |t1∩t2 then one of eu|t1 6≡ dt1 or eu|t2 6≡ dt2 must hold. Thus,

Pr
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2 ] ≤ 2 · Pr
t,u
[eu|t 6≡ dt] . (3)

Thus, it suffices to bound the probability Prt,u[eu|t 6≡ dt] where u ∼ Π4k and t is a random 2k-face of u.
For any fixed t ⊂ u, the L2

2 triangle inequality shows that

E[(hu|t − gt)
2] ≤ 2 E[(hu|t − f |t)2] + 2 E[( f |t − gt)

2] = 2 E[(hu|t − f |t)2] + O(εt).

Taking expectation over t ∈ X(2k) conditioned on t ⊂ u, we see that

E
t⊂u

E[(hu|t − gt)
2] ≤ 2 E[(hu − f |u)2] + O

(
E

t : t⊂u
εt

)
= O(δu) + O

(
E

t : t⊂u
εt

)
.

Taking expectation over u ∼ Π4k, we now have

E
u

E
t⊂u

E[(hu|t − gt)
2] = O(ε).

For any fixed t ⊂ u, both hu|t and gt are Boolean degree-1 juntas. Hence either they agree, or E[(hu|t −
gt)2] = Ω(1). This shows that hu|t disagrees with gt with probability O(ε), and so

Pr
t,u
[eu|t 6≡ dt] = O(ε).

We now return to (3), concluding that

E
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2)] = O(ε).

We have thus satisfied the hypothesis of the agreement theorem (Theorem 7.4). Invoking the agree-
ment theorem, we deduce that Prt∼Π2k [dt ≡ d|t] = 1−Oλ(ε).

The d’s guaranteed by Claim 7.7 naturally correspond to a degree-1 function g : X(k) → R as fol-
lows:

g(y) := ∑
i∈X(0)

d(i)yi.

We now show that this g is mostly Boolean.

Claim 7.8. Prs[g(s) ∈ {0, 1}] = 1−Oλ(ε).
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Proof. Since gt is Boolean valued,

Pr
s∼Πk

[g(s) ∈ {0, 1}] ≥ Pr
t
[g|t = gt] = Pr

t
[d|t ≡ dt] = 1−O(ε).

We now show that g in fact agrees pointwise with F most of the time.

Claim 7.9. Prs[g 6= F] = O(ε).

Proof. Fix any t ∈ X(2k). We compute Prs : s⊂t[F|t 6= gt] as follows

Pr[F|t 6= gt] = ‖F|t − gt‖2 [ Since F|t and gt are both Boolean ]

≤ 2 · ‖F|t − f |t‖2 + 2 · ‖ f |t − gt‖2

= O(εt) + O(εt) = O(εt).

We can now compute Prs[F 6= g] as follows:

Pr[F 6= g] = E
t

Pr[F|t 6= g|t] ≤ E
t

Pr[F|t 6= gt] + Pr
t
[g|t 6= gt] = O(ε) + Pr

t
[d|t 6≡ dt] = Oλ(ε).

This completes the proof of Theorem 7.3.
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