Boolean function analysis on high-dimensional expanders*

Yotam Dikstein ${ }^{\dagger} \quad$ Irit Dinur ${ }^{\dagger} \quad$ Yuval Filmus ${ }^{\ddagger} \quad$ Prahladh Harsha ${ }^{\S}$

January 26, 2022

Abstract

We initiate the study of Boolean function analysis on high-dimensional expanders. We give a random-walk based definition of high-dimensional expansion, which coincides with the earlier definition in terms of two-sided link expanders. Using this definition, we describe an analog of the Fourier expansion and the Fourier levels of the Boolean hypercube for simplicial complexes. Our analog is a decomposition into approximate eigenspaces of random walks associated with the simplicial complexes. Our random-walk definition and the decomposition have the additional advantage that they extend to the more general setting of posets, encompassing both high-dimensional expanders and the Grassmann poset, which appears in recent work on the unique games conjecture.

We then use this decomposition to extend the Friedgut-Kalai-Naor theorem to high-dimensional expanders. Our results demonstrate that a constant-degree high-dimensional expander can sometimes serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results from Boolean function analysis can be carried over to this sparse model. Therefore, this model can be viewed as a derandomization of the Boolean slice, containing only $|X(k-1)|=O(n)$ points in contrast to $\binom{n}{k}$ points in the (k)-slice (which consists of all n-bit strings with exactly k ones).

1 Introduction

Boolean function analysis is an essential tool in theory of computation. Traditionally, it studies functions on the Boolean cube $\{-1,1\}^{n}$. Recently, the scope of Boolean function analysis has been extended further, encompassing groups [EFF15b, EFF15a, Pla15, EFF17], association schemes [OW13, Fil16a, Fil16b, FM19, FKMW18, DKKMS18a, KMS18], error-correcting codes [BGHMRS15], and quantum Boolean functions [MO10]. Boolean function analysis on extended domains has led to progress in learning theory [OW13] and on the unique games conjecture [KMS17, DKKMS18a, DKKMS18b, BKS19, KMS18].

High-dimensional expanders emerged in recent years as a new area of study, of interest to several different communities. Just as expander graphs are sparse models of the complete graph, so are high-dimensional expanders sparse models of a higher-dimensional object, namely the complete hypergraph. Expander graphs are central objects, appearing in a diverse list of areas. High-dimensional expanders are much newer objects which have already found connections to topological overlapping

[^0]theory [FGLNP12, Evr17], to analysis of Markov chains [ALGV19], and to coding theory [DHKNT19] and property testing [KL14]. (Note that while expander graphs are explicit derandomizations of random graphs, the mere existence of high-dimensional expanders is surprising since there is no sparse random model for generating these objects.).

The goal of this work is to connect these two threads of research, by introducing Boolean function analysis on high-dimensional expanders.

We study Boolean functions on simplicial complexes. A pure d-dimensional simplicial complex X is a set system consisting of an arbitrary collection of sets of size $d+1$ together with all their subsets. The sets in a simplicial complex are called faces, and it is standard to denote by $X(i)$ the faces of X whose cardinality is $i+1$. Our simplicial complexes are weighted by a probability distribution Π_{d} on the toplevel faces, which induces probability distributions Π_{i} on $X(i)$ in a natural way for all i : we choose $s \sim \Pi_{d}$, and then choose an i-face $t \subset s$ uniformly at random. Our main object of study is the space of functions $f: X(d) \rightarrow \mathbb{R}$, and in particular, Boolean functions $f: X(d) \rightarrow\{0,1\}$.

1.1 Many different definitions of high-dimensional expansion

Although graph expansion has many definitions, all of which are equivalent, they each generalize to higher dimensions differently, leading to a diverse landscape of definitions.

The first definition studied by Linial and Meshulam [LM06] and by Gromov [Gro10] was topological, focusing on generalizations of edge expansion through coboundary maps in higher dimensions. It was later discovered that certain bounded-degree simplicial complexes constructed by Lubotzky, Samuels and Vishne [LSV05a, LSV05b] satisfy this definition (more accurately, a variant of it called cosystolic expansion), leading to the first known family of bounded-degree complexes that satisfy Gromov's so-called "topological overlap property" [KKL16, DKW18, EK16]. The LSV construction comes from arithmetic quotients of Bruhat-Tits buildings, and are high-dimensional generalizations of the celebrated Lubotzky-Philips-Sarnak construction of Ramanujan expander graphs [LPS88].

Subsequent works were interested in additional properties exhibited by the LSV complexes (and others, see [Li04]) that aren't necessarily captured by the topological definitions mentioned above. For example, Dinur and Kaufman [DK17] proved that the LSV complexes support so-called agreement tests that are studied in the context of probabilistically checkable proofs, and were previously known for only dense families of subsets such as the complete complex. The relevant definition for that work is spectral link-expansion, which we now describe.

Let X be a d-dimensional simplicial complex, and let $s \in X$ be any face of dimension $\leq d-1$. The graph of the link s is the graph whose vertex set consists of all elements $v \notin s$ such that $\{v\} \cup s \in X$. The edges are all pairs $\{v, u\}$ such that $\{v, u\} \cup s \in X$. A simplicial complex X is a two-sided (or onesided) link-expander with spectral radius γ if for every link, the non-trivial normalized eigenvalues are upper-bounded by γ in the one-sided case, or sandwiched between $-\gamma$ and γ in the two-sided case.

Garland [Gar73] had studied this type of spectral expansion in links, and used it to show the vanishing of the real cohomology of Bruhat-Tits buildings. Similar techniques were further explored in the work of Oppenheim [Opp18]. The notion of one-sided spectral expansion also appeared in earlier works of Kaufman, Kazhdan and Lubotzky [KKL16], where it was applied towards proving topological expansion.

A third definition, through random walks on the i-faces, was studied initially by Kaufman and Mass [KM18], where the authors defined a combinatorial "random-walk" type of expansion, and showed
that this type of expansion was implied by expansion of the links. This notion is concerned with the convergence speed of high-dimensional random walks to the stationary distribution. This was refined by Dinur and Kaufman [DK17], who showed that two-sided link-expansion implies that all random walks on a high-dimensional expander converge at approximately the same speed as on the complete complex, with an error term dominated by γ.

In this paper we continue to study this two-sided definition, and show that it is in fact equivalent to a new random-walk definition which we suggest. We find the new random-walk definition appealing because it is very natural to state, and at the same time equivalent to the powerful two-sided linkexpansion definition. Moreover, the random walk definition generalizes naturally beyond simplicial complexes also to ranked posets (partially ordered sets). Finally, the random walk point of view allows for doing an analog of Fourier analysis, as we discuss below.

Concurrently and independently of this work, Kaufman and Oppenheim [KO20] studied the connection between one-sided link-expansion and convergence of the relevant random walks. They showed that one-sided link-expansion (which is weaker than its two-sided variant) is already enough for getting the same conclusions about the speed of convergence of random walks as was shown for the two-sided case. This was picked up in an exciting work by Anari, Liu, Gharan-Oveis and Vinzant [ALGV19], who relied on this connection to solve a longstanding open question in the area of Markov chain sampling. They showed that a certain well-studied Markov chain on bases of matroids can be viewed as a random walk on the faces of a certain one-sided link expander, thereby using the work of Kaufman and Oppenheim [KO20] to prove convergence of this random walk.

1.2 Random-walk based definition of high-dimensional expanders

Denote the real-valued function space on $X(i)$ by $C^{i}:=\{f: X(i) \rightarrow \mathbb{R}\}$. There are two natural operators $U_{i}: C^{i} \rightarrow C^{i+1}$ and $D_{i+1}: C^{i+1} \rightarrow C^{i}$, which are defined by averaging:

$$
\begin{aligned}
U_{i} f(s) & :=\underset{t \sim \Pi_{i}}{\mathbb{E}}[f(t) \mid t \subset s] \quad\left(=\frac{1}{i+2} \sum_{t \subset s} f(t)\right), \\
D_{i+1} f(t) & :=\underset{s \sim \prod_{i+1}}{\mathbb{E}}[f(s) \mid s \supset t] .
\end{aligned}
$$

The compositions $D_{i+1} U_{i}$ and $U_{i-1} D_{i}$ are Markov operators of two natural random walks on $X(i)$, the upper random walk and the lower random walk.

The first walk we consider is the upper random walk $D_{i+1} U_{i}$. Given a face $t_{1} \in X(i)$, we choose its neighbor t_{2} as follows: we pick a random $s \sim \Pi_{i+1}$ conditioned on $s \supset t_{1}$ and then choose uniformly at random $t_{2} \subset s$. Note that there is a probability of $\frac{1}{i+2}$ that $t_{1}=t_{2}$. We define the non-lazy upper random walk by choosing $t_{2} \subset s$ conditioned on $t_{1} \neq t_{2}$. We denote the Markov operator of the non-lazy upper walk by M_{i}^{+}. This operator satisfies the following equality (which can be used to define it)

$$
D_{i+1} U_{i}=\frac{i+1}{i+2} M_{i}^{+}+\frac{1}{i+2} I
$$

A similar (but not identical) random walk on $X(i)$ is the lower random walk $U_{i-1} D_{i}$. Here, given a face $t_{1} \in X(i)$, we choose a neighbor t_{2} as follows: we first choose a $r \in X(i-1)$ uniformly at random and then choose a $t_{2} \sim \Pi_{i}$ conditioned on $t_{2} \supset r$.

For instance, if X is a graph (a 1-dimensional simplicial complex), then the non-lazy upper random
walk is the usual adjacency walk we define on a weighted graph (i.e. traversing from vertex to vertex by an edge). The (lazy) upper random walk has probability $\frac{1}{2}$ of staying in place, and probability $\frac{1}{2}$ of going to different adjacent vertex. The lower random walk on $V=X(0)$ doesn't depend on the current vertex: it simply chooses a vertex at random according to the distribution Π_{0} on $X(0)$.

The Up and Down operators resemble operators in several similar situations. One immediate example is the boundary and coboundary operators with real coefficients. These differ from the operators described above as they include signs according to orientation of the faces, whereas our operators ignore signs. Stanley studied Up and Down operators in numerous combinatorial situations and the most relevant to this work is his definition of sequentially differential posets, which we discuss in Section 1.4.

The Up and Down operators also make an appearance in the Kruskal-Katona theorem. O'Donnell and Wimmer [OW13] related the non-lazy upper and lower random walks (the two random walks are identical) to the Kruskal-Katona theorem, and used this connection to construct an optimal net for monotone Boolean functions.

We are now ready to give our definition of a high-dimensional expander in terms of these walks.
Definition 1.1 (High-Dimensional Expander). Let $\gamma<1$, and let X be a d-dimensional simplicial complex. We say X is a γ-high-dimensional expander (or γ-HDX) if for all $0 \leq i \leq d-1$, the non-lazy upper random walk is γ-similar to the lower random walk in operator norm in the following sense:

$$
\left\|M_{i}^{+}-U_{i-1} D_{i}\right\| \leq \gamma
$$

In the graph case, this coincides with the definition of a γ-two-sided spectral expander: recall that the lower walk on $X(0)$ is by choosing two vertices $v_{1}, v_{2} \in X(0)$ independently. Thus $\left\|M_{i}^{+}-U_{i-1} D_{i}\right\|$ is the second eigenvalue of the adjacency random walk in absolute value. For $i \geq 1$, we cannot expect the upper random walk to be similar to choosing two independent faces in $X(i)$, since the faces always share a common intersection of i elements. Instead, our definition asserts that traversing through a common $(i+1)$-face is similar to traversing through a common $(i-1)$-face.

We show that this new definition is equivalent to the aforementioned definition of two-sided link expanders, thus giving these high-dimensional expanders a new characterization.

Theorem 1.2 (Equivalence between high-dimensional expander definitions). Let X be a d-dimensional simplicial complex.

1. If X is a γ-two-sided link expander then X is a γ-HDX according to the definition we give.
2. If X is a γ-HDX then X is a $3(d+1) \gamma$-two-sided link expander.

Through this characterization of high-dimensional expansion, we decompose real-valued functions $f: X(i) \rightarrow \mathbb{R}$ in an approximately orthogonal decomposition that respects the upper and lower random walk operators.

1.3 Decomposition of functions on $X(i)$

We begin by recalling the classical decomposition of functions over the Boolean hypercube. Every function on the Boolean cube $\{0,1\}^{n}$ has a unique representation as a multilinear polynomial. In the case of the Boolean hypercube, it is convenient to view the domain as $\{1,-1\}^{n}$, in which case the above representation gives the Fourier expansion of the function. The multilinear monomials can be partitioned
into "levels" according to their degree, and this corresponds to an orthogonal decomposition of a function into a sum of its homogeneous parts, $f=\sum_{i=0}^{\operatorname{deg} f} f^{=i}$, a decomposition which is a basic concept in Boolean function analysis.

These concepts have known counterparts for the complete complex, which consists of all subsets of [n] of size at most $d+1$, where $d+1 \leq n / 2$. The facets (top-level faces) of this complex comprise the slice (as it is known to computer scientists) or the Johnson scheme (as it is known to coding theorists), whose spectral theory has been elucidated by Dunkl [Dun76]. For $|t| \leq d+1$, let $y_{t}(s)=1$ if $t \subseteq s$ and $y_{t}(s)=0$ otherwise (these are the analogs of monomials). Every function on the complete complex has a unique representation as a linear combination of monomials $\sum_{t} \tilde{f}(t) y_{t}$ (of various degrees) where the coefficients $\tilde{f}(t)$ satisfy the following harmonicity condition: ${ }^{1}$ for all $i \leq d$ and all $t \in X(i)$,

$$
\sum_{a \in[n] \backslash t} \tilde{f}(t \cup\{a\})=0
$$

(If we identify y_{t} with the product $\prod_{i \in t} x_{i}$ of "variables" x_{i}, then harmonicity of a multilinear polynomial P translates to the condition $\sum_{i=1}^{n} \frac{\partial P}{\partial x_{i}}=0$.) As in the case of the Boolean cube, this unique representation allows us to orthogonally decompose a function into its homogeneous parts (corresponding to the contribution of monomials y_{t} with fixed $|t|$), which plays the same essential part in the complete complex as its counterpart does in the Boolean cube. Moreover, this unique representation allows extending a function from the "slice" to the Boolean cube (which can be viewed as a superset of the "slice"), thus implying further results such as an invariance principle [FKMW18, FM19].

We generalize these concepts for complexes satisfying a technical condition we call properness, which is satisfied when the Markov operators of the upper random walks DU have full rank. This holds for both the complete complex and high-dimensional expanders. We show that the results on unique decomposition for the complete complex hold for arbitrary proper complexes (Theorem 3.2) with a generalized definition of harmonicity which incorporates the distributions Π_{i}. In contrast to the case of the complete complex (and the Boolean cube), in the case of high-dimensional expanders the homogeneous parts are only approximately orthogonal.

The homogeneous components in our decomposition are "approximate eigenfunctions" of the Markov operators defined above, and this allows us to derive an approximate identity relating the total influence (defined through the random walks) to the norms of the components in our decomposition, in complete analogy to the same identity in the Boolean cube (expressing the total influence in terms of the Fourier expansion).

Theorem 1.3 (Decomposition theorem for functions on HDX). Let X be a proper d-dimensional simplicial complex. Every function $f: X(\ell) \rightarrow \mathbb{R}$, for $\ell \leq d$, can be written uniquely as $f=f_{-1}+\cdots+f_{\ell}$ such that:

- f_{i} is a linear combination of the functions $y_{s}(t)=1_{[t \supseteq s]}$ for $s \in X(i)$, i.e. $y_{s}(t)=1$ when $t \supseteq s$.
- Interpreted as a function on $X(i), f_{i}$ lies in the kernel of the Markov operator of the lower random walk UD.

If X is furthermore a γ-high-dimensional expander, then the above decomposition is an almost orthogonal decomposition in the following sense:

- For $i \neq j,\left|\left\langle f_{i}, f_{j}\right\rangle\right| \approx 0$.

[^1]- $\|f\|^{2} \approx\left\|f_{-1}\right\|^{2}+\cdots+\left\|f_{\ell}\right\|^{2}$.
- If $\ell<k$ then $D U f_{i} \approx\left(1-\frac{i+1}{\ell+2}\right) f_{i}$, and in particular $\langle D U f, f\rangle \approx \sum_{i=-1}^{\ell}\left(1-\frac{i+1}{\ell+2}\right)\left\|f_{i}\right\|^{2}$.
(For an exact statement in terms of the dependence of error on γ and d, see Theorem 4.6).
A similar decomposition theorem was, concurrently and independently, proved by Kaufman and Oppenheim [KO20, Theorem 1.5], who gave a decomposition of f into orthogonal components related to the spaces of functions on $X(i)$, and satisfying a similar "nearly eigenvector" equality for the upper walk operator. This decomposition is similar to ours but not identical. Instead of requiring f_{i} to lie in the kernel of the walk $U D$, they take f_{i} to be in the projection of the orthogonal complement of Span $\left\{f_{-1}, \ldots, f_{i-1}\right\}$. As a consequence, their decomposition is perfectly orthogonal and not just approximately orthogonal. On the flip side, the components f_{i} live in slightly less-nicely-defined spaces.

In addition, Kaufman and Oppenhein [KO20, Theorem 1.3] analyze functions on one-sided highdimensional expanders, where they also provide an interesting norm-decomposition instead of an orthogonal decomposition, writing the norm of f as the approximate sum of norms of projections of f to the spaces of functions on $X(j)$. This is interesting especially in light of the fact that one-sided expanders aren't necessarily proper (for example, the complete $(d+1)$-partite simplicial complex is not proper). In particular, there is no known way to write f itself as a sum of components in analogy to Theorem 1.3.

A similar decomposition theorem was, concurrently and independently, proved by Kaufman and Oppenheim [KO20, Theorem 1.3], for one-sided spectral high-dimensional expanders. Our near-orthogonal decomposition holds only for two-sided high-dimensional expanders, while they prove an interesting norm-decomposition instead of an orthogonal decomposition, writing the norm of f as the approximate sum of norms of projections of f to the spaces of functions on $X(j)$. This is interesting especially in light of the fact that one-sided expanders aren't necessarily proper (for example, the complete $(d+1)$-partite simplicial complex is not proper). In particular, there is no known way to write f itself as a sum of components in analogy to Theorem 1.3.

Subsequent to the earlier version of our result [DDFH18], Kaufman and Oppenheim [KO20, Theorem 1.5] extended their decomposition theorem to two-sided high-dimensional expanders. This decomposition is similar to ours but not identical. Similar to our near-orthogonal decomposition, they give a decomposition of f into orthogonal components related to the spaces of functions on $X(i)$, and satisfying a similar "nearly eigenvector" equality for the upper walk operator. Instead of requiring f_{i} to lie in the kernel of the walk $U D$, they take f_{i} to be in the projection of the orthogonal complement of Span $\left\{f_{-1}, \ldots, f_{i-1}\right\}$. As a consequence, their decomposition is perfectly orthogonal and not just approximately orthogonal. On the flip side, the components f_{i} live in slightly less-nicely-defined spaces.

Subsequent to our work, Alev, Jeronimo and Tulsiani [AJT19] used our techniques to analyze more general random walks, which they call swap walks. The same walks were analyzed independetly by different techniques in the work of Dikstein and Dinur [DD19] under the name complement walks.

1.4 Decomposition of posets

The decomposition we suggest in this paper holds for the more general setting of graded partially ordered sets (posets): A finite graded poset (X, \leq, ρ) is a poset (X, \leq) equipped with a rank function $\rho: X \rightarrow\{-1\} \cup \mathbb{N}$ that respects the order, i.e. if $x \leq y$ then $\rho(x) \leq \rho(y)$. Additionally, if y is minimal
with respect to elements that are greater than x (i.e. y covers x), then $\rho(y)=\rho(x)+1$. Denoting $X(i)=$ $\rho^{-1}(i)$, we can partition the poset as follows:

$$
X=X(-1) \cup X(0) \cup \cdots \cup X(d)
$$

We consider graded posets with a unique minimum element $\varnothing \in X(-1)$.
Every simplicial complex is a graded poset. Another notable example is the $\operatorname{Grassmann}$ poset $\mathrm{Gr}_{q}(n, d)$ which consists of all subspaces of F_{q}^{n} of dimension at most $d+1$. The order is the containment relation, and the rank is the dimension minus one, $\rho(W)=\operatorname{dim}(W)-1$. The Grassmann poset was recently studied in the context of proving the 2-to-1 games conjecture [KMS17, DKKMS18a, DKKMS18b, KMS18], where a decomposition of functions of the Grassmann poset was useful. Such a decomposition is a special case of the general decomposition theorem in this paper.

Towards our goal of decomposing functions on graded posets, we generalize the notion of random walks on $X(i)$ as follows: A measured poset is a graded poset with a sequence of measures $\vec{\Pi}=$ $\left(\Pi_{-1}, \ldots, \Pi_{d}\right)$ on the different levels $X(i)$, that allow us to define operators U_{i}, D_{i+1} similar to the simplicial complex case (for a formal definition see Section 8). The upper random walk defined by the composition $D_{i+1} U_{i}$ is the walk where we choose two consecutive $t_{1}, t_{2} \in X(i)$ by choosing $s \in X(i+1)$ and then $t_{1}, t_{2} \leq s$ independently. The lower random walk $U_{i-1} D_{i}$ is the walk where we choose two consecutive $t_{1}, t_{2} \in X(i)$ by choosing $r \in X(i-1)$ and then $t_{1}, t_{2} \geq r$ independently.

Stanley studied a special case of a measured poset that is called a sequentially differential poset [Sta88]. This is a poset where

$$
\begin{equation*}
D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}=0 \tag{1}
\end{equation*}
$$

for all $0 \leq i \leq d$ and some constants $r_{i}, \delta_{i} \in \mathbb{R}$. There are many interesting examples of sequentially differential posets, such as the Grassmann poset and the complete complex. Definition 1.1 of a highdimensional expander resembles an approximate version of this equation: in a simplicial complex, one may check that the non-lazy version is $\frac{i+1}{i+2} M_{+}^{i}=D_{i+1} U_{i}-\frac{1}{i+2} I$. Thus

$$
\left\|M_{i}^{+}-U_{i-1} D_{i}\right\| \leq \gamma
$$

is equivalent to

$$
\left\|D_{i+1} U_{i}-\frac{1}{i+2} I-\frac{i+1}{i+2} U_{i-1} D_{i}\right\| \leq \frac{i+1}{i+2} \gamma
$$

which suggests a relaxation of (1) to an expanding poset (eposet).
Definition 1.4 (Expanding Poset (eposet)). Let $\vec{r}, \vec{\delta} \in \mathbb{R}_{\geq 0}^{k}$, and let $\gamma<1$. We say X is an $(\vec{r}, \vec{\delta}, \gamma)$ expanding poset (or $(\vec{r}, \vec{\delta}, \gamma)$-eposet) if for all $0 \leq i \leq k-1$:

$$
\begin{equation*}
\left\|D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}\right\| \leq \gamma \tag{2}
\end{equation*}
$$

As we can see, γ-HDX is also an $(\vec{r}, \vec{\delta}, \gamma)$-eposet, for $r_{i}=\frac{1}{i+2}, \delta_{i}=\frac{i+1}{i+2}$. In Lemma 8.30 we prove that the converse is also true: every simplicial complex that is an $(\vec{r}, \vec{\delta}, \gamma)$-eposet is an $O(\gamma)$-HDX, under the assumption that the probability $\operatorname{Pr}_{t_{1}, t_{2} \sim U_{i-1} D_{i}}\left[t_{1}=t_{2}\right]$ is small.

It turns out that eposets are the correct setup to generalize our decomposition of simplicial com-
plexes: in all eposets we can uniquely decompose functions $f: X(i) \rightarrow \mathbb{R}$ to

$$
f=\sum_{j=-1}^{i} f^{=j}
$$

where the functions $f=j$ are "approximate eigenvectors" of $D_{i+1} U_{i}$. Furthermore, this decomposition is "approximately orthogonal". Fixing i, the error in both approximations is $O(\gamma)$.

1.5 An FKN theorem

Returning to simplicial complexes, as a demonstration of the power of this setup, we generalize the fundamental result of Friedgut, Kalai, and Naor [FKN02] on Boolean functions almost of degree 1. We view this as a first step toward developing a full-fledged theory of Boolean functions on highdimensional expanders.

An easy exercise shows that a Boolean degree 1 function on the Boolean cube is a dictator, that is, depends on at most one coordinate; we call this the degree one theorem (the easy case of the FKN Theorem with zero-error). The FKN theorem, which is the robust version of this degree one theorem, states that a Boolean function on the Boolean cube which is close to a degree 1 function is in fact close to a dictator, where closeness is measured in L_{2}.

The degree one theorem holds for the complete complex as well. The third author [Fil16a] has extended the FKN theorem to the complete complex. Surprisingly, the class of approximating functions has to be extended beyond just dictators.

We prove a degree one theorem for arbitrary proper complexes, and an FKN theorem for highdimensional expanders. In contrast to the complete complex, Boolean degree 1 functions on arbitrary complexes correspond to independent sets rather than just single points, and this makes the proof of the degree one theorem non-trivial.

Definition 1.5 (1-skeleton). The 1-skeleton of a simplicial complex X is the graph whose vertices are $X(0)$, the 0 -faces of the complex, and whose edges are $X(1)$, the 1 -faces of the complex.

Claim 1.6 (Degree one theorem on simplicial complexes). Suppose that X is a proper d-dimensional simplicial complex, for $d \geq 2$, whose 1 -skeleton is connected. A function $f \in C^{d}$ is a Boolean degree 1 function if and only if there exists an independent set I (in the 1-skeleton) such that f is the indicator of intersecting I or of not intersecting I.

Our proof of the FKN theorem for high-dimensional expanders is very different from existing proofs. It follows the same general plan as recent work on the biased Kindler-Safra theorem [DFH19]. The idea is to view a high-dimensional expander as a convex combination of small sub-complexes, each of which is isomorphic to the complete k-dimensional complex on $O(k)$ vertices. We can then apply the known FKN theorem separately on each of these, and deduce that our function is approximately well-structured on each sub-complex. Finally, we apply the agreement theorem of Dinur and Kaufman [DK17] to show that the same holds on a global level.

Theorem 1.7 (FKN theorem on HDX (informal)). Let X be a d-dimensional γ-HDX. If $F: X(d) \rightarrow\{0,1\}$ is ε-close (in L_{2}^{2}) to a degree 1 function then there exists a degree 1 function g on $X(d)$ such that $\operatorname{Pr}[F \neq g]=$ $O_{\gamma, d}(\varepsilon)$.

Paper organization

We describe our general setup in Section 2. We describe the property of properness and its implications - a unique representation theorem and decomposition of functions into homogeneous parts in Section 3. We introduce our definition of high-dimensional expanders in Section 4. In Section 5 we show equivalence between our definition and the earlier one of two-sided link expanders. We prove our degree one theorem in Section 6, and our FKN theorem in Section 7.

In Section 8 we define expanding posets, and through them prove that the decomposition in Theorem 3.2 is almost orthogonal. We also show that expanding posets that are simplicial complexes, are in fact high-dimensional expanders. Theorem 4.6 summarizes these results for simplicial complexes.

Theorem 1.3 is a combination of Theorem 3.2 (first two items) and Theorem 4.6 (other three items). Theorem 1.2 is a restatement of Theorem 5.5. Claim 1.6 is a restatement of Theorem 6.2. Theorem 1.7 is a restatement of Theorem 7.3.

2 Basic setup

A d-dimensional simplicial complex X is a non-empty collection of sets of size at most $d+1$ which is closed under taking subsets. We call a set of size $i+1$ an i-dimensional face (or i-face for short), and denote the collection of all i-faces by $X(i)$. A d-dimensional simplicial complex X is pure if every i-face is a subset of some d-face. We will only be interested in pure simplicial complexes.

Let X be a pure d-dimensional simplicial complex. Given a probability distribution Π_{d} on its topdimensional faces $X(d)$, for each $i<d$ we define a distribution Π_{i} on the i-faces using the following experiment: choose a top-dimensional face according to Π_{d}, and remove $d-i$ points at random. We can couple all of these distributions to a random vector $\vec{\Pi}=\left(\Pi_{d}, \ldots, \Pi_{-1}\right)$ of which the individual distributions are marginals.

Let $C^{i}:=\{f: X(i) \rightarrow \mathbb{R}\}$ be the space of functions on $X(i)$. It is convenient to define $X(-1):=\{\varnothing\}$, and we also let $C^{-1}:=\mathbb{R}$. We turn C^{i} to an inner product space by defining $\langle f, g\rangle:=\mathbb{E}_{\Pi_{i}}[f g]$ and the associated norm $\|f\|^{2}:=\mathbb{E}_{\Pi_{i}}\left[f^{2}\right]$.

For $-1 \leq i<d$, we define the $\mathbf{U p}$ operator $U_{i}: C^{i} \rightarrow C^{i+1}$ as follows: ${ }^{2}$

$$
U_{i} g(s):=\frac{1}{i+2} \sum_{x \in s} g(s \backslash\{x\})=\underset{t \subset s}{\mathbb{E}}[g(t)]
$$

where t is obtained from s by removing a random element. Note that if $s \sim \Pi_{i+1}$ then $t \sim \Pi_{i}$.
Similarly, we define the Down operator $D_{i+1}: C^{i+1} \rightarrow C^{i}$ for $-1 \leq i<d$ as follows:

$$
D_{i+1} f(t):=\frac{1}{(i+2) \cdot \Pi_{i}(t)} \sum_{x \notin t: t \cup\{x\} \in X(i+1)} \Pi_{i+1}(t \cup\{x\}) \cdot f(t \cup\{x\})=\underset{s \supset t}{\mathbb{E}}[f(s)],
$$

where s is obtained from t by conditioning the vector $\vec{\Pi}$ on $\Pi_{i}=t$ and taking the $(i+1)$ th component.
The operators U_{i}, D_{i+1} are adjoint to each other. Indeed, if $f \in C^{i+1}$ and $g \in C^{i}$ then

$$
\left\langle g, D_{i+1} f\right\rangle=\underset{(t, s) \sim\left(\Pi_{i}, \Pi_{i+1}\right)}{\mathbb{E}}[g(t) f(s)]=\left\langle U_{i} g, f\right\rangle .
$$

[^2]When the domain is understood, we will use U, D instead of U_{i}, D_{i+1}. This will be especially useful when considering powers of U, D. For example, if $f: X(i) \rightarrow \mathbb{R}$ then

$$
U^{t} f \equiv U_{i+t-1} \ldots U_{i+1} U_{i} f
$$

Given a face $s \in X$, the function y_{s} is the indicator function of containing s. Our definition of the Up operator guarantees the correctness of the following lemma.

Lemma 2.1. Let $s \in X(i)$. We can think of y_{s} as a function in C^{j} for all $j \geq i$. Using this convention, $U_{j} y_{s}=\left(1-\frac{i+1}{j+2}\right) y_{s}$.

Proof. Direct calculation shows that

$$
\left(U_{j} y_{s}\right)(t)=\frac{1}{j+2} \sum_{x \in t} y_{s}(t \backslash\{x\})=\frac{|t|-|s|}{j+2} y_{s}(t),
$$

and so $U_{j} y_{s}=\left(1-\frac{i+1}{j+2}\right) y_{s}$.
For $0 \leq i \leq k$, the space of harmonic functions on $X(i)$ is defined as

$$
H^{i}:=\operatorname{ker} D_{i}=\left\{f \in C^{i}: D_{i} f=0\right\}
$$

We also define $H^{-1}:=C^{-1}=\mathbb{R}$. We are interested in decomposing C^{k}, so let us define for each $-1 \leq i \leq k$,

$$
V^{i}:=U^{k-i} H^{i}=\left\{U^{k-i} f: f \in H^{i}\right\}
$$

We can describe V^{i}, a sub-class of functions of C^{k}, in more concrete terms.
Lemma 2.2. Every function $h \in V^{i}$ has a representation of the form

$$
h=\sum_{s \in X(i)} \tilde{h}(s) y_{s},
$$

where the coefficients $\tilde{h}(s)$ satisfy the following harmonicity condition: for all $t \in X(i-1)$,

$$
\sum_{s \supset t} \Pi_{i}(s) \tilde{h}(s)=0
$$

Furthermore, if U^{k-i} is injective on C^{i} then the representation is unique.
Proof. Suppose that $h \in V^{i}$. Then $h=U^{k-i} f$ for some $f \in H^{i}$, which by definition of H^{i} and the Down operator is equivalent to the condition

$$
\sum_{s \supset t} \Pi_{i}(s) f(s)=0
$$

for all $t \in X(i-1)$. In other words, the $f(s)$'s satisfy the harmonicity condition. It is easy to check that $f=\sum_{s \in X(i)} f(s) y_{s}$, and so Lemma 2.1 shows that $h=\sum_{s \in X(i)} \tilde{h}(s) y_{s}$, where

$$
\tilde{h}(s)=\left(1-\frac{i+1}{k+1}\right) \cdots\left(1-\frac{i+1}{i+2}\right) f(s) .
$$

Thus, $\tilde{h}(s)$ is a scaling of $f(s)$ by a non-zero constant, it follows that the coefficients $\tilde{h}(s)$ also satisfy the harmonicity condition.

Now suppose that U^{k-i} is injective on C^{i}, which implies that $\operatorname{dim} H^{i}=\operatorname{dim} V^{i}$. The foregoing shows that the dimension of the space of coefficients $\tilde{h}(s)$ satisfying the harmonicity conditions is dim H^{i}. Since $\operatorname{dim} H^{i}=\operatorname{dim} V^{i}$, this shows that the representation is unique.

3 Decomposition of the space C^{k} and a convenient basis

Our decomposition theorem relies on a crucial property of simplicial complexes, properness.
Definition 3.1. $A k$-dimensional simplicial complex is proper if $D_{i+1} U_{i}>0$ (i.e. $D_{i+1} U_{i}$ is positive definite) for all $i \leq k-1$. Equivalently, if it is pure and $\operatorname{ker} U_{i}$ is trivial for $-1 \leq i \leq k-1$.

We remark that since $D U$ is PSD, $\operatorname{ker} U=0$ is equivalent to $D U>0$. This is because for any $x \in \operatorname{ker} D U$, we would have $0=\langle x, D U x\rangle=\|U x\|^{2}$, implying that $x=0$.

The complete k-dimensional complex on n points is proper iff $k+1 \leq \frac{n+1}{2}$. A pure one-dimensional simplicial complex (i.e., a graph) is proper iff it is not bipartite. Unfortunately, we are not aware of a similar characterization for higher dimensions. However, in Section 5 we show that high-dimensional expanders are proper.

We can now state our decomposition theorem.
Theorem 3.2. If X is a proper k-dimensional simplicial complex then we have the following decomposition of C^{k} :

$$
C^{k}=V^{k} \oplus V^{k-1} \oplus \cdots \oplus V^{-1}
$$

In other words, for every function $f \in C^{k}$ there is a unique choice of $h_{i} \in H^{i}$ such that the functions $f_{i}=U^{k-i} h_{i}$ satisfy $f=f_{-1}+f_{0}+\cdots+f_{k}$.

Proof. We first prove by induction on ℓ that every function $f \in C^{\ell}$ has a representation $f=\sum_{i=-1}^{\ell} U^{\ell-i} h_{i}$, where $h_{i} \in H^{i}$. This trivially holds when $\ell=-1$. Suppose now that the claim holds for some $\ell<k$, and let $f \in C^{\ell+1}$. Since $D^{\ell+1}: C^{\ell+1} \rightarrow C^{\ell}$ is a linear operator, we have $C^{\ell+1}=\operatorname{ker} D_{\ell+1} \oplus \operatorname{im} D_{\ell+1}^{*}=$ $\operatorname{ker} D_{\ell+1} \oplus \operatorname{im} U_{\ell}$, and therefore we can write $f=h_{\ell+1}+U g$, where $h_{\ell+1} \in H^{\ell+1}$ and $g \in C^{\ell}$. Applying induction, we get that $g=\sum_{i=-1}^{\ell} U^{\ell-i} h_{i}$, where $h_{i} \in H^{i}$. Substituting this in $f=h_{\ell+1}+U g$ completes the proof.

It remains to show that the representation is unique. Since $\operatorname{ker} U_{i-1}=\operatorname{ker} D_{i}^{*}$ is trivial, $\operatorname{dim} H^{i}=$ $\operatorname{dim} C^{i}-\operatorname{dim} C^{i-1}$ for $i \geq 0$. This shows that $\sum_{i=-1}^{k} \operatorname{dim} H^{i}=\operatorname{dim} C^{k}$. Therefore the operator $\varphi: H^{-1} \times$ $\cdots \times H^{k} \rightarrow C^{k}$ given by $\varphi\left(h_{-1}, \ldots, h_{k}\right)=\sum_{i=-1}^{k} U^{k-i} h_{i}$ is not only surjective but also injective. In other words, the representation of f is unique.

Corollary 3.3. If X is a proper k-dimensional simplicial complex then every function $f \in C^{k}$ has a unique representation of the form

$$
f=\sum_{s \in X} \tilde{f}(s) y_{s}
$$

where the coefficients $\tilde{f}(s)$ satisfy the following harmonicity conditions: for all $0 \leq i \leq k$ and all $t \in X(i-1)$:

$$
\sum_{\substack{s \in X(i) \\ s \supset t}} \Pi_{i}(s) \tilde{f}(s)=0
$$

Proof. Follows directly from Lemma 2.2.

We can now define the degree of a function.
Definition 3.4. The degree of a function f is the maximal cardinality of a face s such that $\tilde{f}(s) \neq 0$ in the unique decomposition given by Corollary 3.3.

Thus a function has degree d if its decomposition only involves faces whose dimension is less than d. The following lemma shows that the functions y_{s}, for all $(d-1)$-dimensional faces s, form a basis for the space of all functions of degree at most d.

Lemma 3.5. If X is a proper k-dimensional simplicial complex then the space of functions on $X(k)$ of degree at most $d+1$ has the functions $\left\{y_{s}: s \in X(d)\right\}$ as a basis.

Proof. The space of functions on $X(k)$ of degree at most $d+1$ is spanned, by definition, by the functions y_{t} for $t \in X(-1) \cup X(0) \cup \cdots \cup X(d)$. This space has dimension $\sum_{i=-1}^{d} \operatorname{dim} H^{i}$. Since X is proper, $\operatorname{dim} H^{i}=\operatorname{dim} C^{i}-\operatorname{dim} C^{i-1}$ for $i>0$, and so $\sum_{i=1}^{d} \operatorname{dim} H^{i}=\operatorname{dim} C^{d}=|X(d)|$.

Given the above, in order to complete the proof, it suffices to show that for every $i \leq d$ and $t \in X(i)$, the function y_{t} can be written as a linear combination of y_{s} for $s \in X(d)$. This shows that $\left\{y_{s}: s \in X(d)\right\}$ spans the space of functions of degree at most $d+1$. Since this set contains $|X(d)|$ functions, it forms a basis.

Recall that $y_{t}(r)=1_{r \supseteq t}$, where $r \in X(k)$. If r contains t then it contains exactly $\binom{k+1-|t|}{d+1-|t|}$ many d-faces containing r, and so

$$
y_{t}=\frac{1}{\binom{k+1-|t|}{d+1-|t|}} \sum_{\substack{s \supset \supset \\ s \in \bar{X}(d)}} y_{s}
$$

This completes the proof.
We call f_{i} the "level i " part of f, and denote the weight of f above level i by

$$
w t_{>i}(f):=\sum_{j>i}\left\|f_{j}\right\|_{2}^{2}
$$

We also define $f_{\leq i}=f_{-1}+\cdots+f_{i}$ and $f_{>i}=f-f_{\leq i}$.

4 How to define high-dimensional expansion?

In this section we define a class of simplicial complexes which we call γ-high-dimensional expanders (or γ-HDXs). We later show that these simplicial complexes coincide with the high-dimensional expanders defined by Dinur and Kaufman [DK17] via spectral expansion of the links. In addition, we show the decomposition in Section 3 is almost orthogonal for γ-HDXs. We define γ-HDXs through relations between random walks in different dimensions. It is easy to already state the definition using the U, D operators: a k-dimensional simplicial complex is said to be a γ-HDX if for all levels $0 \leq j \leq k-1$,

$$
\begin{equation*}
\left\|\frac{j+2}{j+1}\left(D U-\frac{1}{j+2} I\right)-U D\right\| \leq \gamma \tag{3}
\end{equation*}
$$

We turn to explain the meaning of (3) being small by discussing these random walks. ${ }^{3}$

[^3]The operators U and D induce random walks on the j th level $X(j)$ of the simplicial complex. Recall that our simplicial complexes come with distributions Π_{j} on the j-faces.

Definition 4.1 (The upper random walk $D U$). Given $t \in X(j)$, we choose the next set $t^{\prime} \in X(j)$ as follows:

- Choose s $\sim \Pi_{j+1}$ conditioned on $t \subset s$.
- Choose uniformly at random $t^{\prime} \in X(j)$ such that $t^{\prime} \subset s$.

Definition 4.2 (The lower random walk $U D$). Given $t \in X(j)$, we choose the next set $t^{\prime} \in X(j)$ as follows:

- Choose $t \sim \Pi_{j}$.
- Choose uniformly at random $r \in X(j-1)$ such that $r \subset t$.
- Choose $t^{\prime} \sim \Pi_{j}$ conditioned on $r \subset t^{\prime}$.

It is easy to see that the stationary distribution for both these processes is Π_{j}. However, these random walks are not necessarily the same. For example, if $j=0$, we consider the graph $(X(0), X(1))$. The upper walk is the $\frac{1}{2}$-lazy version of the usual adjacency random walk in a graph. The lower random walk is simply choosing two vertices independently, according the distribution Π_{0}. In both walks, the first step and the third step are independent given the second step. In fact, we can view the upper walk (resp. lower walk) as choosing a set $s \in X(j+1)$ (resp. $r \in X(j-1)$), and then choosing independently two sets $t, t^{\prime} \in X(j)$ given that they are contained in s (resp. given that they contain r).

One property of a random walk is its laziness:
Definition 4.3 (Laziness and non-lazy component). Let M be a random walk. The laziness of M is

$$
\ell z(M)=\operatorname{Pr}_{(x, y) \sim M}[x=y] .
$$

We say that an operator is non-lazy if $\ell z(M)=0$.
The non-lazy component M^{+}of a walk M is given by

$$
M^{+}(x, y)= \begin{cases}\frac{M(x, y)}{\sum_{y^{\prime} \neq x} M\left(x, y^{\prime}\right)} & \text { if } y \neq x \\ 0 & \text { if } y=0\end{cases}
$$

It is easy to see that both walks have some laziness. In the upper walk, the laziness is $\frac{1}{j+2}$. We can decompose $D U$ as

$$
\begin{equation*}
D U=\frac{1}{j+2} I+\frac{j+1}{j+2} M_{j}^{+}, \tag{4}
\end{equation*}
$$

where M_{j}^{+}is the non-lazy version of $D U$, i.e. the operator representing the walk when conditioning on $t^{\prime} \neq t$. The laziness of the lower version depends on the simplicial complex itself, thus it doesn't admit a simple decomposition in the general case.
(4) can be written as

$$
M_{j}^{+}=\frac{j+2}{j+1}\left(D U-\frac{1}{j+2} I\right)
$$

A γ-HDX is a simplicial complex in which the non-lazy upper walk is similar to the lower walk. Thus an equivalent way to state (3) is as follows.

Definition 4.4 (High-dimensional expander). Let X be a simplicial complex, and let $\gamma<1$. We say that X is a γ-HDX if for all $0 \leq j \leq k-1$,

$$
\begin{equation*}
\left\|M_{j}^{+}-U D\right\| \leq \gamma \tag{5}
\end{equation*}
$$

This definition nicely generalizes spectral expansion in graphs, since if X is a graph, $\left\|M_{j}^{+}-U D\right\|$ is the second largest eigenvalue (in absolute value) of the normalized adjacency random walk. In Section 5 we show that this definition is equivalent to the definition of high-dimensional two-sided local spectral expanders that was extensively studied [DK17, Opp18].

If $\gamma<\frac{1}{k+1}$ then any γ-HDX is proper, as shown by the following lemma.
Lemma 4.5. Let X be a k-dimensional γ-HDX, for $\gamma<\frac{1}{k+1}$. Then X is proper.
Proof. To prove this, we directly calculate $\left\langle U_{j} f, U_{j} f\right\rangle$ and show that it is positive when $f \neq 0$:

$$
\begin{align*}
\langle U f, U f\rangle & =\langle D U f, f\rangle=\frac{1}{j+2}\langle f, f\rangle+\frac{j+1}{j+2}\left\langle M_{j}^{+} f, f\right\rangle \\
& =\frac{1}{j+2}\langle f, f\rangle+\frac{j+1}{j+2}\left\langle\left(M_{j}^{+}-U D+U D\right) f, f\right\rangle \tag{6}
\end{align*}
$$

From Cauchy-Schwartz,

$$
\left|\left\langle\left(M_{j}^{+}-U D\right) f, f\right\rangle\right| \leq\left\|\left(M_{j}^{+}-U D\right) f\right\|\|f\|,
$$

and since X is a γ-HDX,

$$
\left\|\left(M_{j}^{+}-U D\right) f\right\| \leq \gamma\|f\|
$$

Plugging this in (6), we get

$$
\frac{1}{j+2}\langle f, f\rangle+\frac{j+1}{j+2}\left\langle\left(M_{j}^{+}-U D+U D\right) f, f\right\rangle \geq\left(\frac{1}{j+2}-\frac{j+1}{j+2} \gamma\right)\langle f, f\rangle+\langle U D f, f\rangle
$$

The last part of the sum is non-negative: $\langle U D f, f\rangle=\langle D f, D f\rangle \geq 0$. Therefore, if $\gamma<\frac{1}{k+1} \leq \frac{1}{j+1}$ then

$$
\left(\frac{1}{j+2}-\frac{j+1}{j+2} \gamma\right)\langle f, f\rangle+\langle D U f, f\rangle \geq\left(\frac{1}{j+2}-\frac{j+1}{j+2} \gamma\right)\langle f, f\rangle>0
$$

Hence $\left\langle U_{j} f, U_{j} f\right\rangle>0$.

4.1 Almost orthogonality of the decomposition in HDXs

In Section 8 we prove that the decomposition in Theorem 3.2 is "almost orthogonal". We summarize our results below:

Theorem 4.6. Let X be a k-dimensional γ-HDX, where γ is small enough as a function of k. For every function f on C^{ℓ} for $\ell \leq k$, the decomposition $f=f_{-1}+\cdots+f_{\ell}$ of Theorem 3.2 satisfies the following properties:

- For $i \neq j,\left|\left\langle f_{i}, f_{j}\right\rangle\right|=O(\gamma)\left\|f_{i}\right\|\left\|f_{j}\right\|$.
- $\|f\|^{2}=(1 \pm O(\gamma))\left(\left\|f_{-1}\right\|^{2}+\cdots+\left\|f_{\ell}\right\|^{2}\right)$, and for all $i,\|f\|^{2}=(1 \pm O(\gamma))\left(\left\|f_{\leq i}\right\|^{2}+\left\|f_{>i}\right\|^{2}\right)$.
- f_{i} are approximate eigenvectors with eigenvalues $\lambda_{i}=1-\frac{i+1}{\ell+2}$ in the sense that $\left\|D U f_{i}-\left(1-\frac{i+1}{\ell+2}\right) f_{i}\right\|=$ $O(\gamma)\left\|f_{i}\right\|$.
- If $\ell<k$ then $\langle D U f, f\rangle=(1 \pm O(\gamma)) \sum_{i=-1}^{\ell} \lambda_{i}\left\|f_{i}\right\|^{2}$.
- If $\gamma<\frac{1}{k+1}$ then X is proper.

The hidden constants in the O notations depend only on k (and not on the size of X).
This result is analogous to a similar result [KO20, Theorem 5.2] due to Kaufman and Oppenheim, in which a similar decomposition is obtained. However, whereas our decomposition is to functions f_{-1}, \ldots, f_{ℓ} in C^{ℓ}, the decomposition of Kaufman and Oppenheim [KO20] is to functions h_{-1}, \ldots, h_{ℓ}, which live in different spaces. We further expand on the matter in Section 8.5.

5 High-dimensional expanders are two-sided link expanders

In Section 4 we defined γ-HDXs, see Definition 4.4. Earlier works, [EK16, DK17, KO20] for example, gave a different definition of high-dimensional expanders - two-sided link expanders - based on the local link structure. We recall this other definition and prove that the two are equivalent.

Definition 5.1 (Link). Let X be a d-dimensional complex with an associated probability distribution Π_{d} on $X(d)$, which induces probability distributions on $X(-1), \ldots, X(d-1)$. For every i-dimensional face $s \in X(i)$ for $i<d-1$, the link of s, denoted X_{s}, is the simplicial complex:

$$
X_{s}=\{r \backslash s: r \in X, r \supset s\} .
$$

We associate X_{s} with the weights $\vec{\Pi}^{s}$ such that

$$
\Pi_{j}^{s}(t):=\operatorname{Pr}_{r \sim \Pi_{i+j+1}}[r=s \cup t \mid r \supset s]=\frac{\Pi(s \cup t)}{\Pi(s)\binom{|s \cup t|}{|s|}}
$$

Definition 5.2 (Underlying graph). Let $i<d-1$. Given $s \in X(i)$, the underlying graph G_{s} is the weighted graph consisting of the first two levels of the link of s. In other words, $G_{s}=(V, E)$, where

- $V=X_{s}(0)=\{x \notin s: s \cup\{x\} \in X(i+1)\}$.
- $E=X_{s}(1)=\{\{x, y\}: s \cup\{x, y\} \in X(i+2)\}$.

The weights on the edges are given by

$$
w_{s}(\{x, y\})=\operatorname{Pr}_{r \sim \Pi_{i+2}}[r=s \cup\{x, y\} \mid r \supset s]=\frac{\Pi(s \cup\{x, y\})}{\Pi(s)\binom{|s|+2}{|s|}} .
$$

We can also consider directed edges, by choosing a random orientation:

$$
w_{s}(x, y)=\frac{1}{2} w_{s}(\{x, y\})
$$

We define the weight of a vertex x to

$$
w_{s}(x):=\Pi_{0}^{s}(x)=\operatorname{Pr}_{r \sim \Pi_{i+1}}[r=s \cup\{x\} \mid r \supset s]=\frac{\Pi(s \cup\{x\})}{\Pi(s)(|s|+1)} .
$$

We define an inner product for functions on vertices along the lines of Section 2:

$$
\langle f, g\rangle:=\underset{x \sim w_{s}}{\mathbb{E}}[f(x) g(x)] .
$$

We denote by A_{s} the adjacency operator of the non-lazy upper-walk on $X_{s}(0)$, given by

$$
A_{s} f(x)=\underset{y \sim w_{s}}{\mathbb{E}}[f(y) \mid\{x, y\} \in E] .
$$

The corresponding quadratic form is

$$
\left\langle f, A_{s} g\right\rangle=\underset{(x, y) \sim w_{s}}{\mathbb{E}}[f(x) g(y)] .
$$

By definition, A_{s} fixes constant functions, and is a Markov operator. It is self-adjoint with respect to the inner product above. Thus A_{s} has eigenvalues $\lambda_{1}=1 \geq \lambda_{2} \geq \ldots \geq \lambda_{m}$, where m is the number of vertices. We define $\lambda\left(A_{s}\right)=\max \left(\left|\lambda_{2}\right|,\left|\lambda_{m}\right|\right)$. Orthogonality of eigenspaces guarantees that

$$
\begin{equation*}
\left|\left\langle f, A_{s} g\right\rangle-\mathbb{E}[f] \mathbb{E}[g]\right| \leq \lambda\left(A_{s}\right)\|f\|\|g\| \tag{7}
\end{equation*}
$$

Definition 5.3 (Two-sided link expander). Let X be a simplicial complex, and let $\gamma<1$ be some constant. We say that X is a γ-two-sided link expander (called γ-HD expander in some works [DK17]) if every link X_{s} of X satisfies $\lambda\left(A_{s}\right) \leq \gamma$.

Dinur and Kaufman [DK17] proved that such expanders do exist, based on a result of Lubotzky, Samuels and Vishne [LSV05a].

Theorem 5.4 ([DK17, Lemma 1.5]). For every $\lambda>0$ and every $d \in \mathbb{N}$ there exists an explicit infinite family of bounded degree d-dimensional complexes which are λ-two-sided link expanders.

We now prove that two-sided link expanders per Definition 5.3 and high-dimensional expanders per Definition 4.4 are equivalent.

Theorem 5.5 (Equivalence theorem). Let X be a d-dimensional simplicial complex.

1. If X is a γ-two-sided link expander, then X is a γ-HDX.
2. If X is a γ-HDX then X is a $3 d \gamma$-two-sided link expander.

Proof. Item 1. Assume that X is a γ-two-sided link expander. We need to show that

$$
\left\|M_{i}^{+}-U D\right\| \leq \gamma
$$

for all $i<d$, where M_{i}^{+}is the non-lazy upper walk. Let f be a function on $X(i)$, where $i<d$. We have

$$
\left\langle M_{i}^{+} f, f\right\rangle=\underset{t \sim \Pi_{i+1}}{\mathbb{E}} \underset{x \neq y \in t}{\mathbb{E}}[f(t \backslash\{x\}) f(t \backslash\{y\}] .
$$

Let $s=t \backslash\{x, y\}$. Since $t \sim \Pi_{i+1}$ and $x \neq y \in t$ are chosen at random, we have $s \sim \Pi_{i-1}$. Given such an s, the probability to get specific (t, x, y) is exactly $w_{s}(x, y)$ (the factor $1 / 2$ accounts for the relative order of x, y), and so

$$
\begin{equation*}
\left\langle M_{i}^{+} f, f\right\rangle=\underset{s \sim \Pi_{i-1}}{\mathbb{E}} \underset{(x, y) \sim w_{s}}{\mathbb{E}}[f(s \cup\{x\}) f(s \cup\{y\})] \tag{8}
\end{equation*}
$$

In other words, we have shown that

$$
\begin{equation*}
\left\langle M_{i}^{+} f, f\right\rangle=\underset{s \sim \Pi_{i-1}}{\mathbb{E}}\left[\left\langle A_{s} f_{s}, f_{s}\right\rangle\right], \tag{9}
\end{equation*}
$$

where $f_{s}: X_{s}(0) \rightarrow \mathbb{R}$ is defined by

$$
f_{s}(x)=f(s \cup\{x\})
$$

We now note that

$$
\underset{x \sim w_{s}}{\mathbb{E}}[f(s \cup\{x\})]=(D f)(s)
$$

Therefore we have, by (7), that

$$
\begin{aligned}
\left|\left\langle M_{i}^{+} f, f\right\rangle-\langle U D f, f\rangle\right|=\left|\underset{s \sim \Pi_{i-1}}{\mathbb{E}} \underset{(x, y) \sim w_{s}}{\mathbb{E}}[f(s \cup\{x\}) f(s \cup\{y\})]-(D f)(s)^{2}\right| \leq \\
\underset{s \sim \prod_{i-1}}{\mathbb{E}}\left[\lambda\left(A_{s}\right) \underset{x \sim w_{s}}{\mathbb{E}}\left[f(s \cup\{x\})^{2}\right]\right] .
\end{aligned}
$$

If X is a γ-two-sided link expander then $\lambda\left(A_{s}\right) \leq \gamma$ for all s, and so

$$
\left|\left\langle\left(M_{i}^{+}-U D\right) f, f\right\rangle\right| \leq \gamma\|f\|^{2} .
$$

Item 2. Assume now that X is a γ-HDX. Our goal is to show that for all $i<d-1$ and $r \in X(i)$,

$$
\lambda\left(A_{r}\right) \leq 3(i+2) \gamma
$$

Using the convention that $X(-1)$ consists of the empty set, for $i=-1$ we have $A_{\varnothing}=M_{0}^{+}$, and so $U_{-1} D_{0}$ is zero on the space perpendicular to the constant function. Thus

$$
\left\|M_{0}^{+}-U D\right\|=\lambda\left(A_{\varnothing}\right)
$$

and from our assumption $\lambda\left(A_{\varnothing}\right) \leq \gamma$.
Now assume $1 \leq i \leq d-1$, and fix some $r \in X(i-1)$. Let $f: X_{r}(0) \rightarrow \mathbb{R}$ be some eigenfunction of A_{r}, which is perpendicular to the constant function. In order to prove the theorem, we must show that

$$
\left|\frac{\left\langle A_{r} f, f\right\rangle}{\langle f, f\rangle}\right| \leq 3(i+1) \gamma
$$

Define a function $\tilde{f} \in C^{i}$ by

$$
\tilde{f}(s)= \begin{cases}f(s \backslash r) & \text { if } r \subset s \\ 0 & \text { otherwise }\end{cases}
$$

Without loss of generality, we may assume that $\|\tilde{f}\|=1$.
In order to obtain a bound on $\lambda\left(A_{r}\right)$, we bound $\langle\tilde{f}, \tilde{f}\rangle,\left\langle M_{i}^{+} \tilde{f}, \tilde{f}\right\rangle$, and $\langle U D \tilde{f}, \tilde{f}\rangle$ in terms of f and A_{r}.
Observe that the norms of f and \tilde{f} are proportional:

$$
\begin{equation*}
\langle f, f\rangle=\frac{\langle\tilde{f}, \tilde{f}\rangle}{\Pi_{i-1}(r)(i+1)}=\frac{1}{\Pi_{i-1}(r)(i+1)} \tag{10}
\end{equation*}
$$

Furthermore, from what we showed in (9) we obtain that

$$
\left\langle M_{i}^{+} \tilde{f}, \tilde{f}\right\rangle=\underset{r^{\prime} \in X(i-1)}{\mathbb{E}}\left[\left\langle A_{r^{\prime}} \tilde{f}_{r^{\prime}}, \tilde{f}_{r^{\prime}}\right\rangle\right],
$$

where $\tilde{f}_{r^{\prime}}(x)=\tilde{f}\left(r^{\prime} \cup\{x\}\right)$.
Fix some $r^{\prime} \neq r$. If $\tilde{f}_{r^{\prime}}(x) \neq 0$ then $\tilde{f}\left(r^{\prime} \cup\{x\}\right) \neq 0$. In particular, this means that $r \subset r^{\prime} \cup\{x\}$. Since both r, r^{\prime} are contained in $r^{\prime} \cup\{x\}$, this means that $r^{\prime} \backslash r=\{x\}$. Thus there is at most one vertex $x \in X_{r^{\prime}}(0)$ such that $\tilde{f}_{r^{\prime}}(x) \neq 0$. Since $A_{r^{\prime}}$ is a non-lazy operator, this implies that $\left\langle A_{r^{\prime}} \tilde{f}_{r^{\prime}}, \tilde{f}_{r}^{\prime}\right\rangle=0$. We remain with

$$
\begin{equation*}
\left\langle M_{i}^{+} \tilde{f}, \tilde{f}\right\rangle=\Pi_{i-1}(r)\left\langle A_{r} f, f\right\rangle . \tag{11}
\end{equation*}
$$

In other words, the upper non-lazy random walk is proportional to the local adjacency operator.
We prove the following claim, which shows that the lower walk scales \tilde{f} by a factor of at most $\frac{i+1}{i} \gamma$:
Claim 5.6. If $f: X_{r}(0) \rightarrow \mathbb{R}$ is perpendicular to constant functions then $\left|\left\langle U_{i-1} D_{i} \tilde{f}, \tilde{f}\right\rangle\right| \leq \frac{i+1}{i} \gamma$.
Assuming the above:

$$
\begin{aligned}
& \left|\frac{\left\langle A_{r} f, f\right\rangle}{\langle f, f\rangle}\right|=\left|(i+1) \Pi_{i-1}(r)\left\langle A_{r} f, f\right\rangle\right|=(i+1)\left|\left\langle M_{i}^{+} \tilde{f}, \tilde{f}\right\rangle\right| \leq \\
& \quad(i+1)\left|\left\langle\left(M_{i}^{+}-U_{i-1} D_{i}\right) \tilde{f}, \tilde{f}\right\rangle\right|+(i+1)\left|\left\langle U_{i-1} D_{i} \tilde{f}, \tilde{f}\right\rangle\right| \leq(i+1)\left(1+\frac{i+1}{i}\right) \gamma \leq 3(i+1) \gamma,
\end{aligned}
$$

where the equalities in the first line use (10) and (11), and the inequalities in the second line use Claim 5.6, our assumption that $\left\|M_{i}^{+}-U_{i-1} D_{i}\right\| \leq \gamma$, and the triangle inequality.

We complete the proof of Theorem 5.5 by proving Claim 5.6:
Proof of Claim 5.6. Since $U D$ is PSD, we have $\left\langle U_{i-1} D_{i} \tilde{f}, \tilde{f}\right\rangle \geq 0$, and so we may remove the absolute value and prove

$$
\left\langle U_{i-1} D_{i} \tilde{f}, \tilde{f}\right\rangle \leq \frac{i+1}{i} \gamma
$$

Consider the inner product $\left\langle D_{i} \tilde{f}, D_{i} \tilde{f}\right\rangle$ - this is the expectation upon choosing $r^{\prime} \sim \Pi_{i-1}$, and then choosing two i-faces $s_{1}, s_{2} \in X(i)$ containing it independently. Hence we decompose to the cases where $r^{\prime}=r$ and $r^{\prime} \neq r$:

$$
\begin{gather*}
\left\langle D_{i} \tilde{f}, D_{i} \tilde{f}\right\rangle=\underset{\left(r^{\prime}, s_{1}, s_{2}\right)}{\mathbb{E}}\left[f\left(s_{1}\right) f\left(s_{2}\right)\right]= \\
\Pi_{i-1}(r) \underset{\left(r^{\prime}, s_{1}, s_{2}\right)}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right) \tilde{f}\left(s_{2}\right) \mid r^{\prime}=r\right]+\left(1-\Pi_{i-1}(r)\right) \underset{\left(r^{\prime}, s_{1}, s_{2}\right)}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right) \tilde{f}\left(s_{2}\right) \mid r^{\prime} \neq r\right] . \tag{12}
\end{gather*}
$$

The first term is 0 , since from independence of s_{1}, s_{2} :

$$
\underset{\left(r^{\prime}, s_{1}, s_{2}\right)}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right) \tilde{f}\left(s_{2}\right) \mid r^{\prime}=r\right]=\underset{s_{1}}{\mathbb{E}}\left[f\left(s_{1}\right) \mid r \subset s_{1}\right]^{2}=0
$$

since by assumption f is perpendicular to constant functions.
We saw above that for any $r^{\prime} \neq r$, there is at most one i-face containing r^{\prime} (which is $s=r \cup r^{\prime}$) such that $\tilde{f}(s) \neq 0$. For any $r^{\prime} \neq r$, the value $\tilde{f}\left(s_{1}\right) \tilde{f}\left(s_{2}\right)$ is non-zero only when $s_{1}=s_{2}=r \cup r^{\prime}$. For every
$s_{1} \in X(i)$, we define the event $E_{s_{1}}$ to hold when $s_{2}=s_{1}$. Then

$$
(12)=\left(1-\Pi_{i-1}(r)\right) \underset{s_{1}}{\mathbb{E}}\left[\tilde{f}^{2}\left(s_{1}\right) \underset{r^{\prime}, s_{2}}{\operatorname{Pr}}\left[E_{s_{1}} \mid r^{\prime} \neq r\right]\right] .
$$

Note that if s_{1} doesn't contain r then $\tilde{f}^{2}\left(s_{1}\right)=0$, hence we continue taking expectation over all $s_{1} \in X(i)$, even though some of them are unnecessary terms.

If we prove that for every $s \in X(i)$ we have $\operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{s_{1}} \mid r^{\prime} \neq r\right] \leq \frac{i+1}{i} \gamma$ then

$$
\left(1-\Pi_{i-1}(r)\right) \underset{s_{1}}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right)^{2} \underset{r^{\prime}, s_{2}}{\operatorname{Pr}}\left[E_{s_{1}}\right]\right] \leq \frac{i+1}{i} \gamma \underset{s_{1}}{\mathbb{E}}\left[\tilde{f}^{2}\left(s_{1}\right)\right]=\frac{i+1}{i} \gamma\langle\tilde{f}, \tilde{f}\rangle=\frac{i+1}{i} \gamma
$$

Thus we are left with proving the following statement: for all $s_{1} \in X(i)$,

$$
\operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{s_{1}} \mid r^{\prime} \neq r\right] \leq \frac{i+1}{i} \gamma
$$

We first bound the unconditioned probability $\operatorname{Pr}\left[E_{s_{1}}\right]=\operatorname{Pr}_{r^{\prime}, s_{2} \in X(i)}\left[s_{2}=s_{1} \mid r^{\prime} \subset s_{1}, s_{2}\right]$. Fix some $s_{1} \in X(i)$, and let $\mathbb{1}_{s_{1}}: X(i) \rightarrow \mathbb{R}$ be its indicator. Notice that $U_{i-1} D_{i} \mathbb{1}_{s_{1}}\left(s_{1}\right)=\operatorname{Pr}_{r^{\prime}, s_{2}}\left[s_{2}=s_{1}\right]$, and so

$$
\left\langle U_{i-1} D_{i} \mathbb{1}_{s_{1}}, \mathbb{1}_{s_{1}}\right\rangle=\Pi_{i}\left(s_{1}\right) U_{i-1} D_{i} \mathbb{1}_{s_{1}}\left(s_{1}\right)=\Pi_{i}\left(s_{1}\right) \operatorname{Pr}\left[E_{S_{1}}\right] .
$$

We again use the non-laziness property of M_{i}^{+}to assert that $\left\langle M_{i}^{+} \mathbb{1}_{s_{1}}, \mathbb{1}_{s_{1}}\right\rangle=0$. Since X is a γ-HDX,

$$
\left\langle U_{i-1} D_{i} \mathbb{1}_{s_{1}}, \mathbb{1}_{s_{1}}\right\rangle=\left\langle\left(U_{i-1} D_{i}-M_{i}^{+}\right) \mathbb{1}_{s_{1}}, \mathbb{1}_{s_{1}}\right\rangle \leq\left\|U_{i-1} D_{i}-M_{i}^{+}\right\|\left\|\mathbb{1}_{s_{1}}\right\|^{2}=\gamma \Pi_{i}\left(s_{1}\right)
$$

Hence $\operatorname{Pr}\left[E_{S_{1}}\right] \leq \gamma$.
Consider now any $s_{1} \in X(i)$ containing r, and let r^{\prime} be a random $(i-1)$-face contained in s_{1}. The probability that $r^{\prime} \neq r$ is $\frac{i}{i+1}$, and so

$$
\operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{S_{1}} \mid r^{\prime} \neq r\right] \leq \frac{i+1}{i} \operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{s_{1}}\right] \leq \frac{i+1}{i} \gamma .
$$

5.1 Tightness of Theorem 5.5

In the remainder of the section we give two counterexamples that show that the dependence of Theorem 5.5 on λ and d is tight up to constants.

To show the tightness of the first item in the theorem, namely, that there are simplicial complexes where $\left\|M_{i}^{+}-U D\right\| \approx \gamma$, it is enough to consider the complete d-dimensional simplicial complex on n vertices. On the one hand, the local links of the complete complex are complete graphs on $n-d+1$ vertices (or more), thus it is a $\frac{1}{n-d}$-two sided link expander. By direct calculation,

$$
\begin{aligned}
M_{d}^{+}-U D & =\frac{1}{(d+1)(n-d-1)} J(n, d+1)-\left(\frac{1}{n-d} I+\frac{1}{(d+1)(n-d)} J(n, d+1)\right) \\
& =\frac{1}{(d+1)(n-d-1)(n-d)} J(n, d+1)-\frac{1}{n-d} I
\end{aligned}
$$

where $J(n, d+1)$ is the adjacency matrix of the Johnson graph. The eigenvalues of $J(n, d+1)$ are $(d+1-j)(n-d-1-j)-j$ for $j=0, \ldots, d+1$ (assuming $n \gg d$), and so the eigenvalues of $M_{d}^{+}-U D$
are

$$
\frac{(d+1-j)(n-d-1-j)-j}{(d+1)(n-d-1)(n-d)}-\frac{1}{n-d}=-\frac{j(n+1-j)}{(d+1)(n-d-1)(n-d)} .
$$

The spectral norm of $M_{d}^{+}-U D$ is attained at $j=d+1$, at which point it equals

$$
\frac{(d+1)(n-d)}{(d+1)(n-d-1)(n-d)}=\frac{1}{n-d-1}
$$

As for the second item, we show a sequence of complexes X_{n} with a disconnected link (i.e. they are not λ-two sided link expanders for any $\lambda<1$), where

$$
\left\|M_{d}^{+}-U D\right\| \leq \frac{1}{d}+o_{n}(1)
$$

The complex X_{n} is obtained by removing a few faces from the d-dimensional complete complex, so that there is a cut in a single link. More formally, we define

$$
X_{n}(0)=\{1,2, \ldots, n\}
$$

and

$$
X_{n}(d)=\binom{[n]}{d+1} \backslash\{\{1,2, \ldots, d-1\} \cup\{x, y\} \mid d \leq x<y \leq n, x+y \equiv 1 \quad(\bmod 2)\}
$$

where Π_{d} is uniform.
One can observe that the link of $r_{0}=\{1,2, \ldots, d-1\}$ contains two connected components - the even vertices and the odd vertices.

Claim 5.7. Let $d>1$, and let X_{n} be the sequence of simplicial complexes defined above. Then

$$
\left\|M_{d}^{+}-U D\right\| \leq \frac{1}{d}+o_{n}(1)
$$

Proof. We fix n and denote $X=X_{n}$, and for simplicity of computation we assume $n-d$ is odd. We need to show that for any $f: X(d-1) \rightarrow \mathbb{R}$ of norm 1 ,

$$
\left|\left\langle\left(M_{d}^{+}-U D\right) f, f\right\rangle\right| \leq \frac{1}{d}+o_{n}(1)
$$

We decompose the inner product to local inner products on the link, as in (9):

$$
\begin{equation*}
\left|\left\langle\left(M_{d}^{+}-U D\right) f, f\right\rangle\right|=\left|\underset{r \in X(d-1)}{\mathbb{E}}\left[\left\langle A_{r} f_{r}, f_{r}\right\rangle-D f(r)^{2}\right]\right| \leq \underset{r \in X(d-1)}{\mathbb{E}}\left[\lambda\left(X_{r}\right)\left\|f_{r}\right\|^{2}\right] \tag{13}
\end{equation*}
$$

where $f_{r}: X_{r}(0) \rightarrow \mathbb{R}$ is defined by $f_{r}(x)=f(r \cup\{x\})$. For every $r \neq r_{0}$ we have the following claim:
Claim 5.8. Let $r \in X(d-2), r \neq r_{0}$, then $\lambda\left(X_{r}\right)=o_{n}(1)$.
Substituting this in (13) and using $\mathbb{E}_{r \in X(d-1)}\left\|f_{r}\right\|^{2}=\|f\|^{2}=1$ and $\lambda\left(X_{r_{0}}\right) \leq 1$ gives

$$
\left|\left\langle\left(M_{d}^{+}-U D\right) f, f\right\rangle\right| \leq o_{n}(1)+\Pi\left(r_{0}\right)\left\|f_{r_{0}}\right\|^{2}
$$

The last term equals

$$
\Pi\left(r_{0}\right)\left\|f_{r_{0}}\right\|^{2}=\Pi\left(r_{0}\right) \sum_{x \in X_{r_{0}}(0)} w_{r_{0}}(x) f\left(r_{0} \cup\{x\}\right)^{2}=\sum_{x \in X_{r_{0}}(0)} \frac{\Pi\left(r_{0} \cup\{x\}\right)}{d} f\left(r_{0} \cup\{x\}\right)^{2} \leq \frac{1}{d}
$$

We prove Claim 5.8 below.
Proof of Claim 5.8. Denote $m=n-d+1$, and without loss of generality, assume m is even.
Let $r \neq r_{0}$. If $\left|r \backslash r_{0}\right| \geq 3$, then X_{r} is the complete graph on m vertices and is a $\frac{1}{m-1}$-two-sided spectral expander.

If $\left|r \backslash r_{0}\right|=2$ then X_{r} is one of the following:

1. The complete graph - when $x, y \in r \backslash r_{0}$ have the same parity.
2. A graph with only one edge missing - when $x, y \in r \backslash r_{0}$ have different parity.

In both cases these are $O\left(\frac{1}{m}\right)$ spectral expanders (skipping a short calculation in the second case).
If $\left|r \backslash r_{0}\right|=1$ then the graph X_{r} is obtained by taking the complete graph, and removing $\frac{m}{2}$ of the edges that are adjacent to the vertex $v_{0} \in r_{0} \backslash r$. We claim that this graph is still a $o_{n}(1)$-spectral expander.

The first vertex v_{0} is connected to $\frac{m}{2}$ vertices, thus there are $\frac{m}{2}-1$ vertices which are connected to all vertices besides themselves and v_{0}, and $\frac{m}{2}$ vertices that are connected to all vertices besides themselves.

The adjacency operator for this graph is a block matrix, formed by partitioning the rows and the columns into three parts, of sizes $1, \frac{m}{2}-1, \frac{m}{2}$, respectively:

$$
A=\left(\begin{array}{c|c|c}
0_{1 \times 1} & 0_{1 \times\left(\frac{m}{2}-1\right)} & \frac{2}{m} J_{1 \times \frac{m}{2}} \\
\hline 0_{\left(\frac{m}{2}-1\right) \times 1} & \frac{1}{m-2} K_{\left(\frac{m}{2}-1\right) \times\left(\frac{m}{2}-1\right)} & \frac{1}{m-2} J_{\left(\frac{m}{2}-1\right) \times \frac{m}{2}} \\
\hline \frac{1}{m-1} J_{\frac{m}{2} \times 1} & \frac{1}{m-1} J_{\frac{m}{2} \times\left(\frac{m}{2}-1\right)} & \frac{1}{m-1} K_{\frac{m}{2} \times \frac{m}{2}}
\end{array}\right),
$$

where K is the adjacency matrix of a complete graph, and J is the all- 1 matrix.
The non-constant eigenvectors of $\frac{1}{m-2} K_{\left(\frac{m}{2}-1\right) \times\left(\frac{m}{2}-1\right)}$ (middle block) lift to an ($\frac{m}{2}-2$)-dimensional eigenspace of $-\frac{1}{m-2}$. Similarly, the non-constant eigenvectors of $\frac{1}{m-1} K_{\frac{m}{2} \times \frac{m}{2}}$ (bottom-left block) lift to an $\left(\frac{m}{2}-1\right)$-dimensional eigenspace of $-\frac{1}{m-1}$. The remaining three eigenvalues correspond to eigenvectors which are constant on blocks. A straightforward calculation shows that these eigenvalues are roots of the cubic polynomial

$$
\left(4 m^{2}-12 m+8\right) \lambda^{3}-\left(4 m^{2}-18 m+16\right) \lambda^{2}-(8 m-16) \lambda+(2 m-8)=0
$$

The trivial eigenvalue $\lambda=1$ corresponds to the constant eigenvector. The other two are roots of the quadratic

$$
\left(4 m^{2}-12 m+8\right) \lambda^{2}+(6 m-8) \lambda-(2 m-8)=0
$$

The roots of this quadratic are

$$
\lambda=\frac{-6 m+8 \pm \sqrt{32 m^{3}-188 m^{2}+352 m-192}}{8 m^{2}-24 m+16}= \pm \Theta\left(\frac{1}{\sqrt{m}}\right)
$$

6 Boolean degree 1 functions

In this section we characterize all Boolean degree 1 functions in nice complexes.
Definition 6.1. Let X be a simplicial complex. The 1 -skeleton of X is the graph whose vertices are the 0 -faces of X and whose edges are the 1 -faces of X.

Theorem 6.2. Suppose that X is a proper k-dimensional simplicial complex, for $k \geq 2$, whose 1 -skeleton is connected. A function $f \in C^{k}$ is a Boolean degree 1 function if and only if there exists an independent set I such that f is the indicator of intersecting I or of not intersecting I.

Proof. If f is the indicator of intersecting an independent set I then $f=\sum_{v \in I} y_{v}$, and so $\operatorname{deg} f \leq 1$. If f is the indicator of not intersecting an independent set I then $f=\sum_{v \in X(0)} y_{v} /(k+1)-\sum_{v \in I} y_{v}$, and so again $\operatorname{deg} f \leq 1$.

Suppose now that f is a Boolean degree 1 function. If $|X(0)| \leq 2$ then the theorem clearly holds, so assume that $|X(0)|>2$. Lemma 3.5 shows that f has a unique representation of the form

$$
f=\sum_{v \in X(0)} c_{v} y_{v}
$$

Since f is Boolean, it satisfies $f^{2}=f$. Note that

$$
f^{2}=\sum_{\{u, v\} \in X(1)} 2 c_{u} c_{v} y_{\{u, v\}}+\sum_{v \in X(0)} c_{v}^{2} y_{v}
$$

Moreover, since every input x to f which contains v contains exactly k other points (elements of $X(0)$), and since $X(1)$ contains all pairs of points from x, we have

$$
y_{v}=\sum_{u:\{u, v\} \in X(1)} \frac{y_{\{u, v\}}}{k} .
$$

This shows that

$$
\begin{aligned}
0=f^{2}-f=\sum_{\{u, v\} \in X(1)} 2 c_{u} c_{v} y_{\{u, v\}}+\frac{1}{k} \sum_{v \in X(0)}\left(c_{v}^{2}-c_{v}\right) & \sum_{u:\{u, v\} \in X(1)} y_{\{u, v\}}= \\
& \frac{1}{k} \sum_{\{u, v\} \in X(1)}\left(2 k c_{u} c_{v}+c_{u}^{2}-c_{u}+c_{v}^{2}-c_{v}\right) y_{\{u, v\}}
\end{aligned}
$$

Lemma 3.5 shows that the coefficients of all $y_{\{u, v\}}$ must vanish, that is, for all $\{u, v\} \in X(1)$ we have

$$
2 k c_{u} c_{v}=c_{u}\left(1-c_{u}\right)+c_{v}\left(1-c_{v}\right) .
$$

Consider now a triple of points u, v, w such that $\{u, v, w\} \in X(2)$, and the corresponding system of equations:

$$
\begin{aligned}
2 k c_{u} c_{v} & =c_{u}\left(1-c_{u}\right)+c_{v}\left(1-c_{v}\right) \\
2 k c_{u} c_{w} & =c_{u}\left(1-c_{u}\right)+c_{w}\left(1-c_{w}\right) \\
2 k c_{v} c_{w} & =c_{v}\left(1-c_{v}\right)+c_{w}\left(1-c_{w}\right) .
\end{aligned}
$$

Subtracting the second equation from the first, we obtain

$$
2 k c_{u}\left(c_{v}-c_{w}\right)=c_{v}\left(1-c_{v}\right)-c_{w}\left(1-c_{w}\right)=\left(c_{v}-c_{w}\right)-\left(c_{v}^{2}-c_{w}^{2}\right)=\left(c_{v}-c_{w}\right)\left(1-c_{v}-c_{w}\right)
$$

This shows that either $c_{v}=c_{w}$ or $2 k c_{u}=1-c_{v}-c_{w}$.
If $c_{u} \neq c_{v}, c_{w}$ then $2 k c_{w}+c_{u}+c_{v}=2 k c_{v}+c_{u}+c_{w}=1$, which implies that $c_{v}=c_{w}$. Thus c_{u}, c_{v}, c_{w} can consist of at most two values. If $c:=c_{u}=c_{v}=c_{w}$ then $2 k c^{2}=2 c(1-c)$, and so $c \in\left\{0, \frac{1}{k+1}\right\}$. If $c:=c_{v}=c_{w} \neq c_{u}$ then $2 k c^{2}=2 c(1-c)$, and so $c \in\left\{0, \frac{1}{k+1}\right\}$ as before. We also have $2 k c_{u} c=$ $c_{u}\left(1-c_{u}\right)+c(1-c)$. If $c=0$ then this shows that $c_{u}\left(1-c_{u}\right)=0$, and so $c_{u}=1$. If $c=\frac{1}{k+1}$ then one can similarly check that $c_{u}=\frac{1}{k+1}-1$.

Summarizing, one of the following two cases must happen:

1. Two of c_{u}, c_{v}, c_{w} are equal to 0 , and the remaining one is either 0 or 1 .
2. Two of c_{u}, c_{v}, c_{w} are equal to $\frac{1}{k+1}$, and the remaining one is either $\frac{1}{k+1}$ or $\frac{1}{k+1}-1$.

Let us say that a vertex $v \in X(0)$ is of type A if $c_{v} \in\{0,1\}$, and of type B if $c_{v} \in\left\{\frac{1}{k+1}, \frac{1}{k+1}-1\right\}$. Since the complex is pure and at least two-dimensional, every vertex must participate in a triangle (twodimensional face), and so every vertex is of one of the types. In fact, all vertices must be of the same type. Otherwise, there would be a vertex v of type A incident to a vertex w of type B (since the link of \varnothing is connected). However, since the complex is pure, $\{v, w\}$ must participate in a triangle, contradicting the classification above.

Suppose first that all vertices are type A, and let $I=\left\{v: c_{v}=1\right\}$. Note that f indicates that the input face intersects I. Clearly I must be an independent set, since otherwise f would not be Boolean. When all vertices are type B, the function $1-f=\sum_{v \in X(0)}\left(\frac{1}{k+1}-c_{v}\right) y_{v}$ is of type A , and so f must indicate not intersecting an independent set.

If X is a γ-HDX for $0<\gamma<1 /(k+1)$ then the link of \varnothing has positive spectral gap, and in particular it is connected. Thus Theorem 6.2 applies to high-dimensional expanders.

When the 1 -skeleton of X contains r connected components C_{1}, \ldots, C_{r}, the same argument shows that the Boolean degree 1 functions on X are of the form $f=f_{1}+\cdots+f_{r}$, where each f_{i} is the indicator of intersecting or not intersecting an independent set of C_{i}.

7 FKN theorem on high-dimensional expanders

In this section, we prove an analog of the classical result of Friedgut, Kalai and Naor [FKN02] for highdimensional expanders. The FKN theorem states that any Boolean function F on the hypercube that is close to a degree 1 function f (not necessarily Boolean) in the L_{2}^{2}-sense must agree with some Boolean degree 1 function (which must be a dictator) on most points. This result for the Boolean hypercube can be easily extended to functions on k-slices of the hypercube, provided $k=\Theta(n)$.

Theorem 7.1 (FKN theorem on the slice [Fil16a]). Let $n, k \in \mathbb{Z}_{\geq 0}$ and $\varepsilon \in(0,1)$ such that $n / 4 \leq k+1 \leq$ $n / 2$. Let $F:\binom{[n]}{k+1} \rightarrow\{0,1\}$ be a Boolean function such that $\mathbb{E}\left[(F-f)^{2}\right]<\varepsilon$ for some degree 1 function $f:\binom{[n]}{k+1} \rightarrow\{0,1\}$. Then there exists a degree 1 function $g:\binom{[n]}{k+1} \rightarrow \mathbb{R}$ such that

$$
\operatorname{Pr}[F \neq g]=O(\varepsilon)
$$

Furthermore, $g \in\left\{0,1, y_{i}, 1-y_{i}\right\}$, that is, g is a Boolean dictator (1-junta).

Remark 7.2. 1. The function g promised by the theorem satisfies $\mathbb{E}\left[(g-F)^{2}\right]=\operatorname{Pr}[g \neq F]=O(\varepsilon)$ and hence, by the L_{2}^{2}-triangle inequality we have $\mathbb{E}\left[(f-g)^{2}\right] \leq 2 \mathbb{E}\left[(f-F)^{2}\right]+2 \mathbb{E}\left[(g-F)^{2}\right]=$ $O(\varepsilon)$. This is the way that the FKN theorem is traditionally stated, but we prefer the above formulation as this is the one we are able to generalize to the high-dimensional expander setting.
2. The function 1 can also be written as $\frac{1}{k+1} \sum_{j} y_{j}$. The function $1-y_{i}$ can also be written as $\frac{1}{k+1} \sum_{j \neq i} y_{j}+$ $\left(\frac{1}{k+1}-1\right) y_{i}$.
3. The result of Filmus [Fil16a] is quite a bit stronger: for every $k \leq n / 2$, it promises the existence of a function $g:\binom{[n]}{k+1} \rightarrow \mathbb{R}$, not necessarily Boolean, such that $\mathbb{E}\left[(f-g)^{2}\right]=O(\varepsilon)$. Moreover, either g or $1-g$ is of the form $\sum_{i \in S} y_{i}$ for $|S| \leq \max (1, \sqrt{\varepsilon} \cdot n / k)$. The bound on the size of S ensures that $\operatorname{Pr}[g \in\{0,1\}]=1-O(\varepsilon)$.

Our main theorem is an extension of the above theorem to k-faces of a two-sided link expander.
Theorem 7.3 (FKN theorem for two-sided link expanders). Let X be a d-dimensional λ-two-sided link expander, where $\lambda<1 / d$, and let $4 k^{2}<d$. Let $F: X(k) \rightarrow\{0,1\}$ be a function such that $\mathbb{E}\left[(F-f)^{2}\right]<\varepsilon$ for some degree 1 function $f: X(k) \rightarrow \mathbb{R}$. Then there exists a degree 1 function $g: X(k) \rightarrow \mathbb{R}$ such that

$$
\operatorname{Pr}[F \neq g]=O_{\lambda}(\varepsilon) .
$$

Furthermore, the degree 1 function g can be written as $g(y)=\sum_{i} d_{i} y_{i}$, where $d_{i} \in\left\{0,1, \frac{1}{k+1}, \frac{1}{k+1}-1\right\}$.
The high-dimensional analog of the FKN theorem is obtained from the FKN theorem for the slice using the agreement theorem of Dinur and Kaufman [DK17].

Using Theorem 5.5, we formulate the FKN theorem in terms of high-dimensional expanders:
Corollary 7.4 (FKN theorem for HDX). Let X be a d-dimensional γ-high-dimensional expander, where $\gamma<$ $1 / 3 d^{2}$, and let $4 k^{2}<d$. Let $F: X(k) \rightarrow\{0,1\}$ be a function such that $\mathbb{E}\left[(F-f)^{2}\right]<\varepsilon$ for some degree 1 function $f: X(k) \rightarrow \mathbb{R}$. Then there exists a degree 1 function $g: X(k) \rightarrow \mathbb{R}$ such that

$$
\operatorname{Pr}[F \neq g]=O_{\gamma}(\varepsilon)
$$

Furthermore, the degree 1 function g can be written as $g(y)=\sum_{i} d_{i} y_{i}$, where $d_{i} \in\left\{0,1, \frac{1}{k+1}, \frac{1}{k+1}-1\right\}$.

7.1 Agreement theorem for high-dimensional expanders

Dinur and Kaufman [DK17] prove an agreement theorem for high-dimensional expanders. The setup is as follows. For each k-face s we are given a local function $f_{s}: s \rightarrow \Sigma$ that assigns values from an alphabet Σ to each point in s. Two local functions $f_{s}, f_{s^{\prime}}$ are said to agree if $f_{s}(v)=f_{s^{\prime}}(v)$ for all $v \in s \cap s^{\prime}$. Let $\mathcal{D}_{k, 2 k}$ be the distribution on pairs $\left(s_{1}, s_{2}\right)$ obtained by choosing a random $t \sim \Pi_{2 k}$ and then independently choosing two k-faces $s_{1}, s_{2} \subset t$. The theorem says that if a random pair of faces $\left(s, s^{\prime}\right) \sim \mathcal{D}_{k, 2 k}$ satisfies with high probability that f_{s} agrees with $f_{s^{\prime}}$ on the intersection of their domains, then there must be a global function $g: X(0) \rightarrow \Sigma$ such that almost always $\left.g\right|_{s} \equiv f_{s}$. Formally:

Theorem 7.5 (Agreement theorem for high-dimensional expanders [DK17]). Let X be a d-dimensional λ-two-sided high-dimensional expander, where $\lambda<1 / d$, let $k^{2}<d$, and let Σ be some fixed finite alphabet. Let $\left\{f_{s}: s \rightarrow \Sigma\right\}_{s \in X(k)}$ be an ensemble of local functions on $X(k)$, i.e. $f_{s} \in \Sigma^{s}$ for each $s \in X(k)$. If

$$
\operatorname{Pr}_{\left(s_{1}, s_{2}\right) \sim \mathcal{D}_{k, 2 k}}\left[\left.\left.f_{s_{1}}\right|_{s_{1} \cap s_{2}} \equiv f_{s_{2}}\right|_{s_{1} \cap s_{2}}\right]>1-\varepsilon
$$

then there is a $g: X(0) \rightarrow \Sigma$ such that

$$
\operatorname{Pr}_{s \sim \Pi_{k}}\left[\left.f_{s} \equiv g\right|_{s}\right] \geq 1-O_{\lambda}(\varepsilon)
$$

While Dinur and Kaufman state the theorem for a binary alphabet, the general version follows in a black box fashion by applying the theorem for binary alphabets $\left\lceil\log _{2}|\Sigma|\right\rceil$ many times.

7.2 Proof of Theorem 7.3

Let $f, F \in C^{k}$, where F is a Boolean function and f is a degree 1 function, as in the hypothesis of Theorem 7.3. Since f is a degree 1 function, Lemma 3.5 guarantees that there exist $a_{i} \in \mathbb{R}$ such that $f(y)=\sum_{i \in X(0)} a_{i} y_{i}$. Note that here we view the inputs of f as $|X(0)|$-bit strings with exactly $k+1$ ones, the rest being zero.

We begin by defining two ensembles of pairs of local functions $\left\{\left(\left.f\right|_{t},\left.F\right|_{t}\right)\right\}_{t \in X(2 k)},\left\{\left(\left.f\right|_{u},\left.F\right|_{u}\right)\right\}_{u \in X(4 k)}$, which are the restrictions of (f, F) to the $2 k$-face t and $4 k$-face u. Formally, for any $t \in X(2 k)$ and $u \in X(4 k)$, consider the restriction of f to t and u defined as follows:

$$
\begin{array}{rlrl}
\left.f\right|_{t},\left.F\right|_{t}:\binom{t}{k} & \rightarrow \mathbb{R}, & \left.f\right|_{t}(y)=f(y)=\sum_{i \in t} a_{i} y_{i}, & \left.F\right|_{t}(y)=F(y), \\
\left.f\right|_{u},\left.F\right|_{u}:\binom{u}{k} \rightarrow \mathbb{R}, & \left.f\right|_{u}(y)=f(y)=\sum_{i \in u} a_{i} y_{i}, & \left.F\right|_{u}(y)=F(y)
\end{array}
$$

Observe that the $\left.f\right|_{t}$'s are degree 1 functions, while the $\left.F\right|_{t}$'s are Boolean functions (similarly for $\left.f\right|_{u}$'s and $\left.F\right|_{u}$'s).

Now, define the following quantities:

$$
\varepsilon_{t}:=\underset{s: s \subset t}{\mathbb{E}}\left[\left(\left.f\right|_{t}(s)-\left.F\right|_{t}(s)\right)^{2}\right], \quad \quad \delta_{u}:=\underset{s: s \subset u}{\mathbb{E}}\left[\left(\left.f\right|_{u}(s)-\left.F\right|_{u}(s)\right)^{2}\right]
$$

Clearly, $\mathbb{E}_{t}\left[\varepsilon_{t}\right]=\mathbb{E}_{u}\left[\delta_{u}\right]=\varepsilon$.
Let $\alpha_{k}=\frac{1}{k+1}$. Applying Theorem 7.1 (along with Remark 7.2) to the functions $\left(\left.f\right|_{t},\left.F\right|_{t}\right)$ for each $t \in X(2 k)$, we have the following claim:

Claim 7.6. For every $t \in X(2 k)$, there exists a Boolean dictator $g_{t}:\binom{t}{k} \rightarrow\{0,1\}$ such that

$$
\underset{s: s \subset t}{\mathbb{E}}\left[\left(\left.f\right|_{t}-g_{t}\right)^{2}\right]=O\left(\varepsilon_{t}\right) .
$$

Furthermore, there exists a function $d_{t}: t \rightarrow\left\{0,1, \alpha_{k}, \alpha_{k}-1\right\}$ such that $g_{t}(y)=\sum_{i \in t} d_{t}(i) y_{i}$.
A similar claim holds for each $u \in X(4 k)$:
Claim 7.7. For every $u \in X(4 k)$, there exists a Boolean dictator $h_{u}:\binom{u}{k} \rightarrow\{0,1\}$ such that

$$
\underset{s: s \subset u}{\mathbb{E}}\left[\left(\left.f\right|_{u}-h_{u}\right)^{2}\right]=O\left(\delta_{u}\right)
$$

Furthermore, there exists a function $e_{u}: u \rightarrow\left\{0,1, \alpha_{k}, \alpha_{k}-1\right\}$ such that $h_{u}(y)=\sum_{i \in u} e_{u}(i) y_{i}$.
We now prove that functions in the collection of local functions $\left\{d_{t}\right\}_{t}$ typically agree with each other. This lets us use the agreement theorem, Theorem 7.5, to sew these different local functions together,
yielding a single function $d: X(0) \rightarrow\left\{0,1, \alpha_{k}, \alpha_{k}-1\right\}$. This d determines a global degree 1 function g defined as follows: $g(y)=\sum_{i \in X(0)} d(i) y_{i}$.

Claim 7.8. There exists a function $d: X(0) \rightarrow\left\{0,1, \alpha_{k}, \alpha_{k}-1\right\}$ such that $\operatorname{Pr}_{t}\left[\left.d_{t} \equiv d\right|_{t}\right]=1-O_{\lambda}(\varepsilon)$.
Proof. To sew the various d_{t} together via the agreement theorem, we would like to first bound the probability

$$
\operatorname{Pr}_{\left(t_{1}, t_{2}\right) \sim \mathcal{D}_{2 k, 4 k}}\left[d_{t_{1}}\left|t_{1} \cap t_{2} \not \equiv d_{t_{2}}\right| t_{1} \cap t_{2}\right] .
$$

Recall the definition of the distribution $\mathcal{D}_{2 k, 4 k}$: we first pick a set $u \in X(4 k)$ according to $\Pi_{4 k}$ and then two $2 k$-faces t_{1}, t_{2} of u uniformly and independently. Consider the three functions $d_{t_{1}}, d_{t_{2}}$ and e_{u}. Clearly, if $\left.\left.d_{t_{1}}\right|_{t_{1} \cap t_{2}} \not \equiv d_{t_{2}}\right|_{t_{1} \cap t_{2}}$ then one of $\left.e_{u}\right|_{t_{1}} \not \equiv d_{t_{1}}$ or $\left.e_{u}\right|_{t_{2}} \not \equiv d_{t_{2}}$ must hold. Thus,

$$
\begin{equation*}
\operatorname{Pr}_{\left(t_{1}, t_{2}\right) \sim \mathcal{D}_{2 k, 4 k}}\left[d_{t_{1}}\left|t_{1} \cap t_{2} \not \equiv d_{t_{2}}\right| t_{1} \cap t_{2}\right] \leq 2 \cdot \operatorname{Pr}_{t, u}\left[\left.e_{u}\right|_{t} \not \equiv d_{t}\right] \tag{14}
\end{equation*}
$$

Thus, it suffices to bound the probability $\operatorname{Pr}_{t, u}\left[\left.e_{u}\right|_{t} \not \equiv d_{t}\right]$, where $u \sim \Pi_{4 k}$ and t is a random $2 k$-face of u.
For any fixed $t \subset u$, the L_{2}^{2} triangle inequality shows that

$$
\mathbb{E}\left[\left(\left.h_{u}\right|_{t}-g_{t}\right)^{2}\right] \leq 2 \mathbb{E}\left[\left(\left.h_{u}\right|_{t}-\left.f\right|_{t}\right)^{2}\right]+2 \mathbb{E}\left[\left(\left.f\right|_{t}-g_{t}\right)^{2}\right]=2 \mathbb{E}\left[\left(\left.h_{u}\right|_{t}-\left.f\right|_{t}\right)^{2}\right]+O\left(\varepsilon_{t}\right) .
$$

Taking expectation over $t \in X(2 k)$ conditioned on $t \subset u$, we see that

$$
\underset{t \subset u}{\mathbb{E}} \mathbb{E}\left[\left(\left.h_{u}\right|_{t}-g_{t}\right)^{2}\right] \leq 2 \mathbb{E}\left[\left(h_{u}-\left.f\right|_{u}\right)^{2}\right]+O\left(\underset{t: t \subset u}{\mathbb{E}} \varepsilon_{t}\right)=O\left(\delta_{u}\right)+O\left(\underset{t: t \subset u}{\mathbb{E}} \varepsilon_{t}\right)
$$

Taking expectation over $u \sim \Pi_{4 k}$, we now have

$$
\underset{u}{\mathbb{E}} \underset{t \subset u}{\mathbb{E}} \mathbb{E}\left[\left(\left.h_{u}\right|_{t}-g_{t}\right)^{2}\right]=O(\varepsilon) .
$$

For any fixed $t \subset u$, both $\left.h_{u}\right|_{t}$ and g_{t} are Boolean dictators. Hence either they agree, or $\mathbb{E}\left[\left(\left.h_{u}\right|_{t}-g_{t}\right)^{2}\right]=$ $\Omega(1)$. This shows that $\left.h_{u}\right|_{t}$ disagrees with g_{t} with probability $O(\varepsilon)$, and so

$$
\operatorname{Pr}_{t, u}\left[e_{\left.u\right|_{t}} \not \equiv d_{t}\right]=O(\varepsilon) .
$$

We now return to (14), concluding that

$$
\left.\underset{\left(t_{1}, t_{2}\right) \sim \mathcal{D}_{2 k, 4 k}}{\mathbb{E}}\left[\left.\left.d_{t_{1}}\right|_{t_{1} \cap t_{2}} \not \equiv d_{t_{2}}\right|_{t_{1} \cap t_{2}}\right)\right]=O(\varepsilon)
$$

We have thus satisfied the hypothesis of the agreement theorem (Theorem 7.5). Invoking the agreement theorem, we deduce that $\operatorname{Pr}_{t \sim \Pi_{2 k}}\left[\left.d_{t} \equiv d\right|_{t}\right]=1-O_{\lambda}(\varepsilon)$.

The d 's guaranteed by Claim 7.8 naturally correspond to a degree 1 function $g: X(k) \rightarrow \mathbb{R}$ as follows:

$$
g(y):=\sum_{i \in X(0)} d(i) y_{i} .
$$

We now show that this g is mostly Boolean.
Claim 7.9. $\operatorname{Pr}_{s}[g(s) \in\{0,1\}]=1-O_{\lambda}(\varepsilon)$.

Proof. Since g_{t} is Boolean-valued,

$$
\operatorname{Pr}_{s \sim \Pi_{k}}[g(s) \in\{0,1\}] \geq \operatorname{Pr}_{t}\left[\left.g\right|_{t}=g_{t}\right]=\operatorname{Pr}_{t}\left[\left.d\right|_{t} \equiv d_{t}\right]=1-O_{\lambda}(\varepsilon) .
$$

We now show that g in fact agrees pointwise with F most of the time.
Claim 7.10. $\operatorname{Pr}_{s}[g \neq F]=O_{\lambda}(\varepsilon)$.
Proof. Fix any $t \in X(2 k)$. We compute $\operatorname{Pr}_{s: s \subset t}\left[\left.F\right|_{t} \neq g_{t}\right]$ as follows

$$
\begin{array}{rlr}
\operatorname{Pr}\left[\left.F\right|_{t} \neq g_{t}\right] & =\left\|\left.F\right|_{t}-g_{t}\right\|^{2} & \quad\left[\text { Since }\left.F\right|_{t} \text { and } g_{t} \text { are both Boolean }\right] \\
& \leq 2 \cdot\left\|\left.F\right|_{t}-\left.f\right|_{t}\right\|^{2}+2 \cdot\left\|\left.f\right|_{t}-g_{t}\right\|^{2} & \\
& =O\left(\varepsilon_{t}\right)+O\left(\varepsilon_{t}\right)=O\left(\varepsilon_{t}\right) . &
\end{array}
$$

We can now compute $\operatorname{Pr}_{s}[F \neq g]$ as follows:

$$
\operatorname{Pr}[F \neq g]=\underset{t}{\mathbb{E}} \operatorname{Pr}\left[\left.F\right|_{t} \neq\left. g\right|_{t}\right] \leq \underset{t}{\mathbb{E}} \operatorname{Pr}\left[\left.F\right|_{t} \neq g_{t}\right]+\operatorname{Pr}_{t}\left[\left.g\right|_{t} \neq g_{t}\right]=O(\varepsilon)+\operatorname{Pr}_{t}\left[\left.d\right|_{t} \not \equiv d_{t}\right]=O_{\lambda}(\varepsilon) .
$$

This completes the proof of Theorem 7.3.

8 Expanding posets (eposets)

In this section, we describe a setting generalizing simplicial complexes, namely measured posets. These are partially ordered sets (a set X with a partial order \leq on it) whose elements are partitioned into levels $X(j)$, and that have some additional properties stated below. As in simplicial complexes, we can define C^{j} as the space of real-valued functions on $X(j)$, and averaging operators $U_{j}: C^{j} \rightarrow C^{j+1}$ and $D_{j+1}: C^{j+1} \rightarrow C^{j}$.

We generalize the notion of a γ-HDX to a γ-expanding poset (eposet) - a measured poset with operators D_{j}, U_{j} such that

$$
\left\|D_{j+1} U_{j}-r_{j} I-\delta_{j} U_{j-1} D_{j}\right\| \leq \gamma
$$

for $\gamma<1$, all non-extreme levels j of the poset, and some constants r_{j}, δ_{j}.
We begin the section by discussing the formal notion of an eposet. We then generalize Theorem 4.6 to all eposets, and prove it in the general setting. Finally, we show that if our measured poset is a simplicial complex, then $r_{j} \approx \frac{1}{j+2}, \delta_{j} \approx 1-\frac{1}{j+2}$, under the assumption that the laziness of the lower walk is small.

8.1 Measured posets

A graded (or ranked) poset is a partially ordered set (poset) (X, \leq) equipped with a rank function $\rho: X \rightarrow$ $\mathbb{N} \cup\{0,-1\}$ such that:

1. For all $x, y \in X$, if $x \leq y$ then $\rho(x) \leq \rho(y)$.
2. For every $x, y \in X$, if y is minimal with respect to elements greater than x (i.e. $x \leq y$), then $\rho(y)=\rho(x)+1$.

We denote the set of elements of rank j by $X(j)$. We assume that there is a unique element of minimal rank which we denote by \varnothing, and so $X(-1)=\{\varnothing\}$.

We say that a graded poset is d-dimensional if the maximal rank of any element in X is d. We say that a d-dimensional graded poset is pure if all maximal elements are of rank d, that is, for every $t \in X$ there exists $s \in X(d)$ such that $t \leq s$.

For example, any simplicial complex is a graded poset, if we take \leq to be the containment relation and ρ to be the cardinality of a face, minus one. Another useful example to keep in mind is the Grassmann poset $\operatorname{Gr}_{q}(n, d)$, whose elements are subspaces of dimension at most $d+1$ of \mathbb{F}_{q}^{n}, and the order is by containment. The rank function for the Grassmann poset is $\rho(U)=\operatorname{dim}(U)-1$, and so $X(j)=\left\{U \subseteq \mathbb{F}_{q}^{n}: \operatorname{dim}(U)=j+1\right\}$.

Definition 8.1 (Measured poset). Let X be a finite graded pure d-dimensional poset, with a unique minimum element \varnothing of rank -1 . We say that X is measured by a (joint) distribution $\vec{\Pi}=\left(\Pi_{d}, \Pi_{d-1}, \ldots, \Pi_{-1}\right)$ if it satisfies the following properties ${ }^{4}$:

1. $\Pi_{i} \in X(i)$ for all i.
2. $\Pi_{i-1} \subset \Pi_{i}$ for all $i>-1$.
3. The sequence $\Pi_{d}, \ldots, \Pi_{-1}$ has the Markov property: Π_{i-1} depends only on Π_{i} for all $i>-1$.

We denote the real-valued function spaces on $X(j)$ by C^{j}. We denote the averaging operators of the steps in the Markov process by $U_{j}: C^{j} \rightarrow C^{j+1}, D_{j+1}: C^{j+1} \rightarrow C^{j}$.

The operators U_{j} and D_{j+1} are adjoint with respect to the inner product given by

$$
\langle f, g\rangle=\underset{x \sim \Pi_{j}}{\mathbb{E}} f(x) g(x)
$$

and thus both $U_{j} D_{j+1}$ and $D_{j+1} U_{j}$ are positive semi-definite since, for example, for all f

$$
\left\langle U_{j} D_{j+1} f, f\right\rangle=\left\langle D_{j+1} f, D_{j+1} f\right\rangle \geq 0
$$

The process we defined for the distribution $\vec{\Pi}$ in a simplicial complex is an example of a measured poset. For the Grassmann poset mentioned above, we also have a similar probabilistic experiment:

1. Choose a subspace of dimension $d+1, s_{d} \in X(d)$, uniformly at random.
2. Given a subspace s_{i} of dimension $i+1$, choose $s_{i-1} \in X(i-1)$ to be a uniformly random codimension 1 subspace of s_{i}.

An analog for Theorem 3.2 holds for any measured poset. We say that a k-dimensional measured poset X is proper if for all $j \leq k-1, \operatorname{ker} U_{j}=\{0\}$. Also, as before we denote

$$
H^{-1}=C^{-1}, \quad H^{i}=\operatorname{ker} D_{i}, \quad V^{i}=U^{k-i} H^{i} .
$$

Theorem 8.2. If X is a proper k-dimensional measured poset then we have the following decomposition of C^{k} :

$$
C^{k}=V^{k} \oplus V^{k-1} \oplus \cdots \oplus V^{-1}
$$

[^4]In other words, for every function $f \in C^{k}$ there is a unique choice of $h_{i} \in H^{i}$ such that the functions $f_{i}=U^{k-i} h_{i}$ satisfy $f=f_{-1}+f_{0}+\ldots+f_{k}$.

The proof for this is identical to the proof of Theorem 3.2 and is left out.

8.2 Sequentially differential posets

Sequentially differential posets were first defined and studied (in a slightly different form) by Stanley [Sta88, Sta90].

Definition 8.3 (Sequentially differential posets). Sequentially differential posets are measured posets whose averaging operators U, D satisfy an equation

$$
\begin{equation*}
D_{j+1} U_{j}-\delta_{j} U_{j-1} D_{j}-r_{j} I=0 \tag{15}
\end{equation*}
$$

for some $r_{j}, \delta_{j} \in \mathbb{R}_{\geq 0}$ and all $0 \leq j \leq k-1$.
For example, the complete complex satisfies this definition with parameters

$$
\delta_{i}=\left(1-\frac{1}{i+2}\right)\left(1-\frac{1}{n-i}\right)^{-1} \text { and } r_{i}=1-\delta_{i}
$$

In other words,

$$
D U-\left(1-\frac{1}{i+2}\right)\left(1-\frac{1}{n-i}\right)^{-1} U D-\left(1-\left(1-\frac{1}{i+2}\right)\left(1-\frac{1}{n-i}\right)^{-1}\right) I=0
$$

The Grassmann poset $\mathrm{Gr}_{q}(n, d)$ is also a sequentially differential poset with

$$
\begin{equation*}
\delta_{i}=1-\left(1-\frac{q-1}{q^{i+2}-1}\right)\left(1-\frac{q-1}{q^{n-i}-1}\right)^{-1} \text { and } r_{i}=1-\delta_{i} \tag{16}
\end{equation*}
$$

The above following from the claim below, that the reader can verify by direct calculation:
Claim 8.4. Let X be a measured poset, and suppose we can decompose:

$$
\begin{aligned}
& D_{i+1} U_{i}=\alpha_{i} I+\left(1-\alpha_{i}\right) M_{i} \\
& U_{i-1} D_{i}=\beta_{i} I+\left(1-\beta_{i}\right) M_{i}
\end{aligned}
$$

where $0 \leq \alpha_{i}, \beta_{i} \leq 1$ are constants and M_{i} is some operator. Then

$$
D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}=0
$$

where

$$
\delta_{i}=\left(1-\alpha_{i}\right)\left(1-\beta_{i}\right)^{-1} \text { and } r_{i}=1-\delta_{i}
$$

In both the complete complex and the Grassmann poset $\operatorname{Gr}_{q}(n, d)$, the non-lazy upper walk and the non-lazy lower walk are the same - given $t_{1} \in X(i)$, our choice for $t_{2} \in X(i)$ is a set (or subspace in the Grassmann case) that shares an intersection of size (resp. dimension) i with t_{1} (with uniform
probability). The only difference between $D U$ and $U D$ is the probability to stay in place. Thus we can decompose:

$$
\begin{aligned}
& D_{i+1} U_{i}=\alpha_{i} I+\left(1-\alpha_{i}\right) M_{i} \\
& U_{i-1} D_{i}=\beta_{i} I+\left(1-\beta_{i}\right) M_{i}
\end{aligned}
$$

where M_{i} is the non-lazy upper (or lower) random walk. In the simplicial complex case

$$
\alpha_{i}=\frac{1}{i+2}, \beta_{i}=\frac{1}{n-i^{\prime}}
$$

and in the Grassmann case

$$
\alpha_{i}=\frac{q-1}{q^{i+2}-1}, \beta_{i}=\frac{q-1}{q^{n-i}-1} .
$$

We relax Definition 8.3 to an almost sequentially differential poset - a measured poset that approximately satisfies such an identity:

Definition 8.5 (Expanding Poset). Let $\vec{r}, \vec{\delta} \in \mathbb{R}_{\geq 0}^{k}$, and let $\gamma<1$. We say that X is an $(\vec{r}, \vec{\delta}, \gamma)$-expanding poset (or $(\vec{r}, \vec{\delta}, \gamma)$-eposet) if for all $j \leq k-1$:

$$
\begin{equation*}
\left\|D_{j+1} U_{j}-r_{j} I-\delta_{j} U_{j-1} D_{j}\right\| \leq \gamma \tag{17}
\end{equation*}
$$

A sequentially differential poset is an eposet with $\gamma=0$. As we saw in (3), a $\gamma-\operatorname{HDX}$ is an $(\vec{r}, \vec{\delta}, \gamma)$ eposet, where $r_{j}=\frac{1}{j+2}$ and $\delta_{j}=1-\frac{1}{j+2}$.

We can use (16) to assert that $\operatorname{Gr}_{q}(n, d)$ is an $(\vec{r}, \vec{\delta}, \gamma)$-eposet for $r_{i}=\frac{q-1}{q^{i+2}-1}, \delta_{i}=1-r_{i}$, and $\gamma=$ $O\left(1 / q^{n-d}\right)$. While this only shows that the $\mathrm{Gr}_{q}(n, d)$ is an eposet (even though it is truly sequentially differential), the parameters are much simpler, thus calculations regarding the random walks are easier (see for instance the calculations in Section 8.6).

8.3 Almost orthogonality of decomposition

In this section we show that in an eposet, the spaces V_{i} are almost orthogonal to one another. Moreover, we show that these spaces are "almost eigenspaces" of the operator $D U$.

Theorem 8.6. Let X be a k-dimensional $(\vec{r}, \vec{\delta}, \gamma)$-eposet. For every function f on C^{ℓ} for $\ell \leq k$, the decomposition $f=f_{-1}+\cdots+f_{\ell}$ of Theorem 8.2 satisfies the following properties, when γ is small enough (as a function of k and the eposet parameters):

- For $i \neq j,\left|\left\langle f_{i}, f_{j}\right\rangle\right|=O(\gamma)\left\|f_{i}\right\|\left\|f_{j}\right\|$.
- $\|f\|^{2}=(1 \pm O(\gamma))\left(\left\|f_{-1}\right\|^{2}+\cdots+\left\|f_{\ell}\right\|^{2}\right)$, and for all $i,\|f\|^{2}=(1 \pm O(\gamma))\left(\left\|f_{\leq i}\right\|^{2}+\left\|f_{>i}\right\|^{2}\right)$.
- If $\ell<k$, the $f_{i}($ for $i \geq 0)$ are approximate eigenvectors of $D U:\left\|D U f_{i}-r_{\ell-i+1}^{\ell} f_{i}\right\|=O(\gamma)\left\|f_{i}\right\|$, where

$$
\begin{equation*}
r_{i}^{\ell}=r_{\ell}+\sum_{j=\ell-i}^{\ell-1}\left(\prod_{t=j+1}^{\ell} \delta_{t}\right) r_{j} . \tag{18}
\end{equation*}
$$

(Note DU $f_{-1}=r_{\ell+2}^{\ell} f_{-1}$, where $r_{\ell+2}^{\ell}=1$.)

- If $\ell<k$ then $\langle D U f, f\rangle=\sum_{i=-1}^{\ell} r_{\ell-i+1}^{\ell}\left\|f_{i}\right\|^{2} \pm O(\gamma)\|f\|^{2}$.

The hidden constant in the O notations depends only on k and the eposet parameters $(\vec{r}, \vec{\delta}, \gamma)$ and not on the the eposet size $|X|$. In particular, the last item implies that if $\vec{r}>0$ then for a small enough γ, the poset is proper.

In a measured poset, the decomposition of Theorem 8.2 is not necessarily orthogonal. However, this theorem shows that for an eposet, the decomposition is almost orthogonal.

Remark 8.7. In the special case of a sequentially differential poset, i.e. $\gamma=0$, we do get that the decomposition in Theorem 8.2 is orthogonal, and that the decomposition $C^{\ell}=V_{-1} \oplus \cdots \oplus V_{\ell}$ is a decomposition to eigenspaces of $D U$: for all $f_{i} \in V_{i}$,

$$
D U f_{i}=r_{i}^{\ell} f_{i}
$$

for the r_{i}^{ℓ} given in (18).

Recall our convention that for $f \in C^{\ell-j}$,

$$
U^{j} f=U_{\ell-1} \cdots U_{\ell-j+1} U_{\ell-j} f \in C^{\ell}
$$

We start with a technical claim that generalizes the approximate relation between D and U, namely

$$
\|D U-r I-\delta U D\|=O(\gamma)
$$

to an approximate relation between D and U^{j} :

$$
\left\|D U^{j}-r U^{j-1}-\delta U^{j} D\right\|=O(\gamma)
$$

for appropriate constants $r, \delta \in \mathbb{R}$.
Claim 8.8. Let X be a k-dimensional $(\vec{r}, \vec{\delta}, \gamma)$-eposet, $1 \leq j \leq \ell+1 \leq k$, and $D U^{j}: X(\ell-(j-1)) \rightarrow X(\ell)$. There exist constants r_{j}^{ℓ}, δ_{j}^{ℓ} (as given below) such that

$$
\begin{equation*}
\left\|D U^{j}-r_{j}^{\ell} U^{j-1}-\delta_{j}^{\ell} U^{j} D\right\|=O(\gamma), \tag{19}
\end{equation*}
$$

where the hidden constant in the $O(\cdot)$ notation depends only on $k, \vec{\delta}, \vec{r}$.
The constants δ_{j}^{ℓ} and r_{j}^{ℓ} are given by the following formulas: $\delta_{0}^{\ell}=1$ and

$$
\delta_{j}^{\ell}=\prod_{t=\ell-(j-1)}^{\ell} \delta_{t}, \quad r_{j}^{\ell}=\sum_{t=0}^{j-1} r_{\ell-t} \delta_{t}^{\ell}
$$

While the statement of this claim seems technical, its proof consists of simply inductively substituting $D U$ with $r I+U D$ in the terms, until the formula is obtained. The proof is given in more detail at the end of this section.

Regarding the constants r, δ, notice the following:

1. $r_{1}^{\ell}=r_{\ell}$ and $\delta_{1}^{\ell}=\delta_{\ell}$.
2. If for all $0 \leq j \leq \ell, r_{j}+\delta_{j}=1$, then for all $0 \leq j \leq \ell, r_{j}^{\ell}+\delta_{j}^{\ell}=1$. In this case, we have a better formula for r_{j}^{ℓ} :

$$
r_{j}^{\ell}=1-\prod_{t=\ell-(j-1)}^{\ell} \delta_{t} .
$$

3. In a γ-HDX, we get $r_{j}^{\ell}=\frac{j}{\ell+2}$ and $\delta_{j}^{\ell}=1-\frac{j}{\ell+2}$.

This claim directly implies the third item in Theorem 8.6. In other words, the decomposition in Theorem 8.2 is a decomposition of "approximate eigenspaces" of $U D$:

Corollary 8.9. Let X be an $(\vec{r}, \vec{\delta}, \gamma)$-eposet, and let $h \in H^{\ell-j}$. Then $U^{j} h \in V^{\ell-j}$ is an approximate eigenvector of $D_{\ell+1} U_{\ell}$ with eigenvalue r_{j+1}^{ℓ} :

$$
\left\|D U\left(U^{j} h\right)-r_{j+1}^{\ell}\left(U^{j} h\right)\right\|=O(\gamma)\|h\| .
$$

We proceed by showing that these approximate eigenspaces V^{j} are approximately orthogonal.
Lemma 8.10. Suppose that X is a k-dimensional $(\vec{r}, \vec{\delta}, \gamma)$-eposet, let $\ell<k$, let $i \neq j$, and let $f_{i}=U^{\ell-i} h_{i}, f_{j}=$ $U^{\ell-i} h_{j}$ for $h_{i} \in H^{i}, h_{j} \in H^{j}$, as in Theorem 3.2. Then

$$
\left\langle f_{i}, f_{j}\right\rangle=O(\gamma)\left\|h_{i}\right\|\left\|h_{j}\right\|,
$$

where the hidden constant depends on $k, \vec{\delta}, \vec{r}$ only.
Proof. Recall that $h_{i} \in H^{i}=\operatorname{ker} D_{i}$. Given this, it is easy to see that h_{ℓ} is orthogonal to $f_{\ell-j}$, for any $j \geq 1$. Indeed, $\left\langle f_{\ell}, f_{\ell-j}\right\rangle=\left\langle h_{\ell}, U^{j} h_{\ell-j}\right\rangle=\left\langle D^{j} h_{\ell}, h_{\ell-j}\right\rangle=0$, since $D h_{\ell}=0$.

To prove the statement in general we use Claim 8.8 and induction on ℓ. The base case where $\ell=0$ (and thus i or j are 0) is clear from above.

For the induction step, assume without loss of generality that $i>j$ (or $\ell-j>\ell-i$). Then

$$
\left\langle f_{i}, f_{j}\right\rangle=\left\langle U^{\ell-i} h_{i}, U^{\ell-j} h_{j}\right\rangle=\left\langle D U^{\ell-i} h_{i}, U^{(\ell-1)-j} h_{j}\right\rangle
$$

By the use of the relation in Claim 8.8,

$$
D U^{\ell-i} h_{i}=r_{i}^{\ell} U^{\ell-i-1} h_{i}+\delta_{i}^{\ell} U^{\ell-i} D h_{i}+\Gamma_{i}
$$

where $\left\|\Gamma_{i}\right\|=O(\gamma)\left\|h_{i}\right\|$. The term $\delta_{i}^{\ell} U^{\ell-i} D h_{i}$ vanishes as $h_{i} \in \operatorname{ker} D_{i}$. Thus

$$
\left\langle D U^{\ell-i} h_{i}, U^{(\ell-1)-j} h_{j}\right\rangle=r_{i}^{\ell}\left\langle U^{(\ell-1)-i} h_{i}, U^{(\ell-1)-j} h_{j}\right\rangle+\left\langle\Gamma_{i}, U^{(\ell-1)-j} h_{j}\right\rangle .
$$

The term $r_{i}^{\ell}\left\langle U^{(\ell-1)-i} h_{i}, U^{(\ell-1)-j} h_{j}\right\rangle$ is bounded by $O(\gamma)\left\|h_{i}\right\|\left\|h_{j}\right\|$ by the induction hypothesis, and by the Cauchy-Schwartz inequality,

$$
\left|\left\langle\Gamma_{i}, U^{(\ell-1)-j} h_{j}\right\rangle\right| \leq\left\|\Gamma_{i}\right\|\left\|U^{(\ell-1)-j} h_{j}\right\|=O(\gamma)\left\|h_{i}\right\|\left\|h_{j}\right\| .
$$

The claim follows.

The preceding lemma gives an error estimate in terms of the norms $\left\|h_{i}\right\|$. The following lemma enables us to express the error in terms of the norms $\left\|f_{i}\right\|$.

Lemma 8.11. For any k-dimensional $(\vec{r}, \vec{\delta}, \gamma)$-eposet, let $\ell<k$ and let $f_{i}=U^{\ell-i} h_{i}$ for $h_{i} \in H^{i}$, as in Theorem 3.2. Then

$$
\left\|f_{i}\right\|=(1 \pm O(\gamma)) \rho_{\ell-i}^{\ell}\left\|h_{i}\right\|,
$$

where $\rho_{j}^{\ell}=\prod_{t=0}^{j} r_{j-t}^{\ell-t}$, and the hidden constant depends only on $k, \vec{r}, \vec{\delta}$.

Proof. The proof of this lemma is similar to the proof of Lemma 8.10. By direct calculation with Claim 8.8 we obtain that for any $h \in \operatorname{ker} D$:

$$
D^{j} U^{j} h=r_{j}^{\ell} D^{j-1} U^{j-1} h+\Gamma_{1}=\cdots=\rho_{j}^{\ell} h+\sum_{t=1}^{j} \Gamma_{t}
$$

where Γ_{t} is the remainder, and $\left\|\Gamma_{t}\right\|=O(\gamma)\|h\|$ for all t. Thus

$$
\left\|D^{j} U^{j} h-\rho_{j}^{\ell} h\right\|=O(\gamma)\|h\|
$$

Hence using Cauchy-Schwartz,

$$
\left\|f_{i}\right\|^{2}=\left\langle U^{\ell-i} h_{i}, U^{\ell-i} h_{i}\right\rangle=\left\langle D^{\ell-i} U^{\ell-i} h_{i}, h_{i}\right\rangle=\rho_{\ell-i}^{\ell}\left\|h_{i}\right\|^{2} \pm O(\gamma)\left\|h_{i}\right\|^{2}
$$

Combining both lemmas, we obtain the following corollary, which proves the first item of Theorem 8.6.

Corollary 8.12. Suppose that X be a k-dimensional $(\vec{r}, \vec{\delta}, \gamma)$-eposet, let $\ell<k$, and let $f \in C^{\ell}$ have the decomposition $f=f_{-1}+\cdots+f_{\ell}$, as in Theorem 3.2. Then for $i \neq j$ and small enough γ,

$$
\left\langle f_{i}, f_{j}\right\rangle=O(\gamma)\left\|f_{i}\right\|\left\|f_{j}\right\|
$$

where the hidden constant depends only on $k, \vec{r}, \vec{\delta}$.
As a consequence, we obtain an approximate L_{2} mass formula, constituting the second item of Theorem 8.6:

Corollary 8.13. Under the conditions of Corollary 8.12, for every $i \leq j$ we have

$$
\left\|f_{i}+\cdots+f_{j}\right\|^{2}=(1 \pm O(\gamma))\left(\left\|f_{i}\right\|^{2}+\cdots+\left\|f_{j}\right\|^{2}\right)
$$

where the hidden constant depends only on $k, \vec{r}, \vec{\delta}$.
In particular,

$$
\|f\|^{2}=(1 \pm O(\gamma))\left(w t_{\leq i}(f)+w t_{>i}(f)\right)=(1 \pm O(\gamma))\left(\left\|f_{\leq i}\right\|^{2}+\left\|f_{>i}\right\|^{2}\right)
$$

Proof. Expanding $\left\|f_{i}+\cdots+f_{j}\right\|^{2}$, we obtain

$$
\begin{aligned}
\left|\left\|f_{i}+\cdots+f_{j}\right\|^{2}-\left\|f_{i}\right\|^{2}-\cdots-\left\|f_{j}\right\|^{2}\right| \leq & 2 \sum_{i \leq a<b \leq j}\left|\left\langle f_{a}, f_{b}\right\rangle\right|=O(\gamma) \sum_{i \leq a<b \leq j}\left\|f_{a}\right\|\left\|f_{b}\right\| \leq \\
& O(\gamma)\left(\left\|f_{i}\right\|+\cdots+\left\|f_{j}\right\|\right)^{2} \leq O(\gamma)\left(\left\|f_{i}\right\|^{2}+\cdots+\left\|f_{j}\right\|^{2}\right),
\end{aligned}
$$

swallowing a factor of $j-i+1$ in the last inequality.
The fourth item of Theorem 8.6 follows from the preceding ones:
Corollary 8.14. Under the conditions of Corollary 8.12,

$$
\langle D U f, f\rangle=(1 \pm O(\gamma)) \sum_{i=-1}^{\ell} r_{\ell-i+1}^{\ell}\left\|f_{i}\right\|^{2}
$$

Proof. Let $D U f_{i}=r_{\ell-i+1}^{\ell} f_{i}+g_{i}$, where $\left\|g_{i}\right\|=O(\gamma)\left\|f_{i}\right\|$ according to the third item. Then

$$
\begin{equation*}
\langle D U f, f\rangle=\sum_{i=-1}^{\ell} r_{\ell-i+1}^{\ell}\left\langle f_{i}, f\right\rangle+\sum_{i=-1}^{\ell}\left\langle g_{i}, f\right\rangle . \tag{20}
\end{equation*}
$$

We can bound the magnitude of the second term using Cauchy-Schwartz:

$$
\sum_{i=-1}^{\ell}\left|\left\langle g_{i}, f\right\rangle\right| \leq \sum_{i=-1}^{\ell}\left\|g_{i}\right\|\|f\|=O(\gamma) \sum_{i=1}^{\ell}\left\|f_{i}\right\|\|f\|=O(\gamma)\|f\|^{2}
$$

using the second item.
For every i, we can bound $\left\langle f_{i}, f\right\rangle$ by

$$
\left\langle f_{i}, f\right\rangle=\left\|f_{i}\right\|^{2}+\sum_{j \neq i}\left\langle f_{i}, f_{j}\right\rangle=\left\|f_{i}\right\|^{2} \pm O(\gamma)\left\|f_{i}\right\|\|f\|
$$

using the first two items.
Substituting both bounds in (20) and using the second item again, we get

$$
\langle D U f, f\rangle=\sum_{i=-1}^{\ell} r_{\ell-i+1}^{\ell}\left\|f_{i}\right\|^{2} \pm O(\gamma)\|f\|^{2}
$$

Finally, we prove Claim 8.8:
Proof of Claim 8.8. We prove the claim by induction on j. The base case $j=1$ follows by the definition of an eposet: $\delta_{1}^{\ell}=\delta_{\ell}, r_{1}^{\ell}=r_{\ell}$, and

$$
\left\|D U-r_{1}^{\ell} I-\delta_{1}^{\ell} U D\right\| \leq \gamma .
$$

For the induction step on $j+1$, note that $D U^{j+1}=D U^{j} U$. We add and subtract:

$$
\begin{equation*}
D U^{j} U=\left[D U^{j} U-\left(r_{j}^{\ell} U^{j-1} U+\delta_{j}^{\ell} U^{j} D U\right)\right]+\left(r_{j}^{\ell} U^{j}+\delta_{j}^{\ell} U^{j} D U\right) \tag{21}
\end{equation*}
$$

The term inside the square brackets has spectral norm at most $O(\gamma)\|U\|$ due to the induction hypothesis. Since $\|U\| \leq 1$,

$$
\left\|D U^{j} U-r_{j}^{\ell} U^{j-1} U+\delta_{j}^{\ell} U^{j} D U\right\|=O(\gamma)
$$

We consider next the term $\delta_{j}^{\ell} U^{j} D U$, and substitute the $D U$ in it with

$$
\left(r_{\ell-j} I+\delta_{\ell-j} U D\right)+\Gamma,
$$

where $\Gamma=D U-\left(r_{\ell-j} I+\delta_{\ell-j} U D\right)$ has norm at most γ. We get that

$$
\left\|\delta_{j}^{\ell} U^{j} D U-\delta_{j}^{\ell} U^{j}\left(r_{\ell-j} I+\delta_{\ell-j} U D\right)\right\|=O(\gamma)
$$

We rearrange the left-hand side of the equation to get

$$
\delta_{j}^{\ell} U^{j} D U-\delta_{j}^{\ell} U^{j}\left(r_{\ell-j} I+\delta_{\ell-j} U D\right)=\delta_{j}^{\ell} U^{j} D U-r_{\ell-j} \delta_{j}^{\ell} U^{j}-\delta_{j+1}^{\ell} U D
$$

Plugging this term back in (21), we get

$$
\left\|D U^{j+1}-r_{j+1}^{\ell} U^{j}-\delta_{j+1}^{\ell} U^{j+1} D\right\|=O(\gamma)
$$

8.4 Equivalence between link expansion and random-walk expansion for decomposable posets

In this subsection we extend the equivalence theorem of Section 5 to a class of γ-eposets that share some key properties with simplicial complexes. We call these posets decomposable posets.

We begin with the definition of a link in a general measured poset.
Definition 8.15. Let X be a d-dimensional measured poset. Let $s \in X(i)$. The link X_{s} is a $(d-i-1)$-graded poset consisting of all $t \in X$ such that $t \geq s$, with rank function $\rho_{s}(y)=\rho(y)-\rho(x)-1$.

The induced (joint) distribution on the link $\vec{\Pi}_{X_{s}}=\left(\Pi_{X_{s}, d-i-1}, \ldots, \Pi_{X_{s},-1}\right)$ is defined as follows:

$$
\operatorname{Pr}\left[\vec{\Pi}_{X_{s}}=\left(t_{d-i}, t_{d-i-1}, \ldots, t_{1}, t_{0}\right)\right]=\operatorname{Pr}\left[\Pi_{d}=t_{d-i}, \Pi_{d-1}=t_{d-i-1}, \ldots, \Pi_{i+2}=t_{1}, \Pi_{i+1}=t_{0} \mid \Pi_{i}=s\right] .
$$

Namely, the probability of sampling t in X_{s} is the probability of sampling it given that s was sampled from the i-th level in X.

We denote by U_{j}^{s}, D_{j}^{s} the upper and lower walks on X_{s} starting from $X_{s}(j)$. We further denote by $M_{j}^{+, s}$ the non-lazy upper walk on X_{s} starting from $X_{s}(j)$. When $s=\varnothing$, that is, $X_{s}=X$, we simply write M_{j}^{+}.

We define a two-sided link expander poset analogously to the definition for simplicial complexes:
Definition 8.16. Let X be a measured poset. We say that X is a γ-two-sided-link expander if for every $i \leq d-2$ and every $s \in X(i)$, it holds that

$$
\lambda\left(M_{0}^{+, s}\right) \leq \gamma
$$

where $\lambda\left(M_{0}^{+, s}\right)$ is the second largest eigenvalue of $M_{0}^{+, s}$ in absolute value, which is also equal to $\left\|M_{0}^{+, s}-U_{-1}^{s} D_{0}^{s}\right\|$.
Our main theorem is that for a special class of measurable posets called decomposable posets, the above definition is an equivalent characterization of an eposet. To that end, we first show that Definition 8.5 has an alternate characterization (see Definition 8.19) if the laziness is small.

8.4.1 Laziness and an alternate characterization of eposets

In this section, we show that if the laziness of upper and lower walks of the eposet is small, then there is an alternate more convenient characterization of eposets in terms of $\left\|U_{i-1} D_{i}-M_{i}^{+}\right\|$. First for some definitions.

Definition 8.17 (laziness of eposet). Let M be a random walk on the set V. We say that M is α-lazy for some $\alpha \in(0,1)$ if for every $t \in V$ we have $M(t, t) \leq \alpha$. If furthermore, the operator M can be decomposed as

$$
M=\alpha I+(1-\alpha) M^{+}
$$

then we say that M is α-uniformly lazy. In other words, the walk M is an $(\alpha, 1-\alpha)$ convex combination of the lazy component I and non-lazy component M^{+}.

Let X be a measured eposet. We say that the upper walk DU is $\vec{\alpha}$-uniformly lazy for some vector $\vec{\alpha}=$ $\left(\alpha_{-1}, \alpha_{0}, \ldots, \alpha_{d-1}\right)$ if each of the upper walks $D_{i+1} U_{i}$ are α_{i}-uniformly lazy.

If $\alpha_{i} \leq \alpha$ for all $i \geq 0$ for some $\alpha \in(0,1)$, we then say that the upper walk of X is α-uniformly lazy.
Lemma 8.18. Let $\gamma \in(0,1 / 8)$. Let X be a d-dimensional measured poset whose lower walk $U D$ is γ-lazy and whose upper walk is $1 / 2$-uniformly lazy. Then

1. If $\left\|U_{i-1} D_{i}-M_{i}^{+}\right\| \leq \gamma$ then X is an $(\vec{r}, \vec{\delta}, \gamma)$-eposet for some $\vec{r}, \vec{\delta}$.
2. If X is an $(\vec{r}, \vec{\delta}, \gamma)$-eposet for some $\vec{r}, \vec{\delta}$, then $\left\|U_{i-1} D_{i}-M_{i}^{+}\right\|=O(\gamma)$ for all $i \geq 0$.

Proof. Since the upper walk of X is $1 / 2$-uniformly lazy, there exists $\vec{\alpha}=\left(\alpha_{-1}, \alpha_{0}, \ldots, \alpha_{d-1}\right)$ such that for all $i \in\{-1,0, \ldots, d-1\}$, we have

$$
D_{i+1} U_{i}=\alpha_{i} I+\left(1-\alpha_{i}\right) M_{i}^{+}
$$

(Proof of Part 1) Suppose $\left\|U_{i-1} D_{i}-M_{i}^{+}\right\| \leq \gamma$. Substituting into the above one gets

$$
\gamma \geq\left(1-\alpha_{i}\right) \gamma \geq\left\|\left(1-\alpha_{i}\right) M_{i}^{+}-\left(1-\alpha_{i}\right) U_{i-1} D_{i}\right\|=\left\|D_{i+1} U_{i}-\alpha_{i} I-\left(1-\alpha_{i}\right) U_{i-1} D_{i}\right\|
$$

so X is a γ-eposet for $r_{i}=\alpha_{i}$ and $\delta_{i}=1-\alpha_{i}$.
(Proof of Part 2) Suppose that $\left\|D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}\right\| \leq \gamma$ for some $r_{i}, \delta_{i} \geq 0$.
We apply $D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}$ to the constant vector $\mathbb{1}$, which is fixed by all of $D_{i+1} U_{i}, I, U_{i-1} D_{i}$ because they are averaging operators. This gives

$$
\left|1-r_{i}-\delta_{i}\right|=\left|\frac{\left\langle\left(D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}\right) \mathbb{1}, \mathbb{1}\right\rangle}{\langle\mathbb{1}, \mathbb{1}\rangle}\right| \leq \gamma .
$$

Next, we fix an arbitrary element $s \in X(i)$ and let $f=1_{s}$ be the function that equals 1 on s and 0 elsewhere. Observe that $\left\langle M_{i}^{+} f, f\right\rangle=0$ so $\left\langle D_{i+1} U_{i} f, f\right\rangle=\alpha_{i}\langle f, f\rangle$. We apply $D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}$ on the function $f=1_{s}$,

$$
\left|\alpha_{i}-r_{i}-\delta_{i} \frac{\left\langle U_{i-1} D_{i} f, f\right\rangle}{\langle f, f\rangle}\right|=\left|\frac{\left\langle\left(D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}\right) f, f\right\rangle}{\langle f, f\rangle}\right| \leq \gamma
$$

Now, using the γ-laziness of the lower walks to bound $\left\langle U_{i-1} D_{i} f, f\right\rangle \leq \gamma\langle f, f\rangle$, we get $\left|\alpha_{i}-r_{i}\right| \leq$ $\gamma\left(1+\delta_{i}\right)$. Combining this with $\left|\delta_{i}+r_{i}-1\right| \leq \gamma$, we obtain that $\left|\delta_{i}-\left(1-\alpha_{i}\right)\right| \leq \gamma\left(2+\delta_{i}\right)$. We can now lower- and upper-bound δ_{i} as follows. We have $7 / 8 \cdot \delta_{i} \leq(1-\gamma) \delta_{i} \leq 1-\alpha_{i}+2 \gamma \leq 1+1 / 4$. Hence, $\delta_{i} \leq 10 / 7 \leq 2$. On the other hand, $9 / 8 \cdot \delta_{i} \geq(1+\gamma) \delta_{i} \geq 1-\alpha_{i}-2 \gamma \geq 1 / 2-1 / 4=1 / 4$. Hence, $\delta_{i} \geq 2 / 9$.

Let us denote $A \approx B$ to mean $\|A-B\| \leq O(\gamma)$. We have seen that $\delta_{i}+r_{i} \approx 1$ and that $\alpha_{i} \approx r_{i}$ (since $\delta_{i} \leq 2$), so

$$
\begin{aligned}
\delta_{i} M_{i}^{+}-\delta_{i} U_{i-1} D_{i} & \approx\left(1-\alpha_{i}\right) M_{i}^{+}-\delta_{i} U_{i-1} D_{i} \\
& =D_{i+1} U_{i}-\alpha_{i} I-\delta_{i} U_{i-1} D_{i} \\
& \approx D_{i+1} U_{i}-r_{i} I-\delta_{i} U_{i-1} D_{i}
\end{aligned}
$$

and we conclude that $\left\|M_{i}^{+}-U_{i-1} D_{i}\right\|=O\left(\gamma / \delta_{i}\right)=O(\gamma)$ (since $\left.\delta_{i} \geq 2 / 9\right)$.
Many posets satisfy the mild requirements of Lemma 8.18. For example, in the $(d+1)$-dimensional complete complex, the lower walk is $1 /(n-d+1)$-lazy, and the upper walk is $(1,1 / 2, \ldots, 1 / d)$-uniformly
lazy, and so 1 / 2 -uniformly lazy. Similarly, in the $(d+1)$-dimensional Grassmann complex, the lower walk is $\frac{q-1}{q^{n-d+1}-1}$-lazy, and the upper walk is $\left(1, \frac{q-1}{q^{2}-1}, \ldots, \frac{q-1}{q^{d}-1}\right)$-uniformly lazy, and so $1 /(q+1)$-uniformly lazy.

In Definition 8.5, we defined an $(\vec{r}, \vec{\delta}, \gamma)$-eposet to be a poset where $\|D U-r I-\delta U D\| \leq \gamma$. The above lemma states that this is equivalent to $\left\|U_{i-1} D_{i}-M_{i}^{+}\right\|=O(\gamma)$ provided the lower walk $U D$ is γ-lazy and the upper walk is $1 / 2$-uniformly lazy. This justifies the following equivalent definition of a γ-eposet.

Definition 8.19. A d-dimensional poset X is a γ-eposet if $\left\|U_{i-1} D_{i}-M_{i}^{+}\right\| \leq \gamma$ for all $0 \leq i<d$.

8.4.2 Decomposable posets

The measured posets we consider in this section have a lattice-like property which we call decomposability.

To define decomposabile posets, we first need the notion of a modular lattice. Given a poset X and elements $s_{1}, s_{2} \in X$, the join $s_{1} \vee s_{2}$ of s_{1}, s_{2} is an element t such that $s_{1}, s_{2} \leq t$, and $t \leq r$ whenever $s_{1}, s_{2} \leq r$. If the join exists then it is unique. The meet $s_{1} \wedge s_{2}$ is defined analogously, with \leq replaced by \geq. In a simplicial complex, join corresponds to union, and meet to intersection. A graded lattice is said to be modular if $\rho(x)+\rho(y)=\rho(x \vee y)+\rho(x \wedge y)$ for all $x, y \in X$.

Definition 8.20 (Decomposable measured posets). Let X be a measured poset. We say that X is decomposable if the following conditions hold:

1. X is a modular lattice. In particular, $s_{1}, s_{2} \in X(i)$ have a join in $X(i+1)$ iff they have a meet in $X(i-1)$.
2. For any $s_{1}, s_{2} \in X(i)$ with meet $r \in X(i-1)$, it holds that

$$
\operatorname{Pr}_{M_{i}^{+}}\left[s_{2} \sim s_{1}\right]=\operatorname{Pr}\left[\Pi_{i-1}=r\right] \operatorname{Pr}_{M_{0}^{+, r}}\left[s_{2} \sim s_{1}\right] .
$$

As an example, the Grassmann poset is decomposable. Indeed, it is well-known to be modular, since $\operatorname{dim}\left(s_{1}\right)+\operatorname{dim}\left(s_{2}\right)=\operatorname{dim}\left(s_{1}+s_{2}\right)+\operatorname{dim}\left(s_{1} \cap s_{2}\right)$. As for the second condition, it automatically holds whenever the non-lazy upper and lower walks coincide on all links, which is the case for the Grassmann poset. This is because the second condition is easily seen to hold if we replace the non-lazy upper walks with non-lazy down walks.

Another way to obtain a decomposable measured poset is to start with one and introduce weights on the top level. This is a generalization of the special case of simplicial complexes, in which we consider an arbitrary distribution on the top facets. We describe this construction in detail in Section 8.4.3.

We are now ready to state and prove the main theorem of this section,
Theorem 8.21 (Equivalence of link-expansion and random-walk expansion). Let X be a d-dimensional measured poset which is decomposable, the lower walk UD is γ-lazy and the upper walk is $1 / 2$-uniformly lazy..

1. If X is a γ-two-sided link expander, then X is a γ-eposet.
2. If X is a γ-eposet then X is a $\eta^{-1}\left(1+\beta^{-1}\right) \gamma$-two-sided link expander, where

$$
\eta=\min _{0 \leq i \leq d-2} \min _{r \in X(i), s \in X(i+1), r \leq s} \operatorname{Pr}\left[\Pi_{i}=r \mid \Pi_{i+1}=s\right]
$$

and

$$
\beta=1-\max _{0 \leq i \leq d-2} \max _{r \in X(i), s \in X(i+1), r \leq s} \operatorname{Pr}\left[\Pi_{i}=r \mid \Pi_{i+1}=s\right]
$$

Before proving the theorem, let us calculate the values of η and β for the Grassmann poset $\operatorname{Gr}_{q}(n, d)$. For any $r \in X(i)$ and $s \in X(i+1)$ such that $r \leq s$ we have

$$
\operatorname{Pr}\left[\Pi_{i}=r \mid \Pi_{i+1}=s\right]=\frac{1}{\left[\begin{array}{l}
i+2 \\
i+1
\end{array}\right]_{q}}=\frac{1}{1+q+\cdots+q^{i+1}}
$$

This implies that $\eta=\frac{1}{1+q+\cdots+q^{d-1}}$ and $\beta=1-\frac{1}{1+q}=\frac{q}{1+q}$.
Proof. Item 1. Assume that X is a γ-two-sided link expander. We show that

$$
\left\|M_{i}^{+}-U D\right\| \leq \gamma
$$

for all $i<d$. Let f be a function on $X(i)$, where $i<d$. By decomposability,

$$
\begin{equation*}
\left\langle M_{i}^{+} f, f\right\rangle=\underset{r \sim \Pi_{i-1}}{\mathbb{E}}\left[\left\langle M_{0}^{+, r} f, f\right\rangle\right] . \tag{22}
\end{equation*}
$$

We now note that for every $r \in X(i-1)$,

$$
\underset{r \leq s}{\mathbb{E}}[f(s)]=(D f)(r)
$$

Therefore we have that

$$
\left|\left\langle M_{i}^{+} f, f\right\rangle-\langle U D f, f\rangle\right|=\left|\underset{r \sim \Pi_{i-1}}{\mathbb{E}} \underset{s_{1}, s_{2} \sim M_{0}^{+, r}}{\mathbb{E}}\left[f\left(s_{1}\right) f\left(s_{2}\right)\right]-(D f)(r)^{2}\right| \leq \underset{r \in \Pi_{i-1}}{\mathbb{E}}\left[\lambda\left(M_{0}^{+, r}\right) \underset{s \in X_{r}(0)}{\mathbb{E}}\left[f(s)^{2}\right]\right]
$$

If X is a γ-two-sided link expander then $\lambda\left(M_{0}^{+, r}\right) \leq \gamma$ for all r, and so

$$
\left|\left\langle\left(M_{i}^{+}-U D\right) f, f\right\rangle\right| \leq \gamma \underset{r \in \Pi_{i-1}}{\mathbb{E}} \underset{s \in X_{r}(0)}{\mathbb{E}}\left[f(s)^{2}\right]=\gamma\|f\|^{2}
$$

Item 2. Assume now that X is a γ-HDX. Our goal is to show that for all $i<d-1$ and $r \in X(i)$,

$$
\lambda\left(M_{0}^{+, r}\right) \leq \eta^{-1}\left(1+\beta^{-1}\right) \gamma
$$

Using the convention that $X(-1)$ consists of a single item \varnothing, for $i=-1$ we have $M_{0}^{+, \varnothing}=M_{0}^{+}$, and so $U_{-1} D_{0}$ is zero on the space perpendicular to the constant function. Thus

$$
\left\|M_{0}^{+}-U D\right\|=\lambda\left(M_{0}^{+, \varnothing}\right),
$$

and from our assumption $\lambda\left(M_{0}^{+, \varnothing}\right) \leq \gamma$.
Now assume $1 \leq i \leq d-1$, and fix some $r \in X(i-1)$. Let $f: X_{r}(0) \rightarrow \mathbb{R}$ be some eigenfunction of $M_{0}^{+, r}$, which is perpendicular to the constant functions. In order to prove the theorem, we must show
that

$$
\left|\frac{\left\langle M_{0}^{+, r} f, f\right\rangle}{\langle f, f\rangle}\right| \leq \eta^{-1}\left(1+\beta^{-1}\right) \gamma
$$

Define a function $\tilde{f} \in C^{i}$ by

$$
\tilde{f}(s)= \begin{cases}f(s) & \text { if } r \leq s \\ 0 & \text { otherwise }\end{cases}
$$

Without loss of generality, we may assume that $\|\tilde{f}\|=1$.
In order to obtain a bound on $\lambda\left(M_{0}^{+, r}\right)$, we bound $\langle\tilde{f}, \tilde{f}\rangle,\left\langle M_{i}^{+} \tilde{f}, \tilde{f}\right\rangle$, and $\langle U D \tilde{f}, \tilde{f}\rangle$ in terms of f and $M_{0}^{+, r}$.

We note that by Bayes' theorem,

$$
\operatorname{Pr}[s \mid r]=\frac{\operatorname{Pr}[s] \operatorname{Pr}[r \mid s]}{\operatorname{Pr}[r]} \geq \frac{\eta}{\operatorname{Pr}[r]} \operatorname{Pr}[s] .
$$

As $f(s)=0$ whenever $r \not \leq s$,

$$
\begin{equation*}
\langle f, f\rangle=\underset{r \leq s}{\mathbb{E}}\left[f(s)^{2}\right] \geq \frac{\eta}{\operatorname{Pr}[r]} \underset{s \in X(i)}{\mathbb{E}}\left[f(s)^{2}\right]=\frac{\eta}{\operatorname{Pr}[r]}\langle\tilde{f}, \tilde{f}\rangle . \tag{23}
\end{equation*}
$$

Furthermore, from what we shown in (22) we obtain that

$$
\left\langle M_{i}^{+} \tilde{f}, \tilde{f}\right\rangle=\underset{r^{\prime} \in X(i-1)}{\mathbb{E}}\left[\left\langle M_{0}^{+, r^{\prime}} \tilde{f}, \tilde{f}\right\rangle\right]
$$

Fix some $r^{\prime} \neq r$. If $\tilde{f} \neq 0$ on the link of r^{\prime} then some $s \in X(i)$ satisifies both $r \leq s$ and $r^{\prime} \leq s$; this s must be the join of r and r^{\prime}, and so it is unique. Since $M_{0}^{+, r^{\prime}}$ is a non-lazy operator, this implies that $\left\langle M_{0}^{+, r^{\prime}} \tilde{f}, \tilde{f}\right\rangle=0$. We remain with

$$
\begin{equation*}
\left\langle M_{i}^{+} \tilde{f}, \tilde{f}\right\rangle=\Pi_{i-1}(r)\left\langle M_{0}^{+, r} f, f\right\rangle \tag{24}
\end{equation*}
$$

In other words, the upper non-lazy random walk is proportional to the local adjacency operator.
We now prove the following claim, which shows that the lower walk scales \tilde{f} by a factor of at most $\eta^{-1} \gamma$:

Claim 8.22. If $f: X_{r}(0) \rightarrow \mathbb{R}$ is perpendicular to constant functions then $\left|\left\langle U_{i-1} D_{i} \tilde{f}, \tilde{f}\right\rangle\right| \leq \beta^{-1} \gamma$.
Assuming the above:

$$
\begin{aligned}
\left|\frac{\left\langle M_{0}^{+, r} f, f\right\rangle}{\langle f, f\rangle}\right| \leq\left|\eta^{-1} \Pi_{i-1}(r)\left\langle M_{0}^{+, r} f, f\right\rangle\right|=\eta^{-1}\left|\left\langle M_{i}^{+} \tilde{f}, \tilde{f}\right\rangle\right| \leq \\
\quad \eta^{-1}\left|\left\langle\left(M_{i}^{+}-U_{i-1} D_{i}\right) \tilde{f}, \tilde{f}\right\rangle\right|+\eta^{-1}\left|\left\langle U_{i-1} D_{i} \tilde{f}, \tilde{f}\right\rangle\right| \leq \eta^{-1}\left(1+\beta^{-1}\right) \gamma,
\end{aligned}
$$

where the first line uses (23) and (24), and the second line uses Claim 8.22, our assumption that $\| M_{i}^{+}-$ $U_{i-1} D_{i} \| \leq \gamma$, and the triangle inequality.

We complete the proof of Theorem 8.21 by proving Claim 8.22:
Proof of Claim 8.22. Since $U D$ is PSD, we have $\left\langle U_{i-1} D_{i} \tilde{f}, \tilde{f}\right\rangle \geq 0$, and so we may remove the absolute
value and prove

$$
\left\langle U_{i-1} D_{i} \tilde{f}, \tilde{f}\right\rangle \leq \beta^{-1} \gamma
$$

Consider the inner product $\left\langle D_{i} \tilde{f}, D_{i} \tilde{f}\right\rangle$ - this is the expectation upon choosing $r^{\prime} \sim \Pi_{i-1}$, and then choosing two i-faces $s_{1}, s_{2} \in X(i)$ containing it independently. Hence we decompose to the cases where $r^{\prime}=r$ and $r^{\prime} \neq r$:

$$
\begin{gather*}
\left\langle D_{i} \tilde{f}, D_{i} \tilde{f}\right\rangle=\underset{\left(r^{\prime}, s_{1}, s_{2}\right)}{\mathbb{E}}\left[f\left(s_{1}\right) f\left(s_{2}\right)\right]= \\
\Pi_{i-1}(r) \underset{\left(r^{\prime}, s_{1}, s_{2}\right)}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right) \tilde{f}\left(s_{2}\right) \mid r^{\prime}=r\right]+\left(1-\Pi_{i-1}(r)\right) \underset{\left(r^{\prime}, s_{1}, s_{2}\right)}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right) \tilde{f}\left(s_{2}\right) \mid r^{\prime} \neq r\right] . \tag{25}
\end{gather*}
$$

The first term is 0 , since from independence of s_{1}, s_{2} :

$$
\underset{\left(r^{\prime}, s_{1}, s_{2}\right)}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right) \tilde{f}\left(s_{2}\right) \mid r^{\prime}=r\right]=\underset{s_{1}}{\mathbb{E}}\left[f\left(s_{1}\right) \mid r \subset s_{1}\right]^{2}=0,
$$

since by assumption f is perpendicular to constant functions.
We saw above that for any $r^{\prime} \neq r$, there is at most one i-face $s^{\prime} \geq r^{\prime}$ such that $\tilde{f}(s) \neq 0$. For any $r^{\prime} \neq r$, the value $\tilde{f}\left(s_{1}\right) \tilde{f}\left(s_{2}\right)$ is non-zero only when $s_{1}=s_{2}=s^{\prime}$. For every $s_{1} \in X(i)$, we define the event $E_{s_{1}}$ to hold when $s_{2}=s_{1}$. Then

$$
(25)=\left(1-\Pi_{i-1}(r)\right) \underset{s_{1}}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right)^{2} \operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{s_{1}} \mid r^{\prime} \neq r\right]\right] .
$$

Note that if s_{1} doesn't contain r then $\tilde{f}\left(s_{1}\right)^{2}=0$, hence we continue taking expectation over all $s_{1} \in X(i)$, even though some of them are unnecessary terms.

If we prove that for every $s \in X(i)$ so that $r \leq s$ we have $\operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{s_{1}} \mid r^{\prime} \neq r\right] \leq \beta^{-1} \gamma$, then

$$
\left(1-\Pi_{i-1}(r)\right) \underset{s_{1}}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right)^{2} \operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{s_{1}}\right]\right] \leq \beta^{-1} \gamma \underset{s_{1}}{\mathbb{E}}\left[\tilde{f}\left(s_{1}\right)^{2}\right]=\beta^{-1} \gamma\langle\tilde{f}, \tilde{f}\rangle=\beta^{-1} \gamma
$$

Thus we are left with proving the following statement: for all $s_{1} \in X(i)$,

$$
\operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{S_{1}} \mid r^{\prime} \neq r\right] \leq \beta^{-1} \gamma
$$

We first bound the unconditioned probability $\operatorname{Pr}\left[E_{s_{1}}\right]=\operatorname{Pr}_{r^{\prime}, s_{2} \in X(i)}\left[s_{2}=s_{1} \mid r^{\prime} \subset s_{1}, s_{2}\right]$. Fix some $s_{1} \in X(i)$, and let $\mathbb{1}_{s_{1}}: X(i) \rightarrow \mathbb{R}$ be its indicator. Notice that $U_{i-1} D_{i} \mathbb{1}_{s_{1}}\left(s_{1}\right)=\operatorname{Pr}_{r^{\prime}, s_{2}}\left[s_{2}=s_{1}\right]$, and so

$$
\left\langle U_{i-1} D_{i} \mathbb{1}_{s_{1}}, \mathbb{1}_{s_{1}}\right\rangle=\Pi_{i}\left(s_{1}\right) U_{i-1} D_{i} \mathbb{1}_{s_{1}}\left(s_{1}\right)=\Pi_{i}\left(s_{1}\right) \operatorname{Pr}\left[E_{S_{1}}\right] .
$$

We again use the non-laziness property of M_{i}^{+}to assert that $\left\langle M_{i}^{+} \mathbb{1}_{s_{1}}, \mathbb{1}_{s_{1}}\right\rangle=0$. Since X is a γ-eposet,

$$
\left\langle U_{i-1} D_{i} \mathbb{1}_{s_{1}}, \mathbb{1}_{s_{1}}\right\rangle=\left\langle\left(U_{i-1} D_{i}-M_{i}^{+}\right) \mathbb{1}_{s_{1}}, \mathbb{1}_{s_{1}}\right\rangle \leq\left\|U_{i-1} D_{i}-M_{i}^{+}\right\|\left\|\mathbb{1}_{s_{1}}\right\|^{2}=\gamma \Pi_{i}\left(s_{1}\right)
$$

Hence $\operatorname{Pr}\left[E_{S_{1}}\right] \leq \gamma$.
Consider now any $s_{1} \in X(i)$ containing r and some $r^{\prime} \neq r$. The probability of sampling $r^{\prime} \neq r$ given that we sample an element $\leq s$ is at least β (by definition of β which is the probability of not sampling
the element with largest probability), and so

$$
\operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{S_{1}} \mid r^{\prime} \neq r\right] \leq \beta^{-1} \operatorname{Pr}_{r^{\prime}, s_{2}}\left[E_{s_{1}}\right] \leq \beta^{-1} \gamma .
$$

8.4.3 Constructing decomposable posets

Let X be a measured poset given by the distribution $\vec{\Pi}=\left(\Pi_{d}, \ldots, \Pi_{-1}\right)$. Given a distribution \mathcal{D} on $X(d)$, we can construct a different distribution $\vec{\Psi}$ by first sampling $x \sim \mathcal{D}$, and then sampling $\vec{\Pi}$ conditioned on $\Pi_{d}=x$.

Lemma 8.23. If X is decomposable with respect to $\vec{\Pi}$, then it is decomposable with respect to $\vec{\Psi}$.
Proof. Only the second condition depends on the measure. Let us spell it out in the case of the original distribution $\vec{\Pi}$.

We are given $s_{1}, s_{2} \in X(i)$ with meet $r \in X(i-1)$ and join $t \in X(i+1)$ (which is the only way for the upper walk to get from s_{1} to s_{2}), and know that the following two expressions are equal:

$$
\begin{gathered}
\operatorname{Pr}_{M_{i}^{+}}\left[s_{2} \sim s_{1}\right]=\operatorname{Pr}\left[\Pi_{i}=s_{1}, \Pi_{i+1}=t\right] \frac{\operatorname{Pr}\left[\Pi_{i}=s_{2} \mid \Pi_{i+1}=t\right]}{\operatorname{Pr}\left[\Pi_{i} \neq s_{1} \mid \Pi_{i+1}=t\right]}, \\
\operatorname{Pr}\left[\Pi_{i-1}=r\right] \operatorname{Pr}_{M_{0}^{r,+}}\left[s_{2} \sim s_{1}\right]=\operatorname{Pr}\left[\Pi_{i-1}=r\right] \operatorname{Pr}\left[\Pi_{i}=s_{1}, \Pi_{i+1}=t \mid \Pi_{i-1}=r\right] \frac{\operatorname{Pr}\left[\Pi_{i}=s_{2} \mid \Pi_{i+1}=t, \Pi_{i-1}=r\right]}{\operatorname{Pr}\left[\Pi_{i} \neq s_{1} \mid \Pi_{i+1}=t, \Pi_{i-1}=r\right]} .
\end{gathered}
$$

Let us write these two expressions slightly differently:

$$
\begin{gathered}
\operatorname{Pr}_{M_{i}^{+}}\left[s_{2} \sim s_{1}\right]=\operatorname{Pr}\left[\Pi_{i+1}=t\right] \operatorname{Pr}\left[\Pi_{i}=s_{1} \mid \Pi_{i+1}=t\right] \frac{\operatorname{Pr}\left[\Pi_{i}=s_{2} \mid \Pi_{i+1}=t\right]}{\operatorname{Pr}\left[\Pi_{i} \neq s_{1} \mid \Pi_{i+1}=t\right]}, \\
\operatorname{Pr}\left[\Pi_{i-1}=r\right] \operatorname{Pr}_{M_{0}^{r,+}}\left[s_{2} \sim s_{1}\right]=\operatorname{Pr}\left[\Pi_{i+1}=t\right] \operatorname{Pr}\left[\Pi_{i}=s_{1}, \Pi_{i-1}=r \mid \Pi_{i+1}=t\right] \frac{\operatorname{Pr}\left[\Pi_{i}=s_{2} \mid \Pi_{i+1}=t, \Pi_{i-1}=r\right]}{\operatorname{Pr}\left[\Pi_{i} \neq s_{1} \mid \Pi_{i+1}=t, \Pi_{i-1}=r\right]} .
\end{gathered}
$$

In order for X to be decomposable with respect to $\vec{\Psi}$, we need these two expressions to coincide when replacing Π with Ψ throughout. Yet due to the definition of Ψ, this only replaces the $\operatorname{Pr}\left[\Pi_{i+1}=t\right]$ factors with $\operatorname{Pr}\left[\Psi_{i+1}=t\right]$ factors. Hence X is decomposable with respect to $\vec{\Psi}$ as well.

8.5 Comparison to the Kaufman-Oppenheim decomposition

Kaufman and Oppenheim [KO20] proposed a decomposition of C^{k} to orthogonal spaces in the case of high-dimensional expanders. Their definition extends to the general eposet setting:

$$
B^{i}=U^{k-i} C^{i} \cap\left(\oplus_{j<i} B^{j}\right)^{\perp}=U^{k-i} C^{i} \cap\left(U^{k-(i-1)} C^{i-1}\right)^{\perp}
$$

(When $i=-1$, the definition is simply $B^{-1}=U^{k+1} C^{-1}$.)
As $U=D^{*}$, we have an equivalent definition of these spaces by harmonic conditions similar to ours:

$$
B^{i}=U^{k-i} C^{i} \cap \operatorname{ker} D^{k-i+1}
$$

By construction, these spaces are orthogonal, and it is easy to see that indeed their direct sum is C^{k}. Kaufman and Oppenheim [KO20, Theorem 1.5] showed that the subspaces B^{i} are approximate eigenspaces of M^{+}.

The following proposition shows that these two spaces are close.
Proposition 8.24. If $f \in V^{i}$ has unit norm then there exists $g \in B^{i}$ so that $\|f-g\|=O(\gamma)$.
Similarly, if $g \in B^{i}$ has unit norm then there exists $f \in V^{i}$ so that $\|f-g\|=O(\gamma)$.
The O notation may depend on k, r, δ only.
Proof. We start with the first statement. Let $f \in V^{i}$ have norm 1. We decompose f as $f=\sum_{j=-1}^{k} g_{j}$, where $g_{j} \in B^{j}$, and take $g=g_{i}$. Then

$$
\|f-g\|^{2}=\langle f-g, f-g\rangle=\langle f, f-g\rangle
$$

since g is perpendicular to $f-g$. As $f-g=\sum_{j=-1, j \neq i}^{k} g_{j}$, it is enough to show that $\left\langle f, g_{j}\right\rangle=O(\gamma)$ for all $j \neq i$.

If $j>i$ then by the definition of B^{j} and the fact that $f \in U^{k-i} C^{i},\left\langle f, g_{j}\right\rangle=0$. If $j<i$ then $g_{j} \in U^{j} C^{j}=$ $V^{-1} \oplus \cdots \oplus V^{j}$. By Corollary 8.12 and Corollary 8.13, $\left\langle f, g_{j}\right\rangle=O(\gamma)(1+O(\gamma))\|f\|\left\|g_{j}\right\|=O(\gamma)$, since $\left\|g_{j}\right\| \leq\|f\|=1$.

The proof of the second statement is similar. Let $g \in B^{i}$ have norm 1. We decompose g as $g=$ $\sum_{j=-1}^{k} f_{j}$, where $f_{j} \in V^{j}$, and take $f=f_{i}$. Then

$$
\|g-f\|^{2}=\langle g-f, g-f\rangle=\langle g, g-f\rangle+\langle f, g-f\rangle .
$$

Since $g-f=\sum_{j=-1, j \neq i}^{k} f_{j}$, Corollary 8.12 and Corollary 8.13 show that $\langle f, g-f\rangle=O(\gamma)(1+O(\gamma))\|f\|\|g-f\|=$ $O(\gamma)$. Thus we need to show that $\langle g, g-f\rangle=O(\gamma)$, and for this it is enough to show that for every $j \neq i,\left\langle g, f_{j}\right\rangle=O(\gamma)$.

If $j<i$ then $\left\langle g, f_{j}\right\rangle=0$ by the definition of B^{i} and the fact that $f_{j}=U^{k-j} h$ for some $h \in C^{j}$. Otherwise $j>i$, in which case we again use Corollary 8.12 and Corollary 8.13 to get the required bound.

Remark 8.25. Let $g \in B^{i}$, and let $f \in C^{i}$ be a close vector promised in Proposition 8.24. Applying Theorem 8.6, we get that

$$
\left\|D U g-r_{i}^{k} g\right\| \leq\|D U(g-f)\|+\left\|D U f-r_{i}^{k} f\right\|+\left|r_{i}\right|\|g-f\|=O(\gamma)
$$

In other words, B^{i} is an approximate eigenspace of $D U$.

8.6 Decomposition in the Grassmann poset

Applying Theorem 8.2, we obtain the following properties on the decomposition of $\mathrm{Gr}_{q}(n, d)$. These properties are well-known in the literature, but we rederive them to show the versatility of Theorem 8.6:

Claim 8.26. Fix some $d, n \in \mathbb{N}$, let $X=\operatorname{Gr}_{q}(n, d)$, and let $\ell<d$. Let $f: X(\ell) \rightarrow \mathbb{R}$ be an arbitrary function. Then we can decompose $f=f_{-1}+\cdots+f_{\ell}$, where $f_{i} \in V^{i}$:

1. For $i \neq j,\left\langle f_{i}, f_{j}\right\rangle=0$.
2. $\|f\|^{2}=\left\|f_{-1}\right\|^{2}+\cdots+\left\|f_{\ell}\right\|^{2}$.
3. The f_{i} 's are eigenvectors of $D U$. The eigenvalues are

$$
r_{i}^{\ell}=1-\prod_{j=\ell-i+1}^{\ell}\left(1-\frac{q-1}{q^{j+2}-1}\right)+\Theta\left(1 / q^{n-\ell}\right)
$$

4. In particular, DU has a constant spectral gap, that is, all its eigenvalues are bounded by a constant strictly smaller than 1 when n is large enough compared to ℓ :

$$
r_{i}^{\ell} \leq \frac{q}{q^{2}-1}+O\left(\frac{1}{q^{n-\ell}}\right)<1
$$

Proof. The first two items are by invoking Theorem 8.6 and using (16), which shows the Grassmann poset is a sequentially differential poset.

The third item is by invoking Theorem 8.6 , and using the fact that $\mathrm{Gr}_{q}(n, \ell)$ is also an expanding poset, with $r_{i}=\frac{q-1}{q^{i+2}-1}, \delta_{i}=1-r_{i}$, and $\gamma=O\left(1 / q^{n-\ell}\right)$. The fourth item is by direct calculation: one may show using induction that the approximate formula for r_{i}^{ℓ} is

$$
1-\prod_{j=i}^{\ell}\left(1-\frac{q-1}{q^{j+2}-1}\right) \leq \sum_{j=i}^{\ell} \frac{q-1}{q^{j+2}-1}
$$

By taking ℓ to infinity and rearranging, we obtain

$$
\sum_{j=i}^{\ell} \frac{q-1}{q^{j+2}-1} \leq(q-1) \sum_{j=i+2}^{\infty} \frac{q^{j}}{q^{j}\left(q^{j}-1\right)} \leq(q-1) \frac{q^{i+2}}{q^{i+2}-1} \sum_{j=i+2}^{\infty} \frac{1}{q^{j}}
$$

The infinite sum converges to $\frac{1}{q^{i+1}(q-1)}$, and so

$$
(q-1) \frac{q^{i+2}}{q^{i+2}-1} \sum_{j=i+2}^{\infty} \frac{1}{q^{j}}=(q-1) \frac{q^{i+2}}{q^{i+2}-1} \frac{1}{q^{i+1}(q-1)}=\frac{q}{q^{i+2}-1}
$$

Hence $r_{i}^{\ell} \leq \frac{q}{q^{2}-1}+O\left(\frac{1}{q^{n-\ell}}\right)$.
Remark 8.27. The actual values for r_{i}^{ℓ} can also be calculated by the formula devised in Theorem 8.6. The calculations are omitted, as they don't add any additional insight.

Remark 8.28. This result is also analogous to the decomposition of the complete complex, say the one obtained by Filmus and Mossel [FM19].

8.7 Is there a bounded degree Grassmann poset?

A high-dimensional expander, as constructed by Lubotzky, Samuels and Vishne [LSV05a], is a simplicial complex that is an eposet and a bounded-degree sub-complex of the complete complex. Is there an analogous construction of an eposet that is a bounded-degree subcomplex of the Grassmann poset? We conjecture the existence of such posets:

Conjecture 8.29. For any prime power $q, d \in \mathbb{N}$, and any $0<\gamma<1$, there exists an infinite sequence of natural numbers $n_{1}<n_{2}<n_{3}<\ldots$ such for all $n=n_{j}$ there exists a d-dimensional measured poset X with the following properties:

1. X is sparse, that is $|X(0)|=n$ and $X(d)=O(n)$ (the O-notation hides a constant that may depend on q, d, but not on n).
2. X may be embedded (as a poset) into $\operatorname{Gr}_{q}(n, d)$. In addition, for all $i<d, \Pi_{i}$ is obtained by the same probabilistic experiment described for the Grassmann poset:
(a) Choose a subspace of dimension $d+1, s_{d} \in X(d)$.
(b) Given a space s_{i} of dimension $i+1$, choose s_{i-1} to be a uniformly random codimension 1 subspace of s_{i}.

In particular, X is downward closed, that is, if $s \in X$ then every subspace $s^{\prime} \subset s$ also belongs to X.
3. X is an $(\vec{r}, \vec{\delta}, \gamma)$-eposet for $r_{i}=\frac{1}{q^{i+2}-1}$ and $\delta_{i}=1-r_{i}$.

This existence of sub-posets as above is the vector-space analog of the existence of γ-HDX simplicial complexes. Moreover, it would be interesting to construct such a poset such that Π_{0}, Π_{d} are uniform. Note however that even in the known constructions for γ-HDX simplicial complexes, Π_{d} is not uniform (but Π_{0} is uniform).

Moshkovitz and Raz [MR08] gave a construction that can be viewed as an interesting step in this direction. They constructed, towards a derandomized low degree test, a small set of planes by choosing only planes spanned by directions coming from a smaller field $\mathbb{H} \subset \mathbb{F}_{q}$.

8.8 Eposet parameters in a simplicial complex

Although the definition of (approximately) sequentially differential poset allows a range of parameters \vec{r} and $\vec{\delta}$, these parameters turn out to be determined by the laziness of the upper walks, assuming that the lower walks are sufficiently non-lazy. The lemma below shows that any family of simplicial complexes which are eposets, have parameters $\vec{r}, \vec{\delta}$ approaching $r_{j}=\frac{1}{j+2}$ and $\delta_{j}=1-\frac{1}{j+2}$ as γ goes to zero.
Lemma 8.30. Let $X^{(m)}$ be a sequence on k-dimensional $\left(\vec{r}^{(m)}, \vec{\delta}^{(m)}, \gamma^{(m)}\right)$-eposets, where $\lim _{m \rightarrow \infty} \gamma^{(m)}=0$. Then for all $j \leq k-1$:

$$
\begin{equation*}
\lim _{m \rightarrow \infty} r_{j}^{(m)}+\delta_{j}^{(m)}=1 \tag{26}
\end{equation*}
$$

Furthermore, suppose that the following two conditions hold:

1. For all $j \leq k-1$, the laziness of $U_{j-1} D_{j}$, goes to 0 as m goes to infinity:

$$
\lim _{m \rightarrow \infty} \operatorname{Pr}_{\left(t_{1}, t_{2}\right) \sim U D}\left[t_{1}=t_{2}\right]=0 .
$$

2. There exists $\vec{\alpha}$ such that for all $j \leq k-1, D_{j+1} U_{j}=\alpha_{j} I+\left(1-\alpha_{j}\right) M^{+}$, where M^{+}is a non-lazy averaging operator.

Then

$$
\lim _{m \rightarrow \infty} r_{j}^{(m)}=\alpha_{j} \text { and } \lim _{m \rightarrow \infty} \delta_{j}^{(m)}=1-\alpha_{j},
$$

In particular, if $X^{(m)}$ are k-dimensional simplicial complexes, then $\alpha_{j}=\frac{1}{j+2}$ and we get

$$
\lim _{m \rightarrow \infty} r_{j}^{(m)}=\frac{1}{j+2} \text { and } \lim _{m \rightarrow \infty} \delta_{j}^{(m)}=1-\frac{1}{j+2},
$$

under the mild assumption that the laziness probability of $U D$ goes to zero. In other words, the interesting eposets are γ-HDXs.

Proof. To prove both assertions, we use the definition of an eposet to get the following inequality:

$$
\begin{equation*}
\left|\frac{\left\langle\left(D U-r_{j}^{(m)} I-\delta_{j}^{(m)} U D\right) f, f\right\rangle}{\langle f, f\rangle}\right| \leq \gamma^{(m)} \tag{27}
\end{equation*}
$$

for any function $f \in C^{k}$. We use this inequality on specific functions f we choose: the constant function, and indicator functions.

To show that

$$
\lim _{m \rightarrow \infty} r_{j}^{(m)}+\delta_{j}^{(m)}=1
$$

we apply $D U-r_{j}^{(m)} I-\delta_{j}^{(m)} U D$ to the constant vector $\mathbb{1}$, which is fixed by all of $D U, I, U D$:

$$
\left|\frac{\left\langle\left(D U-r_{j}^{(m)} I-\delta_{j}^{(m)} U D\right) \mathbb{1}, \mathbb{1}\right\rangle}{\langle\mathbb{1}, \mathbb{1}\rangle}\right| \leq \gamma^{(m)} \Longrightarrow\left|1-r_{j}^{(m)}-\delta_{j}^{(m)}\right| \leq \gamma^{(m)},
$$

thus $\lim _{m \rightarrow \infty} r_{j}^{(m)}+\delta_{j}^{(m)}=1$.
To show that $\lim _{m \rightarrow \infty} r_{j}^{(m)}=\alpha_{j}$, we fix j and take a sequence of $\sigma^{(m)} \in X(j)$ such that probability of laziness given that $t_{1}=\sigma^{(m)}$ goes to zero:

$$
\lim _{m \rightarrow \infty} \operatorname{Pr}_{\left(t_{1}, t_{2}\right) \sim U D}\left[t_{2}=\sigma^{(m)} \mid t_{1}=\sigma^{(m)}\right]=0 .
$$

Denote by $\mathbb{1}_{\sigma^{(m)}}$ the indicator of $\sigma^{(m)}$. Then

$$
\frac{\left\langle U D \mathbb{1}_{\sigma^{(m)}}, \mathbb{1}_{\sigma^{(m)}}\right\rangle}{\left\langle\mathbb{1}_{\sigma^{(m)}}, \mathbb{1}_{\sigma^{(m)}}\right\rangle}=\operatorname{Pr}_{\left(t_{1}, t_{2}\right) \sim U D}\left[t_{2}=\sigma^{(m)} \mid t_{1}=\sigma^{(m)}\right] .
$$

Moreover,

$$
\frac{\left\langle\left(D U-r_{j}^{(m)} I\right) \mathbb{1}_{\sigma^{(m)}}, \mathbb{1}_{\sigma^{(m)}}\right\rangle}{\left\langle\mathbb{1}_{\sigma^{(m)}}, \mathbb{1}_{\sigma^{(m)}}\right\rangle}=\alpha_{j}-r_{j}^{(m)}
$$

Plugging $f=\mathbb{1}_{\sigma^{(m)}}$ into (27), we get

$$
\left|\alpha_{j}-r_{j}^{(m)}-\delta_{j}^{(m)} \operatorname{Pr}_{\left(t_{1}, t_{2}\right) \sim U D}\left[t_{2}=\sigma^{(m)} \mid t_{1}=\sigma^{(m)}\right]\right| \leq \gamma^{(m)}
$$

Since the $\delta_{j}^{(m)}$ are bounded, this shows that $\lim _{m \rightarrow \infty} r_{j}^{(m)}=\alpha_{j}$. The analogous statement for $\delta_{j}^{(m)}$ follows from (26).

References

[AJT19] Vedat Levi Alev, Fernando Granha Jeronimo, and Madhur Tulsiani. Approximating constraint satisfaction problems on high-dimensional expanders. In Proc. 60th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 180-201. 2019. arXiv:1907.07833. 6
[ALGV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid. In Proc. 51st ACM Symp. on Theory of Computing (STOC), pages 1-12. 2019. arXiv:1811.01816. 2, 3
[BGHMRS15] Boaz Barak, Parikshit Gopalan, Johan Håstad, Raghu Meka, Prasad Raghavendra, and David Steurer. Making the long code shorter. SIAM J. Comput., 44(5):1287-1324, 2015. (Preliminary version in 53rd FOCS, 2012). arXiv:1111.0405, eccc:2011/TR11-142. 1
[BKS19] Boaz Barak, Pravesh Kothari, and David Steurer. Small-set expansion in shortcode graph and the 2-to-2 conjecture. In Avrim Blum, ed., Proc. 10th Innovations in Theor. Comput. Sci. (ITCS), volume 124 of LIPIcs, pages 9:1-9:12. Schloss Dagstuhl, 2019. arXiv:1804.08662, eccc:2018/TR18-077. 1
[DD19] Yotam Dikstein and Irit Dinur. Agreement testing theorems on layered set systems. In Proc. 60th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 1495-1524. 2019. arXiv:1909.00638, eccc: 2019/TR19-112. 6
[DDFH18] Yotam Dikstein, Irit Dinur, Yuval Filmus, and Prahladh Harsha. Boolean function analysis on high-dimensional expanders. In Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer, eds., Proc. 20th International Workshop on Randomization and Computation (RANDOM), volume 116 of LIPIcs, pages 38:1-38:20. Schloss Dagstuhl, 2018. arXiv:1804.08155, eccc:2018/ TR18-075. 1, 6
[DFH19] Irit Dinur, Yuval Filmus, and Prahladh Harsha. Analyzing Boolean functions on the biased hypercube via higher-dimensional agreement tests. In Proc. 30th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 2124-2133. 2019. arXiv:1711.09428, 1711.09426, eccc:2017/TR17-180, 2017/TR17-181. 8
[DHKNT19] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon TaShma. List decoding with double samplers. In Proc. 30th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 2134-2153. 2019. arXiv:1808.00425, eccc:2018/TR18-198. 2
[DK17] Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In Proc. 58th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 974-985. 2017. eccc:2017/TR17-089. 2, 3, $8,12,14,15,16,24$
[DKKMS18a] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally expanding sets in Grassmann graphs. In Proc. 50th ACM Symp. on Theory of Computing (STOC), pages 940-951. 2018. eccc:2017/TR17-094. 1, 7
[DKKMS18b] _—. Towards a proof of the 2-to-1 games conjecture? In Proc. 50th ACM Symp. on Theory of Computing (STOC), pages 376-389. 2018. eccc:2016/TR16-198. 1,7
[DKW18] Dominic Dotterrer, Tali Kaufman, and Uli Wagner. On expansion and topological overlap. Geometriae Dedicata, 195:307-317, 2018. (Preliminary version in 32nd Symp. Comput. Geom., 2016). arXiv:1506.04558. 2
[Dun76] Charles Dunkl. A Krawtchouk polynomial addition theorem and wreath products of symmetric groups. Indiana Univ. Math. J., 25:335-358, 1976. 5
[EFF15a] David Ellis, Yuval Filmus, and Ehud Friedgut. A quasi-stability result for dictatorships in S_{n}. Combinatorica, 35(5):573-618, 2015. arXiv:1209.5557. 1
[EFF15b] ——. A stability result for balanced dictatorships in S_{n}. Random Structures Algorithms, 46(3):494-530, 2015. arXiv:1210.3989. 1
[EFF17] Low degree Boolean functions on S_{n}, with an application to isoperimetry. Forum of Mathematics, Sigma, 5:e23, 2017. arXiv:1511.08694. 1
[EK16] Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every dimension. In Proc. 48th ACM Symp. on Theory of Computing (STOC), pages 36-48. 2016. arXiv: 1510.00839. 2, 15
[Evr17] Shai Evra. Finite quotients of Bruhat-Tits buildings as geometric expanders. J. Topol. Anal., 09(01):5166, 2017. arXiv:1503.08626. 2
[FGLNP12] Jacob Fox, Mikhail Gromov, Vincent Lafforgue, Assaf Naor, and János Pach. Overlap properties of geometric expanders. J. Reine Angew. Math., 2012(671):49-83, 2012. arXiv:1005.1392. 2
[Fil16a] Yuval Filmus. Friedgut-Kalai-Naor theorem for slices of the Boolean cube. Chic. J. Theoret. Comput. Sci., 2016(14), 2016. arXiv: 1410.7834. 1, 8, 23, 24
[Fil16b] _-. An orthogonal basis for functions over a slice of the Boolean hypercube. Electron. J. Combin., 23(1):P1.23, 2016. arXiv:1406.0142. 1
[FKMW18] Yuval Filmus, Guy Kindler, Elchanan Mossel, and Karl Wimmer. Invariance principle on the slice. ACM T. Comput. Theory, 10(3):11:1-11:37, 2018. (Preliminary version in 31st Comput. Complexity Conf.). arXiv: 1504.01689. 1,5
[FKN02] EhUd Friedgut, Gil Kalai, and Assaf Naor. Boolean functions whose Fourier transform is concentrated on the first two levels and neutral social choice. Adv. Appl. Math., 29(3):427-437, 2002. 8, 23
[FM19] Yuval Filmus and Elchanan Mossel. Harmonicity and invariance on slices of the Boolean cube. Probab. Theory Related Fields, 175:721-782, 2019. (Preliminary version in 31st Comput. Complexity Conf.). arXiv:1507.02713. 1, 5, 43
[Gar73] Howard Garland. p-adic curvature and the cohomology of discrete subgroups of p-adic groups. Ann. of Math., 97(3):375-423, 1973. 2
[Gro10] Mikhail Gromov. Singularities, expanders and topology of maps. Part 2: from combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal., 20:416-526, 2010. 2
[KKL16] Tali Kaufman, David Kazhdan, and Alexander Lubotzky. Isoperimetric inequalities for ramanujan complexes and topological expanders. Geom. Funct. Anal., 26(1):250-287, 2016. (Preliminary version in 55th FOCS, 2014). arXiv:1409.1397. 2
[KL14] Tali Kaufman and Alexander Lubotzky. High dimensional expanders and property testing. In Moni NaOr, ed., Proc. 5th Innovations in Theor. Comput. Sci. (ITCS), pages 501-506. ACM, 2014. arXiv:1312.2367. 2
[KM18] Tali Kaufman and David Mass. Good distance lattices from high dimensional expanders, 2018. (manuscript). arXiv:1803.02849. 2
[KMS17] Subhash Кhot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and Grassmann graphs. In Proc. 49th ACM Symp. on Theory of Computing (STOC), pages 576-589. 2017. eccc:2016/ TR16-124. 1, 7
[KMS18] -. Pseudorandom sets in Grassmann graph have near-perfect expansion. In Proc. 59th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 592-601. 2018. eccc:2018/TR18-006. 1, 7
[KO20] TALI KAUFMAN and Izhar Oppenheim. High order random walks: Beyond spectral gap. Combinatorica, 40(1):245-281, 2020. (Preliminary version in 20th RANDOM, 2018). arXiv:1707.02799. 3, 6, 12, 15, 41
[Li04] Wen-Ching Winnie Li. Ramanujan hypergraphs. Geom. Funct. Anal., 14(2):380-399, 2004. 2
[LM06] Nathan Linial and Roy Meshulam. Homological connectivity of random 2-complexes. Combinatorica, 26(4):475-487, 2006. 2
[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica, 8(3):261-277, 1988. 2
[LSV05a] Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of Ramanujan complexes of type \tilde{A}_{d}. European J. Combin., 26(6):965-993, 2005. arXiv:math/0406217. 2, 16, 43
[LSV05b] _-. Ramanujan complexes of type \tilde{A}_{d}. Israel J. Math., 149(1):267-299, 2005. arXiv:math/0406208. 2
[MO10] Ashley Montanaro and Tobias Osborne. Quantum Boolean functions. Chic. J. Theoret. Comput. Sci., 2010, 2010. arXiv:0810.2435. 1
[MR08] DANa Moshkovitz and Ran Raz. Sub-constant error low degree test of almost-linear size. SIAM J. Comput., 38(1):140-180, 2008. (Preliminary version in 38th STOC, 2006). eccc:2005/TR05-086. 44
[Opp18] IzHAR OpPENHEIM. Local spectral expansion approach to high dimensional expanders part I: Descent of spectral gaps. Discrete Comput. Geom., 59(2):293-330, 2018. arXiv:1709.04431. 2, 14
[OW13] Ryan O'Donnell and Karl Wimmer. KKL, Kruskal-Katona, and monotone nets. SIAM J. Comput., 42(6):2375-2399, 2013. (Preliminary version in 50th FOCS, 2009). 1, 4
[Pla15] Rafael Plaza. Stability for intersecting families in PGL(2,q). Electron. J. Combin., 22(4):P4.41, 2015. 1
[Sta88] Richard P. Stanley. Differential posets. J. Amer. Math. Soc., 1(4):919-961, 1988. 7, 29
[Sta90] \qquad Variations on differential posets. In Dennis Stanton, ed., Invariant Theory and Tableaux, volume 19 of IMA Vol. Math. Appl., pages 145-165. Springer, 1990. 29

[^0]: ${ }^{*}$ A preliminary version of this paper appeared in Proc. 20th RANDOM, 2018 [DDFH18].
 ${ }^{\dagger}$ Weizmann Institute of Science, ISRAEL. email: \{yotam.dikstein, irit.dinur\}@weizmann.ac.il. The research of the first and second authors was supported in part by Irit Dinur's ERC-CoG grant 772839.
 \ddagger Technion — Israel Institute of Technology, ISRAEL. email: yuvalfi@cs.technion. ac.il. Taub Fellow — supported by the Taub Foundations. The research was funded by ISF grant 1337/16.
 §Tata Institute of Fundamental Research, INDIA. email: prahladh@tifr.res.in. Research supported in part by UGC-ISF grant. Part of the work was done when the author was visiting the Weizmann Institute of Science.

[^1]: ${ }^{1}$ Ryan O'Donnell has suggested the name zero-flux, since harmonicity usually refers to vanishing of the Laplacian.

[^2]: ${ }^{2}$ The Up and Down operators differ from the boundary and coboundary operators of algebraic topology, which operate on linear combinations of oriented faces.

[^3]: ${ }^{3} U D$ and $D U$ are called high-dimensional Laplacians in some other works [KO20].

[^4]: ${ }^{4} \mathrm{As}$ is common, we abuse notation Π_{i} to refer to both the distribution as well as the random variable sampled according to the distribution.

