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Abstract

We initiate the study of Boolean function analysis on high-dimensional expanders. We give a
random-walk based definition of high-dimensional expansion, which coincides with the earlier defini-
tion in terms of two-sided link expanders. Using this definition, we describe an analog of the Fourier
expansion and the Fourier levels of the Boolean hypercube for simplicial complexes. Our analog is
a decomposition into approximate eigenspaces of random walks associated with the simplicial com-
plexes. Our random-walk definition and the decomposition have the additional advantage that they
extend to the more general setting of posets, encompassing both high-dimensional expanders and the
Grassmann poset, which appears in recent work on the unique games conjecture.

We then use this decomposition to extend the Friedgut-Kalai-Naor theorem to high-dimensional
expanders. Our results demonstrate that a constant-degree high-dimensional expander can some-
times serve as a sparse model for the Boolean slice or hypercube, and quite possibly additional results
from Boolean function analysis can be carried over to this sparse model. Therefore, this model can
be viewed as a derandomization of the Boolean slice, containing only |X(k − 1)| = O(n) points in
contrast to (n

k) points in the (k)-slice (which consists of all n-bit strings with exactly k ones).

1 Introduction

Boolean function analysis is an essential tool in theory of computation. Traditionally, it studies functions
on the Boolean cube {−1, 1}n. Recently, the scope of Boolean function analysis has been extended fur-
ther, encompassing groups [EFF15b, EFF15a, Pla15, EFF17], association schemes [OW13, Fil16a, Fil16b,
FM19, FKMW18, DKKMS18a, KMS18], error-correcting codes [BGHMRS15], and quantum Boolean
functions [MO10]. Boolean function analysis on extended domains has led to progress in learning
theory [OW13] and on the unique games conjecture [KMS17, DKKMS18a, DKKMS18b, BKS19, KMS18].

High-dimensional expanders emerged in recent years as a new area of study, of interest to sev-
eral different communities. Just as expander graphs are sparse models of the complete graph, so are
high-dimensional expanders sparse models of a higher-dimensional object, namely the complete hyper-
graph. Expander graphs are central objects, appearing in a diverse list of areas. High-dimensional
expanders are much newer objects which have already found connections to topological overlapping
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theory [FGLNP12, Evr17], to analysis of Markov chains [ALGV19], and to coding theory [DHKNT19]
and property testing [KL14]. (Note that while expander graphs are explicit derandomizations of ran-
dom graphs, the mere existence of high-dimensional expanders is surprising since there is no sparse
random model for generating these objects.).

The goal of this work is to connect these two threads of research, by introducing Boolean function analysis on
high-dimensional expanders.

We study Boolean functions on simplicial complexes. A pure d-dimensional simplicial complex X is a
set system consisting of an arbitrary collection of sets of size d + 1 together with all their subsets. The
sets in a simplicial complex are called faces, and it is standard to denote by X(i) the faces of X whose
cardinality is i + 1. Our simplicial complexes are weighted by a probability distribution Πd on the top-
level faces, which induces probability distributions Πi on X(i) in a natural way for all i: we choose
s ∼ Πd, and then choose an i-face t ⊂ s uniformly at random. Our main object of study is the space of
functions f : X(d)→ R, and in particular, Boolean functions f : X(d)→ {0, 1}.

1.1 Many different definitions of high-dimensional expansion

Although graph expansion has many definitions, all of which are equivalent, they each generalize to
higher dimensions differently, leading to a diverse landscape of definitions.

The first definition studied by Linial and Meshulam [LM06] and by Gromov [Gro10] was topolog-
ical, focusing on generalizations of edge expansion through coboundary maps in higher dimensions.
It was later discovered that certain bounded-degree simplicial complexes constructed by Lubotzky,
Samuels and Vishne [LSV05a, LSV05b] satisfy this definition (more accurately, a variant of it called
cosystolic expansion), leading to the first known family of bounded-degree complexes that satisfy Gro-
mov’s so-called “topological overlap property” [KKL16, DKW18, EK16]. The LSV construction comes
from arithmetic quotients of Bruhat–Tits buildings, and are high-dimensional generalizations of the
celebrated Lubotzky–Philips–Sarnak construction of Ramanujan expander graphs [LPS88].

Subsequent works were interested in additional properties exhibited by the LSV complexes (and
others, see [Li04]) that aren’t necessarily captured by the topological definitions mentioned above. For
example, Dinur and Kaufman [DK17] proved that the LSV complexes support so-called agreement tests
that are studied in the context of probabilistically checkable proofs, and were previously known for only
dense families of subsets such as the complete complex. The relevant definition for that work is spectral
link-expansion, which we now describe.

Let X be a d-dimensional simplicial complex, and let s ∈ X be any face of dimension ≤ d− 1. The
graph of the link s is the graph whose vertex set consists of all elements v /∈ s such that {v} ∪ s ∈ X.
The edges are all pairs {v, u} such that {v, u} ∪ s ∈ X. A simplicial complex X is a two-sided (or one-
sided) link-expander with spectral radius γ if for every link, the non-trivial normalized eigenvalues are
upper-bounded by γ in the one-sided case, or sandwiched between −γ and γ in the two-sided case.

Garland [Gar73] had studied this type of spectral expansion in links, and used it to show the van-
ishing of the real cohomology of Bruhat–Tits buildings. Similar techniques were further explored in
the work of Oppenheim [Opp18]. The notion of one-sided spectral expansion also appeared in earlier
works of Kaufman, Kazhdan and Lubotzky [KKL16], where it was applied towards proving topological
expansion.

A third definition, through random walks on the i-faces, was studied initially by Kaufman and
Mass [KM18], where the authors defined a combinatorial “random-walk” type of expansion, and showed
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that this type of expansion was implied by expansion of the links. This notion is concerned with the
convergence speed of high-dimensional random walks to the stationary distribution. This was refined
by Dinur and Kaufman [DK17], who showed that two-sided link-expansion implies that all random
walks on a high-dimensional expander converge at approximately the same speed as on the complete
complex, with an error term dominated by γ.

In this paper we continue to study this two-sided definition, and show that it is in fact equivalent to
a new random-walk definition which we suggest. We find the new random-walk definition appealing
because it is very natural to state, and at the same time equivalent to the powerful two-sided link-
expansion definition. Moreover, the random walk definition generalizes naturally beyond simplicial
complexes also to ranked posets (partially ordered sets). Finally, the random walk point of view allows
for doing an analog of Fourier analysis, as we discuss below.

Concurrently and independently of this work, Kaufman and Oppenheim [KO20] studied the con-
nection between one-sided link-expansion and convergence of the relevant random walks. They showed
that one-sided link-expansion (which is weaker than its two-sided variant) is already enough for getting
the same conclusions about the speed of convergence of random walks as was shown for the two-sided
case. This was picked up in an exciting work by Anari, Liu, Gharan-Oveis and Vinzant [ALGV19], who
relied on this connection to solve a longstanding open question in the area of Markov chain sampling.
They showed that a certain well-studied Markov chain on bases of matroids can be viewed as a ran-
dom walk on the faces of a certain one-sided link expander, thereby using the work of Kaufman and
Oppenheim [KO20] to prove convergence of this random walk.

1.2 Random-walk based definition of high-dimensional expanders

Denote the real-valued function space on X(i) by Ci := { f : X(i)→ R}. There are two natural operators
Ui : Ci → Ci+1 and Di+1 : Ci+1 → Ci, which are defined by averaging:

Ui f (s) := E
t∼Πi

[ f (t)|t ⊂ s]

(
=

1
i + 2 ∑

t⊂s
f (t)

)
,

Di+1 f (t) := E
s∼Πi+1

[ f (s)|s ⊃ t].

The compositions Di+1Ui and Ui−1Di are Markov operators of two natural random walks on X(i),
the upper random walk and the lower random walk.

The first walk we consider is the upper random walk Di+1Ui. Given a face t1 ∈ X(i), we choose its
neighbor t2 as follows: we pick a random s ∼ Πi+1 conditioned on s ⊃ t1 and then choose uniformly at
random t2 ⊂ s. Note that there is a probability of 1

i+2 that t1 = t2. We define the non-lazy upper random
walk by choosing t2 ⊂ s conditioned on t1 6= t2. We denote the Markov operator of the non-lazy upper
walk by M+

i . This operator satisfies the following equality (which can be used to define it)

Di+1Ui =
i + 1
i + 2

M+
i +

1
i + 2

I .

A similar (but not identical) random walk on X(i) is the lower random walk Ui−1Di. Here, given a
face t1 ∈ X(i), we choose a neighbor t2 as follows: we first choose a r ∈ X(i− 1) uniformly at random
and then choose a t2 ∼ Πi conditioned on t2 ⊃ r.

For instance, if X is a graph (a 1-dimensional simplicial complex), then the non-lazy upper random
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walk is the usual adjacency walk we define on a weighted graph (i.e. traversing from vertex to vertex
by an edge). The (lazy) upper random walk has probability 1

2 of staying in place, and probability 1
2 of

going to different adjacent vertex. The lower random walk on V = X(0) doesn’t depend on the current
vertex: it simply chooses a vertex at random according to the distribution Π0 on X(0).

The Up and Down operators resemble operators in several similar situations. One immediate ex-
ample is the boundary and coboundary operators with real coefficients. These differ from the operators
described above as they include signs according to orientation of the faces, whereas our operators ig-
nore signs. Stanley studied Up and Down operators in numerous combinatorial situations and the most
relevant to this work is his definition of sequentially differential posets, which we discuss in Section 1.4.

The Up and Down operators also make an appearance in the Kruskal–Katona theorem. O’Donnell
and Wimmer [OW13] related the non-lazy upper and lower random walks (the two random walks
are identical) to the Kruskal–Katona theorem, and used this connection to construct an optimal net for
monotone Boolean functions.

We are now ready to give our definition of a high-dimensional expander in terms of these walks.

Definition 1.1 (High-Dimensional Expander). Let γ < 1, and let X be a d-dimensional simplicial complex.
We say X is a γ-high-dimensional expander (or γ-HDX) if for all 0 ≤ i ≤ d− 1, the non-lazy upper random
walk is γ-similar to the lower random walk in operator norm in the following sense:

∥∥M+
i −Ui−1Di

∥∥ ≤ γ.

In the graph case, this coincides with the definition of a γ-two-sided spectral expander: recall that
the lower walk on X(0) is by choosing two vertices v1, v2 ∈ X(0) independently. Thus

∥∥M+
i −Ui−1Di

∥∥
is the second eigenvalue of the adjacency random walk in absolute value. For i ≥ 1, we cannot expect
the upper random walk to be similar to choosing two independent faces in X(i), since the faces always
share a common intersection of i elements. Instead, our definition asserts that traversing through a
common (i + 1)-face is similar to traversing through a common (i− 1)-face.

We show that this new definition is equivalent to the aforementioned definition of two-sided link
expanders, thus giving these high-dimensional expanders a new characterization.

Theorem 1.2 (Equivalence between high-dimensional expander definitions). Let X be a d-dimensional
simplicial complex.

1. If X is a γ-two-sided link expander then X is a γ-HDX according to the definition we give.

2. If X is a γ-HDX then X is a 3(d + 1)γ-two-sided link expander.

Through this characterization of high-dimensional expansion, we decompose real-valued functions
f : X(i)→ R in an approximately orthogonal decomposition that respects the upper and lower random
walk operators.

1.3 Decomposition of functions on X(i)

We begin by recalling the classical decomposition of functions over the Boolean hypercube. Every func-
tion on the Boolean cube {0, 1}n has a unique representation as a multilinear polynomial. In the case of
the Boolean hypercube, it is convenient to view the domain as {1,−1}n, in which case the above rep-
resentation gives the Fourier expansion of the function. The multilinear monomials can be partitioned

4



into “levels” according to their degree, and this corresponds to an orthogonal decomposition of a func-
tion into a sum of its homogeneous parts, f = ∑

deg f
i=0 f=i, a decomposition which is a basic concept in

Boolean function analysis.
These concepts have known counterparts for the complete complex, which consists of all subsets of

[n] of size at most d + 1, where d + 1 ≤ n/2. The facets (top-level faces) of this complex comprise the
slice (as it is known to computer scientists) or the Johnson scheme (as it is known to coding theorists),
whose spectral theory has been elucidated by Dunkl [Dun76]. For |t| ≤ d + 1, let yt(s) = 1 if t ⊆ s and
yt(s) = 0 otherwise (these are the analogs of monomials). Every function on the complete complex has
a unique representation as a linear combination of monomials ∑t f̃ (t)yt (of various degrees) where the
coefficients f̃ (t) satisfy the following harmonicity condition:1 for all i ≤ d and all t ∈ X(i),

∑
a∈[n]\t

f̃ (t ∪ {a}) = 0.

(If we identify yt with the product ∏i∈t xi of “variables” xi, then harmonicity of a multilinear polyno-
mial P translates to the condition ∑n

i=1
∂P
∂xi

= 0.) As in the case of the Boolean cube, this unique repre-
sentation allows us to orthogonally decompose a function into its homogeneous parts (corresponding
to the contribution of monomials yt with fixed |t|), which plays the same essential part in the com-
plete complex as its counterpart does in the Boolean cube. Moreover, this unique representation allows
extending a function from the “slice” to the Boolean cube (which can be viewed as a superset of the
“slice”), thus implying further results such as an invariance principle [FKMW18, FM19].

We generalize these concepts for complexes satisfying a technical condition we call properness, which
is satisfied when the Markov operators of the upper random walks DU have full rank. This holds for
both the complete complex and high-dimensional expanders. We show that the results on unique de-
composition for the complete complex hold for arbitrary proper complexes (Theorem 3.2) with a gen-
eralized definition of harmonicity which incorporates the distributions Πi. In contrast to the case of the
complete complex (and the Boolean cube), in the case of high-dimensional expanders the homogeneous
parts are only approximately orthogonal.

The homogeneous components in our decomposition are “approximate eigenfunctions” of the Markov
operators defined above, and this allows us to derive an approximate identity relating the total influ-
ence (defined through the random walks) to the norms of the components in our decomposition, in
complete analogy to the same identity in the Boolean cube (expressing the total influence in terms of
the Fourier expansion).

Theorem 1.3 (Decomposition theorem for functions on HDX). Let X be a proper d-dimensional simplicial
complex. Every function f : X(`)→ R, for ` ≤ d, can be written uniquely as f = f−1 + · · ·+ f` such that:

• fi is a linear combination of the functions ys(t) = 1[t⊇s] for s ∈ X(i), i.e. ys(t) = 1 when t ⊇ s.

• Interpreted as a function on X(i), fi lies in the kernel of the Markov operator of the lower random walk
UD.

If X is furthermore a γ-high-dimensional expander, then the above decomposition is an almost orthogonal decom-
position in the following sense:

• For i 6= j, |〈 fi, f j〉| ≈ 0.

1Ryan O’Donnell has suggested the name zero-flux, since harmonicity usually refers to vanishing of the Laplacian.
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• ‖ f ‖2 ≈ ‖ f−1‖2 + · · ·+ ‖ f`‖2.

• If ` < k then DU fi ≈ (1− i+1
`+2 ) fi, and in particular 〈DU f , f 〉 ≈ ∑`

i=−1(1− i+1
`+2 )‖ fi‖2.

(For an exact statement in terms of the dependence of error on γ and d, see Theorem 4.6).

A similar decomposition theorem was, concurrently and independently, proved by Kaufman and
Oppenheim [KO20, Theorem 1.5], who gave a decomposition of f into orthogonal components related
to the spaces of functions on X(i), and satisfying a similar “nearly eigenvector” equality for the up-
per walk operator. This decomposition is similar to ours but not identical. Instead of requiring fi to
lie in the kernel of the walk UD, they take fi to be in the projection of the orthogonal complement of
Span { f−1, ..., fi−1}. As a consequence, their decomposition is perfectly orthogonal and not just approx-
imately orthogonal. On the flip side, the components fi live in slightly less-nicely-defined spaces.

In addition, Kaufman and Oppenhein [KO20, Theorem 1.3] analyze functions on one-sided high-
dimensional expanders, where they also provide an interesting norm-decomposition instead of an or-
thogonal decomposition, writing the norm of f as the approximate sum of norms of projections of f
to the spaces of functions on X(j). This is interesting especially in light of the fact that one-sided ex-
panders aren’t necessarily proper (for example, the complete (d + 1)-partite simplicial complex is not
proper). In particular, there is no known way to write f itself as a sum of components in analogy to
Theorem 1.3.

A similar decomposition theorem was, concurrently and independently, proved by Kaufman and
Oppenheim [KO20, Theorem 1.3], for one-sided spectral high-dimensional expanders. Our near-orthogonal
decomposition holds only for two-sided high-dimensional expanders, while they prove an interesting
norm-decomposition instead of an orthogonal decomposition, writing the norm of f as the approximate
sum of norms of projections of f to the spaces of functions on X(j). This is interesting especially in light
of the fact that one-sided expanders aren’t necessarily proper (for example, the complete (d + 1)-partite
simplicial complex is not proper). In particular, there is no known way to write f itself as a sum of
components in analogy to Theorem 1.3.

Subsequent to the earlier version of our result [DDFH18], Kaufman and Oppenheim [KO20, The-
orem 1.5] extended their decomposition theorem to two-sided high-dimensional expanders. This de-
composition is similar to ours but not identical. Similar to our near-orthogonal decomposition, they
give a decomposition of f into orthogonal components related to the spaces of functions on X(i), and
satisfying a similar “nearly eigenvector” equality for the upper walk operator. Instead of requiring
fi to lie in the kernel of the walk UD, they take fi to be in the projection of the orthogonal comple-
ment of Span { f−1, . . . , fi−1}. As a consequence, their decomposition is perfectly orthogonal and not
just approximately orthogonal. On the flip side, the components fi live in slightly less-nicely-defined
spaces.

Subsequent to our work, Alev, Jeronimo and Tulsiani [AJT19] used our techniques to analyze more
general random walks, which they call swap walks. The same walks were analyzed independetly by
different techniques in the work of Dikstein and Dinur [DD19] under the name complement walks.

1.4 Decomposition of posets

The decomposition we suggest in this paper holds for the more general setting of graded partially
ordered sets (posets): A finite graded poset (X,≤, ρ) is a poset (X,≤) equipped with a rank function
ρ : X → {−1} ∪N that respects the order, i.e. if x ≤ y then ρ(x) ≤ ρ(y). Additionally, if y is minimal
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with respect to elements that are greater than x (i.e. y covers x), then ρ(y) = ρ(x) + 1. Denoting X(i) =
ρ−1(i) , we can partition the poset as follows:

X = X(−1) ∪ X(0) ∪ · · · ∪ X(d).

We consider graded posets with a unique minimum element ∅ ∈ X(−1).
Every simplicial complex is a graded poset. Another notable example is the Grassmann poset Grq(n, d)

which consists of all subspaces of Fn
q of dimension at most d + 1. The order is the containment relation,

and the rank is the dimension minus one, ρ(W) = dim(W)− 1. The Grassmann poset was recently stud-
ied in the context of proving the 2-to-1 games conjecture [KMS17, DKKMS18a, DKKMS18b, KMS18],
where a decomposition of functions of the Grassmann poset was useful. Such a decomposition is a
special case of the general decomposition theorem in this paper.

Towards our goal of decomposing functions on graded posets, we generalize the notion of ran-
dom walks on X(i) as follows: A measured poset is a graded poset with a sequence of measures ~Π =

(Π−1, . . . , Πd) on the different levels X(i), that allow us to define operators Ui, Di+1 similar to the sim-
plicial complex case (for a formal definition see Section 8). The upper random walk defined by the com-
position Di+1Ui is the walk where we choose two consecutive t1, t2 ∈ X(i) by choosing s ∈ X(i + 1)
and then t1, t2 ≤ s independently. The lower random walk Ui−1Di is the walk where we choose two
consecutive t1, t2 ∈ X(i) by choosing r ∈ X(i− 1) and then t1, t2 ≥ r independently.

Stanley studied a special case of a measured poset that is called a sequentially differential poset [Sta88].
This is a poset where

Di+1Ui − ri I − δiUi−1Di = 0, (1)

for all 0 ≤ i ≤ d and some constants ri, δi ∈ R. There are many interesting examples of sequentially
differential posets, such as the Grassmann poset and the complete complex. Definition 1.1 of a high-
dimensional expander resembles an approximate version of this equation: in a simplicial complex, one
may check that the non-lazy version is i+1

i+2 Mi
+ = Di+1Ui − 1

i+2 I. Thus

∥∥M+
i −Ui−1Di

∥∥ ≤ γ

is equivalent to ∥∥∥∥Di+1Ui −
1

i + 2
I − i + 1

i + 2
Ui−1Di

∥∥∥∥ ≤ i + 1
i + 2

γ,

which suggests a relaxation of (1) to an expanding poset (eposet).

Definition 1.4 (Expanding Poset (eposet)). Let ~r,~δ ∈ Rk
≥0, and let γ < 1. We say X is an (~r,~δ, γ)-

expanding poset (or (~r,~δ, γ)-eposet) if for all 0 ≤ i ≤ k− 1:

‖Di+1Ui − ri I − δiUi−1Di‖ ≤ γ. (2)

As we can see, γ-HDX is also an (~r,~δ, γ)-eposet, for ri =
1

i+2 , δi =
i+1
i+2 . In Lemma 8.30 we prove that

the converse is also true: every simplicial complex that is an (~r,~δ, γ)-eposet is an O(γ)-HDX, under the
assumption that the probability Prt1,t2∼Ui−1Di [t1 = t2] is small.

It turns out that eposets are the correct setup to generalize our decomposition of simplicial com-
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plexes: in all eposets we can uniquely decompose functions f : X(i)→ R to

f =
i

∑
j=−1

f=j,

where the functions f=j are “approximate eigenvectors” of Di+1Ui. Furthermore, this decomposition is
“approximately orthogonal”. Fixing i, the error in both approximations is O(γ).

1.5 An FKN theorem

Returning to simplicial complexes, as a demonstration of the power of this setup, we generalize the
fundamental result of Friedgut, Kalai, and Naor [FKN02] on Boolean functions almost of degree 1.
We view this as a first step toward developing a full-fledged theory of Boolean functions on high-
dimensional expanders.

An easy exercise shows that a Boolean degree 1 function on the Boolean cube is a dictator, that is,
depends on at most one coordinate; we call this the degree one theorem (the easy case of the FKN Theorem
with zero-error). The FKN theorem, which is the robust version of this degree one theorem, states that
a Boolean function on the Boolean cube which is close to a degree 1 function is in fact close to a dictator,
where closeness is measured in L2.

The degree one theorem holds for the complete complex as well. The third author [Fil16a] has
extended the FKN theorem to the complete complex. Surprisingly, the class of approximating functions
has to be extended beyond just dictators.

We prove a degree one theorem for arbitrary proper complexes, and an FKN theorem for high-
dimensional expanders. In contrast to the complete complex, Boolean degree 1 functions on arbitrary
complexes correspond to independent sets rather than just single points, and this makes the proof of the
degree one theorem non-trivial.

Definition 1.5 (1-skeleton). The 1-skeleton of a simplicial complex X is the graph whose vertices are X(0), the
0-faces of the complex, and whose edges are X(1), the 1-faces of the complex.

Claim 1.6 (Degree one theorem on simplicial complexes). Suppose that X is a proper d-dimensional simpli-
cial complex, for d ≥ 2, whose 1-skeleton is connected. A function f ∈ Cd is a Boolean degree 1 function if and
only if there exists an independent set I (in the 1-skeleton) such that f is the indicator of intersecting I or of not
intersecting I.

Our proof of the FKN theorem for high-dimensional expanders is very different from existing proofs.
It follows the same general plan as recent work on the biased Kindler–Safra theorem [DFH19]. The
idea is to view a high-dimensional expander as a convex combination of small sub-complexes, each
of which is isomorphic to the complete k-dimensional complex on O(k) vertices. We can then apply
the known FKN theorem separately on each of these, and deduce that our function is approximately
well-structured on each sub-complex. Finally, we apply the agreement theorem of Dinur and Kauf-
man [DK17] to show that the same holds on a global level.

Theorem 1.7 (FKN theorem on HDX (informal)). Let X be a d-dimensional γ-HDX. If F : X(d) → {0, 1}
is ε-close (in L2

2) to a degree 1 function then there exists a degree 1 function g on X(d) such that Pr[F 6= g] =
Oγ,d(ε).
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Paper organization

We describe our general setup in Section 2. We describe the property of properness and its implica-
tions — a unique representation theorem and decomposition of functions into homogeneous parts —
in Section 3. We introduce our definition of high-dimensional expanders in Section 4. In Section 5 we
show equivalence between our definition and the earlier one of two-sided link expanders. We prove
our degree one theorem in Section 6, and our FKN theorem in Section 7.

In Section 8 we define expanding posets, and through them prove that the decomposition in Theo-
rem 3.2 is almost orthogonal. We also show that expanding posets that are simplicial complexes, are in
fact high-dimensional expanders. Theorem 4.6 summarizes these results for simplicial complexes.

Theorem 1.3 is a combination of Theorem 3.2 (first two items) and Theorem 4.6 (other three items).
Theorem 1.2 is a restatement of Theorem 5.5. Claim 1.6 is a restatement of Theorem 6.2. Theorem 1.7 is
a restatement of Theorem 7.3.

2 Basic setup

A d-dimensional simplicial complex X is a non-empty collection of sets of size at most d + 1 which is
closed under taking subsets. We call a set of size i + 1 an i-dimensional face (or i-face for short), and
denote the collection of all i-faces by X(i). A d-dimensional simplicial complex X is pure if every i-face
is a subset of some d-face. We will only be interested in pure simplicial complexes.

Let X be a pure d-dimensional simplicial complex. Given a probability distribution Πd on its top-
dimensional faces X(d), for each i < d we define a distribution Πi on the i-faces using the following
experiment: choose a top-dimensional face according to Πd, and remove d − i points at random. We
can couple all of these distributions to a random vector ~Π = (Πd, . . . , Π−1) of which the individual
distributions are marginals.

Let Ci := { f : X(i)→ R} be the space of functions on X(i). It is convenient to define X(−1) := {∅},
and we also let C−1 := R. We turn Ci to an inner product space by defining 〈 f , g〉 := EΠi [ f g] and the
associated norm ‖ f ‖2 := EΠi [ f 2].

For −1 ≤ i < d, we define the Up operator Ui : Ci → Ci+1 as follows:2

Uig(s) :=
1

i + 2 ∑
x∈s

g(s \ {x}) = E
t⊂s

[g(t)] ,

where t is obtained from s by removing a random element. Note that if s ∼ Πi+1 then t ∼ Πi.
Similarly, we define the Down operator Di+1 : Ci+1 → Ci for −1 ≤ i < d as follows:

Di+1 f (t) :=
1

(i + 2) ·Πi(t)
∑

x/∈t : t∪{x}∈X(i+1)
Πi+1(t ∪ {x}) · f (t ∪ {x}) = E

s⊃t
[ f (s)] ,

where s is obtained from t by conditioning the vector ~Π on Πi = t and taking the (i + 1)th component.
The operators Ui, Di+1 are adjoint to each other. Indeed, if f ∈ Ci+1 and g ∈ Ci then

〈g, Di+1 f 〉 = E
(t,s)∼(Πi ,Πi+1)

[g(t) f (s)] = 〈Uig, f 〉 .

2The Up and Down operators differ from the boundary and coboundary operators of algebraic topology, which operate on
linear combinations of oriented faces.
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When the domain is understood, we will use U, D instead of Ui, Di+1. This will be especially useful
when considering powers of U, D. For example, if f : X(i)→ R then

Ut f ≡ Ui+t−1 . . . Ui+1Ui f .

Given a face s ∈ X, the function ys is the indicator function of containing s. Our definition of the Up
operator guarantees the correctness of the following lemma.

Lemma 2.1. Let s ∈ X(i). We can think of ys as a function in Cj for all j ≥ i. Using this convention,
Ujys = (1− i+1

j+2 )ys.

Proof. Direct calculation shows that

(Ujys)(t) =
1

j + 2 ∑
x∈t

ys(t \ {x}) =
|t| − |s|

j + 2
ys(t) ,

and so Ujys = (1− i+1
j+2 )ys.

For 0 ≤ i ≤ k, the space of harmonic functions on X(i) is defined as

Hi := ker Di = { f ∈ Ci : Di f = 0} .

We also define H−1 := C−1 = R. We are interested in decomposing Ck, so let us define for each
−1 ≤ i ≤ k,

Vi := Uk−i Hi = {Uk−i f : f ∈ Hi} .

We can describe Vi, a sub-class of functions of Ck, in more concrete terms.

Lemma 2.2. Every function h ∈ Vi has a representation of the form

h = ∑
s∈X(i)

h̃(s)ys ,

where the coefficients h̃(s) satisfy the following harmonicity condition: for all t ∈ X(i− 1),

∑
s⊃t

Πi(s)h̃(s) = 0 .

Furthermore, if Uk−i is injective on Ci then the representation is unique.

Proof. Suppose that h ∈ Vi. Then h = Uk−i f for some f ∈ Hi, which by definition of Hi and the Down
operator is equivalent to the condition

∑
s⊃t

Πi(s) f (s) = 0

for all t ∈ X(i− 1). In other words, the f (s)’s satisfy the harmonicity condition. It is easy to check that
f = ∑s∈X(i) f (s)ys, and so Lemma 2.1 shows that h = ∑s∈X(i) h̃(s)ys, where

h̃(s) =
(

1− i + 1
k + 1

)
· · ·
(

1− i + 1
i + 2

)
f (s).
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Thus, h̃(s) is a scaling of f (s) by a non-zero constant, it follows that the coefficients h̃(s) also satisfy the
harmonicity condition.

Now suppose that Uk−i is injective on Ci, which implies that dim Hi = dim Vi. The foregoing shows
that the dimension of the space of coefficients h̃(s) satisfying the harmonicity conditions is dim Hi. Since
dim Hi = dim Vi, this shows that the representation is unique.

3 Decomposition of the space Ck and a convenient basis

Our decomposition theorem relies on a crucial property of simplicial complexes, properness.

Definition 3.1. A k-dimensional simplicial complex is proper if Di+1Ui > 0 (i.e. Di+1Ui is positive definite)
for all i ≤ k− 1. Equivalently, if it is pure and ker Ui is trivial for −1 ≤ i ≤ k− 1.

We remark that since DU is PSD, ker U = 0 is equivalent to DU > 0. This is because for any
x ∈ ker DU, we would have 0 = 〈x, DUx〉 = ‖Ux‖2, implying that x = 0.

The complete k-dimensional complex on n points is proper iff k + 1 ≤ n+1
2 . A pure one-dimensional

simplicial complex (i.e., a graph) is proper iff it is not bipartite. Unfortunately, we are not aware of a
similar characterization for higher dimensions. However, in Section 5 we show that high-dimensional
expanders are proper.

We can now state our decomposition theorem.

Theorem 3.2. If X is a proper k-dimensional simplicial complex then we have the following decomposition of Ck:

Ck = Vk ⊕Vk−1 ⊕ · · · ⊕V−1 .

In other words, for every function f ∈ Ck there is a unique choice of hi ∈ Hi such that the functions fi = Uk−ihi

satisfy f = f−1 + f0 + · · ·+ fk.

Proof. We first prove by induction on ` that every function f ∈ C` has a representation f = ∑`
i=−1 U`−ihi,

where hi ∈ Hi. This trivially holds when ` = −1. Suppose now that the claim holds for some ` < k,
and let f ∈ C`+1. Since D`+1 : C`+1 → C` is a linear operator, we have C`+1 = ker D`+1 ⊕ im D∗`+1 =

ker D`+1⊕ im U`, and therefore we can write f = h`+1 +Ug, where h`+1 ∈ H`+1 and g ∈ C`. Applying
induction, we get that g = ∑`

i=−1 U`−ihi, where hi ∈ Hi. Substituting this in f = h`+1 + Ug completes
the proof.

It remains to show that the representation is unique. Since ker Ui−1 = ker D∗i is trivial, dim Hi =

dim Ci − dim Ci−1 for i ≥ 0. This shows that ∑k
i=−1 dim Hi = dim Ck. Therefore the operator ϕ : H−1 ×

· · · × Hk → Ck given by ϕ(h−1, . . . , hk) = ∑k
i=−1 Uk−ihi is not only surjective but also injective. In other

words, the representation of f is unique.

Corollary 3.3. If X is a proper k-dimensional simplicial complex then every function f ∈ Ck has a unique
representation of the form

f = ∑
s∈X

f̃ (s)ys ,

where the coefficients f̃ (s) satisfy the following harmonicity conditions: for all 0 ≤ i ≤ k and all t ∈ X(i− 1):

∑
s∈X(i)

s⊃t

Πi(s) f̃ (s) = 0 .

11



Proof. Follows directly from Lemma 2.2.

We can now define the degree of a function.

Definition 3.4. The degree of a function f is the maximal cardinality of a face s such that f̃ (s) 6= 0 in the
unique decomposition given by Corollary 3.3.

Thus a function has degree d if its decomposition only involves faces whose dimension is less than d.
The following lemma shows that the functions ys, for all (d− 1)-dimensional faces s, form a basis for
the space of all functions of degree at most d.

Lemma 3.5. If X is a proper k-dimensional simplicial complex then the space of functions on X(k) of degree at
most d + 1 has the functions {ys : s ∈ X(d)} as a basis.

Proof. The space of functions on X(k) of degree at most d + 1 is spanned, by definition, by the functions
yt for t ∈ X(−1) ∪ X(0) ∪ · · · ∪ X(d). This space has dimension ∑d

i=−1 dim Hi. Since X is proper,
dim Hi = dim Ci − dim Ci−1 for i > 0, and so ∑d

i=1 dim Hi = dim Cd = |X(d)|.
Given the above, in order to complete the proof, it suffices to show that for every i ≤ d and t ∈ X(i),

the function yt can be written as a linear combination of ys for s ∈ X(d). This shows that {ys : s ∈ X(d)}
spans the space of functions of degree at most d + 1. Since this set contains |X(d)| functions, it forms a
basis.

Recall that yt(r) = 1r⊇t, where r ∈ X(k). If r contains t then it contains exactly (k+1−|t|
d+1−|t|) many d-faces

containing r, and so

yt =
1

(k+1−|t|
d+1−|t|)

∑
s⊇t

s∈X(d)

ys.

This completes the proof.

We call fi the “level i” part of f , and denote the weight of f above level i by

wt>i( f ) := ∑
j>i
‖ f j‖2

2.

We also define f≤i = f−1 + · · ·+ fi and f>i = f − f≤i.

4 How to define high-dimensional expansion?

In this section we define a class of simplicial complexes which we call γ-high-dimensional expanders (or
γ-HDXs). We later show that these simplicial complexes coincide with the high-dimensional expanders
defined by Dinur and Kaufman [DK17] via spectral expansion of the links. In addition, we show the
decomposition in Section 3 is almost orthogonal for γ-HDXs. We define γ-HDXs through relations
between random walks in different dimensions. It is easy to already state the definition using the U, D
operators: a k-dimensional simplicial complex is said to be a γ-HDX if for all levels 0 ≤ j ≤ k− 1,∥∥∥∥ j + 2

j + 1

(
DU − 1

j + 2
I
)
−UD

∥∥∥∥ ≤ γ. (3)

We turn to explain the meaning of (3) being small by discussing these random walks.3

3UD and DU are called high-dimensional Laplacians in some other works [KO20].
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The operators U and D induce random walks on the jth level X(j) of the simplicial complex. Recall
that our simplicial complexes come with distributions Πj on the j-faces.

Definition 4.1 (The upper random walk DU). Given t ∈ X(j), we choose the next set t′ ∈ X(j) as follows:

• Choose s ∼ Πj+1 conditioned on t ⊂ s.

• Choose uniformly at random t′ ∈ X(j) such that t′ ⊂ s.

Definition 4.2 (The lower random walk UD). Given t ∈ X(j), we choose the next set t′ ∈ X(j) as follows:

• Choose t ∼ Πj.

• Choose uniformly at random r ∈ X(j− 1) such that r ⊂ t.

• Choose t′ ∼ Πj conditioned on r ⊂ t′.

It is easy to see that the stationary distribution for both these processes is Πj. However, these random
walks are not necessarily the same. For example, if j = 0, we consider the graph (X(0), X(1)). The
upper walk is the 1

2 -lazy version of the usual adjacency random walk in a graph. The lower random
walk is simply choosing two vertices independently, according the distribution Π0. In both walks, the
first step and the third step are independent given the second step. In fact, we can view the upper walk
(resp. lower walk) as choosing a set s ∈ X(j + 1) (resp. r ∈ X(j− 1)), and then choosing independently
two sets t, t′ ∈ X(j) given that they are contained in s (resp. given that they contain r).

One property of a random walk is its laziness:

Definition 4.3 (Laziness and non-lazy component). Let M be a random walk. The laziness of M is

`z(M) = Pr
(x,y)∼M

[x = y].

We say that an operator is non-lazy if `z(M) = 0.
The non-lazy component M+ of a walk M is given by

M+(x, y) =


M(x,y)

∑y′ 6=x M(x,y′) if y 6= x,

0 if y = 0.
.

It is easy to see that both walks have some laziness. In the upper walk, the laziness is 1
j+2 . We can

decompose DU as

DU =
1

j + 2
I +

j + 1
j + 2

M+
j , (4)

where M+
j is the non-lazy version of DU, i.e. the operator representing the walk when conditioning on

t′ 6= t. The laziness of the lower version depends on the simplicial complex itself, thus it doesn’t admit
a simple decomposition in the general case.

(4) can be written as

M+
j =

j + 2
j + 1

(
DU − 1

j + 2
I
)

.

A γ-HDX is a simplicial complex in which the non-lazy upper walk is similar to the lower walk.
Thus an equivalent way to state (3) is as follows.
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Definition 4.4 (High-dimensional expander). Let X be a simplicial complex, and let γ < 1. We say that X is
a γ-HDX if for all 0 ≤ j ≤ k− 1,

‖M+
j −UD‖ ≤ γ. (5)

This definition nicely generalizes spectral expansion in graphs, since if X is a graph, ‖M+
j −UD‖ is

the second largest eigenvalue (in absolute value) of the normalized adjacency random walk. In Section 5
we show that this definition is equivalent to the definition of high-dimensional two-sided local spectral
expanders that was extensively studied [DK17, Opp18].

If γ < 1
k+1 then any γ-HDX is proper, as shown by the following lemma.

Lemma 4.5. Let X be a k-dimensional γ-HDX, for γ < 1
k+1 . Then X is proper.

Proof. To prove this, we directly calculate 〈Uj f , Uj f 〉 and show that it is positive when f 6= 0:

〈U f , U f 〉 = 〈DU f , f 〉 = 1
j + 2

〈 f , f 〉+ j + 1
j + 2

〈M+
j f , f 〉

=
1

j + 2
〈 f , f 〉+ j + 1

j + 2
〈(M+

j −UD + UD) f , f 〉. (6)

From Cauchy–Schwartz, ∣∣∣〈(M+
j −UD) f , f 〉

∣∣∣ ≤ ∥∥∥(M+
j −UD) f

∥∥∥ ‖ f ‖ ,

and since X is a γ-HDX, ∥∥∥(M+
j −UD) f

∥∥∥ ≤ γ ‖ f ‖ .

Plugging this in (6), we get

1
j + 2

〈 f , f 〉+ j + 1
j + 2

〈(M+
j −UD + UD) f , f 〉 ≥

(
1

j + 2
− j + 1

j + 2
γ

)
〈 f , f 〉+ 〈UD f , f 〉.

The last part of the sum is non-negative: 〈UD f , f 〉 = 〈D f , D f 〉 ≥ 0. Therefore, if γ < 1
k+1 ≤

1
j+1 then

(
1

j + 2
− j + 1

j + 2
γ

)
〈 f , f 〉+ 〈DU f , f 〉 ≥

(
1

j + 2
− j + 1

j + 2
γ

)
〈 f , f 〉 > 0.

Hence 〈Uj f , Uj f 〉 > 0.

4.1 Almost orthogonality of the decomposition in HDXs

In Section 8 we prove that the decomposition in Theorem 3.2 is “almost orthogonal”. We summarize
our results below:

Theorem 4.6. Let X be a k-dimensional γ-HDX, where γ is small enough as a function of k. For every function
f on C` for ` ≤ k, the decomposition f = f−1 + · · ·+ f` of Theorem 3.2 satisfies the following properties:

• For i 6= j, |〈 fi, f j〉| = O(γ)‖ fi‖‖ f j‖.

• ‖ f ‖2 = (1±O(γ))(‖ f−1‖2 + · · ·+ ‖ f`‖2), and for all i, ‖ f ‖2 = (1±O(γ))(‖ f≤i‖2 + ‖ f>i‖2).

• fi are approximate eigenvectors with eigenvalues λi = 1− i+1
`+2 in the sense that ‖DU fi − (1− i+1

`+2 ) fi‖ =
O(γ) ‖ fi‖.
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• If ` < k then 〈DU f , f 〉 = (1±O(γ))∑`
i=−1 λi‖ fi‖2.

• If γ < 1
k+1 then X is proper.

The hidden constants in the O notations depend only on k (and not on the size of X).

This result is analogous to a similar result [KO20, Theorem 5.2] due to Kaufman and Oppenheim,
in which a similar decomposition is obtained. However, whereas our decomposition is to functions
f−1, . . . , f` in C`, the decomposition of Kaufman and Oppenheim [KO20] is to functions h−1, . . . , h`,
which live in different spaces. We further expand on the matter in Section 8.5.

5 High-dimensional expanders are two-sided link expanders

In Section 4 we defined γ-HDXs, see Definition 4.4. Earlier works, [EK16, DK17, KO20] for example,
gave a different definition of high-dimensional expanders — two-sided link expanders — based on the
local link structure. We recall this other definition and prove that the two are equivalent.

Definition 5.1 (Link). Let X be a d-dimensional complex with an associated probability distribution Πd on
X(d), which induces probability distributions on X(−1), . . . , X(d− 1). For every i-dimensional face s ∈ X(i)
for i < d− 1, the link of s, denoted Xs, is the simplicial complex:

Xs = {r \ s : r ∈ X, r ⊃ s}.

We associate Xs with the weights ~Πs such that

Πs
j (t) := Pr

r∼Πi+j+1
[r = s ∪ t|r ⊃ s] =

Π(s ∪ t)

Π(s)(|s∪t|
|s| )

.

Definition 5.2 (Underlying graph). Let i < d− 1. Given s ∈ X(i), the underlying graph Gs is the weighted
graph consisting of the first two levels of the link of s. In other words, Gs = (V, E), where

• V = Xs(0) = {x /∈ s : s ∪ {x} ∈ X(i + 1)}.

• E = Xs(1) = {{x, y} : s ∪ {x, y} ∈ X(i + 2)}.

The weights on the edges are given by

ws({x, y}) = Pr
r∼Πi+2

[r = s ∪ {x, y}|r ⊃ s] =
Π(s ∪ {x, y})

Π(s)(|s|+2
|s| )

.

We can also consider directed edges, by choosing a random orientation:

ws(x, y) =
1
2

ws({x, y}).

We define the weight of a vertex x to

ws(x) := Πs
0(x) = Pr

r∼Πi+1
[r = s ∪ {x}|r ⊃ s] =

Π(s ∪ {x})
Π(s)(|s|+ 1)

.
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We define an inner product for functions on vertices along the lines of Section 2:

〈 f , g〉 := E
x∼ws

[ f (x)g(x)].

We denote by As the adjacency operator of the non-lazy upper-walk on Xs(0), given by

As f (x) = E
y∼ws

[ f (y)|{x, y} ∈ E].

The corresponding quadratic form is

〈 f , Asg〉 = E
(x,y)∼ws

[ f (x)g(y)].

By definition, As fixes constant functions, and is a Markov operator. It is self-adjoint with respect to the
inner product above. Thus As has eigenvalues λ1 = 1 ≥ λ2 ≥ . . . ≥ λm, where m is the number of
vertices. We define λ(As) = max(|λ2|, |λm|). Orthogonality of eigenspaces guarantees that

|〈 f , Asg〉 −E[ f ]E[g]| ≤ λ(As)‖ f ‖‖g‖. (7)

Definition 5.3 (Two-sided link expander). Let X be a simplicial complex, and let γ < 1 be some constant. We
say that X is a γ-two-sided link expander (called γ-HD expander in some works [DK17]) if every link Xs of X
satisfies λ(As) ≤ γ.

Dinur and Kaufman [DK17] proved that such expanders do exist, based on a result of Lubotzky,
Samuels and Vishne [LSV05a].

Theorem 5.4 ([DK17, Lemma 1.5]). For every λ > 0 and every d ∈ N there exists an explicit infinite family
of bounded degree d-dimensional complexes which are λ-two-sided link expanders.

We now prove that two-sided link expanders per Definition 5.3 and high-dimensional expanders per Def-
inition 4.4 are equivalent.

Theorem 5.5 (Equivalence theorem). Let X be a d-dimensional simplicial complex.

1. If X is a γ-two-sided link expander, then X is a γ-HDX.

2. If X is a γ-HDX then X is a 3dγ-two-sided link expander.

Proof. Item 1. Assume that X is a γ-two-sided link expander. We need to show that

∥∥M+
i −UD

∥∥ ≤ γ,

for all i < d, where M+
i is the non-lazy upper walk. Let f be a function on X(i), where i < d. We have

〈M+
i f , f 〉 = E

t∼Πi+1
E

x 6=y∈t
[ f (t \ {x}) f (t \ {y}].

Let s = t \ {x, y}. Since t ∼ Πi+1 and x 6= y ∈ t are chosen at random, we have s ∼ Πi−1. Given such an
s, the probability to get specific (t, x, y) is exactly ws(x, y) (the factor 1/2 accounts for the relative order
of x, y), and so

〈M+
i f , f 〉 = E

s∼Πi−1
E

(x,y)∼ws
[ f (s ∪ {x}) f (s ∪ {y})]. (8)
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In other words, we have shown that

〈M+
i f , f 〉 = E

s∼Πi−1
[〈As fs, fs〉], (9)

where fs : Xs(0)→ R is defined by
fs(x) = f (s ∪ {x}).

We now note that
E

x∼ws
[ f (s ∪ {x})] = (D f )(s).

Therefore we have, by (7), that

∣∣〈M+
i f , f 〉 − 〈UD f , f 〉

∣∣ = ∣∣ E
s∼Πi−1

E
(x,y)∼ws

[ f (s ∪ {x}) f (s ∪ {y})]− (D f )(s)2∣∣ ≤
E

s∼Πi−1

[
λ(As) E

x∼ws
[ f (s ∪ {x})2]

]
.

If X is a γ-two-sided link expander then λ(As) ≤ γ for all s, and so

∣∣〈(M+
i −UD) f , f 〉

∣∣ ≤ γ‖ f ‖2.

Item 2. Assume now that X is a γ-HDX. Our goal is to show that for all i < d− 1 and r ∈ X(i),

λ(Ar) ≤ 3(i + 2)γ.

Using the convention that X(−1) consists of the empty set, for i = −1 we have A∅ = M+
0 , and so

U−1D0 is zero on the space perpendicular to the constant function. Thus

∥∥M+
0 −UD

∥∥ = λ(A∅),

and from our assumption λ(A∅) ≤ γ.
Now assume 1 ≤ i ≤ d− 1, and fix some r ∈ X(i− 1). Let f : Xr(0) → R be some eigenfunction of

Ar, which is perpendicular to the constant function. In order to prove the theorem, we must show that∣∣∣∣ 〈Ar f , f 〉
〈 f , f 〉

∣∣∣∣ ≤ 3(i + 1)γ.

Define a function f̃ ∈ Ci by

f̃ (s) =

 f (s \ r) if r ⊂ s,

0 otherwise.

Without loss of generality, we may assume that ‖ f̃ ‖ = 1.
In order to obtain a bound on λ(Ar), we bound 〈 f̃ , f̃ 〉, 〈M+

i f̃ , f̃ 〉, and 〈UD f̃ , f̃ 〉 in terms of f and Ar.
Observe that the norms of f and f̃ are proportional:

〈 f , f 〉 = 〈 f̃ , f̃ 〉
Πi−1(r)(i + 1)

=
1

Πi−1(r)(i + 1)
. (10)
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Furthermore, from what we showed in (9) we obtain that

〈M+
i f̃ , f̃ 〉 = E

r′∈X(i−1)
[〈Ar′ f̃r′ , f̃r′〉],

where f̃r′(x) = f̃ (r′ ∪ {x}).
Fix some r′ 6= r. If f̃r′(x) 6= 0 then f̃ (r′ ∪ {x}) 6= 0. In particular, this means that r ⊂ r′ ∪ {x}.

Since both r, r′ are contained in r′ ∪ {x}, this means that r′ \ r = {x}. Thus there is at most one vertex
x ∈ Xr′(0) such that f̃r′(x) 6= 0. Since Ar′ is a non-lazy operator, this implies that 〈Ar′ f̃r′ , f̃ ′r〉 = 0. We
remain with

〈M+
i f̃ , f̃ 〉 = Πi−1(r)〈Ar f , f 〉. (11)

In other words, the upper non-lazy random walk is proportional to the local adjacency operator.
We prove the following claim, which shows that the lower walk scales f̃ by a factor of at most i+1

i γ:

Claim 5.6. If f : Xr(0)→ R is perpendicular to constant functions then |〈Ui−1Di f̃ , f̃ 〉| ≤ i+1
i γ.

Assuming the above:

∣∣∣∣ 〈Ar f , f 〉
〈 f , f 〉

∣∣∣∣ = |(i + 1)Πi−1(r)〈Ar f , f 〉| = (i + 1)|〈M+
i f̃ , f̃ 〉| ≤

(i + 1)|〈(M+
i −Ui−1Di) f̃ , f̃ 〉|+ (i + 1)|〈Ui−1Di f̃ , f̃ 〉| ≤ (i + 1)

(
1 +

i + 1
i

)
γ ≤ 3(i + 1)γ,

where the equalities in the first line use (10) and (11), and the inequalities in the second line use
Claim 5.6, our assumption that ‖M+

i −Ui−1Di‖ ≤ γ, and the triangle inequality.

We complete the proof of Theorem 5.5 by proving Claim 5.6:

Proof of Claim 5.6. Since UD is PSD, we have 〈Ui−1Di f̃ , f̃ 〉 ≥ 0, and so we may remove the absolute
value and prove

〈Ui−1Di f̃ , f̃ 〉 ≤ i + 1
i

γ.

Consider the inner product 〈Di f̃ , Di f̃ 〉— this is the expectation upon choosing r′ ∼ Πi−1, and then
choosing two i-faces s1, s2 ∈ X(i) containing it independently. Hence we decompose to the cases where
r′ = r and r′ 6= r:

〈Di f̃ , Di f̃ 〉 = E
(r′ ,s1,s2)

[ f (s1) f (s2)] =

Πi−1(r) E
(r′ ,s1,s2)

[ f̃ (s1) f̃ (s2)|r′ = r] + (1−Πi−1(r)) E
(r′ ,s1,s2)

[ f̃ (s1) f̃ (s2)|r′ 6= r]. (12)

The first term is 0, since from independence of s1, s2:

E
(r′ ,s1,s2)

[ f̃ (s1) f̃ (s2)|r′ = r] = E
s1
[ f (s1)|r ⊂ s1]

2 = 0,

since by assumption f is perpendicular to constant functions.
We saw above that for any r′ 6= r, there is at most one i-face containing r′ (which is s = r ∪ r′) such

that f̃ (s) 6= 0. For any r′ 6= r, the value f̃ (s1) f̃ (s2) is non-zero only when s1 = s2 = r ∪ r′. For every
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s1 ∈ X(i), we define the event Es1 to hold when s2 = s1. Then

(12) = (1−Πi−1(r))E
s1

[
f̃ 2(s1) Pr

r′ ,s2
[Es1 |r

′ 6= r]
]
.

Note that if s1 doesn’t contain r then f̃ 2(s1) = 0, hence we continue taking expectation over all s1 ∈ X(i),
even though some of them are unnecessary terms.

If we prove that for every s ∈ X(i) we have Prr′ ,s2
[Es1 |r′ 6= r] ≤ i+1

i γ then

(1−Πi−1(r))E
s1
[ f̃ (s1)

2 Pr
r′ ,s2

[Es1 ]] ≤
i + 1

i
γ E

s1
[ f̃ 2(s1)] =

i + 1
i

γ〈 f̃ , f̃ 〉 = i + 1
i

γ.

Thus we are left with proving the following statement: for all s1 ∈ X(i),

Pr
r′ ,s2

[Es1 |r
′ 6= r] ≤ i + 1

i
γ.

We first bound the unconditioned probability Pr[Es1 ] = Prr′ ,s2∈X(i)[s2 = s1|r′ ⊂ s1, s2]. Fix some
s1 ∈ X(i), and let 1s1 : X(i)→ R be its indicator. Notice that Ui−1Di1s1(s1) = Prr′ ,s2

[s2 = s1], and so

〈Ui−1Di1s1 ,1s1〉 = Πi(s1)Ui−1Di1s1(s1) = Πi(s1)Pr[ES1 ].

We again use the non-laziness property of M+
i to assert that 〈M+

i 1s1 ,1s1〉 = 0. Since X is a γ-HDX,

〈Ui−1Di1s1 ,1s1〉 = 〈(Ui−1Di −M+
i )1s1 ,1s1〉 ≤

∥∥Ui−1Di −M+
i

∥∥ ‖1s1‖
2 = γΠi(s1).

Hence Pr[Es1 ] ≤ γ.
Consider now any s1 ∈ X(i) containing r, and let r′ be a random (i − 1)-face contained in s1. The

probability that r′ 6= r is i
i+1 , and so

Pr
r′ ,s2

[Es1 |r
′ 6= r] ≤ i + 1

i
Pr

r′ ,s2
[Es1 ] ≤

i + 1
i

γ.

5.1 Tightness of Theorem 5.5

In the remainder of the section we give two counterexamples that show that the dependence of Theo-
rem 5.5 on λ and d is tight up to constants.

To show the tightness of the first item in the theorem, namely, that there are simplicial complexes
where

∥∥M+
i −UD

∥∥ ≈ γ, it is enough to consider the complete d-dimensional simplicial complex on n
vertices. On the one hand, the local links of the complete complex are complete graphs on n − d + 1
vertices (or more), thus it is a 1

n−d -two sided link expander. By direct calculation,

M+
d −UD =

1
(d + 1)(n− d− 1)

J(n, d + 1)−
(

1
n− d

I +
1

(d + 1)(n− d)
J(n, d + 1)

)
=

1
(d + 1)(n− d− 1)(n− d)

J(n, d + 1)− 1
n− d

I,

where J(n, d + 1) is the adjacency matrix of the Johnson graph. The eigenvalues of J(n, d + 1) are
(d + 1− j)(n− d− 1− j)− j for j = 0, . . . , d + 1 (assuming n� d), and so the eigenvalues of M+

d −UD
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are
(d + 1− j)(n− d− 1− j)− j
(d + 1)(n− d− 1)(n− d)

− 1
n− d

= − j(n + 1− j)
(d + 1)(n− d− 1)(n− d)

.

The spectral norm of M+
d −UD is attained at j = d + 1, at which point it equals

(d + 1)(n− d)
(d + 1)(n− d− 1)(n− d)

=
1

n− d− 1
.

As for the second item, we show a sequence of complexes Xn with a disconnected link (i.e. they are
not λ-two sided link expanders for any λ < 1), where

∥∥M+
d −UD

∥∥ ≤ 1
d
+ on(1).

The complex Xn is obtained by removing a few faces from the d-dimensional complete complex, so
that there is a cut in a single link. More formally, we define

Xn(0) = {1, 2, . . . , n}

and
Xn(d) =

(
[n]

d + 1

)
\ {{1, 2, . . . , d− 1} ∪ {x, y} | d ≤ x < y ≤ n, x + y ≡ 1 (mod 2)} ,

where Πd is uniform.
One can observe that the link of r0 = {1, 2, . . . , d− 1} contains two connected components — the

even vertices and the odd vertices.

Claim 5.7. Let d > 1, and let Xn be the sequence of simplicial complexes defined above. Then

∥∥M+
d −UD

∥∥ ≤ 1
d
+ on(1).

Proof. We fix n and denote X = Xn, and for simplicity of computation we assume n− d is odd. We need
to show that for any f : X(d− 1)→ R of norm 1,

∣∣〈(M+
d −UD) f , f 〉

∣∣ ≤ 1
d
+ on(1).

We decompose the inner product to local inner products on the link, as in (9):

∣∣〈(M+
d −UD) f , f 〉

∣∣ = ∣∣∣∣ E
r∈X(d−1)

[〈Ar fr, fr〉 − D f (r)2]

∣∣∣∣ ≤ E
r∈X(d−1)

[λ(Xr)‖ fr‖2], (13)

where fr : Xr(0)→ R is defined by fr(x) = f (r ∪ {x}). For every r 6= r0 we have the following claim:

Claim 5.8. Let r ∈ X(d− 2), r 6= r0, then λ(Xr) = on(1).

Substituting this in (13) and using Er∈X(d−1) ‖ fr‖2 = ‖ f ‖2 = 1 and λ(Xr0) ≤ 1 gives

∣∣〈(M+
d −UD) f , f 〉

∣∣ ≤ on(1) + Π(r0)‖ fr0‖2.
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The last term equals

Π(r0)‖ fr0‖2 = Π(r0) ∑
x∈Xr0 (0)

wr0(x) f (r0 ∪ {x})2 = ∑
x∈Xr0 (0)

Π(r0 ∪ {x})
d

f (r0 ∪ {x})2 ≤ 1
d

.

We prove Claim 5.8 below.

Proof of Claim 5.8. Denote m = n− d + 1, and without loss of generality, assume m is even.
Let r 6= r0. If |r \ r0| ≥ 3, then Xr is the complete graph on m vertices and is a 1

m−1 -two-sided spectral
expander.

If |r \ r0| = 2 then Xr is one of the following:

1. The complete graph — when x, y ∈ r \ r0 have the same parity.

2. A graph with only one edge missing — when x, y ∈ r \ r0 have different parity.

In both cases these are O
(

1
m

)
spectral expanders (skipping a short calculation in the second case).

If |r \ r0| = 1 then the graph Xr is obtained by taking the complete graph, and removing m
2 of

the edges that are adjacent to the vertex v0 ∈ r0 \ r. We claim that this graph is still a on(1)-spectral
expander.

The first vertex v0 is connected to m
2 vertices, thus there are m

2 − 1 vertices which are connected to all
vertices besides themselves and v0, and m

2 vertices that are connected to all vertices besides themselves.
The adjacency operator for this graph is a block matrix, formed by partitioning the rows and the

columns into three parts, of sizes 1, m
2 − 1, m

2 , respectively:

A =


01×1 01×(m

2 −1)
2
m J1×m

2

0(m
2 −1)×1

1
m−2 K(m

2 −1)×(m
2 −1)

1
m−2 J(m

2 −1)×m
2

1
m−1 J m

2 ×1
1

m−1 J m
2 ×(

m
2 −1)

1
m−1 K m

2 ×
m
2

 ,

where K is the adjacency matrix of a complete graph, and J is the all-1 matrix.
The non-constant eigenvectors of 1

m−2 K(m
2 −1)×(m

2 −1) (middle block) lift to an (m
2 − 2)-dimensional

eigenspace of− 1
m−2 . Similarly, the non-constant eigenvectors of 1

m−1 K m
2 ×

m
2

(bottom-left block) lift to an
(m

2 − 1)-dimensional eigenspace of− 1
m−1 . The remaining three eigenvalues correspond to eigenvectors

which are constant on blocks. A straightforward calculation shows that these eigenvalues are roots of
the cubic polynomial

(4m2 − 12m + 8)λ3 − (4m2 − 18m + 16)λ2 − (8m− 16)λ + (2m− 8) = 0.

The trivial eigenvalue λ = 1 corresponds to the constant eigenvector. The other two are roots of the
quadratic

(4m2 − 12m + 8)λ2 + (6m− 8)λ− (2m− 8) = 0.

The roots of this quadratic are

λ =
−6m + 8±

√
32m3 − 188m2 + 352m− 192

8m2 − 24m + 16
= ±Θ

(
1√
m

)
.
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6 Boolean degree 1 functions

In this section we characterize all Boolean degree 1 functions in nice complexes.

Definition 6.1. Let X be a simplicial complex. The 1-skeleton of X is the graph whose vertices are the 0-faces of
X and whose edges are the 1-faces of X.

Theorem 6.2. Suppose that X is a proper k-dimensional simplicial complex, for k ≥ 2, whose 1-skeleton is
connected. A function f ∈ Ck is a Boolean degree 1 function if and only if there exists an independent set I such
that f is the indicator of intersecting I or of not intersecting I.

Proof. If f is the indicator of intersecting an independent set I then f = ∑v∈I yv, and so deg f ≤ 1. If f
is the indicator of not intersecting an independent set I then f = ∑v∈X(0) yv/(k + 1)−∑v∈I yv, and so
again deg f ≤ 1.

Suppose now that f is a Boolean degree 1 function. If |X(0)| ≤ 2 then the theorem clearly holds, so
assume that |X(0)| > 2. Lemma 3.5 shows that f has a unique representation of the form

f = ∑
v∈X(0)

cvyv.

Since f is Boolean, it satisfies f 2 = f . Note that

f 2 = ∑
{u,v}∈X(1)

2cucvy{u,v} + ∑
v∈X(0)

c2
vyv.

Moreover, since every input x to f which contains v contains exactly k other points (elements of X(0)),
and since X(1) contains all pairs of points from x, we have

yv = ∑
u : {u,v}∈X(1)

y{u,v}
k

.

This shows that

0 = f 2 − f = ∑
{u,v}∈X(1)

2cucvy{u,v} +
1
k ∑

v∈X(0)
(c2

v − cv) ∑
u : {u,v}∈X(1)

y{u,v} =

1
k ∑
{u,v}∈X(1)

(2kcucv + c2
u − cu + c2

v − cv)y{u,v}.

Lemma 3.5 shows that the coefficients of all y{u,v} must vanish, that is, for all {u, v} ∈ X(1) we have

2kcucv = cu(1− cu) + cv(1− cv).

Consider now a triple of points u, v, w such that {u, v, w} ∈ X(2), and the corresponding system of
equations:

2kcucv = cu(1− cu) + cv(1− cv),

2kcucw = cu(1− cu) + cw(1− cw),

2kcvcw = cv(1− cv) + cw(1− cw).
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Subtracting the second equation from the first, we obtain

2kcu(cv − cw) = cv(1− cv)− cw(1− cw) = (cv − cw)− (c2
v − c2

w) = (cv − cw)(1− cv − cw).

This shows that either cv = cw or 2kcu = 1− cv − cw.
If cu 6= cv, cw then 2kcw + cu + cv = 2kcv + cu + cw = 1, which implies that cv = cw. Thus cu, cv, cw

can consist of at most two values. If c := cu = cv = cw then 2kc2 = 2c(1− c), and so c ∈ {0, 1
k+1}.

If c := cv = cw 6= cu then 2kc2 = 2c(1 − c), and so c ∈ {0, 1
k+1} as before. We also have 2kcuc =

cu(1− cu) + c(1− c). If c = 0 then this shows that cu(1− cu) = 0, and so cu = 1. If c = 1
k+1 then one

can similarly check that cu = 1
k+1 − 1.

Summarizing, one of the following two cases must happen:

1. Two of cu, cv, cw are equal to 0, and the remaining one is either 0 or 1.

2. Two of cu, cv, cw are equal to 1
k+1 , and the remaining one is either 1

k+1 or 1
k+1 − 1.

Let us say that a vertex v ∈ X(0) is of type A if cv ∈ {0, 1}, and of type B if cv ∈ { 1
k+1 , 1

k+1 − 1}.
Since the complex is pure and at least two-dimensional, every vertex must participate in a triangle (two-
dimensional face), and so every vertex is of one of the types. In fact, all vertices must be of the same
type. Otherwise, there would be a vertex v of type A incident to a vertex w of type B (since the link of ∅
is connected). However, since the complex is pure, {v, w} must participate in a triangle, contradicting
the classification above.

Suppose first that all vertices are type A, and let I = {v : cv = 1}. Note that f indicates that the input
face intersects I. Clearly I must be an independent set, since otherwise f would not be Boolean. When
all vertices are type B, the function 1− f = ∑v∈X(0)(

1
k+1 − cv)yv is of type A, and so f must indicate not

intersecting an independent set.

If X is a γ-HDX for 0 < γ < 1/(k + 1) then the link of ∅ has positive spectral gap, and in particular
it is connected. Thus Theorem 6.2 applies to high-dimensional expanders.

When the 1-skeleton of X contains r connected components C1, . . . , Cr, the same argument shows
that the Boolean degree 1 functions on X are of the form f = f1 + · · ·+ fr, where each fi is the indicator
of intersecting or not intersecting an independent set of Ci.

7 FKN theorem on high-dimensional expanders

In this section, we prove an analog of the classical result of Friedgut, Kalai and Naor [FKN02] for high-
dimensional expanders. The FKN theorem states that any Boolean function F on the hypercube that is
close to a degree 1 function f (not necessarily Boolean) in the L2

2-sense must agree with some Boolean
degree 1 function (which must be a dictator) on most points. This result for the Boolean hypercube can
be easily extended to functions on k-slices of the hypercube, provided k = Θ(n).

Theorem 7.1 (FKN theorem on the slice [Fil16a]). Let n, k ∈ Z≥0 and ε ∈ (0, 1) such that n/4 ≤ k + 1 ≤
n/2. Let F : ( [n]

k+1) → {0, 1} be a Boolean function such that E[(F − f )2] < ε for some degree 1 function

f : ( [n]
k+1)→ {0, 1}. Then there exists a degree 1 function g : ( [n]

k+1)→ R such that

Pr[F 6= g] = O(ε).

Furthermore, g ∈ {0, 1, yi, 1− yi}, that is, g is a Boolean dictator (1-junta).
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Remark 7.2. 1. The function g promised by the theorem satisfies E[(g− F)2] = Pr[g 6= F] = O(ε)

and hence, by the L2
2-triangle inequality we have E[( f − g)2] ≤ 2 E[( f − F)2] + 2 E[(g− F)2] =

O(ε). This is the way that the FKN theorem is traditionally stated, but we prefer the above formu-
lation as this is the one we are able to generalize to the high-dimensional expander setting.

2. The function 1 can also be written as 1
k+1 ∑j yj. The function 1− yi can also be written as 1

k+1 ∑j 6=i yj +

( 1
k+1 − 1)yi.

3. The result of Filmus [Fil16a] is quite a bit stronger: for every k ≤ n/2, it promises the existence of
a function g : ( [n]

k+1) → R, not necessarily Boolean, such that E[( f − g)2] = O(ε). Moreover, either
g or 1− g is of the form ∑i∈S yi for |S| ≤ max(1,

√
ε · n/k). The bound on the size of S ensures that

Pr[g ∈ {0, 1}] = 1−O(ε).

Our main theorem is an extension of the above theorem to k-faces of a two-sided link expander.

Theorem 7.3 (FKN theorem for two-sided link expanders). Let X be a d-dimensional λ-two-sided link
expander, where λ < 1/d, and let 4k2 < d. Let F : X(k) → {0, 1} be a function such that E[(F− f )2] < ε for
some degree 1 function f : X(k)→ R. Then there exists a degree 1 function g : X(k)→ R such that

Pr[F 6= g] = Oλ(ε).

Furthermore, the degree 1 function g can be written as g(y) = ∑i diyi, where di ∈ {0, 1, 1
k+1 , 1

k+1 − 1}.

The high-dimensional analog of the FKN theorem is obtained from the FKN theorem for the slice
using the agreement theorem of Dinur and Kaufman [DK17].

Using Theorem 5.5, we formulate the FKN theorem in terms of high-dimensional expanders:

Corollary 7.4 (FKN theorem for HDX). Let X be a d-dimensional γ-high-dimensional expander, where γ <

1/3d2, and let 4k2 < d. Let F : X(k) → {0, 1} be a function such that E[(F − f )2] < ε for some degree 1
function f : X(k)→ R. Then there exists a degree 1 function g : X(k)→ R such that

Pr[F 6= g] = Oγ(ε).

Furthermore, the degree 1 function g can be written as g(y) = ∑i diyi, where di ∈ {0, 1, 1
k+1 , 1

k+1 − 1}.

7.1 Agreement theorem for high-dimensional expanders

Dinur and Kaufman [DK17] prove an agreement theorem for high-dimensional expanders. The setup is
as follows. For each k-face s we are given a local function fs : s→ Σ that assigns values from an alphabet
Σ to each point in s. Two local functions fs, fs′ are said to agree if fs(v) = fs′(v) for all v ∈ s∩ s′. LetDk,2k

be the distribution on pairs (s1, s2) obtained by choosing a random t ∼ Π2k and then independently
choosing two k-faces s1, s2 ⊂ t. The theorem says that if a random pair of faces (s, s′) ∼ Dk,2k satisfies
with high probability that fs agrees with fs′ on the intersection of their domains, then there must be a
global function g : X(0)→ Σ such that almost always g|s ≡ fs. Formally:

Theorem 7.5 (Agreement theorem for high-dimensional expanders [DK17]). Let X be a d-dimensional
λ-two-sided high-dimensional expander, where λ < 1/d, let k2 < d, and let Σ be some fixed finite alphabet. Let
{ fs : s→ Σ}s∈X(k) be an ensemble of local functions on X(k), i.e. fs ∈ Σs for each s ∈ X(k). If

Pr
(s1,s2)∼Dk,2k

[ fs1 |s1∩s2 ≡ fs2 |s1∩s2 ] > 1− ε
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then there is a g : X(0)→ Σ such that

Pr
s∼Πk

[ fs ≡ g|s] ≥ 1−Oλ(ε).

While Dinur and Kaufman state the theorem for a binary alphabet, the general version follows in a
black box fashion by applying the theorem for binary alphabets dlog2 |Σ|emany times.

7.2 Proof of Theorem 7.3

Let f , F ∈ Ck, where F is a Boolean function and f is a degree 1 function, as in the hypothesis of
Theorem 7.3. Since f is a degree 1 function, Lemma 3.5 guarantees that there exist ai ∈ R such that
f (y) = ∑i∈X(0) aiyi. Note that here we view the inputs of f as |X(0)|-bit strings with exactly k + 1 ones,
the rest being zero.

We begin by defining two ensembles of pairs of local functions {( f |t, F|t)}t∈X(2k), {( f |u, F|u)}u∈X(4k),
which are the restrictions of ( f , F) to the 2k-face t and 4k-face u. Formally, for any t ∈ X(2k) and
u ∈ X(4k), consider the restriction of f to t and u defined as follows:

f |t, F|t :
(

t
k

)
→ R, f |t(y) = f (y) = ∑

i∈t
aiyi, F|t(y) = F(y),

f |u, F|u :
(

u
k

)
→ R, f |u(y) = f (y) = ∑

i∈u
aiyi, F|u(y) = F(y).

Observe that the f |t’s are degree 1 functions, while the F|t’s are Boolean functions (similarly for f |u’s
and F|u’s).

Now, define the following quantities:

εt := E
s : s⊂t

[( f |t(s)− F|t(s))2], δu := E
s : s⊂u

[( f |u(s)− F|u(s))2].

Clearly, Et[εt] = Eu[δu] = ε.
Let αk = 1

k+1 . Applying Theorem 7.1 (along with Remark 7.2) to the functions ( f |t, F|t) for each
t ∈ X(2k), we have the following claim:

Claim 7.6. For every t ∈ X(2k), there exists a Boolean dictator gt : (t
k)→ {0, 1} such that

E
s : s⊂t

[( f |t − gt)
2] = O(εt).

Furthermore, there exists a function dt : t→ {0, 1, αk, αk − 1} such that gt(y) = ∑i∈t dt(i)yi.

A similar claim holds for each u ∈ X(4k):

Claim 7.7. For every u ∈ X(4k), there exists a Boolean dictator hu : (u
k)→ {0, 1} such that

E
s : s⊂u

[( f |u − hu)
2] = O(δu).

Furthermore, there exists a function eu : u→ {0, 1, αk, αk − 1} such that hu(y) = ∑i∈u eu(i)yi.

We now prove that functions in the collection of local functions {dt}t typically agree with each other.
This lets us use the agreement theorem, Theorem 7.5, to sew these different local functions together,
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yielding a single function d : X(0) → {0, 1, αk, αk − 1}. This d determines a global degree 1 function g
defined as follows: g(y) = ∑i∈X(0) d(i)yi.

Claim 7.8. There exists a function d : X(0)→ {0, 1, αk, αk − 1} such that Prt[dt ≡ d|t] = 1−Oλ(ε).

Proof. To sew the various dt together via the agreement theorem, we would like to first bound the
probability

Pr
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2 ] .

Recall the definition of the distribution D2k,4k: we first pick a set u ∈ X(4k) according to Π4k and
then two 2k-faces t1, t2 of u uniformly and independently. Consider the three functions dt1 , dt2 and eu.
Clearly, if dt1 |t1∩t2 6≡ dt2 |t1∩t2 then one of eu|t1 6≡ dt1 or eu|t2 6≡ dt2 must hold. Thus,

Pr
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2 ] ≤ 2 · Pr
t,u
[eu|t 6≡ dt] . (14)

Thus, it suffices to bound the probability Prt,u[eu|t 6≡ dt], where u ∼ Π4k and t is a random 2k-face of u.
For any fixed t ⊂ u, the L2

2 triangle inequality shows that

E[(hu|t − gt)
2] ≤ 2 E[(hu|t − f |t)2] + 2 E[( f |t − gt)

2] = 2 E[(hu|t − f |t)2] + O(εt).

Taking expectation over t ∈ X(2k) conditioned on t ⊂ u, we see that

E
t⊂u

E[(hu|t − gt)
2] ≤ 2 E[(hu − f |u)2] + O

(
E

t : t⊂u
εt

)
= O(δu) + O

(
E

t : t⊂u
εt

)
.

Taking expectation over u ∼ Π4k, we now have

E
u

E
t⊂u

E[(hu|t − gt)
2] = O(ε).

For any fixed t ⊂ u, both hu|t and gt are Boolean dictators. Hence either they agree, or E[(hu|t − gt)2] =

Ω(1). This shows that hu|t disagrees with gt with probability O(ε), and so

Pr
t,u
[eu|t 6≡ dt] = O(ε).

We now return to (14), concluding that

E
(t1,t2)∼D2k,4k

[dt1 |t1∩t2 6≡ dt2 |t1∩t2)] = O(ε).

We have thus satisfied the hypothesis of the agreement theorem (Theorem 7.5). Invoking the agree-
ment theorem, we deduce that Prt∼Π2k [dt ≡ d|t] = 1−Oλ(ε).

The d’s guaranteed by Claim 7.8 naturally correspond to a degree 1 function g : X(k)→ R as follows:

g(y) := ∑
i∈X(0)

d(i)yi.

We now show that this g is mostly Boolean.

Claim 7.9. Prs[g(s) ∈ {0, 1}] = 1−Oλ(ε).
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Proof. Since gt is Boolean-valued,

Pr
s∼Πk

[g(s) ∈ {0, 1}] ≥ Pr
t
[g|t = gt] = Pr

t
[d|t ≡ dt] = 1−Oλ(ε).

We now show that g in fact agrees pointwise with F most of the time.

Claim 7.10. Prs[g 6= F] = Oλ(ε).

Proof. Fix any t ∈ X(2k). We compute Prs : s⊂t[F|t 6= gt] as follows

Pr[F|t 6= gt] = ‖F|t − gt‖2 [ Since F|t and gt are both Boolean ]

≤ 2 · ‖F|t − f |t‖2 + 2 · ‖ f |t − gt‖2

= O(εt) + O(εt) = O(εt).

We can now compute Prs[F 6= g] as follows:

Pr[F 6= g] = E
t

Pr[F|t 6= g|t] ≤ E
t

Pr[F|t 6= gt] + Pr
t
[g|t 6= gt] = O(ε) + Pr

t
[d|t 6≡ dt] = Oλ(ε).

This completes the proof of Theorem 7.3.

8 Expanding posets (eposets)

In this section, we describe a setting generalizing simplicial complexes, namely measured posets. These
are partially ordered sets (a set X with a partial order ≤ on it) whose elements are partitioned into
levels X(j), and that have some additional properties stated below. As in simplicial complexes, we can
define Cj as the space of real-valued functions on X(j), and averaging operators Uj : Cj → Cj+1 and
Dj+1 : Cj+1 → Cj.

We generalize the notion of a γ-HDX to a γ-expanding poset (eposet) — a measured poset with oper-
ators Dj, Uj such that ∥∥Dj+1Uj − rj I − δjUj−1Dj

∥∥ ≤ γ,

for γ < 1, all non-extreme levels j of the poset, and some constants rj, δj.
We begin the section by discussing the formal notion of an eposet. We then generalize Theorem 4.6

to all eposets, and prove it in the general setting. Finally, we show that if our measured poset is a
simplicial complex, then rj ≈ 1

j+2 , δj ≈ 1− 1
j+2 , under the assumption that the laziness of the lower

walk is small.

8.1 Measured posets

A graded (or ranked) poset is a partially ordered set (poset) (X,≤) equipped with a rank function ρ : X →
N∪ {0,−1} such that:

1. For all x, y ∈ X, if x ≤ y then ρ(x) ≤ ρ(y).

2. For every x, y ∈ X, if y is minimal with respect to elements greater than x (i.e. x ≤ y), then
ρ(y) = ρ(x) + 1.
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We denote the set of elements of rank j by X(j). We assume that there is a unique element of minimal
rank which we denote by ∅, and so X(−1) = {∅}.

We say that a graded poset is d-dimensional if the maximal rank of any element in X is d. We say that
a d-dimensional graded poset is pure if all maximal elements are of rank d, that is, for every t ∈ X there
exists s ∈ X(d) such that t ≤ s.

For example, any simplicial complex is a graded poset, if we take ≤ to be the containment rela-
tion and ρ to be the cardinality of a face, minus one. Another useful example to keep in mind is the
Grassmann poset Grq(n, d), whose elements are subspaces of dimension at most d + 1 of Fn

q , and the
order is by containment. The rank function for the Grassmann poset is ρ(U) = dim(U) − 1, and so
X(j) = {U ⊆ Fn

q : dim(U) = j + 1}.

Definition 8.1 (Measured poset). Let X be a finite graded pure d-dimensional poset, with a unique minimum
element ∅ of rank −1. We say that X is measured by a (joint) distribution ~Π = (Πd, Πd−1, . . . , Π−1) if it
satisfies the following properties4:

1. Πi ∈ X(i) for all i.

2. Πi−1 ⊂ Πi for all i > −1.

3. The sequence Πd, . . . , Π−1 has the Markov property: Πi−1 depends only on Πi for all i > −1.

We denote the real-valued function spaces on X(j) by Cj. We denote the averaging operators of the steps in the
Markov process by Uj : Cj → Cj+1, Dj+1 : Cj+1 → Cj.

The operators Uj and Dj+1 are adjoint with respect to the inner product given by

〈 f , g〉 = E
x∼Πj

f (x)g(x)

and thus both UjDj+1 and Dj+1Uj are positive semi-definite since, for example, for all f

〈UjDj+1 f , f 〉 = 〈Dj+1 f , Dj+1 f 〉 ≥ 0.

The process we defined for the distribution ~Π in a simplicial complex is an example of a measured
poset. For the Grassmann poset mentioned above, we also have a similar probabilistic experiment:

1. Choose a subspace of dimension d + 1, sd ∈ X(d), uniformly at random.

2. Given a subspace si of dimension i + 1, choose si−1 ∈ X(i − 1) to be a uniformly random codi-
mension 1 subspace of si.

An analog for Theorem 3.2 holds for any measured poset. We say that a k-dimensional measured
poset X is proper if for all j ≤ k− 1, ker Uj = {0}. Also, as before we denote

H−1 = C−1, Hi = ker Di, Vi = Uk−i Hi.

Theorem 8.2. If X is a proper k-dimensional measured poset then we have the following decomposition of Ck:

Ck = Vk ⊕Vk−1 ⊕ · · · ⊕V−1 .
4As is common, we abuse notation Πi to refer to both the distribution as well as the random variable sampled according to

the distribution.
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In other words, for every function f ∈ Ck there is a unique choice of hi ∈ Hi such that the functions fi = Uk−ihi

satisfy f = f−1 + f0 + . . . + fk.

The proof for this is identical to the proof of Theorem 3.2 and is left out.

8.2 Sequentially differential posets

Sequentially differential posets were first defined and studied (in a slightly different form) by Stanley [Sta88,
Sta90].

Definition 8.3 (Sequentially differential posets). Sequentially differential posets are measured posets whose
averaging operators U, D satisfy an equation

Dj+1Uj − δjUj−1Dj − rj I = 0, (15)

for some rj, δj ∈ R≥0 and all 0 ≤ j ≤ k− 1.

For example, the complete complex satisfies this definition with parameters

δi =

(
1− 1

i + 2

)(
1− 1

n− i

)−1
and ri = 1− δi.

In other words,

DU −
(

1− 1
i + 2

)(
1− 1

n− i

)−1
UD−

(
1−

(
1− 1

i + 2

)(
1− 1

n− i

)−1
)

I = 0.

The Grassmann poset Grq(n, d) is also a sequentially differential poset with

δi = 1−
(

1− q− 1
qi+2 − 1

)(
1− q− 1

qn−i − 1

)−1
and ri = 1− δi. (16)

The above following from the claim below, that the reader can verify by direct calculation:

Claim 8.4. Let X be a measured poset, and suppose we can decompose:

Di+1Ui = αi I + (1− αi)Mi,

Ui−1Di = βi I + (1− βi)Mi,

where 0 ≤ αi, βi ≤ 1 are constants and Mi is some operator. Then

Di+1Ui − ri I − δiUi−1Di = 0,

where
δi = (1− αi)(1− βi)

−1 and ri = 1− δi.

In both the complete complex and the Grassmann poset Grq(n, d), the non-lazy upper walk and the
non-lazy lower walk are the same — given t1 ∈ X(i), our choice for t2 ∈ X(i) is a set (or subspace
in the Grassmann case) that shares an intersection of size (resp. dimension) i with t1 (with uniform
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probability). The only difference between DU and UD is the probability to stay in place. Thus we can
decompose:

Di+1Ui = αi I + (1− αi)Mi,

Ui−1Di = βi I + (1− βi)Mi,

where Mi is the non-lazy upper (or lower) random walk. In the simplicial complex case

αi =
1

i + 2
, βi =

1
n− i

,

and in the Grassmann case
αi =

q− 1
qi+2 − 1

, βi =
q− 1

qn−i − 1
.

We relax Definition 8.3 to an almost sequentially differential poset — a measured poset that approx-
imately satisfies such an identity:

Definition 8.5 (Expanding Poset). Let~r,~δ ∈ Rk
≥0, and let γ < 1. We say that X is an (~r,~δ, γ)-expanding

poset (or (~r,~δ, γ)-eposet) if for all j ≤ k− 1:

∥∥Dj+1Uj − rj I − δjUj−1Dj
∥∥ ≤ γ. (17)

A sequentially differential poset is an eposet with γ = 0. As we saw in (3), a γ-HDX is an (~r,~δ, γ)-
eposet, where rj =

1
j+2 and δj = 1− 1

j+2 .

We can use (16) to assert that Grq(n, d) is an (~r,~δ, γ)-eposet for ri = q−1
qi+2−1 , δi = 1− ri, and γ =

O(1/qn−d). While this only shows that the Grq(n, d) is an eposet (even though it is truly sequentially
differential), the parameters are much simpler, thus calculations regarding the random walks are easier
(see for instance the calculations in Section 8.6).

8.3 Almost orthogonality of decomposition

In this section we show that in an eposet, the spaces Vi are almost orthogonal to one another. Moreover,
we show that these spaces are “almost eigenspaces” of the operator DU.

Theorem 8.6. Let X be a k-dimensional (~r,~δ, γ)-eposet. For every function f on C` for ` ≤ k, the decomposition
f = f−1 + · · ·+ f` of Theorem 8.2 satisfies the following properties, when γ is small enough (as a function of k
and the eposet parameters):

• For i 6= j, |〈 fi, f j〉| = O(γ)‖ fi‖‖ f j‖.

• ‖ f ‖2 = (1±O(γ))(‖ f−1‖2 + · · ·+ ‖ f`‖2), and for all i, ‖ f ‖2 = (1±O(γ))(‖ f≤i‖2 + ‖ f>i‖2).

• If ` < k, the fi (for i ≥ 0) are approximate eigenvectors of DU: ‖DU fi − r``−i+1 fi‖ = O(γ)‖ fi‖, where

r`i = r` +
`−1

∑
j=`−i

(
`

∏
t=j+1

δt

)
rj. (18)

(Note DU f−1 = r``+2 f−1, where r``+2 = 1.)

• If ` < k then 〈DU f , f 〉 = ∑`
i=−1 r``−i+1‖ fi‖2 ±O(γ)‖ f ‖2.
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The hidden constant in the O notations depends only on k and the eposet parameters (~r,~δ, γ) and not on the the
eposet size |X|. In particular, the last item implies that if~r > 0 then for a small enough γ, the poset is proper.

In a measured poset, the decomposition of Theorem 8.2 is not necessarily orthogonal. However, this
theorem shows that for an eposet, the decomposition is almost orthogonal.

Remark 8.7. In the special case of a sequentially differential poset, i.e. γ = 0, we do get that the decompo-
sition in Theorem 8.2 is orthogonal, and that the decomposition C` = V−1⊕ · · · ⊕V` is a decomposition
to eigenspaces of DU: for all fi ∈ Vi,

DU fi = r`i fi,

for the r`i given in (18).

Recall our convention that for f ∈ C`−j,

U j f = U`−1 · · ·U`−j+1U`−j f ∈ C`.

We start with a technical claim that generalizes the approximate relation between D and U, namely

‖DU − rI − δUD‖ = O(γ),

to an approximate relation between D and U j:

‖DU j − rU j−1 − δU jD‖ = O(γ),

for appropriate constants r, δ ∈ R.

Claim 8.8. Let X be a k-dimensional (~r,~δ, γ)-eposet, 1 ≤ j ≤ `+ 1 ≤ k, and DU j : X(`− (j− 1)) → X(`).
There exist constants r`j , δ`j (as given below) such that∥∥∥DU j − r`j U j−1 − δ`j U jD

∥∥∥ = O(γ), (19)

where the hidden constant in the O(·) notation depends only on k,~δ,~r.
The constants δ`j and r`j are given by the following formulas: δ`0 = 1 and

δ`j =
`

∏
t=`−(j−1)

δt, r`j =
j−1

∑
t=0

r`−tδ
`
t .

While the statement of this claim seems technical, its proof consists of simply inductively substitut-
ing DU with rI + UD in the terms, until the formula is obtained. The proof is given in more detail at
the end of this section.

Regarding the constants r, δ, notice the following:

1. r`1 = r` and δ`1 = δ`.

2. If for all 0 ≤ j ≤ `, rj + δj = 1, then for all 0 ≤ j ≤ `, r`j + δ`j = 1. In this case, we have a better
formula for r`j :

r`j = 1−
`

∏
t=`−(j−1)

δt.
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3. In a γ-HDX, we get r`j =
j

`+2 and δ`j = 1− j
`+2 .

This claim directly implies the third item in Theorem 8.6. In other words, the decomposition in
Theorem 8.2 is a decomposition of “approximate eigenspaces” of UD:

Corollary 8.9. Let X be an (~r,~δ, γ)-eposet, and let h ∈ H`−j. Then U jh ∈ V`−j is an approximate eigenvector
of D`+1U` with eigenvalue r`j+1:

‖DU(U jh)− r`j+1(U
jh)‖ = O(γ) ‖h‖ .

We proceed by showing that these approximate eigenspaces V j are approximately orthogonal.

Lemma 8.10. Suppose that X is a k-dimensional (~r,~δ, γ)-eposet, let ` < k, let i 6= j, and let fi = U`−ihi, f j =

U`−ihj for hi ∈ Hi, hj ∈ H j, as in Theorem 3.2. Then

〈 fi, f j〉 = O(γ) ‖hi‖
∥∥hj
∥∥ ,

where the hidden constant depends on k,~δ,~r only.

Proof. Recall that hi ∈ Hi = ker Di. Given this, it is easy to see that h` is orthogonal to f`−j, for any
j ≥ 1. Indeed, 〈 f`, f`−j〉 = 〈h`, U jh`−j〉 = 〈Djh`, h`−j〉 = 0, since Dh` = 0.

To prove the statement in general we use Claim 8.8 and induction on `. The base case where ` = 0
(and thus i or j are 0) is clear from above.

For the induction step, assume without loss of generality that i > j (or `− j > `− i). Then

〈 fi, f j〉 = 〈U`−ihi, U`−jhj〉 = 〈DU`−ihi, U(`−1)−jhj〉.

By the use of the relation in Claim 8.8,

DU`−ihi = r`i U`−i−1hi + δ`i U`−iDhi + Γi,

where ‖Γi‖ = O(γ) ‖hi‖. The term δ`i U`−iDhi vanishes as hi ∈ ker Di. Thus

〈DU`−ihi, U(`−1)−jhj〉 = r`i 〈U(`−1)−ihi, U(`−1)−jhj〉+ 〈Γi, U(`−1)−jhj〉.

The term r`i 〈U(`−1)−ihi, U(`−1)−jhj〉 is bounded by O(γ) ‖hi‖
∥∥hj
∥∥ by the induction hypothesis, and by

the Cauchy–Schwartz inequality,

|〈Γi, U(`−1)−jhj〉| ≤ ‖Γi‖‖U(`−1)−jhj‖ = O(γ) ‖hi‖
∥∥hj
∥∥ .

The claim follows.

The preceding lemma gives an error estimate in terms of the norms ‖hi‖. The following lemma
enables us to express the error in terms of the norms ‖ fi‖.

Lemma 8.11. For any k-dimensional (~r,~δ, γ)-eposet, let ` < k and let fi = U`−ihi for hi ∈ Hi, as in Theo-
rem 3.2. Then

‖ fi‖ = (1±O(γ))ρ``−i ‖hi‖ ,

where ρ`j = ∏
j
t=0 r`−t

j−t , and the hidden constant depends only on k,~r,~δ.
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Proof. The proof of this lemma is similar to the proof of Lemma 8.10. By direct calculation with Claim 8.8
we obtain that for any h ∈ ker D:

DjU jh = r`j Dj−1U j−1h + Γ1 = · · · = ρ`j h +
j

∑
t=1

Γt,

where Γt is the remainder, and ‖Γt‖ = O(γ) ‖h‖ for all t. Thus∥∥∥DjU jh− ρ`j h
∥∥∥ = O(γ) ‖h‖ .

Hence using Cauchy–Schwartz,

‖ fi‖2 = 〈U`−ihi, U`−ihi〉 = 〈D`−iU`−ihi, hi〉 = ρ``−i‖hi‖2 ±O(γ)‖hi‖2.

Combining both lemmas, we obtain the following corollary, which proves the first item of Theo-
rem 8.6.

Corollary 8.12. Suppose that X be a k-dimensional (~r,~δ, γ)-eposet, let ` < k, and let f ∈ C` have the decompo-
sition f = f−1 + · · ·+ f`, as in Theorem 3.2. Then for i 6= j and small enough γ,

〈 fi, f j〉 = O(γ)‖ fi‖‖ f j‖,

where the hidden constant depends only on k,~r,~δ.

As a consequence, we obtain an approximate L2 mass formula, constituting the second item of Theo-
rem 8.6:

Corollary 8.13. Under the conditions of Corollary 8.12, for every i ≤ j we have

‖ fi + · · ·+ f j‖2 = (1±O(γ))(‖ fi‖2 + · · ·+ ‖ f j‖2),

where the hidden constant depends only on k,~r,~δ.
In particular,

‖ f ‖2 = (1±O(γ))(wt≤i( f ) + wt>i( f )) = (1±O(γ))(‖ f≤i‖2 + ‖ f>i‖2).

Proof. Expanding ‖ fi + · · ·+ f j‖2, we obtain

∣∣‖ fi + · · ·+ f j‖2 − ‖ fi‖2 − · · · − ‖ f j‖2∣∣ ≤ 2 ∑
i≤a<b≤j

|〈 fa, fb〉| = O(γ) ∑
i≤a<b≤j

‖ fa‖‖ fb‖ ≤

O(γ)
(
‖ fi‖+ · · ·+ ‖ f j‖

)2 ≤ O(γ)(‖ fi‖2 + · · ·+ ‖ f j‖2),

swallowing a factor of j− i + 1 in the last inequality.

The fourth item of Theorem 8.6 follows from the preceding ones:

Corollary 8.14. Under the conditions of Corollary 8.12,

〈DU f , f 〉 = (1±O(γ))
`

∑
i=−1

r``−i+1‖ fi‖2.
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Proof. Let DU fi = r``−i+1 fi + gi, where ‖gi‖ = O(γ)‖ fi‖ according to the third item. Then

〈DU f , f 〉 =
`

∑
i=−1

r``−i+1〈 fi, f 〉+
`

∑
i=−1
〈gi, f 〉. (20)

We can bound the magnitude of the second term using Cauchy–Schwartz:

`

∑
i=−1
|〈gi, f 〉| ≤

`

∑
i=−1
‖gi‖‖ f ‖ = O(γ)

`

∑
i=1
‖ fi‖‖ f ‖ = O(γ)‖ f ‖2,

using the second item.
For every i, we can bound 〈 fi, f 〉 by

〈 fi, f 〉 = ‖ fi‖2 + ∑
j 6=i
〈 fi, f j〉 = ‖ fi‖2 ±O(γ)‖ fi‖‖ f ‖,

using the first two items.
Substituting both bounds in (20) and using the second item again, we get

〈DU f , f 〉 =
`

∑
i=−1

r``−i+1‖ fi‖2 ±O(γ)‖ f ‖2.

Finally, we prove Claim 8.8:

Proof of Claim 8.8. We prove the claim by induction on j. The base case j = 1 follows by the definition
of an eposet: δ`1 = δ`, r`1 = r`, and ∥∥∥DU − r`1 I − δ`1UD

∥∥∥ ≤ γ.

For the induction step on j + 1, note that DU j+1 = DU jU. We add and subtract:

DU jU =
[

DU jU − (r`j U j−1U + δ`j U jDU)
]
+ (r`j U j + δ`j U jDU). (21)

The term inside the square brackets has spectral norm at most O(γ)‖U‖ due to the induction hypothe-
sis. Since ‖U‖ ≤ 1,

‖DU jU − r`j U j−1U + δ`j U jDU‖ = O(γ).

We consider next the term δ`j U jDU, and substitute the DU in it with

(r`−j I + δ`−jUD) + Γ,

where Γ = DU − (r`−j I + δ`−jUD) has norm at most γ. We get that∥∥∥δ`j U jDU − δ`j U j(r`−j I + δ`−jUD)
∥∥∥ = O(γ).

We rearrange the left-hand side of the equation to get

δ`j U jDU − δ`j U j(r`−j I + δ`−jUD) = δ`j U jDU − r`−jδ
`
j U j − δ`j+1UD.
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Plugging this term back in (21), we get

‖DU j+1 − r`j+1U j − δ`j+1U j+1D‖ = O(γ).

8.4 Equivalence between link expansion and random-walk expansion for decom-
posable posets

In this subsection we extend the equivalence theorem of Section 5 to a class of γ-eposets that share some
key properties with simplicial complexes. We call these posets decomposable posets.

We begin with the definition of a link in a general measured poset.

Definition 8.15. Let X be a d-dimensional measured poset. Let s ∈ X(i). The link Xs is a (d− i− 1)-graded
poset consisting of all t ∈ X such that t ≥ s, with rank function ρs(y) = ρ(y)− ρ(x)− 1.

The induced (joint) distribution on the link ~ΠXs = (ΠXs ,d−i−1, . . . , ΠXs ,−1) is defined as follows:

Pr[~ΠXs = (td−i, td−i−1, . . . , t1, t0)] = Pr[Πd = td−i, Πd−1 = td−i−1, . . . , Πi+2 = t1, Πi+1 = t0 | Πi = s].

Namely, the probability of sampling t in Xs is the probability of sampling it given that s was sampled
from the i-th level in X.

We denote by Us
j , Ds

j the upper and lower walks on Xs starting from Xs(j). We further denote by
M+,s

j the non-lazy upper walk on Xs starting from Xs(j). When s = ∅, that is, Xs = X, we simply write
M+

j .
We define a two-sided link expander poset analogously to the definition for simplicial complexes:

Definition 8.16. Let X be a measured poset. We say that X is a γ-two-sided-link expander if for every i ≤ d− 2
and every s ∈ X(i), it holds that

λ(M+,s
0 ) ≤ γ,

where λ(M+,s
0 ) is the second largest eigenvalue of M+,s

0 in absolute value, which is also equal to
∥∥∥M+,s

0 −Us
−1Ds

0

∥∥∥.

Our main theorem is that for a special class of measurable posets called decomposable posets, the
above definition is an equivalent characterization of an eposet. To that end, we first show that Defini-
tion 8.5 has an alternate characterization (see Definition 8.19) if the laziness is small.

8.4.1 Laziness and an alternate characterization of eposets

In this section, we show that if the laziness of upper and lower walks of the eposet is small, then there
is an alternate more convenient characterization of eposets in terms of

∥∥Ui−1Di −M+
i

∥∥. First for some
definitions.

Definition 8.17 (laziness of eposet). Let M be a random walk on the set V. We say that M is α-lazy for some
α ∈ (0, 1) if for every t ∈ V we have M(t, t) ≤ α. If furthermore, the operator M can be decomposed as

M = αI + (1− α)M+,

then we say that M is α-uniformly lazy. In other words, the walk M is an (α, 1− α) convex combination of the
lazy component I and non-lazy component M+.

Let X be a measured eposet. We say that the upper walk DU is ~α-uniformly lazy for some vector ~α =

(α−1, α0, . . . , αd−1) if each of the upper walks Di+1Ui are αi-uniformly lazy.
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If αi ≤ α for all i ≥ 0 for some α ∈ (0, 1), we then say that the upper walk of X is α-uniformly lazy.

Lemma 8.18. Let γ ∈ (0, 1/8). Let X be a d-dimensional measured poset whose lower walk UD is γ-lazy and
whose upper walk is 1/2-uniformly lazy. Then

1. If
∥∥Ui−1Di −M+

i

∥∥ ≤ γ then X is an (~r,~δ, γ)-eposet for some~r,~δ.

2. If X is an (~r,~δ, γ)-eposet for some~r,~δ, then
∥∥Ui−1Di −M+

i

∥∥ = O(γ) for all i ≥ 0.

Proof. Since the upper walk of X is 1/2-uniformly lazy, there exists~α = (α−1, α0, . . . , αd−1) such that for
all i ∈ {−1, 0, . . . , d− 1}, we have

Di+1Ui = αi I + (1− αi)M+
i .

(Proof of Part 1) Suppose
∥∥Ui−1Di −M+

i

∥∥ ≤ γ. Substituting into the above one gets

γ ≥ (1− αi)γ ≥
∥∥(1− αi)M+

i − (1− αi)Ui−1Di
∥∥ = ‖Di+1Ui − αi I − (1− αi)Ui−1Di‖ ,

so X is a γ-eposet for ri = αi and δi = 1− αi.

(Proof of Part 2) Suppose that ‖Di+1Ui − ri I − δiUi−1Di‖ ≤ γ for some ri, δi ≥ 0.
We apply Di+1Ui − ri I − δiUi−1Di to the constant vector 1, which is fixed by all of Di+1Ui, I, Ui−1Di

because they are averaging operators. This gives

|1− ri − δi| =
∣∣∣∣ 〈(Di+1Ui − ri I − δiUi−1Di)1,1〉

〈1,1〉

∣∣∣∣ ≤ γ.

Next, we fix an arbitrary element s ∈ X(i) and let f = 1s be the function that equals 1 on s and 0
elsewhere. Observe that 〈M+

i f , f 〉 = 0 so 〈Di+1Ui f , f 〉 = αi〈 f , f 〉. We apply Di+1Ui − ri I− δiUi−1Di on
the function f = 1s,∣∣∣∣αi − ri − δi

〈Ui−1Di f , f 〉
〈 f , f 〉

∣∣∣∣ = ∣∣∣∣ 〈(Di+1Ui − ri I − δiUi−1Di) f , f 〉
〈 f , f 〉

∣∣∣∣ ≤ γ.

Now, using the γ-laziness of the lower walks to bound 〈Ui−1Di f , f 〉 ≤ γ〈 f , f 〉, we get |αi − ri| ≤
γ(1+ δi). Combining this with |δi + ri − 1| ≤ γ , we obtain that |δi − (1− αi)| ≤ γ(2+ δi). We can now
lower- and upper-bound δi as follows. We have 7/8 · δi ≤ (1− γ)δi ≤ 1− αi + 2γ ≤ 1 + 1/4. Hence,
δi ≤ 10/7 ≤ 2. On the other hand, 9/8 · δi ≥ (1 + γ)δi ≥ 1− αi − 2γ ≥ 1/2− 1/4 = 1/4. Hence, δi ≥ 2/9.

Let us denote A ≈ B to mean ‖A− B‖ ≤ O(γ). We have seen that δi + ri ≈ 1 and that αi ≈ ri (since
δi ≤ 2), so

δi M+
i − δiUi−1Di ≈ (1− αi)M+

i − δiUi−1Di

= Di+1Ui − αi I − δiUi−1Di

≈ Di+1Ui − ri I − δiUi−1Di,

and we conclude that
∥∥M+

i −Ui−1Di
∥∥ = O(γ/δi) = O(γ) (since δi ≥ 2/9).

Many posets satisfy the mild requirements of Lemma 8.18. For example, in the (d + 1)-dimensional
complete complex, the lower walk is 1/(n− d+ 1)-lazy, and the upper walk is (1, 1/2, . . . , 1/d)-uniformly
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lazy, and so 1/2-uniformly lazy. Similarly, in the (d + 1)-dimensional Grassmann complex, the lower
walk is q−1

qn−d+1−1
-lazy, and the upper walk is (1, q−1

q2−1 , . . . , q−1
qd−1

)-uniformly lazy, and so 1/(q+ 1)-uniformly
lazy.

In Definition 8.5, we defined an (~r,~δ, γ)-eposet to be a poset where ‖DU − rI − δUD‖ ≤ γ. The
above lemma states that this is equivalent to

∥∥Ui−1Di −M+
i

∥∥ = O(γ) provided the lower walk UD is
γ-lazy and the upper walk is 1/2-uniformly lazy. This justifies the following equivalent definition of a
γ-eposet.

Definition 8.19. A d-dimensional poset X is a γ-eposet if
∥∥Ui−1Di −M+

i

∥∥ ≤ γ for all 0 ≤ i < d.

8.4.2 Decomposable posets

The measured posets we consider in this section have a lattice-like property which we call decomposabil-
ity.

To define decomposabile posets, we first need the notion of a modular lattice. Given a poset X and
elements s1, s2 ∈ X, the join s1 ∨ s2 of s1, s2 is an element t such that s1, s2 ≤ t, and t ≤ r whenever
s1, s2 ≤ r. If the join exists then it is unique. The meet s1 ∧ s2 is defined analogously, with ≤ replaced by
≥. In a simplicial complex, join corresponds to union, and meet to intersection. A graded lattice is said
to be modular if ρ(x) + ρ(y) = ρ(x ∨ y) + ρ(x ∧ y) for all x, y ∈ X.

Definition 8.20 (Decomposable measured posets). Let X be a measured poset. We say that X is decompos-
able if the following conditions hold:

1. X is a modular lattice. In particular, s1, s2 ∈ X(i) have a join in X(i + 1) iff they have a meet in X(i− 1).

2. For any s1, s2 ∈ X(i) with meet r ∈ X(i− 1), it holds that

Pr
M+

i

[s2 ∼ s1] = Pr[Πi−1 = r] Pr
M+,r

0

[s2 ∼ s1].

As an example, the Grassmann poset is decomposable. Indeed, it is well-known to be modular,
since dim(s1) + dim(s2) = dim(s1 + s2) + dim(s1 ∩ s2). As for the second condition, it automatically
holds whenever the non-lazy upper and lower walks coincide on all links, which is the case for the
Grassmann poset. This is because the second condition is easily seen to hold if we replace the non-lazy
upper walks with non-lazy down walks.

Another way to obtain a decomposable measured poset is to start with one and introduce weights on
the top level. This is a generalization of the special case of simplicial complexes, in which we consider
an arbitrary distribution on the top facets. We describe this construction in detail in Section 8.4.3.

We are now ready to state and prove the main theorem of this section,

Theorem 8.21 (Equivalence of link-expansion and random-walk expansion). Let X be a d-dimensional
measured poset which is decomposable, the lower walk UD is γ-lazy and the upper walk is 1/2-uniformly lazy..

1. If X is a γ-two-sided link expander, then X is a γ-eposet.

2. If X is a γ-eposet then X is a η−1(1 + β−1)γ-two-sided link expander, where

η = min
0≤i≤d−2

min
r∈X(i),s∈X(i+1),r≤s

Pr[Πi = r | Πi+1 = s]

37



and
β = 1− max

0≤i≤d−2
max

r∈X(i),s∈X(i+1),r≤s
Pr[Πi = r | Πi+1 = s]

Before proving the theorem, let us calculate the values of η and β for the Grassmann poset Grq(n, d).
For any r ∈ X(i) and s ∈ X(i + 1) such that r ≤ s we have

Pr[Πi = r | Πi+1 = s] =
1[

i + 2
i + 1

]
q

=
1

1 + q + · · ·+ qi+1 .

This implies that η = 1
1+q+···+qd−1 and β = 1− 1

1+q = q
1+q .

Proof. Item 1. Assume that X is a γ-two-sided link expander. We show that

∥∥M+
i −UD

∥∥ ≤ γ,

for all i < d. Let f be a function on X(i), where i < d. By decomposability,

〈M+
i f , f 〉 = E

r∼Πi−1
[〈M+,r

0 f , f 〉]. (22)

We now note that for every r ∈ X(i− 1),

E
r≤s

[ f (s)] = (D f )(r).

Therefore we have that

∣∣〈M+
i f , f 〉 − 〈UD f , f 〉

∣∣ = ∣∣∣∣∣ E
r∼Πi−1

E
s1,s2∼M+,r

0

[ f (s1) f (s2)]− (D f )(r)2

∣∣∣∣∣ ≤ E
r∈Πi−1

[
λ(M+,r

0 ) E
s∈Xr(0)

[ f (s)2]
]
.

If X is a γ-two-sided link expander then λ(M+,r
0 ) ≤ γ for all r, and so

∣∣〈(M+
i −UD) f , f 〉

∣∣ ≤ γ E
r∈Πi−1

E
s∈Xr(0)

[ f (s)2] = γ‖ f ‖2.

Item 2. Assume now that X is a γ-HDX. Our goal is to show that for all i < d− 1 and r ∈ X(i),

λ(M+,r
0 ) ≤ η−1(1 + β−1)γ.

Using the convention that X(−1) consists of a single item ∅, for i = −1 we have M+,∅
0 = M+

0 , and
so U−1D0 is zero on the space perpendicular to the constant function. Thus

∥∥M+
0 −UD

∥∥ = λ(M+,∅
0 ),

and from our assumption λ(M+,∅
0 ) ≤ γ.

Now assume 1 ≤ i ≤ d− 1, and fix some r ∈ X(i− 1). Let f : Xr(0) → R be some eigenfunction of
M+,r

0 , which is perpendicular to the constant functions. In order to prove the theorem, we must show
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that ∣∣∣∣∣ 〈M+,r
0 f , f 〉
〈 f , f 〉

∣∣∣∣∣ ≤ η−1(1 + β−1)γ.

Define a function f̃ ∈ Ci by

f̃ (s) =

 f (s) if r ≤ s,

0 otherwise.

Without loss of generality, we may assume that
∥∥ f̃
∥∥ = 1.

In order to obtain a bound on λ(M+,r
0 ), we bound 〈 f̃ , f̃ 〉, 〈M+

i f̃ , f̃ 〉, and 〈UD f̃ , f̃ 〉 in terms of f and
M+,r

0 .
We note that by Bayes’ theorem,

Pr[s | r] =
Pr[s]Pr[r | s]

Pr[r]
≥ η

Pr[r]
Pr[s].

As f (s) = 0 whenever r � s,

〈 f , f 〉 = E
r≤s

[ f (s)2] ≥ η

Pr[r]
E

s∈X(i)
[ f (s)2] =

η

Pr[r]
〈 f̃ , f̃ 〉. (23)

Furthermore, from what we shown in (22) we obtain that

〈M+
i f̃ , f̃ 〉 = E

r′∈X(i−1)
[〈M+,r′

0 f̃ , f̃ 〉].

Fix some r′ 6= r. If f̃ 6= 0 on the link of r′ then some s ∈ X(i) satisifies both r ≤ s and r′ ≤ s; this
s must be the join of r and r′, and so it is unique. Since M+,r′

0 is a non-lazy operator, this implies that
〈M+,r′

0 f̃ , f̃ 〉 = 0. We remain with

〈M+
i f̃ , f̃ 〉 = Πi−1(r)〈M+,r

0 f , f 〉. (24)

In other words, the upper non-lazy random walk is proportional to the local adjacency operator.
We now prove the following claim, which shows that the lower walk scales f̃ by a factor of at most

η−1γ:

Claim 8.22. If f : Xr(0)→ R is perpendicular to constant functions then |〈Ui−1Di f̃ , f̃ 〉| ≤ β−1γ.

Assuming the above:

∣∣∣∣∣ 〈M+,r
0 f , f 〉
〈 f , f 〉

∣∣∣∣∣ ≤ |η−1Πi−1(r)〈M+,r
0 f , f 〉| = η−1|〈M+

i f̃ , f̃ 〉| ≤

η−1|〈(M+
i −Ui−1Di) f̃ , f̃ 〉|+ η−1|〈Ui−1Di f̃ , f̃ 〉| ≤ η−1(1 + β−1)γ,

where the first line uses (23) and (24), and the second line uses Claim 8.22, our assumption that ‖M+
i −

Ui−1Di‖ ≤ γ, and the triangle inequality.

We complete the proof of Theorem 8.21 by proving Claim 8.22:

Proof of Claim 8.22. Since UD is PSD, we have 〈Ui−1Di f̃ , f̃ 〉 ≥ 0, and so we may remove the absolute
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value and prove
〈Ui−1Di f̃ , f̃ 〉 ≤ β−1γ.

Consider the inner product 〈Di f̃ , Di f̃ 〉— this is the expectation upon choosing r′ ∼ Πi−1, and then
choosing two i-faces s1, s2 ∈ X(i) containing it independently. Hence we decompose to the cases where
r′ = r and r′ 6= r:

〈Di f̃ , Di f̃ 〉 = E
(r′ ,s1,s2)

[ f (s1) f (s2)] =

Πi−1(r) E
(r′ ,s1,s2)

[ f̃ (s1) f̃ (s2) | r′ = r] + (1−Πi−1(r)) E
(r′ ,s1,s2)

[ f̃ (s1) f̃ (s2) | r′ 6= r]. (25)

The first term is 0, since from independence of s1, s2:

E
(r′ ,s1,s2)

[ f̃ (s1) f̃ (s2) | r′ = r] = E
s1
[ f (s1) | r ⊂ s1]

2 = 0,

since by assumption f is perpendicular to constant functions.
We saw above that for any r′ 6= r, there is at most one i-face s′ ≥ r′ such that f̃ (s) 6= 0. For any

r′ 6= r, the value f̃ (s1) f̃ (s2) is non-zero only when s1 = s2 = s′. For every s1 ∈ X(i), we define the event
Es1 to hold when s2 = s1. Then

(25) = (1−Πi−1(r))E
s1

[
f̃ (s1)

2 Pr
r′ ,s2

[Es1 | r′ 6= r]
]
.

Note that if s1 doesn’t contain r then f̃ (s1)
2 = 0, hence we continue taking expectation over all s1 ∈ X(i),

even though some of them are unnecessary terms.
If we prove that for every s ∈ X(i) so that r ≤ s we have Prr′ ,s2

[Es1 | r′ 6= r] ≤ β−1γ, then

(1−Πi−1(r))E
s1
[ f̃ (s1)

2 Pr
r′ ,s2

[Es1 ]] ≤ β−1γ E
s1
[ f̃ (s1)

2] = β−1γ〈 f̃ , f̃ 〉 = β−1γ.

Thus we are left with proving the following statement: for all s1 ∈ X(i),

Pr
r′ ,s2

[Es1 | r′ 6= r] ≤ β−1γ.

We first bound the unconditioned probability Pr[Es1 ] = Prr′ ,s2∈X(i)[s2 = s1 | r′ ⊂ s1, s2]. Fix some
s1 ∈ X(i), and let 1s1 : X(i)→ R be its indicator. Notice that Ui−1Di1s1(s1) = Prr′ ,s2

[s2 = s1], and so

〈Ui−1Di1s1 ,1s1〉 = Πi(s1)Ui−1Di1s1(s1) = Πi(s1)Pr[ES1 ].

We again use the non-laziness property of M+
i to assert that 〈M+

i 1s1 ,1s1〉 = 0. Since X is a γ-eposet,

〈Ui−1Di1s1 ,1s1〉 = 〈(Ui−1Di −M+
i )1s1 ,1s1〉 ≤

∥∥Ui−1Di −M+
i

∥∥ ‖1s1‖
2 = γΠi(s1).

Hence Pr[Es1 ] ≤ γ.
Consider now any s1 ∈ X(i) containing r and some r′ 6= r. The probability of sampling r′ 6= r given

that we sample an element ≤ s is at least β (by definition of β which is the probability of not sampling

40



the element with largest probability), and so

Pr
r′ ,s2

[Es1 | r′ 6= r] ≤ β−1 Pr
r′ ,s2

[Es1 ] ≤ β−1γ.

8.4.3 Constructing decomposable posets

Let X be a measured poset given by the distribution ~Π = (Πd, . . . , Π−1). Given a distribution D on
X(d), we can construct a different distribution ~Ψ by first sampling x ∼ D, and then sampling ~Π condi-
tioned on Πd = x.

Lemma 8.23. If X is decomposable with respect to ~Π, then it is decomposable with respect to ~Ψ.

Proof. Only the second condition depends on the measure. Let us spell it out in the case of the original
distribution ~Π .

We are given s1, s2 ∈ X(i) with meet r ∈ X(i− 1) and join t ∈ X(i + 1) (which is the only way for
the upper walk to get from s1 to s2), and know that the following two expressions are equal:

Pr
M+

i

[s2 ∼ s1] = Pr[Πi = s1, Πi+1 = t]
Pr[Πi = s2 | Πi+1 = t]
Pr[Πi 6= s1 | Πi+1 = t]

,

Pr[Πi−1 = r] Pr
Mr,+

0

[s2 ∼ s1] = Pr[Πi−1 = r]Pr[Πi = s1, Πi+1 = t | Πi−1 = r]
Pr[Πi = s2 | Πi+1 = t, Πi−1 = r]
Pr[Πi 6= s1 | Πi+1 = t, Πi−1 = r]

.

Let us write these two expressions slightly differently:

Pr
M+

i

[s2 ∼ s1] = Pr[Πi+1 = t]Pr[Πi = s1 | Πi+1 = t]
Pr[Πi = s2 | Πi+1 = t]
Pr[Πi 6= s1 | Πi+1 = t]

,

Pr[Πi−1 = r] Pr
Mr,+

0

[s2 ∼ s1] = Pr[Πi+1 = t]Pr[Πi = s1, Πi−1 = r | Πi+1 = t]
Pr[Πi = s2 | Πi+1 = t, Πi−1 = r]
Pr[Πi 6= s1 | Πi+1 = t, Πi−1 = r]

.

In order for X to be decomposable with respect to ~Ψ, we need these two expressions to coincide when
replacing Π with Ψ throughout. Yet due to the definition of Ψ, this only replaces the Pr[Πi+1 = t] factors
with Pr[Ψi+1 = t] factors. Hence X is decomposable with respect to ~Ψ as well.

8.5 Comparison to the Kaufman-Oppenheim decomposition

Kaufman and Oppenheim [KO20] proposed a decomposition of Ck to orthogonal spaces in the case of
high-dimensional expanders. Their definition extends to the general eposet setting:

Bi = Uk−iCi ∩
(
⊕j<iBj

)⊥
= Uk−iCi ∩

(
Uk−(i−1)Ci−1

)⊥
.

(When i = −1, the definition is simply B−1 = Uk+1C−1.)
As U = D∗, we have an equivalent definition of these spaces by harmonic conditions similar to ours:

Bi = Uk−iCi ∩ ker Dk−i+1.

By construction, these spaces are orthogonal, and it is easy to see that indeed their direct sum is
Ck. Kaufman and Oppenheim [KO20, Theorem 1.5] showed that the subspaces Bi are approximate
eigenspaces of M+.
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The following proposition shows that these two spaces are close.

Proposition 8.24. If f ∈ Vi has unit norm then there exists g ∈ Bi so that ‖ f − g‖ = O(γ).
Similarly, if g ∈ Bi has unit norm then there exists f ∈ Vi so that ‖ f − g‖ = O(γ).
The O notation may depend on k, r, δ only.

Proof. We start with the first statement. Let f ∈ Vi have norm 1. We decompose f as f = ∑k
j=−1 gj,

where gj ∈ Bj, and take g = gi. Then

‖ f − g‖2 = 〈 f − g, f − g〉 = 〈 f , f − g〉,

since g is perpendicular to f − g. As f − g = ∑k
j=−1,j 6=i gj, it is enough to show that 〈 f , gj〉 = O(γ) for

all j 6= i.
If j > i then by the definition of Bj and the fact that f ∈ Uk−iCi, 〈 f , gj〉 = 0. If j < i then gj ∈ U jCj =

V−1 ⊕ · · · ⊕V j. By Corollary 8.12 and Corollary 8.13, 〈 f , gj〉 = O(γ)(1 +O(γ)) ‖ f ‖
∥∥gj
∥∥ = O(γ), since∥∥gj

∥∥ ≤ ‖ f ‖ = 1.

The proof of the second statement is similar. Let g ∈ Bi have norm 1. We decompose g as g =

∑k
j=−1 f j, where f j ∈ V j, and take f = fi. Then

‖g− f ‖2 = 〈g− f , g− f 〉 = 〈g, g− f 〉+ 〈 f , g− f 〉.

Since g− f = ∑k
j=−1,j 6=i f j, Corollary 8.12 and Corollary 8.13 show that 〈 f , g− f 〉 = O(γ)(1+O(γ)) ‖ f ‖ ‖g− f ‖ =

O(γ). Thus we need to show that 〈g, g− f 〉 = O(γ), and for this it is enough to show that for every
j 6= i, 〈g, f j〉 = O(γ).

If j < i then 〈g, f j〉 = 0 by the definition of Bi and the fact that f j = Uk−jh for some h ∈ Cj. Otherwise
j > i, in which case we again use Corollary 8.12 and Corollary 8.13 to get the required bound.

Remark 8.25. Let g ∈ Bi, and let f ∈ Ci be a close vector promised in Proposition 8.24. Applying
Theorem 8.6, we get that∥∥∥DUg− rk

i g
∥∥∥ ≤ ‖DU(g− f )‖+

∥∥∥DU f − rk
i f
∥∥∥+ |ri| ‖g− f ‖ = O(γ).

In other words, Bi is an approximate eigenspace of DU.

8.6 Decomposition in the Grassmann poset

Applying Theorem 8.2, we obtain the following properties on the decomposition of Grq(n, d). These
properties are well-known in the literature, but we rederive them to show the versatility of Theorem 8.6:

Claim 8.26. Fix some d, n ∈ N, let X = Grq(n, d), and let ` < d. Let f : X(`) → R be an arbitrary function.
Then we can decompose f = f−1 + · · ·+ f`, where fi ∈ Vi:

1. For i 6= j, 〈 fi, f j〉 = 0.

2. ‖ f ‖2 = ‖ f−1‖2 + · · ·+ ‖ f`‖2.

3. The fi’s are eigenvectors of DU. The eigenvalues are

r`i = 1−
`

∏
j=`−i+1

(
1− q− 1

qj+2 − 1

)
+ Θ(1/qn−`).
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4. In particular, DU has a constant spectral gap, that is, all its eigenvalues are bounded by a constant strictly
smaller than 1 when n is large enough compared to `:

r`i ≤
q

q2 − 1
+ O

(
1

qn−`

)
< 1.

Proof. The first two items are by invoking Theorem 8.6 and using (16), which shows the Grassmann
poset is a sequentially differential poset.

The third item is by invoking Theorem 8.6, and using the fact that Grq(n, `) is also an expanding poset,
with ri = q−1

qi+2−1 , δi = 1− ri, and γ = O(1/qn−`). The fourth item is by direct calculation: one may

show using induction that the approximate formula for r`i is

1−
`

∏
j=i

(
1− q− 1

qj+2 − 1

)
≤

`

∑
j=i

q− 1
qj+2 − 1

.

By taking ` to infinity and rearranging, we obtain

`

∑
j=i

q− 1
qj+2 − 1

≤ (q− 1)
∞

∑
j=i+2

qj

qj(qj − 1)
≤ (q− 1)

qi+2

qi+2 − 1

∞

∑
j=i+2

1
qj .

The infinite sum converges to 1
qi+1(q−1) , and so

(q− 1)
qi+2

qi+2 − 1

∞

∑
j=i+2

1
qj = (q− 1)

qi+2

qi+2 − 1
1

qi+1(q− 1)
=

q
qi+2 − 1

.

Hence r`i ≤
q

q2−1 + O
(

1
qn−`

)
.

Remark 8.27. The actual values for r`i can also be calculated by the formula devised in Theorem 8.6.
The calculations are omitted, as they don’t add any additional insight.

Remark 8.28. This result is also analogous to the decomposition of the complete complex, say the one
obtained by Filmus and Mossel [FM19].

8.7 Is there a bounded degree Grassmann poset?

A high-dimensional expander, as constructed by Lubotzky, Samuels and Vishne [LSV05a], is a simplicial
complex that is an eposet and a bounded-degree sub-complex of the complete complex. Is there an
analogous construction of an eposet that is a bounded-degree subcomplex of the Grassmann poset? We
conjecture the existence of such posets:

Conjecture 8.29. For any prime power q, d ∈N, and any 0 < γ < 1, there exists an infinite sequence of
natural numbers n1 < n2 < n3 < . . . such for all n = nj there exists a d-dimensional measured poset X
with the following properties:

1. X is sparse, that is |X(0)| = n and X(d) = O(n) (the O-notation hides a constant that may depend
on q, d, but not on n).

2. X may be embedded (as a poset) into Grq(n, d). In addition, for all i < d, Πi is obtained by the
same probabilistic experiment described for the Grassmann poset:
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(a) Choose a subspace of dimension d + 1, sd ∈ X(d).

(b) Given a space si of dimension i + 1, choose si−1 to be a uniformly random codimension 1
subspace of si.

In particular, X is downward closed, that is, if s ∈ X then every subspace s′ ⊂ s also belongs to X.

3. X is an (~r,~δ, γ)-eposet for ri =
1

qi+2−1 and δi = 1− ri.

This existence of sub-posets as above is the vector-space analog of the existence of γ-HDX simplicial
complexes. Moreover, it would be interesting to construct such a poset such that Π0, Πd are uniform.
Note however that even in the known constructions for γ-HDX simplicial complexes, Πd is not uniform
(but Π0 is uniform).

Moshkovitz and Raz [MR08] gave a construction that can be viewed as an interesting step in this
direction. They constructed, towards a derandomized low degree test, a small set of planes by choosing
only planes spanned by directions coming from a smaller field H ⊂ Fq.

8.8 Eposet parameters in a simplicial complex

Although the definition of (approximately) sequentially differential poset allows a range of parameters~r
and~δ, these parameters turn out to be determined by the laziness of the upper walks, assuming that the
lower walks are sufficiently non-lazy. The lemma below shows that any family of simplicial complexes
which are eposets, have parameters~r,~δ approaching rj =

1
j+2 and δj = 1− 1

j+2 as γ goes to zero.

Lemma 8.30. Let X(m) be a sequence on k-dimensional (~r(m),~δ(m), γ(m))-eposets, where limm→∞ γ(m) = 0.
Then for all j ≤ k− 1:

lim
m→∞

r(m)
j + δ

(m)
j = 1. (26)

Furthermore, suppose that the following two conditions hold:

1. For all j ≤ k− 1, the laziness of Uj−1Dj, goes to 0 as m goes to infinity:

lim
m→∞

Pr
(t1,t2)∼UD

[t1 = t2] = 0.

2. There exists~α such that for all j ≤ k− 1, Dj+1Uj = αj I +(1− αj)M+, where M+ is a non-lazy averaging
operator.

Then
lim

m→∞
r(m)

j = αj and lim
m→∞

δ
(m)
j = 1− αj,

In particular, if X(m) are k-dimensional simplicial complexes, then αj =
1

j+2 and we get

lim
m→∞

r(m)
j =

1
j + 2

and lim
m→∞

δ
(m)
j = 1− 1

j + 2
,

under the mild assumption that the laziness probability of UD goes to zero. In other words, the inter-
esting eposets are γ-HDXs.

Proof. To prove both assertions, we use the definition of an eposet to get the following inequality:∣∣∣∣∣∣
〈(DU − r(m)

j I − δ
(m)
j UD) f , f 〉

〈 f , f 〉

∣∣∣∣∣∣ ≤ γ(m), (27)
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for any function f ∈ Ck. We use this inequality on specific functions f we choose: the constant function,
and indicator functions.

To show that
lim

m→∞
r(m)

j + δ
(m)
j = 1,

we apply DU − r(m)
j I − δ

(m)
j UD to the constant vector 1, which is fixed by all of DU, I, UD:

∣∣∣∣∣∣
〈(DU − r(m)

j I − δ
(m)
j UD)1,1〉

〈1,1〉

∣∣∣∣∣∣ ≤ γ(m) =⇒ |1− r(m)
j − δ

(m)
j | ≤ γ(m),

thus limm→∞ r(m)
j + δ

(m)
j = 1.

To show that limm→∞ r(m)
j = αj, we fix j and take a sequence of σ(m) ∈ X(j) such that probability of

laziness given that t1 = σ(m) goes to zero:

lim
m→∞

Pr
(t1,t2)∼UD

[t2 = σ(m)|t1 = σ(m)] = 0.

Denote by 1σ(m) the indicator of σ(m). Then

〈UD1σ(m) ,1σ(m)〉
〈1σ(m) ,1σ(m)〉

= Pr
(t1,t2)∼UD

[t2 = σ(m)|t1 = σ(m)].

Moreover,
〈(DU − r(m)

j I)1σ(m) ,1σ(m)〉
〈1σ(m) ,1σ(m)〉

= αj − r(m)
j .

Plugging f = 1σ(m) into (27), we get

∣∣αj − r(m)
j − δ

(m)
j Pr

(t1,t2)∼UD
[t2 = σ(m)|t1 = σ(m)]

∣∣ ≤ γ(m).

Since the δ
(m)
j are bounded, this shows that limm→∞ r(m)

j = αj. The analogous statement for δ
(m)
j follows

from (26).
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